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Cantilever Torque Magnetometry (CTM) is one of the leading techniques to deeply understand magnetic
anisotropy of coordination compounds. The knowledge of magnetic anisotropy is a mandatory require-
ment before proceeding with any future application related to the magnetic properties of coordination
compounds, such as quantum computation or information storage. This review enlightens that CTM
offers a unique combination of accuracy and precision to disentangle noncollinear contributions inside
Single Crystals as well as the sensitivity to detect molecular order of thin films. CTM can also detect quan-
tum phenomena such as magnetization steps and molecular hysteresis curves. Moreover, it can also pro-
vide the energy levels splitting and wavefunctions composition, especially if coupled with microwave
radiation.
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1. Introduction

Molecular magnetism is an interdisciplinary research area that
embraces both chemistry and physics. The aim of the field is to
understand, optimize and exploit the magnetic properties of
molecular compounds containing unpaired electrons either
delocalized over a portion of an organic molecule (radicals) or,
more often, belonging to paramagnetic metals in coordination
complexes. The intriguing future applications related to these
molecules include information storage (e.g. Single Molecule Mag-
nets, SMMs) [1], quantum calculations (e.g. Spin Quantum Bits)
[2–5] and molecular quantum spintronics [6–9].

Using single molecules instead of extended magnetic networks
(e.g. magnetic oxides or alloys) enables to chemically engineer the
structure to obtain or tune a target characteristic. A property that
must be known for all the aforementioned applications is magnetic
anisotropy, defined as the directional dependence of the magnetic
properties. From its definition, it is evident that the key to tailor
the magnetic anisotropy of coordination complexes is to establish
reliable magneto-structural correlations. The detailed explanation
of the origin of magnetic anisotropy at the molecular level is
beyond the aim of this review and can be found in several books
[10,11], however we must mention that the simplest building
blocks that can be varied to tune magnetic anisotropy are the
chemical nature and number of metal ions as well as the geometry,
chemical composition and number of the coordinating ligands. A
large fan of very different anisotropic coordination complexes
has been synthesized so far [12–18]. Among them, two categories
are particularly relevant in the context of this review: polynuclear
transition metal-based clusters [16] and mononuclear lanthanide
complexes [12].

Since magnetic anisotropy is intrinsically connected to a spatial
dependence, its experimental study is usually performed using
angular-resolved measurements on ordered systems (e.g. single
crystals or oriented films). Among the several techniques that
can extract information about the orientation and magnitude of
magnetic anisotropy, the most known is Single Crystal Magnetom-
etry (SCM), usually performed in a Superconducting Quantum
Interference Device (SQUID) magnetometer [19–22]. Despite a
quite good sensitivity, the technique has the major drawback to
be mainly limited to systems in which the anisotropies are colli-
near (see also Section 2.1). Particularly sensitive are also spectro-
scopic techniques such as Electron Paramagnetic Resonance (EPR)
[23–27] and Nuclear Magnetic Resonance (NMR) [28–34]. How-
ever, EPR is usually done only at very low temperatures and
NMR often in solution. Polarized Neutron Diffraction (PND) for sin-
gle crystal studies [35–37] and X-ray Natural Linear Dichroism
(XNLD) for films [38–41] are powerful alternatives. The first one
requires large crystals (typically hundreds of mm3 [36]), but can
be applied both in the high field and in the low field regime and
can provide access to the magnetization density of each individual
crystallographic site. XNLD is mainly limited by the depth penetra-
tion of the employed radiation. The major drawback of both tech-
niques is the necessity of large-scale facilities to generate neutrons
and X-ray beams.

Cantilever torque magnetometry (CTM) constitutes an excellent
alternative. Indeed, it requires an inexpensive experimental set-up
(Section 3.2) and is extremely sensitive to magnetic anisotropy,
being also able to disentangle noncollinear contributions (Sec-
tion 4). This peculiarity allows to study crystals belonging to all
the seven crystal systems, thus surpassing the major limit of
SCM. The main disadvantage is that CTM allows to find a number
of solutions equal to the number of noncollinear contributions to
magnetic anisotropy, thus needing theoretical calculations or other
experimental evidences to solve the ambiguity. Another extremely
useful advantage of the technique is the possibility to investigate
all kind of magnetic ions disregarding the parity of the spin (e.g.
integer or half-integer), conversely from traditional low frequency
X- or Q-band EPR. Concerning the ideal systems to investigate, the
technique can be considered partially complementary to EPR,
indeed CTM can be exploited at best with highly anisotropic sam-
ples (e.g. Co2+ or Dy3+ complexes) while EPR is more sensitive to
small anisotropies (e.g. Mn2+ or Gd3+ complexes). Moreover, CTM
can be used to investigate light crystals (few lg) of both lanthanide
and transition metal complexes up to room temperature, thus
being more generally applicable than EPR. This provides informa-
tion on all the energy levels that become significantly populated
in a broad temperature range, giving access to the energy levels
structure (Section 5). Furthermore, CTM allows to investigate sys-
tems that exhibit molecular hysteresis (Section 6). The technique
has been coupled with microwave radiation (in which case is
known as Torque Detected Electron Spin Resonance) to gain sensi-
tivity towards quantum phenomena such as levels crossings (Sec-
tion 7). Very recently, CTM was successfully used to study
molecular order of thin films (Section 8).

The range of chemical structures of the coordination com-
pounds studied via CTM is extremely broad. Since many of those
are composed of several magnetic centres and/or form crystals that
contain more than one noncollinear contribution to magnetic ani-
sotropy, before proceeding with the discussion of theory and
experiments, it is useful to briefly describe some guidelines to
identify the origin of noncollinearity.

2. Noncollinear magnetic anisotropies

The complexity of a system increases with the number of non-
collinear anisotropies that it contains because each of them exhi-
bits in the general case a different magnetic response to an
applied field. The sum of the anisotropies belonging to the mag-
netic centres of a molecule defines the molecular anisotropy, while
the sum of the molecular anisotropies packed in a periodic way
constitutes the crystal anisotropy. The number of noncollinear ani-
sotropies inside a crystal depends on the chemical structure, on the
crystallographic packing and on the presence of interactions
between magnetic centres. Hereafter we discuss separately the
relation that connects magnetic noncollinearity with symmetry
(Section 2.1) and interactions (Section 2.2).

2.1. Symmetry

For mononuclear complexes, noncollinearity can arise due to
the presence of crystallographically-inequivalent molecules and/
or to the presence of symmetry elements in the unit cell. In the for-
mer case, the unit cell contains several molecules not related by
symmetry elements, thus noncollinearity should trivially arise.
Note that this category includes both crystals formed by molecules
with identical (see e.g. Ref. [42]) or different chemical structure
(e.g. ionic pairs composed of magnetic anion and cation [43,44]).
If instead all the molecules are crystallographically-equivalent,
collinearity is strictly granted only when the molecule has the



Fig. 1. DyTRENSAL structure seen from the ab plane (a) and from the c axis (b). Colour code: Dy-green, C-black, N-blue, O-red.

Fig. 2. Chemical and magnetic structure of the Fe3La molecule viewed along the
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same point-group symmetry as the crystal structure, excluding the
inversion.1 In this circumstance, the orientation of magnetic aniso-
tropy can be obtained, without ambiguity, with all the experimental
techniques mentioned in the Introduction. An obvious consequence
is that highly symmetric crystal systems (e.g. cubic) are more prone
to contain noncollinear anisotropies compared to low symmetry
ones. In these cases, all the single crystal techniques can provide
information about the crystal anisotropy but only few of them
(mainly PND, EPR and Torque Magnetometry) can disentangle the
single molecular contributions.

A powerful way to reduce the number of magnetically inequiv-
alent entities to be included in the calculation or fit of single crystal
data, is to approximate the molecular symmetry to the highest
compatible with the ligands distance and geometry. Although evi-
dences that inaccurate symmetry assumptions can lead to com-
pletely wrong results have been reported [19,20], a good
symmetry approximation can drastically reduce the number of
independent fitting parameters, allowing the analysis of otherwise
complicated systems. In Fig. 1 we reported the structure of
DyTRENSAL (H3TRENSAL = 2,20,200-tris(salicylideneimino)triethyla
mine) that crystallizes in the trigonal P-3c1 space group. The pres-
ence of an inversion centre reduces the number of noncollinear
molecules in the unit cell from 4 to 2 (the ones depicted in
Fig. 1). The symmetry operation that connects these two molecules
is a C2 axis lying in the ab crystallographic plane. Since this sym-
metry operation does not belong to the point group of the molecule,
the anisotropies of the two molecules reported in Fig. 1 are in prin-
ciple noncollinear (the only symmetry restriction is that both z
molecular axes lie along c). However, considering the ab plane
magnetically isotropic (this assumption must be justified by exper-
imental measurements, see also Section 4.1) it is possible to safely
consider the anisotropies collinear and reduce the problem to the
trivial determination of a single anisotropy.

The case of polynuclear clusters is more complicated. For these
molecules, all the considerations related to crystallographic sym-
metry elements enlightened in the previous paragraph are still
valid, however the presence of different sites in the molecule might
produce more complicated responses. When the paramagnetic
centres do not share the same chemical nature, the ligand field
around each metal is different, the sites are not related by symme-
try elements and no other experimental/theoretical indication is
available, the system cannot be further simplified.

If instead the magnetic centres are related by one or more sym-
metry elements, the system can be simplified using pure symmetry
arguments. An example is the Fe3La complex, reported in Fig. 2.
This compound is a variation of the Fe4 unit (in which a central
Fe(III) ion is surrounded by three Fe(III) ions arranged in a triangu-
lar fashion [46]). In Fe3La, the central ion is substituted with a La
(III) diamagnetic ion that has the effect of reducing the magnetic
1 Magnetic anisotropy is even with respect to the inversion of the coordinate
system.
interactions between the peripheral Fe(III) ions. Since in this mole-
cule a C3 axis passes through the central metal, the molecular ani-
sotropy should have a principal axis perpendicular to the plane
defined by the metals. The Fe(III) site symmetry is a distorted octa-
hedron, thus the only restriction on the single ion anisotropies is
imposed by the three C2 axes parallel to the Fe–La bonds (that
must be principal anisotropy axes for all the sites). However, once
the reference frame of the first anisotropy is defined, the other two
can be simply obtained by a proper rotation of the first one (see
Appendix C for further information about reference frame
rotations).

2.2. Interactions

If the paramagnetic centres interact, noncollinearity can be also
imposed by interactions. Considering for simplicity a system com-
posed of two interacting spins, we can write the exchange interac-
tion term in the Hamiltonian as [47,48]:

Hexc ¼ bS1 � Jexc � bS2 ¼ �J12bS1 � bS2 þ bS1 � D12 � bS2 þ d12
bS1 � bS2 ð1Þ

The matrix Jexc that describes the interaction is not subjected to
any restriction, thus is often useful to decompose the expression in
three terms: a scalar one, a tensorial one and a vectorial one. The
scalar (Heisenberg) contribution is isotropic (it does not contain
directional features). It tends to align the spin parallel (J12 > 0) or
antiparallel (J12 < 0) and is generally the biggest in magnitude. The
tensorial (anisotropic) contribution is responsible for the alignment
of the spins along a certain direction, determined by the matrix D12.
The vectorial (antisymmetric or Dzyaloshinskii–Moriya) term con-
tains a vector product between the spins, thusminimizes the energy
threefold molecular axis (the c crystallographic axis). The Fe atoms are replaced by
single site susceptibility tensors drawn at an arbitrary scale. Arrows colour code:
red-hard, yellow-intermediate, green-easy axis. Atoms colour code: C-black, O-red,
La-blue, H were omitted for clarity. Image from Ref. [45].



Fig. 3. Example of the orientation of M, B and s in an orthogonal reference frame
XYZ.

Fig. 4. Simulation of the magnetic torque exerted by a mole of TbPc2 molecules
(parameters from Ref. [67]) at T = 2 K. The left scale refers to B = 0.1 T (blue curve)
while the right scale to B = 2 T (green curve). The used reference frame system is
reported in the inset.
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when the spins are perpendicular to each other [49–51]. The result-
ing tilting angle between the spins is proportional to the ratio d12/
Jexc [48]. The Dzyaloshinskii–Moriya term can play a crucial role in
defining noncollinearity as described for a ferric wheel [52] in
Section 6.

If the Heisenberg contribution to the magnetic coupling is the
leading term in Eq. (1) and the temperature is sufficiently low (only
the ground state is populated), the molecule can be safely consid-
ered as a unique magnetic entity with a well-defined value of the
total spin S (Giant Spin Approximation). In certain crystallographic
symmetries, this approximation can be extremely useful: relevant
examples for this review are the Mn12 clusters [53–55], the Fe4
family of SMM [46] and the transition metals-based metallic
wheels [56,57] and grids [58].

Another source of noncollinearity is frustration, for example the
geometrical impossibility to accommodate all the antiferromag-
netic interactions at the same time [59–61]. Although frustration
was firstly observed in extended networks, such as spin glasses
[62–64], this phenomenon was demonstrated to be a crucial factor
also in a number of molecular systems, for example in odd-
membered rings [65] and triangular structures [66].

Using the considerations reported in Section 2, it is possible to
identify the number and nature of noncollinear anisotropies to
be expected in a target compound. This analysis is not simply use-
ful, but instead mandatory, to meaningfully interpret the outcome
of CTM measurements described in the next section.

3. Cantilever torque magnetometry

3.1. Theory

The torque, or moment of force, is the tendency of a force to
transmit a rotation along a certain axis to an object. We experience
torque very often in everyday life, for example whenever we open
a door or we leaf through a book. The torque, often indicated as s, is
proportional to the modulus of the applied force as well as to the
modulus of the position vector (e.g. the vector that defines the
physical quantity on which the force acts with respect to a chosen
reference frame). Since the force tends to align the position vector
parallel to itself, the mathematical expression that defines the
magnetic torque is a simple vector product.

The magnetic analogous of classical torque is called magnetic
torque. It defines the tendency of a magnetic dipole moment (mi,
belonging to the i-th atom) to align along the direction of the mag-
netic induction (B) locally acting on it

si ¼ mi � B ¼ mi Bsinui ð2Þ
where ui is the angle between mi and B. For further details about
the derivation of this formula and the approximations already intro-
duced, the reader should refer to Appendix A. In samples where
more than one magnetic moment is present, Eq. (2) can be simply
extended summing over all the N magnetic moments as follows:

s ¼
XN
i¼1

ðmi � BÞ ¼ M� B ¼ MBsinu ð3Þ

where M is the magnetization. Since Eq. (3) contains a vector pro-
duct, s is orthogonal to both M and B vectors (see Fig. 3).

The mathematical expression of s in Eq. (3) strongly resembles
the free energy (Efree) of a dipole moment in a uniform magnetic
field, where the angular dependence is sinusoidal instead of cosinu-
soidal. Moreover, the units of s (Newton meter) are the same as an
energy (see Appendix A for details about the units). It is thus possi-
ble to derive the expression of torque also from the free energy

sa ¼ � @Efree

@/a

� �
B

ð4Þ
where /a is the angle that describes the rotation along the generic a
axis.

Since this review is focused on the torque exerted by coordina-
tion compounds, we will now derive the equation that defines the
magnetic torque of an anisotropic paramagnetic molecule inside a
homogeneous magnetic field. To do so, it is useful to define the
magnetic susceptibility tensor

vij ¼
@Mj

@Hi
ð5Þ

where i, j = X, Y, Z. For fields low enough (kBT > glBB) M increases
linearly with H, thus v becomes a simple ratio.

To calculate an analytical expression for the torque, we can start
with the simplest example. Referring to Fig. 3, we can define a
plane (say XZ) that contains both M and B, so it holds

Ma ¼ vaaHa þ vbaHb ð6Þ
where a = Z and b = X and viceversa. In this arrangement, the mag-
netic torque vector is directed along the Y axis. Substituting Eq.
(6) into Eq. (3), we get

sY ¼ MZBX �MXBZ ¼ 1
l0

ðvZZ � vXXÞBXBZ þ ðB2
X � B2

ZÞvXZ

h i
¼

¼ 1
l0

B2ðvZZ � vXXÞ cosðeÞ sinðeÞ þ B2vXZð2 sin2ðeÞ � 1Þ
h i ð7Þ



Fig. 5. Resultant torque (red line) for two orthogonal TbPc2 molecules (green and blue curves). Simulation at T = 2 K, and B = 0.2 T (a) or B = 2 T (b), same parameters and
reference frame of Fig. 4.
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where we conveniently defined e as the angle between the Z axis
and B (see Fig. 3). We can further simplify the picture in an axial
system if we rotate the reference frame to let the X and Z directions
coincide with the principal magnetic directions in the plane of rota-
tion. In that case, the term dependent on vXZ is identically zero, and
we can finally write sY as follows:

sY ¼ B2

l0
ðvZZ � vXXÞ cosðeÞ sinðeÞ ð8Þ

Eq. (8) contains several information about the anisotropy of the
studied compound and thus deserves some comments. In the low
field regime, torque is proportional to the anisotropic character
of the magnetic susceptibility (vZZ � vXX). For this reason, Torque
Magnetometry is particularly powerful if applied to highly aniso-
tropic samples (e.g. lanthanides complexes). Moreover, for fields
small enough, the signal is proportional to B2, allowing to detect
small signals even at moderate magnetic fields. From Eq. (8) it is
also clear that the torque of an anisotropic paramagnet in the
low field regime does not change sign every kp (k = 0, 1, 2 . . . n,
integer) as expected for a conventional vector product, but instead
it goes to zero every kp/2. Zero-torque points occur both when B is
parallel and when it is perpendicular to the easy axis, 2 making Tor-
que Magnetometry an ideal technique to detect the orientation of
the principal axis of the magnetic anisotropy.

The blue line reported in Fig. 4 illustrates a particularly simple
case: the magnetic torque exerted by a mole of a uniaxial system
when the field is rotated in the xz molecular magnetic reference
frame.3 As sample molecule we chose [TbPc2]� (Pc = dianion of
phthalocyanine) due to its extensively characterized magnetic beha-
viour [67]. Following the reference frame depicted in Fig. 4, at h = 0�
the field is parallel to the easy axis of the molecule, thus the mag-
netic torque is zero (B and M vectors are parallel). This point is com-
monly called ‘‘easy zero”. For 0� < h < 90� the sample tends to rotate
M anticlockwise towards B causing a positive torque (maximum is
reached at h = 45�). At h = 90� the vector B is contained in the hard
plane (perpendicular to the easy axis): since there are no compo-
nents of B along the easy axis, the molecule is (poorly) magnetized
again in the same direction of B and s is again 0 (‘‘hard zero”). An
equivalent explanation of the zero-torque points can be formulated
starting from Eq. (4): when B is applied along a free energy extreme
torque must vanish. For both second order anisotropies and collinear
axial systems the free energy extremes are orthogonal, thus a 90�
2 The term ‘‘easy” identifies the direction(s) along which a magnetic field produces
the highest possible value of the magnetization while the opposite is true for the
‘‘hard” direction(s).

3 The magnetic reference frame xyz is defined as the one in which the susceptibility
tensor is diagonal, thus for the rotation showed in Fig. 4, the angle h coincides with
the angle e in Eq. (8).
periodicity of the zero-torque points must be always observed. Con-
versely, the inclusion of higher order terms in the description of
magnetic anisotropy might remove this periodicity.4 An example is
the low temperature magnetic torque of the DyTRENSAL complex,
described in Section 4.1.

If the magnetic field is high enough and/or the thermal energy is
sufficiently low (high field limit, kBT << glBB), the simple angular
dependence obtained for s in Eq. (8) breaks down (see the green
curve in Fig. 4). While the zero-torque points along the principal
directions of magnetic anisotropy are maintained, the shape of
the curve changes. Two different features emerge compared to
the low field case: a smoother dependence of s near the easy zero
and a more abrupt change in s near the hard zero. A detailed
explanation of this behaviour is given in Appendix B, while here
we must point out that this peculiarity is the key to disentangle
individual contributions from noncollinear anisotropies in crystals.
To highlight this effect, in Fig. 5 we plotted the magnetic torque
(red lines) resulting from two orthogonal contributions to aniso-
tropy (blue and green lines) in the low and high field limits. The
sum of two orthogonal contributions is identically zero in the
low field limit (when Eq. (8) holds) while it is not in the high field
limit. The effects of noncollinearity, clearly visible in the shape of
the red line of Fig. 5b, are a decrease in the signal and an increase
in the number of zero-torque angles. The simple example reported
in Fig. 5 can be easily extended to the case of more than two
noncollinear contributions, evidencing the possibility to study
complicated anisotropic architectures.

3.2. Experimental set-up

Several experimental set-ups are dedicated to measure mag-
netic torque. The detection of the torque moment can be for exam-
ple optical [68–70], piezoelectric [71,72] or piezoresistive [73–75].
The combination of a cantilever with a magnetic tip allowed even
the detection of a single spin [76]. In this review, we will instead
focus on capacitive detection: a capacitive (electrical) detection
of the deflection of the upper plate of a capacitor (the cantilever)
requires an extremely simple and relatively inexpensive experi-
mental set-up, but at the same time assures high sensitivity and
fast data acquiring time [77,78].

The capacitance (C) of an ideal parallel plates capacitor is given
by

C ¼ eDA
d

ð9Þ
4 This is a common scenario in the description of the magnetic anisotropy of f-
elements. High-order anisotropies are described in Section 5.2.
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where eD is the permittivity of the dielectric that separates the two
plates, A is the area of the upper plate and d is the separation
between plates. The capacitance without any applied force is
C0 = eDA/d0. If we assume to have small deflections of the upper
plate (linear regime), we can expand in series the capacitance,
obtaining the difference DC as follows:

DC ¼ Cðd0 þ ddÞ � C0 ¼ �C0

d0
Ddþ C0

d2
0

Dd2 � C0

d3
0

Dd3 þ . . . ð10Þ

Eq. (10) shows that the difference in capacitance is directly pro-
portional to the deflection (Dd) that is in turn proportional to the
torque. The proportionality between these two quantities is clearly
dependent on the design and material used to fabricate the can-
tilever and can be obtained after a proper calibration (see after).

The only required electronics are a capacitive bridge and a
mechanical gear wheel to rotate along an axis perpendicular to
the applied magnetic field. The core of the instrument is the capac-
itor sketched in Fig. 6, that has a fixed copper base plate (thick-
ness � 300 nm) separated by � 0.1 mm from an upper plate (the
cantilever) that can be deflected elastically if a torque is acting
on the sample that is fixed on top of it. The upper plate has a thick-
ness of � 25 lm and it is usually made of copper-beryllium alloy
(2% of Be). The choice of this particular mixture has several advan-
tages with respect to other metallic alloys: it is diamagnetic, it has
a linear expansion coefficient almost independent on temperature
and it has high elastic and fatigue strengths [79]. The support and
the spacer are made of Epoxy and have the function to establish a
well-defined parallelism and distance (�100 lm) between the two
plates. The gear wheel is connected to the core and allows a com-
plete rotation around an axis (Y in Fig. 6b). The instrumental factor
that relates the change in capacitance (distance) and the conse-
quent torque can be simply obtained by applying a voltage to a
loop formed by a gold wire fixed on the cantilever. In this way, a
known magnetic moment is generated and the response of the
instrument can be properly calibrated. Alternatively, an indicative
scaling factor can be obtained measuring a crystal with well-
known weight and composition.

The sample can be either a single crystal or a thin film deposited
on a support of any inert and diamagnetic material. In the case of
single crystals, the sample is fixed on the cantilever with glue or
grease. Of course, the orientation of the crystal should be known
with great accuracy to define the mutual orientation of the labora-
tory (XYZ) and crystallographic (ab’c⁄) reference frames (see
Appendix C). Since the crystal is often visually aligned under a
microscope, this is the biggest source of error in the measurement
(usually between 1� and 5�). In the following sections, we describe
the principal information that we can extract using this technique.

4. Orientation of magnetic anisotropy

In this Section, we point out that the main utility of CTM is to
detect the orientation of the magnetic anisotropy. The detection
Fig. 6. (a) Top (left) and side (right) view of the main part of a capacitive torque
meter. (b) Basic operation mode of the instrument, with rotation angle (h) and
laboratory XYZ reference frame on it.
is quite easy if all the anisotropies are collinear, while it becomes
tricky for complicated noncollinear architectures. To facilitate the
reader, we divided this section in three parts: collinearity, inter-
molecular noncollinearity and intramolecular noncollinearity.
4.1. Collinearity

If all the molecular anisotropies inside a crystal are collinear,
CTM provides a unique solution for the orientation of the magnetic
anisotropy. The structures that exhibit true collinearity are the
easiest to study, but are also quite rare and often belonging to
the triclinic crystal system. To circumvent this problem, several
papers that exploit CTM to find or confirm the orientation of mag-
netic anisotropy, are based on giant spins originated in polymetal-
lic clusters [80,81]. Examples of strictly mononuclear [82] or
almost dimeric [83] complexes are rarer due to the widespread
use of SCM to characterize collinear systems [22].

A textbook example is LnTRENSAL [84,85], whose structure was
already analysed in Section 2.1 and reported in Fig. 1. The isostruc-
tural lanthanide derivatives of this molecule were studied both
from a magnetic [86] and a spectroscopic [86–88] point of view,
to obtain the Crystal Field (CF) parameters and to investigate the
strong interaction between this molecule and a graphene or a Ru
(0001) surface [89,90]. Before discussing the results obtained on
three derivatives of this family that were studied using CTM
(Ln = Tb, Dy and Er), we must remark that the assumption of
collinearity is justified by the negligible anisotropy in the ab crys-
tallographic plane (see ESI of Ref. [82]). Thus, the most relevant
plane to be scanned in these systems contains the c axis (the C3

symmetry axis of the trigonal space group). In Fig. 7, we reported
the experimental results obtained using a field of 12 T at T = 5 K
for the three studied derivatives.

For these systems, the sign of torque unequivocally determines
the nature of magnetic anisotropy. The upper panel of Fig. 7
describes the relation between sign of torque and magnetic
Fig. 7. Torque signals for TbTRENSAL (empty green triangles), DyTRENSAL (full red
circles) and ErTRENSAL (full blue squares) recorded at T = 5 K and B = 12 T. The solid
lines represent the best fit (see text). At h = 0� the field was aligned parallel to c. The
upper panel shows the relation between sign of torque and magnetic anisotropy at
h = 45�. Following the convention adopted by the author, a positive torque points
towards the reader.



Fig. 8. Magnetically inequivalent molecules in the Cp*ErCOT unit cell. Red and
green ellipsoids represent the two solutions obtained via CTM (green is the correct
one). The long axis of the ellipsoids is the z (easy) axis and the xy plane was
magnified for clarity. Colour code: Er-pink, C-black (H omitted).

Fig. 9. Angular dependence of the magnetic torque of a single crystal of Cp*ErCOT
measured at T = 10 K and various applied fields. Solid lines correspond to the
simulation using an effective S = 1/2 (see Ref. [91]).
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anisotropy at an arbitrary chosen angle (h = 45�). At this angle, a
positive torque implies that the c crystallographic axis is the easy
magnetization axis while a negative torque suggests the opposite
(we remark here that these are the only two possibilities compat-
ible with the ligand geometry). It is then clear that ErTRENSAL has
an easy axis anisotropy while DyTRENSAL and TbTRENSAL possess
an easy plane anisotropy. An equivalent way to define the sign of
magnetic anisotropy in these complexes is to look at the slope of
the curves. Around h = 0� (B//c) TbTRENSAL and DyTRENSAL exhibit
a rapid angular variation of s (hard zero) while for ErTRENSAL the
slope is less pronounced (easy zero). Opposite considerations can
be done around h = 90�. It is also interesting to notice that the tor-
que curve of DyTRENSAL reported in Fig. 7 does not exhibit the 90�
periodicity extensively discussed in Section 3.1. This effect, only
visible at low temperature and high magnetic field (see ESI of
Ref. [82]) can be described using high-order CF operators (see Sec-
tion 5.2). These results, in agreement with previous findings [86],
confirm that CTM is extremely sensitive to orientation and nature
of magnetic anisotropy of molecular species.

4.2. Intermolecular noncollinearity

The literature reports on intermolecular collinearity solved
using CTM are limited [91–93] due to the crescent complexity of
the systems. An easily understandable proof of concept on how
to disentangle noncollinear contributions arising from different
molecules in the unit cell was reported few years ago [91]. The
studied system was an Er(III) mononuclear organometallic com-
plex called Cp*ErCOT (Cp* = pentamethylcyclopentadiene anion
and COT = cyclooctatetraene dianion) [94,95]. The molecule crys-
tallizes in the orthorhombic Pnma space group, where only two
noncollinear families of molecules are present, due to the presence
of an inversion centre in the middle of the cell and a mirror plane
inside the molecule. As reported in Fig. 8, the noncollinear mole-
cules inside the cell are almost orthogonal to each other. Although
this represents a complicated scenario concerning the study of
noncollinearity, this system was previously studied using out-of-
equilibrium SCM measurements, exploiting the hysteretic beha-
viour below 5 K [96]. This study was based on a combination of
experimental results and ab initio calculations. The main conclu-
sion was that the anisotropy was axial, with the z axis almost per-
pendicular to the plane of the organic rings.

The simulation reported in Fig. 5b suggested that the magnetic
torque produced by two orthogonal molecules is not zero. The
shape and angular dependence of the torque curves is instead
related to the magnetic structure of the crystal. The experimental
magnetic torque obtained rotating the crystal along the b axis
reported Fig. 9 is the experimental proof. All the curves recorded
at different applied magnetic fields collapse to zero at h = 42� and
h = 42 + 90 = 132�, corresponding to B along a and along c, respec-
tively.5 Although no additional features are present in the curve reg-
istered at B = 1 T, when the field is raised the curves become more
structured and the torque vanishes at other two angles (h = 98–
109� and h = 152–163�, dashed lines in Fig. 9). Noticeably, these
two additional zero-torque angles are dependent on the magnetic
field, and their position is strongly connected to the shape of the
magnetic anisotropy.

After the fitting of the experimental curves (in Ref. [91] two dif-
ferent types of fit were performed), the orientation of the magnetic
anisotropy was obtained. It is important to remark that the sign of
the anisotropy was determined without ambiguity. Although the
relative position of the anisotropies of the two molecules in the
5 In the orthorhombic crystal system, the main crystallographic axes must be also
the main magnetic axes of the crystal susceptibility tensor, so when the field is
parallel to a, b or c the torque must vanish.
unit cell is fixed and known, it is in principle possible to assign
the obtained solution to both molecules (red and green ellipsoids
in Fig. 8). Alternatively, we can consider only one molecule, with
two possible solutions provided by the fit (leading to the same con-
clusion). In this case both the symmetry of the system (pseudo C1
axes perpendicular to the rings) and the previously reported
results [96], clearly pointed out that the correct solution was the
green one in Fig. 8.

It is important to remark that it was possible to find the correct
solution for Cp*ErCOT only due to the previously reported theoret-
ical calculations. For noncollinear systems torque must be used in
combination with theoretical calculations, as in Refs. [92,93]. On
the other hand, we must stress that CTM does not require the pres-
ence of hysteresis to detect a signal coming from noncollinear ani-
sotropies, thus in this respect it can be considered much more
generally applicable than SCM.
4.3. Intramolecular noncollinearity

The determination of intramolecular noncollinearity is clearly
one of the most interesting uses of CTM because it allows to isolate
the anisotropy of the single building blocks used to create a given
chemical structure. However, the presence of exchange interaction
can complicate the treatment of data [45,97]. To overcome this
problem, a giant spin approximation [98,99] or molecules with
poorly coupled centres [100] can be useful. Despite the great



Fig. 11. Susceptibility tensors calculated at T = 5 K and B = 0.1 mT, plotted on the
molecular structure. The xy plane for Dy6 was magnified by a factor 10 to give a
more solid aspect to the ellipsoids.
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variety of systems studied using CTM, in this review we limit the
discussion to two textbook examples.

A clarifying example is the CTM investigation of a trigonal crys-
tal (space group R-3c) of Fe3La [45]. The diamagnetic La(III) ion at
the centre of the molecule, shown in Fig. 2, hampers exchange
interactions between the central metal and the peripheral Fe(III)
ions, typical of the Fe4 family of SMM. For this reason, the giant
spin approximation is not valid, providing access to the single
ion anisotropy.

Fig. 10 shows the angular dependence of the torque recorded at
T = 2.3 K and B = 3 T for two different rotations (Rot1 and Rot2).
The inset of Fig. 10 shows the relation between the crystallo-
graphic reference frame and the rotations performed during the
experiment. Except the trivial 180� periodicity typical of torque
of paramagnetic anisotropic molecules, Rot1 does not display any
additional symmetry property. This is expected when the free
energy is scanned in a plane perpendicular to the b crystallographic
axis, as reported in Fig. 10, top. Moreover, the zeroes of the rotation
are clearly not evenly spaced (meaning that both Eq. (8) and the
Giant Spin approximation are not valid and the resultant torque
can indeed provide information on the single atom anisotropy).
On the other side, Rot2 is antisymmetric with respect to h = 0�
because the scanned plane contains the b axis (a C2 molecular axis).
The strategy that the authors propose for the fit of data is based on
iterative fits including more parameters at each step. Neglecting
scaling factors and offsets, the final fit included four relevant
parameters, namely the axial (D = 0.989(9) cm�1) and the rhombic
(E = 0.0517 cm�1) Zero Field Splitting (ZFS) parameters, the angle
between the crystallographic c axis and the local z axes
(n = 68.89(8)�) and the coupling constant (J = 0.0783(19) cm�1).
An E/D ratio as small as 0.05 testify an almost axial easy plane ani-
sotropy for each metal site (see also Eq. (11)). The angle n (the only
relevant Euler angle since the intermediate axis of the first tensor
was fixed by the authors along the b crystallographic axis, in agree-
ment with previous works [26,101–103]) arranges the anisotropy
tensors in such a way that the z axis of the first tensor is almost
directed along a O–Fe–O bond (see Fig. 2). Finally, the low value
of the coupling constant confirms a posteriori the effectiveness of
the central La(III) ion in hampering the interactions between Fe
(III) ions. Interestingly, this work unravelled that the easy axis
Fig. 10. Top: Free Energy surface of Fe3La calculated at T = 2.3 K. Bottom: Angular
dependence of magnetic torque for Fe3La recorded at T = 2.3 K and B = 3 T (full dots
and empty squares). Solid lines represent the best fit. The inset shows the planes
scanned during the two rotations.
magnetic anisotropy that characterizes the Fe4 derivatives is not
originated by a sum of easy axis local tensors. Instead, the only
the central Fe(III) ion has a negative ZFS [104], while the peripheral
ions have an easy plane anisotropy with the hard axis tilted by
almost 70� from the molecular easy axis.

A second example of intramolecular noncollinearity studied via
CTM is the spin helicity in chiral chains [100]. The structure of the
studied complex, chemically described in Refs. [105,106], is
reported in Fig. 11. The generic formula [Ln(Hnic)(nic)2(NO3)]n
(where Hnic is the nicotinic acid) was obtained for Ln = Tb, Dy
and Er. Since the helical structure crystallizes in the hexagonal
enantiomeric P61/P65 space groups, the repeating unit is formed
by 6 metal ions with identical coordination environment (8 oxygen
atoms). To facilitate the reader, the Dy, Tb and Er derivatives will
be hereafter called Dy6, Tb6 and Er6, respectively. To map the single
ion anisotropies of this structure the authors performed two rota-
tions: Rot1 (along the chain axis that is the c crystallographic axis)
and Rot2 (from the c axis to the ab plane). As a representative
example, in Fig. 12 we reported Rot1 (a) and Rot2 (b) for Dy6 taken
at T = 2 K and B = 7 T plotted using polar coordinates (h = rotation
angle, r = |s|). The experimental data were fitted using a model that
considered six uncoupled metal centres related by a C6 axis (black
solid line).

As expected, the two rotations have a completely different
shape. In Rot1, the torque vanishes every 30� but the overall sym-
metry of the polar curve is not C12 but C6: this is the distinctive fea-
ture that the measurements were taken in the regime in which Eq.
(8) is not valid (see Appendix B for further details). We can also dis-
tinguish the two different zero points, already defined in Sec-
tion 3.1. At h = 30 + 60 * k� (k = 0 . . . 6, integer) torque goes to
zero because B is parallel to the projection of the easy axis in the
plane of rotation for two ions and the other four are cancelling
out in couples. Conversely, at h = 0 + 60 * k the zeroes are origi-
nated by the fact that B lies in the xy plane of two ions and the
other four are again eliding by symmetry. It is important to notice
that since the signal during Rot1 is relatively strong (comparable to
Rot2), we can already exclude the possibility that the chain is
formed by collinear anisotropies with the principal axis along the
chain axis. The angular dependence of Rot2 is considerably more
complex, with a C2 symmetry. Despite the trivial 0 + 90 * k� (k = 1
. . . 4, integer) zeroes (B parallel or perpendicular to the chain axis),
Rot2 exhibits other zeroes at ca. 30�, 150�, 210� and 330�. The pres-
ence of these zeroes is the proof that the anisotropy has a signifi-



Fig. 12. Polar plot |s| vs h of the recorded magnetic torque at T = 2 K and B = 7 T for the Dy6 derivative (empty symbols are experimental points and black lines are the best fit
curves). (a) Rot1 (in plane), (b) Rot2 (from axis to plane).

M. Perfetti / Coordination Chemistry Reviews 348 (2017) 171–186 179
cant component in the ab plane, meaning that the chain exhibits
spin helicity.

The fit of the experimental data was performed using five rele-
vant parameters: three Euler angles (q, n and w) and two CF
parameters to define axiality and rhombicity of the tensors (b20

and b2
2, respectively). For more information about this notation

see also Section 5.2. The use of just two CF parameters to describe
these complex systems must be considered purely phenomenolog-
ical, being only able to provide the sign of anisotropy (easy axis or
easy plane) and the presence or absence of rhombicity. Moreover,
we stress again that CTM provides six possible solutions for the
orientation of the magnetic anisotropy of this system. However,
the most relevant information is provided by the n Euler angle, that
is defined as the tilting angle between the chain axis and the z
molecular axis of the susceptibility tensors.6 In Fig. 11 the suscep-
tibility tensors obtained as one possible solution were superimposed
to the chemical structure. Both Dy6 and Er6 are extremely axial (easy
axis and easy plane, respectively), while Tb6 is strongly rhombic. All
the three values of f are higher than the magic angle7; this implies
that the chain axis is the molecular hard axis for Tb6 and Dy6 but
is instead an easy molecular axis for Er6. These conclusions were
supported by standard magnetization measurements performed on
oriented single crystals. Moreover, only Dy6 derivative shows slow
relaxation of the magnetization, as expected for a strongly axial
compound [100]. As a final remark, we notice that the anisotropy
of these derivatives is opposite compared to the LnTRENSAL family,
remarking the easy tunability of magnetic anisotropy by chemical
design.
5. Determination of the energy levels splitting

The determination of the CF splitting is one of the most relevant
topics in magnetochemistry. The high tunability of the number and
nature of the ligand’s atoms, as well as the internuclear distances
allowed the synthesis of a huge number of compounds with rele-
vant magnetic properties. Hereafter, we will describe how CTM
can give access to the strength of the energy levels splitting origi-
nated by the presence of the ligands. The Section is divided in two
subsections due to the different approach used to determine this
splitting.
5.1. Breaking field method

The determination of the ZFS of Transition Metal (TM) ions is
commonly performed using different techniques ranging from
EPR to DC magnetometry. The two main parameters that are
6 The angle f is unique for all the tensors.
7 The angle at which the dipolar interactions are zero, 54.74 �
connected to ZFS are D (axial parameter) and E (rhombic parame-
ter). The ZFS Hamiltonian can be written as follows:

HZFS ¼ DðbSz � 1
3
bS2Þ þ EðbS2

x � bS2
yÞ ð11Þ

Following the formalism of Eq. (11), if E = 0 the system is per-
fectly uniaxial with easy axis (D < 0) or easy plane (D > 0) aniso-
tropy. The value of E is instead connected to a difference in the
hard or easy plane, thus the ratio E/D quantifies the degree of
rhombicity of the system. In rare cases, also higher order parame-
ters are included in the description [10]. If the investigated system
can be satisfactorily described with these parameters, the most
widespread approach to quantify them is to perform Breaking Field
measurements.

Since the magnetic torque of an isotropic paramagnetic is iden-
tically zero, one can think that for extremely high fields and low
temperatures the magnetic torque goes to zero due to the satura-
tion of the magnetization. In Fig. 13 we simulated the s vs B curves
of a mole of Mn12 complex [63–66]. For high fields, all the curves
tend to a finite value. It was already shown [107], that for an Ising
system it reaches the limiting value of

limB!1sy ¼ �2DS S� 1
2

� �
sinhcosh ð12Þ

where S is the total spin of the atom and D is the ZFS parameter. For
angles close to the hard zero (red curve in Fig. 13), the intensity of
torque versus field reaches a maximum. The field that corresponds
to this point is called ‘‘breaking field”: the minimum field able to
overcome the anisotropy of the molecule, forcing M to tilt towards
an unfavourable direction. Clearly, the position of the maximum is
very sensitive to the magnitude of the ZFS parameter and on the
position of the molecular reference frame with respect to the mag-
netic field. For this last reason, these measurements require to opti-
mize with high precision the position of the sample, normally
recording s vs B curves at two angles close and symmetric to 90�
(e.g. 91� and 89�) and subtracting them [99].

An excellent example of how to apply this approach is reported
in Ref. [99], for the Mn12 cluster [108]. Assuming a giant spin
approximation, the AFM coupling between the four Mn(IV) and
the eight Mn(III) ions in the cluster produces a spin S = 10 ground
state. The fourth order axis of the tetragonal crystal group I-4 pass-
ing through the centre of the molecule assures collinearity, so the
crystal was positioned with the easy axis (along the c crystallo-
graphic axis) almost perpendicular to the applied field. The red
curve in Fig. 14, that well reproduces both the shape and the satu-
ration value, was simulated using an axial g tensor (gpar = 1.93,
gperp = 1.96) and two axial ZFS parameters (D = �0.468 cm�1 and
b4
0 = �2.4 � 10�5). To get insight into the sensitivity of CTM, in

Fig. 14 we simulated the same curve neglecting the b4
0 (green

curve) and using an isotropic g = 2 (blue curve). It appears clear



Fig. 13. Simulated field-dependence of the magnetic torque for a mole of a Mn12

complex with D = �0.468 cm�1 at three different angles between the magnetic field
and the easy axis. All the curves were divided by a factor sinh cosh to emphasize that
they tend to the same saturation value (1064 Nm/mol, dotted line).

Fig. 14. Field dependence of the torque signal of a crystal of Mn12 at T = 4.2 K and
h = 89.2� (empty circles, data from Ref. [99]). Solid lines are simulations, multiplied
by a scaling factor, obtained using different sets of parameters (see text).

8 J is the total angular momentum of the ground state, obtained following a Hund’s
rule. If the outermost subshell is less than half-filled J = |L � S|, while for more than
half-filled outermost subshells J = L + S.

9 The Langevin ratio is defined as gJlB JB/kBT, thus it compares the strength of the
Zeeman energy with the thermal energy.
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that the fourth order parameter has a strong influence on both the
shape of the curve and on the position of the maximum, conversely
CTM is less sensitive to small changes in the g tensor. This poor
sensitivity to gwas also recently found in the cationic pentacoordi-
nate M[Me4(cyclam)N3]+ (M@Co or Ni; Me4(cyclam)@tetramethyl-
cyclam; N3@azido)complexes [93].

Another intriguing effect related to this kind of measurements
was observed on a Mn(II)-[3 � 3] grid by Waldmann et al. [58].
They measured a change in sign of the magnetic torque as a func-
tion of the intensity of the magnetic field. This effect was attributed
to a level crossing between levels with opposite sign of the ZFS
parameters. In other words, they observed a change in anisotropy
from easy axis to easy plane. Indeed, we have already pointed out
in Section 4.1 that the sign of torque in collinear systems is directly
related to the anisotropy shape. More importantly, this result
demonstrates that torque can be used as a quasi-spectroscopical
method, providing access to information, such as levels crossings,
that are typically seen only with spectroscopic techniques. As a
final remark on this paragraph, we recall that the breaking field
approach is suitable to investigate slightly anisotropic transition
metal complexes at low T while for highly anisotropic complexes
an approach based on the thermal population of the energy levels
is required.
5.2. Maxwell Boltzmann statistics

A more general approach to extract the energy levels splitting
and wavefunctions composition is to perform temperature depen-
dent measurements. This is particularly relevant for Ln complexes
because the inner nature of the partially filled 4f-orbitals of Ln that
prevents the quenching of the orbital angular momentum (L), com-
bined with the high coordination numbers (usually 8 or 9) requires
a CF description that goes beyond the spin-only approximation
[109]. Indeed, the most common way to describe the potential
around the Ln is to use CF parameters with order up to 6.
Considering only the ground J multiplet,8 the CF Hamiltonian can
be conveniently described using the Stevens’ extended operators
as follows:

HCF ¼
X

k¼2;4;6

xðkÞ
Xk

q¼�k

bq
k
bOq

k ð13Þ

wherex (k) is a parameter (different for each fn configuration and k
value) which accounts for the proportionality between the spherical
harmonics of order k and the corresponding operator equivalent for
that configuration. It is common to rename x (k) in three different
ways as a function of k as follows: x (2) = a, x (4) = b and x (6) = c.
The number and nature of the bOq

k operators is strictly dependent of
the single site geometry and can be as high as 27 to describe a non-
symmetric system [109]. When one or more symmetry elements
are present, some CF parameters vanish, thus reducing the number
of independent parameters in the calculation or fit.

Usually, the energy levels splitting of the ground multiplet of Ln
is of the order of several hundreds of cm�1 [12], thus an approach
based on the determination of the high field limit of torque at low
temperature is clearly unreliable because the high single-ion ani-
sotropy shifts the Breaking Field value at very high fields (not
achievable with common magnetometers). Moreover, we can also
argue that the fit of a measurement performed at low T is clearly
not suitable to determine the wavefunction composition, due to
the lack of population imposed by the Maxwell Boltzmann
statistics.

The first seminal report on the possibility to determine the CF
parameters of Ln using torque magnetometry was written by Kuz’-
min [110]. In this paper, the author proposed a choice for the opti-
mum field and temperature range to reach the best sensitivity to
certain CF parameters based on the value of the Langevin ratio9

[111]. As an example, for a Tb3+ ion at an optimum field of B = 2 T,
the best sensitivity to b2

0 is reached in the interval 77–300 K, for b4
0

at 10–20 K and for b60 at 4.2–10 K.
As an example, we can quote again the paper on LnTRENSAL

system, already discussed in Section 4.1. We remind here that
ErTRENSAL possesses an easy axis anisotropy, while TbTRENSAL
and DyTRENSAL have an easy plane anisotropy. The measurements
on these crystals were taken in a range of temperature from 2 K to
ca. 150 K (the upper limit was simply determined by the experi-
mentally detectable signal). At each temperature, at least two rota-
tions acquired at different B were measured to increase the
sensitivity of the technique to the composition of each state. The
fit proposed by the authors was based on the eight relevant CF
parameters that must be used to describe a C3 symmetry. One
has to keep in mind that the uncertainty on some parameters
can be huge due to correlation between parameters, also observed
for other techniques [87,89]. The energy levels splitting of the



Fig. 15. Energy levels pattern of the ground 4I15/2 multiplet of ErTRENSAL. Black-
Experimental (Luminescence [88]), Green-Fit of Luminescence data [88], Blue-Fit of
CTM data [82], Red-Ab initio calculation on a molecule embedded in 5 layers of
point charges [89].

Fig. 16. Comparison between magnetization curve (solid line, T = 0.6 K, Ref. [57])
and capacitance variation (black squares, T = 0.45 K, Ref. [80]) recorded on a Fe10
molecular ring.

Fig. 17. Hysteresis curves measured on Cp*ErCOT single crystal at different field
sweep rates [91].
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ground multiplet of ErTRENSAL is reported in Fig. 15. For this
derivative spectroscopic data of the energies of the ground state
were measured (black lines) and fitted by Flanagan et al. (green
lines) [88]. As expected, the agreement is excellent. The set of
parameters provided by CTM (blue lines) is also in good agreement
with the spectroscopic study (the best agreement is found for the
lowest four states that are the ones significantly populated in the
investigated temperatures). Moreover, the extracted set of CF
parameters was also used to correctly reproduce the temperature
dependence of the magnetic susceptibility [82]. However, it is
important to stress here that the initial guess of parameters is cru-
cial, especially when the fitted CF parameters are >2. Conversely,
the agreement between experimental and ab initio calculations
(red lines) is considerably good for the low-lying states but is
rather poor for E > 100 cm�1. This picture enlightens that CTM
can be a powerful experimental technique to obtain the CF split-
ting of highly anisotropic complexes, especially when flanked by
spectroscopic techniques.
10 Note that the symmetry lowering is necessary to reproduce the finite size of the
step, because in S6 symmetry the total effects of Dzyaloshinskii–Moriya vectors
should vanish and a true S = 0 ground state is expected.
6. Magnetization steps and hysteresis curves

Magnetization curves characterized by sharp steps are among
the most intuitive and fascinating experimental proofs that the
energy of a molecule is quantized [10]. Due to the aforementioned
relation between torque and magnetization, the appearance of
steps in the s vs B graph must be expected. The first experimental
evidence was provided in 1998 by Perenboom et al. using single
crystal of Mn12 [112,113]. After this, several papers were published
on the observation of similar steps in molecular rings
[52,80,114,115] and on magnetic dimers [83]. In Fig. 16 we
reported a comparison between a magnetization curve recorded
on a Fe10 molecular ring at T = 0.6 K [57] and the capacitance vari-
ation of a cantilever torque meter at T = 0.45 K [80]. Although the
small temperature difference precludes a straightforward compar-
ison, the agreement between the position of the step is remarkably
good. Interestingly, the capacity (or equivalently the torque) signal
between two steps is not flat. It was demonstrated that this feature
is characteristic of the mixing between states [52,116].

Another interesting case exhibiting step-like torque curves is
represented by a sodium cation trapped inside a six-membered
ferric wheel (Na:Fe6) [52]. The axial symmetry of the complex is
S6 and the ground state was initially expected to be a pure singlet
due to the antiferromagnetic coupling between Fe ions. The mag-
netic torque of this compound measured at 220 mK exhibits a huge
step when the applied field is increased from 16 to 17 T. The pos-
itive slope of the torque signal before the step and the finite width
of the step itself clearly excluded that the ground state of the wheel
could be described as a pure singlet. The solution proposed by the
authors in order to reproduce the experimental evidences, is to
lower the symmetry of the complex to C3 and describe the Hamil-
tonian of this system as composed by a Zeeman term plus an inter-
action term analogous to the one reported in Eq. (1), but expanded
for all the pairs in the wheel. The key point of this model is that the
introduction of an antisymmetric part of the interaction can repro-
duce the finite width of the torque curve.10

Starting from Eq. (3), we can easily understand that if the stud-
ied compound exhibits molecular hysteresis, the s vs B curve must
reflect this behaviour. An example is reported in Fig. 17 for the
Cp*ErCOT SMM already mentioned in Section 4.2. However, CTM
suffers from a major limitation, that torque is identically zero
when the field is zero, precluding the observation of classical hys-
teresis curves. On the other side, using CTM is possible to correctly
measure butterfly-like hysteresis curves that are quite common in



Fig. 18. (a) TDESR spectrum recorded at T = 20 K and B = 4.5 T on Fe4(L)2(dpm)6 at h = 5� from the easy axis (data from Ref. [118]). The dashed lines represent the theoretical
transition energies calculated from the Zeeman diagram (simulated using experimental conditions and parameters in Ref. [118]) reported in (b).

182 M. Perfetti / Coordination Chemistry Reviews 348 (2017) 171–186
molecular compounds [91]. Although the exact shape of the curves
is tricky to reproduce, a major information can be extracted: since
the torque signal (initially positive), remains positive also when
the field changes sign, it means that no remanence is present (mag-
netization flips its direction with the field), thus the hysteresis
curve is a real butterfly-like hysteresis [91,96].
Fig. 19. Experimental data (symbols) and best fit (lines) for 100 nm of TbPc2
evaporated on PTCDA (green), gold (red) and glass (blue). Experimental conditions:
T = 2 K, B = 12 T.
7. Torque detected electron spin resonance

Several years ago, a new experimental set-up that merged the
sensitivity and versatility of CTM with the spectroscopic accuracy
of EPR was proposed [117]. This technique, known as Torque
Detected Electron Spin Resonance (TDESR), requires an experimen-
tal set-up extremely similar to the one described in Section 3.2, but
in addition irradiates the sample with light in the microwave
energy range. The radiation can promote the transition between
spin levels thus modifying the Boltzmann population. Since the
magnetic torque at fixed temperature and magnetic field is clearly
a sum of the torque produced by the single states weighted for the
Boltzmann population, the detection of a different torque with and
without irradiation delivers the same information provided by EPR.
In Fig. 18a we reported the torque signal (more specifically, the
torque difference with and without the microwave beam) versus
the photons energy recorded by El Hallak et al. at T = 20 K and
B = 4.5 T on a single crystal of Fe4(L)2(dpm)6 (Hdpm = 2,2,6,6-tetra
methyl-3,5-heptanedione, H3L = (R,S)-2-hydroxymethyl-2-(2-met
hyl-butoxymethyl)propane-1,3-diol) [118]. The five peaks clearly
visible in the graph, must be attributed to the transitions between
the lowest spin states of the ground S = 5 manifold. Assuming b2

0 as
the leading parameter in the CF Hamiltonian, the nonuniform spac-
ing between the peaks (that lowers towards high frequencies) and
the selection rule imposed by the microwave radiation perpendic-
ular to both the magnetic field and the principal anisotropy axis
(DmS = ±1) already deliver the shape of magnetic anisotropy (easy
axis). A simple simulation of a Zeeman diagram calculated using
the parameters reported in the paper (h = 5� from the easy axis,
b2
0 = �0.148 cm�1, b40 = 1.1 � 10�5 cm�1 and g = 1.99) is pictured in

Fig. 18b. The energies relative to the transition between states at
4.5 T are numerically reported on the right side of the Zeeman
diagram and graphically plotted as dashed lines in Fig. 17a. The
agreement between the experimental and calculated position of
the resonances is extremely satisfactory. The TDESR experimental
set-up was tested in several configurations to demonstrate the
solidity of the method [117] and, more recently, on several coordi-
nation compounds with SMM properties [118,119] confirming its
broad applicability.
8. Thin films

The knowledge of the preferential order of molecules on a cer-
tain substrate is of paramount importance for many applications,
however the information on the local order is normally very diffi-
cult to obtain. The main spectroscopic techniques that are used to
characterize the average orientation of films are ellipsometry
[120,121], EPR [122] and studies based on element/surface selec-
tivity of synchrotron radiation [40]. On the other hand techniques
based on electron beams such as transmission electron microscopy
are very sensitive but need delicate sample preparation and are
often performed in situ [123] due to the heavy impact of oxygen
and moisture on the order of thin layers. Particularly challenging
is the study of molecules that adopt a different orientation as a
function of the film thickness [124,125].

The high sensitivity to magnetic anisotropy typical of CTM
allows the use of this technique to study not only single crystals
but also films. Although magnetic films were studied since more
than one decade [126–129], only recently the technique was
extended to thin layers composed of anisotropic molecules [38].

In Fig. 19 we present the torque curves obtained at T = 2 K and
B = 12 T on samples composed of ca. 100 nm of TbPc2 molecules
evaporated on three substrates. The selected substrates were a
metal (gold) an oxide (glass) and a highly conjugated organic mole-
cule (perylene-3,4,9,10-tetracarboxylic dianhydride, PTCDA). The



Fig. 20. Sketch of the molecular orientation of TbPc2 on glass, PTCDA and gold
obtained interpreting CTM measurements.
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different shape of the curves underlines an opposite molecular ori-
entation of the film as a function of the selected substrate. The
main orientation of the molecules on PTCDA is with the easy axis
perpendicular to the surface (lying position) while the opposite
holds for glass and gold (the easy axis parallel to the surface, stand-
ing position).

This result is however questionable, indeed the presence of
small completely disordered regions can in principle be possible.
To overcome this limitation, the authors propose an approach that
exploits the unique sensitivity of CTM to magnetic anisotropy. The
basic idea was to evaporate layers of TbPc2 buried in its diamag-
netic analogue (YPc2) to use magnetic anisotropy as a local probe
to monitor the orientation of the film as a function of the distance
from the surface. The use of the isostructural YPc2 assured an
unperturbed growth of the film and at the same time a protection
against air moisture.

The results, obtained assumed a Gaussian distribution centred
on a most probable orientation [130], are depicted in Fig. 20. On
chemically and thermally cleaned glass the p–p stacking between
Pc organic ligands is the main force that drives the packing [130],
thus themolecules assumed a standing configuration (organic rings
perpendicular to the surface). On the contrary, PTCDA evidenced a
strong templating effect, forcing the molecules to assume a lying
configuration (organic Pc rings parallel to the surface) even at a con-
siderably high distance. This effect, clearly originated by the p–p
interaction between surface and ligands, was previously observed
for similar systems [121,122], even if strongly dumped as a function
of the layer thickness. However, the most intriguing result was
found for the gold substrate. Although films of 5 nm or higher
clearly showed a preferential standing orientation, for lower thick-
nesses no torque signal was detected. This lack of signal was attrib-
uted by the authors to a rapid reorientation from lying to standing,
originating a disordered phase (already observed for CuPc mole-
cules on gold [131]). To validate the results, some samples were
analysed using synchrotron light, obtaining good agreement [38].

9. Conclusion and future perspectives

This review summarized the most relevant results obtained
using CTM on coordination compounds in their solid state, enlight-
ening that it represents a powerful resource to obtain precious
experimental data and to validate theoretical models. Since CTM
measurements are only sensitive to magnetic anisotropy (while
the isotropic part of the signal is silent), the minimum size of the
investigated crystals can be significantly smaller in comparison
with other techniques such as SCM or PND. This effect is even more
useful for crystals containing noncollinear anisotropies because it
allows the disentanglement of the single contributions. Moreover,
the quadratic field dependence of magnetic torque assures mea-
surable signals even for moderate magnetic fields and allows to
measure at much higher temperature compared to SCM. CTM
was also used to extract energy levels splitting and wavefunction
composition. This aspect can be strengthen combining CTM with
microwave radiation.

Despite the many advantages just described, many suitable
chemical systems and possible information that the technique
can provide must still be explored. Concerning pure chemistry, a
great opportunity is represented by Actinides containing com-
plexes, that constitute an emergent field in molecular magnetism.
A technique specifically accurate in determining magnetic aniso-
tropy, such as CTM, could be extremely useful to provide informa-
tion about the complex electronic structure of 5f elements.
Moreover, the study of thin films of anisotropic paramagnetic
molecules is still at the beginning. Besides the huge number of
molecular layers already reported in the literature as potential can-
didates in terms of spintronic applications but still not studied
using CTM, a great opportunity is represented by mixed systems
(e.g. alternating layers containing more than one anisotropic
molecule).

Concerning the physical properties that can be extracted from
CTM measurements, the author can foresee a great potential in
the study of the single contributions to torque arising from differ-
ent states inside a single manifold. This could be done either using
chemically engineered systems (e.g. systems where symmetry
imposes pure states) or performing a combined fit of torque and
spectroscopic data.
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Appendix A. Units and equations

In this Appendix, the author discusses some mathematical def-
initions. Although most of the following paragraphs are not essen-
tial to perform ameasurement, they intend to clarify some relevant
topics concerning the formalism of equations.

A.1. The units of torque

In analogy with the classical definition of torque, magnetic tor-
que is expressed in N�m (Newton times meter) in the International
System (note the use of Newton first, to avoid the ambiguity with
milliNewton, mN). Dimensionally, N�m is equivalent to Joule, but
the notation N�m is more appropriate for a quantity, such as tor-
que, that is not a scalar (conversely to Energy). Indeed, torque con-
tains also the angular dependence information, as explicitly visible
in Eq. (3). In chemistry, it is common to scale s per mole of
substance, as the author did in this review. Moreover, the use of
Nm/mol is also handy because the torque exerted by a mole
of an anisotropic coordination compound is often of the order of
101–102 Nm/mol. However, since most of the measurements
performed in the literature were obtained from very small crystals
of unknown mass, s is often reported in arbitrary units.

A.2. Magnetic field and magnetic induction

From a mathematical point of view, the magnetic torque should
have the same dimensions of an Energy (J = N�m). In the SI, this can



Fig. A1. Angular dependence of the projection of M along the z-axis at T = 2 K and
B = 0.1 T (blue curve) ad B = 2 T (green curve) for a mole of TbPc2.
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be only obtained using the magnetic induction B (expressed in
Tesla), because M is expressed in A�m2 = N�m/T (as reported in
Eq. (3)). However, the physical quantity that the scientist has at
disposal is the magnetic field generated by the instrument (H0).
For this reason, we need to derive an equation that relates the mag-
netic torque with the magnetic field.

In vacuum, the magnetic induction (B0) is simply proportional
to the magnetic field (H0):

B0 ¼ l0H0 ðA:1Þ
where l0 is the vacuum permeability expressed in Wb/(A�m).

In materials, such as paramagnets, the relation between the
magnetic induction B and the magnetic fieldH becomes more com-
plicated due to the magnetization of the material (M, defined as
the vector sum of all microscopic magnetic moments):

B ¼ l0ðHþMÞ ðA:2Þ
Eq. (A.2) contains a quantity, H, that is the ‘‘real” magnetic field

inside the material considering both demagnetizing and shape
effects, and is thus in principle slightly different from H0. However,
for small samples (negligible shape influence), containing param-
agnetic ions (diamagnetic contribution much smaller than the
paramagnetic one), it is reasonable to assume H = H0.

Substituting Eq. (A.2) into Eq. (3), and assuming H = H0, we
obtain:

s ¼ M� ½l0ðH0 þMÞ� ¼ l0M�H0 ðA:3Þ
The vector product between the magnetization vector and itself

is trivially zero, thus s calculated using B or H0 are simply related
by a constant (l0) in SI and are equal in CGS (remember that
BCGS = HCGS + 4pMCGS). Note that this expression was obtained
assuming H = H0 while no restrictions on M were imposed.
Fig. A2. First derivative of torque with respect to the angle for a mole of TbPc2 at
T = 2 K. Blue curve refers to B = 0.1 T (left scale) while green curve at B = 2 T (right
scale).

Fig. A3. Simulated temperature dependence of the torque signal for S = 2, h = 89.9�
(0.1� from the hard plane) and D = �5 cm�1. All the curves were divided by a factor
sinh cosh.
Appendix B. Shape of torque curves

B.1. High field-limit

The angular shape of the torque curves changes in the high field
limit. Although there is no simple mathematical expression for this
behaviour, it can be easily understood starting from Fig. A.1 where
the angular dependence of M of a uniaxial system is reported.

The magnetization simulated at low field (blue curve) is cosinu-
soidal in shape, as expected when the field is rotated from the easy
axis to the hard plane. For high fields, the situation changes dra-
matically. For angles close to the easy zeroes (h = 0� and
h = 180�), the field causes saturation, thus the magnitude of M
(already close to the highest possible) remains constant for a wide
angular range, thus small variations of the free energy while scan-
ning the angle are expected. Conversely, near the hard zero a small
angular variation of B causes the appearance of a (small) compo-
nent of B along z that is capable to produce a huge Mz. Therefore,
a massive change in the free energy occurs, and thus a rapid vari-
ation of s (cf. Eq. (4)). For the same reason, the angle at which the
magnetic torque is maximum also changes as a function of the
field. To emphasize this difference, it is useful to plot the first
derivative of s with respect to the angle, as reported in Fig. A.2.

B.2. Breaking field

The position of the maximum in the s vs B plot at an angle close
to the hard direction is influenced by several quantities such as ZFS
parameter, value of the total spin and temperature. It can be intu-
itively understood that raising the spin and the ZFS have the effect
to shift the breaking field towards high field values. This is the
main reason why this kind of measurements are not suitable for
lanthanides (with high values of the total angular momentum
and large CF splitting). Also the temperature has a strong effect
on the shape of the curve, as reported in Fig. A.3. High tempera-
tures broaden the maximum (lowering at the same time the signal)
and shift it at higher fields. Thus, the ideal Breaking Field measure-
ment should be performed at low T on anisotropic complexes con-
taining light transition metals.



Fig. A4. Extrinsic rotation using the x-convention of the initial (red) reference
frame using three Euler angles (q, n, w) to obtain the final (black) reference frame.
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Appendix C. Reference frames and Euler angles

The calculation and detection of magnetic torque is strictly
related to the relative position of main magnetic axes and mag-
netic field. This requires a precise knowledge of the mutual posi-
tion of several reference frames. In this Section, we will briefly
explain the used reference frames and what is the connection
between them.

The magnetic field direction is always known with great accu-
racy in the laboratory reference frame (XYZ). Normally, this refer-
ence frame is taken so that the magnetic field lies along Z and
the torque is measured along Y. This implies that the plane that
is scanned during a rotation is always the XZ plane.

The crystallographic reference frame (abc) can be trivially con-
verted to the orthogonal reference frame ab’c⁄ following the stan-
dard crystallographic convention. Once the sample is indexed
and placed on the cantilever, the relative position of XYZ and ab’c⁄

reference frames is known and fixed. It is thus possible to extract
the director cosines of the vector H and of the vector Y in the crys-
tallographic reference frame at the beginning of the rotation
(h = 0�).

Finally, the molecular reference frame (xyz, defined as the refer-
ence frame where the susceptibility tensor is diagonal) should be
connected to the crystallographic reference frame. The mutual ori-
entation between these two reference frames is normally unknown
and thus should be determined experimentally. The rotation
matrix that connects two orthogonal reference frames can be
always built up using three angles, called Euler angles (e.g. q, n,
w). They represent the angles of the three simple rotation matrices
that must be subsequently applied to a reference frame to let it
coincide with the new one. The elements of the 3 � 3 Euler matrix
are clearly a function of these three angles and of the chosen con-
vention for the rotation. Among the several possible conventions,
we report in Fig. A.4 the three rotations that one must apply using
the extrinsic x-convention.

The algebraic formula of the relative Euler matrix is as follows:

cosqcosw� sinqcosnsinw cosqsinwþ sinqcosncosw sinqcosn
�coswsinq� cosqcosnsinw �sinwsinqþ cosncoswcosq cosqsinn

sinqsinn �sinncosw cosn

0
B@

1
CA
ðA:4Þ

The order of the angles is q, f, w and the rotations are always
anticlockwise. To find the director cosines of the main axes of
the rotated reference frame in the initial reference frame is suffi-
cient to invert the matrix (to save calculation time it is also possi-
ble to transpose the matrix, since for real orthonormal matrices the
relation AT = A�1 holds).
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