MODULI OF FORMAL TORSORS

FABIO TONINI, TAKEHIKO YASUDA

ABsTrACT. We construct the moduli stack of torsors over the formal punc-
tured disk in characteristic p > 0 for a finite group isomorphic to the semidirect
product of a p-group and a tame cyclic group. We prove that the stack is a
limit of separated Deligne-Mumford stacks with finite and universally injective
transition maps.

INTRODUCTION

The main subject of this paper is the moduli space of formal torsors, that is, G-
torsors (also called principal G-bundles) over the formal punctured disk Spec k((t))
for a given finite group (or étale finite group scheme) G and field k. More pre-
cisely, we are interested in a space over a field k£ whose k-points are G-torsors
over Speck((t)). Since torsors may have non-trivial automorphisms, this space
should actually be a stack in groupoids and it should not be confused with BG =
[Spec k((t))/G], which is a stack defined over k((t)).

The case where the characteristic of k£ and the order of G are coprime is called
tame and the other case is called wild. The two cases are strikingly different: in the
tame case the moduli space is expected to be zero-dimensional, while in the wild
case it is expected to be infinite-dimensional.

An important work on this subject is Harbater’s one [ ]. He constructed
the coarse moduli space for pointed formal torsors when k is an algebraically closed
field of characteristic p > 0 and G is a p-group. This coarse moduli space is
isomorphic to the inductive limit hgqn A™ of affine spaces such that the transition
map A" — A"t! is the composition of the closed embedding A™ < A™*! and
the Frobenius map of A™*!. In particular it is neither a scheme nor an algebraic
space, but an ind-scheme. Some of the differences between Harbater’s space and
our space are explained in Remark 4.26. As a consequence Harbater shows that
there is a bijective correspondence between G-torsors over the affine line A' and
over Speck((t)). In this direction an important development has been given by

Gabber and Katz in [ ]. Later Pries | | and Obus-Pries | | constructed
moduli/parameter spaces for groups Z/p x C and Z/p™ x C with C a tame cyclic
group respectively and Fried-Mezard | | constructed a parameter space of (not

necessarily Galois) covers of Spec k((t)) with given ramification data; all these works
assumed k to be algebraically closed.

In recent works [ , | of the second named author, an unexpected rela-
tion of this moduli space to singularities of algebraic varieties was discovered. He has
formulated a conjectural generalization of the motivic McKay correspondence by
Batyrev | ] and Denef-Loeser | | to arbitrary characteristics, which relates
a motivic integral over the moduli space of formal torsors with a stringy invariant
of wild quotient singularities. The motivic integral can be viewed as the motivic
counterpart of mass formulas for local Galois representations, see | , ]
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The first and largest problem for other groups is the construction of the moduli
space. From the arithmetic viewpoint, the case where k is finite is the most in-
teresting, which motivates us to remove the “algebraically closed” assumption in
earlier works.

The main result of this paper is to construct the moduli stack of formal torsors
and to show that it is a limit of Deligne-Mumford stacks (DM stacks for short)
when k is an arbitrary field of characteristic p > 0 and G is an étale group scheme
over k which is geometrically the semidirect product H x C of a p-group H and
a cyclic group C of order coprime with p. This is an important step towards the
general case, because, if k is algebraically closed, then connected G-torsors over
Speck((t)) (or equivalently Galois extensions of k((t)) with group G) exist only for
semidirect products as before. Moreover any G’-torsor for a general G’ is induced
by some connected G-torsor along an embedding G — G’.

To give the precise statement of the result, we introduce the following notation.
We denote by Ag the category fibered in groupoids over the category of affine k-
schemes such that for a k-algebra B, Ag(Spec B) is the category of G-torsors over
Spec B((t)). The following is the precise statement of the main result:

Theorem A. Let k be a field of positive characteristic p and G be a finite and étale
group scheme over k such that G X k is a semidirect product H x C of a p-group
H and a cyclic group C of rank coprime with p.

1) Then there exists a direct system X, of separated DM stacks with finite and
universally injective transition maps, with a direct system of finite and étale
atlases (see 3.1 for the definition) X,, — X,, from affine schemes and with
an isomorphism hgn X, ~ Ag.

2) If G is a constant p-group then the stacks X,, can be chosen to be smooth and
integral. More precisely there is a strictly increasing sequence v: N — N
such that X,, = A", the maps A"~ — X,, are finite and étale of degree
8G and the transition maps A'» — A""+1 are composition of the inclusion
A — AV»+1 and the Frobenius AV»+1 — AVn+1,

3) If G is an abelian constant group of order p” then we also have an equiva-
lence

(hﬂA“") xBG ~ Ag
and the map from h_r>nn A" to the sheaf of isomorphism classes of Ag, which
is nothing but the rigidification Ag[JG (see Appendiz B), is an isomorphism.

As a consequence of assertion 1) of this theorem (and A.5) the fibered category
Ag is a stack.

We now explain the outline of our construction. We first consider the case of
a constant group scheme of order p”. Following Harbater’s strategy, we prove the
theorem in this case by induction. We obtain the explicit description of Ag as in
assertion 3) when G = Z/pZ by the Artin-Schreier theory (Theorem 4.13); this is
one of the two base cases. It is not difficult to generalize it to the case G ~ (Z/pZ)"
(Lemma 4.20), which forms the initial step of induction. Since a general p-group
has a central subgroup H C G isomorphic to (Z/pZ)™, we have a natural map
Ac — Agym, enabling the induction to work. We then use the fact (Proposition
4.22) that this map factors into the rigidification Ag — Ag//H and an X y-torsor
Ag[J[H — Ag/g with Xy = Ay [JH, to construct a direct system for Ag from
one for Ag, .

Next we consider the other base case, the case of the group scheme p,, of n-th
roots of unity with n coprime to p. In this case, we have the following explicit
description of Ag, including also the case of characteristic zero:



MODULI OF FORMAL TORSORS 3

Theorem B. Let k be a field and n € N such that n € k*. We have an equivalence
n—1
|_| B(pn) — Ay,
q=0

where the map B(p,) — A, in the index ¢ maps the trivial p,-torsor to the

n-torsor % €Ay, (k).

When G is a constant group of the form H x C and k contains all n-th roots
of unity, then C' ~ pu,, and there exists a map Ag — A, . Using Theorem A for
p-groups, we show that the fiber products Ag xa, Speck with respect to n maps
Speck — A, induced from the equivalence in Theorem B are limits of DM stacks.
Finally, to conclude that Ag itself is a limit of DM stacks and also to reduce the
problem to the case of a constant group, we need a proposition (Proposition 3.5)
roughly saying that if ) is a G-torsor over a stack X for a constant group G and
Y is a limit of DM stacks, then X is also a limit of DM stacks. This innocent-
looking proposition turns out to be rather hard to prove and we will make full use
of 2-categories.

The moduli stack of formal torsors introduced in this paper is used in [ | to
construct a moduli space in a weaker sense for general finite étale group schemes
and in [Yas| to develop the motivic integration over wild DM stacks. Moreover it
is showed in | | that the motivic integral in the conjecture mentioned above
on the McKay correspondence makes rigorous sense and this conjecture is finally
proved in [Yas]. According to discussion and observation in [TV], it appears quite
meaningful to generalize the McKay correspondence further to nonreduced finite
group schemes. For this reason, the moduli problem of formal torsors for such group
schemes would be important as a future study.

Notice that points of Ag over a field L, namely G-torsors over L((t)), can also be
seen as (not necessarily connected) Galois extensions of L((¢)) and, taking integers,
as special covers of L[[t]] with an action of G. It is therefore natural to ask and
indeed this has been our initial approach to the problem, if one can define a moduli
space of special G-covers of BJ[[t]] for varying B or, more precisely, give a different
moduli interpretation of G-torsors of B((¢)) in terms of covers of B([[t]], in the spirit
of | | and | |. We don’t have a precise answer to this question, but in

, Yas| we give partial answers.

The paper is organized as follows. In Section 1 we set up notation and termi-
nology frequently used in the paper. In Section 2 we collect basic results on power
series rings, finite and universally injective morphisms and torsors. In Section 3,
after introducing a few notions and proving a few easy results, the rest of the sec-
tion is devoted to the proof of the proposition mentioned above (Proposition 3.5).
Section 4 is the main body of the paper, where we prove Theorems A and B. The
proof of Theorem B is given on page 22, the one of Theorem A, 2) and 3) is given
on page 26 and the one of Theorem A, 1) is given on page 30. Lastly we include two
Appendices about limits of fibered categories, implicitly used in Theorem A, and
rigidification, an operation introduced in [ | for algebraic stacks and that we
extends to more general stacks.
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1. NOTATION AND TERMINOLOGY

Given a ring B we denote by B((t)) the ring of Laurent series > .o b;t* with
b; € B and r € Z, that is, the localization B[[t]]; = B[[t]][t™!] of the formal power
series ring B[[t]] with coefficients in B. This should not be confused with the
fraction field of B[[t]] (when B is a domain).

By a fibered category over a ring B we always mean a category fibered in
groupoids over the category Aff /B of affine B-schemes.

Recall that a finite map between fibered categories is by definition affine and
therefore represented by finite maps of algebraic spaces.

By a vector bundle on a scheme X we always mean a locally free sheaf of fi-
nite rank. A vector bundle on a ring B is a vector bundle on Spec B or, before
sheafification, a projective B-module of finite type.

If C is a category, X: C — (groups) is a functor of groups and S is a set we
denote by X (%) : ¢ — (groups) the functor so defined: if ¢ € C then X% (¢) is the
set of functions u: S — X(c) such that {s € S | u(s) # 1x ()} is finite.

We recall that for a morphism f: X — ) of fibered categories over a ring B, f is
faithful (resp. fully faithful, an equivalence) if and only if for every affine B-scheme
U, fu: X(U) = Y(U) is so (see [ , 003Z]). A morphism of fibered categories is
called a monomorphism if it is fully faithful. We also note that every representable
(by algebraic spaces) morphism of stacks is faithful (| , 02ZYY]).

A map f: Y — X between fibered categories over Aff /k is a torsor under a
sheaf of groups G over Aff /k if it is given a 2-Cartesian diagram

Y — Speck

|

X — Bg

By a stack we mean a stack over the category Aff of affine schemes with respect
to the fppf topology, unless a different site is specified.
We often abbreviate “Deligne-Mumford stack” to “DM stack”.

2. PRELIMINARIES

In this section we collect some general results that will be used later.

2.1. Some results on power series.

Lemma 2.1. Let C be a ring, J C C be an ideal and assume that C is J-adically
complete. If U C Spec C is an open subset containing Spec(C/J) then U = Spec C.

Proof. Let U = Spec C—V (I), where I C C'is an ideal. The condition Spec(C/J) C
U means that I + J = C. In particular there exists g € I and j € J such that
g = 1+ j. Since j is nilpotent in all the rings C'//J™ we see that g is invertible in
all the rings C'/J™, which easily implies that g is invertible in C. Thus I = C. O

Lemma 2.2. Let R be a ring, X be a quasi-affine scheme formally étale over R,
C be an R-algebra and J be an ideal such that C is J-adically complete. Then the
projection C — C/J™ induces a bijection

X(C) — X(C/J") for alln € N


http://stacks.math.columbia.edu/tag/003Z
http://stacks.math.columbia.edu/tag/02ZY
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Proof. Since X is formally étale the projections C/J™ — C/J" for m > n induce
bijections
X(C/Jgm — X(/Jn)
Thus it is enough to prove that if Y is any quasi-affine scheme over R then the
natural map
ay: Y(C) — 1&11 Y(C/Jm)
neN

is bijective. This is clear when Y is affine. Let B = H°(Oy), so that Y is a
quasi-compact open subset of U = Spec B. The fact that ay is an isomorphism
tells us that ay is injective. To see that it is surjective we have to show that if
B — C'is a map such that all SpecC/J"™ — Spec B factors through Y then
also ¢: Spec C' — Spec B factors through Y. But the first condition implies that
#~1(Y) is an open subset of Spec C containing Spec C/J. The equality ¢~1(Y) =
Spec C' then follows from 2.1. O

Corollary 2.3. Let B be a ring, f: Y — Spec B([[t]] an étale map, £: Spec L —
Spec B a geometric point and assume that the geometric point Spec L — Spec B —
Spec B[[t]] is in the image on f. Then there exists an étale neighborhood Spec B’ —
Spec B of & such that Spec B'[[t]] — Spec B[[t]] factors through Y — Spec B[[t]].

Proof. We can assume Y affine, say Y = SpecC. Set B’ = C/tC, so that the
induced map fo: Yy = Spec B — Spec B is étale. By hypothesis the geometric
point Spec L — Spec B is in the image of fy and therefore factors through fo.
Moreover the map Yy — Y gives an element of Y (B’) which, by 2.2, lifts to an
element of Y (B'[[t]]), that is a factorization of Spec B'[[t]] — Spec B][[t]] through
Y — Spec BJ[[t]] O

Lemma 2.4. Let R be a ring, S be an R-algebra and consider the map

ws/r: R[[t]] @r S — S[[t]]
The image of wg, is the subring of S[[t]] of series ) s,t™ such that there exists a
finitely generated R submodule M C S with s, € M for all n € N.

If any finitely generated R submodule of S is contained in a finitely presented R
submodule of S then wg/gr is injective.

Proof. The claim about the image of wg/ g is easy.

Given an R-module M we define M[[t]] as the R-module MY. Tts elements are
thought of as series ), m,t"™ and M][[t]] has a natural structure of R[[t]-module.
This association extends to a functor Mod A — Mod A[[t]] which is easily seen to
be exact. Moreover there is a natural map

wyyr: R[[t]] @r M — M[[t]]

Since both functors are right exact and wy;/g is an isomorphism if M is a free
R-module of finite rank, we can conclude that wy/g is an isomorphism if M is a
finitely presented R-module. Let P be the set of finitely presented R submodules
of S. By hypothesis this is a filtered set. Passing to the limit we see that the map

ws/r: R[] ©r 5 ~ LP(R[[tH ®r M) — LPM[[??]] = |J Ml < sl
Me Me MeP

is injective. O
Lemma 2.5. Let N be a finite set and denote by N: Aff /Z — (Sets) the associ-
ated constant sheaf. Then the maps

N(B) — N(BI[t]]) — N(B((t)))
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are bijective. In other words if B is a ring and B((t)) ~ C; x --- x C; (resp.
B[t]] = C1 x---xC}) then B ~ By x---x By and C; = B;((t)) (resp. C; = B,[[t]]).

Proof. Notice that N is an affine scheme étale over SpecZ. Since A = B([t]] is ¢-
adically complete we obtain that N(B[[t]]) — N(B][t]]/tB][[t]]) is bijective thanks
to 2.2. Since B — BI[t]]/tB[[t]] is an isomorphism we can conclude that N(B) —
N(B][t]]) is bijective.

Let n be the cardinality of N and C be a ring. An element of N(C) is a
decomposition of SpecC into n-disjoint open and closed subsets. In particular if
n = 2 then N(C) is the set of open and closed subsets of Spec C'. Taking this into
account it is easy to reduce the problem to the case n = 2. In this case another way
to describe N is N = Spec Z[x]/(2% — z), so that N(C) can be identified with the
set of idempotents of C. Consider the map ap: N(BJ[[t]]) — N(B((t))), which is
injective since BJ[[t]] — B((t)) is so. If, by contradiction, ap is not surjective, we
can define k£ > 0 as the minimum positive number for which there exist a ring B
and a € B[[t]] such that a/t* € N(B((t))) and a/t* ¢ B[[t]]. Let B, a as before and
set ag = a(0). Tt is easy to check that a3 = 0 in B. Set C = B/{ag). By 2.4 we
have that B[[t]]/aoB][t]] = C[[t]] and that B((t))/aoB((t)) = C((t)). Thus we have
a commutative diagram

apB

N(B[[t]) —— N(B((t)))

| |

ac

N(C[t]]) —— N(C((1)))

in which the vertical maps are bijective, since the topological space of a spectrum
does not change modding out by a nilpotent. By construction B(a/t*) = o /tF~1
where @’ = (a — ag)/t. By minimality of k¥ we must have that o//t*~! € C[[t]].
Since the vertical maps in the above diagram are bijective we can conclude that
also a/t* € B[t]], a contradiction. O

Lemma 2.6. Let M, N be vector bundles on B((t)). Then the functor
Homp(4))(M,N): Aff/B — (Sets), C'— Homg(1))(M @ C((t)), N @ C((t)))
is a sheaf in the fpgc topology.

Proof. Set H = Homp(q))(M, N), which is a vector bundle over B((t)). Moreover
if C'is a B-algebra we have H ®p((1)) C((t)) ~ Homp(,(M, N)(C) because M
and N are vector bundles. By A.4 we have to prove descent on coverings indexed
by a finite set and, by 2.5, it is enough to consider a faithfully flat map B — C. If
i1,i2: C — C ®p C are the two inclusions, descent corresponds to the exactness
of the sequence

0—H —O((t)oH U729 cou o)) o H

Since this sequence is obtained applying ®p())H to the exact sequence 0 —
B((t)) — C((t)) =2 (C ®p O)((t)) and H is flat we get the result. O

2.2. Finite and universally injective morphisms.

Definition 2.7. A map X — ) between algebraic stacks is universally injective
(vesp. universally bijective, a universal homeomorphism) if for all maps )’ — Y
from an algebraic stack the map |X x5 )’| — |V’ on topological spaces is injective
(resp. bijective, an homeomorphism).
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Remark 2.8. In order to show that a map X — ) is universally injective (resp.
universally bijective, a universal homeomorphism) it is enough to test on maps
V' — Y where )’ is an affine scheme. Indeed injectivity and surjectivity can
be tested on the geometric fibers. Moreover if |_|i Y, — ) is a smooth surjective
map and the Y; are affine then |X| — |)| is open if |X xy Y;| — |Y;] is open
for all ¢. In particular if X — ) is representable then it is universally injective
(resp. bijective, a universal homeomorphism) if and only if it is represented by
map of algebraic spaces which are universally injective (resp. universally bijective,
universal homeomorphisms) in the usual sense.

Proposition 2.9. Let f: X — Y be a map of algebraic stacks. Then f is finite
and universally injective if and only if it is a composition of a finite universal
homeomorphism and a closed immersion. More precisely, if T = Ker(Oy —
f+Ox), then X — Spec(Oy/I) is finite and a universal homeomorphism.

Proof. The if part in the statement is clear. So assume that f is finite and univer-

sally injective and consider the factorization X -2+ Z = Spec(0y/T) 2, Y. Since
f is finite, the map ¢ is finite and surjective. Since h is a monomorphism, given a
map U — Z from a scheme we have that X x z U — X xy U is an isomorphism,
which implies that g is also universally injective as required. O

Remark 2.10. The following properties of morphisms of schemes are stable by base
change and fpqc local on the base: finite, closed immersion, universally injective,
surjective and universal homeomorphism (see | , 02WE]). In particular for
representable maps of algebraic stacks those properties can be checked on an atlas.

Remark 2.11. Let f: &’ — S be a map of algebraic stacks, U,V and U’, )V’ alge-
braic stacks with a map to S and S’ respectively and u: U — U, v: V' — V be
S-maps. If f,u,v are finite and universally injective then so is the induced map
U x5V — U xg V. The map (U xs xV) Xs 8" — U xg V is finite and uni-
versally injective. The map U’ — U xs S’ is also finite and universally injective
because U xs 8" — U and U’ — U are so (use | , 0154] for the universal
injectivity). Thus we can assume S = &’ and f = id. In this case it is enough to
use the factorization Y’ xg V' — U xsg V' — U xs V.

2.3. Some results on torsors. In what follows, actions of groups (or sheaves of
groups) are supposed to be right actions. Recall that for a sheaf G of groups on
a site C, BG denotes the category of G-torsors over objects of C, and that given a
map G — H of sheaves of groups, then there exists a functor BG — B sending a
G-torsor P to the H-torsor (P x H)/G.

Lemma 2.12. Let G be a sheaf of groups on a site C and H be a sheaf of subgroups
of the center Z(G). Then H is normal in G, the map p: G x H — G restriction of
the multiplication is a morphism of groups and the first diagram

B(G x H) — B(G) GxH——G
| | [ |
B(G) —— B(G/H) g G/H

induced by the second one is 2-Cartesian. A quasi-inverse B(G) xpg/x) B(G) —
B(GxH) = B(G)xB(H) is obtained as follows: given (P, Q,\) € B(G)xw(g,#)B(G)
(so that \: P/H — Q/H is a G/H-equivariant isomorphism) we associate (P,Ty),
where Ty is the fiber of A along the map Iso%(P, Q) — Iso9™(P/H, Q/H) and
the action of H is given by H — G — Aut(Q).


http://stacks.math.columbia.edu/tag/02WE
http://stacks.math.columbia.edu/tag/01S4
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Proof. Let (P,Q,\) € B(G) xp(g/n) B(G) over an object ¢ € C. The composition
H — G — Aut(Q) has image in Aut?(Q) because # is central. Moreover the
map Iso?(P, Q) — Iso?™(P/H, Q/H) is H-equivariant. It is also an #-torsor:
locally when P and Q are isomorphic to G, the previous map become G — G/H.
Thus 7, is an H-torsor over ¢ € C. Thus we have two well defined functors

and we must show they are quasi-inverses of each other. Let’s consider the com-
position A o A and (P,€) € B(G) x B(H) over ¢ € C. We have A(P,E) =
(P,(Px&xG)/G xH,\) where X is the inverse of

[(PxEXG)GxH]/H— P/H, (pe,1) —p

We have to give an H-equivariant map & — Z,. Given a global section e € &,
that is a map H — &, we get a G X H equivariant morphism P x H — P x &€
and thus a G-equivariant morphism

0:P — (PxHXG)/GxH— (PxExG)/GxH

which is easily seen to induce \. Mapping e to d gives an ‘H-equivariant map & — Z,.
There are several conditions that must be checked but they are all elementary and
left to the reader.

Now consider Ao A and (P, Q,\) € B(G) xg(g/n) B(G) over an object c € C. It
is easy to see that

(PXIyxG)/GxH— Q, (p.¢,9) — ¢(p)g

is a G-equivariant morphism and it induces a morphism AoA(P, 9, \) — (P, Q, N).
U

Remark 2.13. If X — Y is integral (e.g. finite) and a universal homeomorphism
of schemes and G is an étale group scheme over a field k£ then BG(Y) — BG(X)
is an equivalence. Indeed by [ , Expose VIII, Theorem 1.1] the fiber prod-
uct induces an equivalence between the category of schemes étale over Y and the
category of schemes étale over X.

Lemma 2.14. Let G be a finite group scheme over k of rank tkG, U — G a
finite, flat and finitely presented map of degree tk G and G — T be a map locally
equivalent to BG, where U, G and T are categories fibered in groupoids. If U — T
1s faithful then it is an equivalence.

Proof. By changing the base T" we can assume that T is a scheme, G = BG x T
and U is an algebraic space. We must prove that if P — U is a G-torsor and
P — U — T is a cover of degree rkG then f: U — T is an isomorphism.
It follows that f: U — T is flat, finitely presented and quasi-finite. Moreover
f:U— BG xT — T is proper. We can conclude that f: U — T is finite and
flat. Looking at the ranks of the involved maps we see that f must have rank 1. O

3. DIRECT SYSTEM OF DELIGNE-MUMFORD STACKS

In this section we discuss some general facts about direct limits of DM stacks.
For the general notion of limit see Appendix A. By a direct system in this section
we always mean a direct system indexed by N.

Definition 3.1. Let X be a category fibered in groupoid over Z. A coarse ind-
algebraic space for X is a map X — X to an ind-algebraic space X which is
universal among maps from X to an ind-algebraic space and such that, for all
algebraically closed field K, the map X (K)/ ~— X(K) is bijective.
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Lemma 3.2. Let Z, be a direct system of quasi-compact and quasi-separated al-
gebraic stacks admitting coarse moduli spaces Z,, — Z,. Then the limit of those
maps A — A is a coarse ind-algebraic space.

Assume moreover that the transition maps of Z, are finite and universally in-
jective. Then for all n € N and all reduced rings B the functors Z,(B) —
Zu11(B) — A(B) are fully faithful. In particular the maps Z, — Z,,1 are
universally injective and, if all Z,, are DM, Z, — A preserves the geometric
stabilizers.

Proof. The first claim follows easily taking into account that, since Z, is quasi-
compact and quasi-separated, a functor from Z,, to an ind-algebraic space factors
through an algebraic space and therefore uniquely through Z,. It is also easy to
reduce the second claim to the case of some Z,.

Denote by ¢: Z, — 2,1 the transition map. Let £,n € Z,,(B) and a: ¢¥(§) —
¥(n). Set ¥(n) = ¢ € Z,41(B). It W is the base change of Z,, — Z,., along

Spec B —+ Z,.1 then € = (£,¢,a),7 = (1,¢,id) € W(B). A lifting of a to an
isomorphism ¢ — 7 is exactly an isomorphism & — 7. Such an isomorphism
exists and it is unique because, since W — Spec B is an homeomorphism and B
is reduced it has at most one section.

Applying the above property when B is an algebraically closed field we conclude
that Z, — Z,,1 is universally injective. If all Z,, are DM then the geomet-
ric stabilizers are constant. Since for all algebraically closed field K the functor
Zo(K) — Z,41(K) is fully faithful we see that Z, — Z,1; is an isomorphism
on geometric stabilizers. (]

Definition 3.3. Given a direct system of stacks )., a direct system of smooth
(resp. étale) atlases for ), is a direct system of algebraic spaces U, together with
smooth (resp. étale) atlases U; — ); and 2-Cartesian diagrams

Uy —— Uz'+1

| l

Vi — Vi1

for all 7 € N.

Lemma 3.4. Let Y, be a direct system of stacks and X be a quasi-compact and
quasi-separated algebraic stack. Then the functor

@Hom()(, YV,) — Hom(X, h_n>1y)

is an equivalence of categories. If the transition maps of V. are faithful (resp. fully
faithful) so are the transition maps in the above limit.

Proof. Denotes by (x the functor in the statement. When X is an affine scheme (x
is an equivalence thanks to A.5. In general there is a smooth atlas U — X from
an affine scheme. It is easy to see that the functor (y is faithful. If two morphisms
become equal in the limit it is enough to pullback to U and get a finite index for
Cu. By descent this index will work in general.

The next step is to look at the case when X is a quasi-compact scheme. Using the
faithfulness just proved and taking a Zariski covering of X’ (here one uses that the
intersection of two open quasi-compact subschemes of X is again quasi-compact)
one proves that (x is an equivalence.

Finally using that (i7, ux v and (ux,Ux v are equivalences and using descent
one get that (y is an equivalence. The last statement can be proved directly. [
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Proposition 3.5. Consider a 2-Cartesian diagram

Y — Speck

= |

X — BdG

where G is a finite group and X is a stack over Aff /k. Suppose that there exists a
direct system Y, of DM stacks of finite type over k with finite and universally injec-
tive transition maps, affine diagonal, with a direct system of étale atlases Y, — YV,
from affine schemes and with an isomorphism li . Yn =~ Y. Then there exists a di-
rect system of DM stacks X, of finite type over k with finite and universally injective
transition maps, affine diagonal, with a direct system of étale atlases X, — X,
from affine schemes and with an isomorphism hgln X, ~ X. If all the stacks in
Y. are separated then the stacks X, can also be chosen separated. If Y, — Y, is
finite and étale then X,, — X, can also be chosen finite and étale.

The remaining part of this section is devoted to the proof of the above Propo-
sition. Its outline is as follows. For some data w, we define a stack A, and for a
suitable sequence w,, u € N of such data, we will prove that the sequence

Xy = gy — -+

has the desired property. To do this, we reduce the problem to proving a similar
property for the induced sequence Z,,, = &, Xx ), u € N. Then we describe Z,,
using fiber products of simple stacks. Once these are done, it is straightforward to
see the desired properties of Z,, , u € N.

We recall that stacks and more generally categories fibered in groupoids form 2-
categories; 1-morphisms are base preserving functors between them and 2-morphisms
are base preserving natural isomorphisms between functors. In a diagram of stacks,
1-morphisms (functors) are written as normal thin arrows and 2-morphisms as thick
arrows. For instance, in the diagram of categories fibered in groupoids

A—f>B

| AL

A, B,C and D are categories fibered in groupoids, f, g, h and i are functors and A
is a natural isomorphism go f — i o h. We will also say that A makes the diagram
2-commutative. For a diagram including several 2-morphisms such as

f g

A——B——C

| /1]
% h
the induced natural isomorphism means that the induced natural isomorphism of
the two outer paths from the upper left to the bottom right; concretely, in the
above diagram, it is the natural isomorphism hogo f — ko joi induced by A and
N

Let us denote the functor ¥ — B G in 3.5 by Q. An object of Y over T' € Aff /k
is identified with a pair (¢,¢) such that £ € X(T) and c is a section of the G-
torsor Q(§) — T, in other words ¢ € Q(&)(T). For each g € G, we define an
automorphism ¢,: Y — ) sending (z, ¢) to (z,cg). By construction we have ¢; = id
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and ¢4 0 ), = Ly and we interpret those maps as a map ¢: Y x G — ). For all
¢ € X the map ¢ induces the action of G on Q(&).

Definition 3.6. We define a category fibered in groupoids X as follows. An object
of X over a scheme 7T is a tuple (P,n, ) where P is a G-torsor over T € Aff /k
with a G-action mp: P x G — P, n: P — Y is a morphism and p is a natural
isomorphism

(3.1) PxGXsp
"Xidcl /i"
yXGL;)y

such that if ;1, denotes the natural isomorphism induced from p by composing
P~ P x{g}— P x G and my: P — P denotes the action of g, then the diagram

(3.2) p o p M p
vEv4
n n n
V— y*ﬁg y

induces ppg. A morphism (P,n,u) — (P',n',1’) over T is a pair («, ) where
a: P — P’ is a G-equivariant isomorphism over T' and 3 is a natural isomorphism

P—% >p
such that the diagram

N
=

nxid <:P’><G4>P’

= 7

YV xG

induces p.

There is a functor X —s X: given & € X(T) one gets a G-torsor Q(¢) — T
and a morphism 7: Q(§) — Y and using the Cartesian diagram relating X and Y
we also get a natural transformation as above. The following is a generalization of
[ , Theorem 4.1] for stacks without geometric properties.

Lemma 3.7. The functor X — X is an equivalence.

Proof. The forgetful functor X — B G composed with the functor in the statement
is @: X — BG. Since X and X are stacks, it is enough to show that the functor
=Y — y X XB G Spec k is an equivalence.

An object of the stack Y can be regarded as a pair (1, u) such that n: TxG — Y
is a morphism and g is a natural isomorphism as in (3.1) with mp: P x G — P
replaced with idy X mg: T X G x G — T x G, where mq is the multiplication
of G. A morphism (1, 1) — (1, /) in Y(T) is a natural isomorphism 8: n — 7/
satisfying the same compatibility as in (3.3) where P and P’ are replaced with
T x G and « is replaced with idrxg. The functor = sends an object p € Y(T)



MODULI OF FORMAL TORSORS 12

to (p: T x G — Y, ) such that plrygg = ¢4 0 p and p is the canonical natural
isomorphism, and a morphism v: p — p’ to (idrxqg,7) where J|ry 143 = t4(7). One
also gets a functor A: ) — Y by composing with the identity of G and it is easy

to see that A o Z = id. The compatibilities defining the objects of J also allow to
define an isomorphism =Zo A ~ id. O

Set 6,,: YV, —> Y for the structure maps and d,,,: YV, —> ), for the transition
maps for all u < v € N. Given w > v > u € N we denote by R(u,v,w) the
collection of tuples (w,w’, 8,0") forming 2-commutative diagrams:

(3.4) Vu x G—=—Y,

&xidl / i&,

nyﬁy

(3.5) Vo x G,
VxG—]—>)Y

We also require the existence of a natural isomorphism

(3.6) Vu x G2,

6u,v><idl / i(sv,w

yv X G,4>yw

compatible with 6 and 6" and, for g, h € G, the existence of a natural isomorphism
Ah.g

w Ah,g ,
hg w),

yv Hyw

6'u,w
such that the natural isomorphism induced by

5v,w(whg)

(3.8) Y Vo

’
Wh 1 Wy
‘H’Ah,g/
Yo

]

Su Sy Sw
Yy

/ H‘\

Lhg

y y

coincides with the one induced by 634 and d, .,. Since the transition maps of ), are
faithful, the functor Hom (Y, V,) — Hom(Y,,,Y) is faithful as well, which means
that natural transformations ¢ and A, are uniquely determined.
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Definition 3.8. Forw = (w,w’,0,0") € R(u,v,w), we define the following category
fibered in groupoids X, as follows.

An object of X,, over T is a triple (P,n, 1) of a G-torsor P over T, n: P — Y,
and a natural isomorphism g making the diagram

PxG o p

nxwl 5?2%¢¢7l6mUW)

yuXGT>yv

2-commutative such that the diagram

(3.9) p P P
L O, g
"N, v(n)l w
n yv S, (1)
/ HAN
u yﬂ)

induces 0y (fhg)-

A morphism (P,n, u) — (P’,n', 1) in X, (T) is a pair («, 8) where o: P — P’
is a G-equivariant isomorphism over 7" and [ is a natural isomorphism making the
following diagram 2-commutative

such that the diagram

(3.10) PxG
\\Qi é/// ///
nxid | <——— P'x G—— P «——|6u.(n)
A /u v\\
yu >< G yﬂ

induces the natural isomorphism pu.

By 3.4 for all algebraic stacks X’ the functor lim Hom(X,),,) — Hom(X,)Y) is
an equivalence. This allows us to choose increasing functions v,w: N — N such
that u < v(u) < w(u) and wy = (Wy, W), 0y, 0,,) € R(u,v(u), w(u)), so that A, is
defined, for all v € N. Moreover we can assume there exist natural isomorphisms &
and k'’

yu x G yv(u)

5u,u+1 Xidi / l&u(u)w(u+l>

Yut1 x G PN Yo(u+1)
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’
Wy

yv(u) x G yw(u)

. K’
57)(14,),1x(q‘,+1>><1dl / Bun () ot 1)

yv(u+1) x G - yw(u+1)
Wyt
such that d0,(,41)(x) is induced from 6, and 0,41 and 6,,(u41)(x’) is induced from
0, and 6, , . Again, since the transition maps of ), are faithful, natural transfor-
mations x and ' are uniquely determined.
For each u € N, there exist canonical functors X,,, — X

wayp, and Xy, — )?,
which lead to a functor

lim X, — X.
iy
Proposition 3.9. The functor hgu Xy, — X is an equivalence.

Proof. By definition, every object and every morphism of X come from ones of
X,, for some u. Namely the above functor is essentially surjective and full. To see
the faithfulness, we take objects (P,n,u), (P',n',u') of X,,(T) and their images

(P, Moo tos)s (Py11hg, ) in X(T). The map
Homy,,, (r) (P, 1), (P, 0, 1)) = Hom g ) (P, oo, poo), (P, 0, 1))

is compatible to projections to the set Isog(P, P’ of G-equivariant isomorphisms
over T. The fibers over a € Iso% (P, P') are respectively identified with subsets of
Homy, (py(n,n" o @) and of Homyp) (oo, 15, © ). Since Y(P) is the limit of the
categories Y, (P) by 3.4 we get the faithfulness. O

Definition 3.10. For w = (w,w’,0,6") € R(u,v,w), we define Z,, as the stack of
pairs (n, u) where n: T'x G — ), is a morphism and p is a natural isomorphism
making the diagram

idxmg

(3.11) TxGxG@——=TxG

nXid\L / J{éu,v(n)

Vux G——>,
2-commutative and such that

idxh idxg

(3.12) TxG TxG TxG

%(n)i %
n yv Su,w (77)
/ ﬂ/\h,g s

v, w (whg)

Y

induces 0y 1 (Thg)-
A morphism (9, u) — (7', ') in Z,, is a natural isomorphism §: n — 7/,

TxG

B ’
”%n

Yy
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such that the diagram

(3.13) T x G X G dxme TxG
- u,v B
77 ﬁ /v(n % Suv (M)
Yux G

induces the natural isomorphism pu.

Lemma 3.11. There exists a natural equivalence Z,, ~ X, Xx Y. Here the mor-
phism X, — X implicit in the fiber product is the composite of the morphism

Xy — X and a quasi-inverse X S x of the equivalence in 3.7.

Proof. Set Zw = X, xx Y. We may identify an object of Z, w(T) with a tu-
ple (P,n,p,s) such that (P,n,u) is an object of X, (T) and s is a section of
P — T. A morphism (P,n,u,s) — (P',n',,s") is identified with a morphism
(o, B): (Pom,p) — (P',n, 1) in X, satisfying oo s = s’. The section s induces a
G-equivariant isomorphism 7' x G — P. Identifying P with T' x G through this
isomorphism, we see that Z~£ is equivalent to Z,. O

Notice that if Y — Vis a G-torsor then V has affine diagonal (resp. is separated)
if and only if ¢ has the same property. The “only if” part is clear. The “if” part
follows because B G is separated, descent and the 2-Cartesian diagrams

U— U xU — Speck

S

Yy — VxggV —BG

From this remark and from 3.7, 3.9 and 3.11, the proof of 3.5 reduces to:

Lemma 3.12. The stacks Z,,, form a direct system of DM stacks of finite type over
k with affine diagonal, with finite and universally injective transition maps, and with
a direct system of étale atlases Z, — Z,,, from affine schemes. Moreover if all Y,
are separated so are the 2, and if Y,, — Y, is finite and étale then Z, — Z,,,
can be chosen to be finite and étale. o

To prove this lemma, we will describe Z, by using fiber products of simpler
stacks. In what follows, for a stack KC and a finite set I, we denote by ! the product
HZGI K and identify its objects over a scheme T" with the morphisms T'x I = U;T —

Let W,, be the stack of pairs (1, ) where n: T'x G — Y, and p is a natural
1som0rphlsm as in (3.11), but not necessarily satisfying the compatibility imposed
on objects of Z,.

Remark 3.13. Let F,G: W, — W, be two maps of stacks and denote by W, the
stack of pairs (w, () were w € Wy (T) and ¢: G(w) — F(w) is an isomorphism in
Wo(T). Then there is a 2-Cartesian diagram

W2L>W1

Jp JFG
I'r
W1 E— W1 X Wo
where ', denotes the graph and p the projection. Notice that the sheaf of iso-

morphisms of an object of a fiber product can be expressed as fiber products of
the sheaves of isomorphisms of its factors. In particular, if Wy, W, have affine
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diagonals, then W, has affine diagonal. If W, has affine diagonal and F' is affine
then p is also affine. This is because the graph I'r can be factors as the diagonal
Wi — Wi x W followed by idx F: Wy x Wy — Wy X Wo.

This remark particularly gives:

Lemma 3.14. Let ®: Y& — YS*C be the morphism sending n: T x G — Y, to
the composition

idxXmg

B(n): T x G x G XM, 7o g Iy, 2oy,
and let W : yf — yg’xG be the morphism sending n: T xG — Y, to the composition
U(n): TxGx G2 Y, x G W,
Let T, Ty: Y& — Y x YEXC be their respective graph morphisms. Then
W, ~ qu Xy Y xYEXC 1y yf.

Let (n, 1) € W, (T). In the two diagrams,

idr xmg

(3.14) TxGxGxGEXmeXe_pogya TxG
i v
”i %v(ml z J{au,w(m
yu x G xG - yv x G yu)
wXidg w
and
(3.15) TXGXGXGMTXGXG drxme TxG
i Su,w
ni %v(n)l ) (,u l&,w(ﬂ)
Y xGxG e Yo X G - YV

the paths from T'x G x G X G to ), through the upper right corner are identical; we
denote this morphism T'x G x G x G — Y, by r(n). As for the paths through the
left bottom corner, there is a natural isomorphism between them given by ¢ (3.6)
and Ap 4 (3.7). We identify the two lower paths through this natural isomorphism
and denote it by s(n). We denote the natural isomorphism r(n) — s(n) induced
from the former diagram by a(u) and the one from the latter diagram by (7). The
compatibility (3.12) is nothing but a(u) = B(u).

For a stack IC, we denote by I(K) its inertia stack. An object of I(K) is a pair
(z,a) where = is an object of K and « is an automorphism of z. There is an
equivalence I(K) >~ IC xa xxi,a K. We have the forgetting morphism I(K) — K,
which has the section K — I(K), z — (z,id). If K is a DM stack of finite type with
finite diagonal, then I(K) — K is finite and unramified and X — I(K) is a closed
immersion.

Lemma 3.15. Let ©,A: W,, — I(Y$X9XC) be the functors sending an object
(n, 1) of Wy to (r(n), B(1)~* o a(u)) and to (r(n),id) respectively. Consider also
the functor Z, — YS*9*C sending (n, ) to r(n). Then

yngxG)

Zy Xygxaxa I( ~ W Xpg Wy x1(957x6%6) py Wae-

Proof. From 3.13, the right hand side is regarded as the stack of pairs ((n, 1), €) such
that (7, 1) is an object of W, and ¢ is a natural isomorphism ©((n, 1)) — A((n, 1))-
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Thus € is an isomorphism () — r(n) making the diagram

r(n) ——r(n)

B(M)_loa(u)l lid

r(n) ——r(n)

commutative. Therefore 3(1)~! o a(u) = id, equivalently, the compatibility (3.12)
holds, and € can be an arbitrary automorphism of r(n). This shows the equivalence
of the lemma. O

Lemma 3.16. The stack Z,, is a DM stack of finite type with affine diagonal and
it is separated if all the V. are separated. Moreover, for functions v,w: N — N and
wy € R(u,v(u),w(u)), u € N, the morphism Z,, — 2., s finite and universally
injective.

Wut1

Proof. U,V and W are DM stacks of finite type with affine (resp. finite) diagonals,
then so is U Xy V. Indeed, U x V is a DM stack of finite type with affine (resp.
finite) diagonal and U xyy V — U x V is an affine (resp. finite) morphism since it
is a base change of the diagonal W — W x W. Hence U xyy V is a DM stack of
finite type with affine (resp. finite) diagonal.

From 3.14 and 3.15, Z, Xyaxaxc [(YG*9*F) is a DM stack of finite type with
affine (resp. finite, provided that all ), are separated) diagonal. Since the section
YEXEXE _y [(YEXEXEY g a closed immersion, the same conclusion holds for Z,,.

From 2.11, we can conclude that the morphism [ ()JG(Z?XG) — I (yj@iff) is
finite and universally injective. From 2.11, 3.14 and 3.15,

GXxGxG GXxGxG
Zaw X ygpgee T ™) = B oy 1))

is finite and universally injective, and so is the composition

- XGx6xo I(yG(f;*'XG) - Z

The morphism Z,, — Z,,., factorizes this and hence is finite and universally
injective. 0

GXGxG
Wyt 1 ygaiff’l()24u+1))

If Y — V is a map of stacks and V has affine diagonal then U xy, U — U x U
is affine, because it is the base change of A: V — V x ValongUd xU — V x V.
Therefore the morphism

Zgy = Wiy X Wa, = (V& x VG x (VS x YT

induced from equivalences in 3.14 and 3.15 is affine. Pulling back a direct system
of étale atlases for (V5 x V&) x (V¥ x V&) to Z,,, we obtain a system of atlases
as in 3.12, which completes the proof of 3.12 and the one of 3.5.

4. THE STACK OF FORMAL G-TORSORS

We fix a field k& and an étale group scheme G over k. In this section we will
introduce and study the stack of formal G-torsors.

Definition 4.1. We denote by Ag the category fibered in groupoids over Aff /k
whose objects over B are Ag(B) = BG(B((t))).

Remark 4.2. By construction we have that if ¥’ /k is a field extension then Ag Xy
k, ~ AGka/.

Corollary 4.3. The fiber category Ag is a pre-stack in the fpgc topology.
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Proof. Let D1, D5 € Ag(B) =BG(B((t))). We must show that
I = IS—OAG (D17 DQ)Z AH/B — (Sets)

is an fpqc sheaf. By 2.6, MB((t))(Dl,DQ) is a sheaf, so that in particular I is
separated. Thus we must show that if B — C'is an fpqc covering, ¢: D1 — Do
is a map and ¢ ® C((t)) is a G-equivariant morphisms of C'((t))-algebras, then ¢ is
also G-equivariant. But this is obvious since D; is a subset of D; @ C((t)). O

Definition 4.4. If X is a category fibered in groupoids over F, then its Frobenius
Fxy: X — X is the functor mapping £ € X (B) to F5(€) € X(B), where Fp: B —
B is the absolute Frobenius. The Frobenius is Fj-linear, natural in X and coincides
with the usual Frobenius if X is a scheme.

A category fibered in groupoid X over F, is called perfect if the Frobenius
Fy: X — X is an equivalence.

Example 4.5. As a consequence of 2.13 DM stacks étale over a perfect field are
perfect.

We have the following basic property of Ag, although we will not use it later.
Proposition 4.6. If k is perfect the fiber category Ag is perfect.

Proof. By 2.13 the functor BG(B((t))) — BG(B((t))) induced by the Frobenius
Fg: B — B is an equivalence: the p-th powers of elements in B((t)) are in the
image of Fg: B((t)) — B((t)) and therefore the spectrum of this map is integral
and a universal homeomorphism. O

Another example of a perfect object that will be used later is the following;:

Definition 4.7. If X is a functor Aff /F, — (Sets) we denote by X the direct
limit of the direct system of Frobenius morphisms X Fox B

Notice that if X is a k-pre-sheaf then X °° does not necessarily have a k-structure
unless k is perfect.

Proposition 4.8. Let H be a central subgroup of G. Then the equivalence B G x
BH — BG xg(q/u)BG of 2.12 induces an equivalence Ag x Ay — Ag XAg/n
Ag. If X is a fibered category with a map X — Ag then we have a 2-Cartesian
diagram

XXAHLAG

EN

X ——— Ag/u

where « is given by X X Ay — Ag X Ay = Agxyg — Ag and the last map is
induced by the multiplication G x H — G.

Proof. The first claim is clear. For the other we have the following Cartesian
diagrams
X xAg — Ag x Ag —— Ag

NN

X Ag Ag/u
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4.1. The group G = Z/pZ in characteristic p. In this section we consider
G = Z/pZ over k =T,,.

Let C be an F,-algebra. By Artin-Schreier a Z/pZ-torsor over C' is of the form
C[X]/(X? — X — ¢), where ¢ € C and the action is induced by X —— X + f for
feF,.

Lemma 4.9. Let ¢,d € C. Then

Clx] C[X]

Z/pZ
fueCluw —utcec=d} —— Isoc/p ((XP—X—c)’ (XP—X—d))

U (X — X —u)

is bijective.

Proof. The map in the statement is well defined and it induces a morphism
Spec(C[X]/(X7—X—(d—c))) — Iso™P*(C[X]/(XP =X —c), C[X]/(X" =X ~d)) =
The group Z/pZ acts on both sides and the map is equivariant. Since both sides

are Z/pZ-torsors it follows that the above map is an isomorphism. O

Notation 4.10. If C is an F,-algebra, according to 4.9, we identify (BZ/pZ)(C)

with the category whose objects are elements of C' and a morphism ¢ — d is an
element u € C such that u? —u+c¢ = d. Composition is given by the sum, identities
correspond to 0 € C' and the inverse of u € C is —u.

In particular we see that if ¢ € (BZ/pZ)(C) then ¢ ~ P.

Lemma 4.11. Any element b € tB][t]] is of the form uP — u for a unique element
u € tBJ[[t]].

Proof. Let b,u € tB([[t]] and bs, us for s € N their coefficients, so that by = uo = 0.
We extend the symbol by, us for s € Q by setting by = us = 0if s ¢ N. The equation
uP — u = b translates in by, = uls7 /p — Us for all s € N. A simple computation shows
that, given b, the only solution of the system is

B

neN

Notation 4.12. In what follows we set
S={n=1[pin}
and A): Aff /F, — (Sets) where A(¥)(B) is the set of maps b: S — B such
that {s € S| bs # 0} is finite.
Given k € N we set

k
dr: AY) — Agyz, gp(b) =D bt € B((t) = Azypz(B)
s€S
and 1 A x B(Z/pZ) — Agjpz, ¥i(b,bo) = ¢i(b) + bo. Let Fys) be the
Frobenius morphism of A(%) defined in 4.4 and let (A()>° be the limit defined as
in 4.7. For all b € A®®)(B) and by € B there is a natural map

. — ¢k (b
Yrq1 0 (Fys) X idgz/pzy) (b, bo) —o®, (b, bo)
which therefore induces a functor (A))° x B(Z/pZ) — Az pz-

Theorem 4.13. The functor (A9)>* x B(Z/pZ) — g,z is an equivalence of
fibered categories.
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Proof. Essential surjectivity. Let b(t) = >, bjt! € Agjpz(B). By 4.11 and the
definition of the map in the statement we can assume that b; = 0 for j > 0. Let
k € N be a sufficiently large positive integer such that every j < 0 with b; # 0
is written as —j = p*~"™s(j) for some m(j) > 0 and s(j) € S. Then bt/ ~
(bjtj)pm(J> = b?mmt_pks(j) if b; # 0. We see therefore that, up to change b with an
isomorphic element, b can be written as 1 (c) for some ¢ € (A®S) x B(Z/pZ))(B).
Faithfulness. Let ([b, k], bo), ([c, k], co) € (AS))*(B)xB(Z/pZ)(B) and u,v: (b,by) —
(¢, o) two morphisms in AS) x B(Z/pZ), that is b = c and u? —u = vP —v = ¢ — by
with u,v € B. If ¥ (u) = ¥ (v) then u = v by definition of ¥y, as desired.
Fullness. Let ([b, k], bo), ([c, k'], co) € (A)>®*(B)xB(Z/pZ)(B) and let u: ¢y (b, by) —
Vi (¢, co) be amap in Az 7. We want to lift this morphism to (A(5))*° x B(Z/pZ).
We can assume k = k’. The element u = > u,t? € B((t)) can be written as
u = u_ +us, where u = > _qugt? and up = ) -quqt?. In particular we
obtain that u” —u_ = ¢i(c) — ¢r(b) and u —uy = ¢y — by. By 4.11 it follows
that uy € B. It suffices to show that u— = 0. To see this, we first show that
¢ — b is nilpotent. We have ¢ (c) ~ ¢r(b) and, applying Fp to both side we get
o(b) ~ ¢o(b)”" = FE(61(b) ~ FE(¢r(c)) = do(c)”" ~ ¢o(c). Thus there exists
V=3, Vgt? € B((t)) such that

bo(c) — do(b) = Z(cs —b )t =P —v= Z(vg/p — vg)t1

s€s q<0
where we set v; = 0if | € Q — Z«o. In particular for s € S and I € N we obtain
by —cs =v_g and v_,, = v’ils. Since v_g, = 0 for [ > 0 we see that by — ¢, is
nilpotent. This means that there exists j > 0 such that Fé(s) (b) = Fg(s) (¢). Thus,
up to replace k by k+ 7, we can assume b = ¢, so that v’ =u_. fu_ = Zq<0 uqtd

and we put u, = 0 for ¢ ¢ Z then we have u, = (uq/pz)pZ for every ¢ € Q with ¢ <0

and [ € N. For each ¢, taking a sufficiently large [ with ¢/p! ¢ Z, we see ug = 0 as
desired. O

Remark 4.14. The addition Z/pZ x Z/pZ — Z/pZ induces maps B(Z/pZ) x
B(Z/pZ) — B(Z/pZ) and Az x Azypz — Agjpz. The ind-scheme (A(5))>
also has a natural group structure by addition. Notice that the functor in the last
theorem preserves the induced “group structure” on both sides. This is because the
maps vy, preserve the sum and the Frobenius of A(%) is a group homomorphism.
In particular the induced map from (A(%))> to the coarse ind-algebraic space of
Az/pz is an isomorphism of sheaves of groups.

Remark 4.15. If B is an F,-algebra, G is any constant p-group and H is a central
subgroup consisting of elements of order at most p then any map Spec B — Ag g
lifts to a map Spec B — Ag. More generally any G/H-torsor over B extends
to a G-torsor. This follows from the fact that there is an exact sequence of sets
H'(B,G) — H'(B,G/H) — H*(B,H) = 0. The last vanishing follows because
H ~ (Z/pZ)" for some r and using the Artin-Schreier sequence.

Corollary 4.16. If G is an étale p-group scheme over a field k then Ag is a stack
in the fpgc topology.

Proof. If B is a k-algebra and A/k is a finite k-algebra then (B ®j A)((t)) =~
B((t)) ®; A by 2.4. Therefore Ag satisfies descent along coverings of the form
B — B ®;, A. This implies that it is enough to show that Ag X, L ~ Agx, 1 is a
stack, where L/k is a finite field extension such that G xj L is constant. Again using
base change, we can assume k = F, and G a constant p-group. If {G = p' we proceed
by induction on I. If | = 1 then Az /.7 ~ (A9))> x B(Z/pZ) which is a product of
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stacks. For a general G let H a non-trivial central subgroup. By induction Ag,/ g
is a stack and it is enough to show that all base change of Ag — A,y along a
map Spec B — Ag/ g is a stack. This fiber product is Spec B x Ay thanks to 4.8
and 4.15, which is a stack by inductive hypothesis. O

4.2. Tame cyclic case. Let k be a field and n € N such that n € k*. The aim of
this section is to prove Theorem B.

Set G = u,, the group of n-th roots of unity, which is a finite and étale group
scheme over k. In particular Ag(B) can be seen as the category of pairs (£, o) where
L is an invertible sheaf over B((t)) and o: L™ — B((t)) is an isomorphism. When
L = B((t)) the isomorphism o will often be thought of as an element o € B((t))*.

Lemma 4.17. An invertible sheaf L over B((t)) with L%™ ~ B((t)) is the pullback
of an invertible sheaf over Spec B. More precisely , the n-torsion part of Pic(B((t)))
is naturally isomorphic to the one of Pic(B).

Proof. Gabber’s formula [ , (1.2.2)] says
Pic(B((t))) ~ Pic(B[t']) @ H},(B, Z).

This is proved in a slightly more general form in Theorem 3.1.7 of the cited paper
by Bouthier-Cesnavicius. Let N Pic(B) denote the kernel of Pic(B|t]) — Pic(B) so
that
Pic(B[t']) ~ Pic(B][t]) = Pic(B) @ N Pic(B).

According to | , Th. 6.1], N Pic(B) has no n-torsion if and only if Byeq is n-
seminormal. The n-seminormality is defined as follows. For a reduced ring A, there
exists an extension A C A called the seminormalization (see | , Section 4]).
For our purpose, we only need to know its existence. We say that A is n-seminormal
if every element = € A with 22,23, nz € A belongs to A. In our situation, since n
is invertible in k, every k-algebra is n-seminormal. Thus B,eq is n-seminormal and
N Pic(B) has no n-torsion.

It remains to show that H, (B, Z) has no n-torsion. To do so, we consider the
exact sequence

0 —7Z 7 —7Z/nZ — 0

of constant étale sheaves on the small étale site of Spec B. Taking cohomology
groups, we get the following exact sequence:

H%(B,Z) — H°(B,Z/nZ) — (the n-torsion part of Hg, (B,Z)) — 0

The left map is surjective, since every locally constant function Spec B — Z/nZ
lifts to a locally constant function Spec B — Z. It follows that H}, (B, Z) has no
n-torsion. 0

Lemma 4.18. For a k-algebra B, we have
pn(B) ={be B* [ 0" =1} = {be B((t))" [ 0" = 1} = un(B((1))).

Proof. Let L and R denote the left and right sides respectively. Obviously L C
R. Tt is also easy to see RN B[[t]] = L. Thus it suffices to show that R C
B[[t]]. Conversely, we suppose that it was not the case. We define the naive order
ordpaive(a) of a = 3, ., a;t" € Bl[t] as min{i | a; # 0}. Elements outside BI[t]]
have negative naive orders and choose an element ¢ = ), ¢;t' € R\ B[[t]] such
that ord,qive(c) attains the maximum, say ig < 0. Taking derivatives of ¢ = 1, we
get nec’ = 0 with ¢ the derivative of ¢. Since nc is invertible, ¢/ = 0. If chark = 0
it immediately follows that ¢ € B. So assume chark = p > 0. In this case ¢; = 0
for all ¢ with p 1 4. This means that c is in the image of the injective B-algebra
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homomorphism f: BJ[t]] = BJ[[t]], t — t*. Let d be the unique preimage of ¢ under
f, which is explicitly given by d = Y, ¢,it". In particular,

Ordnai'ue(d) = Ordnaive(c) /p > Ordnaive(c> .

Since f(d™) = ¢ =1 and f is injective, we have d* = 1 and d € R\ BJ[[t]]. This
contradicts the way of choosing ¢. We have proved the lemma. O

Proof of Theorem B. We first define the functor v : |_|;:01 B(G) — Ag. An object
of |_|Z':_01 B(G) over a k-algebra A is a factorization A =[], A, plus a tuple (Lg, &g)q
where L, is an A,-module and &;: L?” — A, is an isomorphism. A morphism
(A =1TI,Aq: L, &) — (A =[], A L, &) exists if and only if A4y ~ Ay as
A-algebras (so that such isomorphism is unique) and in this case is a collection of
isomorphisms L, — L; compatible with the maps &, and 5(’1. To such an object
we associate the invertible A((t)) = [[, Aq((t))-module L = [] (Lq ®a, Aq((1)))
together with the map

220 = T2 @4, Ag((1)) — [ Aal(®) = AUD), (24 ® D)g > (Eg()t9),

q

It is easy to see that the functor 1) on B G in the index ¢ is the one in the statement.
We are going to show that 1 is an equivalence. Since Ag is a prestack by 4.3, it will
be enough to show that v is an epimorphism and that it is fully faithful. Indeed this
would imply that A¢ is also a stack for the following reason. Given a descent datum
for Ag, since Ag is a prestack, in order to show that it is effective we can refine
this datum, that is refine the covering over which is defined. If ¢ is fully faithful
and an epimorphism, it follows that we can always assume that the descent datum
for Ag comes from a descent datum for UZ;& B(G), which is therefore effective.

Y epimorphism. Let x € Ag(B). From 4.17, we can assume that the associated
invertible sheaf is trivial and x = (B((¢)),b). We have (B((t)),b) ~ (B((t)),V') if
and only if there exists u € B((¢))* such that u"b = b'. For ¢ € B((t))* we define
ord c: Spec B — 7Z as follows: if 2 € Spec B is a point with the residue field x and
¢z € K((¢t)) is the induced power series, then (ordc)(z) := ord ¢,. This function is
upper semicontinuous. From the additivity of orders, ord b + ord(b~!) is constant
zero. Since ordb and ord(b~!) are both upper semicontinuous, they are in fact
locally constant. Thus we may suppose that ord b is constant, equivalently that if
b; are coefficients of b, then for some i, b; is a unit and b; are nilpotents for j < 1.

Thus we can write b = b_ +t'b, with b; € B[[t]]* and b_ € B((t)) nilpotent. Set
w=>b/(t'by) € B((t)), A= B({#t)[Y]/(Y" —w) and C = B((t))/(b_). We have
that w = 1 in C and therefore that A ®p(()) C has a section. Since A/B((t)) is
étale and B((t)) — C is surjective with nilpotent kernel the section extends, that
is w is an n-th power. Thus we can assume b_ = 0. Since B[[t]][Y]/(Y™ — by) is
étale over BI[[t]], by 2.3 we can assume there exists b € B[[t]]* such that b" = b,.
In conclusion we reduce to the case b = t* and, multiplying by a power of ¢, we
can finally assume 0 < i < n.

¥ fully faithful. If (L,0) € Ag(B) then, by Lemma 4.18, its automorphisms
are canonically isomorphic to p,(B((t))) = un(B). This easily implies that the
restriction of 1 on each component is fully faithful. Given two objects «, €
UZ;& B(G) and an isomorphism ¢(«) — 1(B) of their images the problem of
finding an isomorphism o« — 3 inducing the given one is local and easily reducible
to the following claim: if (B((t)),t9) ~ (B((t)),t?) then ¢ = ¢ mod n. But
the first condition means that there exists u € L((¢))* such that v"t? = t7 and,
applying ord, we get the result. O
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4.3. General p-groups. In this section we consider the case of a constant p-group
G over a field k of characteristic p and the aim is to prove Theorem A in this
case. We setup the following notation for this section. All groups considered in this
section are constant.

Definition 4.19. We set

S={n>1|ptn}
and, given a finite dimensional F,-vector space H (regarded as an abelian p-group),
we define a sheaf of abelian groups

Xy = (A®)> ®r, H: Aff /F, — (Abelian groups)

(that is X = [(A®))>°]™ if dimp, H = n after the choice of a basis of H). We also

define sheaves of abelian groups Xg,m = AlSm) ®r, H for m € N with S,, = {n €
S | n <m}. We finally define Ay ,, = Xpm x B(H).

Lemma 4.20. 1) We have an isomorphism Xy x BH — Ag.
2) We have Xp = hﬂm XH,m as sheaves of abelian groups, where the transi-

tion map Xg,m — XH m+1 15 the composition of the inclusion A(Sm) ®F,
H —s AlSm+1) ®r, H and the Frobenius of AlSm+1) ®F, H.
3) We have an equivalence liﬂm(AH,m) ~ Apy.

Proof. The last two assertions are obvious. We prove the first one. If H is the cyclic
group of order p, then this is just 4.13. Otherwise we take a subgroup 1 # I C H.
Since the quotient map H — H/I has a section, the morphism Ay — Ap/r also
has a section. From 4.8, we have Ay ~ Ay, x Aj. The assertion follows from
induction on the order of H. O

In the following proposition, we use rigidification, an operation introduced in
[ | for algebraic stacks. Roughly speaking, it kills some subgroups of stabi-
lizers. Generalization to non-algebraic stacks will be treated in Appendix B. Note
that from 4.16, Ag is a stack for a p-group G.

Lemma 4.21. Let H be a finite dimensional F,-vector space. We have Ay [JH ~
Xpg.

Proof. By 4.20 we have Ay ~ Xy x BH. Since H is abelian the result follows
from B.4. O

Proposition 4.22. Let G be a p-group and H be a central subgroup which is an F,-
vector space. Then H is naturally a subgroup sheaf of the inertia stack of Ag (see
Appendix B for the inertia stack as a group sheaf) and the quotient map Ag —
Ag/p is the composition of the rigidification Aq — Ag [H and an Xy -torsor
AgfH — Ag)u, where the action of X on AgffH is induced by Agx Ay — Ag
and rigidification.

Proof. The subgroup H acts on any G-torsor because its central. Moreover the
functor Ag — Ag/p sends isomorphisms coming from H to the identity and
therefore factors through the rigidification Ag J H by B.3, 2). Rigidifying both
sides of Ag x Ay — Ag we get amap (Ag [JH) x Xy — Ag [JH over Ag/p-
Using 4.8 and B.3, 3) we can deduce that Ag /H — Agp is an Xp-torsor. [

Lemma 4.23. Let G be a p-group and H be a central subgroup which is an F,-
vector space. Let also Y, be a direct system of quasi-separated stacks over N
with a direct system of smooth (étale) atlases U, made of quasi-compact schemes,
H_I)nn Yn — Ag/u a map and h_r)nn U, — Ag alifting. Then there exists a strictly
increasing map q¢: N — N, a direct system of quasi-separated stacks Z, with a di-
rect system of smooth (étale) atlases U, x Xp 4, (where the transition morphisms
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Ui x Xm,q; — Uip1 X X5,qi0, 18 the product of the given map U; — U;y1 and the
map Xp,q, — Xu,q.4, 0f 4.20), compatible maps Z; — Y; induced by the projec-
tion U; X Xp,q, — U; and which are a composition of an H-gerbe Z; — Z,; [[H
and a Xp g, -torsor Z; JH — Y; and an equivalence

lim Z, ~ (im V) Xag,, Ac

Moreover there is a factorization U; X Xp 4, — U; Xy, Z; — Z; where the first
arrow is an H-torsor.

Proof. Consider one index 7 € N and the Cartesian diagrams

P, P! Ag
l | l
Py P Ag /H
l l l
Ui Vi Ag/u

Set also R; = U, xy, U;, which is a quasi-compact algebraic space. By 4.22 P, — ));
is a Xpy-torsor, P/ — P, an H-gerbe. Moreover the lifting U; — Ag gives an
isomorphism PI/M ~ U; x Ay and Py; ~ U; x Xy by 4.8. Thus the Xy-torsor
P; — Y;, by descent along U; — ); is completely determined by the identification
R; x Xy ~p, R; x Xy, which consists of an element w; € Xy (R;) satisfying the
cocycle condition on U; xy, U; xy, Us. The given equivalence P; ~ (Pjy1)y, of
X p-torsors over ); is completely determined by its pullback on U;, which is given
by multiplication by v; € X5 (U;). The compatibility this element has to satisfy is
expressed by

(wit1) R, (877%) = (i vi)wi in X (R;)
where s;,t;: R; — U, are the two projections. Since all R; are quasi-compact and
Xy~ @j Xp,; we can find an increasing sequence of natural numbers ¢: N — N

and elements eq, € X 4, (Ri), fq, € XH,q:,, (Us) such that:

1) the element e,, is mapped to w; under the map Xpg 4, (R;) — Xu(R;) and
it satisfies the cocycle condition in Xg 4, (U; Xy, U; xy, U;);

2) the element f,, is mapped to v; under the map Xp 4, (U;) — Xg(U;)
and, if €, is the image of e,, under the map Xy g, (R;) — Xp,q,,, (R;), it
satisfies

(eqq‘,+1)|Ri (Srqu) = (t;kffh)q in XH,Qi+1(Ri)

The data of 1) determine Xy q,-torsors Q; — Y, with a map U; — @Q; over );
and together with an Xy ,,-equivariant map @); — P; such that U; — Q; — P;
is the given map. The data of 2) determine an Xp 4,-equivariant map Q; —
(Qi+1))y,inducing the equivalence P; ~ (Pi11)|y,-

Consider also the H-gerbe Q) — @Q; pullback of P/ — P; along Q; — P,.
We set Z; = Q;. We have Cartesian diagrams

Q;*)RL'/*)PZCH Q;"Q;Jrl 4)Pi/+1
S e A A
Qi —— P, —— Py Qi — Qiv1 — P

Notice that, if M is a stack over V;, then M xy, ., Uit1 = M xy, U; because U, is
a direct system of atlases. Pulling back along U; 11 — YV;4+1 the above diagrams,



MODULI OF FORMAL TORSORS 25

we obtain the bottom rows of the following diagrams.

X,q xU; Xy x U X X Uiyt
lﬁi loéi J/(XH»I
Q} Xy, Uina Apg xU; Apg x Ui

l | |

Xqui x Uj; — > Xgx U —— Xpg X Ui+1

Xa,q X Ui —— Xugy, X Uip1 —— Xg x Uiy

lﬁi lBiJrl lawﬂ

/ /
Qi X Vi1 Ui+1 > Qi+1 XVit1 Ui+1 » A X Ui+1

l l |

XH#I% X U7 R — XH,qu X Uz'_;,_l Em— XH X Ui+1

The top rows of the above diagrams is instead obtained using 4.8, where the
map «; are induced by the map Xyg — Xy x BH = Ay and the ; are induced
by the a;. Since Q} Xy, , Uit1 ~ Q) xy, U; we see that the atlases U; x Xp g, LN
Q) xy, Ui — Q) = Z; define a direct system of smooth (resp. étale) atlases
satisfying the requests of the statement.

Let us show the last equivalence in the statement. By A.3 the map

liﬂ(Un Xy, Pn) = hﬂ(Un x Xp) — lim P,
is a smooth atlas. The map h_r}nn Q, — h_n)ln P, is therefore an equivalence because

its base change along the above atlas is hﬂn(Un xXHgq,) — hﬂn(Un x Xr), which
is an isomorphism. Here we have used A.2. Using again this we see that the map

lim 2, =l (Q, xp, P) — lim P, = (Y, xa,, Ac)
is an equivalence as well. O

Lemma 4.24. Let G be a p-group, H be a central subgroup which is an Fy-vector
space and X — Y be a finite, finitely presented and universally injective map of
affine schemes. Then a 2-commutative diagram

X )AG
| ]
Y - Ag/u

always admits a dashed map.

Proof. Set X = Spec B and Y = Spec C' and consider the induced map C — B.
Since H?(B((t)), H) = H*(C((t)), H) = 0 by the Artin-Schreier sequence, we have
a commutative diagram

HY(C(0), H) —— H(C((1)), 6) — H'(C((1)), G/ H) 0
Jo |
HY(B((0), H) —— H'(B((1)), 6) — H'(B((1)).G/H]) 0
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with exact rows. By hypothesis there are v € H'(B((t)), G) and v € H*(C((t)), G/H)
which agree in H'(B((t)), G/H). We can find a common lifting in H'(C((t)), G)

by proving that the map « is surjective. By 2.4 we have that Spec B((t)) —
Spec C((t)) is the base change of Spec B — Spec C' and therefore is finite and uni-
versally injective. Let D be the image of C'((t)) — B((t)). The map H'(C((t)), H) —
H'(D, H) is surjective because H ~ (Z/pZ)" for some [ and using the description of
Z/pZ-torsors in 4.10. By 2.9 the map Spec B((t)) — Spec D is a finite universal
homeomorphism. Thus H'(D, H) — H'(B((t)), H) is bijective by 2.13. O

Proof of Theorem A, 2) and 3). Since p-groups have non trivial center we can find
a sequence of quotients

G=G —G_1—G_9— - —G —G_1=0

where Ker(G, — G,_1) is central in G, and an Fp-vector space. We proceed
by induction on I. In the base case [ = 0, so that G = Gy is an F,-vector space,
following 4.20 it is enough to set &,, = X¢ ,, x BG. Consider now the inductive
step and set H = Ker(G = G; — G;_1). Of course we can assume H # 0,
so that we can use the inductive hypothesis on G/H, obtaining a direct system
Y, and a map v: N — N with a direct system of atlases AV<. The first result
follows applying 4.23 with U,, = A’». We just have to prove the existence of a
lifting 1i . U, — Ag. Since the schemes U, are affine one always find a lifting
U, — Ag thanks to 4.15. Thanks to 4.24 any lifting U,, — Ag always extends
to a lifting U, 11 — Ag.

Assume now G abelian and set X¢ = X,z x Xg. By induction we can assume
Ag/p = Xg/p x B(G/H). By 4.15 and 4.24 there is a lifting X¢,p — Ag
of the given map X¢/g — Ag/g. In particular, using 4.8, we obtain a map
X = Xg/u x Xy — Xg/u x Ay — Ag, which is finite and étale of degree
#G. Since G is abelian and using 2.5 we have (Aut, . P)(B) = G(B((t))) = G(B)
for all P € Ag(B). By B.5, it follows that the rigidification F' = Ag /G is the
sheaf of isomorphism classes of Ag and that Ag — F' is a gerbe locally B G.
Since X¢ — A¢ and, thanks to A.3, A” = 1i HA”" — Ag¢ are finite and
étale of degree G, by 2.14 we can conclude that Xg — F and AY — F are
isomorphisms. Since a gerbe having a section is trivial we get our result. (|

With notation and hypothesis from Theorem A set A = hﬂA”*, Ag for the
coarse ind-algebraic space of Ag and consider the induced map A’ — Ag. We
want to show that when G is non-abelian this map is not an isomorphism in general.
The key point is the following Lemma.

Lemma 4.25. If K is an algebraically closed field and P € Ag(K) then H =
Aut, , (P) is (non canonically) a subgroup of G and the fiber of A”(K) — Ag(K)
Ag(K)/ ~ over P has cardinality 4G /4H.

1

Proof. There exist n € N and P,, € X,,(K) inducing P € Ag(K). By 3.2 we have
Auty (P,) = H and, since X, is a quasi-separated DM stack, it follows that H is
a finite and constant group scheme. Moreover the map

H(K) = AutF ), (P) — Aut%(P x K((t)) ~ G



MODULI OF FORMAL TORSORS 27

is injective (the last isomorphism depends on the choice of a section in P(K((t))).
Thanks to A.3 we have 2-Cartesian diagrams

Y w v Avn Av
SpecK — BH U Xn Ag
Spec K — X,

If F C AY(K) is the fiber we are looking for then we get an induced map V(K) —
F which is easily seen to be surjective. From 3.2 it follows that A" (K) — AY(K)
is injective, which implies that V(K) — F is bijective. From | , 06ML] one
get that B H is the reduction of U. Thus W(K) = V(K). Notice that, since &,
has schematically representable diagonal, V', W and Y are all schemes. Since the
vertical maps in the top row are finite and étale of degree §G and ¥ — W is an
H-torsor we conclude that Y = G and §W = §Y/$H as required. O

We see that if G is not abelian and P is a Galois extension of K ((t)) with group
G, where K is an algebraically closed field, then the map A” — Ag is not injective.
Indeed the fiber of AY(K) — Ag(K) over P has cardinality $G/#Z(G) because

AutF ) (P) = Z(G).

Remark 4.26. The moduli functor F’ described in | , Proof of 2.1] is very
similar to the sheaf of isomorphism classes of Ag but with some differences. Firstly
F’" maps pointed connected affine schemes to sets, while we look at the category
of all (non-pointed) affine schemes, which is standard in modern moduli theory.
Secondly, for a connected and pointed affine scheme Spec B, he defines F’(Spec B)
as the set of equivalence classes of pointed G-torsors on B ®j, k((f)) rather than
B((t)) as in our case. Two covers are defined to be equivalent if they agree after
a finite étale pullback of B ®j k[[t]]. This equivalence relation plays the role of
“killing terms of positive degrees”, while the same role is played by 4.11 in our
setting. This is better understood in the case G = Z/pZ where one can show that
F’ is exactly the sheaf A of isomorphism classes of Az/pz (one can ignore base
points here because Z/pZ is abelian).

A map a: F' — A is well defined because if two torsors P,Q over B ® k((t))
become isomorphic after an étale cover of B ® k[[t]], by 2.3 P x B((t)),Q x B((t))
become isomorphic over C((t)), where C/B is an étale covering. The surjectivity
of o is easy: from the description of Az, a torsor in A(B) is given by an element
b € B((t)) with zero positive part and, therefore, belonging to B ® k((t)) C B((t))
(see also 2.4). For the injectivity take e € BRk((t)) defining a torsor over B&k((t))
which become trivial in A(B). Write e = e_ + e as usual. Since e, € B ® k[[t]]
(which means that its associated torsor extends to B ® k[[t]]) one has e = e_ in
F'(B). Using the same notation and strategy of 4.13, in particular of the essential
surjectivity, one can assume e = ¢ (b) for b € A, Since e = 0 in A = (A
it follows that the coefficients of b and e are nilpotent. Since e? = e in F'(B) it
follows that e = 0 in F'(B).

4.4. Semidirect products. The aim of this section is to complete the proof of
Theorem A. So let k£ be a field of positive characteristic p and G be a finite and
étale group scheme over k such that G xj, k is a semidirect product of a p-group
and cyclic group of rank coprime with p.

Extending the base field by a Galois extension and using 4.2 and 3.5 we can
assume that G is constant, say G = H x C,, where H is a p-group and C), is a cyclic
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group of order n coprime with p. We can moreover assume that the base field & has
all n-roots of unity, so that C,, ~ u,, as group schemes. More precisely we assume
that C,, = pn(k) C k* is the group of n-th roots of unity of k.

Consider Speck — A¢, given by (k((¢)),t?) as in Theorem B and denote by
Za,q the fiber product Speck X, Ag, which is the fibered category of pairs (P, )
where P € Ag(B) and 6: P — Spec(B((¢))[X]/(X™—1)) is a G-equivariant map.

Proposition 4.27. Let d = (n,q) and G4 = H x Cy, ;g < G. Then the functor
Za4.q/d — 2a,q tnduced by Ag, — Ag and ACn/d — Ag, is an equivalence.

Proof. Set Q4 = Spec(B((¢))[X]/(X™ —t7)). The map X — X induces a map
Qnjd,q/a — Qn,q which is C,, 4-equivariant, that is @y, 4 is the Cj-torsor induced
by the C,, /4-torsor Qy,/q,4/a- We obtain a quasi-inverse Zg , — Zq,,q/4 mapping

P2 Qn,q to the fiber product P xq, . Qn/d,q/a — Qny/d,q/d- O
Remark 4.28. If (n,q) =1 we have an isomorphism of B-algebras
B((s)) — B(()[X](X™ =)

such that the C,,-action induced on the left is s — ¢85 for € € C,,, where 3 € Z/nZ
is the inverse of ¢q. Indeed write g = 1 4+ an for some «o,8 € N. We have
(X8 /t*)" =t in B((t))[X]/(X™ — t7) and isomorphisms

s X | X8/t

B((s)) — B((0))[X]/(X" —t) = B((t))[X]/(X" —t9)

Definition 4.29. Given a p-group H and an autoequivalence ¢: Ay — Apy we
define Z4 as the stack of pairs (P,u) where P € Ay and u: P — ¢(P) is an
isomorphism in Ag.

There are two natural autoequivalences of Ay: ¢y : Ay — Ay obtained com-
posing by an isomorphism ¢: H — H; ¢¢: Ay — Ay induced by a n-th root of
unity £ using the Cartesian diagram

Pe(P) P

| |

Spec B((t)) —— Spec B((t))

ft—t

Proposition 4.30. Assume (¢,n) = 1 and let { € C,, be a primitive n-th root of
unity and v: H — H be the automorphism image of ¢ under C,, — Aut(H). Set
¢ = ¢P where B € Z/nZ is the inverse of ¢ and ¢ = ¢$p o de: Ag — Apg. Then
Za.q 15 an open and closed substack of Zy.

Proof. Let P € Ag. We have ¢(P) = ¢¢(P) as schemes. Thus an isomor-
phism w: P — ¢(P), via ¢(P) = ¢¢(P) — P, corresponds to an isomorphism
v: P — P. The morphism u is over Spec B((¢)) if and only if the following diagram
commutes

p—————Pp

J J

Spec B((t)) — Spec B((1))

S —
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Finally, by going through the definitions, we see that w is H-equivariant if and only
if 9 (h) = vho~! in Aut(P) for all h € H. We identify Z, with the stack of pairs
(P,v) as above.

Set Sp = Spec B((s)) with the Cj,-action given by s — Ms for A € C,. By
4.28 Sg is isomorphic to Spec B((¢))[X]/(X™ — t9) and therefore, by construction,
an object (P,0) € Zg 4(B) is a G-torsor over B((t)) with a G-equivariant map

0: P — Sp. In particular P LN Sp is an H-torsor. Set g = (1,{) € HxC,, = G,
so that 1(h) = gohgy ' in G. Since § is G-equivariant it follows that (P, gg) €
Z4. We therefore get a map Zg, — Z4. This map is fully faithful. Indeed if
(P,0),(P',¢") € Zg 4(B) the map on isomorphisms is

Isoz, ,((P,9), (P, d") =Isog (P, P')

l

Isoz, (P, g0), (P, g0)) = {w € Isof (P, P') | gow = wgo}

We are going to show that the substack Z4 of pairs (P,v) where v = id is the
essential image of Zg, — Z4. Since g§ = 1 we have the inclusion C. Now let
(P,v) € Z4. Since v™ = 1 we get the map G = H x C,, — Aut(P) sending
(h,¢™) to hv™, defining a G-action on P. By construction the map §: P — Sp
is G-equivariant. Since P/H ~ Sp it remains to show that G acts freely on P. If
p(hv') = p for some p € P, then 6(ph)¢! = §(p)¢! = §(p) and therefore n | I and
v! = 1. Finally ph = p implies h = 1 in H C Aut(P) because P is an H-torsor.
Thus G acts on P freely.

We now show that Z is open and closed in Z,. If (P,v) € Z,(B) we have that
DS Autg((t))(P) because 1 (h) = vhv~! and ¢ has order n. The group scheme
Mg((t))(P) — Spec B((t)) is finite and étale, thus the locus W in Spec B((t))
where v™ = id is open and closed in Spec B((t)). By 2.5 there is an open and closed
subset W in Spec B inducing W. By construction the base change of Zy— Zy
along (P,v): Spec B — Z, is W, which ends the proof. O

Proposition 4.31. If ¢: Ay — Ay is an equivalence then there exists a direct
system of separated DM stacks Z,. with finite and universally injective transition
maps, with a direct system of finite and étale atlases Z, — Z, of degree (1H)?
from affine schemes and an equivalence hgn Zn > Z4.

Proof. Consider a direct system of DM stacks ), as in Theorem A for the p-group
H. Denote by I'y: Ag — Ag x Ag be the graph of ¢ and by vuv: Vu — Vo
the transition maps. By 3.13 Z, is the fiber product of I'; and the diagonal of Ag.
There exist an increasing function §: N — N and 2-commutative diagrams

Vn — yn—i—l — AH

J én l Pnt1 J ®

yﬁn — y5n+1 — AH
Similarly Yy — Yy X Vo 2227 o % s and Yo — Yo X D
Vs, x Vs, approximate I'y and the diagonal of Ap respectively. By A.2 it follows
that the fiber product Z,, = V), Xy, xy, Y of the two maps form a direct system
of separated DM stacks whose limit is Z,. By 2.11 the transition maps are finite
and universally injective. Let Y,, — ), be the finite and étale atlases of degree §H
given in Theorem A. The induced map Z, =Y, Xy, xy;, Yn — Zp is finite and
étale of degree (§H)?2. Since Vs, x Vs, has affine diagonal it follows that Z,, is affine.
Finally, using the usual properties of fiber products and the fact that ¥,, — V),

Y, 6n XVn,én,
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is a direct system of atlases, we see that the maps Z,, — Z,1 xz,,, Z, are
isomorphisms. O

Proof of Theorem A, 1). Recall that we have reduced the problem to the case of
a constant group G = H x (), at the beginning of this subsection 27. Consider
m: Ag — Ac, and the decomposition A, = | [;_, BGy, where G, = C,,, of
Theorem B. The map

(B Gq XAC" Ag) — AG

=

I
-

q
is well defined and an equivalence because given k-algebras A; and A, the map
Ag(A; x As) — Ag(Ar) x Ag(A2) is an equivalence. Thus in the statement
of the theorem A can be replaced by ng,q = (BGy xae, Ag). We must show
that gqu is a stack in the fpqgc topology if Zg 4 is so. Let B be a ring, U =
{B — B;}icr a covering and & € §G7Q(U) be a descent datum. Given a B-scheme
Y we denote by Uy = U xp Y and by &y € ZVG,Q(Z/{y) the pullback. Denote by
T gg,q — B, the structure map. The descent datum r(£) yields a C,-torsor
F — Spec B. Let Y — Spec B a B-scheme with a factorization Y — F. This
factorization is a trivialization of the C),-torsor over Y and therefore it induces a
descent datum of (Z~G,q xB ¢, Speck)(Uy) = Z¢,q(Uy) which is therefore effective,
yielding ny € Zq4(Y) and 7y € Zg.4(Y). By construction 7y € Z¢ ,(Y) induces
the descent datum &y € Zg Uy ). In particular we get 7jp € Z¢ 4(F). Since Zg,
is a prestack, the objects 77px , r obtained using the two projections F'xg F' — F
are isomorphic via a given isomorphism: they both induce £pyx ,r € ng,q(UFXB F)
which does not depend on the projections being a pullback of £ € Z~G,q(l/l). In
conclusion g gives a descent datum for ZNG’q over the covering F — Spec B. In
order to get a global object in Z‘EG,q (B) inducing the given descent datum ¢ it is
enough to notice that, by 2.4, Ag satisfies descent along coverings U — Spec B
which are finite, flat and finitely presented.

Thanks to 3.5, it is enough to show that Zg , is a limit as in the statement.
Using 4.27 we can further assume n and g coprime and, using 4.30, we can replace
Za.q by Z4, where ¢ = ¢y 0¢¢ as in 4.30. The conclusion now follows from 4.31. I

APPENDIX A. LIMIT OF FIBERED CATEGORIES

In this appendix we discuss the notion of inductive limit of stacks. To simplify
the exposition and since general colimits were not needed in this paper we will
only talk about limit over the natural numbers N. General results can be found in
[ , Appendix A].

A direct system of categories C, (indexed by N) is a collection of categories Cy,
for n € N and functors v¢,,: C;, — Cp+1. Given indexes n < m we also set

Vn Ym—1
¢n,m: Cn 7 Cn—i—l > > Crn—1 > Crm

and vy, , =ide,. The limit li_n}nEN C,, or C is the category defined as follows. Its
objects are pairs (n,z) with n € N and z € C,,. Given pairs (n,z) and (m,y) we
set
Home,, ((n,z), (m,x)) = lim  Home, (n,q(2), Ym.q(y))
g>n—+m

Composition is defined in the obvious way. There are obvious functors C,, — Coo.

Given a category D we denote by Hom(C., D) the category whose objects are
collections (F,,a,) where F,: C,, — D are functors and oy, : F 1 0%, — F,
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are natural isomorphisms of functors C,, — D. There is an obvious functor
Hom(Cs, D) — Hom(C,, D) and we have:

Proposition A.1. | , Remark A.3] The functor Hom(Cs, D) — Hom(C,, D)
is an equivalence.

This justifies calling C, the limit of the direct system C..

Let S be a category with fiber products. A direct system of fibered categories
X, over S (indexed by N) is a direct system of categories X, together with maps
X, — S making X, into a fibered category over S and such that the transition
maps X, — X,+1 are maps of fibered categories. Result | , Proposition A.4]
translates into what follows.

The induced functor X,, — S makes X, into a fibered category over S and
the maps &,, — X, are map of fibered categories. Given an object s € S there is
an induced direct system of categories X,(s) and there is a natural equivalence

lim X, (s) — X (s
iy (s) (s)
In particular if all the X, are fibered in sets (resp. groupoids) so is X.

If Y is another fibered category over S denotes by Homg(X,,)) the subcate-
gory of Hom(X,,)) of objects (F,, a,,) where F,, are base preserving functors and
oy, are base preserving natural transformations. Also the arrows in the category
Homg(X,,)) are required to be base preserving natural transformations. There
is an induced functor Homg(Xs,Y) — Homg(X,,)) which is an equivalence of
categories.

A direct check using the definition of fiber product yields the following.

Proposition A.2. Let X,, ). and Z, be direct system of categories fibered in
groupoids over S and assume they are given 2-commutative diagrams

Xn —— XnJrl Zn Zn+1
l an J Qnt1 l b J brt1
yn — yn-i—l yn — yn—i—l

Then the canonical map

@(Xn Xy, Zp) — @Xn X limy liﬂZn
neN neN n%; " el

is an equivalence.

Corollary A.3. Let X, and Y, be direct systems of categories fibered in groupoids
over S and assume to have 2-Cartesian diagrams

yn — yn+1

I

Xn — XnJrl

Then the following diagrams are also 2-Cartesian for all n € N:

Vo —— liy Y.

| |

X, — lim X,

Proof. We have maps ), =X, X x,, Ym — Xn Xx, Voo for all m > n. Passing
to the limit on m we get the result. O
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Lemma A.4. Assume that S has a Grothendieck topology such that for all coverings
V = {U; — U}lier there exists a finite subset J C I for which Vy = {U; — U}jey
is also a covering. Let also ) be a fibered category. Then ) is a stack (resp. pre-
stack) if and only if given a finite covering U of U € S the functor Y(U) — Y (U)
is an equivalence (resp. fully faithful), where Y(U) is the category of descent data
of Y over U.

Proof. The “only if” part is trivial. We show the “if” part. Let V = {U; — Ul}ier
be a general covering and consider a finite subset J C I for which V; = {U; —
U}ics is also a covering. Thus the composition Y(U) — Y(V) — Y(V;) is an
equivalence (resp. fully faithful) and it is enough to show that Y(V) — Y(V;) is
faithful. This follows because there is a 2-commutative diagram

y(p) @ Hy(Ui)

i€l
| !
YWV, —— H(H V(Ui xv Uj))

i€l jeJ

where the functors a and b are faithful. O

Proposition A.5. In the hypothesis of A.4, if X is a direct system of stacks (resp.
pre-stacks) over S then X is also a stack (resp. pre-stack) over S.

Proof. Tt is easy to prove descent (resp. descent on morphisms) and its uniqueness
along coverings indexed by finite sets. By A.4 this is enough. (]

Clearly the site S we have in mind in the above proposition is a category fibered
in groupoids over the category of affine schemes Aff with any of the usual topologies,
for instance Aff /X, the category of affine schemes together with a map to a given
scheme X.

APPENDIX B. RIGIDIFICATION REVISITED

Rigidification is an operation that allows us to “kill” automorphisms of a given
stack by modding out stabilizers by a given subgroup of the inertia. This operation
is described in | , Appendix A] in the context of algebraic stacks, but one
can easily see that this is a very general construction. In this appendix we discuss
it in its general form so that we can apply it to non-algebraic stacks like Ag.

Let S be a site, X be a stack in groupoids over § and denote by I(X) — X
the inertia stack. The inertia stack can be also thought as the sheaf X°P —
(Groups) mapping £ € X (U) to Auty (). By a subgroup sheaf of the inertia
stack we mean a subgroup sheaf of the previous functor. Notice that given a sheaf
F: X°? — (Sets) and an object £ € X(U) one get a sheaf F¢ on U by composing
(§/U)°® LR VL N (Sets), where the first arrow comes from the 2-Yoneda lemma.
Concretely one has F¢(V AN U)=F(g*¢). If f: V — U is any map in S there is
a canonical isomorphism F¢ Xy V' o~ Fpee.

Notice moreover that a subgroup sheaf H of I(X) is automatically normal:
if £ € X(U) and w € I(X)(§) = Auty@)(§) then w induces the conjugation
I(X) (&) — I(X)(€) and, since H is a subsheaf, the subgroup #(§) is preserved by
the conjugation.

We now describe how/‘EE)/ rigidify X by any subgroup sheaf H of the inertia.

We define the category X JH as follows. The objects are the same as the ones of
X. Given £ € X(U) and n € X(V) an arrow & — 5 in X JH is a pair (f, )
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where f: U — V and ¢ € (Isoy(f*n,€)/He)(U). Given ¢ € X (W) and arrows

f)¢ 71[" * * E3 *
¢ L9 199, ¢ e have that (Isog, (f*g7C, £*n)/Hy-y) =~ (Isoy (g°C,n)/Hy) Xv

U, because the action of H, is free. Moreover composition induces a map

(Iso (f*g"C, f™n) /M pen) x (Isoy (f*n,€)/He) — (Isoy (f797¢, &)/ He)
One set (g,9) o (f,¢) = (9f,w) where w is the image of (f*1, ¢) under the above

—_—

map. It is elementary to show that this defines a category X J/H together with

—_~—

a map X JJH — S making it into a category fibered in groupoids. The map
X — X [JH is also a map of fibered categories.

Definition B.1. The rigidification X//} of X by H over the site S is a stackification
of the category fibered in groupoids X JJH constructed above.

Depending on the chosen foundation and the notion of category used, a stack-
ification does not necessarily exists. The usual workaround is to talk about uni-
verses but in our case one can directly construct a stackification X JH. We de-
note by Z the category constructed as follows. Its objects are pairs (G — U, F)
where U € §, G — U is a gerbe and F: G — X is a map of fibered cat-
egories satisfying the following condition: for all y € G lying over V € S the
map Autgy(y) — Autyvy(F(y)) is an isomorphism onto H(F(y)). An arrow
(¢ — U, F')— (G — U,F) is a triple (f,w,d) where

¢ ——g
L

is a 2-Cartesian diagram and 6: F ow — F’ is a base preserving natural isomor-
phism. The class of arrows between two given objects is in a natural way a category
rather than a set. On the other hand, since the maps from the gerbes to X are
faithful by definition, this category is equivalent to a set: between two 1-arrows
there exist at most one 2-arrow. In particular Z is a 1-category. It is not difficult
to show that Z is fibered in groupoids over S and that it satisfies descent, i.e., it is
a stack in groupoids over S.

There is a functor A: X — Z mapping { € X(U) to Fe: BHe — X x U —
X. If ¢: ¢ — £ is an isomorphism in X(U), then A(y) = (B(cy), Ay) where
cy: He — He is the conjugation by ¢ and Ay is the unique natural transforma-

tion Fer — F¢ o B(cy) that evaluated in H,s yields & N &. For the existence
and uniqueness of Ay recall that, by descent, a natural transformation of functors
Q, Q' from a stack of torsors to a stack, is the same datum of an isomorphism be-
tween the values of Q and @’ on the trivial torsor which is functorial with respect
to the automorphisms of the trivial torsor. In our case a natural transformation
Fer — FeoB(cy) is an isomorphism w: { — £ (the values of the functors on the

trivial torsor He:) such that cy(u) = wuw™! for all & 5 ¢ € He (that is for all
automorphisms of the trivial torsor).
Given an object z = (G, F') € Z(U) there is a natural isomorphism making the

following diagram 2-Cartesian:

F
R

z
——

S—Q

X
lA
z
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For this reason we call A: X — Z the universal gerbe. The key point in proving
this is that if we have a gerbe G over U and a section z € G(U) then the functor
G — B(Autg(z)), y — Isog(z,y)

is well defined and an equivalence. In particular if (G, F') € Z(U) then Autg(x) ~
Hr@) via F.

Proposition B.2. The functor A: X — Z induces a fully faithful epimorphism
X [[H — Z. In particular Z is a rigidification X [JH of X by H.

Proof. Given a functor T'— Z induced by (G — T, F) € Z(T) then T xz X is
the stack of triples (f, &, w) where f: S — T, £ € X(S) and w is an isomorphism
(BHe, Fe) ~ (G, F). Denote by A: X — Z the functor and let &, € X(U).
Since X — Z is clearly an epimorphism, we have to prove that

Isoy (€',€) — Isoy (A(E), A(E))

is invariant by the action of H¢ and an H¢-torsor. Notice that a functor of the
form BH¢g — BHe is locally induced by a group homomorphism He — He.
Thus it is enough to prove that if c¢: He — H¢ is an isomorphism of groups
and \: Fey — Fe o Bc is an isomorphism then the set J of ¢: & — ¢ inducing
(B(e),A): A(§') — A(€) is non empty and H¢(U) acts transitively of this set.
The natural transformation A evaluated on the trivial torsor H¢ yields an iso-
morphism ¢: £ — £. The fact that )\ is a natural transformation implies that

¢ =cy and A = Ay, that is ¢ € J. Now let & N & be an isomorphism. A natural
isomorphism B(cy) — B(cy) is given by h € He(U) (more precisely the multipli-
cation He — He by h) such that hey(w) = cp(w)h for all w € He (U). Such an
h induces a morphism A(y) — A(¢) if and only if hi) = ¢. Since this condition
implies the previous one we see that J = H¢(U)¢. O

We denote by Bx H the stack of H-torsors over X (thought of as a site). An
object of By H is by definition an object { € X'(U) together with an H,x ¢-torsor
over X'/¢. Since X is fibered in groupoids the forgetful functor X/ — S/U is
an equivalence. Thus an object of By H is an object £ € X (U) together with a
He-torsor over U.

Proposition B.3. We have:

1) given §,m € X(U) we have Isoy; (A(E), A(n)) ~Iso(&, 1)/ Hy;
2) the functor A: X — X [JH is universal among maps of stacks F: X —»
Y such that, for all & € X(U), H¢ lies in the kernel of Auty,(§) —

Auty (F(€));
3) if
y——x
Ja JA
R— X[JH

is a 2-Cartesian diagram of stacks then for all p € Y(U) the map
Ker(Auty; (7) — Auty(a(n))) — Auty (b(n))

is an isomorphism onto Hy(,), so that b*H is naturally a subgroup sheaf of
I(Y), and the induced map Y [Jo*H — R is an equivalence;

4) there is an isomorphism X X yp X ~ By (H);

5) the map X — X [JH is a relative gerbe (see | , Tag 06P1]).
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Proof. Point 1) follows from B.2, while point 2) is a direct consequence of the
definition of rigidification. Now consider point 3). The kernel in the statement
corresponds to the group of automorphisms of the object 5 in the fiber product
U xr Y. Using that X — X JH is the universal gerbe we get the the isomorphism
in the statement. In particular there is an epimorphism Y Jb*H — R. This is
fully faithful because, given n,n" € Y(U), by definition of fiber product one get a
Cartesian diagram

Isoy (', m) Tsor (b(n'), b(n))

J |

Iso (a(n'), a(n)) —— Tsoy (b(1), b(n)) /Ho ()

For point 4), denotes by ) the fiber product in the statement. It is the stack
of triples (£,&’,¢) where &,&" € X(U) and ¢ € Isoy (¢',£)/He. The functor Y —
By H which maps (§,£, ¢) to (&, Ps), where Py is defined by the Cartesian diagram

Py ——— Isoy(¢,€)

L,

U @U(Elaf)/ﬂf

is an equivalence. This is because the functor X — By H sending & to £ with
the trivial torsor is an epimorphism and the base change YV xp, 5 X — X is an
equivalence since ) Xi, X is the stack of triples (§,&’, 1) where £, € X(U) and
P & —> £ is an isomorphism in X' (U).

For point 5), since A: X — X JH is an epimorphism, it has local sections.
Moreover given two objects £,7 € X(U) and an isomorphism A(§) — A(n), by
point 1), this isomorphism locally comes from an isomorphism £ — 5 in X, as
required. O

Proposition B.4. Let X be a stack in groupoid over S and G: S°® — (Ab) be a
sheaf of abelian groups. Then the map

(X xBsG)fJG = X

is an equivalence.

Proof. Let U € S be an object and P € Bs G(U) a G-torsor. Since G is commutative
the action of G on P is G-equivariant and therefore the map

G x U — Autg g(P)

is well defined and, checking locally, an isomorphism. This implies that G, more
precisely the restriction (X x Bg G)°® — S°° — (Ab), is a subgroup of the inertia
stack of (X xBgs G), thought of as a sheaf of groups. Since the functor ¥ xBs G — X
kills the automorphisms in G we obtain the map in the statement thanks to B.3,
2). By B.3, 3) we can assume X = S. In order to show that Bs G JG — S is an

equivalence, it is enough to show that the functor Bs G JG — S is fully faithful.
By construction, the objects of the first category are torsors P,Q € BsG(U) and
the morphisms are Iso’(P,Q)/G. But this is a sheaf which is locally trivial and
therefore it is trivial. It follows that IsoB/ngig(P, Q) consists of just one element. [
Proposition B.5. Let X be a stack in groupoid over S and G: S°® — (Groups)
be a sheaf of groups. Assume there is an isomorphism between the restriction
Gy: X°P — S°P — (Groups) and the inertia I(X): X°° — (Groups). Then Gx
is a sheaf of abelian groups, X [JG is the sheaf of isomorphism classes of X and
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X — X [JIG is a relative gerbe. Moreover for any object U € S and map U — X [JG
the fiber X X xp5 U — U is locally of the form By Gy — U.

Proof. Let h € Gy (§) for &€ € X(U). The naturality of the isomorphism Gx(§) —
I(X)(€) = Autx()(§) on the morphism h: § — § exactly implies that the conju-
gation by h on I(X)(&) is the identity. Thus Gy ~ I(X) is abelian. By B.3, 2) any
map X — F to a sheaf factors through X /G and by B.3,1) the stack X JG is a
actually a sheaf. This implies that X G is the sheaf of isomorphism classes of X.
It is a gerbe thanks to B.3, 5). For the local form of X — X /JG any map U — X [JG
locally factors through &’ itself. In this case the fiber is exactly By G|y — U thanks
to B.3, 4). O
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