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Invariance property in inhomogeneous scattering media with refractive-index mismatch
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The mean path-length invariance property is a very important property of scattering media illuminated by an
isotropic and homogeneous radiation. Here, we investigate the case of inhomogeneous media with refractive-
index mismatch between the external environment and also among their subdomains. The invariance property
remains valid by the introduction of a correction, dependent on the refractive index, of the mean path-length
value. It is a consequence of the stationary solution of the radiative transfer equation in a medium subjected to
an isotropic and homogeneous radiance. The theoretical results are in agreement with the reported results for
numerical simulations for both the three-dimensional and the two-dimensional media.
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I. INTRODUCTION

Light scattering in optical media is a research field that
involves a wide range of different theoretical and experi-
mental issues, such as light propagation in biological tissue
[1–4], random lasers [5–9], Anderson localization [10,11],
anomalous diffusion [12–14], and replica symmetry breaking
phenomena [15–17]. Moreover, concerning the applications,
light diffusion has also been studied in optical sensing [18–22]
and to find new design for solar cells in order to enhance the
absorption effects [23–27]; in this regard, it has been reported
that a small amount of scattering can promote the absorption
in a thin slab subjected to monodirectional illumination [28].

A fascinating and also, at first glance, counterintuitive in-
variance property holds for the mean total path-length 〈L〉
spent by light propagating inside a disordered medium, and,
in general, also by any kind of particle under diffusion and
random walk. Under the hypothesis of isotropic and uni-
form illumination upon the surface of the medium, 〈L〉 only
depends on the geometry of the medium, whatever is its scat-
tering strength, usually described by the scattering coefficient
μs. Such an invariance property (IP) [29–31], also known as a
Cauchy formula, is a generalization, in the case of scattering
of the mean chord theorem, also described by Dirac in the
context of nuclear physics [32]. Recently, the experimental
observation of the IP has been reported in the optical case [33]
and in the context of biology by studying the random walks of
bacteria in a complex structure [34].

The IP remains valid also considering bounded domains of
different dimensions; in the three-dimensional (3D) and in the
two-dimensional (2D) case, 〈L〉 is proportional to the volume-
surface ratio and the surface-perimeter ratio, respectively,

〈L〉3D = 4
V
S , (1)

〈L〉2D = π
S
P . (2)
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Geometrical details and strength of the disorder do not play
any role in determining the value of 〈L〉. Moreover, general-
izations of the IP property have been reported in the case of
inhomogeneous random media [35], stochastic mixture media
[36], and in the presence of absorption and branching [37,38].

Here, we consider the usual case where the scattering pro-
cess can be described by the radiative transfer equation (RTE).

The IP remains valid also in case of a infinitely extending
medium, such as a thin slab, and with different values of the
asymmetry factor g of the scattering function [28].

In this paper, we investigate how such property with suit-
able modifications still holds in the case of refractive-index
mismatch between the disordered medium and the external
environment. We have investigated the case of inhomoge-
neous media with refractive-index mismatch between the
external environment and among their subdomains, both in
3D and in 2D geometry.

II. THEORY

In this paper, we have studied media where scattering
plays the leading role and, then, where interference effects
due to refractive-index mismatches are destroyed or strongly
reduced. Our analytical and numerical results are, indeed,
valid in such a condition. Interference effects due to the bulk
structure should be considered near the condition of Anderson
localization, i.e., μsλ = λ/ls ≈ 1, where ls is the scattering
mean free path. However, our simulation, and analytical re-
sults, are, indeed, conceived for the optical or near-infrared
spectral region where ls/λ � 1.

To express the boundary condition between two scattering
media 1 and 2, one has to take into account that light intensity
can be transferred reciprocally between the media (see Fig. 1).
The physical condition is that the power flowing in the generic
direction ŝ2 per unit of time and surface at �r on the boundary
� must be equal to the sum of the fraction of the transmitted
power per unit of time and surface (from medium 1 to medium
2) around the direction ŝ1 and the fraction of the reflected
power per unit of time and surface around the outcoming
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FIG. 1. Schematic of a plane boundary between two media (2D
section) and used symbols: n1 and n2 are the refractive indices of
medium 1 and medium 2, and q is the normal direction to the
boundary and � the interface boundary.

direction ŝ′
2 where the directions ŝ2 and ŝ1 are related by

Snell’s law, whereas ŝ′
2 is the mirror image direction of ŝ2

(with respect to �).
The relation can be written in full generality in terms of

radiance (power per unit of time, surface, and solid angle)
I2(�r, ŝ2, t ), I2(�r, ŝ′

2, t ), and I1(�r, ŝ1, t ) for any point �r belong-
ing to � and for any incoming direction s2 from medium 1 to
medium 2 as

I2(�r, ŝ2, t ) cos θ2d�2

= [1 − RF12(θ1)]I1(�r, ŝ1, t ) cos θ1d�1

+ RF21(θ2)I2(�r, ŝ′
2, t ) cos θ2d�2, (3)

with θ2 = arcsin ( n1
n2

sin θ1), RF12 reflection coefficient for
the transfer from medium 1 to medium 2 for nonpolarized
radiation, and RF21 reflection coefficient for the transfer from
medium 2 to medium 1 and with d�1 and d�2 infinitesimal
solid angles around the directions ŝ1 and ŝ2, respectively.
Then, taking into account Snell’s law (and its differential) one
obtains

I2(�r, ŝ2, t ) − RF21(θ2)I2(�r, ŝ′
2, t )

= [1 − RF12(θ1)]I1(�r, ŝ1, t )
(n2

n1

)2
. (4)

It is worth noting that RF21(θ2) = RF12(θ1) for all the incom-
ing directions for which a refracted beam exists [39].

The procedure can be applied also to a 2D geometry where
the radiance is defined as the power per unit of time, length,
and angle, resulting in

I2(�r, ŝ2, t ) cos θ2dθ2 = [1 − RF12(θ1)]I1(�r, ŝ1, t ) cos θ1dθ1

+ RF21(θ2)I2(�r, ŝ′
2, t ) cos θ2dθ2. (5)

Proceeding similarly to the previous case, one obtains the
2D result,

I2(�r, ŝ2, t ) − RF21(θ2)I2(�r, ŝ′
2, t )

= [1 − RF12(θ1)]I1(�r, ŝ1, t )
(n2

n1

)
. (6)

A. Boundary of a nonabsorbing medium subjected
to Lambertian illumination

The case of the continuous wave Lambertian illumination
is a significant case where the boundary conditions assume
a particularly simple form, and it is the main hypothesis
of the invariance property in presence of scattering. Let it
be a uniform isotropic illumination applied at the external
boundary � of a finite, uniform, scattering and nonabsorbing
medium of volume V : I1(�r, ŝ1, t ) = I1 for ∀ �r ∈ �. For such a
condition, it can be verified that at the interior of the volume
a homogeneous and isotropic radiance of the form

I2(�r, ŝ2) = I2 = I1

(n2

n1

)2
(7)

is a stationary solution of the RTE equation and satisfies the
boundary conditions of Eq. (4) with RF21(θ2) = RF12(θ1).

The analog result of Eq. (7) is obtained in 2D,

I2(�r, ŝ2) = I2 = I1

(n2

n1

)
. (8)

For a more general case, let us now assume that the vol-
ume V is inhomogeneous in scattering with several discrete
subvolumes Vi. Once the incoming radiance I1 is uniformly
and isotropically incident on the surface � containing the total
volume (hypothesis of the invariance property), the solution
of the RTE in any volume is again a uniform radiance Ii in
any subvolumes Vi. For such a solution, the connection of the
radiances between adjacent volumes Vi and Vj will be then
equal to that of Eqs. (7) and (8), that is as follows:

I j = Ii

(n j

ni

)2
, (9)

in 3D and

I j = Ii

(n j

ni

)
, (10)

in 2D.
With reference to Figs. 2 and 3, it is interesting to note that

the radiance in any subvolume can be expressed by means of
the radiance I1 incoming on the more external surface �, the
external index of refraction n1 and the refraction index ni of
the specific subvolume,

Ii = I1

(
ni

n1

)2

, (11)

in 3D and

Ii = I1

(
ni

n1

)
, (12)

in 2D.

B. Invariance property: inhomogeneous case
for the refractive index

Equations (1) and (2) can be generalized to the case of
media with inhomogeneous refractive index. Let us assume to
have an inhomogeneous medium, such as described in the pre-
vious section. Following the approach of Blanco and Fournier
[29], we assume to have a very small absorption coefficient
μa throughout the volume, and we equate the power absorbed
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FIG. 2. Example of trajectory in the MC simulation of a 2D
random walk inside a bounded circular domain with a circular decen-
tered inhomogeneity. The starting position is located in the boundary
of the larger medium at coordinates (−5, 0) mm. The refractive
index n0 of the external environment is 1. The largest medium
has refractive index n1 = 2 and scattering coefficient μ1 = 5 mm−1,
whereas in the inhomogeneity n2 = 1 and μ2 = 0.1 mm−1.

in volume V to the absorption of the power impinging the
external surface from outside (let us label with “e” the quantity
referred to the outside).

n0
External Environment

n1

n2

n3

n4

Layered Sphere

FIG. 3. Structure of the layered sphere, with the refractive index
and the scattering coefficient of each layer. The radiation impinges,
from the external environment to the surface of the outermost layer,
in the Lambertian way.

For the last quantity, assuming μa is constant in all
volumes, in the limit μa → 0, we have as follows:

PA = πSIe

∫ +∞

0
[1 − exp(−μaL)]P(L)dL = πSIeμa〈L〉,

(13)
where P(L) is the probability density function to have a
path-length L within the whole volume V when a Lamber-
tian illumination is impinging on the external boundary � of
area S.

As stated above, the power absorbed is also given by the
absorption in the volume,

PA = μa

∫
V

d�r
∫

4π

I (�r, ŝ)dŝ = μa

N∑
i=1

∫
Vi

d�r
∫

4π

Ii(�r, ŝ)dŝ.

(14)
Using the expression of the radiance obtained in the previ-

ous section, we have as follows:

PA = μa

N∑
i=1

∫
Vi

d�r
∫

4π

Ii(�r, ŝ)dŝ. = 4π Ie

N∑
i=1

Vi

(
ni

ne

)2

,

(15)
and, then,

〈L〉 = 4

∑N
i=1 Vi

( ni
ne

)2

S
. (16)

Such an equation has been heuristically used in the paper of
Savo et al. [33] limited to the case of homogeneous medium
(N = 1).

In the case of 2D geometry, we follow a similar approach.
We equal the power absorbed in the surface S to the absorption
of the power impinging the perimeter P from outside. The
latter in the limit μa → 0 is given by

PA = 2PIe

∫ +∞

0
[1 − exp(−μaL)]pL(L)dL = 2PIeμa〈L〉,

(17)
whereas the power absorbed in the surface S is as follows:

PA = μa

∫
S

d�r
∫

2π

I (�r, ŝ)dŝ = μa

N∑
i=1

∫
Si

d�r
∫

2π

Ii(�r, ŝ)dŝ.

(18)
Using the expression of the radiance in 2D obtained in the

previous section, we have as follows:

PA = μa

N∑
i=1

∫
Si

d�r
∫

2π

Ii(�r, ŝ)dŝ = 2π Ie

N∑
i=1

Si

(
ni

ne

)
, (19)

and, then,

〈L〉 = π

∑N
i=1 Si

( ni
ne

)
P

. (20)

Thus, the invariance property remains valid also in inhomo-
geneous media with variations of refractive index. The above
demonstration also holds in the presence of “cavities.” In the
following, we show the results of numerical computations in
some cases, and we compare them with the analytical formula
of Eqs. (16) and (20).
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III. NUMERICAL SIMULATIONS

We simulated light diffusion by generating a large number
of random walkers and letting them propagate in the sample
volume. We do not take into account interference effects be-
cause, due to the stochastic character of the diffusion process,
phase information can be neglected.

The numerical simulations in the 3D case are based on
a well-tested Monte Carlo (MC) code, developed during the
1990s [40–42]. The robustness of the core of the code, i.e.,
the generation of trajectories, is checked to be in excellent
agreement with exact analytical expressions [43]. Each step of
length � of a trajectory is randomly drawn by the exponential
probability density function,

p(�) = μs exp (−μs�). (21)

Given a uniformly distributed random number ξ ∈ [0, 1], each
step of the random walk is obtained by the usual inversion of
the cumulative distribution associated with Eq. (21),

�(ξ ) = −μ−1
s ln (1 − ξ ). (22)

The used scattering function is the Henyey-Greenstein [44],
here, considered with g = 0.

The isotropic uniform illumination condition has been im-
plemented by reproducing a Lambertian distribution of the
entrance angles, that is a distribution that follows the cosine
law. A crossover of an interface between two different media
is considered as a new scattering event in terms of step length
extraction, whereas the change in direction is deterministi-
cally established by Snell’s law.

Also the radiance I and the fluence 	 (the integral over the
solid angle of the radiance I) have been calculated, consid-
ering the external surface of the medium as illuminated by a
unitary input flux of 1 W/m2 (see the Appendix).

Then, within a generic subvolume Vi of the medium, the
radiance is constant and equal to

Ii = 1

π
(ni/ne)2 W/m2 sr. (23)

The corresponding fluence is as follows:

	i = 4π Ii = 4(ni/ne)2 W/m2. (24)

An independent MC code has been used for the 2D case,
considering the same expression [Eq. (22)] for the generation
of the length between two scattering events. Its robustness has
been then tested with the analytical results for the IP in the
condition of the absence of refractive-index mismatches.

In Fig. 2, a simulated trajectory is shown, considering a
2D circular medium with a circular decentered inhomogeneity
with different refractive indices and scattering coefficients.
Also, a refractive-index mismatch is present between the ex-
ternal environment and the largest medium.

IV. RESULTS

In all the results shown in this paper, the label “SIM” is
referred to the data generated by MC simulations, whereas the
label IP is referred to values obtained by the theory.

TABLE I. Retractive index of the ith layer of the media used in
the reported 3D simulations. The layer 0 is the external environment
(see Fig. 3). In media D and E the refractive index varies linearly in
the 100 layers between the two extreme values by an increment of
0.01.

Layer index i

0 1 2 3 4

A ni 1.00 2.00 1.00 2.00 1.00
B ni 2.00 1.00 2.00 1.00 2.00
C ni 1.00 1.25 1.50 1.75 2.00

Layer index i

0 1,2,. . . ,100

D ni 1.00 1.01,1.02,. . . ,2.00
E ni 2.00 1.99,1.98,. . . ,1.00

A. The 3D case

In Fig. 3, the structure of a medium simulated in the 3D
case is shown. A sphere composed of four layers, character-
ized by a refractive-index ni and a scattering coefficient μi, is
immersed in an external environment with a refractive-index
n0. The radiation impinges upon the external layer from the
outside uniformly and isotropically. Five different cases, char-
acterized by different parameters, are labeled with the letters
A–E and described in Table I (superscript in the plot legend).
The external environment is labeled as Layer 0. The radius of
the sphere is 5 mm and, in cases A–C, the second, the third,
and the fourth layers have radius 4, 3, and 2 mm, respectively.
The cases D and E are characterized by 100 layers with a
refractive index that becomes larger or smaller as the depth d
from the outermost layer increases.

For the same μs in the whole medium, each MC calculation
consists of 100 independent simulations of 108 (case A–C)
or 107 (case D and E ) independent trajectories in order to
evaluate the standard error of the averaged mean path-length
〈L〉SIM.

Figure 4 shows 〈L〉SIM as a function of μs for the media
A–C. In these cases, the strong refractive-index mismatch be-
tween two adjacent layers leads to a relatively high reflection
at the interface. In the figure, the values predicted by the gen-
eralized IP [Eq. (16)] are also reported. The results show that
the mean path length of the random walkers is consistent with
the value predicted by theory over five orders of magnitude
of the scattering coefficient μs.

Figures 5 and 6 show the results for the media composed
by 100 layers with a refractive index that linearly increases
or decreases as the layer index i grows (see Table I), or,
equivalently, as the distance d from the surface increases. In
these figures, the fluence as a function of d and the profile
of the radiance for three values of d are also shown. The
fluence has a constant value within each layer and increasing
or decreasing values as the layer change. The radiance, within
the noise of the MC simulations, shows a constant angular
profile as expected where the IP holds.
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FIG. 4. The 3D case: 〈L〉 for different values of μs for the media
A–C (see Table I). The markers are referred to MC simulations, and
the lines are referred to the values expected by IP.

B. The 2D case

In the simulations of the 2D case, we analyze the cases
of homogeneous and nonhomogeneous media. As shown in
Fig. 2, a typical medium consists of a circle immersed in an
external environment and with an inhomogeneity inside. Such
an inhomogeneity is a circle with a different refractive index
and scattering coefficient and has a center located at a random

FIG. 5. The 3D case: On the top, 〈L〉 for different values of μs

for the medium D (see Table I). The markers are referred to MC
simulations, and the lines to the values are expected by IP. For the
case of μs = 10−1 mm−1, on the bottom left and on the bottom right,
the fluence (the markers are MC data, and the lines are IP values) as
a function of the depth d from the surface of the largest sphere and
the radiance data of MC simulations for three depths are reported,
respectively.

FIG. 6. The 3D case: On the top, the mean path-length 〈L〉 for
different values of μs for the medium E (see Table I). The markers
are referred to MC simulations, and the lines are referred to the values
expected by IP. For the case of μs = 10−1 mm−1, on the bottom left
and on the bottom right, the fluence (the markers are MC data, and
the lines are IP values) as a function of the depth d from the surface
of the largest sphere and the radiance data of MC simulations for
three depths are reported, respectively.

position respect to the center of the larger circle. Each result,
for a fixed set of parameters, consists of ten independent
simulations of 2 × 108 trajectories.

In Fig. 7 (top left), the mean path-length 〈L〉 for different
values of the radius R2 of the circular decentered inhomo-
geneity is shown. The largest medium has radius R1 = 1 mm.
The refractive indices of the external environment (n0), the
largest medium (n1), and the inhomogeneity (n2) are 1, 2.
and 1. respectively. The scattering coefficient is 0.5 mm−1

everywhere.
Figure 7 (top right) shows 〈L〉 for different values of the

refractive index n1 of the largest medium. The refractive
index is 1 in the external environment and in the decen-
tered inhomogeneity. The radii of the largest medium and
of the inhomogeneity are R1 = 1 and R2 = 0.5 mm, re-
spectively. The scattering coefficient is everywhere constant
(0.5 mm−1).

In Fig. 7 (bottom), the refractive index of the external
environment (n0) and of the decentered inhomogeneity n2 are
1, whereas n1 is 2. The radii of the largest medium and of
the inhomogeneity is R1 = 1 and R2 = 0.4 mm, respectively,
whereas the scattering coefficient of the inhomogeneity is
1 mm−1. In this case, 〈L〉 is shown as a function of the scat-
tering coefficient μ1 of the largest medium.

In all the 2D cases analyzed, the MC results for 〈L〉 (red
markers) are consistent within the standard error (of an order
of 10−3–10−4) with the value predicted by Eq. (20) (solid blue
line).
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FIG. 7. The 2D case: 〈L〉 for different values of the radius R2

of the circular decentered inhomogeneity (top-left figure), 〈L〉 as
a function of the refractive index n1 (top-right figure) and 〈L〉 for
different values of the scattering coefficient μ1 of the largest medium
(bottom figure). (The markers are MC data, and the lines are IP
values.)

V. CONCLUSIONS

The mean path-length invariance property has been in-
vestigated in the case of light diffusion in the presence of
refractive-index mismatch between a medium and the external
environment as well as for inhomogeneous media. Analyti-
cal results are found both for the two-dimensional and the
three-dimensional cases. Numerical calculations are in full
agreement with analytical expressions.

Thus, in the paper, the invariance property is shown to
remain valid for all classes of inhomogeneous media with
discrete variations of refractive index in their internal domain.
This is a further generalization of this property that also opens
the possibility to use its prediction to a quite larger class

of problems. This fact can be exploited to obtain reference
values for photon migration studies in random media. For
instance, the IP represents a unique and powerful tool able
to validate any MC code extensively used to simulate random
walk processes with an arbitrary precision.

From the point of view of practical applications in tissue
optics and photovoltaics, such a paper helps to understand
the optical propagation in the most general kind of medium,
i.e.. an inhomogeneous material with scattering and refractive-
index mismatches.
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APPENDIX: TOTAL INPUT FLUX

The shown results for the radiance and the fluence are
referred to an external surface illuminated by a uniform
isotropic illumination for the radiance (Lambetian illumina-
tion) with the further hypothesis to have a unitary total input
flux in the medium, given by the integral of the radiance over
the whole solid semiangle [45]. This fact implies that only the
normal component of �Jin is not null. Given Iin as the input
radiance, we have that

Jin =
∫

2π

Iin ŝ · n̂ dŝ = π Iin, (A1)

and, then,

Iin = 1 W/m2

π
. (A2)

The corresponding input fluence is as follows:

	in =
∫

2π

Iindŝ = 2 W/m2. (A3)

In a generic subvolume, the radiance is as follows:

Ii =
(

ni

ne

)2

Iin, (A4)

and the fluence,

	i = 4π Ii. (A5)
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