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Abstract

This works introduces several notions of subharmonicity for real-valued functions of one quater-
nionic variable. These notions are related to the theory of slice regular quaternionic functions
introduced by Gentili and Struppa in 2006. The interesting properties of these new classes of
functions are studied and applied to construct the analogs of Green’s functions.
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1 Introduction

Let H = R + iR + jR + kR denote the real algebra of quaternions and let

S := {q ∈ H : q2 = −1} = {αi+ βj + γk : α2 + β2 + γ2 = 1}

denote the 2-sphere of quaternionic imaginary units. For each I ∈ S, the subalgebra LI = R + IR
generated by 1 and I is isomorphic to C. In recent years, this elementary fact has been the basis for
the introduction of a theory of quaternionic functions.

Definition 1.1 ([7]). Let f be a quaternion-valued function defined on a domain Ω. For each I ∈ S,
let ΩI = Ω∩LI and let fI = f|ΩI

be the restriction of f to ΩI . The restriction fI is called holomorphic
if it has continuous partial derivatives and

1

2

(
∂

∂x
+ I

∂

∂y

)
fI(x+ yI) ≡ 0. (1)

The function f is called (slice) regular if, for all I ∈ S, fI is holomorphic.

The study of regular quaternionic functions has then grown into a full theory, described in the
monograph [6]. It resembles the theory of holomorphic complex functions, but in a many-sided way
that reflects the richness of the non-commutative setting.

In the present work, we consider several notions of subharmonicity related to the class of regular
quaternionic functions. This study is distinct from the one performed in [10]. Indeed, that work
studied the relation between regularity and real harmonicity; moreover, it introduced the notion of slice
harmonic function: a quaternion-valued (or Clifford-valued) slice functions induced by a harmonic stem
function. The present work searches instead for new notions of subharmonicity for real-valued functions
of a quaternionic variable, compatible with composition with regular functions.

The first attempt is J-plurisubharmonicity. However, this property is quite restrictive, besides being
preserved by composition with a regular function f only if f is slice preserving, that is, if f(ΩI) ⊆ LI
for all I ∈ S.
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For this reason, the alternative notions of weakly subharmonic and strongly subharmonic function
are introduced. Composition with regular functions turns out to map strongly subharmonic functions
into weakly subharmonic ones. Moreover, composition with slice preserving regular functions is proven
to preserve weak subharmonicity.

These new notions of subharmonicity turn out to have many nice properties that recall the com-
plex and pluricomplex cases, including mean-value properties and versions of the maximum modulus
principle.

These results are finally applied to construct quaternionic analogs of Green’s functions, which reveal
many peculiarities due to the non-commutative setting.

An appendix comprises the classic properties of subharmonic and plurisubharmonic functions used
for our new constructions.

2 Prerequisites

Let us recall a few properties of the algebra of quaternions H, on which we consider the standard
Euclidean metric and topology.

• For each I ∈ S, the couple 1, I can be completed to a (positively oriented) orthonormal basis
1, I, J,K by choosing J ∈ S with I ⊥ J and setting K = IJ .

• The coordinates of any q ∈ H with respect to such a basis can be recovered as

x0(q) =
1

4
(q − IqI − JqJ −KqK)

x1(q) =
1

4I
(q − IqI + JqJ +KqK)

x2(q) =
1

4J
(q + IqI − JqJ +KqK)

x3(q) =
1

4K
(q + IqI + JqJ −KqK).

• Mapping each v ∈ Tq0H ∼= H to Iv for all q0 ∈ H defines an (orthogonal) complex structure on
H, called constant. A biholomorphism between (H, I) and (L2

I , I) ∼= (C2, i) can be constructed by
mapping each q to (z1(q), z2(q)), where

z1(q) = x0(q) + Ix1(q) = (q − IqI)
1

2
,

z2(q) = x2(q) + Ix3(q) = (q + IqI)
1

2J
,

are such that z1(q) + z2(q)J = q. Both z1 and z2 depend on the choice of I; z2 also depends on
J , but only up to a multiplicative constant c ∈ LI .

For every domain Ω and every function f : Ω→ H, let us denote by f = f1 + f2J the corresponding
decomposition with f1, f2 ranging in LI . Furthermore ∂1, ∂2, ∂̄1, ∂̄2 : C1(Ω, LI)→ C0(Ω, LI) will denote
the corresponding complex derivatives. In other words,

∂1 =
1

2

(
∂

∂x0
− I ∂

∂x1

)
∂̄1 =

1

2

(
∂

∂x0
+ I

∂

∂x1

)
∂2 =

1

2

(
∂

∂x2
− I ∂

∂x3

)
∂̄2 =

1

2

(
∂

∂x2
+ I

∂

∂x3

)
.

We notice that these derivatives commute with each other, and that ∂1, ∂̄1 depend only on I, while
∂2, ∂̄2 depend on both I and J .
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The definition of regular function (Definition 1.1) amounts to requiring that the restriction to ΩI
be holomorphic from (ΩI , I) to (H, I) for all I ∈ S. Curiously, if the domain is carefully chosen then a
stronger property holds.

Definition 2.1. Let Ω be a domain in H. Ω is a slice domain if it intersects the real axis R and if, for
all I ∈ S, the intersection ΩI with the complex plane LI is connected. Moreover, Ω is termed symmetric
if it is axially symmetric with respect to the real axis R.

If we denote by ∂cf the slice derivative

∂cf(x+ Iy) =
1

2

(
∂

∂x
− I ∂

∂y

)
fI(x+ yI)

introduced in [7] and by ∂sf the spherical derivative

∂sf(q) = (q − q̄)−1 (f(q)− f(q̄))

introduced in [8], then the aforementioned property can be stated as follows.

Theorem 2.2 ([12]). Let Ω be a symmetric slice domain, let f : Ω → H be a regular function and let
q0 ∈ Ω. Chosen I, J ∈ S so that q0 ∈ LI and I ⊥ J , let z1, z2, z̄1, z̄2 be the induced coordinates and let
∂1, ∂2, ∂̄1, ∂̄2 be the corresponding derivations. Then(

∂̄1f1 ∂̄2f1

∂̄1f2 ∂̄2f2

)∣∣∣∣
q0

=

(
0 0
0 0

)
. (2)

Furthermore, if q0 6∈ R then(
∂1f1 ∂2f1

∂1f2 ∂2f2

)∣∣∣∣
q0

=

(
∂cf1(q0) −∂sf2(q0)

∂cf2(q0) ∂sf1(q0)

)
. (3)

If, on the contrary, q0 ∈ R then(
∂1f1 ∂2f1

∂1f2 ∂2f2

)∣∣∣∣
q0

=

(
∂cf1(q0) −∂cf2(q0)

∂cf2(q0) ∂cf1(q0)

)
. (4)

We point out that we have not proven that f is holomorphic with respect to the constant structure
I: with respect to the basis 1, I, J, IJ , equality (2) only holds at those points q0 that lie in LI . In
fact, regularity is related to a different notion of holomorphy, which involves non-constant orthogonal
complex structures. Let us recall the notations Re(q) = x0(q), Im(q) = q − Re(q) for q ∈ H and let us
set

Jq0v :=
Im(q0)

|Im(q0)|
v ∀ v ∈ Tq0(H \ R) ∼= H.

Then ±J are orthogonal complex structures on

H \ R =
⋃
I∈S

(R + IR+)

and they are induced by the natural identification with the complex manifold CP1 × (R + iR+).

Theorem 2.3 ([5]). Let Ω be a symmetric slice domain, and let f : Ω → H be an injective regular
function. Then the real differential of f is invertible at each q ∈ Ω and the push-forward of J via f , that
is,

Jff(q)v =
Im(q)

|Im(q)|
v ∀ v ∈ Tf(q)f(Ω \ R) ∼= H , (5)

is an orthogonal complex structure on f(Ω \ R).

In the hypotheses of the previous theorem, f is (obviously) a holomorphic map from (Ω \ R, J) to(
f(Ω \ R), Jf

)
. Furthermore, there is a special class of regular functions such that Jf = J.

Remark 2.4. Let f : Ω→ H be a slice preserving regular function, namely a regular function such that
f(ΩI) ⊆ LI for all I ∈ S. Then f(Ω \ R) = f(Ω) \ R and f is a holomorphic map from (Ω \ R, J) to
(f(Ω) \ R, J)
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3 Quaternionic notions of subharmonicity

Let Ω be a domain in H and let

us(Ω) = {u : Ω→ [−∞,+∞), u upper semicontinuous, u 6≡ −∞}.

For u ∈ us(Ω), we aim at defining some notion of subharmonicity that behaves well when we compose
u with a regular function. Remark 2.4 encourages us to consider J-plurisubharmonic and J-harmonic
functions, i.e., functions that are pluri(sub)harmonic with respect to the complex structure J. However,
the notion of J-plurisubharmonicity on a symmetric slice domain Ω is induced by plurisubharmonicity
in CP1 ×DΩ with

DΩ = {x+ iy ∈ R + iR+ : x+ yS ⊂ Ω},
which amounts to constance in the first variable and subharmonicity in the second variable. We conclude:

Proposition 3.1. Let Ω be a symmetric domain in H. A function u ∈ us(Ω) is J-pluri(sub)harmonic in
Ω \R if, and only if, there exists a (sub)harmonic function υ : DΩ → R such that u(x+ Iy) = υ(x+ iy)
for all I ∈ S and for all x + iy ∈ DΩ. In particular, a function u ∈ C2(Ω,R) is J-plurisubharmonic in
Ω \ R if, and only if, u(x+ Iy) does not depend on I and(

∂2

∂x2
+

∂2

∂y2

)
u(x+ Iy) ≥ 0; (6)

it is J-harmonic if, and only if, equality holds at all points.

Clearly, if we complete 1, I to a basis 1, I, J, IJ with I ⊥ J , consider the induced coordinates
z1, z2, z̄1, z̄2 and let ∂1, ∂2, ∂̄1, ∂̄2 be the corresponding derivations, then inequality (6) is equivalent to
∂̄1∂1uI ≥ 0.

In order to get a richer class of functions, we need to suitably weaken the notion of subharmonicity
considered. We are thus encouraged to give the following definition.

Definition 3.2. Let Ω be a domain in H and let u ∈ us(Ω). We call u weakly subharmonic if for all
I ∈ S the restriction uI = u|ΩI

is subharmonic (after the natural identification between LI and C). We
say that u is weakly harmonic if, for all I ∈ S, uI is harmonic.

Remark 3.3. A function u ∈ C2(Ω,R) is weakly subharmonic if, and only if, inequality (6) holds for
all I ∈ S; u is weakly harmonic if, and only if, equality holds at all points.

By construction:

Proposition 3.4. Let Ω be a symmetric domain in H and let u ∈ us(Ω). If u is J-pluri(sub)harmonic
in Ω \ R then it is weakly (sub)harmonic in Ω \ R. If, moreover, u is continuous at all points of Ω ∩ R
then u is weakly (sub)harmonic in Ω.

The converse implication is not true, as shown by the next example. Here, 〈·, ·〉 denotes the Euclidean
scalar product on Im(H) ∼= R3.

Example 3.5. All real affine functions u : H → R are weakly harmonic, including the coordinates
x0, x1, x2, x3 with respect to any basis 1, I, J, IJ with I, J ∈ S, I ⊥ J . On the other hand, x1, x2, x3 are
not J-plurisubharmonic in H \ R, as x1(x+ Iy) = y〈I, i〉, x2(x+ Iy) = y〈I, j〉, x3(x+ Iy) = y〈I, k〉 are
not constant in I.

Actually, a stronger property holds for real affine functions u : H→ R: they are pluriharmonic with
respect to any constant orthogonal complex structure. This motivates the next definition.

Definition 3.6. Let Ω be a domain in H and let u ∈ us(Ω). We say that u is strongly (sub)harmonic
if it is pluri(sub)harmonic with respect to every constant orthogonal complex structure on Ω.

Remark 3.7. A function u ∈ C2(Ω,R) is strongly subharmonic if, for all I, J ∈ S with I ⊥ J ,

HI,J(u) =

(
∂̄1∂1u ∂̄1∂2u
∂̄2∂1u ∂̄2∂2u

)
(7)

is a positive semidefinite matrix at each q ∈ Ω. The function u is strongly harmonic if for all I, J ∈ S
with I ⊥ J the matrix HI,J(u) has constant rank 0.
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Clearly, if the matrix HI,J(u) is positive semidefinite then its (1, 1)-entry ∂̄1∂1u is non-negative.
Similarly, if HI,J(u) has constant rank 0 then ∂̄1∂1u ≡ 0. This leads to the next result, which, however,
is not only true for u ∈ C2(Ω,R) but also for u ∈ us(Ω).

Proposition 3.8. Let u ∈ us(Ω). If u is strongly (sub)harmonic then it is weakly (sub)harmonic.

Proof. Let u ∈ us(Ω) be strongly (sub)harmonic, let I ∈ S and let us prove that uI is (sub)harmonic.
By construction, u is pluri(sub)harmonic with respect to the constant orthogonal complex structure
I. Moreover, the inclusion map incl : ΩI → Ω is a holomorphic map from (ΩI , I) to (Ω, I). As a
consequence, uI = u ◦ incl is (sub)harmonic, as desired.

Example 3.5 shows that strong (sub)harmonicity does not imply J-pluri(sub)harmonicity. The con-
verse implication does not hold, either:

Example 3.9. The function u(q) = Re(q2) is J-pluriharmonic in H \ R, as u(x + Iy) = x2 − y2 does

not depend on I and
(
∂2

∂x2 + ∂2

∂y2

)
u(x + Iy) ≡ 0. On the other hand, u is not strongly subharmonic.

Actually, it is not plurisubharmonic with respect to any constant orthogonal complex structure I: after
choosing J ∈ S with J ⊥ I, we compute

u(z1 + z2J) = Re
(
z2

1 − z2z̄2 + (z1z2 + z2z̄1)J
)

=
z2

1 + z̄2
1

2
− z2z̄2

for all z1, z2 ∈ LI , so that HI,J(u) ≡
(

0 0
0 −1

)
.

We have proven the following implications (none of which can be reversed):

plurisubharmonic
w.r.t. all OCS′s in Ω \ R

↙ ↘
J−plurisubharmonic strongly subh.

in Ω \ R in Ω \ R
↘ ↙

weakly subharmonic in Ω \ R

A similar scheme can be drawn for the quaternionic notions of harmonicity. We show with a further
example that a strongly subharmonic function is not necessarily strongly harmonic when it is weakly
harmonic, or even J-pluriharmonic.

Example 3.10. Consider the function u : H→ R with u(q) := log |q| for all q ∈ H\{0} and u(0) := −∞.
u is J-pluriharmonic in H\R, as u(x+Iy) = 1

2 log(x2+y2). As a consequence, u is also weakly harmonic.
On the other hand, for any choice of I, J ∈ S, the fact that u(z1 + z2J) = 1

2 log(z1z̄1 + z2z̄2) implies that

HI,J(u)|z1+z2J
=

1

2(z1z̄1 + z2z̄2)2

(
z2z̄2 −z1z̄2

−z2z̄1 z1z̄1

)
=

1

2(|z1|2 + |z2|2)2

(
|z2|2 −z1z̄2

−z2z̄1 |z1|2
)
.

Hence, u is strongly subharmonic but it is not strongly harmonic.

Let us review a few classical constructions in our new environment.

Remark 3.11. On a given domain Ω, let us denote by wsh(Ω) the set of weakly subharmonic functions,
by ssh(Ω) that of strongly subharmonic functions, and by pshJ(Ω) that of J-plurisubharmonic functions
on Ω (if Ω equals a symmetric domain minus R). If S is any of these sets then:

1. S is a convex cone;

2. for all u ∈ S, if ϕ is a real-valued C2 function on a neighborhood of u(R) and if ϕ is increasing
and convex then ϕ ◦ u : Ω→ R also belongs to S;

3. for all u1, u2 ∈ S, the function u(q) = max{u1(q), u2(q)} belongs to S;
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4. if {uα}α∈A (with A 6= ∅) is a family in S, locally bounded from above, and if u(q) = supα∈A uα(q)
for all q ∈ Ω then the upper semicontinuous regularization u∗ belongs to S.

Example 3.12. For any α > 0, the function u : H → R q 7→ |q|α is strongly subharmonic in H and it
is J-plurisubharmonic in H \ R.

Example 3.13. The functions Re2(q) = x2
0(q) and |Im(q)|2 = x2

1(q) + x2
2(q) + x2

3(q) are strongly
subharmonic in H. (They are also J-plurisubharmonic in H\R, as Re2(x+Iy) = x2 and |Im(x+Iy)|2 =
y2).

We conclude this section showing that any given subharmonic function on an axially symmetric
planar domain extends to a weakly subharmonic function on the corresponding symmetric domain of
H.

Remark 3.14. If we start with a domain D ⊆ C that is symmetric with respect to the real axis and a
(sub)harmonic function υ on D, we may define a weakly (sub)harmonic function u on the symmetric
domain Ω =

⋃
x+iy∈D x+ yS by setting

u(x+ Iy) :=
1 + 〈I, i〉

2
υ(x+ iy) +

1− 〈I, i〉
2

υ(x− iy)

for all x ∈ R, I ∈ S, y > 0 such that x+ Iy ∈ Ω and u(x) := υ(x) for all x ∈ Ω ∩ R.

4 Composition with regular functions

We now want to understand the behavior of the different notions of subharmonicity we introduced, under
composition with regular functions. For J-pluri(sub)harmonicity, Remark 2.4 immediately implies:

Proposition 4.1. Let Ω be a symmetric domain in H and let u ∈ us(Ω). u is J-pluri(sub)harmonic in
Ω \ R if, and only if, for every symmetric domain Ω′ in H and every slice preserving regular function
f : Ω′ \ R→ Ω \ R, the composition u ◦ f is J-pluri(sub)harmonic in Ω′ \ R.

It is essential to restrict to slice preserving regular functions. If we compose u with an injective regular
function f then the only sufficient condition we know in order for u ◦ f to be J-pluri(sub)harmonic is,
that u be Jf -pluri(sub)harmonic (see Theorem 2.3).

For weak (sub)harmonicity, we can prove the next result.

Theorem 4.2. Let u ∈ us(Ω). u is weakly (sub)harmonic in Ω if, and only if, for for every symmetric
domain Ω′ in H andevery slice preserving regular function f : Ω′ → Ω, the composition u ◦ f is weakly
(sub)harmonic in Ω′.

Proof. If u ◦ f is weakly (sub)harmonic for all slice preserving regular f then in particular u = u ◦ id is
weakly (sub)harmonic.

Conversely, let u ∈ us(Ω) be weakly (sub)harmonic, let f : Ω′ → Ω be a slice preserving regular
function and let us prove that u ◦ f is weakly (sub)harmonic. For each I ∈ S, uI is (sub)harmonic in ΩI
and the restriction fI is a holomorphic map from (Ω′I , I) to (ΩI , I). As a consequence, (u◦f)I = uI ◦fI
is (sub)harmonic in Ω′I .

As for strong harmonicity and subharmonicity, they are preserved under composition with quater-
nionic affine transformations, as the latter are holomorphic with respect to any constant structure I ∈ S:

Remark 4.3. If u is a strongly (sub)harmonic function on a domain Ω ⊆ H then, for any a, b ∈ H with
b 6= 0, the function v(q) = u(a+ qb) is strongly (sub)harmonic in Ωb−1 − a.

However, strong harmonicity and subharmonicity are not preserved by composition with other regu-
lar functions, not even slice preserving regular functions (see Example 3.9). For this reason, we address
the study of their composition with regular functions by direct computation, starting with the C2 case.
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Lemma 4.4. Let I, J ∈ S with I ⊥ J and let us consider the associated ∂1, ∂2, ∂̄1, ∂̄2. Let Ω be a
domain in H and let u ∈ C2(Ω,R). For every symmetric slice domain Ω′ and for every regular function
f : Ω′ → Ω, we have

∂̄1∂1(u ◦ f)|q0
= (∂1f1, ∂1f2)|q0 ·HI,J(u)|f(q0)

·
(
∂1f1

∂1f2

)∣∣∣∣
q0

(8)

at each q0 ∈ Ω′I . If, moreover, f is slice preserving then

∂̄1∂1(u ◦ f)|q0
= |∂1f1|2|q0

· ∂̄1∂1u|f(q0)
(9)

at each q0 ∈ Ω′I . The same is true if there exists a constant c ∈ H such that fI + c maps Ω′I to LI .

Proof. We compute:

∂1(u ◦ f) = (∂1u) ◦ f · ∂1f1 + (∂2u) ◦ f · ∂1f2 + (∂̄1u) ◦ f · ∂1f̄1 + (∂̄2u) ◦ f · ∂1f̄2

and

∂̄1∂1(u ◦ f) = ∂̄1((∂1u) ◦ f) · ∂1f1 + (∂1u) ◦ f · ∂̄1∂1f1+

+ ∂̄1((∂2u) ◦ f) · ∂1f2 + (∂2u) ◦ f · ∂̄1∂1f2+

+ ∂̄1((∂̄1u) ◦ f) · ∂1f̄1 + (∂̄1u) ◦ f · ∂̄1∂1f̄1+

+ ∂̄1((∂̄2u) ◦ f) · ∂1f̄2 + (∂̄2u) ◦ f · ∂̄1∂1f̄2 .

If we evaluate the previous expression at a point q ∈ LI , equality (2) guarantees the vanishing of all
terms but the first and the third. Hence,

∂̄1∂1(u ◦ f)|q = ∂̄1((∂1u) ◦ f)|q · ∂1f1|q + ∂̄1((∂2u) ◦ f)|q · ∂1f2|q

where

∂̄1((∂1u) ◦ f)|q =

= ∂1∂1u|f(q)
· ∂̄1f1|q + ∂2∂1u|f(q)

· ∂̄1f2|q + ∂̄1∂1u|f(q)
· ∂̄1f̄1|q + ∂̄2∂1u|f(q)

· ∂̄1f̄2|q =

= ∂̄1∂1u|f(q)
· ∂1f1|q + ∂̄2∂1u|f(q)

· ∂1f2|q

and

∂̄1((∂2u) ◦ f)|q =

= ∂1∂2u|f(q)
· ∂̄1f1|q + ∂2∂2u|f(q)

· ∂̄1f2|q + ∂̄1∂2u|f(q)
· ∂̄1f̄1|q + ∂̄2∂2u|f(q)

· ∂̄1f̄2|q =

= ∂̄1∂2u|f(q)
· ∂1f1|q + ∂̄2∂2u|f(q)

· ∂1f2|q .

Thus,

∂̄1∂1(u ◦ f)|q = ∂̄1∂1u|f(q)
· |∂1f1|2|q + ∂̄2∂1u|f(q)

· ∂1f2|q · ∂1f1|q+

+ ∂̄1∂2u|f(q)
· ∂1f1|q∂1f2|q + ∂̄2∂2u|f(q)

· |∂1f2|2|q ;

that is,

∂̄1∂1(u ◦ f)|q = (∂1f1, ∂1f2)|q ·
(
∂̄1∂1u ∂̄1∂2u
∂̄2∂1u ∂̄2∂2u

)∣∣∣∣
f(q)

·
(
∂1f1

∂1f2

)∣∣∣∣
q

.

Finally, if there exists c = c1 + c2J ∈ H such that fI + c maps Ω′I to LI , then f2 ≡ −c2 in Ω′I so that
∂1f2 vanishes identically in Ω′I and

∂̄1∂1(u ◦ f)|q = |∂1f1|2|q · ∂̄1∂1u|f(q)
,

as desired.

We are now ready to study the composition of strongly (sub)harmonic C2 functions with regular
functions.
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Theorem 4.5. Let u ∈ C2(Ω,R). u is strongly (sub)harmonic if, and only if, for every symmetric slice
domain Ω′ and for every regular function f : Ω′ → Ω, the composition u ◦ f is weakly (sub)harmonic.

Proof. If u : Ω → R is strongly subharmonic then, for all I, J ∈ S (with I ⊥ J), the matrix HI,J(u)
is positive semidefinite. For every regular function f : Ω′ → Ω and for all I ∈ S, Lemma 4.4 implies
∂̄1∂1(u ◦ f)|z1

≥ 0 at each z1 ∈ ΩI . Hence, u ◦ f is weakly subharmonic.
Conversely, if u ◦ f is weakly subharmonic for every regular function f : Ω′ → Ω then we can prove

that u is strongly subharmonic in the following way. Let us fix I, J ∈ S, p ∈ Ω (with I ⊥ J) and prove
that HI,J(u) is positive semidefinite at p, i.e., that

(v̄1, v̄2) ·HI,J(u)|p ·
(
v1

v2

)
≥ 0

for arbitrary v1, v2 ∈ LI . Let us set v := v1 + v2J and f(q) := qv+ p for q ∈ B(0, R) (with R > 0 small
enough to guarantee the inclusion of f(B(0, R)) = B(p, |v|R) into Ω). By direct computation, ∂cf ≡ v.
Formula (3) yields the equalities ∂1f1|0 = v1, ∂1f2|0 = v2. Taking into account Lemma 4.4 and the fact
that f(0) = p, we conclude that

(v̄1, v̄2) ·HI,J(u)|p ·
(
v1

v2

)
= ∂̄1∂1(u ◦ f)|0 .

Since u ◦ f is weakly subharmonic, ∂̄1∂1(u ◦ f)|0 ≥ 0 and we have proven the desired inequality.
Analogous reasonings characterize strong harmonicity.

The previous result allows us to construct a large class of examples of weakly subharmonic functions.

Example 4.6. For any regular function f : Ω → H on a symmetric slice domain Ω, the components
of f with respect to any basis 1, I, J, IJ with I, J ∈ S, I ⊥ J are weakly harmonic. Furthermore, for all
α > 0 the functions log |f |, |f |α, Re2f, |Imf |2 are weakly subharmonic.

5 Mean-value property and consequences

We can characterize weak and strong (sub)harmonicity of u ∈ us(Ω) in terms of mean-value properties.
For each I ∈ S, a ∈ Ω, b ∈ H \ {0} such that Ω includes the disc ΓI,a,b := {a+ λb : λ ∈ LI , |λ| ≤ 1}, we
will use the notation

lI(u; a, b) :=
1

2π

∫ 2π

0

u(a+ eIϑb)dϑ. (10)

Proposition 5.1. Let Ω be a domain in H and let u ∈ us(Ω). u is weakly subharmonic if, and only if,
the inequality

u(a) ≤ lI(u; a, b) (11)

holds for all I ∈ S, a ∈ ΩI , b ∈ LI \ {0} such that ΓI,a,b ⊂ ΩI . u is weakly harmonic if, and only if, (u
does not take the value −∞ and) equality always holds in formula (11).

Proof. Fix any I ∈ S. By the mean-value characterization of subharmonic functions (see Theorem 8.1),
uI is subharmonic in ΩI if, and only if, u(a) ≤ lI(u; a, b) for all a ∈ ΩI , b ∈ LI \{0} such that ΓI,a,b ⊂ ΩI .
The corresponding equalities characterize harmonicity because uI is harmonic if, and only if, uI and
−uI are both subharmonic (see Corollary 8.3).

Proposition 5.2. Let Ω be a domain in H and let u ∈ us(Ω). u is strongly subharmonic if, and only
if, the inequality

u(a) ≤ lI(u; a, b) (12)

holds for all I ∈ S, a ∈ Ω, b ∈ H \ {0} such that ΓI,a,b ⊂ Ω. u is strongly harmonic if, and only if, (u
does not take the value −∞ and) equality always holds in formula (12).

Proof. For each I ∈ S, let us apply the mean-value characterization of plurisubharmonic functions
(see Theorem 8.6) to establish whether u is I-plurisubharmonic. This happens if, and only if, u(a) ≤
lI(u; a, b) for all a ∈ Ω, b ∈ H \ {0} such that ΓI,a,b ⊂ Ω. The corresponding equalities characterize
I-pluriharmonicity.
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As an application of the previous results, we can extend Theorem 4.5 to all u ∈ us(Ω).

Theorem 5.3. Let u ∈ us(Ω). u is strongly (sub)harmonic if, and only if, for every regular function
f : Ω′ → Ω the composition u ◦ f is weakly (sub)harmonic.

Proof. Let us suppose the composition u ◦ f with any regular function f : Ω′ → Ω to be weakly
subharmonic and let us prove that u is strongly subharmonic. By Proposition 5.2, it suffices to prove
that, for any I ∈ S, a ∈ Ω, b ∈ H \ {0} such that ΓI,a,b ⊂ Ω, the inequality

u(a) ≤ lI(u; a, b)

holds. If we set f(q) := a + qb, then f(0) = a and f maps the disc ΓI,0,1 into the disc ΓI,a,b. Thus, it
suffices to prove that

u(f(0)) ≤ lI(u ◦ f ; 0, 1).

But this inequality is true by Proposition 5.1, since u ◦ f is weakly subharmonic in a domain Ω′ such
that ΓI,0,1 ⊂ Ω′I . Analogous considerations can be made for the harmonic case.

Conversely, let u ∈ us(Ω) be strongly (sub)harmonic, let f : Ω′ → Ω be a regular function and let us
prove that u ◦ f is weakly (sub)harmonic. For each I ∈ S, u is I-pluri(sub)harmonic and the restriction
fI is a holomorphic map from (Ω′I , I) to (Ω, I). As a consequence, (u ◦ f)I = u ◦ fI is (sub)harmonic in
Ω′I , as desired.

A form of maximum modulus principle holds for weakly or strongly plurisubharmonic functions.

Proposition 5.4. Let Ω be a domain in H and suppose u ∈ us(Ω) to be weakly subharmonic. If u has
a local maximum point p ∈ ΩI then uI is constant in the connected component of ΩI that includes p.
If, moreover, u is strongly subharmonic, then u is constant in Ω.

Proof. In our hypotheses, uI is a subharmonic function with a local maximum point p ∈ ΩI . Thus, uI
is constant in the connected component of ΩI that includes p by the maximum modulus principle for
subharmonic functions (see Theorem 8.2).

If, moreover, u is strongly subharmonic then it is I-plurisubharmonic. Since we assumed Ω to be
connected, u is constant in Ω by the maximum modulus principle for plurisubharmonic functions (see
Theorem 8.8).

Let us now consider maximality.

Definition 5.5. Let S be a class of real-valued functions on an open set D and let υ be an element of
S. Suppose that, for any relatively compact subset G of D and for all ν ∈ S with ν ≤ υ in ∂G, the
inequality ν ≤ υ holds throughout G. In this situation, we say that υ is maximal in S (or among the
elements of S).

Bearing in mind that harmonic functions of one complex variable are the maximal elements of the
class of plurisubharmonic functions (see Remark 8.9), we can characterize weak harmonicity as follows.

Remark 5.6. Let Ω be a domain in H and let u ∈ wsh(Ω). u is weakly harmonic if, and only if, for
all I ∈ S, the restriction uI is maximal among subharmonic functions on ΩI . As a consequence, if u is
weakly harmonic then u is maximal in wsh(Ω).

Let us now consider strongly subharmonic functions. Since they are plurisubharmonic with respect
to all constant structures, we can make the following observation.

Remark 5.7. Let Ω be a domain in H and let u ∈ ssh(Ω). If u is strongly harmonic then it is maximal
in ssh(Ω). Furthermore, if u ∈ C2(Ω) then u is maximal in ssh(Ω) if and only if detHI,J(u) ≡ 0 for all
I, J ∈ S with I ⊥ J .

It is easy to exhibit a maximal element of ssh(Ω) that is not strongly harmonic.

Example 5.8. The function u(q) = log |q| is a strongly subharmonic function on H. The explicit
computations in Example 3.10 show that u is maximal but not strongly harmonic.
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6 Approximation

An approximation result holds for strongly subharmonic functions. For all ε > 0, let

Ωε :=

{
{q ∈ Ω : dist(q, ∂Ω) > ε} if Ω 6= H
H if Ω = H

and let u ∗ χε denote the convolution of u with the standard smoothing kernels χε of H ∼= R4 (see
Definition 8.4).

Proposition 6.1. Let u ∈ ssh(Ω). If ε > 0 is such that Ωε is not empty, then u ∗ χε ∈ C∞ ∩ ssh(Ωε).
Moreover, u ∗ χε monotonically decreases with decreasing ε and

lim
ε→0+

u ∗ χε(q) = u(q) (13)

for each q ∈ Ω.

Proof. Fix any I ∈ S, so that u is I-plurisubharmonic. The fact that u ∗ χε ∈ C∞ ∩ ssh(Ωε), as well
as our second statement, follow from the corrisponding classic properties of plurisubharmonic functions
(see Theorem 8.7).

On the other hand, convolution with the standard smoothing kernel χε does not preserve weak
subharmonicity. This can be shown with an example, which uses the notation lI(u; a, b) established in
formula (10). As customary, lI(u; ·, b) denotes the function a 7→ lI(u; a, b).

Example 6.2. The function u(q) = Re(q2) is in wsh(H), but u ∗χε does not belong to wsh(H). Indeed,

we saw that for each orthonormal basis 1, I, J, IJ of H we have HI,J(u) ≡
(

0 0
0 −1

)
. Hence, −u

is strongly subharmonic and the same is true for −u ∗ χε by the previous proposition. In particular,
−u ∗ χε ∈ wsh(H) so that u ∗ χε can only be in wsh(H) if it is weakly harmonic. This amounts to
requiring that for each I ∈ S, a ∈ ΩI , b ∈ LI \ {0} such that ΓI,a,b ⊂ Ω the equality

u ∗ χε(a) = lI(u ∗ χε; a, b) = lI(u; ·, b) ∗ χε(a),

holds. But this happens if, and only if, u(a − q) = lI(u; a − q, b) for all q in the support B(0, ε) of χε.
This cannot be true, since (if z1, z2 denote the complex variables with respect to the orthonormal basis
1, I, J, IJ) the function −u is strictly subharmonic in z2.

7 Green’s functions

We now consider the analogs of Green’s functions in the context of weakly and strongly subharmonic
functions.

Definition 7.1. Let Ω be a domain in H, let q0 ∈ Ω, and set

wshq0(Ω) :=

{
u ∈ wsh(Ω) : u < 0, lim sup

q→q0

∣∣u(q)− log |q − q0|
∣∣ <∞}

sshq0(Ω) := wshq0(Ω) ∩ ssh(Ω) .

For all q ∈ Ω, let us define

w(q) :=

{
−∞ if wshq0(Ω) = ∅
sup{u(q) : u ∈ wshq0(Ω)} otherwise

s(q) :=

{
−∞ if sshq0(Ω) = ∅
sup{u(q) : u ∈ sshq0(Ω)} otherwise

The Green function of Ω with logarithmic pole at q0, denoted gΩ
q0 , is the upper semicontinuous regular-

ization w∗ of w. The strongly subharmonic Green function of Ω with logarithmic pole at q0, denoted
GΩ
q0 , is the upper semicontinuous regularization s∗ of s.
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Remark 7.2. By construction, GΩ
q0(q) ≤ gΩ

q0(q) for all q ∈ Ω. Moreover, any inclusion Ω′ ⊆ Ω implies

gΩ
q0(q) ≤ gΩ′

q0 (q) and GΩ
q0(q) ≤ GΩ′

q0 (q).

Let us construct a basic example. We will use the notations B := B(0, 1), where

B(q0, R) := {q ∈ H : |q − q0| < R}

for all q0 ∈ H, R > 0, and BI := B ∩ LI .

Example 7.3. We can easily prove that

GB
0 (q) = gB0 (q) = log |q|

for all q ∈ B. Indeed, q 7→ log |q| is clearly an element of ssh0(B) ⊆ wsh0(B). Furthermore, for each
u ∈ wsh0(B), the inequality u(q) ≤ log |q| holds throughout B. Indeed, for all I ∈ S it holds uI(z) ≤ log |z|
for all z ∈ BI because z 7→ log |z| is the (complex) Green function of the disc BI .

Further examples can be derived by means of the next results.

Lemma 7.4. Let f be any affine transformation of H, let Ω be a domain in H and fix q0 ∈ Ω. Then

G
f(Ω)
f(q0)(f(q)) = GΩ

q0(q)

for all q ∈ Ω.

Proof. By repeated applications of Remark 4.3, we conclude that

sshq0(Ω) = {u ◦ f : u ∈ sshf(q0)(f(Ω))}.

Thanks to this equality, the statement immediately follows from Definition 7.1.

Lemma 7.5. Let Ω be a symmetric slice domain in H, fix q0 ∈ Ω and take a regular function f : Ω→ H.
Then

G
f(Ω)
f(q0)(f(q)) ≤ gΩ

q0(q)

for all q ∈ Ω. If, moreover, f is slice preserving then

g
f(Ω)
f(q0)(f(q)) ≤ gΩ

q0(q)

for all q ∈ Ω. If, additionally, f admits a regular inverse f−1 : f(Ω) → Ω, then the last inequality
becomes an equality at all q ∈ Ω.

Proof. By Theorem 5.3,
wshq0(Ω) ⊇ {u ◦ f : u ∈ sshf(q0)(f(Ω))}.

If f is a slice preserving regular function then, by Theorem 4.2,

wshq0(Ω) ⊇ {u ◦ f : u ∈ wshf(q0)(f(Ω))}.

The last inclusion is actually an equality if f admits a regular inverse f−1 : f(Ω) → Ω, which is
necessarily slice preserving. The three statements now follow from Definition 7.1.

In the last statement, we assumed Ω to be a symmetric slice domain for the sake of simplicity. The
result could, however, be extended to all slice domains.

Lemmas 7.4 and 7.5, along with the preceding example, yield what follows.

Example 7.6. For each x0 ∈ R and each R > 0, the equalities

log
|q − x0|
R

= GB(x0,R)
x0

(q) = gB(x0,R)
x0

(q)

hold for all q ∈ B(x0, R). We point out that this function is strongly subharmonic in B(x0, R) and
weakly harmonic in B(x0, R) \ {x0}.
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Example 7.7. For each q0 ∈ H and each R > 0 it holds

log
|q − q0|
R

= GB(q0,R)
q0 (q) ≤ gB(q0,R)

q0 (q)

for all q ∈ B = B(q0, R). We point out that GBq0 , though strongly and weakly subharmonic, is not weakly
harmonic if q0 6∈ R. Indeed, if we fix an orthonormal basis 1, I, J, IJ and write q0 = q1 + q2J with
q1, q2 ∈ LI , then by Lemma 4.4

(
∂̄1∂1G

B
q0

)
|z

=
1

R2

(
∂̄1∂1G

B
0

)
| z−q0

R

=
|q2|2

2(|z − q1|2 + |q2|2)2

for z ∈ LI . This expression only vanishes when q2 = 0, that is, when q0 ∈ LI .

We are now in a position to make the next remarks.

Remark 7.8. Let Ω be a bounded domain in H and let q0 ∈ Ω. For all r,R > 0 such that B(q0, r) ⊆
Ω ⊆ B(q0, R), we have that

log
|q − q0|
R

≤ GΩ
q0(q) ≤ log

|q − q0|
r

.

As a consequence, GΩ
q0 is not identically equal to −∞, it belongs to sshq0(Ω) and it coincides with the

supremum s appearing in Definition 7.1.

Remark 7.9. Let Ω be a bounded domain in H and let q0 ∈ Ω. For all R > 0 such that Ω ⊆ B(q0, R),
we have that

log
|q − q0|
R

≤ gΩ
q0(q) ,

whence gΩ
q0 is not identically equal to −∞. If, moreover, q0 = x0 ∈ R then for all r > 0 such that

B(x0, r) ⊆ Ω we have that

gΩ
x0

(q) ≤ log
|q − x0|

r
.

In this case, gΩ
x0

belongs to wshx0(Ω) and it coincides with the supremum w appearing in Definition 7.1.

When Ω admits a well-behaved exhaustion function, we can prove a few further properties.

Theorem 7.10. Let Ω be a bounded domain in H. Suppose there exists ρ ∈ C0(Ω, (−∞, 0)) ∩ ssh(Ω)
such that {q ∈ Ω : ρ(q) < c} ⊂⊂ Ω for all c < 0. Then for all q0 ∈ Ω and for all p ∈ ∂Ω

lim
q→p

GΩ
q0(q) = 0.

Moreover, GΩ
q0 is continuous in Ω \ {q0}.

Proof. Let B(q0, r) ⊆ Ω ⊆ B(q0, R) and let C > 0 be such that Cρ < log r
R in B(q0, r). If we set

u(q) =

{
log |q−q0|R q ∈ B(q0, r)

max
{
Cρ(q), log |q−q0|R

}
q ∈ Ω \B(q0, r)

then u ∈ sshq0(Ω). Thus, u ≤ GΩ
q0 ≤ 0, where limq→p u(q) = 0 for all p ∈ ∂Ω. This prove the first

statement.
To prove the second statement, we only need to prove the lower semicontinuity of GΩ

q0 . Let us choose

λ ∈ (0, 1) such that ρ < −λ in B(q0, λ). For any ε ∈ (0, λ) such that log ε
R > (1 − ε) log ε2 (whence

log ε
R > ε− 1

ε ), let us set
α(q) = (1− ε) log (ε|q − q0|)− ε

on B(q0, ε).
By Proposition 6.1, for each sufficiently small δ > 0, the convolution GΩ

q0 ∗ χδ is an element of
C∞ ∩ ssh(Ωδ). If we choose η ∈ (0, ε) so that (1− ε) log(εη) > log η

R then we may choose δ = δε > 0 so
that:

• (1− ε) log(εη) > GΩ
q0 ∗ χδ in ∂B(q0, η),
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• Ωδ includes ρ−1([−∞,−ε3]), and

• GΩ
q0 ∗ χδ < 0 in ρ−1(−ε3).

We may then set
β(q) := GΩ

q0 ∗ χδε(q)− ε

for all q ∈ Ωδε and
γ(q) := ε−2ρ(q)

for all q ∈ Ω. By construction, α, β, γ can be patched together in a continuous strongly subharmonic
function defined on Ω, namely

uε :=


α in B(q0, η)

max {α, β} in B(q0, ε) \B(q0, η)
β in ρ−1([−∞,−ε]) \B(q0, ε)
max {β, γ} in ρ−1([−ε,−ε3])
γ in Ω \ ρ−1([−∞,−ε3))

We remark that ρ−1([−∞,−ε]) \B(q0, ε) increases as ε→ 0 and that⋃
ε∈(0,λ)

(
ρ−1([−∞,−ε]) \B(q0, ε)

)
= Ω \ {q0} .

Thus, for all q ∈ Ω \ {q0},

lim
ε→0

uε(q) = lim
ε→0

GΩ
q0 ∗ χδε(q)− ε = GΩ

q0(q) .

Moreover, for each ε ∈ (0, λ) it holds uε

1−ε ∈ sshq0(Ω), whence uε

1−ε ≤ G
Ω
q0 in Ω. Thus,

GΩ
q0(q) = sup

ε∈(0,λ)

uε(q)

1− ε
,

whence the lower semicontinuity of GΩ
q0 immediately follows.

Similarly:

Proposition 7.11. Let Ω be a bounded domain in H. Suppose there exists ρ ∈ C0(Ω, (−∞, 0))∩wsh(Ω)
such that {q ∈ Ω : ρ(q) < c} ⊂⊂ Ω for all c < 0. Then for all q0 ∈ Ω and for all p ∈ ∂Ω

lim
q→p

gΩ
q0(q) = 0.

Proof. Let B(q0, r) ⊆ Ω ⊆ B(q0, R) and let C > 0 be such that Cρ < log r
R in B(q0, r). If we set

u(q) =

{
log |q−q0|R q ∈ B(q0, r)

max
{
Cρ(q), log |q−q0|R

}
q ∈ Ω \B(q0, r)

then u ∈ wshq0(Ω). Thus, u ≤ gΩ
q0 ≤ 0, where limq→p u(q) = 0 for all p ∈ ∂Ω.

For a special class of domains Ω and points q0, the Green function gΩ
q0 can be easily determined, as

follows.

Theorem 7.12. Let Ω be a bounded symmetric slice domain and let x0 ∈ Ω ∩ R. Consider the slice
Ωi = Ω ∩ C of the domain and the (complex) Green function of Ωi with logarithmic pole at x0, which
we will denote as γΩi

x0
. If we set

u(x+ Iy) := γΩi
x0

(x+ iy)

for all x, y ∈ R and I ∈ S such that x+ Iy ∈ Ω, then:

• u is a well-defined function on Ω;
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• u is J-plurisubharmonic in Ω \ R and it belongs to wshx0(Ω);

• u coincides with gΩ
x0

.

Proof. The slice Ωi of the domain is a bounded domain in C. Hence, the function γΩi
x0

is a negative
plurisubharmonic function on Ωi with a logarithmic pole at x0 (see Proposition 8.10). Moreover, since
Ωi is symmetric with respect to the real axis, it holds γΩi

x0
(x+ iy) = γΩi

x0
(x− iy) for all x+ iy ∈ Ωi. It

follows at once that u is well-defined, that it belongs to wshx0
(Ω), and that it is J-plurisubharmonic in

Ω \ R.
Moreover, let us fix any other v ∈ wsh0(B): we can prove that v(q) ≤ u(q) for all q ∈ Ω, as follows.

For each I ∈ S, the inequality vI ≤ uI holds in ΩI because (up to identifying LI with C) the function
uI is the (complex) Green function of ΩI with logarithmic pole at x0 and vI is a negative subharmonic
function on ΩI with a logarithmic pole at x0. As a consequence, u coincides with gΩ

x0
.

7.1 A significant example

An interesting example to consider is that of the unit ball B with a pole other than 0. It is natural to
address it by means of the classical Möbius transformations of B, namely the conformal transformations
v−1Mq0u, where u, v are constants in ∂B, q0 ∈ B and Mq0 is the transformation of B defined as

Mq0(q) := (1− qq̄0)−1(q − q0) .

The transformation Mq0 has inverse M−1
q0 = M−q0 . It is regular if, and only if, q0 = x0 ∈ R; in this

case, it is also slice preserving. For more details, see [2, 11].
Our first observation can be derived from either Lemma 7.5 or Theorem 7.12.

Example 7.13. For each x0 ∈ B ∩ R, we have

GB
x0

(q) ≤ gBx0
(q) = log

|q − x0|
|1− qx0|

for all q ∈ B.

The same techniques do not work when the logarithmic pole q0 is not real, as a consequence of the
fact that Mq0 is not a regular function. Nevertheless, we can make the following observation.

Example 7.14. Let us fix q0 ∈ B \ R. We will prove that

log
|q − q0|
|1− qq̄0|

≤ gBq0(q)

by showing that u(q) = log |q−q0||1−qq̄0| is weakly subharmonic. We will also prove that: (a) the restriction

uI to BI \ {q0} is harmonic if, and only if, q0 ∈ BI ; (b) the function u is not strongly subharmonic.

• We first observe that
u(q) = log |q − q0| − log |q − q̃0| − log |q̄0| ,

with q̃0 := q̄−1
0 = q0|q0|−2. With respect to any orthonormal basis 1, I, J, IJ and to the associated

coordinates z1, z2, z̄1, z̄2, if we split q0, q̃0 as q0 = q1 + q2J, q̃0 = q̃1 + q̃2J with q1, q2, q̃1, q̃2 ∈ BI
then

HI,J(u)|q =
1

2|q − q0|4

(
|z2 − q2|2 −(z1 − q1)(z̄2 − q̄2)

−(z2 − q2)(z̄1 − q̄1) |z1 − q1|2
)

+

− 1

2 |q − q̃0|4

(
|z2 − q̃2|2 −(z1 − q1)(z̄2 − q̃2)

−(z2 − q̃2)(z̄1 − q̃1) |z1 − q̃1|2
)
.

• For all z ∈ BI (that is, z1 = z, z2 = 0) it holds

(
∂̄1∂1u

)
|z

=
|q2|2

2(|z − q1|2 + |q2|2)2
− |q2|2|q0|4

2
(∣∣z |q0|2 − q1

∣∣2 + |q2|2
)2 .

14



If q0 ∈ BI then q2 = 0 and
(
∂̄1∂1u

)
vanishes identically in BI . Otherwise,

(
∂̄1∂1u

)
|z
> 0 for all

z ∈ BI because ∣∣z |q0|2 − q1

∣∣2 + |q2|2 − |q0|2(|z − q1|2 + |q2|2)

= |z|2|q0|4 + |q0|2 − |q0|2|z|2 − |q0|4

= |q0|2(1− |q0|2)(1− |z|2) > 0 .

• In general, HI,J(u) is not positive semidefinite. To see this, let us choose a basis 1, I, J, IJ so that
q1 6= 0 6= q2 and let us choose z1 = 0, z2 = q2. We get

HI,J(u)|q2J
=

1

2|q1|4

(
0 0
0 |q1|2

)
+

− 1

2 (|q̃1|2 + |q2 − q̃2|2)
2

(
|q2 − q̃2|2 q1(q̄2 − q̃2)

(q2 − q̃2)q̃1 |q̃1|2
)
,

where q2 − q̃2 6= 0 by construction.

We would now like to consider a different approach, through regular transformations of B. Indeed,
the work [11] proved the following facts.

• The only regular bijections B→ B are the so-called regular Möbius transformations of B, namely
the transformations Mq0 ∗ u =Mq0u with u ∈ ∂B, q0 ∈ B and

Mq0(q) := (1− qq̄0)−∗ ∗ (q − q0) .

Here, the symbol ∗ denotes the multiplicative operation among regular functions and f−∗ is the
inverse of f with respect to this multiplicative operation.

• For all q ∈ B, it holds
Mq0(q) = Mq0(Tq0(q)) ,

where Tq0 : B→ B is defined as Tq0(q) = (1− qq0)−1q(1− qq0) and has inverse T−1
q0 (q) = Tq̄0(q).

• Mq0 is slice preserving if, and only if, q0 = x0 ∈ R (in which case, Tq0 = idB and Mx0
= Mx0

).

If we fix q0 ∈ B \ R then, by Lemma 7.5,

log |Mq0(q)| ≤ gBq0(q) (14)

for all q ∈ B. The work [3] proved the quaternionic Schwarz-Pick Lemma and, in particular, the
inequality

log |f(q)| ≤ log |Mq0(q)|

valid for all regular f : B→ B with f(q0) = 0. It is therefore natural to ask ourselves whether an equality
may hold in (14). However, this is not the case: as a consequence of the next result, inequality (14) is
strict at all q not belonging to the same slice BI as q0. As a byproduct, we conclude that the set

{log |f | : f : B→ H regular, f(q0) = 0}

is not a dense subset of wshq0(B).

Theorem 7.15. If q0 ∈ BI , then

|Mq0(Tq0(q))| = |Mq0(q)| ≤ |Mq0(q)| (15)

for all q ∈ B. Equality holds if, and only if, q ∈ BI .
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Proof. Inequality (15) is equivalent to

|Tq0(q)− q0| |1− qq̄0| ≤ |q − q0| |1− Tq0(q)q̄0| .

Since |Tq0(q)| = |q|, the last inequality is equivalent to

0 ≤
(
|q|2 − 2〈q, q0〉+ |q0|2

) (
1− 2〈Tq0(q), q0〉+ |q|2|q0|2

)
+

−
(
|q|2 − 2〈Tq0(q), q0〉+ |q0|2

) (
1− 2〈q, q0〉+ |q|2|q0|2

)
= 2

(
−|q|2 − |q0|2 + 1 + |q|2|q0|2

)
〈Tq0(q), q0〉+

2
(
−1− |q|2|q0|2 + |q|2 + |q0|2

)
〈q, q0〉

= 2(1− |q0|2)(1− |q|2))〈Tq0(q)− q, q0〉 .

Thus, inequality (15) holds for q ∈ B if, and only if, 0 ≤ 〈Tq0(q) − q, q0〉. This is equivalent to the
non-negativity of the real part of (Tq0(q)− q)q̄0 = ((1− qq0)−1q(1− qq0)− q)q̄0 or, equivalently, of the
real part of (

(1− qq0)q(1− qq0)− |1− qq0|2q
)
q̄0

= (1− qq0)(q − q2q0 − q + qq0q)q̄0

= (1− q̄0q̄)(qq0qq̄0 − q2|q0|2)

= qq0qq̄0 − q2|q0|2 + |q|2|q0|2(q̄0q − qq̄0)

= (|q0|2 − q̄2
0)(|z2|2 − z1z2J) + (q̄0 − q0)z2J ,

where the last equality can be obtained by direct computation after splitting q as q = z1 + z2J , with
z1, z2 ∈ BI and J ⊥ I. If q0 = x0 + Iy0 then the real part of the last expression equals (x2

0 + y2
0 −

x2
0 + y2

0)|z2|2 = 2y2
0 |z2|2, which is clearly non-negative. Moreover, it vanishes if, and only if, z2 = 0, i.e.,

q ∈ BI .

An example wherein inequality (15) holds and is strict had been constructed in [4]. That construction
was used to prove that regular Möbius transformations are not isometries for the Poincaré distance of
B, defined as

δB(q, q0) :=
1

2
log

(
1 + |Mq0(q)|
1− |Mq0(q)|

)
for all q, q0 ∈ B. The subsequent work [1] proved that, for each q0 ∈ B \ R, there exists no Riemannian
metric on B having Mq0 as an isometry.

Our new inequality (15) is equivalent to

δB(Tq0(q), q0) ≤ δB(q, q0).

In other words, we have proven the following property of the transformation Tq0 of B: while all points
q ∈ BI are fixed, all points q ∈ B \ BI are attracted to q0 with respect to the Poincaré distance.

8 Appendix

For the reader’s convenience, we include in this appendix some classical results and definitions, which
are used in the present work. We begin with some theorems concerning subharmonic functions of m
real variables, along with some instrumental definitions. Let λ denote the Lebesgue measure on Rm and
σ denote the surface area measure.

Theorem 8.1 ([9, Theorem 2.4.1 (iii)]). Let D be an open subset of Rm and let υ : D → [−∞,+∞) be
an upper semicontinuous function which is not identically −∞ on any connected component of D. The
function υ is subharmonic in D if, and only if, for any Euclidean ball B(a,R) such that B(a,R) ⊂ D,
it holds

υ(a) ≤ L(υ; a,R),

where

L(υ; a,R) :=
1

smRm−1

∫
∂B(a,R)

u(x)dσ(x), sm := σ(∂B(0, 1)).
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Theorem 8.2 ([9, Theorem 2.4.2]). Let D be a bounded connected open subset of Rm and let υ : D →
[−∞,+∞) be subharmonic in D. Then either υ is constant or, for each x ∈ D,

υ(x) < sup
z∈∂D

{
lim sup
D3y→z

υ(y)

}
.

Corollary 8.3 ([9, Corollary 2.4.3]). u is harmonic if, and only if, u and −u are both subharmonic.

Definition 8.4 ([9, §2.5]). Define h : R→ R by the formula

h(t) :=

{
exp(−1/t) if t > 0
0 if t ≤ 0

and define χ : Rm → R by the formula

χ(x) :=
1

c
h(1− ‖x‖2), c :=

∫
B(0,1)

h(1− ‖x‖2)dλ(x).

The standard smoothing kernels χε : Rm → R are defined, for all ε > 0, by the formula

χε(x) :=
1

εm
χ
(x
ε

)
.

Given a function υ on a open subset D of Rm, the convolution

υ ∗ χε(x) = χε ∗ υ(x) :=

∫
Rm

χε(x− y)υ(y)dλ(y)

is well-defined on

Dε :=

{
{x ∈ D : dist(x, ∂D) > ε} if D 6= Rm
Cn if D = Rm

Theorem 8.5 ([9, Theorem 2.5.5]). Let D be an open subset of Rm and let υ : D → [−∞,+∞) be
subharmonic. For all ε > 0 such that Dε is not empty, υ ∗χε is C∞ and subharmonic in Dε. Moreover,
υ ∗ χε monotonically decreases with decreasing ε and

lim
ε→0+

υ ∗ χε(x) = υ(x) (16)

for each x ∈ D.

We now recall some properties of plurisubharmonic functions of n complex variables.

Theorem 8.6 ([9, Theorem 2.9.1]). Let D be an open subset of Cn and let υ : D → [−∞,+∞) be
an upper semicontinuous function which is not identically −∞ on any connected component of D. υ is
plurisubharmonic in D if, and only if, for any a ∈ D, b ∈ Cn such that {a+ λb : λ ∈ C, |λ| ≤ 1} ⊂ D, it
holds

υ(a) ≤ l(υ; a, b) ,

where

l(υ; a, b) :=
1

2π

∫ 2π

0

υ(a+ eitb)dt.

Moreover, plurisubharmonicity is a local property.

Theorem 8.7 ([9, Theorem 2.9.2]). Let D be an open subset of Cn and let υ : D → [−∞,+∞) be
plurisubharmonic. For all ε > 0 such that Dε is not empty, υ ∗ χε is C∞ and plurisubharmonic in Dε.
Moreover, υ ∗ χε monotonically decreases with decreasing ε and

lim
ε→0+

υ ∗ χε(z) = υ(z) (17)

for each z ∈ D.
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Theorem 8.8 ([9, Corollary 2.9.9]). Let D be a bounded connected open subset of Cn and let υ be a
plurisubharmonic function on D. Then either υ is constant or, for each x ∈ D,

υ(z) < sup
w∈∂D

{
lim sup
D3y→w

υ(y)

}
.

Remark 8.9 ([9, §3.1]). Let D be an open subset of C and let υ be a plurisubharmonic function on D.
The function υ is harmonic if, and only if, it is maximal among plurisubharmonic functions on D.

Proposition 8.10 ([9, Proposition 6.1.1 (iv)]). Let D be a bounded domain in Cn, let w ∈ D and let γDw
denote the pluricomplex Green function of D with pole at w. Then γDw is a negative plurisubharmonic
function with a logarithmic pole at w.
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