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Saccharomyces cerevisiae is a common yeast with several applications, among which the most 
ancient is winemaking. Because individuals belonging to this species show a wide genetic and 
phenotypic variability, the possibility to identify the strains driving fermentation is pivotal when 
aiming at stable and palatable products. Metagenomic sequencing is increasingly used to decipher 
the fungal populations present in complex samples such as musts. However, it does not provide 
information at the strain level. Microsatellites are commonly used to describe the genotype of single 
strains. Here we developed a population-level microsatellite profiling approach, SID (Saccharomyces 
cerevisiae IDentifier), to identify the strains present in complex environmental samples. We optimized 
and assessed the performances of the analytical procedure on patterns generated in silico by 
computationally pooling Saccharomyces cerevisiae microsatellite profiles, and on samples obtained 
by pooling DNA of different strains, proving its ability to characterize real samples of grape wine 
fermentations. SID showed clear differences among S. cerevisiae populations in grape fermentation 
samples, identifying strains that are likely composing the populations and highlighting the impact of 
the inoculation of selected exogenous strains on natural strains. This tool can be successfully exploited 
to identify S. cerevisiae strains in any kind of complex samples.

In the metagenomic era, Next Generation Sequencing allows the characterization of the composition and dynam-
ics of the complex microbial communities present in almost every kind of sample. While allowing us to obtain a 
general picture of the microbiota, amplicon-based approaches have a taxonomic resolution that usually does not 
exceed the genus or, in the best situations, the species level1. Although this is in general sufficient, in some situa-
tions a higher taxonomic resolution is necessary. As an example, in late stages of the wine fermentation process 
when the ethanol concentration exceeds the tolerable level for the majority of bacteria and environmental fungi, 
the microbial population simplifies and is usually dominated by the budding yeast Saccharomyces cerevisiae2,3. 
Recent surveys have shown how the wide phenotypic variability of S. cerevisiae impacts its ability to ferment 
grape must and produce metabolites relevant for the organoleptic characteristics of the fermented product4–6. 
Hence, winemakers usually inoculate the fresh must with selected S. cerevisiae strains to overgrow the natural 
microbial populations (potentially responsible of spoilage) and to guarantee the final product a specific organo-
leptic profile7. Hundreds of different strains are nowadays available to conduct different grape types fermenta-
tions8. However, several studies have shown that in some cases environmental strains can overgrow inoculated 
strains9–15. In these cases, it has been suggested that the role of the inoculum of alien S. cerevisiae strains is to 
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facilitate the growth of indigenous S. cerevisiae strains (fitter than the alien ones when in competition) by setting 
up a hostile environment for other fungal species16. This situation represents a golden opportunity because of 
the renewed interest in the use of indigenous yeasts among winemakers and scientists in the last decades17. In 
this case, a strain unable to compete with the indigenous S. cerevisiae strains would be preferred to strains able to 
overgrow the natural fungal population. The development of rapid methods characterizing mixed populations 
composed by multiple S. cerevisiae strains will be instrumental to evaluate the performance of selected strains 
inoculated in musts. There are other cases in which the ability to discriminate among S. cerevisiae strains holds 
great potentials. Despite being generally considered a commensal, several recent studies have reported the emer-
gence of S. cerevisiae as an opportunistic pathogen18–20. S. cerevisiae was enriched in the gut mucosa of Crohn dis-
ease patients, thus suggesting a negative relation between the abundance of this yeast and the health status of the 
host21. Conversely, a reduction of this yeast was found in the feces of Crohn patients in disease versus remission, 
thus proposing a positive role of S. cerevisiae colonization22. These controversial results led to the hypothesis that, 
rather than the presence of this yeast, the presence of different S. cerevisiae strains could have different effects on 
the host health status23. Another interesting environment in which several S. cerevisiae strains have been found 
is the insect intestines24,25. Even in this case, the effect on the host health is still debated. Beekeepers are aware of 
the positive effect of S. cerevisiae on the insect, in fact they usually feed the bees with the baker’s yeast after the 
winter or after the harvesting to let the colony recover. However, reports indicate that stressed bees show higher 
amounts of yeasts than usual, but it is not clear whether this is a consequence or a cause of the stress26. In all these 
situations, the ability to rapidly identify the S. cerevisiae strains present in the complex matrix could help under-
standing the role of different strains in the host health. Despite the acknowledged necessity to assess the variability 
of S. cerevisiae populations, the identification of their composition has been so far mainly carried out by means 
of isolation, a process requiring time and specialized operators9,12–15. Only a few molecular approaches have been 
proposed, but these are aimed at the dissection of the complete fungal population, rather than focusing on S. cere-
visiae2. Simple Sequence Repeats (SSRs), also called microsatellites, are non-coding DNA sequences composed by 
small repeated units (2–6 bp). The number of small units repetitions varies in different individuals, making thus 
SSRs good markers for the high resolution typing of individuals27. Since unrelated individual strains can harbor 
the same SSR allele in a given locus, several different microsatellite loci are usually combined for the typing of an 
individual28. SSRs-based approaches have been successfully applied in population genetic studies to characterize 
the microevolution and environmental distribution of S. cerevisiae isolates29,30. Until now, all genotyping analyses 
have been performed on individual strains. However, in several cases (e.g. maize31, humans32), genotyping of 
pools of individuals has been used as a tool for the comparison of populations. Recently, a multiplex PCR-SSR 
analysis was proposed to monitor inoculated yeast strains in industrial wine fermentation33. By applying this 
technique, the authors were able to compare the band profiles (on agarose gels) of different samples and to draw 
conclusions on the persistence of inoculated strains. Nevertheless, the resolution of this analysis did not allow the 
identification of the different strains present in the complex samples33.

In this work we propose a technology based on SSRs analysis to characterize complex blends of S. cerevisiae 
strains. This new approach allows the rapid and exhaustive investigation of different S. cerevisiae populations at 
the strain level by evaluating which combination of strains, chosen from a representative reference dataset, is 
present in the given complex sample. We have developed a new open-access tool, SID (Saccharomyces cerevisiae 
IDentifier, https://sidentifier.shinyapps.io/SIDentifier/), through which specialized and not-specialized workers 
(i.e. wine-makers) could easily characterize the S. cerevisiae strains driving fermentations.

Results
With the SSR meta-profiling we set up a procedure to identify the strains composing mixed samples. As a starting 
point, we assessed the performance of twelve microsatellites loci in describing synthetically generated S. cerevisiae 
pools. We then used these pools to test the ability of GLM (Generalized Linear Model) analysis to identify the 
parental strains. We further evaluated lasso34 (least absolute shrinkage and selection operator) analysis perfor-
mances on a large number of samples by analysing a dataset generated in silico and composed by randomly com-
bined single strains profiles. We finally tested the method on real samples of fermenting grape musts.

Evaluation of the SSRs meta-profiling performance on pooled strains.  We generated a set of syn-
thetic pools by mixing the DNAs of selected strains. To select the strains to be pooled, we initially assessed the 
genotype of 292 environmental and laboratory strains by mean of SSR analysis (Fig. 1). Twelve microsatellite 
loci were analyzed: C3, C4, C5, C6, C8, C11, SCYOR267c, SCAAT1, SCAAT3, SCAAT5, YKL172W and YPL9. 
We then built a neighbor-joining tree using the Dc chord distance matrix calculated on the microsatellites data 
(Fig. 1). The strains to be pooled were selected using the following criteria: i) they should be preferentially isolated 
from the same source (to mimic the real application of the method), ii) the pool should encompass both genet-
ically similar and different strains (to assess the discrimination ability -Da- of the method). With these criteria 
in mind, we finally selected five S. cerevisiae strains isolated from faeces and with variable degree of differentia-
tion among each other (Fig. 1). To note, the strains 02_MF and 04_MF were almost identical (0.069 Dc-chord 
distance), while 08_MF was the most dissimilar from 01_MF and 13_MF (0.809 and 0.654 Dc-chord distance, 
respectively). We included highly similar strains to test the performance of the method in the most difficult 
settings, where two almost genetically identical strains present in the same sample have to be recognised as dif-
ferent. The pools were generated as described in methods by combining from two to five “parental” strain DNAs 
(Supplementary Table S1). The same twelve microsatellites loci used to select the strains were also amplified in 
the synthetic pools. The profiles obtained for the pooled DNAs (pooled profiles) were compared to the expected 
profiles composed by all the alleles present in the parental strains. The performance of each locus was evaluated by 
calculating the average error (Ea) among the samples (see equation 2). The C3, YOR267c, SCAAT5 and YKL172 
SSR loci performed excellently, with all the alleles of the parental strains being identified in all the tested samples 
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(corresponding to Ea = 0 in Table 1). On the contrary, the C6 and C8 loci showed a high Ea, 8.77% and 4.63% 
(Table 1). These loci showing bad performances when considered separately might affect the ability of our pro-
posed method in discriminating the strains present in complex samples. For this reason, in the following analyses 
we assessed the performances of two different sets of loci: “full” - encompassing all the 12 loci-, and “reduced” 
- in which the C6 and C8 loci were excluded-. The profiles of the parental strains were inspected aiming at the 
identification of strain-specific alleles, namely the alleles present in only one of the pooled strains. Discrimination 
ability (Da) was calculated as the number of strains that could be identified by an allele found in the pool on the 
total of pooled strains (see equation 1). Despite the fact that this index is related to the set of pooled samples (none 
of the reference collection strains bears a specific allele when compared to the whole collection), it is useful to 
evaluate the contribution of each locus in discriminating the different pooled strains. In general, the Da of all the 
SSR loci decreased with the increase of the number of pooled strains, due to the fact that the same allele can be 
present in more than one different strain. Indeed, given their genetic similarity (Supplementary Figure S1), the 
selected strains are probably the result of a clonal expansion of a strain in the same isolation source, or result from 
inbreeding of closely related strains as shown in other isolation sources35. For these reasons, profiling of the alleles 
at several different microsatellite loci is needed to genetically characterize S. cerevisiae isolates.

Test for strain identification - pooled strains.  The SSR meta-profiling approach allows the identification 
of the strains composing complex populations of S. cerevisiae. Indeed, as the SSR alleles at different loci allow 
the identification and genetic comparison of single strains28, we tested whether a penalized regression approach 
was able to disentangle the individuals composing a complex population. The performances of the method were 

Figure 1.  Neighbor-joining tree based on the Dc chord distances calculated on microsatellite data of a 
collection of Saccharomyces cerevisiae isolates. The strains selected for the synthetic pooling are highlighted by 
arrows.

Locus ID Ea

Da

A1 B1 C1 D1 E1 F1

C3 0.00 1/2 0/2 1/3 1/3 1/4 1/5

C4 0.69 1/2 0/2 2/3 2/3 2/4 2/5

C5 0.45 2/2 0/2 2/3 2/3 3/4 3/5

C6 8.77 1/2 0/2 2/3 2/3 2/4 2/5

C8 4.63 0/2 1/2 0/3 1/3 1/4 1/5

C11 0.57 1/2 0/2 1/3 1/3 1/4 1/5

YOR267c 0.00 2/2 1/2 3/3 2/3 3/4 3/5

SCAAT1 0.20 1/2 0/2 2/3 2/3 2/4 2/5

SCAAT3 0.64 1/2 0/2 2/3 2/3 2/4 2/5

SCAAT5 0.00 0/2 0/2 0/3 0/3 0/4 0/5

YPL9 0.607 1/2 0/2 2/3 2/3 2/4 2/5

YKL172 0.00 1/2 0/2 1/3 1/3 1/4 1/5

Table 1.  Performances of the tested SSR loci. Average locus error Ea was calculated as the fraction of alleles 
of the given locus in the query sample not matching the combination of the identified strains profiles divided 
by the number of alleles for the given locus (see equation 2); Da = discrimination ability = number of pooled 
strains which were identified by at least 1 characteristic allele divided by the total number of pooled strains, see 
equation 1. 1Labels refer to the synthetic pool name, as listed in Supplementary Table 1.
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evaluated on the synthetic patterns obtained by SSRs characterization of the mixed pools used in the previous sec-
tion (Supplementary Table S1). The pooled strains samples showed from a minimum of 2 (in pools composed by 
two strains) up to 6 alleles (in pools composed by three or more strains) per locus. The GLM analysis exactly iden-
tified the parental patterns (True positive rate = 100%, equation 4), with the only exception of the 08_MF strain, 
which was not identified in the F sample (Table 2). In addition, the number of false positives was low (Table 2). 
One of the false positives identified (03_MF in pool A and C) was genetically very similar to the 02_MF strain 
present in the pools (Dc chord distance lower than 0.1, Supplementary Figure S1). To note, for the synthetic pool 
D containing the same strains as the C pool with the only difference of the 03_MF strain in spite of the 02_MF 
strain, the identification was correct.

Test for strain identification - in silico pools.  To further evaluate the performance of the approach on a 
larger set of samples, we generated in silico patterns by randomly combining from 2 to 6 single strain SSR patterns 
from the reference strain collection (1000 patterns for each combination). As described in previous section, we 
evaluated the performance of two sets of SSRs loci: “all.loci” – encompassing all the 12 loci- and “sel.loci” - in 
which the C6 and C8 loci were excluded- (Table 1). GLM analysis was then applied to the in silico dataset, using 
as observations (reference) the patterns of the single individuals (the strains of the collection used in Fig. 1) and 
each in silico pattern as variable (query). For the pools composed by 2 profiles, the parental strains were correctly 
identified in the 98.7% of the cases using the full set of loci and in the 96.8% of the cases using the reduced set of 
loci (Fig. 2). The percentage of pools for which all the parental strains were correctly identified decreased with the 
increase of the number of profiles pooled together (Fig. 2), down to the 79.2% of the cases for the most complex in 
silico samples (composed by 6 strains). This percentage dropped to the 69.6% of the cases when using the reduced 
set of loci. Despite the previously observed bad performance of some SSR loci (Table 1), GLM analysis performed 
better when using the complete set of SSRs than when removing the problematic loci. We thus decided to use the 
whole SSR set in the following analyses.

The percentage of pools in which at least one false positive was identified increased with increasing sample com-
plexity (Fig. 2). In fact, when considering all the microsatellite loci, in the 12.3% of the samples composed by 2 strains 
more than 2 strains were identified, and this rate increased up to the 68% for the samples composed by 6 strains. The 
results obtained on the in silico data indicate that the procedure allows to identify the patterns composing a given 
complex samples in the large majority of cases, but can over-estimate the real richness of complex samples.

Sample Name Expected Identified True positive rate False positives GLMerror*
A 01_MF+02_MF 01_MF, 02_MF, 03_MF 100% 1 0.61

B 02_MF+03_MF 02_MF, 03_MF 100% 0 1.22

C 01_MF+02_MF+13_MF 01_MF, 02_MF, 03_MF, 13_MF 100% 1 0.30

D 01_MF+03_MF+13_MF 01_MF, 03_MF, 13_MF 100% 0 0.30

E 01_MF+02_MF+03_MF+13_MF 01_MF, 02_MF, 03_MF, 13_MF 100% 0 0.30

F 01_MF+02_MF+03_MF+08_MF+13_MF 01_MF, 02_MF, 03_MF, 13_MF 80% 0 0.30

Table 2.  Parent profile identification from synthetic patterns. In the “Identified” column, the strains ID in bold 
are the parental strains correctly identified by the GLM. True positive rate is the percentage of parental strains 
identified in the sample by the model. The column “False positives” indicates the number of strains identified 
by lasso analysis but not present in the query sample. *GLMerror was estimated as the percentage of alleles 
differing between the query sample and the combination of the identified strains’ patterns, on the total of alleles 
(equation 3).

Figure 2.  Summary of the results of penalized GLM analysis on in silico-generated complex profiles. In silico 
profiles were generated by randomly combining 2, 3, 4, 5 or 6 single-strain profiles (1000 profiles each), then 
analysed by mean of GLM. The y-axis reports the percentage of in silico samples for which either all the parental 
strains (left part of the plot) or additional strains/false positives (more than these actually combined to generate 
the complex profile, right part of the plot) were identified by GLM analysis.
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Real samples.  As a proof of concept, we applied the proposed method to a set of spontaneous and inocu-
lated wine must fermentations. The fermentations of several grape cultivars from the same cellar were studied: 
Traminer, Chardonnay, Muller-Thurgau, Solaris and Sauvignon. In addition, the fermentations of Sauvignon and 
Muller-Thurgau were carried out by either exploiting the natural microbiota or by the inoculation of selected 
starters (list of samples in Supplementary Table S2). To exploit the natural yeast population, Muller-Thurgau 
mature grapes were collected and pressed before the harvesting, and the obtained must was fermented at high 
temperatures (greater than 20 °C) to facilitate S. cerevisiae overgrowth. This process was carried out in the cellar 
and used as one of the inocula (indicated as “pied de cuve”). The fermentations of Sauvignon and Muller-Thurgau 
musts lasted between 8 and 10 days, with the Muller-Thurgau fermentations being the slowest (10 days). The 
fungal populations present in the samples were initially explored at the species level by mean of PCR-RFLP 
on the ITS1-5.8-ITS2 region. The patterns observed in fresh musts showed several bands of different lengths 
(Supplementary Figure S2), indicating the presence of different yeast species in these samples. Later, at the fourth 
day of fermentation, the SSR pattern became simpler in all the ferments, with a lower number of bands. The pat-
terns observed since the fourth day of fermentation until the end of the process showed the typical band profile 
of S. cerevisiae, indicating that this species over-grew the rest of the fungal population already at this early stage. 
We applied the SSR meta-profiling approach to dissect the composition of the S. cerevisiae populations present in 
all the samples (even the earliest ones, showing several yeast species). The twelve microsatellite loci tested on the 
synthetic pools were characterized by mean of penalized GLM analysis. In fresh musts, both of Muller-Thurgau 
and Sauvignon, two strains were identified, closely related to 02_MF and 03_MF (Table 3). While evaluating 
the performances of the approach on pooled strains, we observed that, while the 03_MF strain can be correctly 
identified, the 02_MF strain can be identified as 02_MF, 03_MF or both (Table 2). Thus, the Muller-Thurgau and 
Sauvignon samples could be populated either by the 02_MF strain alone or by both the 02_MF and the 03_MF 
strains. In any case, the identification of the same strains in musts obtained from grapes of different cultivars 
could indicate a cellar origin of the found S. cerevisiae strains. The same two strains were also identified in all the 
samples inoculated with the pied de cuve, both being Muller-Thurgau and Sauvignon musts, indicating that the S. 
cerevisiae strains present in the fresh must persisted during the entire fermentation process. Similarly, in the other 
tested must types (Solaris, Traminer and Chardonnay) inoculated with pied de cuve the same two strains were 
identified, suggesting a cellar origin.

On the other hand, in both the Muller-Thurgau and the Sauvignon must samples inoculated with the prepa-
ration 1 (prep1), three strains were identified since the first sampling after the inoculum, namely BR120, M57_
num652, and the strain isolated from the preparation (prep1_isolate), not identified in the pied de cuve-inoculated 
musts. Similarly, in the Sauvignon musts inoculated with prep2 only the inoculated strain (prep2_isolate) was 
identified. The GLMerror (see equation 3) calculated on must samples ranged from 1.54% to 5.57% (Table 3), and 
was higher than the GLMerror calculated in previous analyses. The major difference among the analysis on the 
must samples and on the in silico and synthetic samples is that the latter are composed by strains present in the 
reference dataset (the collection of S. cerevisiae strains). Thus, the higher error rate calculated for must samples 
can be ascribed to the absence in the reference dataset of strains present in must samples and could be reduced by 
expanding the number and genetic variability of the strains composing the reference dataset. This hypothesis is 
supported by the fact that the predicted profiles of three must samples (Pdc, Sau_prep1_EF and Sau_prep2_EF) 
encompassed one additional allele not present in the other predicted profiles (* in Table 3), indicating that these 
samples bore at least one strain not present in the reference dataset. Aiming at the confirmation of the results we 
obtained on must samples by means of penalized GLM analysis, we used an independent approach to compare 
the strains isolated from the samples, namely delta amplification (Supplementary Figure S3). Delta amplification 
showed that fresh musts and samples inoculated with the pied de cuve, in which GLM analysis identified two 
strains (02_MF and 03_MF) were dominated by three common strains, named A, B, and C (Table 3). Generally, 
the number of strains identified through delta amplification was lower than the number of strains identified by 
means of GLM analysis, possibly because of the isolation procedure. To assess whether the isolates corresponded 
to the strains identified by means of penalized GLM analysis, we obtained their microsatellite profiles. Notably, 
the different strains identified by means of delta amplification showed different microsatellite profiles, indicating 
that the microsatellite profiling has at least the same discrimination ability than the delta amplification approach. 
The neighbor joining clustering based on the chord distance among microsatellites profiles of the must isolates 
and the strains composing our reference dataset clearly revealed a correspondence (i.e. high similarity) of the 
must isolates A, B and C with the strains 02_MF and 03_MF, of isolates F and D with the M57_num652 strain and 
of must isolates E and G with the prep2_isolate strain (Table 3 and Supplementary Figure S4). None of the isolates 
corresponded to the strains BR120 and prep1_isolate, identified as present in the musts by mean of penalized 
GLM analysis. Notably, the microsatellite profiles of the A, B, and C isolates were highly similar to the profiles of 
the 02_MF and 03_MF reference strains, with the A strain being the most similar and the B and C forming a sep-
arate sub-cluster (Supplementary Figure S4). Considering the high similarity of the profiles of these strains, it is 
likely that they are the result of a clonal expansion, which could be evaluated by further investigations (i.e. whole 
genome sequencing). Although the industrial strains were supposed to dominate the fermentation (because they 
were selected with this aim and they were inoculated in the musts at high concentrations), the prep1_isolate could 
no be found by means of isolation followed by delta amplification and yet it was identified by means of penal-
ized GLM analysis, suggesting that it was present in the must, but at low relative abundance. This result further 
supported the higher sensitivity of our approach compared to the isolation-based one. Furthermore, for samples 
inoculated with the industrial preparations, the isolation-based analysis generally identified a lower number of 
strains compared to GLM analysis. This discrepancy could be either ascribed to the inability to isolate strains 
present at low abundances, or to the incompleteness of the reference dataset used for GLM analysis (suggested 
by the relatively high GLMerror). The former hypothesis, affecting the delta amplification approach, is strongly 
supported by the fact that, at any sampling time, we could not find the prep1_isolate in musts inoculated with 
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the prep1. In addition, this hypothesis is further supported by the fact that the samples inoculated with either 
prep1 or prep2 were shown to encompass a higher number of strains at the second sampling time compared to 
the first sampling (4dd = first sampling in Table 3). Because no further strains were added during the fermenta-
tion process, it is not possible that the number of strains present in the must increases. Rather, the increase of the 
number of identified strains highlights a deficit in sampling the real biodiversity of the sample. On the other hand, 
the relatively high GLMerror calculated for these samples (Table 3) supports the hypothesis that the reference 
dataset used for GLM analysis is incomplete. As a whole, despite we are aware that the reference dataset is far 
from including the complete biodiversity of S. cerevisiae, the known weakness of isolation-based approaches, also 
reported by our aforementioned results, strongly support the first hypothesis.

These results indicate that: (i) not every commercial strains overtake the indigenous S. cerevisiae population, 
as previously observed36,37, but some may remain in traces in the must (i.e. the prep1_isolate, which cannot be 
detected by means of isolation) and (ii) differently from what observed in other studies38, the commercial strains 
used in previous vintages do not persist in the cellar environment nor colonize spontaneous fermentations.

Conclusions
We propose a method to characterize at the strain level samples containing complex mixtures of S. cerevisiae. The 
proposed method was evaluated on in silico data and on pools of S. cerevisiae strains. Both tests supported the 
possibility to use SSR meta-profile to explore the complexity of S. cerevisiae populations. The low Ea shown by the 

Sample Must type Inoculum SID strains GLMerror1 delta amplif. strains cluster2

Pied de cuve Muller-Thurgau Pied de cuve 02_MF; 03_MF 3.08*

A A = 02_MF/03_MF

B B = 02_MF/03_MF

C C = 02_MF/03_MF

MullerMust Muller-Thurgau none 02_MF; 03_MF 2.16
B B = 02_MF/03_MF

C C = 02_MF/03_MF

Muller_Pdc_4dd Muller-Thurgau Pied de cuve 02_MF; 03_MF 2.16 A A = 02_MF/03_MF

Muller_Pdc_8dd Muller-Thurgau Pied de cuve 02_MF; 03_MF 1.54
A A = 02_MF/03_MF

B B = 02_MF/03_MF

Muller_Pdc_EF Muller-Thurgau Pied de cuve 02_MF; 03_MF 2.16
A A = 02_MF/03_MF

B B = 02_MF/03_MF

Muller_prep1_4dd Muller-Thurgau Starter blend1 BR120; M57_num652;prep1_isolate 4.97 D D = M57_num652

Muller_prep1_8dd Muller-Thurgau Starter blend1 BR120; M57_num652;prep1_isolate 4.97
C C = 02_MF/03_MF

D D = M57_num652

Muller_prep1_EF Muller-Thurgau Starter blend1 BR120; M57_num652;prep1_isolate 4.97 D D = M57_num652

SauvignonMust Sauvignon none 02_MF; 03_MF 2.16 C C = 02_MF/03_MF

Sauvignon_Pdc_4dd Sauvignon Pied de cuve 02_MF; 03_MF 1.54 A A = 02_MF/03_MF

Sauvignon_Pdc_EF Sauvignon Pied de cuve 02_MF; 03_MF 2.16
A A = 02_MF/03_MF

B B = 02_MF/03_MF

Sauvignon_prep1_4dd Sauvignon Starter prep1 BR120; M57_num652;prep1_isolate 4.97 D D = M57_num652

Sauvignon_prep1_EF Sauvignon Starter prep1 BR120; M57_num652;prep1_isolate 4.97*
D D = M57_num652

F F = M57_num652

Sauvignon_prep2_4dd Sauvignon Starter prep2 prep2_isolate 5.57 G G = prep2_isolate

Sauvignon_prep2_EF Sauvignon Starter prep2 prep2_isolate 4.02*
G G = prep2_isolate

E G = prep2_isolate

ChardonnayMust Chardonnay none 02_MF; 03_MF 2.16

A A = 02_MF/03_MF

B B = 02_MF/03_MF

C C = 02_MF/03_MF

SolarisMust Solaris none 02_MF; 03_MF 2.16
A A = 02_MF/03_MF

B B = 02_MF/03_MF

TraminerMust Traminer none 02_MF; 03_MF 2.16
A A = 02_MF/03_MF

B B = 02_MF/03_MF

Table 3.  Strains identified by SID and delta amplification in must samples. 14dd, 8dd, EF = samples were 
collected 4 and 8 days after the inoculum and at the End of Fermentation, respectively. The strains present in 
the samples were identified by means of microsatellites amplification on the total extracted DNA followed by 
analysis with SID (SID strains). In addition, strains were isolated from samples and characterized by means 
of delta amplification, and the band patterns were compared to assess the number and type of strains present 
(delta amplif. strains). 1GLMerror was calculated as the percentage of alleles differing between the predicted 
profile and the query sample on the total number of alleles in the predicted profile (equation 3 in materials 
and methods). All the predicted profiles were composed by a total of 324 alleles, with the exception of these 
annotated with *, which encompassed 325 alleles. 2According to the microsatellites profiles, as shown in 
Supplementary Figure S4.
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tested microsatellite loci legitimate the application of this approach on multiple sets of strains. The Da of the single 
microsatellite loci was considerably low, especially when the number of pooled strains was high. Despite this, the 
combined use of all the 12 loci allowed the correct identification of pooled strains by mean of lasso analysis, and 
even strains showing high genetic similarity were discriminated.

The method allowed the dissection of the composition of the S. cerevisiae population present in grape must 
fermentations. Thanks to the use of the SSR meta-profile approach we were able to compare the S. cerevisiae 
populations in different must fermentations and to assess the fitness of indigenous and commercial strains. Even 
if the microsatellites profiles of the strains present in the samples were not known a priori as in real samples, this 
approach was useful to understand whether and how the S. cerevisiae population changed during the fermen-
tation, and in observing the effects of environmental changes (also encompassing the introduction of external 
strains) on the composition of the populations. One of the most promising applications of this new method in the 
winemaking process is the decision of the best inoculum to be used to start the fermentation. Compared to the 
classical microbial protocols adopted to identify S. cerevisiae individuals in environmental samples, relying on 
the isolation, identification and typing of several colonies per samples9,12–15, the proposed method is much more 
rapid. Hence, by applying our method, winemakers will be aware of the composition of the natural S. cerevisiae 
population present either in fresh musts or in the produced pied de cuve. This information will be fundamental in 
assisting the decision of either using the cellar-specific pied de cuve or facilitate the fermentation by inoculating 
commercial strains. Our approach may also have applications in environmental and clinical studies, where differ-
ent yeast strains have been hypothesized to have different outcomes on the host health. However, this variability 
of the impact of different strains on the host has not yet been shown in epidemiological studies, partially due to 
the lack of a reliable and rapid method of typing that can be applied in the case of complex mixtures of different 
strains. Our tool could find a fundamental application in these situations, allowing the identification of strains 
potentially threatening host health. Furthermore, a recent study compared the effectiveness of Microsatellite 
Length Polymorphism typing (MLP) as an alternative to Multi Locus Sequence Typing (MLST) for identification 
of Candida spp. strains39, showing that the former constitutes a viable alternative to the latter in certain applica-
tions. Upon the availability of an extensive strain collection described by MLP, our tool could be extended to this 
yeast pathogenic species.

Methods
SSRs characterization.  SSRs lengths were studied at 12 loci: C3, C4, C5, C6, C8, C11, SCYOR267C, 
SCAAT1, SCAAT3, SCAAT5, YKL172W and YPL928. The primers used to characterize the 12 microsatellite loci 
are listed in Supplementary Table S3. The PCR mixture consisted of buffer (10x), 2 mM MgCl2, 0.1 mM dNTP, 
0.32 mM forward primer, 0.32 mM reverse primer, 0.02 U AmpliTaqGold DNA Polymerase (Life Technologies), 
25 ng DNA template, water to a final volume of 12.5 microliters. The PCR program consisted of an initial step 
at 95 °C for 5 minutes, followed by 35 cycles of 95 °C for 0.5 minutes, 57 °C for 2 minutes and 72 °C for 1 minute, 
and a final elongation step at 60 °C for 30 minutes. Thereafter samples were cooled down to 8 °C until further use. 
The PCR amplicon sizes of the 12 loci were assessed by capillary electrophoresis using polyacrylamide gels run 
on a 96-capillary 3730xl DNA Analyzer (Applied Biosystems). Fragment size data were recorded by software 
GeneMapper (Applied Biosystems) and manually checked. The fragment with the highest fluorescent intensity 
was scored when SSR-primed products showed band stuttering.

SSRs meta-profiling performance evaluation.  With the term SRRs meta-profiling we indicate the 
SSR patterns obtained either from samples composed by more than one strain or from environmental samples. 
The SSR patterns obtained experimentally from the pooled strains (called “pool profile”) were compared to the 
expected SSR meta-patterns (called “expected profile”) inferred by combining the SSR patterns of the strains 
composing the pool. The profiles of the single pooled strains were also inspected to identify the presence of 
strain-specific alleles, namely these alleles that allowed the identification of a strain in a given known pool of 
strains. The performance of each SSR locus in the analysis on pooled strains was evaluated in terms of discrimi-
nation ability Da (equation 1), and average locus error Ea (equation 2).

=D S
S (1)

a
sa

p

where Ssa is the number of strains with strain-specific alleles in the pool and Sp is the number of pooled strains.
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
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a
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where Npool is the number of pooled profiles, dapool is the number of alleles differing between the given pool and 
the expected profiles, and epapool is the number of alleles in the profile expected for the given pool.

GLM analysis.  Generalized linear model (GLM) analysis with the lasso34 penalization was applied to identify 
the individuals composing complex samples. We refer to individuals composing the population as “parental”, to 
the reference dataset, composed by individuals’ profiles, as “reference” and to the sample to be analysed as “query”. 
The reference dataset encompassed the SSR profiles of 274 S. cerevisiae strains originating from laboratory, grape 
skins, musts, and fruits (further details in the “Reference collection of Saccharomyces cerevisiae strains” section). 
The analysis was carried out as follows. We initially converted reference’s and query’s SSR alleles into presence/
absence profiles. Then we prepared a generalized linear model by using the reference as observations and the 
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query as response variable. The model was trained by the glmnet function of the glmnet R package40. We set 
alpha = 1 (lasso penalty), intercept = F, family = “binomial” and lower . limits = 0 (the latter parameter limits the 
search space to non-negative coefficients). To avoid overfitting, the regularization parameter lambda minimizing 
the mean-squared error estimated by cross-validation was chosen. The strains whose individual profiles had 
non-zero coefficients in the model were tagged as present in the sample. To assess the accuracy of the prediction, 
we calculated the GLMerror as follows. Once the strains were predicted, we combined their individual (refer-
ence) profiles, obtaining a predicted (pooled) profile, which was compared to the observed environmental profile 
(query). The GLMerror was calculated as the percentage of predicted alleles differing between the predicted and 
query profiles:

= ∗GLMerror da
epa

100
(3)pred

where da is the number of alleles differing between the predicted and the query profiles and epapred is the number 
of alleles in the predicted profile.

Reference collection of Saccharomyces cerevisiae strains.  A collection initially composed by 292 
environmental and laboratory strains (described in Supplementary Table S4) was used both to generate the in 
silico and synthetic pools and as a reference for the GLM. Two strains isolated from the two preparations used for 
must inoculation were also added to the reference collection (named prep1_isolate and prep2_isolate). Genomic 
DNA was extracted by phenol-chloroform-isoamyl alcohol method from single-strain pure cultures and the SSR 
pattern composed by the amplicon lengths at every analysed locus was determined for each strain. The Chord 
distance (Dc)41, considered the most suitable metric for microsatellite data analyses42, was calculated among 
each couple of SRR patterns using a custom R script. The Neighbor-joining phylogenetic tree was then calculated 
from the distance matrix using the Phylip Neighbor 3.67 package43 and drawn using Figtree (http://tree.bio.ed.ac.
uk/). The tree was rooted using the midpoint method. To generate the reference dataset, the strain collection was 
pruned for redundancy using a recursive procedure. Briefly, GLM analysis was carried out on the complete list 
of profiles obtained from the strain collection (292 strains) using as query sample each single strain profile sepa-
rately. In case the analysis identified more than one reference strain associated to a single query profile, only one 
strain from the list of identified profiles was maintained in the reference dataset. This approach was adopted both 
to remove the identical strains and to reduce the effect due to the presence in the reference dataset of both hap-
loid and diploid strains. Indeed, diploid strains could be identified by the model as composed by either the exact 
diploid strain, other haploid strains, or all of them. The data pruning reduced the reference dataset to 274 strains.

Synthetic pools of Saccharomyces cerevisiae strains.  Synthetic pools of strains were generated by 
pooling DNAs of selected S. cerevisiae isolates and characterizing the SSRs loci in the resulting sample. The set of 
S. cerevisiae strains to be pooled was selected according to these requirements: (i) the strains were isolated from 
the same source (to mimic the real samples), (ii) the strains bore both strain-specific and shared alleles, (iii) the 
strains showed different levels of genetic similarity (from almost identical strains to divergent strains). Using 
these criteria, we selected five strains isolated from faeces. To generate the pool, equal amounts of DNAs extracted 
from pure cultures of the selected five S. cerevisiae strains were pooled to obtain combinations of strains encom-
passing from two to five strain DNAs, as described in Supplementary Table S1.

In silico patterns and assessment of the analytical procedures.  In silico patterns were computa-
tionally generated to mimic real samples. Single strains microsatellite patterns were obtained for a collection 
composed by environmental and laboratory strains as described in the above section. To generate the in silico 
patterns, from 2 to 6 single strain SSR patterns were randomly combined. One thousand in silico pattern were 
generated for each set of strains (2, 3, 4, 5, 6 randomly pooled strain profiles). We thereafter refer to the patterns 
used to generate the in silico profiles as “parental”. The in silico patterns were used as query to evaluate the per-
formances of the penalized GLM (see the GLM section for further details on the procedure), using the following 
parameters: (i) True positive rate (equation 4); (ii) False positives (the number of strains predicted as composing 
the pool but not used as parentals); (iii) the GLMerror as described in the GLM analysis section (see equation 3) 
in GLM analysis section).

= ∗True positive rate
P
Q

100
(4)

p

p

where Pp is the number parental strains correctly identified in the query and Qp is the number of parental strains 
used to generate the in silico pattern (query).

Must samples.  Grape musts and different type of ferments were analyzed for different cultivars, namely 
Sauvignon (Sauvignon blanc), Muller (Muller-Thurgau), Solaris and Chardonnay (Cabernet Chardonnay). Fifty 
liters of Sauvignon and Muller Thurgau fresh musts were inoculated each with different inocula: (i) prep1 or (ii) 
prep2, two preparations of S. cerevisiae strains selected for white must fermentation, or (iii) pied de cuve (enrich-
ment of the natural population present on grapes obtained in the winery by fermenting early-harvested grapes). 
Samples were collected before the inoculum (“must”) and, after the inoculum, every 4 days until the end of fer-
mentation and stored at −80 °C until DNA extraction. Extraction of DNA was carried out from 2 ml thawed must 
as previously described3. The composition of fungal populations was initially explored at the species level by mean 
of PCR-RFLP on the ITS1-5.8S-ITS2 region. The ITS1-5.8S-ITS2 region was amplified with the primers ITS1: 

http://tree.bio.ed.ac.uk/
http://tree.bio.ed.ac.uk/
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5′-GTTTCCGTAGGTGAACCTGC-3′ and ITS4: 5′-TCCTCCGCTTATTGATATGC-3′ as previously described3. 
The amplified DNA was then digested with HaeIII restriction enzyme as previously described44. The obtained 
band patterns were visualized by mean of gel electrophoresis and analysed by using the free software gelAnalyser 
(http://www.gelanalyzer.com). SSRs loci were analyzed from DNAs extracted from musts as described above and 
analysed with GLM.

Isolation of strains from must and identification via delta elements amplification.  One ml 
of must or ferment samples was plated onto solid YPD (1% Yeast Extract, 2% Peptone, 2% glucose, 2% agar) 
supplemented with penicillin/streptomycin (10 Units/ml penicillin, 0.01 mg/ml streptomycin). After 3 days 
incubation at 30 °C, colonies were further isolated and the yeast species was identified by means of PCR-RFLP 
on the ITS1-5.8S-ITS2 region (see above). S. cerevisiae isolates were characterized by means of delta element 
amplification as previously described45. The primers d1 (5′-CAAAATTCACCTATWTCTCA-3′) and d2 
(5′-GTGGATTTTTATTCCAACA-3′) were used. Delta PCRs were set up from a very small amount of pure yeast 
colony in 25 microliters of water and 25 microliters of 10 mg/ml of lyticase in Sorbitol 1 M, digested for 30 min-
utes at 37 °C. After centrifugation, the pellets were treated at 95 °C to inactivate the lyticase and then used as the 
PCR template. The PCR mixture consisted in buffer (10x, containing 1.5 mM Mg at 1x), 0.25 mM dNTP, 0.5 mM 
forward primer, 0.5 mM reverse primer, 0.02 U KAPA BioSystems DNA Polymerase (KAPA), water to a final vol-
ume of 20 microliters. The PCR thermal program of Delta amplification consisted in: after initial denaturation to 
activate Taq polymerase at 95 °C for 3 minutes, 95 °C for 30 seconds to denaturate DNA, then 42 °C for 30 seconds 
(for the first four cycles) and 45 °C for 30 s (for the 30 other cycles) for the annealing cycles and 72 °C for 2 minutes 
for the extension reaction. The amplification products were analyzed by means of gel electrophoresis (1.5% EtBr 
1.5% agarose) in TAE buffer. Amplicon lengths were quantified in comparison to a molecular ladder (FastRuler 
Middle Range DNA ladder, Thermo Fisher) by using the GelAnalyzer2010a software (freeware). Bands were 
considered identical when their size deviated by less than 5% of the average size of the group of similar bands. 
Eventually, strains present in different samples were visually identified by comparing the obtained band patterns.
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