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Mathematical model for volcanic 
harmonic tremors
Giordano Montegrossi  1,2, Angiolo farina3, Lorenzo fusi3,2 & Antonietta De Biase3

Harmonic tremors consist in the release of infrasonic energy associated with volcanic activity. the 
typical frequency range of harmonic tremors is 0.1–12 Hz. We suppose that the harmonic tremors are 
due to the formation of bubbles entrapped in cavities that oscillate converting thermal energy into 
mechanic energy. Reproducing the natural phenomenon through an experimental apparatus, we 
propose here a mathematical model to describe the oscillatory mechanism and to detect the frequency 
as a function of the main physical parameters. We show that the frequency obtained through the model 
is in agreement with the one obtained through experimental measurements and with the data available 
from the literature, proving the consistency of the proposed model.

Harmonic tremors with frequency 0.1–12 Hz often occur in volcanos related to eruptive phenomena, but they can 
also be present in volcanoes without any unusual activity1. Infrasounds are commonly reported as time series or 
spectrograms, to show the evolving frequency content in a signal2,3. Some of these tremors are attributed to being 
the result of more and more rapidly occurring pulses, while others are the result of an explosion. Finally, some 
harmonic tremors just emerge and disappear apparently not having a known cause.

The measurement of acoustic (infrasound) signals is important to localize the source of tremors and to gather 
a deeper insight on the phenomena responsible of their emergence4. The source is localized using a grid searching 
analysis as reported in4. To understand the dynamics of volcanic tremors, the fumarole thermal trends can also 
be studied. Thermal measurements are generally done by using infrared thermometers, and by investigating the 
non-linear behaviour in the temperatures we can discover the link between multiple fumaroles and the effect of 
the fluid dynamics at depth.

Recently Busse et al.5 have proposed that harmonic tremors are linked to thermoacoustic instabilities, i.e. the 
oscillations of large gas bubbles entrapped in cracks. This association is quite straightforward because volcanoes 
are surrounded by hydrothermal reservoirs, namely rock cracks in which vapor or gas bubble are heated by the 
magma. We however have to remark that the causes of the harmonic tremors are still uncertain and that a better 
understanding of possible sources would be a further step in expanding our knowledge6–10.

There are many non-linear behaviors possible in a volcanic system related to both fluid flow and chemical 
system, as commented e.g. in11. During the fast uprising of the gas, steam, liquid droplets and solid particles the 
gas temperature may span in the interval 80–1100 °C and turbulent and laminar motion alternate, generating 
oscillations related to fluid dynamic features and posing a challenge to the fluid sampling11–15.

A recent investigation16 carried out at Pisciarelli fumarole, Campi Flegrei volcano (Italy), reports the data from 
a seismic station located at 8 m distance from the fumarole. Polarization analysis results indicate that the signal 
is dominated by the vertical component, and originates from the vent. Its prominent spectral peak at ~10 Hz 
frequency is stable over time. A characteristic RSAM (Real-time Seismic-Amplitude Measurement) value is com-
puted daily by assuming as representative the minimum value registered during the night. The daily characteristic 
RSAM values (in m s−1) are used by the authors to obtain the reduced average seismogram of the tremor time 
series. This reduced signal (known as RSAM or fumarolic tremor) includes the tremors generated by the entire 
fumarolic system at Pisciarelli, the subterraneous feeding channels and the surface vents. During the period of 
observation, the amplitude of fumarolic tremor at Pisciarelli increased by more than one order of magnitude 
with many peaks that, according to the authors, are linked to the hydrothermal fumarolic activity and reflects the 
increasing temperature/pressure conditions of the hydrothermal system.
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Other experimental studies carried out at Stromboli (Italy)17,18, where continuous (strombolian) volcanic 
activity is present, measured gas velocity at fumaroles outlet of 10 m/s and pressure and thermal oscillations with 
frequency of ~2 Hz and average amplitude of 20 Pa and 30 °C.

In this paper we propose that a possible source of volcanic tremors is the oscillations of vapor bubbles con-
fined within cavities of the hydrothermal basin surrounding the volcano. The idea is not new (see1) and can 
explain phenomena occurring at shallow depths (i.e. not exceeding few km from the ground surface), so that 
steam can separate from the liquid. The rocks hosting an hydrothermal system show a large amount of fractures 
of millimeters and sub-millimeters width and length from few centimeters up to meters (e.g.19) in which vapor 
bubbles can form. Bubbles spontaneous oscillations induced by heat flux have been a research topic in the last two 
centuries (see20). In the hydrothermal systems the heat source could be the hot fluid upraising in a fumarolic duct 
(e.g. Pisciarelli), or the magma that seeps in cavity, fractures and volcanic conduits. The magma, while equilibrat-
ing its temperature with the one of the host rocks, releases the heat needed to support the bubbles oscillations, 
that efficiently convert the thermal energy into mechanical energy. Since volcanic tremors of frequency 2–10 Hz 
are a very common phenomenon observed worldwide, they can be related to fundamental physical effects such 
as bubble oscillations. The general idea is that vapor bubbles develop near the heat source and, under proper 
conditions, dissipate energy not only by conduction but also by performing mechanical work (i.e. oscillating).

The dynamics of a single vapor bubble in an incompressible or nearly incompressible liquid is a famous prob-
lem. In the authors knowledge, the first theoretical model was introduced in21, who considered an incompressible 
fluid. The majority of these works is reviewed in22. We also acknowledge the study of23 devoted to the collapse 
of a spherical vapor bubble in a subcooled liquid, and the one of24 in wich the growth and collapse of a vapor 
bubble inside a microtube is experimentally and theoretically studied. Vapor bubbles dynamics in microchannels 
is considered also in25. The problem considers a heater element producing vapour and a cooler at the interface. 
The solution of this free boundary problem is found for a steady-state condition in a rectangular geometry. A 
number of studies have dealt with the growth or collapse of an axisymmetric bubble near a plane wall26 and with 
the instability problem of an oscillating spherical bubble22. Many important experimental and theoretical studies 
have investigated the problem of motion and deformation of cavitation bubbles in water27–31. The results obtained 
so far, show that the asymmetry produced for large bubbles (due to the shear stress close to the wall) affects the 
dynamic evolution of the bubble itself.

In this study we mimic the natural phenomenon using an experimental apparatus and then we develop a 
mathematical model capable of describing the observations. The experimental set-up reproduces in the lab the 
bubble oscillations occurring in a rock cavity. The experiment, described in Section 1, consists in a capillary tube 
filled with pure water and heated from the bottom. The lateral wall of tube is properly insulated, so that the heat 
flow occurs only from the bottom of the tube. When the water reaches the boiling temperature we observe the for-
mation of a vapor bubble which grows up to a stable configuration around which it performs oscillations of small 
amplitude. We focus on this stage recording, by means of infrasonic detection system, the sound produced by 
the bubble oscillations. The analysis of the frequency spectrum revealed a peak in the spectrogram around 12 Hz.

To provide an insight on the bubble dynamics, a mathematical model of the system is presented in section 2. 
The aim of the model is to give a simple but rigorous description of the oscillatory behavior of this simple system 
that acts as a proxy for bubbles in fractures under a confining pressure (represented by the water column). The 
model is based on the energy balance between the liquid and vapor phase, where the vapor is treated as an ideal 
gas. To describe the phase transition between the two phases of the same single constituent (water) we have 
used the Clausius–Clapeyron relation. The FFT (Fast Fourier Transform) of the oscillating signal provided by 
the model exhibits a peak around 12 Hz, showing an excellent agreement with the spectrum obtained from the 
experimental measurements.

the experiment
The simple experiment proposed here, carried out in the IGG laboratories, evidences the dynamic of a vapor 
bubble on a lab scale. We designed this experiment to be as simple as possible using:

 (i) An amorphous silica tube 1 m long, 8 mm diameter, wall thickness 1 mm. The amorphous silica tube is 
needed for safety, because it is able to resist to both the thermal stress and the shock induced by bubble 
vibrations;

 (ii) Pure water (MilliQ grade);
 (iii) Pyro-Bloc modules (Lynn Manufacturing inc.);
 (iv) Bunsen burner (air-methane).
 (v) Nikon D3000 buit-in condenser microphone.
 (vi) OriginLab software for the determination of the spectrogram of the recorded signal.

The diameter of the silica tube is not very important as long as the tube diameter is small enough to prevent 
convective motion but sufficiently large to minimize the meniscus effect. During our experiments, we tested dif-
ferent pipes (6, 8, 10, 12 mm of diameter) and in the 12 mm tube diameter the phenomenon do not present, likely 
due the bubbles upraising and generating convective cells.

The tube is suspended over a Bunsen burner and then inserted in a 5 cm thick PyroBloc module where a hole, 
having the same diameter of the tube, has been previously drilled. The tube is heated from the bottom since the 
5 cm thickness PyroBloc practically avoids any lateral heating. The silica tube is filled with pure water (MilliQ 
grade) up to nearly 60 cm. After having set up the system, the Bunsen burner is turned on and positioned with the 
oxidizing flame at the tube bottom (Figs 1 and 2).

After approximately 30 minutes a vapor bubble of nearly 3 cm height is formed at the bottom of the tube. 
For about 30 minutes after the bubble forming, the system performs small oscillations. The vapor bubble acts 
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as a “spring” for the liquid column above it, which performs oscillations with amplitude of the order of a few 
millimeters. Then the bubble collapses and, in a relatively short time, a second bubble which grows very rapidly 
is formed. The expansion of the second bubble eventually produces a sort of “explosion” that makes the water 
column outpour from the tube.

The experimental data shown here refer to the second stage, that we named “oscillatory stage”. In Fig. 3 the 
spectrogram of the recorded periodic signal is reported, showing a peak around 12 Hz.

Figure 1. Experimetal apparatus. Silica tube is 75 cm long, 8 mm diameter, 1 mm thickness. Pyro Block height 
is 5 cm, size 20 × 20 cm. Bunsen Burner have a methane/air oxydizing flame.
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the Mathematical Model
We consider a one dimensional model as the one depicted in Fig. 4, and focus on the second stage (i.e. the “oscil-
latory stage”), so that the initial time t = 0, corresponds to the time at which the vapor bubble has just formed. 
We denote by L the height of the liquid column and by y the vertical coordinate (pointing upward) so that y = 0 
is the tube bottom and y = h(t) represents the height of the vapor bubble. We assume that in the vapor phase, [0, 
h], the physical variables do not depend on y and model the liquid column, [h, h + L], as a body moving with 
uniform velocity. The mathematical problem is formulated writing the energy balance for the liquid and vapor 
phase (coupled with appropriate interface conditions) and the motion equation for liquid column. We remark 
that on the interface h(t) (which is a free boundary) a vapor-liquid phase transitions takes place, so that h(t) is not 
a material interface.

the liquid phase. Neglecting convective motions the energy equation in the liquid column yields

Figure 2. Close up, with the bunsen burner flame heating from below. The pyro block is cut in two to show the 
hole hosting the silica tube.

Figure 3. Spectrogram of a 5 minutes period of the acoustic signal recorded during the experiment.
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where: θl(y, t) is the water temperature, h t( ) is the vapor-liquid interface vertical velocity and ρl, cl, kl are the den-
sity, specific heat, heat conductivity of water. The boundary and initial conditions are

θ θ θ θ θ θ+ = = =h L t h t t y y( , ) , ( , ) ( ), ( , 0) ( ), (2)l a l l in

where θa is the ambient temperature, θ(t) is the temperature of the vapor in the bubble and θin(y) is the temper-
ature profile at t = 0. We remark that (2)2 provides the coupling between the temperature field in the water and 
the the bubble vapor temperature whose evolution equation will be illustrated in Section 2.2. Introducing the 
transformation

ξ = −y h t( ),

and the new variable
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(5)
l

l l

is the water thermal diffusivity and where ho is the “equilibrium” height of the vapor bubble, i.e. the height around 
which the oscillations occur. The quantity ho will be also used as the reference height of the vapor bubble.
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Figure 4. Schematic representation of the system. In blue is evidenced the liquid column, in pink the vapour 
phase after the bubble has formed. The bunsen burner provides the heat flow from the bottom.
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the vapor bubble. We model the vapor as an ideal gas in which temperature and pressure are linked by 
Clayperon’s equation32. Hence we write

λ
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where p is the vapor pressure, ρ is the vapor density, λ is the latent heat of vaporization, r is the specific gas con-
stant and θo is the evaporation temperature at the reference pressure po. From (6) we see that
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energy balance. From the first principle of thermodynamics the change in internal energy of the vapor is 
given by

δ= −dU Q p dV, (9)

where δQ is the infinitesimal increment of heat supplied to the system and pdV is the infinitesimal work done by 
the system, V being the volume of the bubble. We notice that V(t) = Ah(t), where A is the cross section area of the 
capillary tube. In our case, since the lateral wall is adiabatic and no heat source/sink is present, we have

δ = − Q Q Q dt( ) ,b h

where Qb > 0 is the heat supplied at the bottom surface by the bunsen burner (constant in time) and Qh is the heat 
flux through the interface y = h(t). The infinitesimal variation of internal energy dU in the vapor phase is given by 
dU = d(ρVcvθ), where cv is the specific heat at constant volume. Recalling that cp − cv = r (cp being the specific heat 
at constant pressure) (9) rewrites as

ρ θ− = − − . d V c r Q Q dt pdV[ ( ) ] ( ) (10)p b h

Exploiting (6) and (8) we write
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where ρV is the mass of the vapor within the bubble. To close Eq. (11) we need an expression for Qh. To this aim, 
we recall that h(t) is an evaporation/condensation interface: here the heat fluxes have a jump proportional to the 
heat absorbed, or released, by the phase change. Applying the Stefan condition (see33 or34)
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with θl obtained solving (3), (4). In conclusion Eq. (11) can be rewritten in the following form
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Momentum balance for the liquid column. The momentum equation for the liquid column is given by
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where
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is the mass of the liquid column, pa is the atmospheric pressure acting on the free surface of the liquid column and 
where the last term represents the damping due to viscous friction. The right hand side of (14) is therefore the net 
force acting on the water column. Choosing the reference pressure as (the reference pressure is thus the sum of 
the ambient pressure and the pressure exerted by the water column)
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the non dimensional problem. Let us rescale the problem with non dimensional variables. We introduce

ξ ξ= = = = 
 ˜L h h h V Ah h t t t, , , ,o o c

where tc is a characteristic time still to be selected and ho is the characteristic height of the bubble. Next we set

θ θ θ θ ρ ρ ρ= Θ = Θ = =
∼






p p p, , , ,o o o o

with po reference pressure given by (16), θo the water boiling temperature at pressure po and

ρ
θ

=
p

r
,

(18)o
o

o

reference vapor density. In particular, (7) rewrites as

ρ
θ

λ
θ θ

=





−


 −









.
 



r
1 exp 1 1

(19)o

Equation (3) becomes

ξ

∂Θ
∂

=










∂ Θ

∂

∼ ∼

t̃
t
t

,c

D

2

2

where tD = L2D−1 is the characteristic diffusive time in the water. The boundary and initial conditions become
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where tb is the characteristic time of the heat supply due to the bunsen burner and th is the characteristic time of 
phase transition, so that (13) becomes
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Since we are interested in the oscillation of the bubble we select to as characteristic time, that is tc = to. We end 
up with the following mathematical problem for the unknowns (We omit the “~” to keep notation light) Θ(ξ, t), 
ζ(t) and h(t)
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System (25) is quite involved because two nonlinear Ordinary Differential Equations (ODEs) are coupled with 
a parabolic equation for Θ. We however remark that ν −~ 10 9, and so only a thin layer of water facing the interface 
is heated by the vapor. This allows to approximate the heat flux by (see Appendix A)

ξ πν
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where ξd is the rescaled thickness of the thermal boundary layer in which temperature decreases from the boiling 
temperature to ambient temperature. Setting v = h, the system (25) can be simplified getting to the following 
first-order system of ODE’s
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where ρ(ζ) is given by (22) and F(ζ, t) is given by (27).

numerical Results
Here we plot the solution of system (28) using the parameters of Tables 1 and 2 and using the following initial data

ζ ζ= = − = = .h v e(0) 1 (0) 1 04 (0) 13 2241o

characteristic time value parameter value

to 0.0138 s α 5.9438 · 10−6

tb 2.3208 · 103 s δ 1.0158 · 10−8

th 1.3580 · 106 s χ 1.3816 · 10−4

td 99.8393 s ν 5.4922 · 10−9

tD 2.5116 · 106 s Θa 7.81 · 10−1

γ 1.3122

ζo 13.2241

Table 2. Characteristic times and non-dimensional parameters.

Parameter Value Dimensions Description

ρo 0.59776 Kg/m3 vapor density at po and θo

ρl 0.9982071 Kg/m3 density of the water

pa 101325 Kg/(m⋅s2) atmospheric pressure

A 5.0265 · 10−5 m2 cross section area of the tube

ho 3 · 10−2 m initial height of the vapor bubble

g 9.80665 m/s2 gravity constant
Qb 1 · 10−3 W bunsen heat flux

L 6 · 10−1 m height of the water column

λ 2.272 · 106 J/Kg water latent heat of vaporization

kl 0.6 W/(m⋅°K) water heat conductivity

cl 4.186 · 103 J/(Kg⋅°K) water specific heat

θo 372.2 °K vapor temperature at po

θa 293.16 °K ambient temperature

μ 1.0016 · 10−3 Kg/(m⋅s) water viscosity

r 4.616 · 102 J/(Kg⋅°K) vapor specific gas constant

cp 1.94 · 103 J/(Kg⋅°K) vapor specific gas constant

cv 1.4784 · 103 J/(Kg⋅°K) vapor specific gas constant

H 10 m water column height corresponding to atmospheric pressure

Table 1. Dimensional parameters.
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In particular we plot the height h(t) and the temperature θ(t) of the bubble as a function of time, see Figs 5 
and 6. Finally we perform a FFT (Fast Fourier Transform) of the oscillation signals and evaluate the frequency 
domain. The power spectrum is shown in Fig. 7 where we can see a peak at ~12 Hz, i.e. at the same frequency 
recorded during the experiment (see Fig. 3). In particular, Fig. 6 shows that the bubble temperature is essentially 
constant during the oscillations, meaning that the phase change process has little influence on the dynamics. So, 
we can consider

ρ ρ=h h, (29)o o

with ρo given by (18) and

ρ ρ
=

p p ,
(30)

o

o

po being the “equilibrium” pressure given by (16). This fact allows to simplify considerably the mechanical 
model (14). Indeed, neglecting the damping term, Eqs (14), (6)2, (29) and (30) yield

= − − + =
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Recalling (15), (23) and setting h(t) = ho(1 + y(t)), we have
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Assuming that y 1 we approximate the above with

+ = − .̈y y
t

1
o
2

whose frequency of oscillation is

ν
π π

= =


 +



 .

t
g
h

H
L

1
2

1
2

1
(32)o o

Referring to the data of Table 1 we obtain ν ≈ 12 Hz, i.e. the recorded frequency and the output of the complete 
model (28). In particular, (32) leads to some of observations that we shall discuss in the next section.

Discussion and Conclusions
The formation of bubbles in a liquid is an efficient way of mechanical energy generation and this fact has been 
recognized in geophysics35. Boiling of groundwater causes the formation and growth of bubbles in the liquid 
permeating the rocks of the geothermal and volcanic system. The bubbles start to oscillate if supported by a 
suitable heat flux. In particular, the bubbles oscillation occurs at a frequency which is derived neglecting both the 
phase change process and the temperature variations. So, from (14) we derive (32). Equation (31) can be related 
to Mathieu equation36 that is known to produce resonance. In our interpretation, among the many possible 
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oscillating frequencies occurring in the natural system, it is likely that a number of different bubbles begin to 
resonate producing a harmonic tremor at a given frequency.

As one can easily recognize from (32), the frequency is a function of the characteristic bubble height and 
the column length. A 3D plot of the function (32) is shown in Fig. 8. The pair (ho, L) spans in the domain [0.01, 
1] × [0.5, 20] meaning that we are considering 1 cm as the minimum height of the bubble and 1 m as the max-
imum, while minimum L is 0.5 m and maximum L is 20 m. As one can see, the frequency range is [0.6, 12.09] 
which is exactly the range of the frequencies for harmonic tremors recorded all over the world. To provide a better 
understanding on how we may accurately model the measured frequency for bubble oscillation and the effect 
of H/L in Eq. (32), we model the fumarolic tremor measured by16 at Pisciarelli fumarole, where the frequency at 
fumarole head is nearly 10 Hz. We model the system as our lab experiments, using the same conditions (the real 
conditions are very similar, only the temperature is higher) with a H/L ratio of 0.056667. Setting Qh = 0.1 W (see 
Table 1), we are able to reproduce the measured frequency span.

The heat flux affects the timespan of the phenomenon, meaning that Qh = 10−3 W (see Table 1) is sufficient 
to sustain the oscillation, while with larger values of Qh the bubble size increases, modifying the oscillation fre-
quency, until it disappears. This effect provides a frequency span for the oscillation of a single bubble, that in the 
natural system could overlap with the resonance between different bubbles oscillating at different frequencies. At 
Vulcano, Vulcano Island (Italy)37 many seismic signals related to bubbles in the hydrothermal system are detected. 
In particular, these signals are produced by fluid flow inside cracks and conduits with frequencies that depend 
on the gas volume fraction. Among them there are monochromatic events that show a single frequency peak at 
6 or 8 Hz and generally last about 10–15 s, with few of them lasting up to 30–50 s with a slow amplitude decay. 
According to the author, these features are highly similar to the so-called “tornillos” found in other volcanoes 
(Galeras38, Tongariro39, Tatun Volcano Group40).

To model the 6–8 Hz oscillations we need a H/L (parameters from (32) and Table 1) ratio of 0.05, with a heat 
flux Qh of 0.1 W. If we use a H/L of 0.0125 with an heat flux Qh of 0.1 (more than 50 s) or 0.4 to reduce the lifetime 
of the phenomenon, we obtain oscillations in a frequency range of 2–4 Hz corresponding to the higher infrasonic 
signal frequency detected in37. Ripepe et al.4 measured infrasonic waves with similar spectral content between 
2 and 10 Hz at Stromboli volcano crater. The peaks centered at 5 Hz can be attributed to gas bubbles expansion, 
that is the phenomenon studied in this paper. Therefore we may state that our model is capable of reproducing 
the measured infrasound signals for the case study of Solfatara (Pisciarelli fumarole), Vulcano (Vulcano Island) 
and Stromboli. In particular, the case of Vulcano covers typical infrasound signals found in many other volcanoes 
around the world. In this work, we are able to reproduce the measured infrasound signals from different volca-
noes (namely Solfatara at Pisciarelli fumarole, Vulcano, Stromboli) in which the infrasound signals are attributed 
to bubble oscillations in cracks or in magma (Stromboli). We remind that one of the main challenge is to prove 
the relation between the emitted infrasound and the bubble oscillations, but once this is done we are able to accu-
rately reproduce the signal frequency with our model.

Appendix A
Here we show a procedure to get an approximated expression for Θξ(0, t) appearing in the system (25). We 
assume that the initial thermal profile in the liquid can be approximated by

ξ
ξ ξ

ξ ξ
Θ =







≤ <

Θ ≤ ≤
( , 0)

1 0 ,
1, (33)

d

a d

where we recall that Θa is the rescaled ambient temperature. The above means that in a layer of thickness ξd the 
temperature of the liquid is the boiling temperature, while outside the layer the fluid is everywhere at ambi-
ent temperature. A reasonable value for ξd is 1/60. Indeed, recalling that the length of the column is 60 cm, the 
assumption ξd = 1/60 means that we have 1 cm of the water column close to the bubble at the boiling temperature, 
while the rest is essentially at ambient temperature. Introducing the new non dimensional variables

η ξ
ν

η ξ= = Θ − Θv t t( , ) ( , ) ,a

we get (see Table 2)
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