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Abstract

We investigate spatial log-concavity and spatial power concavity of solutions to
parabolic systems with log-concave or power concave initial data in convex domains.

2010 AMS Subject Classifications: 35E10, 35K51, 35D40

1 Introduction

In a series of previous papers [18, 19, 20, 21, 22], two of the present authors investigated
concavity properties of solutions to parabolic equations with respect to space and time
variables, introducing also the notion of parabolic concavity. In a recent paper [15], the
authors of this paper treated weakly coupled parabolic systems with vanishing initial data
and investigated again concavity properties with respect to time and space variables. In
this paper we study spatial concavity properties of solutions to parabolic systems with
non vanishing initial data.

Concavity properties of solutions to elliptic and parabolic problems are a classical
subject of research and have been largely investigated. Here we just refer the reader to the
classical monograph by Kawohl [25] and to the papers [1]–[8], [10], [12], [14]–[24], [26]–[37],
some of which are closely related to this paper and the others include recent developments

∗Current Address: Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba,
Meguro-ku, Tokyo 153-8914, Japan
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in this area. However very little is known concerning concavity properties of solutions
to elliptic and parabolic systems and the only available results to our knowledge are in
[15], which treats power concavity properties with respect to time and space variables for
weakly coupled parabolic systems with vanishing initial data. Unfortunately, in order to
be able to take account of the time variable, the arguments in [15] are not applicable to
the case of non vanishing initial data. To our knowledge, this paper is the first one dealing
with spatial concavity properties of solutions to parabolic systems with non vanishing
initial data.

Let Ω be a bounded convex domain in RN (N ≥ 1), D := Ω × (0,∞) and m ∈
{1, 2, . . . }. We denote by SN the space of real N ×N symmetric matrices. Let

u = (u(1), . . . , u(m)) ∈ C2,1(D : Rm) ∩ C(D : Rm)

satisfy the parabolic system
∂tu

(k) + F (k)(x, t,u,∇u(k),∇2u(k)) = 0 in D , k = 1, . . . ,m,

u(k)(x, t) > 0 in D , k = 1, . . . ,m ,

u(x, t) = 0 on ∂Ω× [0,∞) ,

u(x, 0) = u0(x) in Ω ,

(1.1)

where u0 = (u
(1)
0 , . . . , u

(m)
0 ) ∈ C(Ω : [0,∞)m) and

u
(j)
0 > 0 in Ω , u

(j)
0 = 0 on ∂Ω for j = 1, . . . ,m .

Throughout this paper we assume the following conditions on F = (F (1), . . . , F (m)):

(A1) F = (F (1), . . . , F (m)) ∈ C(D ×Rm ×RN × SN : Rm);

(A2) For each k ∈ {1, . . . ,m}, F (k) is a degenerate elliptic operator, that is F (k)(x, t, u, θ, ·)
is non-increasing in SN for every fixed (x, t, u, θ) ∈ D ×Rm ×RN .

Here we refine the technique developed in [15], [20] and [22] and investigate spatial concav-
ity properties of the solution u under conditions (A1) and (A2). Our approach is based
on the construction of the spatially concave envelope of the solution and the viscosity
comparison principle, and it is different from those of [11], [13], [24] and [28]–[35] treating
spatial concavity properties of the solutions to parabolic equations.

We state our main theorems in Section 4. Here we state a result on the spatial log-
concavity of solutions to parabolic systems which directly descends from them.

Theorem 1.1 Let Ω be a bounded convex domain in RN and d1, d2 > 0. Let (u, v) ∈
C2,1(D : R2) ∩ C(D : R2) satisfy

∂tu− d1∆u+ f(x, t, u, v,∇u) = 0 in D,

∂tv − d2∆v + g(x, t, u, v,∇v) = 0 in D,

u, v ≥ 0 in D,

u(x, t) = v(x, t) = 0 on ∂Ω× [0,∞),

u(x, 0) = u0(x) , v(x, 0) = v0(x) in Ω ,

(1.2)
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where f and g are nonnegative continuous functions in D × [0,∞)2 × RN . Assume the
following conditions:

(i) The viscosity comparison principle holds for system (1.2);

(ii) The functions

ft,θ(x, r, s) := e−rf(x, t, er, es, erθ) and gt,θ(x, r, s) := e−sg(x, t, er, es, esθ)

are convex in Ω× (0,+∞)2 for every fixed t > 0 and θ ∈ RN .

Then log u(·, t) and log v(·, t) are concave in Ω for every fixed t ∈ [0,∞), provided that
log u0 and log v0 are concave in Ω.

For the viscosity comparison principle for parabolic systems, see Section 4. As a corollary
of Theorem 1.1, we have:

Corollary 1.1 Let Ω be a bounded convex domain in RN and d1, d2 > 0. Let (u, v) ∈
C2,1(D : R2) ∩ C(D : R2) satisfy

∂tu− d1∆u+ v|∇u|a + c1u = 0 in D,

∂tv − d2∆v + u|∇v|b + c2v = 0 in D,

u, v ≥ 0 in D,

u(x, t) = v(x, t) = 0 on ∂Ω× [0,∞),

u(x, 0) = u0(x) , v(x, 0) = v0(x) in Ω ,

(1.3)

where a ≥ 0, b ≥ 0, c1 > 0 and c2 > 0. Then log u(·, t) and log v(·, t) are concave in Ω for
any fixed t ∈ [0,∞), provided that log u0 and log v0 are concave in Ω.

Next we state a result on the power concavity for porous medium systems.

Theorem 1.2 Let Ω be a bounded convex domain in RN and d1, d2 > 0. Let (u, v) ∈
C2,1(D : R2) ∩ C(D : R2) satisfy

∂tu− d1∆(uα) + f(v) = 0 in D,

∂tv − d2∆(vβ) + g(u) = 0 in D,

u, v > 0 in D,

u(x, t) = v(x, t) = 0 on ∂Ω× [0,∞) ,

u(x, 0) = u0(x) , v(x, 0) = v0(x) in Ω ,

(1.4)

where α, β > 1. Assume the following:

(i) The viscosity comparison principle holds for system (1.4);

(ii) The functions

f(ξ, η) := ξ
α−3
α−1 f

(
η

2
β−1

)
and g(ξ, η) := η

β−3
β−1 g

(
ξ

2
α−1

)
are convex with respect to (ξ, η) ∈ (0,∞)2.
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Let p := (α− 1)/2 and q := (β − 1)/2. Then u(·, t)p and v(·, t)q are concave in Ω for any
t > 0, provided that up0 and vq0 are concave in Ω.

For sufficient conditions for the concavity of the functions f = f(ξ, η) and g = g(ξ, η), see
e.g., [18, Lemma A.1].

The paper is organized as follows. In Section 2 we introduce some notation and recall
basic properties of concave functions. In Section 3 we recall some basic viscosity theory
for systems and prove a technical lemma. Furthermore, we give a uniqueness result for
parabolic systems (see Theorem 3.2) which is enough for the purposes of the next section.
In Section 4 we state and prove the main results of this paper, see Theorems 4.1 and 4.2,
which are general results on power concavity and log-concavity of solutions to problem
(1.1). Theorem 1.1 is a corollary of Theorem 4.2. In Section 5 we apply Theorem 4.1 to
the porous medium equation and related systems and prove Theorem 1.2.

Acknowledgements. The first author was partially supported by the Grant-in-Aid for
Scientific Research (A)(No. 15H02058) from Japan Society for the Promotion of Science.
The third author was partially supported by the PRIN 2102 project “Elliptic and parabolic
differential equations: geometric aspects, related inequalities and applications”, by the
INdAM - GNAMPA and by a ”Progetto Strategico di Ateneo 2015” of Università di
Firenze.

2 Preliminaries

Throughout the paper, let N and n be natural numbers and let SN denote the space of
N ×N real symmetric matrices. If A, B ∈ SN , by A ≥ 0 we mean that A is non-negative
definite, while A ≥ B means A−B ≥ 0. For n ∈ {2, 3, . . . }, we set

Λn :=

{
λ = (λ1, . . . , λn) : 0 ≤ λi ≤ 1 (i = 1, . . . , n),

n∑
i=1

λi = 1

}
.

For any r = (r(1), . . . , r(n)) and s = (s(1), . . . , s(n)) ∈ Rn, we write

r ≤ s if r(k) ≤ s(k) for each k = 1, . . . , n.

For any a = (a1, . . . , an) ∈ (0,∞)n, λ ∈ Λn and p ∈ [−∞, +∞], we set

Mp(a;λ) :=


[λ1a

p
1 + λ2a

p
2 + · · ·+ λna

p
n]

1/p
if p ̸= −∞, 0, +∞,

max{a1, . . . , an} if p = +∞,

aλ1
1 · · · aλn

n if p = 0,

min{a1, a2, . . . , an} if p = −∞,

which is the (λ-weighted ) p -mean of a. For a = (a1, . . . , an) ∈ [0,∞)n, we define Mp(a;λ)
as above if p ≥ 0 and Mp(a;λ) = 0 if p < 0 and

∏n
i=1 ai = 0. Notice that Mp(a;λ) is a

continuous function of the argument a. In the case n = 2, for simplicity, we write

Mp(a, b;µ) := Mp((a, b); (1− µ, µ))
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for a, b ∈ [0,∞), µ ∈ [0, 1] and p ∈ [−∞,∞].

Due to the Jensen inequality, we have

Mp(a;λ) ≤ Mq(a;λ) if −∞ ≤ p ≤ q ≤ ∞, (2.1)

for any a ∈ [0,∞)n and λ ∈ Λn. Moreover, it easily follows that

lim
p→+∞

Mp(a;λ) = max{a1, . . . , an} , lim
p→−∞

Mp(a;λ) = min{a1, . . . , an}

and limp→0Mp(a;λ) = M0(a;λ).
We recall the definition of p-concavity of nonnegative functions in convex sets.

Definition 2.1 Let K be a convex set in RN , Q := K × (0,∞) and p ∈ [−∞,∞].
A nonnegative function v is said spatially p -concave in Q if, for every fixed t > 0,

v
(
(1− λ)x1 + λx2, t

)
≥Mp

(
v(x1, t), v(x2, t);λ

)
for all x1, x2 ∈ K and λ ∈ (0, 1).

Roughly speaking, v is spatially p -concave in Q if

• case p = ∞: for every fixed t > 0, v(·, t) is a nonnegative constant function in K;

• case p > 0: for every fixed t > 0, v(·, t)p is concave in K;

• case p = 0: for every fixed t > 0, log v(·, t) is concave in K;

• case p < 0: for every fixed t > 0, v(·, t)p is convex in K;

• case p = −∞: for every fixed t > 0, the level sets {x ∈ K : v(x, t) > d} are convex
for every d ≥ 0.

Then the following hold (see e.g., [28]).

(a) Let K be a convex set in RN , Q := K × (0,∞) and −∞ ≤ p ≤ ∞. Due to
Definition 2.1 and (2.1), if v is spatially p -concave in Q, then v is spatially q -concave
in Q for any −∞ ≤ q ≤ p ;

(b) Let {vj}j∈N be nonnegative functions in Q such that, for every j ∈ N, vj is spatially
pj -concave in Q for some pj ∈ [−∞,∞]. Let v be the pointwise limit of the sequence
vj in Q and limj→∞ pj = p ∈ [−∞,∞]. If v is continuos with respect to the time
variable, then v is spatially p -concave in Q;

(c) Let p, q ∈ [0,∞]. If v and w are spatially p -concave and q -concave in Q, respectively,
then vw is spatially r -concave in Q, where

1

r
=

1

p
+

1

q
.
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3 Viscosity solutions of parabolic systems

In this section we recall the definition of viscosity solutions of elliptic and parabolic systems
and some basic related notions and properties. Furthermore, we establish a comparison
principle for viscosity solutions of (1.1).

Let Ω be a bounded convex domain in RN (N ≥ 1) and T > 0. For any function w in
DT := Ω× (0, T ), we denote the semi-jets P2,±w(x, t) of w at (x, t) ∈ DT by

P2,+w(x, t) :=

{
(a, θ,X) ∈ R×RN × SN : w(y, s) ≤ w(x, t) + a(s− t) + ⟨θ, (y − x)⟩

+
1

2
⟨X(y − x), y − x⟩+ o(|x− y|2 + |t− s|) as DT ∋ (y, s) → (x, t)

}
,

P2,−w(x, t) :=

{
(a, θ,X) ∈ R×RN × SN : w(y, s) ≥ w(x, t) + a(s− t) + ⟨θ, (y − x)⟩

+
1

2
⟨X(y − x), y − x⟩+ o(|x− y|2 + |t− s|) as DT ∋ (y, s) → (x, t)

}
.

Furthermore, we define the closures of semi-jets by

P2,±
w(x, t) :=

{
(a, θ,X) ∈ R×RN × SN : there exists a sequence {(xj , tj , aj , θj , Xj)}

in DT ×R×RN × SN such that (aj , θj , Xj) ∈ P2,±w(xj , tj)

and (xj , tj , aj , θj , Xj) → (x, t, a, θ,X) as j → ∞
}
.

Then it follows that

P2,±
(ψ + w)(x, t) = (∂tψ(x, t),∇ψ(x, t),∇2ψ(x, t)) + P2,±

w(x, t)

for all ψ ∈ C2,1(DT ).

Definition 3.1 Let m ∈ {1, 2, . . . }. Assume (A1) and (A2).
(i) Let u = (u(1), . . . , u(m)) be a vector of upper semi-continuous functions in DT . We say
that u is a viscosity subsolution of (1.1) if

a+ F (k)(x, t,u(x, t), θ,X) ≤ 0

for (x, t) ∈ DT , k ∈ {1, . . . ,m} and (a, θ,X) ∈ P2,+
u(k)(x, t).

(ii) Let u = (u(1), . . . , u(m)) be a vector of lower semi-continuous functions in DT . We say
that u is a viscosity supersolution of (1.1) if

a+ F (k)(x, t,u(x, t), θ,X) ≥ 0

for (x, t) ∈ DT , k ∈ {1, . . . ,m} and (a, θ,X) ∈ P2,−
u(k)(x, t).

(iii) We say that u is a viscosity solution of (1.1) if u is both a viscosity subsolution and
supersolution of (1.1).
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The following trivial lemma and its corollary are crucial to the proof of our main results
(see Section 4).

Lemma 3.1 Let k ∈ {1, . . . ,m} and (x, t) ∈ DT . Assume that there exists (ā, θ̄, X̄) ∈
P2,−u(k)(x, t) such that ā + F (k)(x, t,u(x, t), θ̄, X̄) ≤ 0. Then a = ā, θ = θ̄ and X ≥ X̄
for every (a, θ,X) ∈ P2,+u(k)(x, t).

Proof. If (a, θ,X) ∈ P2,+
u(k)(x, t), then

w(x, t) + ā(s− t) + ⟨θ̄, (y − x)⟩+ 1

2
⟨X̄(y − x), y − x⟩+ o(|x− y|2 + |t− s|) ≤ w(y, s)

≤ w(x, t) + a(s− t) + ⟨θ, (y − x)⟩+ 1

2
⟨X(y − x), y − x⟩+ o(|x− y|2 + |t− s|)

for all (y, s) in a neighborhood of (x, t). This implies Lemma 3.1. 2

Corollary 3.1 Assume (A1) and (A2). If, for every (x, t) ∈ DT , there exists ϕ =
(ϕ(1), . . . , ϕ(m)) of class C2 touching u by above at (x, t) (i.e. ϕ(x, t) = u(x, t) while
ϕ(y, s) ≥ u(y, s) for (y, s) in neighborhood of (x, t)), such that

∂tϕ
(k)(x, t) + F (k)(x, t,u(x, t),∇ϕ(k)(x, t),∇2ϕ(k)(x, t)) ≤ 0 for k = 1, . . . ,m ,

then u is a viscosity subsolution of (1.1).

Proof. Set
ā = ∂tϕ

(k)(x, t) , θ̄ = ∇ϕ(k)(x, t) , X̄ = ∇2ϕ(k)(x, t),

and apply the previous lemma for every (x, t) ∈ DT and k = 1, . . . ,m. Then Corollary 3.1
follows from Definition 3.1 (i), (A1) and (A2). 2

Following [23], we introduce the following two conditions on F = (F1, . . . , Fm).

(C1) There exists λ > 0 such that, if v = (v(1), . . . , v(m)), w = (w(1), . . . , w(m)) ∈ Rm,
maxk∈{1,...,m}(v

(k) − w(k)) > 0 and (x, t, θ) ∈ DT × RN , then there exists ℓ ∈
{1, . . . ,m} such that

v(ℓ) − w(ℓ) = max
k∈{1,...,m}

(v(k) − w(k)) > 0

and
F (ℓ)(x, t,v, θ,X)− F (ℓ)(x, t,w, θ,X) ≥ λ(v(ℓ) − w(ℓ))

for all X ∈ SN ;

(C2) There is a nonnegative continuous function ω on [0,∞) with ω(0) = 0 such that, if
X, Y ∈ SN , σ > 1 and

−3σ

(
I O
O I

)
≤
(
X O
O Y

)
≤ 3σ

(
I −I
−I I

)
,

then

F (k)(y, s, r, σ(x− y),−Y )−F (k)(x, t, r, σ(x− y), X) ≤ ω(σ(|x− y|+ |t− s|)2 +1/σ)

for all k ∈ {1, . . . ,m}, t, s ∈ [0,∞) , x, y ∈ Ω and r ∈ Rm.
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Remark 3.1 (C2) implies (A2). See [9, Remark 3.4].

Similarly to [23, Theorem 4.7], we can prove the following comparison principle.

Theorem 3.1 Let Ω be a bounded domain in RN , T > 0 and DT := Ω × (0, T ). As-
sume (A1), (C1) and (C2). Let u = (u(1), . . . , u(m)) and v = (v(1), . . . , v(m)) be upper
semi-continuous and lower semi-continuous on Ω × [0, T ), respectively. If u is a viscos-
ity subsolution of (1.1) and v is a viscosity supersolution of (1.1) such that u ≤ v on
∂Ω× [0, T ) and Ω× {0}, then u ≤ v in DT .

Proof. See the proof of Theorem 3.1 in [15]. 2

However, to apply our main results, contained in the next Section 4, only the following
weak comparison principle is needed.

(WCP) If u is a viscosity subsolution of (1.1) and v is a viscosity supersolution of (1.1)
such that u ≥ v in Ω× [0, T ), while u = v on ∂Ω× [0, T ) and Ω×{0}, then u = v
in DT .

Sufficient conditions for (WCP) to hold are given in the following theorem.

Theorem 3.2 Let Ω be a bounded domain in RN , T > 0 and DT := Ω× (0, T ). Assume
(A1), (C2) and the following:

(C3) There exists λ > 0 such that, if (x, t, θ) ∈ DT × RN and v = (v(1), . . . , v(m)),
w = (w(1), . . . , w(m)) ∈ Rm with v ≥ w and v ̸= w, then there exists ℓ ∈ {1, . . . ,m}
such that

v(ℓ) − w(ℓ) = max
k∈{1,...,m}

(v(k) − w(k)) > 0

and
F (ℓ)(x, t,v, θ,X)− F (ℓ)(x, t,w, θ,X) ≥ λ(v(ℓ) − w(ℓ))

for all X ∈ SN .

Then (WCP) holds.

Proof. The proof is again the same of Theorem 3.1 in [15], just using (C3) in place of
(C2). 2

Remark 3.2 We pick the occasion to point out that Theorem 3.1 in [15] was wrongly
stated. Indeed condition (A1) in [15] coincides with condition (C3) here, which gives
Theorem 3.2, but it is not sufficient for Theorem 3.1 (which instead requires the stronger
assumption (C1)). On the other hand, this does not affect the results of [15], since (WCP)
is enough for [15, Theorem 4.1].
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4 Spatial concavity

Let Ω be a bounded convex smooth domain in RN , D := Ω× (0,∞) and m ∈ {1, 2, . . . }.
Let u = (u(1), . . . , u(m)) ∈ C2,1(D : Rm) ∩ C(D : Rm) satisfy

∂tu
(k) + F (k)(x, t,u,∇u(k),∇2u(k)) = 0 in D, k = 1, . . . ,m ,

u(k)(x, t) > 0 in D, k = 1, . . . ,m ,

u(x, t) = 0 on ∂Ω× [0,∞).

(4.1)

Let λ ∈ ΛN+1, k ∈ {1, . . . ,m} and p ∈ [−∞,∞]. Define

U
(k)
p,λ (x, t)

:= sup

{
Mp

(
u(k)(y1, t), . . . , u

(k)(yn+1, t);λ
)

: {yi}n+1
i=1 ⊂ Ω , x =

n+1∑
i=1

λiyi

} (4.2)

for (x, t) ∈ D. Then we easily see that

U
(k)
p,λ ∈ C(D), U

(k)
p,λ ≥ u(k)(x, t) > 0 in D, U

(k)
p,λ = 0 on ∂Ω× [0,∞) . (4.3)

We denote by U
(k)
p the spatially p-concave envelope of u(k) defined by

U (k)
p (x, t) := sup

λ∈Λn+1

U
(k)
p,λ (x, t),

which is the smallest spatially p-concave function greater than or equal to u(k). Clearly,

u(k) is spatially p-concave in D if and only if u(k) = U
(k)
p in D; since U

(k)
p ≥ u(k) by

construction, to have equality we just need to get the opposite inequality U
(k)
p ≤ u(k),

which can be obtained via Comparison Principle if U (k) turns to be a subsolution of the
problem at hands. Thus in this section we give a sufficient condition for

Up,λ := (U
(1)
p,λ , . . . , U

(m)
p,λ )

to be a viscosity subsolution of (4.1) in the case of 0 ≤ p ≤ 1 and study spatial concavity
properties of the solutions of (4.1).

4.1 Case of 0 < p ≤ 1

In this subsection we focus on the case of 0 < p ≤ 1 and prove the following theorem.

Theorem 4.1 Let Ω be a bounded convex smooth domain in RN , D := Ω × (0,∞),
m ∈ {1, 2, . . . } and 0 < p ≤ 1. Assume (A1), (A2) and the following condition:

(F3) Let k ∈ {1, . . . ,m}. For any fixed θ ∈ RN and t∗ > 0,

F (k)
θ,t∗

(x, v(1), . . . , v(m), A)

:=
(
v(k)

)1− 1
p
F (k)

(
x, t∗,

(
v(1)
) 1

p
, . . . ,

(
v(m)

) 1
p
,
(
v(k)

) 1
p
−1
θ,
(
v(k)

) 1
p
−3
A

)
is convex with respect to (x, v(1), . . . , v(m), A) ∈ Ω× [0,∞)m × SN .
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Let u = (u(1), . . . , u(m)) ∈ C2,1(D : Rm) ∩ C(D : Rm) satisfy (4.1) and

lim
ρ→0+

ρ−1/pu(k) (x+ ν(x)ρ, t) = ∞ for (x, t) ∈ ∂Ω× (0,∞), k = 1, . . . ,m, (4.4)

where ν = ν(x) is the inner unit normal vector to ∂Ω at x. Then Up,λ is a viscosity
subsolution of (4.1).

Proof. Let (x∗, t∗) ∈ D, λ = (λ1, . . . , λn+1) ∈ Λn+1 and k ∈ {1, . . . ,m}. Since u(k) = 0

on ∂Ω× (0,∞) and 0 < p ≤ 1, by (4.2) and (4.4) we can find {x(k)i }n+1
i=1 ⊂ D such that

x∗ =

n+1∑
i=1

λix
(k)
i , U

(k)
p,λ (x∗, t∗) =Mp

(
u(k)(x

(k)
1 , t∗), . . . , u

(k)(x
(k)
n+1, t∗);λ

)
.

Furthermore, the Lagrange multiplier theorem assures that

θ := u(k)(x
(k)
1 , t∗)

p−1∇u(k)(x(k)1 , t∗) = · · · = u(k)(x
(k)
n+1, t∗)

p−1∇u(k)(x(k)n+1, t∗). (4.5)

Let {a(k)i }n+1
i=1 ⊂ [0,∞) be such that

n+1∑
i=1

λia
(k)
i = 1. Set

U
(k)
∗ := U

(k)
p,λ (x∗, t∗), u

(k)
i := u(k)(x

(k)
i , t∗), y

(k)
i (x) := x

(k)
i + a

(k)
i (x− x∗),

U∗ := (U
(1)
∗ , . . . , U

(m)
∗ ) , ui := (u

(1)
i , . . . , u

(m)
i ) .

It follows that

U
(k)
∗ =Mp

(
u
(k)
1 , . . . , u

(k)
n+1;λ

)
, x =

n+1∑
i=1

λiy
(k)
i (x) . (4.6)

For k = 1, . . . ,m, we define

φ(k)(x, t) :=Mp(u
(k)
(
y
(k)
1 (x), t), . . . , u(k)(y

(k)
n+1(x), t);λ

)
, (4.7)

which is a C2,1-function in a neighborhood of (x∗, t∗) ∈ D and satisfies

φ(k)(x∗, t∗) =Mp(u
(k)
1 , . . . , u

(k)
n+1;λ) = U

(k)
∗ = U

(k)
p,λ (x∗, t∗). (4.8)

Moreover, it follows from the definition of Up,λ and (4.6) that

U
(k)
p,λ (x, t) ≥ φ(k)(x, t)

in a neighborhood of (x∗, t∗).
We prove

∂tφ
(k)(x∗, t∗) + F (k)(x∗, t∗,U∗,∇φ(k)(x∗, t∗),∇2φ(k)(x∗, t∗)) ≤ 0 (4.9)
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for k = 1, . . . ,m. Let ∇′ := (∂/∂x1, . . . , ∂/∂xn, ∂/∂t). By (4.5) and (4.7) we have

∇′φ(k)(x, t) = φ(k)(x, t)1−p
n+1∑
i=1

λi u
(k)(y

(k)
i (x), t)

p−1
∇′u(k)(y

(k)
i (x), t)

and

∇2φ(k)(x, t) = φ(k)(x, t)1−p
n+1∑
i=1

λi(a
(k)
i )2 u(k)(y

(k)
i (x), t)

p−1
∇2u(k)(y

(k)
i (x), t)

+ (1− p)φ(k)(x, t)−p∇φ(k)(x, t)⊗
n+1∑
i=1

λia
(k)
i u(k)(y

(k)
i (x), t)

p−1
∇u(k)(y(k)i (x), t)

− (1− p)φ(k)(x, t)1−p
n+1∑
i=1

λi(a
(k)
i )2 u(k)(y

(k)
i (x), t)

p−2
∇u(k)(y(k)i (x), t)⊗∇u(k)(y(k)i (x), t)

in a neighborhood of (x∗, t∗). Since y
(k)
i (x∗) = x

(k)
i and λ ∈ Λn+1, by (4.5) and (4.8) we

obtain

∂tφ
(k)(x∗, t∗) =

(
U

(k)
∗

)1−p
n+1∑
i=1

λi u
(k)(x

(k)
i , t)

p−1
∂tu

(k)(x
(k)
i , t),

∇φ(k)(x∗, t∗) =
(
U

(k)
∗

)1−p
n+1∑
i=1

λi u
(k)(x

(k)
i , t)

p−1
∇u(k)(x(k)i , t) =

(
U

(k)
∗

)1−p
θ

(4.10)

and

∇2φ(k)(x∗, t∗) =
(
U

(k)
∗

)1−p
n+1∑
i=1

λi

(
a
(k)
i

)2 (
u
(k)
i

)p−1
∇2u(k)(x

(k)
i , t∗)

+ (1− p)
(
U

(k)
∗

)−1
∇φ(k)(x∗, t∗)⊗∇φ(k)(x∗, t∗)

×

(
1−

(
U

(k)
∗

)p n+1∑
i=1

λi(a
(k)
i )2

(
u
(k)
i

)−p
)
.

(4.11)

Taking

a
(k)
i =

(
u
(k)
i /U

(k)
∗

)p
, i = 1, . . . , n+ 1 ,

we deduce from (4.8) that

(
U

(k)
∗

)p n+1∑
i=1

λi

(
a
(k)
i

)2 (
u
(k)
i

)−p

= (U
(k)
∗ )−p

n+1∑
i=1

λi(u
(k)
i )p =

(
U

(k)
∗

)−p
Mp

(
u
(k)
1 , . . . , u

(k)
n+1;λ

)p
= 1.
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This together with (4.11) implies that

∇2φ(k)(x∗, t∗) =
(
U

(k)
∗

)1−p
n+1∑
i=1

λi

(
a
(k)
i

)2 (
u
(k)
i

)p−1
∇2u(k)(x

(k)
i , t∗)

=
(
U

(k)
∗

)1−3p
n+1∑
i=1

λi

(
u
(k)
i

)3p−1
∇2u(k)(x

(k)
i , t∗)

=
(
U

(k)
∗

)1−3p
n+1∑
i=1

λiAi,

(4.12)

where

Ai =
(
u
(k)
i

)3p−1
∇2u(k)(x

(k)
i , t∗) , i = 1, . . . , n+ 1.

Then, by (4.10) and (4.12) we obtain

∂tφ
(k)(x∗, t∗) + F (k)

(
x∗, t∗,U∗,∇φ(k)(x∗, t∗),∇2φ(k)(x∗, t∗)

)
=
(
U

(k)
∗

)1−p
n+1∑
i=1

λi
∂tu

(k)(x
(k)
i , t∗)(

u
(k)
i

)1−p

+ F (k)

(
x∗, t∗,U∗,

(
U

(k)
∗

)1−p
θ,
(
U

(k)
∗

)1−3p
n+1∑
i=1

λiAi

)

= −
(
U

(k)
∗

)1−p
n+1∑
i=1

λi
F (k)(x

(k)
i , t∗,ui,

(
u
(k)
i

)1−p
θ, (u

(k)
i )1−3pAi)(

u
(k)
i

)1−p +

+ F (k)

(
x∗, t∗,U∗,

(
U

(k)
∗

)1−p
θ, (U

(k)
∗ )1−3p

∑
λiAi

)
.

(4.13)

On the other hand, it follows from (F3) that

(
U

(k)
∗

)1−p
n+1∑
i=1

λi

F (k)

(
x
(k)
i , t∗,ui,

(
u
(k)
i

)1−p
θ, (u

(k)
i )1−3pAi

)
(
u
(k)
i

)1−p

=
(
U

(k)
∗

)1−p
n+1∑
i=1

λi

(
v
(k)
i

)1− 1
p
F (k)

(
x
(k)
i , t∗,v

1
p

i ,
(
v
(k)
i

) 1
p
−1
θ,
(
v
(k)
i

) 1
p
−3
Ai

)

=
(
U

(k)
∗

)1−p
n+1∑
i=1

λiF (k)
θ,t∗

(
x
(k)
i , v

(1)
i , . . . , v

(m)
i , Ai

)
≥
(
U

(k)
∗

)1−p
F (k)
θ,t∗

(
n+1∑
i=1

λix
(k)
i ,

n+1∑
i=1

λiv
(1)
i , . . . ,

n+1∑
i=1

λiv
(m)
i ,

n+1∑
i=1

λiAi

)
,
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where v
(k)
i :=

(
u
(k)
i

)p
and v

1/p
i :=

((
v
(1)
i

)1/p
, . . . ,

(
v
(m)
i

)1/p)
. Since

n+1∑
i=1

λix
(k)
i = x∗,

n+1∑
i=1

λiv
(j)
i =Mp

(
u
(k)
1 , . . . , u

(k)
n+1;λ

)p
=
(
U

(j)
∗

)p
,

where j = 1, . . . ,m, we deduce that

(
U

(k)
∗

)1−p
≥
(
U

(k)
∗

)1−p
F (k)
θ,t∗

(
x∗,
(
U

(1)
∗

)p
, . . . ,

(
U

(m)
∗

)p
,

n+1∑
i=1

λiAi

)

= F (k)

(
x∗, t∗,U∗,

(
U

(k)
∗

)1−p
θ,
(
U

(k)
∗

)1−3p
n+1∑
i=1

λiAi

)
.

This together with (4.13) implies (4.9). Since (x∗, t∗) is arbitrary, by (4.3) and Corollary 3.1
we see that Uλ,p is a viscosity subsolution of (4.1). Thus Theorem 4.1 follows. 2

Combing Theorem 4.1 with Theorem 3.2, we obtain the following.

Corollary 4.1 Assume the same conditions as in Theorem 4.1. Furthermore, assume
(C2) and (C3). Let 0 < p ≤ 1 and u = (u(1), . . . , u(m)) satisfy (4.1) and (4.4). If the

initial datum u
(k)
0 is p-concave in Ω for k = 1, . . . ,m, then u(k) is spatially p-concave in

D for k ∈ {1, . . . ,m}.

Proof. Let k ∈ {1, . . . ,m}. Due to the p-concavity of u
(k)
0 , we have

U
(k)
p,λ (x, 0) = U (k)

p (x, 0) = u
(k)
0 (x), x ∈ Ω ,

for every λ ∈ Λn+1. Then, by Theorem 4.1 we see that Up,λ is a viscosity subsolution of
(1.1) for every λ ∈ Λn+1. Applying Theorem 3.2, by (4.3) we see that Up,λ ≤ u in D,
which implies that Up ≤ u in D. On the other hand, it follows from the definition of
Up that Up ≥ u in D. Therefore we deduce that Up = u in D. Then u(k) is spatially
p-concave in D for every k ∈ {1, . . . ,m}. 2

4.2 Case of p = 0

In the next theorem we give a sufficient condition for U0,λ = (U
(1)
0,λ , . . . , U

(m)
0,λ ) to be a

viscosity subsolution of (4.1).

Theorem 4.2 Let Ω be a bounded convex smooth domain in RN , D := Ω × (0,∞) and
m ∈ {1, 2, . . . }. Assume (A1), (A2) and the following condition:

(F4) Let k ∈ {1, . . . ,m}. For any fixed θ ∈ RN and t∗ > 0,

F (k)
θ,t∗

(
x, v(1), . . . , v(m), A

)
:= e−v(k)F (k)

(
x, t∗, e

v(1) , . . . , ev
(m)
, ev

(k)
θ, ev

(k)
A
)

is convex with respect to (x, v(1), . . . , v(m), A) ∈ D ×Rm × SN .
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Then U0,λ := (U
(1)
0,λ , . . . , U

(m)
0,λ ) is a viscosity subsolution of (4.1).

Proof. Let (x∗, t∗) ∈ D and λ = (λ1, . . . , λn+1) ∈ Λn+1. Thanks to the boundary

conditions and to the regularity of u and of the geometric mean, we can find {x(k)i }n+1
i=1 ⊂ D

such that

x∗ =

n+1∑
i=1

λix
(k)
i ,

U
(k)
0,λ (x∗, t∗) =M0

(
u(k)(x

(k)
1 , t∗), . . . , u

(k)(x
(k)
n+1, t∗);λ

)
=

n+1∏
i=1

u(k)(x
(k)
i , t∗)

λi .

Notice that the Lagrange multiplier theorem assures that

θ :=
∇u(k)(x(k)1 , t∗)

u(k)(x
(k)
1 , t∗)

= · · · =
∇u(k)(x(k)n+1, t∗)

u(k)(x
(k)
n+1, t∗)

.

Set

U
(k)
∗ := U

(k)
0,λ (x∗, t∗), u

(k)
i := u(k)(x

(k)
i , t∗), y

(k)
i (x) := x

(k)
i + (x− x∗),

U∗ := (U
(1)
∗ , . . . , U

(m)
∗ ) , ui := (u

(1)
i , . . . , u

(m)
i ) , Ai :=

∇2u(k)(x
(k)
i , t∗)

u
(k)
i

.

It follows that

x =

n+1∑
i=1

λiy
(k)
i (x) . (4.14)

For k = 1, . . . ,m, we define

φ(k)(x, t) :=M0

(
u(k)(y

(k)
1 (x), t), . . . , u(k)(y

(k)
n+1(x), t);λ

)
=

n+1∏
i=1

u(k)(y
(k)
i (x), t)λi ,

which is a C2,1-function in a neighborhood of (x∗, t∗) ∈ D and satisfies

φ(k)(x∗, t∗) =

n+1∏
i=1

[u
(k)
i ]λi = U

(k)
∗ = U

(k)
0,λ (x∗, t∗).

Moreover, it follows from the definition of Uλ and (4.14) that

U
(k)
0,λ (x, t) ≥ φ(k)(x, t)

in a neighborhood of (x∗, t∗).
We apply the same argument in the proof of Theorem 4.1 with p = 0, and prove

∂tφ
(k)(x∗, t∗) + F (k)(x∗, t∗,U∗,∇φ(k)(x∗, t∗),∇2φ(k)(x∗, t∗)) ≤ 0 (4.15)
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for k = 1, . . . ,m. Similarly to (4.10) and (4.12), we have

∂tφ
(k)(x∗, t∗) = φ(k)(x∗, t∗)

n+1∑
i=1

λi
∂tu

(k)(x
(k)
i , t∗)

u(k)(x
(k)
i , t∗)

= U
(k)
∗

n+1∑
i=1

λi
∂tu

(k)(x
(k)
i , t∗)

u
(k)
i

,

∇φ(k)(x∗, t∗) = U
(k)
∗

n+1∑
i=1

λi
∇u(k)(x(k)i , t∗)

u(k)(x
(k)
i , t∗)

= φ(k)(x∗, t∗) θ,

∇2φ(k)(x∗, t∗) = U
(k)
∗

n+1∑
i=1

λi
∇2u(k)(x

(k)
i , t∗)

u
(k)
i

= U
(k)
∗

n+1∑
i=1

λiAi.

Then we deduce that

∂tφ
(k)(x∗, t∗) + F (k)

(
x∗, t∗,U∗,∇φ(k)(x∗, t∗),∇2φ(k)(x∗, t∗)

)
= U

(k)
∗

n+1∑
i=1

λi
∂tu

(k)(x
(k)
i , t∗)

u
(k)
i

+ F (k)

(
x∗, t∗,U∗, U

(k)
∗ θ, U

(k)
∗

n+1∑
i=1

λiAi

)

= −U (k)
∗

n+1∑
i=1

λi
F (x

(k)
i , t∗, ui, u

(k)
i θ, u

(k)
i Ai)

u
(k)
i

+ F (k)

(
x∗, t∗,U∗, U

(k)
∗ θ, U

(k)
∗

n+1∑
i=1

λiAi

)
.

(4.16)

On the other hand, it follows from (F4) that

n+1∑
i=1

λi
F (k)(x

(k)
i , t∗,ui, u

(k)
i θ, u

(k)
i Ai)

u
(k)
i

=
n+1∑
i=1

λi
F (k)(x

(k)
i , t∗, e

vi , ev
(k)
i θ, ev

(k)
i Ai)

ev
(k)
i

=

n+1∑
i=1

λiF (k)
θ,t∗

(x
(k)
i , v

(1)
i , . . . , v

(m)
i , Ai)

≥ F (k)
θ,t∗

(
n+1∑
i=1

λix
(k)
i ,

n+1∑
i=1

λiv
(1)
i , . . . ,

n+1∑
i=1

λiv
(m)
i ,

n+1∑
i=1

λiAi

)
,

where v
(k)
i := log u

(k)
i and evi := (ev

(1)
i , . . . , ev

(m)
i ). Since

n+1∑
i=1

λix
(k)
i = x∗,

n+1∑
i=1

λiv
(j)
i = log

n+1∏
i=1

(u
(j)
i )λi = logU

(j)
∗ ,

we deduce that

n+1∑
i=1

λi
F (k)(x

(k)
i , t∗,ui, u

(k)
i θ, u

(k)
i Ai)

u
(k)
i

≥ F (k)
θ,t∗

(
x∗, logU

(1)
∗ , . . . , logU

(m)
∗ ,

n+1∑
i=1

λiAi

)

=
1

U
(k)
∗
F (k)

(
x∗, t∗, U

(k)
∗ θ, U

(k)
∗

n+1∑
i=1

λiAi

)
.
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This together with (4.16) implies (4.15). Since (x∗, t∗) is arbitrary, by (4.3) and Corol-
lary 3.1 we see that Uλ is a viscosity subsolution of (4.1). Thus Theorem 4.2 follows.
2

By Theorem 4.2 we apply a similar argument as in the proof of Corollary 4.1 to obtain
the following result.

Corollary 4.2 Assume the same conditions as in Theorem 4.2. Furthermore, assume (C2)

and (C3). Let u = (u(1), . . . , u(m)) satisfy (4.1) with initial value u0 = (u
(1)
0 , . . . , u

(m)
0 ). If

the initial datum u
(k)
0 is log-concave in Ω for k = 1, . . . ,m, then u(k) is spatially log-concave

in D for k ∈ {1, . . . ,m}.

Theorem 1.1 easily follows from Corollary 4.2. Corollary 1.1 follows from Theorems 1.1
and 3.2. Furthermore, we have the following well known result (see [7], [13] and [31]).

Corollary 4.3 Let Ω be a bounded convex domain in RN . Let u ∈ C2(D) ∩C(D) satisfy
∂tu−∆u = 0 in D,

u(x, t) = 0 on ∂Ω× [0,∞),

u(x, 0) = u0(x) in Ω,

(4.17)

where u0 is a nonnegative continuous function on Ω. Then u is spatially log-concave in D
provided that u0 is log-concave in Ω.

Proof. Let u be a solution of (4.17) and λ > 0. Then the function U := e−λtu satisfies

∂tU −∆U + λU = 0 in Ω× (0,∞).

Applying Corollary 4.2 to the case where m = 1 and F (x, t, U,∇U,∇2U) = −∆U + λU ,
we obtain the spatial log-concavity of U in Ω× (0,∞). Thus Corollary 4.3 follows. 2

Similarly, we obtain Corollary 1.1.

5 Applications to porous medium equations

We apply our results in the previous section and study concavity properties of porous
medium equations and related systems. Concavity properties of solutions to the porous
medium equation have been studied in several papers, see e.g., [11], [17], [30], [34], [35]
and references therein (see also a survey book [38] for porous medium equations).

5.1 Porous medium equation

Let Ω be a bounded smooth convex domain in RN , D := Ω× (0,∞) and α > 1. Consider
the Cauchy-Dirichlet problem for the porous medium equation

∂tu−∆(uα) = 0 in D,

u = 0 on ∂Ω× (0,∞),

u(x, 0) = u0(x) in Ω,

(5.1)
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where u0 ∈ X :=
{
w ∈ C(Ω) : w > 0 in Ω, w = 0 on ∂Ω

}
. Problem (5.1) has a

unique classical solution in D (see e.g., [38, Theorem 5.5 and Proposition 7.21]). In this
subsection, as an application of Theorem 4.1, we prove the following theorem, already
given in [35].

Theorem 5.1 Let Ω be a bounded smooth convex domain in RN and α > 1. Let u be a
classical solution of (5.1) with u0 ∈ X. Then u is spatially (α−1)/2 concave in D provided
that u0 is (α− 1)/2 concave in Ω.

Notice that our approach is completely different from that of [35] and enables us to obtain
concavity properties of solutions to general parabolic problems including parabolic systems
(see also Subsection 5.2).

For the proof of Theorem 5.1, we prepare the following lemma.

Lemma 5.1 Let η be a solution of

−∆η = η1/α in Ω, η > 0 in Ω, η = 0 in ∂Ω.

Let 0 < β ≤ 1 be such that 2β ≤ α(α− 1). For any concave function ψ ∈ C(Ω), such that
ψ > 0 in Ω and ψ = 0 on ∂Ω, and for every ϵ > 0, set

uϵ0(x) :=
[
u0(x)

α−1
2 + ϵψ(x)β

] 2
α−1

.

Then uϵ0 is (α− 1)/2 concave in Ω and

uϵ0(x) ≥ δη(x)α in Ω (5.2)

for some δ > 0.

Proof. Since u
(α−1)/2
0 and ψ are concave in Ω and 0 < β ≤ 1, we see that uϵ0 is (α− 1)/2

concave in Ω. So it suffices to prove (5.2).
It follows from [3, Proposition 1] that η ∈ C2+1/α(Ω). Then

η(x) ≤ C1dist (x, ∂Ω) in Ω (5.3)

for some constant C1 > 0. On the other hand, since ψ is concave, we see that

uϵ0(x) ≥ ϵ
2

α−1ψ(x)
2β

α−1 ≥ C2ϵ
2

α−1dist (x, ∂Ω)
2β

α−1 in Ω (5.4)

for some constant C2. Since 2β ≤ α(α − 1), by (5.3) and (5.4) we have (5.2). Thus
Lemma 5.1 follows. 2

Proof of Theorem 5.1. For any ϵ > 0, there exists a unique classical solution uϵ of (5.1)
with the initial data uϵ0 (see e.g., [38, Theorem 5.5 and Proposition 7.21]). By Lemma 5.1
we can find τ > 0 such that

τ−
1

α−1 η(x)α ≤ uϵ0(x) in Ω. (5.5)

Set
z(x, t) := [(α− 1)t+ τ ]−

1
α−1 η(x)1/α,
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which satisfies

zt −∆(zα) = 0 in D, z = 0 on ∂Ω× (0,∞).

By (5.5) we apply the comparison principle to obtain

uϵ(x, t) ≥ z(x, t) in D. (5.6)

On the other hand, it follows from the Hopf lemma that

lim inf
ρ→0+

η(x+ ρν(x))

ρ
> 0

for any x ∈ ∂Ω. This together with (5.6) and the definition of z implies that

lim inf
ρ→+0

ρ−
1
αuϵ(x+ ρν(x), t) > 0 (5.7)

for all (x, t) ∈ ∂Ω× (0,∞).
Let vϵ := αuα−1

ϵ . Then we have
∂tvϵ − vϵ∆vϵ −

1

α− 1
|∇vϵ|2 = 0 in D,

vϵ = 0 on ∂Ω× (0,∞),

v(x, 0) = α[uϵ0(x)]
α−1 in Ω.

(5.8)

Set

F (x, t, w, θ, A) := −w tr(A)− 1

α− 1
|θ|2

for (x, t, w, θ, A) ∈ D × (0,∞)×RN × SN .
We apply Corollary 4.1 with p = 1/2 to vϵ. Then the function

Fθ,t(x,w,A) := w−1F (x, t, w2, wθ, w−1A) = −tr(A)− 1

α− 1
w|θ|2

is convex with respect to (x,w,A) ∈ Ω × [0,∞) × SN for any fixed θ ∈ RN and t > 0.
This means that F satisfies condition (F3) with p = 1/2. Furthermore, we deduce from
(5.7) that

lim
ρ→+0

ρ−2v(x+ ρν(x), t) = ∞

for all (x, t) ∈ ∂Ω × (0,∞). Therefore, by Corollary 4.1 we see that vϵ is spatially 1/2
concave in D, which means that uϵ is spatially (α− 1)/2 concave in D.

On the other hand, if 0 < ϵ1 < ϵ2, the comparison principle implies that

0 < u(x, t) ≤ uϵ1(x, t) ≤ uϵ2(x, t) in D.

Then, by [38, Proposition 3.6] we see that

lim
ϵ→0

uϵ(x, t) = u(x, t) in D.

Therefore we deduce from the spatially (α− 1)/2 concavity of uϵ in D that u is spatially
(α− 1)/2 concave in D. Thus Theorem 5.1 follows. 2
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5.2 Porous medium systems

We discuss spatial concavity properties of the solution of the following nonlinear porous
medium system

∂tu− d1∆(uα) + f(x, t, u, v,∇u) = 0 in D,

∂tv − d2∆(vβ) + g(x, t, u, v,∇v) = 0 in D,

u > 0, v > 0 in D,

u = v = 0 on ∂Ω× (0,∞),

u(x, 0) = u0(x), v(x, 0) = v0(x) in Ω,

(5.9)

where α, β > 1, d1, d2 > 0 and u0, v0 ∈ X. Assume the following conditions:

(F3’) For any fixed θ ∈ RN and t > 0, the functions

ft,θ(x, u) := u
α−3
α−2 f(x, t, u

2
α−1 , v

2
β−1 , u

3−α
α−1 θ),

gt,θ(x, v) := v
β−3
β−2 g(x, t, v

2
β−1 , u

2
α−1 , v

3−β
β−1 θ)

are convex with respect to (x, u, v) ∈ Ω× (0,∞)2.

Then, setting U = αuα−1 and V = βvβ−1, we have
∂tU − U∆U + f̃(x, t, U, V,∇U)− 1

α− 1
|∇U |2 = 0 in D,

∂tV − V∆V + g̃(x, t, U, V,∇V )− 1

β − 1
|∇V |2 = 0 in D,

(5.10)

where

f̃(x, t, U, V,∇U)

:= α(α− 1)

(
U

α

)α−2
α−1

f

(
x, t,

(
U

α

) 1
α−1

,

(
V

β

) 1
β−1

,
1

α(α− 1)

(
U

α

) 2−α
α−1

∇U

)
,

g̃(x, t, U, V,∇U)

:= β(β − 1)

(
V

β

)β−2
β−1

g

(
x, t,

(
U

α

) 1
α−1

,

(
V

β

) 1
β−1

,
1

β(β − 1)

(
V

β

) 2−β
β−1

∇V

)
.

By a similar argument as in the proof of Theorem 5.1 with the aid of (F3’), we can apply
Theorem 4.1 with p = 1/2 to problem (5.10). Indeed, if the viscosity comparison principle
and regularity theorems hold for problem (5.9), then U and V are spatially 1/2 concave
in D, which means that u and v are spatially (α− 1)/2 concave and (β − 1)/2 concave in
D, respectively. (We leave the details to the reader.) Theorem 1.2 is a direct consequence
of the consideration above.
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