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Abstract: The cooperation between humans and robots is becoming increasingly important in our
society. Consequently, there is a growing interest in the development of models that can enhance and
enrich the interaction between humans and robots. A key challenge in the Human-Robot Interaction
(HRI) field is to provide robots with cognitive and affective capabilities, by developing architectures
that let them establish empathetic relationships with users. Over the last several years, multiple
models were proposed to face this open-challenge. This work provides a survey of the most relevant
attempts/works. In details, it offers an overview of the architectures present in literature focusing on
three specific aspects of HRI: the development of adaptive behavioral models, the design of cognitive
architectures, and the ability to establish empathy with the user. The research was conducted within
two databases: Scopus and Web of Science. Accurate exclusion criteria were applied to screen the
4916 articles found. At the end, 56 articles were selected. For each work, an evaluation of the model
is made. Pros and cons of each work are detailed by analyzing the aspects that can be improved to
establish an enjoyable interaction between robots and users.

Keywords: social robots; behavioral models; assistive robotics; cognitive architectures; empathy;
human-robot interaction

1. Introduction

Social Robotics is commonly defined as the research field dedicated to the socially skillful robots [1].
The main ability of social robots is to establish a natural interaction with humans. The Human-Robot
Interaction (HRI) field of study tries to shape the interactions between one or more humans and
one or more robots. Over the latest several years, there is an increasing interest in HRI due to the
increasing usage of robots not only in industrial fields, but also in other areas as schools [2], homes [3],
hospitals [4], and rehabilitation centers [5].

Consequently, in the near future, robots will concretely share environments with human beings
to actively collaborate with them in specific daily tasks. The presence of a robot, in fact, could be
a useful support during the management of daily activities [6,7], the promotion of social inclusion [8,9],
and the suggestion of healthy activities [10,11]. Particularly, recent literature findings underline that
robots could help users in their daily life by bringing them objects that they need ( i.e., a bottle of water,
a specific drug ) [12], which helps them in dressing tasks [13,14] or in getting in contact with their
families or authorities in dangerous situations [9]. An easy and continuous connection with other
people (i.e., relatives, friends, or doctors), could promote social inclusion of people with disabilities or
elderly people and increase the quality of their life [15]. Therefore, in this context, there is a growing
necessity for developing behavioral models for social robots to have a high quality interaction and
level of acceptability in providing useful and efficient services [16,17]. Remarkably, how people accept,
perceive, interact, and cooperate with this intelligent machine in their life is still somewhat unknown.
However, researchers with different backgrounds are trying to meet this challenge [18].
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First, to achieve fluent and effective human-like communication, robots must seamlessly integrate
the necessary social behaviors for a given situation using a large number of patterned behaviors that
people employ to achieve particular communicative goals. Furthermore, robots should be endowed
with the capability to understand feelings, intentions, and beliefs of the user, which are not only directly
expressed by the user, but that are also shaped by bodily cues (i.e., gaze, posture, facial expressions)
and vocal cues (i.e., vocal tones and expressions) [19]. The non-verbal immediacy, which characterizes
communications between humans, should be conveyed in Human-Robot Interaction (HRI). Moreover,
the ability to replicate human non-verbal immediacy in artificial agents is twofold. On one side,
it allows the detection of emotional and cognitive state of the user, which is useful to develop proactive
robots. On the other side, it allows us to shape the behavior of the robot in order to encode behavior
capabilities in the interaction as those of humans. The latter case leads to the possibility to automatically
generate new robotic behaviors that the robot learns directly from the user.

The first attempts to solve this challenge have been performed by developing intelligent systems
able to detect user’s emotions [20] and by identifying the key factors that should be adjusted to
make the interaction smoother (i.e., interpersonal distance, mental state, user’s feedback, and user’s
profile) [21]. More advanced steps should be performed so that robots are endowed with cognitive
and affective capabilities that could provide them with tools to establish empathetic relationships with
users and to gain social cognitive mechanisms that are necessary to be perceived as a teammate [22,23].

Second, it is important to remark that the robot’s ability to establish empathic relationships has
a key role in HRI since it indicates the degree of perceived bodily and psychological closeness between
people. Over the last several years, researchers put a lot of effort in understanding how psychology
and cognitive neuroscience could be integrated in the design process of artificial cognitive architectures
to achieve this target. The field of brain-inspired technologies has become a hot topic in the last
several years.

In this context, this paper aims to analyze the current state of the art of behavioral models to find
barriers and limitations to provide guidelines for future research studies in this area. Particularly,
two databases (namely Scopus and Web of Science) were analyzed to retrieve papers linked with
cognitive robotics architecture and model robot empathy, affordance, facial expression, cultural
adaptation, and the social robot. In effect, this survey expresses this growing interest and the need to
support the research studies in this field and to organize the large amount of work, which is loosely
related to the topic underling the scientific challenges. The main issues of this area is related to the fact
that several models are too often described from a theoretical point of view without being tested on
a real robot and the ones that are tested on a real robot are often tried in a single environment with
people belonging to a specific culture [24]. Specifically, researchers are working on the development
of cognitive architectures approaching a fully cognitive state, embedding mechanisms of perception,
adaptation, and motivation [25]. Particularly, from the analysis of the state of the art, the papers of
this survey are grouped according to three main application areas: cognitive architectures, behavioral
adaptation, and empathy.

• Cognitive architectures—This term refers to research works where both abstract models of
cognition and software instantiations of such models, employed in the field of artificial intelligence,
are described [26]. Cognitive architectures have the fundamental role to enable artificial intelligence
in robotic agents, in order to exhibit intelligent behaviors.

• Behavioral adaptation—Behavioral adaptation is defined as “learning new tasks and to adapt
to changes in environmental conditions, or to failures in sensors and/or actuators” [27]. Thus,
the papers included in this group describe robot’s social abilities enhanced by the robot’s capability
of adapting its behavior to the user’s need and habits [28].

• Empathy—Empathy is defined as “The act of perceiving, understanding, experiencing,
and responding to the emotional state and ideas of another person” [29]. In human-human
relationships, this term explains the capacity to take the role of the other to adopt alternative
perspectives [28]. Works clustered in this category present a particular emphasis on the attempts
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to reproduce this ability in robotic agents to establish an empathetic connection with the user,
which improves Human-Robot Interaction (HRI). Empathy is a sub-category of the behavioral
adaptation. However, we decide to make separate categories to be aligned with some recent
papers [17,30,31].

In this review, several models and architectures used in social robots are presented to evaluate
how these attempts fare in achieving an efficient robot-human interaction. A comparison with works
presenting experimentation to demonstrate the persuasiveness of robots is also provided to highlight
limitations and future trends. In details, the paper is organized as follows: in Section 2, the research
methodology for the review is explained. In Sections 3 and 4, the results and the discussions regarding
the papers are shown. In Section 5, a summary of the review and its conclusions are presented.

2. Materials and Methods

This section presents the methodology used in the paper to select the most appropriate recent
developments as published in the literature, covering the topics of behavioral models for robots.

Study Selection Procedures

This paper reviews empirical studies published between 2010 and 2018 since most of the advances
in this area have occurred within that timeframe. A bibliography was developed upon research in
Scopus and Web of Science electronic databases. Reference lists of included articles and significant
review papers were examined to include other relevant studies. The search queries contained the
following terms and were summarized in Table 1.

Table 1. List of keywords used in this review work.

Research Keywords

(cult*) AND (adapt*) AND (behavio*) AND (model* OR system*) AND (robot*)

(cult*) AND (adapt*) AND (cognitive) AND (model* OR architecture*) AND (robot*)

affordance* AND (behavio*) AND (adapt*) AND (robot*)

affordance* AND (cognitive) AND (model* OR architecture*) AND (robot*)

fac* AND expression AND cognitive AND (model* OR architecture*) AND (robot* )

fac* AND expression AND (behavio*) AND (model* OR system*) AND (robot*)

cognitive AND robot* AND architecture*

learning AND assistive AND robot*

affective AND robot* AND behavio*

empathy AND social AND robot*

Application of these search keys provided a total of 4916 hits with 1520 hits in Web of Science in
the field “Topic” and 3396 hits in Scopus in “Article title, abstract, keywords” fields.

After deletion of duplicates, the titles and abstracts retrieved by the electronic search were read
first, to identify articles deserving a full review. Papers about users’ emotion recognition and about
emotions as unique input for HRI were excluded. Additionally, papers not written in English were
excluded. A total of 1297 works was selected at this stage.

Then, a full-text assessment was carried out. The reading process led to the exclusion of 1241
papers that were out of topic, papers focusing only on definitions and taxonomy, papers for missing
the model’s evaluation, and papers focusing more on users’ perception about robot’s abilities without
behavioral adaptation.

The final list of papers includes 56 studies, which satisfy all the following selection criteria:
(i) employment of cognitive architectures and/or behavioral models, (ii) explanation of cognitive
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architectures and/or behavioral models, (iii) research focus on robotic agent’s capabilities; (iv) behavioral
adaptation according to different strategies, and (v) analysis conducted on social or assistive robots.
The studies’ selection process is shown in Figure 1.
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3. Results

3.1. Application Overview

The interest toward behavioral architectures has grown, as shown in Figure 2. Particularly, of the
fully evaluated papers, 7 papers (12.5%) were published before 2014 and 49 papers (87.5%) were
published within the past five years.
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Table 2. Summary of recently published works on behavioral models without an experimentation loop.

Ref. Title and Year Aim Robot Social Cues Models Area

[32] Persuasive AI Technologies for
Healthcare Systems (2016)

Development of an IoT toolbox toward
AI-based persuasive technologies for

healthcare systems
NAO

Gaze behavior,
facial behavior,

speech cues

A system that contains:

• a sensor network architecture used
to observe the environment and
provide real-time access to the data
for interpretation

• a block containing context-aware
applications (object detection,
activity recognition)

• a prediction block of future states

Cognitive
architectures

[23]
Enabling robotic social intelligence

by engineering human
social-cognitive mechanisms (2017)

Suggestions and overviews on social
cognitive mechanisms - -

A model that takes into consideration
social-cognitive mechanisms to facilitate

the design of robots

Cognitive
architectures

[33]

An Architecture for Emotional and
Context-Aware Associative

Learning for Robot Companions
(2015)

Theoretical architectural model based
on the brain’s fear learning system - Environmental

cues

Theoretical architectural model that uses
artificial neural networks (ANNs)

representing sensory thalamus, sensory
cortex, amygdala, and orbitofrontal

cortex.

Cognitive
architectures

[34]
From learning to new goal

generation in a bio-inspired robotic
setup (2016)

Imitation of the neural plasticity, the
property of the cerebral cortex

supporting learning
NAO Eye behavior

A model called Intentional Distributed
Robotic Architecture (IDRA) that takes

inspiration from the
amygdala-thalamo-cortical circuit in the

brain at its functional level

Cognitive
architectures

[35]
Human-aware interaction: A

memory-inspired artificial
cognitive architecture (2017)

Human-aware cognitive architecture
to support HRI Care-O-Bot 4 Eyes and vocal

behaviors
Partially observable Markov decision

process (POMDP) model
Cognitive

architectures

[31]
Artificial Empathy: An

Interdisciplinary Investigation
(2015)

Overview the research field aimed at
building emotional and empathic

robots focusing on its main
characteristics and ongoing

transformations

- Gestures and
posture cues - Empathy
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Table 2. Cont.

Ref. Title and Year Aim Robot Social Cues Models Area

[17]
How can artificial empathy follow

the developmental pathway of
natural empathy? (2015)

A conceptual model of artificial
empathy is proposed and discussed

with respect to several existing studies

Emotional
communication robot,

WAMOEBA
- WE humanoid robot

- Conceptual model of artificial empathy Empathy

[36]
A Cognitive Control Architecture
for the Perception–Action Cycle in

Robots and Agents (2013)

Visual perception, recognition,
attention, cognitive control, value

attribution, decision-making,
affordances, and action can be melded

together in a coherent manner in a
cognitive control architecture of the
perception–action cycle for visually

guided reaching and grasping of
objects by a robot or an agent.

- -

Model composed of four modules:
object localization and recognition,
cognitive control, decision-making,

value attribution affordances, motion,
and planning

Cognitive
architectures

[37]
A computational model of

perception and action for cognitive
robotics (2011)

A novel computational cognitive
model that allows for direct interaction
between perception and action as well
as for cognitive control, demonstrated
by task-related attentional influences.

- -
HiTEC architecture composed of a task

level, a feature level, and a sensory
motor level

Cognitive
architectures

[38]

Interaction of culture-based
learning and cooperative

co-evolution and its application to
automatic behavior-based system

design (2010)

A bio-inspired
hybridization of reinforcement

learning, cooperative co-evolution,
and a cultural-inspired memetic

algorithm for the automatic
development of behavior-based agents

-

Reinforcement learning for structure
learning that finds the organization of
behavior modules during the agent’s

lifetime

Behavioral
adaptation

[39]
Affective Facial Expression

Processing via Simulation: A
Probabilistic Model (2014)

Simulation Theory and neuroscience
findings on Mirror-Neuron is used as
the basis for a novel computational
model, as a way to handle affective

facial expressions.

- postural and
vocal cues

Simulation Theory and neuroscience
findings on Mirror-Neuron Systems as

the basis for a novel computational
model,

Cognitive
architectures

[40]

Multi-robot behavior adaptation to
local and global communication
atmosphere in humans-robots

interaction (2014)

A multi-robot behavior adaptation
mechanism based on

cooperative–neutral–competitive
fuzzy-Q learning is developed in a

robot

- Eyes cues Cooperative–neutral–competitive
fuzzy-Q learning

Behavioral
adaptation
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Table 2. Cont.

Ref. Title and Year Aim Robot Social Cues Models Area

[41]
An Ontology Design Pattern for

supporting behavior arbitration in
cognitive agents (2017)

An Ontology Design Pattern for the
definition of situation-driven behavior

selection and arbitration models for
cognitive agents.

MARIO
robot- affordances cues Affordance Ontology Design Pattern

(ODP)
Cognitive

architectures

[42]

Context-Aware Cloud Robotics for
Material Handling in Cognitive

Industrial Internet of Things
(2018)

In this paper, a cognitive industrial
entity called context-aware cloud

robotics (CACR) for advanced material
handling is introduced and analyzed.

- - Energy-efficient and cost-saving
algorithms for material handling

Cognitive
architectures

Table 3. Summary of recently published works on behavioral models with an experimentation loop.

Ref. Title and Year Aim Robot Social Cues Participants Models Area

[30]

Compassion, empathy, and
sympathy expression

features in affective robotics
(2017)

Comparison between
expression features of

compassion, sympathy, and
empathy in British English and
Polish that need to be tuned in
social robots to enable them to

operate successfully

Generic assistive
robots

Linguistic cues,
facial cues,

movement cues,
and physiological

features

British English-speaking
participants (mean age
23.2 years, 21 females)

and 29 Polish-speaking
subjects (mean age 25.6

years, 26 females)

Creating culture-specific
emotion (compassion,

sympathy, and empathy)
models

Empathy

[43]

Persuasive robotic assistant
for health self-management
of older adults: Design and

evaluation of social
behaviors (2010)

Comparison of a text-based
interface with a character

persuading user
I-Cat Gaze and posture

cues
24 middle age adults age

45 to 65 years old

The model is based on
persuasion and uses Big five

questionnaire on
personality

Empathy

[16]

Inclusion of service robots
in the daily lives of frail

older users: A step-by-step
definition procedure on

users′ requirements (2018)

Definition of metrics to build an
empathic robot that helps elderly

people
Pepper - 42 participants (elderly

people)

The model is based on an
emotion recognition

algorithm
Empathy

[44]

Promoting interactions
between humans and robots

using robotic emotional
behavior (2015)

Emotion-based assistive behavior
for a socially assistive robot Brian

Gestures and
emotional state

cues

34 subjects aged 17 to 68
years old

Markov model that uses a
human affective state

classifier and a non-verbal
interaction and states

analysis (NISA)

Empathy



Robotics 2019, 8, 54 9 of 35

Table 3. Cont.

Ref. Title and Year Aim Robot Social Cues Participants Models Area

[45]

A personalized and
platform-independent

behavior control system for
social robots in therapy:

development and
applications (2018)

A behavior control system for
social robots in therapies is
presented with a focus on

personalization and
platform-independence

NAO
Pepper - Children and elderly

people

Model based on a Body
Action Coding System

(BACS)

Behavioral
adaptation

[46]
Adaptive artificial

companions learning from
users’ feedback (2017)

Capacity of an intelligent system
to learn and adapt its

behavior/actions
EMOX

Current user(s)
attributes and

current
environmental
attribute cues

Children, teenagers, and
adults

Markov Decision Processes
(MDPs) model

Behavioral
adaptation

[47]

Why robots should be
social: Enhancing machine
learning through a social
human-robot interaction

(2015)

How additional social cues can
improve learning performance

Robot head
mounted on an

articulated robot
arm

Gaze behavior

41 healthy and young
participants with an

average age of 24 years
old.

The interaction model of the
robot is based on language

games

Behavioral
adaptation

[25]

The affective loop: A tool
for autonomous and
adaptive emotional

human-robot interaction
(2015)

Affective model for social robotics NAO - Children age 5 to 7 years
old.

Plutchik emotional model;
uses Fuzzy rules and

learning by demonstration
Empathy

[48]

Puffy: A Mobile Inflatable
Interactive Companion for

Children with
Neurodevelopmental

Disorder (2017)

Robot’s ability in gestures’
interpretation Puffy

Visual, auditory,
and

Tactile cues

19 children with an
average age of 6 years old

Interactional Spatial Model
which considers:
interpersonal distance
- relative (child-robot)
bodily orientations
- child’s and robot’s
movements in space
- child’s emotional state
- child’s eye contact
- robot’s emotional state

Behavioral
adaptation
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Table 3. Cont.

Ref. Title and Year Aim Robot Social Cues Participants Models Area

[49]

Social intelligence for a
robot engaging people in

cognitive training activities
(2012)

Definition of user state and task
performance, adjusting robot’s

behavior
Brian 2.0 -

10 healthy and young
participants from 20 to 35

years old.

A hierarchical
reinforcement learning

approach is used to create a
model that allow the robot

to learn appropriate
assistive behaviors based on
the structure of the activity

Behavioral
adaptation

[50]
Empathizing with

emotional robot based on
cognition reappraisal (2017)

Continuous cognitive emotional
regulation model for robot - - 10 subjects

Hidden Markov Model;
uses

cognitive reappraisal
strategy

Behavioral
adaptation

[51]

Interpretation of interaction
demanding of a user based
on nonverbal behavior in a

domestic environment
(2017)

Model for decision making on a
user’s non-verbal interaction

demand
MIRob Eyes behavior Eight subjects from 25 to

58 years old.

A model to decide when to
interact with the user. It

observes movements and
behavior of the patient put

them through a module
called Interaction

Demanding Pose Identifier.
The data obtained are fed
into the Fuzzy Interaction

Decision Making Module in
order to interpret the degree
of interaction demanding of

the user.

Behavioral
adaptation

[52]

Understanding human
intention by connecting
perception and action

learning in artificial agents
(2017)

System inspired by humans’
psychological and neurological

phenomena
- Eyes behavior -

Generic model; uses
supervised multiple

timescale recurrent neural
networks

Cognitive
architectures

[53]
Improving human-robot
interaction based on joint

attention (2017)

A novel cognitive architecture for
a computational model of the

limbic system is proposed,
inspired by human brain activity,

which improves interactions
between a humanoid robot and

preschool children

Robotis Bioloid Eyes, auditory,
and sensory cues

16 pre-school children
from 4 to 6 years old.

Dynamic neural fields
(DNFs) model; used with

reinforcement and
unsupervised

learning-based adaptation
processes

Cognitive
architecture
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Table 3. Cont.

Ref. Title and Year Aim Robot Social Cues Participants Models Area

[54]

A Robot Learns the Facial
Expressions Recognition

and Face/Non-face
Discrimination Through an

Imitation Game (2014)

A robotic system that can learn
online is shown to recognize

facial expressions without having
a teaching signal associating a

facial expression

-

Gestures, gaze
direction,

vocalization
cues

20 persons
Theoretical model for online
learning of facial expression

recognition

Cognitive
architecture

[55]

Development of first social
referencing skills:

Emotional interaction as a
way to regulate robot

behavior (2014)

Studying how emotional
interactions

with a social partner can
bootstrap increasingly complex

behaviors such as social
referencing

- Facial expression
cues 20 persons

Model that uses the child’s
affective states and adapts

its affective and social
behavior in response to the
affective states of the child

Behavioral
adaptation

[24] May I help you? (2015) Model of adaptive behaviors to
pedestrians’ intentions Robovie Body and facial

expression cues

The participants were
visitors of the shopping

mall where the robot was
placed.

State transition model; used
with an

Intention-Estimation
Algorithm

Behavioral
adaptation

[56]

A framework for the design
of person following

behaviors for social mobile
robots (2012)

Framework for people detection,
state estimation, and trajectories

generation for an interactive
social behavior

Kompai Body and facial
expression cues -

The model combines
perception, decision, and

action and uses fuzzy logic
and SLAM algorithms

Behavioral
adaptation

[57]

People-aware navigation for
goal-oriented behavior

involving a human partner
(2011)

Person-aware navigation system - Body and facial
expression cues

8 healthy and young
subjects (7 male and 1

female) with an average
age of 20.8 years.

The model weights
trajectories of a robot’s
navigation system for

autonomous movement
using Algorithms in

navigation-stack of ROS

Behavioral
adaptation

[58]

Promoting interactions
between humans and robots

using robotic emotional
behavior (2015)

Map of human psychological
traits to make robots emotive and

sociable
NAO Body and facial

expression cues 10 subjects

Emotional Intelligence (EI)
model; uses Meyer Briggs
theory (MBT) and fuzzy

logic

Behavioral
adaptation
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Table 3. Cont.

Ref. Title and Year Aim Robot Social Cues Participants Models Area

[59]

Moving toward an
intelligent interactive social
engagement framework for

information gathering
(2017)

To develop an integrated robotic
framework including a novel

architecture and an interactive
user interface to gather

information

NAO, Milo, and
Alice

Body and facial
expression cues

186 children from 8 to 12
years old

Interactive Social
Engagement Architecture

(ISEA) is designed to
integrate behavior-based
robotics, human behavior

models, cognitive
architectures, and expert

user input to increase social
engagement between a

human and system

Cognitive
architectures

[60]

Moving toward an
intelligent interactive social
engagement framework for

information gathering
(2018)

Software architecture
allowing a robot to socially
interact with human beings,

sharing with them some basilar
cognitive mechanisms

NAO
non- verbal cues

such as social
signals

Children

Hidden Markov Model
(HMM) used as a reasoning

approach
The model encoded social

interaction and uses natural
and intuitive

communication channels,
both to interpret the human
behavioral and to transfer
knowledge to the human

Cognitive
architectures

[61]

Persuasive robotic assistant
for health self-management
of older adults: Design and

evaluation of social
behaviors (2010)

To implement models obtained
from biological systems to

humanoid robots
Robothespian Body and facial

expression cues

237 subjects of different
age, gender, and

education

Model that uses a facial
action coding system

Behavioral
adaptation

[62]

A Logic-Based
Computational Framework

for Inferring Cognitive
Affordances (2018)

A framework that reasons about
affordances in a more general
manner than described in the

existing literature

-
Eye, gaze body

orientation; verbal
request

The robot is tested in
different scenarios with

the following domains as,
for example, at an elder

care facility

A DS theory framework
often interpreted as a
generalization of the
Bayesian framework

Cognitive
architectures

[63]
The Role of Functional

Affordances in Socializing
Robots (2015)

A paper where affordances of
objects were used as a starting
point for the socialization of

robots

Jenny Robot

gesture, gaze, head
movements, vocal
features, posture,
proxemics, and

touch and
affordances cues

Jenny is implemented for
the tea-making task under

various scenarios
OWL-DL model Cognitive

architectures
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Table 3. Cont.

Ref. Title and Year Aim Robot Social Cues Participants Models Area

[64]

Intelligent emotion and
behavior based on

topological consciousness
and adaptive resonance

theory in a companion robot
(2016)

An artificial topological
consciousness that uses a

synthetic neurotransmitter and
motivation, including a logically

inspired emotion system is
proposed

CONBE robot Gaze cues
Experiments done for the

object recognition and
face recognition

Behavioral model for
recognition of objects and

faces

Cognitive
architectures

[65]
Practical aspects of

deploying Robotherapy
systems (2018)

Our robotic system helps
therapists in sessions of cognitive

stimulation. Without
NAO Orientation of the

gaze
Robot tested with

different kind of cultures

A new module
capable of communicating

implemented with a
behavioral architecture

BICA

Behavioral
adaptation

[66]

Staged Development of
Robot Skills: Behavior
Formation, Affordance

Learning and Imitation with
Motions (2015)

Realization of an integrated
developmental system where the

structures emerging from the
sensorimotor experience of an

inter- acting real robot are used as
the sole building blocks of the

subsequent stages that generate
increasingly more complex

cognitive capabilities

7 DOF Motoman
robot arm

Motionese cues
robot

The robot performed 64
swipe action executions

towards a
graspable object that is
placed in a reachable

random position

Model that includes three
stages:

discovering behavior
primitives, learning to

detect affordances, learning
to predict effects

Behavioral
adaptation

[67]

Personality affected robotic
emotional model with
associative memory for

human-robot interaction
(2016)

This paper discusses human
psychological phenomena during
communication from the point of

view of internal and external
factors, such as perception,

memory, and emotional

Iphonod robot Facial, gesture,
voice cues

The experimental part is
divided into two parts;
first, the processing of

multi-modal information
into emotional

information in the
emotion model is

simulated. Next, based on
multi-modal information

and emotional
information, which came

from the first one, the
association process will be
performed to determine

the robot behaviors.

Model for object, facial and
gesture, voice, and

biometric recognition

Behavioral
adaptation
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Table 3. Cont.

Ref. Title and Year Aim Robot Social Cues Participants Models Area

[68]

Multimodal emotional state
recognition using

sequence-dependent deep
hierarchical features (2015)

This model uses a hierarchical
feature representation to deal

with spontaneous emotions, and
learns how to integrate multiple

modalities for non-verbal
emotion recognition, which

makes it suitable for use in an
HRI scenario

- Facial expressions

Three experiments are
executed and evaluated.

The first one
uses information of the

face expression to
determine emotional

estates. The second one
extracts information from

the body motion,
composed by arms, torso,
and head movements, and

the third one uses both
types of information.

Multichannel Convolutional
Neural Network (MCCNN)

to extract hierarchical
features

Behavioural
adaptation

[69]
Artificial cognition for social

human–robot interaction:
An implementation (2015)

This article is an attempt to
characterize these challenges and
to exhibit a set of key decisional
issues that need to be addressed

for a cognitive robot to
successfully share space and

tasks with a human

Manipulator

Verbal
communication,

gestures, and
social gaze

A scenario involving
multi-modal, interactive
grounding: the humans
can refer to invisible or
ambiguous objects that

the robots anchor to
physical objects through
multi-modal interactions
with the user. A second
task that the robot has to

achieve is cleaning a table

Model that has
collaborative cognitive

skills: geometric reasoning
and situation assessment

based on perspective-taking
and affordance analysis;

acquisition and
representation of

knowledge models for
multiple agents (humans

and robots, with their
specificities); natural and

multi-modal dialogue;
human- aware task

planning; human–robot
joint task achievement.

Cognitive
architectures
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Table 3. Cont.

Ref. Title and Year Aim Robot Social Cues Participants Models Area

[70]

Collaborative Autonomy
between High-level

Behaviours and Human
Operators for Remote

Manipulation Tasks using
Different Humanoid Robots

(2017)

This article discusses the
technical challenges that two

teams face and overcame during
a DARPA completion to allow the
human operators to interact with

a robotic system with a higher
level of abstraction and share

control authority with it

THORMANG
“Johnny” and
Atlas “Florian”

Affordances
Visual cues

The two robots have to
complete the two tasks of

opening a door and a
valve

Model for a humanoid
robot that is composed by a

remote manipulation
control approach, a

high-level behavior control
approach, an overarching

principle, and a
collaborative autonomy,

which brings together the
remote manipulation and

high-level control
approaches

Behavioral
adaptation

[71]

Probabilistic Movement
Primitives for Coordination
of Multiple Human-Robot
Collaborative Tasks (2017)

This paper proposes an
interaction learning method for

collaborative and assistive robots
based on movement primitives

Dual arm
manipulator

Social-cognitive
cues

A robot co-worker must
recognize the intention of
the human to decide some
actions: if it should hand
over a screwdriver or hold
the box or coordinate the
location of the handover
of a bottle with respect to
the location of the hand of

the human.

Imitation learning to
construct a mixture model
of human-robot interaction

primitives. This
probabilistic model allows

the assistive trajectory of the
robot to be inferred from

human observations

Cognitive
architectures

[2]

Robots in Education and
Care of Children with

Developmental Disabilities:
A Study on Acceptance by

Experienced and Future
Professionals (2017)

A study on the acceptance of
robots by experienced

practitioners and university
students in psychology and

education sciences is presented

NAO Verbal cues

Demonstration of the
capabilities of the robot in
front of participants that

had to filled a
questionnaire at the end

according to robot’s
behavior

The aim is to examine the
factors, through the Unified
Theory of Acceptance and

Use of Technology (UTAUT)
model

Cognitive
architectures

[72]

Optimized Assistive
Human–Robot Interaction

Using Reinforcement
Learning (2016)

The proposed HRI system assists
the human operator to perform a

given task with minimum
workload demands and

optimizes the overall
human–robot system

performance.

PR2 - The robot has to draw a
prescribed trajectory

Reinforcement Learning
LQR Method

Behavioral
adaptation
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Table 3. Cont.

Ref. Title and Year Aim Robot Social Cues Participants Models Area

[73]

The Impact of Social
Robotics on L2 Learners’
Anxiety and Attitude in

English Vocabulary
Acquisition (2015)

This study aimed to examine the
effect of robot assisted language
learning (RALL) on the anxiety

level and attitude in English
vocabulary acquisition amongst
Iranian EFL junior high school

students

NAO

Iranian EFL junior high
school students. Forty-six

female students, who
were beginners at the age
of 12, participated in this

study.

FLCAS questionnaire that
evaluates anxiety

Cognitive
Architectures

[74]

The multi-modal interface
of Robot-Era multi-robot
services tailored for the

elderly (2018)

ROBOTERA project has the
objective of implementing easy
and acceptable service robotic

system for the elderly.

Three Robot: Coro,
Doro, Oro

Gaze, vocal, facial
cues Elderly people

Architectures based on
emotion recognitions and

object’s recognition

Cognitive
Architectures

[75]

Human–Robot Facial
Expression Reciprocal

Interaction Platform: Case
Studies on Children with

Autism (2018)

In this research, a robotic
platform has been developed for
reciprocal interaction consisting
of two main phases, namely as
Non-structured and Structured

interaction modes

Mina Robot Facial expressions Children

The model is composed of
two modules:

Non-structured and
Structured interaction

modes. In the
Non-structured interaction

mode, a vision system
recognizes the facial

expressions of the user
through a fuzzy clustering
method. In the Structured
interaction mode, a set of
imitation scenarios with

eight different posed facial
behaviors were designed for

the robot

Cognitive
Architectures

[76]

Adaptive Robotic Tutors
that Support Self-Regulated
Learning: A Longer-Term

Investigation with Primary
School Children (2018)

This paper explores how
personalized tutoring by a robot,
achieved using an open learner

model (OLM), promotes
self-regulated learning (SRL)
processes and how this can

impact learning and SRL skills
compared to personalized

domain support alone

NAO Gaze Children
Using an open learner

model (OLM) to learn SRL
processes

Behavioral
adaptation
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Table 3. Cont.

Ref. Title and Year Aim Robot Social Cues Participants Models Area

[77]

DAC-h3: A Proactive Robot
Cognitive Architecture to

Acquire and Express
Knowledge About the

World and the Self (2018)

This paper introduces a cognitive
architecture for a humanoid robot

to engage in a proactive,
mixed-initiative explo- ration and
manipulation of its environment,
where the initiative can originate

from both humans and robots.

i-Cub Gaze Picking objects

The framework, based on a
biologically grounded
theory of the brain and

mind, integrates a reactive
interaction engine, a

number of state-of-the-art
perceptual and motor

learning algorithms, as well
as planning abilities and an
autobiographical memory

Cognitive
Architectures

[78]

Using a Humanoid Robot to
Elicit Body Awareness and

Appropriate Physical
Interaction in Children with

Autism (2015)

A human–robot interac- tion
study, focusing on tactile aspects
of interaction, in which children
with autism interacted with the

child-like humanoid robot
KASPAR

KASPAR Tactile, gaze cues Children Model for the behavior
analysis

Cognitive
Architectures
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3.2. Data Abstraction

Data were abstracted from each selected article, as reported in Table 4 The tables give the
main purpose of each work, the robot used, the extracted features, and a short description of the
implemented model/algorithms. The last column reports the area to which they belong (cognitive
architectures, behavioral adaptation criterion, and empathy). In addition, for those papers which
describe an experimental protocol, the number and the type of participants involved in the experimental
session are also reported. The objective of the abstraction is to provide an overview of the papers
included in this survey and to facilitate their comparison.

3.3. Theoretical Works on the Development of Robotics Behavioral Models

In this section, published works on theoretical studies of robotic models are described. Occurrences
of theoretical studies belong to three areas (Table 2).

3.3.1. Concepts for the Cognitive Application Area

Human cognitive systems are often adopted as an inspiration to develop a cognitive architecture
for robots. In the last several years, in fact, assistive and companion robots have accomplished
advanced social proficiency whenever they were equipped with cognitive architectures. Relevant
examples of this trend are listed below in this section.

Reference [23] described cognitive architectures citing the Learning Intelligent Distribution Agent,
Soar, and the Adaptive Control of Thought-Rationale architecture with the aim to provide a set
of commitments useful to develop intelligent machines. In this work are presented the Theory of
Mind (ToM) and the “perceptual-motor simulation routines,” which are two of the fundamental
theories of social cognition. Particularly, the ToM would represent the inherent human ability in
attributed mental states to other social agents. That is possible through the application of theoretical
inference mechanisms on cues gathered by people during social interactions (e.g., facial expression
could be used in order to probabilistically determine the person’s emotional state). On the other
hand, the paradigm of “perceptual-motor simulation routines” state that people would be able to
understand others’ mental state by the use of simulation mechanisms, which would help the subject
attribute a mental state to his\her interlocutor. The authors suggested their approach, Engineering
Human Social Cognition (EHSC), which incorporates social signal processing mechanisms to allow
a more natural HRI and focus on verbal and non-verbal cues to support interaction. Social signal
processing is able to interpret social cues and then individual mental states. The authors underlined
that modelling recommendations have centered primarily on the perceptual, motor, and cognitive
modelling of a robotic system that spans disciplinary perspectives. This is the area that will require
extensive work in the future. As such, the next steps in this area must include both research and
modelling efforts that assess the issues and challenges of integrating the proposed types of models and
formalisms. That effort can aid in the development of an integrated and working system based on these
recommendations. These recommendations, if instantiated, would provide some basic perceptual,
motor, and cognitive abilities, but future efforts should address whether these would also support
more complex forms of social interaction. Such a capability would permit an artificial system to better
express or perceive emotions while interacting and communicating with humans in even more complex
social scenarios that would require shared decision-making and problem-solving.

Among cognitive architectures to be implemented into social robots to improve HRI, Pieters et
al. [35] presented a work with the aim to develop a human-aware cognitive architecture. This system
is conceived to provide robots with the ability to understand the human state, physical and affective,
and then to interact in a suitable manner. Starting from cognitive models, the authors organized the
architecture by considering a cognitive model that represents how memory is organized: a declarative
memory for semantic and episodic facts, and procedural memory. According to this organization,
the robot’s tasks are encoded as a sequence of actions and events, thanks to a symbolic task planner,
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with the aim to verify if, and in what way, the task has already been executed. In Reference [77],
the authors proposed an architecture that drives the robot behavior to acquire language capabilities,
execute goal-oriented behavior, and express a verbal narrative of its own experience in the world.

To provide robots with believable social responses and to have a more natural interaction,
a theoretical model was developed by Reference [33]. The proposed architecture is human brain-inspired
and it is structured into four principal modules, which encompasses anatomic structures and cognitive
functions, such as the sensory system, the amygdala system, the hippocampal system, and the working
memory. This brain-inspired system provides robots with emotional memory, which is fundamental
to be able to learn and adapt to dynamic environments. In particular, the authors focus on artificial
emotional memory, which lets robots remember emotions, associate them with stimuli, and react in
an appropriate way if unpleasant stimuli occur. External stimuli are pre-processed by the sensory
system, which is composed of the sensory cortex and thalamus. Prediction and association between
stimuli and emotions are conducted via the amygdala system that provides emotional feedback to the
hippocampal system.

Lastly, another brain-inspired architecture was developed in Reference [34]. It focuses on the
autonomous development of new goals in robotic agents. Starting from neural plasticity, the Intentional
Distributed Robotic Architecture (IDRA) is an attempt to simulate a brain circuit composed of the
amygdala, the thalamus, and the cortex. The cortex is responsible for receiving signals from sensory
organs. The thalamus develops new motivations in mammals, while the amygdala manages the
generation of somatosensory responses. Elementary units, called Deliberative Modules (DM), enable
a learning process that lets the robot learn and improve its skills during the execution of a task.
This process is known as Intentional Distributed Robotic Architecture (IDRA). Working memory
(acting as the cerebral cortex) and goal generator (acting as the thalamus) modules compose each
DM. Amygdala is represented by instincts modules. Experiments were made to verify the ability of
a NAO robot (https://www.softbankrobotics.com/emea/en/robots/nao/find-out-more-about-nao. Retrieved
July 2018) in learning to distinguish particular object shapes and in exploring in an autonomous way
and learning new movements. Sensing and actuation as main activities required for learning and
cognitive development were tested: NAO was able to learn new shapes taking sensorial inputs and to
compose new behaviors, which are consistent with these goals. The authors underlined their choice
to opt for directly using the high-level representation of the neural function, even though a system
that uses neural coding as basic representation could be integrated into IDRA. NAO is often used to
implement cognitive architectures. It was used in Reference [79] to evaluate a robot-assisted therapy
for children with autism and intellectual disability (the same was done in Reference [78] with a robot
named Kaspar) and in Reference [73] to examine the effect of robot-assisted language learning (RALL)
on the anxiety level and attitude in English vocabulary acquisition among Iranian EFL junior high
school students.

Another important element that should be considered in the field of behavioral models is the
mechanism of affordances. The concept of affordance refers to the relationship between human
perceivers and aspects of their environment. Being able to infer affordances is central to common sense
reasoning, tool use, and creative problem solving in artificial agents.

Cutsuridis et al. [36] created a cognitive control architecture of the perception–action cycle for
visually guided reaching and grasping of objects by a robot or an agent melded perception, recognition,
attention, cognitive control, value attribution, decision-making, affordances, and action. The suggested
visual apparatus allows the robot/agent to recognize both the object’s shape and location, extract
affordances, and formulate motor plans for reaching and grasping.

Haazebroek et al. [37] presented HiTEC, a novel computational (cognitive) model that allows for
direct interaction between perception and action as well as for cognitive control, demonstrated by
task-related attentional influences. In their model, the notion of affordance is effectively realized by
allowing for automatic translation of perceptual object features (e.g., object shape) to action by means of
overlap with anticipated action effect features (e.g., hand shape). Reference [39] proposed a Simulation

https://www.softbankrobotics.com/emea/en/robots/nao/find-out-more-about-nao
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Theory and neuroscience findings on Mirror-Neuron Systems as the basis for a novel computational
model, as a way to handle affective facial expressions. The model is based on a probabilistic mapping
of observations from multiple identities onto a single fixed identity (‘internal transcoding of external
stimuli’), and then onto a latent space (‘phenomenological response’). Asprino et al. [41] presented in
this paper an Ontology Design Pattern for the definition of situation-driven behavior selection and
arbitration models for cognitive agents. The proposed pattern relies on the descriptions and situations
ontology pattern, combined with a frame-based representation scheme. Inspired by the affordance
theory and behavior-based robotics principles, their reference model enables the definition of weighted
relationships, or affordances, between situations (representing agent’s perception of the environmental
and social context) and agent’s functional and behavioral abilities. These weighted links serve as
a basis for supporting runtime task selection and arbitration policies, to dynamically and contextually
select agent’s behavior.

Lastly, a different use of a cognitive industrial entity called context-aware cloud robotics (CACR)
is used for advanced material handling. Compared with the one-time on-demand delivery, CACR is
characterized by two features: (1) context-aware services and (2) effective load balancing. The CACR
case study is performed to highlight its energy-efficient and cost-saving material handling capabilities.

3.3.2. Concepts for the Empathy Area

Empathy is becoming an important field of social robotics and several behavioral models take this
aspect into consideration.

Reference [31] showed how different models based on emotions were created to build empathetic
and emotional robots. The main cues used in these models are movements, gestures, and postures.
In another paper, the same authors explored different dimensions of artificial empathy and revealed
different empathy models: a conceptual model of artificial empathy that was structured on the
developmental axis of self-other cognition, statistical models based on battery level or temperature,
and a four-dimension empathy model were presented and described. The cues used in this article were
unimodal and multimodal communication cues as opposed to the previous one that used movements.

Reference [80] discussed a conceptual model of artificial empathy with respect to several existing
studies. This model is based on affective developmental robotics, which provide more authentic
artificial empathy based on the concept of cognitive developmental robotics. The authors showed how
the model worked using two different robots: an emotional communication robot called WAMOEBA
and a humanoid robot called WE.

3.3.3. Concepts for Behavioral Adaptation Area

Designing an intelligent agent is a difficult task because the designer must see the problem from
the agent’s viewpoint, considering all its sensors, actuators, and computation systems. Farahmand et
al. [38] introduced a bio-inspired hybridization of reinforcement learning, cooperative co-evolution,
and a cultural-inspired memetic algorithm for the automatic development of behavior-based
agents. Reinforcement learning is responsible for the individual-level adaptation. Cooperative
co-evolution performs at the population level and provides basic decision-making modules for the
reinforcement-learning procedure. The culture-based memetic algorithm, which is a new computational
interpretation of the meme metaphor, increases the lifetime performance of agents by sharing learning
experiences between all agents in the society. To accelerate the learning process, the authors introduced
a cultural-based method based on their new interpretation of the meme metaphor. Their proposed
memetic algorithm is a mechanism for sharing learned structures among agents in society and lifetime
performance of the agent, which is quite important for real-world applications, increases considerably
when the memetic algorithm is in action.
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3.4. Experimental Works on the Development and Implementation of the Behavioral Model

In this section, published works on behavioral models with the experimental loop are shown and
are divided into sub-categories, according to the application area (Table 3).

3.4.1. Experimental Works for Cognitive Architectures

Concerning cognitive architectures, Reference [53] proposed a cognitive framework inspired by
the human limbic system to improve HRI between humanoid robots and children during a game
session. The robot’s emotional activity was modelled with computational modules representing
amygdala, hippocampus, hypothalamus, and basal ganglia and used to suggest users’ optimal game
actions. The results showed that this cognitive architecture provided an efficient mechanism for
representing cognitive activity in humanoid robots. The children’s attention level was higher when
compared to those of a game session without the use of the robot.

Reference [59] aimed to use an Interactive Social Engagement Architecture (ISEA) and an interactive
user interface to gather information from children. The authors tested the developed architecture with
an NAO robot and two other humanoids with 186 children. The ISEA is able to integrate and combine
human behavior models, behavior-based robotics, cognitive architectures, and expert user input to
improve social HRI. Eight modules compose the framework presented: knowledge, user input, sensor
processing, perceptual, memory, behavior generation, behavior arbitration, and behavior execution
modules. The knowledge module models human behaviors, while the perceptual module manages
external sensor data from the environment, and processes and interprets data, sending results to the
memory module. The behavioral generation module calculates which behavior and communication
strategies must be used and sends data to the behavioral generation module. Novel emergent
behaviors can be obtained by combining newly generated behaviors with the stored behaviors in
memory modules. Every time that behavior is displayed, the robot’s internal state is updated to
keep track of the new data storage. Preliminary results showed that children seemed to find it more
comfortable to establish an engagement with a robot, rather than with humans, in sharing information
about their bullying experiences at school. Although this research is only midway through the grant
award period, the developments and results are promising. Moreover, the authors said that slow and
steady progress is occurring with the development of this Integrated Robotic Toolkit, but there is still
significant and ongoing work to be explored with this approach.

Reference [52] proposed an intention understanding system that consists of perception and action
modules. It is an object-augmented model, composed of two neural network models able to integrate
perception and action information to allow the robot to better predict the user’s intention. The model
was tested in a cafeteria with customers and clerks. The action module was able to understand the
human intention and associate a meaning to predict an object related to that action. The combination
of these modules resulted in an improved human intention detection.

As explained in the theory section of the cognitive area, affordances are important elements
for building a behavioral model for social robots. Those ones encode relationships between actions,
objects, and effects and play an important role in basic cognitive capabilities such as prediction and
planning [62], which also developed a computational framework based on the Dempster-Shafer (DS)
theory for inferring cognitive affordances. They explained that this, much richer level of affordance
representation is needed to allow artificial agents to be adaptable to novel open-world scenarios.
Reference [63] also underlined the fact that affordances play an important role on basic cognitive
capabilities such as prediction and planning. The authors said that the problem of learning affordances
is a key step toward understanding the world properties and developing social skills.

Reference [69] also proposed a model that has collaborative cognitive skills such as geometric
reasoning and situation assessment based on perspective-taking and affordance analysis. Another
important element to be taken into consideration in the implementation of a behavioral model are
facial expressions. Those ones are often based on an inner model that is related to the emotional state
and are not only based on categorical choice. Chumkamon et al. [64] proposed a framework that
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focuses on three main topics including the relation between facial expressions and emotions. The first
point of their model is the organization of the behavior including inside-state emotion regarding the
consciousness-based architecture. The second one presents a method whereby the robot can have
empathy toward its human user’s expressions of emotion. The last point shows the method that enables
the robot to select a facial expression in response to the human user, which provides instant human-like
‘emotion’ and is based on emotional intelligence (EI) that uses a biologically inspired topological online
method to express, for example, encouragement or being delighted. Another application of facial
expressions in a cognitive architecture is shown in Reference [39] and in Reference [75]. Reference [55]
proposed a robotic system that could learn online to recognize facial expressions without having
a teaching signal associated with a facial expression. Reference [74] also created a system composed of
three robots that helped elderly people during their daily works such as reminding them of taking drugs
or bringing them the objects that they desired and analyzing their facial expressions to recognize them.

Lastly, learning from demonstration is used in Reference [71]. The authors proposed a learning
method for collaborative and assistive robots based on movement primitives. The method allows for
both action recognition and human-robot movement coordination.

3.4.2. Experimental Works on Empathy

When a social robot interacts with human users, empathy represents one of the key factors
to increase natural HRI. Emotional models are fundamental for social abilities to reach empathy
with users.

Reference [81], for example, evaluated and compared the emotion recognition algorithm in two
different robots (NAO and Pepper) and created metrics to evaluate the empathy of these social robots.

Reference [44] developed emotion-based assistive behavior to be implemented in social assistive
robots. According to the user’s state, the model is able to provide abilities to the robot to show
appropriate emotions, which elicits suitable actions in humans. The robot’s environmental and internal
information plus user affective state represent the inputs for the Brian robot (Brownsell, Alex (29 May
2013). “Confused.com overhauls brand in search of ‘expert’ positioning”. Marketing Magazine. http://www.
marketingmagazine.co.uk/article/1183890/confusedcom-overhauls-brand-search-expert-positioning. Retrieved
July 2018) to alter its emotional state according to the well-being of a participant and to the assistant in
executing tasks. In this work, the robot emotional module is employed not to provoke emotional feelings,
but rather in terms of assistive tasks that the robot should perform to satisfy the user’s well-being.

The experiments show the potential of integrating the proposed online updating Markov chain
module into a socially assistive robot to obtain compliance from individuals to engage in activities.
Using robotic behavior that focuses on the well-being of the person could be beneficial to the person’s
health. Moving to a fully encompassing target user group is needed to test the overall robot in its
intended assistive applications.

Reference [43] implemented an experiment with the I-Cat robot (http://www.hitech-projects.com/ icat/ .
Retrieved July 2018), which aims to provide a computer-based assistant that could persuade and
guide elderly people to behave in a healthy way. Previous works demonstrated that combining the
robot’s empathy with the user’s state contributed to a better appreciation of a personal assistant [82].
I-Cat features an emotional model that makes it able to smile and express sadness. Authors implemented
natural cues such as understanding, listening, and looking, to perform different roles for the robot
(educator, buddy, and motivator). The analysis was conducted by considering participants’ personalities.
The percentage of the total time that participants talked, laughed, and looked at the robot, and how
many times the participants said “goodbye,” as a sign of interpretation of the robot as a social entity.
The aim of the work was to establish behaviors for an electronic personal assistant with a high level
of dialogue, emotions, and social competencies. The findings showed that natural cues used by
I-Cat provoked more empathy and social involvement with users. When non-social cues were used,
users perceived the robot as less trustworthy and less persuasive, while avoiding its suggestions.

http://www.marketingmagazine.co.uk/article/1183890/confusedcom-overhauls-brand-search-expert-positioning
http://www.marketingmagazine.co.uk/article/1183890/confusedcom-overhauls-brand-search-expert-positioning
http://www.hitech-projects.com/icat/
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During experiments, the physical characters were found to be more trustworthy but less empathetic
than the virtual character, which was not expected. This negative outcome on empathy might be due to
specific constraints of the iCat: it makes a relatively high amount of noise when it moves, and the head
and body movements may not be fluent enough. Another technical constraint was the (occasional)
appearance of errors in the movements and speech, such as skipping choices of the multiple-choice
questions. Furthermore, it may be that the three-character roles did not capture important advantages
of a physical character that can act in the real environment. For instance, more positive outcomes
might show up with a character that helps to attend to a medicine box with a specific location in the
house, compared to a virtual character that is not a real actor in the house.

Reference [25] provided their contribution to social pervasive robotics by proposing an affective
model for social robots, empathizing the concept of empathy. Behavioral adaptation according to
users’ needs and preferences resulted in preliminary tests that achieved a better social inclusion in
a learning scenario. The first part of the model, called “Affective loop,” was a module for the perception
of humans, characterized by body-based emotion recognition that can recognize human emotions.
According to the perception for human module’s outputs, the internal state of the robot changed,
which generates a complex emotional spectrum using a psycho-evolutionary theory of emotions.
The user was able to visualize the robot’s internal state and adjust some system parameters for the
duration and intensity of each emotion. The user’s interest in interaction was then monitored by the
visual system: when it decreased, the robot changed its behavior to socially involve the user and
selected its emotion according to the user’s state. Affective behaviors were also adapted to the goal of
interaction in a cooperative task between the robot and users.

Lastly, a comparison between two different cultures was made in Reference [30]. They made,
in fact, a comparison between expression features of compassion, sympathy, and empathy in British
English and Polish using emotion models that had sensory cues as inputs.

3.4.3. Experimental Works on Behavioral Adaptation

An attempt to develop robots to be emotive and sociable like humans, showing a capability to adapt
behavior in a social manner, is presented in Reference [58]. Starting from the Meyer-Briggs Theory on
human personality, the authors mapped human psychological traits to develop an artificial emotional
intelligence controller for the NAO robot. The proposed model was modelled as a biological system,
and as a structure of emotionally driven and social behavior represented by three fuzzy logic blocks.
Three variables were used as system input: “trigger event” that incites different psychological reactions,
“behavior profiler” that models event-driven behavior to fit profiles of individuals whose behavior needs
to be modelled, and “behavior booster/inhibitor” that augments or decreases the affective expressiveness.
Social behavior attributes were implemented in the NAO robot controller according to this model.
The robot interacted with young researchers, recognizing calls and gestures, and locating people in
the environment, and showing personality traits of joy, sociability, and temperament. The model
considers personality traits, social factors, and external/internal stimuli as human psychology does
when interacting with others. In Reference [76], Nao was also used to assist children in developing
self-regulated learning (SRL) skills. Combining the knowledge about personality traits discovered with
Meyer-Briggs Theory and validated by Reference [58] and experimental measurements of affective
reactions from a live model performed by an actor, Reference [61] developed a cognitive model of
human psychological behavior. This model includes personality types and human temperaments to be
implemented into the Robothespian humanoid robot. The authors tuned the block scheme developed
in Reference [58] according to measurements from an actor performing as a behavioral live model.
Different affective behaviors were played to create affective reactions to be added to the previous model.

Studies on proxemics, speed, and velocity provided unique suggestions to improve HRI, especially
in behavior adaptation according to the user’s movements and position. In Reference [56], the authors
investigated a robot’s trajectories and speed when it follows a user in a real domestic environment
to provide a comfortable social interactive behavior. The authors presented a framework for people
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detection, state estimation, and trajectory generation that can regulate robotic behavior. To select the
appropriate behavior, the robot used the state of the user and his/her localization as input, considering
movements and the context. Trajectories and velocity were considered in Reference [57], with a robot
moving with a social partner toward the same goal. The authors developed and tested a person-aware
navigation system modifying a trajectory planner. The criterion to change the planner was the distance
between the robot and the user, according to which the robot’s behavior adapted its velocity and
trajectory to reach the goal, but remained close to the user at the same time. The approach described in
this paper is limited because it only considers distance to the goal while ignoring the available free
space. This model could be augmented to consider free-space features, such as free space in front of
each social agent, distances to walls, and distances to other obstacles, to be more informed.

A similar work is presented by Reference [51] with a model to interpret the user’s behavior and
inclination toward interaction with an assistant robot. The robot was able to determine the user’s
behavior through body movements and extraction of posture features. According to its interpretation,
the robot decided if it should move closer or should wait for a better inclination from the user to interact.
The major benefit of this model is that it does not use verbal instruction from the user, which allows
the robot to assess the suitability of starting a conversation by using posture and movement analysis.

Behavioral adaptation according to users’ preferences and feedback on robot’s actions is presented
in Reference [46]. Two learning algorithms were applied to an internally developed adaptive robot,
known as the EMOX (EMOtioneXchange) robot. After having identified the user’s profile, the robot
proposed a personalized activity, while assisting and interacting with the user after the activity
selection. The user’s feedback after each activity was traced, letting the robot have a memory about
the user’s preferences to aid in suggesting a more appreciated activity later. The robot’s architecture
has observations of user behavior, feedback, and environment to use as input. The robot’s actions
are the system output, which are determined through knowledge rules as interaction traces, users’
profiles, decision process, and learning from the feedback process. The results showed that, even if
the interaction modality, with hand gestures, was found difficult, most participants found the robot
behavior adaptable and pertinent to their preferences.

Reference [49] presented a novel control architecture for the internally developed Brian 2.0 robot.
The aim was to adapt the robot’s behaviors according to the user state, which is a social motivator
and assists if needed. To be effectively integrated into society, robots should be provided with social
intelligence to interact with humans. This architecture promoted the robot’s abilities to support and
motivate users during a game memory session to stimulate humans cognitively. Encouragement and
assistance were provided through a modular learning architecture that determined the user’s state
and performances, which modified the robot’s behavior according to these inputs, recorded through
sensors, cameras, and modules. The combination of the robot’s emotional state module and intelligence
layer led establishment of the current robot’s assistive action related to the user’s state and adapts the
robot’s behavior to the interactive scenario, using non-verbal modalities of communication.

Reference [24] investigated a robot’s behavior by proposing a model that adapted to the visitor’s
intention. In a shopping mall, a humanoid robot was tested during approaching and interaction
tasks. The robot was provided with two interaction strategies depending on users’ behaviors: when
visitors showed uncertain intentions, the “proactively waiting” strategy was used and the robot went
toward them. The “collaboratively initiating” strategy, instead, was used when visitors’ willingness to
interact was seen and the robot started a conversation and moved closer to them. To reach a more
natural context in interacting with robots, Reference [47] presented an experiment with a social
robot learning to perform word-meaning associations. The authors hypothesized that a different
human attitude in approaching the robot could be obtained. The robot’s design had the aim to
evoke a strong social response from humans. The social cues used influenced the tutoring of the
human teacher and his behavior. An HRI interaction was measured through a language game,
during which the learner assimilated a lexicon and associated meanings. Based on the teacher’s
feedback, the learner modified the word-meaning association. It could be considered as a sort of
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behavioral adaptation, applied in a different context that could improve the robot’s social abilities.
Through users’ facial tracking, the robot was able to address participants during the interaction,
which emphasized the social involvement. Additional multi-modal social cues (gaze and verbal
statement) to express its learning preference was used by the robot, which modulates the interaction
and positively influences it. Reference [48] developed a spatial relationship model that considers
interpersonal distance, body orientations, emotional state, and movements. On the basis of these
inputs, the robot decides how to proceed, which sets its voice and moves toward the user or not. As the
robot comes close to the child, entering the “personal” distance zone, the current status of the user
is re-evaluated to adapt better to the robot’s actions. Children with cognitive disabilities interacted
with the robot, executing free and structured game sessions. Robot tactile sensors led us to understand
tangible interaction, as an expression of touch-interaction through physical contact with the children.
Depending on the touch-contact typology, the robot was able to select an appropriate behavior using
multimodal emotional expressions. The robot’s behavior can be adapted depending on the user’s
emotion, seen as an emotional stimulus for the robot’s cognitive architecture. Reference [50] proposed
a cognitive-emotional interactive model for interactive and communication tasks between young users
and a robot. During the interaction, the emotional robot acted its emotions using facial expression,
movements, and gesture as a consequence of the user’s emotion, according to the Hidden Markov
Model. The use of this model allowed the robot to regulate emotions as humans do, which provides
a better interaction. The model starts from the hypothesis that robots might know a human’s cognitive
process, in order to understand human’s behaviors. To do that, an object-functional role perspective
method allowed robots to understand humans’ behaviors: objects are interpreted as object-functional
roles and role interactions. An activity is interpreted as an integration of object role interactions,
so the robot is able to predict and understand a human activity. Because this model is only involved
in emotional intensity attenuation, the continuous prediction of spontaneous affect still needs to be
improved in the future, and the authors are considering expanding the experimental sample size and
seeking more effective evaluation approaches for affective computing. Reference [54] also proposed
a model that used a child’s affective states and adapted its affective and social behavior in response to
the affective states of the child.

In Reference [83], the authors also try to adapt robots’ behavior to human emotional intention
and an information-driven multi-robot behavior adaptation mechanism is proposed for human–robot
interaction (HRI). In the mechanism, the optimal policy of behavior is selected by information-driven
fuzzy friend-Q learning (IDFFQ), and facial expression with identification information are used to
understand human emotional intention. It aims to make robots become capable of understanding
and adapting their behaviors to human emotional intention, in such a way that HRI runs smoothly.
The importance of facial expressions for the implementation of social robots is shown in the other two
works. Reference [67] created a model for object, facial, gesture, voice, and biometric recognition and
Reference [68] used a Multi-channel Convolutional Neural Network (MCCNN) to extract emotions
from facial expressions.

Affordances are also used to implement a behavioral model that can adapt to users’ needs. Another
important aspect related to behavioral models is the cultural adaptation of the robot. Reference [40]
proposed a multi-robot behavior adaptation mechanism based on cooperative-neutral-competitive
fuzzy Q learning for coordinating local communication atmospheres in human-robots interaction.
The Fuzzy Q learning is an approach that fuses fuzzy logic with the discrete Q-learning method and the
authors called communication atmospheres significant information were introduced for human-robot
interactions. This approach was tested with people from different countries and with different
backgrounds to overcome the problem of cultural adaptation. Reference [65] also proposed a robotic
system that helps therapists in sessions of cognitive stimulation. Without taking into account aspects
such as the patient’s perception of the robot, or the impact of the cultural environment, the application
of these systems may be doomed to failure. The authors showed pieces of evidence of how the cultural
adaptation of the robots has been considered decisive in their success.
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Inspired by infant development, Reference [66] proposed a three-staged developmental framework
for an anthropomorphic robot manipulator. In the first stage, the robot is initialized with a basic
reach-and-enclose-on-contact movement capability and discovers a set of behavior primitives by
exploring its movement parameter space. In the next stage, the robot exercises the discovered behaviors
on different objects and learns the caused effects. This effectively builds a library of affordances and
associated predictors. In the third stage, the learned structures and predictors are used to bootstrap
complex imitation and action learning with the help of a cooperative tutor. Reference [70] developed
an innovative approach that allows one or more human operators to share control authority with
a high-level behavior controller on the basis of previous work on operator-centric manipulation control
at the level of affordances. In their work, the affordances of the object template can be requested from
the Object Template Server (OTS) and can be executed so that the robot performs the required arm
motions to achieve the manipulation task.

Lastly, Reinforcement Learning techniques were also used to create an HRI system (robot that
assists the human operator) to perform a given task with minimum workload demands and optimizes
the overall human–robot system performance [72].

4. Discussion

The aim of this work is to analyze the state of the art and, thus, to provide a list of hints regarding
cognitive architectures, behavioral adaptation, and empathy. Future research efforts should lead to
overcoming the limitation of the current state of the art, as summarized in Table 4.

Table 4. Challenges and opportunity.

Keywords Barriers/Limitations Challenges and
Opportunities Research Topics

Sensors Technology Multimodal sensors
[32]

A multisensory system
should be implemented in
the model of a robot to
create an improved
architecture

• Development of a multisensory
system that could be used to detect
different social cues at the same time
(i.e., vocal, facial, and gaze cues).

Reliable and usable
sensor technology

[32]

Sensors should be
designed to be reliable and
acceptable in a real-life
situation to reduce the
time-to-market

• Design new sensors that can be used
for a long time by the robot without
being damaged.

• Design and test sensors to be resistant
to possible impacts that the robot can
have during its work.

• Design sensors resistant to external
agents (i.e., water)

Perception Real-time learning
[28,84]

Real-time learning should
be developed to adapt the
behavior of the robot,
according to the changing
needs of the user

• Develop a robot capable of adapting in
real time to the changing needs
of users.

• Analyze “social cues” that the robot
should have according to the person it
is approaching (i.e., children, aged
people).

Emotional state
transitions

[44]

Research on the emotional
state module should be
done more deeply

• Investigate a larger variety of
emotional states including the
emotion transitions.
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Table 4. Cont.

Keywords Barriers/Limitations Challenges and
Opportunities Research Topics

Improving object
detections

[52]

Different approaches in the
area of object detection
should be investigated to
obtain a strong model of
the robot

• Development of real-time object
detection and recognition using
geometrical model or simple CNN,
deep and sophisticated CNNs

Learning from the
user

[46,71]

The robot should be able to
learn from the user in
order to accomplish
complex tasks

• A model based on learning from
demonstration methods could be very
useful to let the robot achieve better
and more complex skills.

Affordances
[41,62,63]

Affordances are important
elements to be analyzed in
the process of the
implementation of a
behavioral model for a
cognitive robot

• Develop a behavioral model that
includes action selection of cognitive
agents, following the notion
of affordance.

• Create a network that covers some
areas as a personal sphere (e.g., people
information), life events (e.g.,
information about memories,
scheduling, plans, etc.), environment
sphere (e.g., information about rooms,
furniture, objects, etc.), the health
sphere (e.g., living patterns, health
patterns, vital signs, etc.), and the
emotional sphere (e.g., emotions,
sentiments, opinions, etc.).

• Investigate affordance strategies
related to deformable objects.

Experimental Experimental session
[35,61,85]

The model should be
implemented on a real
robot and tested to
evaluate the proposed
artificial cognitive
architecture in dynamical
environments

• Test of the model of a robot in
dynamics environments (i.e., outdoor
and indoor, in crowded or not
crowded places) and with people from
different ages.

Architecture
Design

Brain-inspired
architecture

[34]

Research in robot’s
behavioral model should
be conceived with a
multidisciplinary
approach to be able to
adapt to the user’s needs

• Implement a multidisciplinary
approach to create better models for
social factors (i.e., engineering,
neuroscience, and psychology).

Modular and flexible
architecture

[19]

Robot should adapt to
different context and
different preferences,
which could change over
time. Therefore, the
architecture of a robot
should be modular and
flexible.

• Develop modular and adaptable
model of a robot to operate in different
contexts (schools, hospitals, and
industries).

• Implement a cloud architecture to
offload intensive tasks to the cloud, to
access a vast amount of data, and to
share knowledge and new skills.

Behavioral
consistency,

predictability, and
repeatability

[48]

These requirements should
be investigated to obtain a
complex model

• Integrating those fields in the model of
a robot could be obtained by creating
an algorithm that represents the
episodic memory. This could bring the
creation of an artificial intelligent
agent that can act more independently.
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Table 4. Cont.

Keywords Barriers/Limitations Challenges and
Opportunities Research Topics

Standardization Having a high level of
interoperability

• Investigate the system interoperability
to create a bridge among the different
components of the system.

Ethical, legal, and
social

Ethical and social
aspects

[19]

Ethical implications also
should be investigated
when creating a new
model for a robot

• Investigate the ethical and social
implications of designing social robots
with advanced HRI abilities.

Legal aspect
No rules can be found in
the legal field of social
robotics

• Investigate the regulation for social
robots to overcome the problem that
social robots cannot operate in
environments with people without a
supervision of an operator.

Cultural adaption
[24,40,65]

The robot should be able to
adjust parameters for
different cultures

• Test new robots with different cultures
to obtain a generic model for a robot.
Many models work well when tested
with people born in the country where
they were developed.

It shows several areas that have to be analyzed in future works as sensors technology, perception,
architecture design, and the presence/lack of an experimental phase.

Moreover, ethical, legal, and social aspects should be taken into consideration to build an efficient
behavioral model for future robots.

4.1. Sensors Technology

A crucial aspect in HRI is how robots manage to understand intentions and emotions of the users
using social cues (i.e., posture and body movements, facial expression, head and gaze orientation,
and voice quality). Sensors play a fundamental role because they are used to detect these cues,
which are then processed in the robot model. An issue related to sensors is the data acquisition that can
face delays, so an effort for the future could be to design sensors that are reliable and usable in real-life
situations. Moreover, the robot should have a multisensory to acquire different types of signals [32].
To achieve this goal, microphones, 2D and 3D vision sensors, thermal cameras, leap motion, Myo,
and face-trackers could be collected to create a system that gives a complete sensor coverage to the
robot. Each device could cover a different area. Microphones could be used for speech, Myo to collect
IMU and EMG data, face-trackers to find the head pose, gaze, and FACS, vision sensors to acquire
point cloud data, thermal cameras to detect objects in dark environments, and a leap motion to track
and estimate the position of the hand.

4.2. Perception and Learning from the User

A second ability that should be deeply analyzed is the area of perception. The main problem of
perception is to have a reliable real-time sensing and learning system, as expressed in Reference [84].
In this paper, the authors show that people’s preferences and knowledge change over time and a good
system should be capable of adapting in real time to these changes and should be able to learn from the
user. To achieve the latter competence, advanced learning-based methods [86] should be used to satisfy
user needs, while increasing the performance of the robot [87]. Additionally, future works should
detect and handle the emotion transition since humans change their emotions steadily [44]. This topic
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is one of the main issues of HRI because the robot must have a real time data acquisition to handle the
emotional transitions and this is quite difficult to gain due to delays during the data acquisition.

Another limitation of this area is the disconnection between perception and actions [52] and this
problem should be overcome to have a reactive robot. Reference [28] underlined this concept, saying
that changes in the user profile should be promptly detected to adapt behavior automatically.

An effort that could be interesting to study more deeply in the future is the possibility for the robot
to achieve complex skills learned from the user (i.e., for cleaning a table). Reference [46] proposed that
the robot should be able to change the internal model on the basis of what it learns from human beings,
using the learning from the demonstration approach.

Moreover, it is worth underlining the importance to increase the number of non-verbal input
parameters considered in the analysis, to make the robot more compliant and adaptable to the user’s
state and preferences [51].

4.3. Architecture Design

Concerning the architecture design, more modular and more flexible architectures should be
created, in the future: robots should be able to, for example, autonomously react to an unplanned
event and a complete risk analysis procedure should be performed in the design phase to correctly
handle the unplanned situations [19,24].

Behavioral consistency, predictability, and repeatability should be investigated since they are
fundamental requirements in the design of socially assistive robots in different contexts, such as for
children with autism as underlined in Reference [48]. Addressing them requires an accurate case
analysis, grounded on the current practice and on extensive experimentation. A possible approach
could be the use of learning from demonstration to teach the robot some skills to achieve a better
performance [87].

Moreover, a multidisciplinary approach should be pursued to design and develop reliable and
acceptable behavioral models [34]. Psychology, biology, and physiology, among others, are areas of
expertise, which should be part of the development process since they can help improve the HRI
experience [88]. Innovative behavioral models for assistive robots could be developed by taking
inspiration from the studies of human social models or from the study of a specific anatomical apparatus.
In this manner, future research will not only consider the physical safety (of the robot and the human
beings) but also psychological, anatomical, and social spheres of humans [48].

It is important to underline that the robot might be appropriate not only in the context for which it
was originally conceived (i.e., private home, hospital, and residential facility) but also for people with
different levels of residual abilities. In other words, the robot should be able to adapt to the variability
and different cultural and social contexts [89].

Lastly, a model of a robot should have a cloud architecture to have the ability to offload intensive
tasks to the cloud, to access a vast amount of data, to access shared knowledge, and not to lose
information in case of connection problems.

4.4. Experimental Phase

The advantage to test robotic solutions with real users is absolutely remarkable, as underlined
by the comparison between papers with or without the experimental sessions. Particularly,
some works [33,35,61] remark on the importance of testing the proposed model as a fundamental step
for future research. The main issue is that, in some scenarios, robots that completed a task during
the simulation phase, do not succeed in the experimental phase. This is the reason why testing the
behavior of the robot in a real environment is of extreme importance in order to find good parameters
that work for the experimental phase. In addition, the architecture should be validated using physical
robots that interact with users in dynamic environments (i.e., schools, industries, and hospitals).

Lastly, another limitation that can be found in several papers is the absence of a database (i.e.,
physical forces or emotional states of the user). A database could be useful to collect information
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achieved from the experimental phase and could be useful not only for the researchers that are working
on the project, but also for other researchers that want to use the data for their own projects.

4.5. Ethical, Legal, and Social Aspects

Future research effort should include the ethical implications of designing robots that interact
with people and the data that should be acquired and correctly stored to guarantee privacy [19].

Regarding legal and social aspects, Reference [24] underlined that the robot should be able to
adjust its parameters for different cultures that have different needs, in order to be able to satisfy real
user requests. Lastly, the birth of a regulation for social robots, like the one created for drones during
recent years, could be an important step in order to have the possibility to use a robot in crowded
environments [90].

5. Conclusions

This paper focuses on behavioral adaptation, cognitive architectures, and the establishment of
empathy between social robots and users. The current state-of-the-art of existing systems used in this
field is presented to identify the pros and cons of each work with the aim to provide recommendations
for future improvements.

To establish a set of benchmarks to define an HRI similar to human-human interaction is
an enormous challenge because of the complexity of non-verbal phenomena in social interactions.
Its interpretation needs the support of psychological processes and neural mechanisms. The topic
of the behavioral model is huge, and several factors contribute to making robots more accepted,
perceived as friends, and empathetic with users. A common limitation of the works presented is
that, often, authors focused on a particular aspect of HRI emphasizing a communication strategy
or a particular behavior as a reaction to the user’s action. Since it is not easy to include behavioral
adaptation techniques, cognitive architectures, persuasive communication strategies, and empathy
in a unique solution, researchers are often limited to organize experimental studies, which include
only some of these factors. This, unfortunately, provides useful information only to a limited part of
persuasive robotics. To maintain the importance of each contribution, it is fundamental to include,
in a whole vision, all the suggestions provided by each work. Although many improvements remain
to be accomplished, the already satisfying results from the authors have achieved an optimum starting
point to develop a better solution using knowledge of human cognitive and psychological structures.
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