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A B S T R A C T

Identifiability is a fundamental concept in parameter estimation, and therefore key to the large majority of
environmental modeling applications. Parameter identifiability analysis assesses whether it is theoretically
possible to estimate unique parameter values from data, given the quantities measured, conditions present in the
forcing data, model structure (and objective function), and properties of errors in the model and observations. In
other words, it tackles the problem of whether the right type of data is available to estimate the desired para-
meter values. Identifiability analysis is therefore an essential technique that should be adopted more routinely in
practice, alongside complementary methods such as uncertainty analysis and evaluation of model performance.
This article provides an introductory overview to the topic. We recommend that any modeling study should
document whether a model is non-identifiable, the source of potential non-identifiability, and how this affects
intended project outcomes.

Learning objectives

• Appreciate key concepts and methods of parameter identifiability
analysis

• Recognise the main consequences of parameter non-identifiability,
i.e., the inability to infer unique parameters from data

• Distinguish between different sources of parameter non-uniqueness
and how they influence identifiability

• Understand that non-uniqueness can occur even with ideal and/or
noise-free data

• Recognise non-identifiability can be due to model structure and
equations alone

• Understand how non-uniqueness in parameter estimation may relate
to multiple optima and/or flatness in the response surface

• Investigate potential multiple optima and flatness using

visualization, derivatives and related indicators
• Understand that noise in data can affect identifiability
• Appreciate issues affecting use of identifiability analysis, including

computational considerations

1. Introduction: what is identifiability analysis?

Models are widely used for understanding, management and sce-
nario analysis of environmental (and other) systems, increasingly for
social learning among stakeholders, and in support of decision making
(Kelly (Letcher) et al., 2013). The ultimate aim is to utilize data and
knowledge about a system to help the modeler, decision makers and
other stakeholders make sense of how the system works, how it may
change in future, and how it may respond to management actions and
other perturbations. In an ideal world, data and knowledge about a
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system of interest would be sufficiently complete such that the model of
that system would become an oracle that can be trusted to always
provide the right answer.

In reality, we typically have incomplete knowledge and data to
adequately conceptualise and simulate a system, and even in cases
where we have an adequate understanding of the general principles
governing the system, we can typically only approximate its com-
plexity, spatial heterogeneity and temporal variability. Tackling this
lack of “certainty” requires a pragmatic approach to managing in-
formation (i.e. data or knowledge that informs understanding of the
system), underpinned by effective modeling practice (e.g. Badham
et al., 2019), and driven by the purpose of the analysis and the re-
sources available. It is necessary to balance efforts to: 1) obtain cost-
effective information, 2) make best use of that information to manage
and reduce critical controls on uncertainty, and 3) understand the re-
maining uncertainty in order to recognise the limitations on how the
model should be used.

To develop a model, there are several steps (e.g. Jakeman et al.,
2006). In these steps, the available information is typically used for:
identifying a model structure, and estimating its parameters. The
identified model structure defines which quantities in the model (state
variables and parameters) are known, which are unknown and need to
be estimated, and how they are related. For short, we refer here to
different model structures as different models. We refer to a specific
model as a vector function f that receives the vector of parameter values
θ, which is typically time-invariant and estimated using data, and in-
puts u that are system drivers and may be varying in space (x) and time
(t). In explicit form

=y x t f u x t( , ) ( ( , ), ) (1)

where y represents model outputs that, like u, may vary in space and
time. Bold notation indicates variables may be vectors rather than just
scalars. In general, since a model is simply a tool to express what we
think we know, f, , u, and therefore y are all likely to be uncertain.
Every aspect of any particular model will differ from observations to
some extent – they are all prone to error.

This is a very general definition of models that covers data-based,
theory/process-based, and conceptual modeling approaches but for an
indicative list of model families and features covered by (1), see
Jakeman et al. (2006, p. 606). We note that data-based models are often
used in situations where data volumes are copious compared to pro-
blems requiring theory-based or conceptual models. Nevertheless, the
issue in data-based modeling is also to use a model structure f and
parameters to establish a relationship between u and y that can re-
produce aspects of interest of the observed output behaviour of the
model. Likewise with so-called integrated models consisting of linked
model components (see Kelly (Letcher) et al., 2013 for five commonly
used types in environmental applications), equation (1) remains re-
levant despite the fact that the form of f may be very complicated, and
parameters may be defined for each sub-model separately rather than
all at once.

Parameter values may be measured, where they correspond to
observable properties of a system, or estimated (also known as cali-
bration) from measured outputs by invoking an objective function that
optimises constrained errors between the model and measured outputs,
in what is referred to as an “inverse problem” – as opposed to the
forward problem of simulating the model outputs given the parameters.
Given errors in both observations and model structure, model and
measured outputs do not perfectly match, resulting in uncertainty in the
estimated parameters, and “residual” errors between the estimated and
observed outputs. There are typically trade-offs between minimizing
different aspects of the residual errors, such that the parameter esti-
mation task itself is commonly seen as a multi-criteria problem
(Efstratiadis and Koutsoyiannis, 2010; Gupta et al., 1998). Depending
on the purpose of the analysis, it is recognized as good practice to work
with multiple model structure hypotheses (Clark et al., 2011; Jakeman
et al., 2006), and to quantify the total uncertainty in outputs resulting
from using multiple models, uncertain parameters, estimation proce-
dures/criteria, and residual errors. Ultimately, equifinality is unavoid-
able (Beven, 2006): given that errors cannot be eliminated or fully
characterised, it is always possible to conceive of multiple different
model structures and different parameter vectors that provide an ac-
ceptable fit to observed data.

Nevertheless, in the context of making best use of available in-
formation, a modeler seeks to reduce uncertainty as much as is rea-
sonably possible or required. There are four key, complementary
methods for measuring how well uncertainty has been reduced (Fig. 1).
Firstly, quantifying the uncertainty in outputs (or some function of
them) provides a direct indicator, but is dependent on how well un-
certainty in model structure, parameters, and residuals has been
quantified (Refsgaard et al., 2007). Secondly, comparing observed and
modeled outputs can be used in several ways. Amongst others, pre-
dictive accuracy provides a measure of model performance (see Bennett
et al., 2013 for metrics and methods). The information supplied by a
model can be quantified (Nearing and Gupta, 2015). If error analysis
shows systematic rather than randomly distributed residuals, this ty-
pically indicates a problem with the model structure which, in general,
leads to bias in the parameter estimates. Evaluating model adequacy is
a substantial task of its own (Gupta et al., 2012). Given one or more
model structures, a modeler is generally, in fact primarily, interested in
how data has helped reduce uncertainty in parameters specifically.
Thirdly therefore, the modeler can quantify the uncertainty in para-
meters, including the covariance describing how the parameter esti-
mates relate to one other (Checchi et al., 2007; Thyer et al., 2009;
Vrugt, 2016). With a suitable model structure, more data should typi-
cally result in smaller parameter uncertainty. However, this will not
occur if the right type of data is not collected, which is the problem best
tackled by investigating parameter identifiability.

It is important to understand the specific contribution of parameter
identifiability analysis even, or especially, if one does not understand
how to perform it. Parameter identifiability analysis focuses on whether
it is possible to identify a unique vector of parameter values for a given

Fig. 1. The role of identifiability analysis with respect to other methods.
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model structure, or whether multiple parameter values will fit the data
equally well. Non-identifiability means the modeler does not have the
information needed to choose between alternative models (Rothenberg,
1971). Large parameter uncertainty is often indicative of non-iden-
tifiability, and reducing parameter uncertainty indicates that the si-
tuation has improved. The idea of “poor” identifiability is frequently
approached from a parameter uncertainty perspective. Strictly
speaking, however, identifiability analysis is specifically interested in
the yes/no question of whether unique parameter values could be
identified. It can be used both before and after data collection. Iden-
tifiability analysis before data collection can check whether the right
type of data will be collected. Identifiability analysis after data collec-
tion can check whether the right type of data is being used in the
parameter estimation process. It is therefore worth noting that even
when the modeler's aim is to quantify parameter uncertainty rather
than to estimate a single parameter vector, it is still useful to test
whether a unique parameter vector could ideally be identified, in order
to check whether mismatch between the model structure and type of
data used is contributing to parameter uncertainty.

The power of identifiability analysis comes from focussing on a
tightly defined mathematical problem – analyzing the relationship be-
tween knowns and unknowns in a given model structure. There is a
simple rule when solving a linear system of equations that the number
of unknowns should be less than the number of observations – other-
wise the problem is “underdetermined” and “ill-posed”, and an infinite
number of solutions is possible. This simple rule cannot be easily ap-
plied in more complex models, and identifiability analysis provides
some alternatives. It is common sense that a modeler should know
whether their linear problem is underdetermined and what they should
do about it. Similarly, it should be common sense for modelers to know
whether their model structure is non-identifiable, and whether it mat-
ters for the purpose of their analysis.

This article aims at providing an introductory overview to key ideas
of identifiability analysis. The field of identifiability has been ex-
tensively researched in various disciplines, including numerical ex-
amples in psychology in 1919 (Thomson, 1919) and independent early
development of theory in econometrics and system identification in the
1950s and 1970s (Bellman and Åström, 1970; Koopmans and Reiersol,
1950). There is a number of other key reviews (Beck, 1987; Dobre et al.,
2012; Godfrey and DiStefano III, 1987; Miao et al., 2011; Walter and
Pronzato, 1996). This article differs from existing reviews by seeking to
provide an accessible introduction to encourage the environmental
modeling community to think more systematically and strategically
about what type of information is needed to estimate parameters in
their model, and increase adoption of the tools of identifiability ana-
lysis. The ultimate aim is therefore to improve research and manage-
ment outcomes by fostering reflection on whether the selected model
structure and available data are indeed appropriate to the problem at
hand.

In Section 2, this paper first discusses the sources of non-identifia-
bility within the scope of parameter identifiability analysis and then
introduces fundamental concepts and methods underlying identifia-
bility analyses. Building on these concepts, Section 3 discusses how
these methods can be used in practice. Section 4 contains the conclu-
sions.

2. Fundamental concepts and methods

2.1. Sources of non-identifiability

This paper seeks to capture key distinctions within the existing
identifiability literature. We distinguish between three high-level
sources of parameter non-uniqueness.

Source I is the model structure, including conceptualisation of the
system, equations used to represent it, and optimisation objective
function or model of the error structure (where applicable, see Sections

2.2 and 2.3). Parameter non-uniqueness can occur simply because of
the choice of which quantities in the model are selected for observation.
This is referred to as structural non-identifiability. The use of non-identi-
fiable equations can be determined before having any input, internal
state or output data. After data are available, identifying structural non-
identifiability can show that eliminating non-uniqueness requires data
about different quantities in the model, or adoption of a different model
structure that is identifiable with the type of data available.

Source II is the input, forcing dataset. Activation of different dy-
namics within a model depends on the inputs to the model, including
initial and boundary conditions. If dynamics related to a parameter are
not activated, then no information will be available to estimate that
parameter. This is also referred to as persistence of excitation of the
model dynamics. Given a data collection plan, it is possible to ascertain
whether the forcing data suffices to make a parameter identifiable and
it may also be possible to identify what data needs to be collected in
order to successfully estimate parameters. After data are available,
identifying lack of activation indicates that eliminating non-uniqueness
requires observations in different experimental conditions or a different
environmental context. This is particularly crucial in climate change
applications, where the model is asked to make predictions in en-
vironmental conditions that are not reflected in historical data (Milly
et al., 2008).

Source III consists of model and observation errors. Random noise or
structural errors give rise to parameter uncertainty, which may or may
not be quantifiable. More than one alternative model or parameter
vector may be plausible, so by definition a unique parameter vector
cannot be identified. It can, however, be useful to identify the most
plausible parameter vector but this may not be possible due to the
characteristics of the errors - the interaction of errors with model
structure and forcing dataset and errors mean that several parameter
vectors provide identical performance, according to the selected per-
formance metrics. On the other hand, it is more common to have pro-
blems due to model structure, forcing dataset or large parameter un-
certainty around the most plausible parameters, but it can still be useful
to investigate how measurement errors can affect parameter estimation
before embarking on expensive data collection processes - or after-
wards, to help diagnose the source of problems and identify opportu-
nities for improvement.

Consider an obvious example of non-identifiability involving esti-
mation of parameters related to snow processes in a hydrological
model. If no information is collected about snowfall, accumulation and
melt, then unless other measurements can provide some indirect in-
formation it is likely that the relevant parameters are non-identifiable
(Source I). If there is no snowfall within the period measured, then
snowfall-inducing dynamics will not have been activated, so parameters
cannot be estimated in that case (Source II). If snowfall is measured, but
with large uncertainty, then the parameters will be uncertain.
Depending on the properties of the errors, it may be impossible to
identify unique parameters that best fit the data (Source III).

Source I is traditionally considered the core concept of so-called
theoretical, “structural or a priori identifiability” (Bellman and Åström,
1970; Dobre et al., 2012). The remaining sources fall in the domain of
so-called “practical identifiability”. Structural identifiability involves
analysis of the equations of the model and can be undertaken without
observational data. Practical identifiability is based upon analysis of the
ability to estimate parameters from observational data. Structural non-
identifiability implies practical non-identifiability. If the equations are
not identifiable, then it does not matter under what conditions the data
are collected, how much is collected, or how accurate they are - the
model structure determines it will not be possible to uniquely estimate
parameters in practice. Structural identifiability, however, does not
imply practical identifiability. If the model structure theoretically al-
lows parameters to be estimated, one still needs to have the appropriate
data to achieve this.
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2.2. Identifiability of model equations

Focussing on model equations, a model structure can be said to be
globally identifiable at θ= θ* if, for a given input u x t( , ) and measur-
able system output y x t( , ), all other parameter value vectors will yield
different output vectors (Ljung and Glad, 1994). Conversely, only a
single vector of parameter values will perfectly match a given set of
inputs and outputs. Formally, a model is globally identifiable if:

= =f u x t f u x t( ( , ), ) ( ( , ), *) * (2)

Otherwise the model is said to be non-identifiable.
Additionally, a model structure is said to be locally identifiable if

there is a neighbourhood of values around θ = θ* where this condition
holds (Ljung and Glad, 1994). In that case, other solutions can only
occur in separated neighbourhoods, such that there is usually a finite
number of solutions. For example, consider quadratic functions; for the
equation =y x2, the value for x is locally but not globally identifiable; it
has two values = +x y and =x y .

If a solution is locally as well as globally non-identifiable, there will
instead be an infinite number of solutions. This can be explained easily
for under-determined linear systems. Suppose we have the equation

+ =ax bx y1 2 with unknowns a and b, and one observation with values
for x1, x2 and y. With one observation and two unknowns, the problem is
under-determined and there is an infinite number of combinations of a
and b that would fit the observation. The problem is both locally and
globally non-identifiable.

Identifiability is by definition a binary problem, i.e., a parameter is
either identifiable or non-identifiable given the model structure and the
type of data available. Although the equations above are strict mathe-
matical definitions, the underlying idea here is to understand whether
identifying unique parameters is theoretically possible. Whilst in
practice, numerical errors in computing might need to be accounted for,
the idea of identifiability proper is not concerned with whether para-
meter values are approximately equal. As long as there is some differ-
ence, it is theoretically possible to differentiate between alternative
parameter vectors, for example by increasing the sample size of data
collected, which then becomes a question of uncertainty reduction. If
the parameter vectors cannot be distinguished even in theory, this is
important information for a modeler.

Throughout Section 2, two simple models are used as examples. We
represent them firstly as equations, because identifiability depends so-
lely on the mathematical relationship between variables, not on their
real-world interpretation. To help understand the implications of the
mathematical relationship, we use two different interpretations. Firstly,
they are single rate equations that describe the relationship between
biomass concentration and oxygen consumption rate (r kg O2/m3s) in
two different conditions. In a second, more informal interpretation, we
consider a restaurant where a waiter is trying to guess, for a table of two
regular customers, how much each person usually gives as a tip (r in
USD).

The equation for the first model describes one species (X kg bio-
mass/m3) with parameters for biomass growth ( 1) and maintenance
( 2), or a case where the table for two pays a single bill on a company
card (X USD) but pool their cash tips, resulting in different tipping
percentages ( 1 and 2). Thus

= +r X( )1 2 (3)

It is clear that an infinite number of combinations of 1 and 2, with
the same sum, will produce the same value of r. Hence, no unique pair
of parameter values can be found, and we say that the parameters 1
and 2 are non-identifiable. This is an example of a priori or structural
non-identifiability (Source I). Knowing the amount of biomass and
oxygen consumption does not allow us to uniquely identify the values
for biomass growth and maintenance. Knowing the size of the bill and
the tip does not allow the waiter to determine how much each person
contributes.

The equation for the second model describes a rate equation for two
species X and X1 2with biomass parameters 1 and 2, or a case where the
table for two paid separate bills:

= +r X X1 1 2 2 (4)

Then the model is structurally identifiable, in that both 1 and 2 can
be uniquely estimated, with two measurements, as long as X1 and X2 are
not zero.

If X1 or X2 is zero, we have no information about the respective
parameter. With only one measurement, we would have no information
about the dynamics between the variables - how they change relative to
one other (it would be an underdetermined linear system). This is an
example of non-identifiability due to insufficient excitation of model dy-
namics (Source II).

If r and/or X1 and X2 is measured with errors, or the equation is not
accurate, then with two measurements, the parameters will still fit
perfectly, but with biased parameters (“overfitting” to the noise). With
three measurements or more, the observations will not perfectly fit the
model (it would be an overdetermined linear system). Best fit solutions
need to be found instead, so 1 and 2 will be uncertain, and there may
not be a well-defined best fit solution either. This is an example of non-
identifiability due to observation errors (Source III).

Knowing oxygen consumption and both biomasses allows us to es-
timate the oxygen consumption rates, but only if there is a biomass to
measure, and all the values are accurately measured. Knowing each
person's bill and the total tip is sufficient for the waiter to estimate the
tipping rate for each person, as long as they actually had a bill, and the
waiter remembered the totals accurately.

Analysis of identifiability of model equations can be carried out in
two ways, i.e. testing whether identical outputs imply identical para-
meters, or testing that different parameters yield different outputs,
which is referred to as output distinguishability (DiStefano III and
Cobelli, 1980). In practice, such analytic approaches commonly involve
transforming the model in order to facilitate analytical manipulation.
The easiest approach to use depends on model properties, and in some
cases computer algebra can be useful (e.g. Chiş et al., 2011; Karlsson
et al., 2012; Saccomani and Bellu, 2008). Except for relatively simple
models, this analytical problem is usually hard to solve in this general
form, but can be extremely useful. If an analytical approach shows a
model is non-identifiable, it will generally reveal why, and hence sug-
gest possible remedies (Stigter et al., 2017).

This introductory overview will not provide a detailed discussion of
analytic methods for identifiability, as they typically require an ad-
vanced knowledge of mathematics. In future, improvement in user
friendliness of software may enable wider use of these methods. In the
meantime, we refer the reader to the following useful literature. Walter
and Pronzato (1996) provide a summary of four key approaches in-
volving: systems of derivatives from a power series/Taylor series ex-
pansion, coefficients of series using Lie derivatives, identification of
local state isomorphisms, and differential algebra. Equivalent ap-
proaches for linear systems involve Markov parameters, coefficients of
Laplace transforms and identification of similarity transforms. Norton
(1980) and Norton et al. (1980) discuss transformation and analysis in
terms of eigenvectors/normal modes, and linear regressive re-para-
metrization is presented in Keesman and Doeswijk (2009) and Keesman
(2011). Stigter et al. (2017, 2015) show that combinations of analytical
and numerical approaches may improve computational efficiency. A
review by Miao et al. (2011) also includes approaches that directly use
our definition of model equations identifiability, formulate it as a
constraint satisfaction problem and use the implicit function theorem.
Other useful overviews include Cobelli and DiStefano (1980), Norton
(1982), and Godfrey and DiStefano III (1987).
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2.3. Identifiability with an objective function

2.3.1. Parameter estimation
Ideally, estimating parameters would involve a straightforward so-

lution of an inverse problem. The values of parameters could be
mathematically deduced from observations. This is, for example, the
case for a linear system of equations, as already illustrated for equation
(5). However, outside this narrow case, model inversion tends to be
approached as an optimisation problem, for example when the model
consists of non-linear, complex equations, or errors are present in data.

Parameter estimation commonly involves optimizing an objective/
loss function m ( ) (see overview in Bennett et al., 2013; Marsili-Libelli,
2016), sometimes with constraints on the solution. It quantifies how
well the model and parameters fit the data. The optimal parameter
values * therefore minimize m ( ).

A common, relatively simple objective function is the mean squared
error (MSE). Let f be a model predicting n outputs at locations x and
times t, i.e. = … =y x t f u x ty y( , ) ( , , ) ( ( , ), )n

T
1 . Given a set of n data

= …d d d( , , )n
T

1 , for example, noisy data = +d f u x t( ( , ), )t , with
independent measurement error = …( , , )n

T
1 obtained using some

unknown true parameter vector ,t the MSE m for a parameter vector
is

= y dm
n

( ) ( ( ) )2

(5)

In many statistical methods, the objective function used is the
likelihood that a parameter vector is the true value given the ob-
servations. In that case, the optimisation involves maximizing the
likelihood, and therefore produces the “maximum likelihood estimate”
of the parameter values (MLE). The likelihood needs to capture the
distribution of errors, notably the covariance of the measurement er-
rors, including autocorrelation and heteroscedasticity (e.g. Schoups and
Vrugt, 2010).

Bayesian parameter estimation uses a prior probability distribution
in addition to the likelihood, and optimisation yields “maximum a
posteriori probability” (MAP) estimates of the parameter values (Stuart,
2010). However, Bayesian statistics typically focuses on the use of
distributions rather than “point” estimates, such that it is more common
to report the mean or median parameter value and its uncertainty, ra-
ther than the MAP estimate. This is further discussed in Section 2.3.6.

2.3.2. Identifiability as a unique optimal solution
Optimizing an objective function in effect provides some flexibility

in parameter estimation. Instead of the model output having to fit the
observations exactly, some deviation is permitted. This poses a problem
in terms of Equation (2) – more than one set of parameter values will fit
given inputs and outputs if we allow some deviation. Optimisation tries
to solve this by quantifying the deviation with an objective function and
minimizing that deviation rather than specifying how much is per-
mitted. In circumstances where a perfect fit is not possible, we settle for
the best available, and would ideally still like the solution to be unique.
For parameters to be identifiable, however, the objective function
should have a single optimal solution (Bellman and Åström, 1970). That
is, instead of Equation (2), if our best available solution has an objective
function value of m ( )=m*, we want to know that:

= =m m( ) ( *) * (6)

subject to the constraint that =m m( ) *
In an optimisation context, uniqueness and identifiability therefore

depend on the objective function used. Some objective functions can be
essentially handicapped to lead to unique parameter vectors, if used
individually. For example, if our objective function was simply the sum
of residuals (also referred to as the bias), then simplification of equation
(7a) below shows that data has a limited effect on identifiability – d
only appears in the constraint.

= =
=

y d y d
y d m

( ( ) ) ( ( *) ) *
subject to the constraint that ( ) * (7a)

= =
= +

y y
y dm

( ) ( *) *
subject to the constraint that ( ) * (7b)

Specifically, if we consider a hydrological model, where the model
output consists of river flows, equation (7b) says that parameters are
only identifiable if the total river flow with least bias can only be ob-
tained by a single parameter vector. This is unlikely to occur for many
models - there are typically many combinations of parameter vectors
that could achieve a given total flow. The objective function in equation
(6) is less likely to have that problem (equation (8)), though iden-
tifiability still depends on the model structure and the precise ob-
servations used.

= =
=

y d y d
y d m

( ( ) ) ( ( *) ) *
subject to the constraint that ( ( ) ) *

2 2

2 (8)

Equation (6) can also be extended to a case where multiple objec-
tives are of interest. In a multi-objective parameter identification set-
ting, the aim is to check the uniqueness of a given vector of parameter
values on the “Pareto front” - a compromise solution between objectives
where no other parameter values provide better performance on every
objective of interest at once (e.g. Maier et al., 2019). In this case,
Equation (6) can simply be written in vector form. Equation (9) expands
the vector notation for a case with only two objectives. For a parameter
vector on the Pareto front with =m m( ) *1 1 and =m m( ) *2 2 , the pro-
blem is identifiable if:

= =m m( ) ( *) *1 1 (9)

= =m m( ) ( *) *2 2

subject to the constraint that =m m( ) *1 1 and. =m m( ) *2 2
Solving any of equations 7–10 is usually difficult, even if we know

the value of m* ahead of time. Instead, it is easier to think of the pro-
blem as simply exploring whether there is a single global optimum.
“Global” optimality refers to being the best solution across the entire
parameter space, as opposed to “local” optimality, meaning that the
solution is only better than the parameter values in its immediate
neighbourhood in the parameter space. Two fundamental approaches
for examining global optimality, and therefore identifiability, involve
visualizing the response surface and examining derivatives. These are
discussed in the next sections.

While it may seem like evaluating identifiability with an objective
function requires data, this is not necessarily the case. Identifiability
can be assessed without observations by using “synthetic data” (e.g.
Shin et al., 2015). Assumptions are made about the form of the input
data, and the model is run in order to obtain “exact” error-free output
data. In controlled experiments, the input corresponds to the intended
experimental conditions. In other settings, the inputs correspond to the
conditions in which data are expected to be obtained. With error-free
input and output data, it should be possible to obtain a perfect value of
the objective function, i.e. =m ( ) 0, and any non-uniqueness in para-
meters arises only from model equations (including objective function)
and properties of the input (Sources I and II), not from noise or errors
(Source III). Such an experiment typically assumes that the model
structure is a perfect representation of the underlying system.

It should be noted that when evaluating identifiability with data,
the analyst also needs to think about whether they can efficiently locate
that solution. It is likely that the model is not identifiable if different
solutions are reached with repeated runs of optimisation algorithms -
there is more than one global solution, for example with different seeds
for stochastic algorithms or different initial values for deterministic
algorithms (Shin et al., 2015). Optimisation can, however, also fail for
other reasons. Local optima are a common problem. Iterative optimi-
sation algorithms require the use of stopping criteria that affect the
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accuracy of the final “optimal” solution, and in many environmental
modeling problems identifying the global optimum is not guaranteed,
even if it does exist.

2.3.3. Visualizing the response surface or fitness landscape
Rather than analyzing equations, visualization can be used to in-

vestigate identifiability. Taking a geometric point of view, the value of
the dependent “response” variable is interpreted as a surface, varying
dimensionally as a function of the independent variables, usually
parameters. This is referred to as a “response surface” (Box and Draper,
1987), and can be used to visually evaluate whether different para-
meters give similar outputs (as required by equation (2)). When the
response variable is an objective function, the response surface is re-
ferred to as an “error surface” or “fitness landscape” (also see Maier
et al., 2019, 2014), as shown in Fig. 2. The optimisation algorithm can
be thought of as navigating this landscape in order to find the optimal
(highest or lowest) point.

Suppose we are at the top of a mountain. To be able to say that we
are at the single highest point of a mountain range, we would need to
check that we are actually on a peak - not on a plateau or ridge-line, and
that no other peak in the range is the same height. That is, visually to
assess whether multiple points are optimal, we need to check for two
problems:

1. Flat surfaces, in some direction, such that points in that direction
with different parameter values have the same output value. These
cases are both locally and globally non-identifiable.

2. Distinct peaks with an equal objective function value. These cases are
locally identifiable, but globally non-identifiable.

Note that a flat surface is not the same as having a flat slope at the
top of the mountain (zero gradient). The slope might allow us to stand
vertically at the top of a peak, but any step to the side brings us down
the mountain rather than walking along a plateau or ridge. This is
further discussed in Section 2.3.4.

A flat surface could also occur in any direction, for example north-
west, not just along the main axes (north-south and east-west). The
surface might be flatter in a direction that varies multiple parameters at
once rather than when varying a single parameter at a time. The extent
to which the combined effect of simultaneously varying parameters on
an objective function differs from varying the parameters separately
(one at a time) is indicative of “parameter interaction”. It is an im-
portant feature to look out for because it tends to be easily overlooked,
especially if relying on “one-at-a-time” analyses (Saltelli and Annoni,

2010).
Fig. 2 (a) plots the unweighted mismatch (equation (6)) between the

model in equation (3) and two observations of the consumption rate r
for =X 1 and =X 2, with the true value of the parameters vector as

= (0.5, 0.5)t T - the black dot. The red line represents the possible va-
lues of parameters that minimize r. Because of the lack of identifiability
that we observed in the previous section, an infinite number of para-
meter combinations can exactly reproduce the data.

Fig. 2 (b) plots the unweighted mismatch between the model in
equation (4) and two observations of the consumption rate r for

= =X X0.5, 0.51 2 and = =X X1, 01 2 at = (0.5, 0.5)t T . The surface
shows a single optimal low point, corresponding to the optimal
minimum (other objectives could yield a single peak, corresponding to
an optimal maximum). Around the peak are concentric ellipses of
parameter values with the same objective function or likelihood. A
model is identifiable if there are no flat surfaces at an optimum and, in
the case that distinct optima exist, there is only one global optimum.

The response surface can easily be visualized for models with one or
two parameters. When models have larger numbers of parameters, vi-
sualizing selected one- and two-dimensional subspaces of the higher-
dimensional parameter space can be useful. The response surface in
such subspaces illustrate the change in the objective function as a
function of one and two parameters respectively, keeping others con-
stant. For instance, a one-dimensional sub-space corresponds to a cross-
section through a landscape. Razavi and Gupta (2015) provide ex-
amples of the response surface of a complex, high-dimensional model
when visually viewed within different two-parameter sub-spaces (see
Fig. 3 therein), by which the modeler can learn about a range of fea-
tures in the response surface from small-scale features such as rough-
ness and noise to large-scale features such as trends and multi-modality.

One-dimensional projections (also known as “dotty plots”, Beven
(2006), or the “profile likelihood”, Raue et al. (2009)) and two-di-
mensional projections (e.g. Shin et al., 2015) are also useful for models
with large numbers of parameters. Dotty plots show the values of one or
two parameters while varying all other parameters. This can help
suggest potential flatness and interactions between pairs of parameters,
globally across all parameter space, rather than at any particular point
(see e.g. Shin et al., 2015). For our two example models, Fig. 3a and c
shows that a large range of parameters have approximately the same
objective function value, whereas in Fig. 3b and d there is a well-de-
fined optimum. Visual inspection helps to build understanding of the
response surface of a model. In practice, it is often necessary, however,
to use numerical or analytical tests of the objective function, for ex-
ample when a model has many parameters (e.g.> 20), or if optima are

Fig. 2. Response surface of the consumption rate r as a function of biomass growth and maintenance for the models given by Equation (3) (plot a) and Equation (4) (plot b).
Red point/line represents parameters that minimize the MSE. The black dot represents the truth parameters that generated the data. The arrows represent the eigenvectors of the
Hessian of the misfit m (see discussion in Section 2.3.4). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of
this article.)
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not visible in the plot because they lie in a narrow hole (or on top of a
narrow peak). It is typical to use multiple methods for checking iden-
tifiability (Balsa-Canto and Banga, 2011).

2.3.4. Examining the value of derivatives
Absence of flat surfaces and distinct optima can be more directly

assessed by examining the gradient of the response surface at points
across parameter space. Intuitively, one might think a flat surface
would be identified by a zero gradient, but the situation is more com-
plex when evaluating the gradient at a point.

For a model with only one parameter, a minimum can be identified
as a parameter value where the first derivative (gradient) is zero (i.e. a
stationary point) and the second derivative is positive, such that the
objective function increases away from the minimum (see Fig. 4a–c).
The gradient is the slope at a point, and the second derivative is its
curvature. For a maximum, the second derivative should be negative,
such that the objective function decreases away from the optimum.

If, at a point, the first derivative is zero (i.e. a stationary point), and
the second derivative is zero as well, but the third derivative is non-zero
(i.e., an inflection point), the point is a “saddle point” not an optimum
(see Fig. 4d–f). If there are multiple parameter values with gradient
equal to zero, there are multiple local optima (see Fig. 4g–i).

Non-identifiability where the objective function is flat therefore
occurs when the first, second and third derivatives are all zero, as well
as further “higher order” derivatives, though in practice they may have
little effect. The flatness is referred to as lack of sensitivity, and the
derivatives allow us to check for insensitive parameters at a particular
point. If examining the derivatives shows that there are multiple local
optima, then their objective function values need to be compared to see
whether there is more than one global optimum. Examining the deri-
vatives can therefore help identify both the problems visualized with
the response surface.

For a model with more than one parameter, partial derivatives are
calculated with respect to each parameter separately. This results in a
gradient vector, with the partial derivative for each parameter. For an
optimum, the first partial derivatives should be zero, and a matrix of
second partial derivatives is then constructed, considering pairs of
parameters together (including second partial derivatives of each
parameter with respect to itself). This is known as the Hessian matrix.
The Hessian describes how the slope of the response surface changes in
every direction, in other words its curvature. To illustrate this, Fig. 5
shows a hypothetical response surface that features a global maximum
and a local maximum, a saddle point in between, and a flat area. These
four points are all stationary, meaning the gradient vector (first-order
partial derivatives) is zero. However, the Hessian matrices at these four

points have significantly different properties. If all the second partial
derivatives are non-zero, the response surface is not flat. If one is zero,
then the response surface may be flat, if the higher order derivatives are
also zero. In particular, if any third-order derivative is non-zero, then
there is a saddle point rather than a flat surface.

As shown in the figure, the Hessian at a stationary point can be cast
as a quadratic function fitted to the response surface at that point (a
parabola, for a single parameter function). Mathematically, this is
equivalent to using the first three terms of a Taylor series expansion.
The quadratic illustrates how the Hessian contains information about
the slope in all directions, not just along each parameter axis. If the
Hessian is a diagonal matrix, the associated parabola is orthogonal (i.e.
no pairwise interaction term in the quadratic function), and therefore
there is no interaction effect between the parameters locally at that
point. However, if the Hessian is non-diagonal, the associated quadratic
is non-orthogonal as a result of interaction between the parameters. In
Fig. 5b, the quadratics describing the local and global maxima both
have significant parameter interactions. If the axes were compass di-
rections, the surface around the local maximum would be flattest along
a northwest-southeast axis, and steepest along a northeast-southwest
axis. The global maximum is flattest along a northeast-southwest axis
and steepest along a northwest-southeast axis.

The interaction effects at a stationary point can be summarised with
an eigendecomposition, calculating the eigenvectors and eigenvalues of the
Hessian, which respectively describe a set of orthogonal directions (an
orthogonal basis), and the second partial derivative in that direction. The
advantage of this transformation is that the first eigenvalue is the lar-
gest second partial derivative in any direction, and the last eigenvalue is
the smallest. The response surface at a point may therefore be flat if the
last eigenvalue(s) are zero, meaning that the second partial derivative is
zero in the corresponding direction, and the Hessian is then referred to
as singular. Conversely, the point is an identifiable minimum if all ei-
genvalues are positive, such that second partial derivatives are positive
and the gradient and objective function increase in all directions. The
Hessian is then referred to as non-singular and positive-definite. Similarly,
the point is a maximum if all eigenvalues are negative, and the Hessian
is referred to as negative-definite. If the eigenvalues have different signs,
the point is a saddle point, which in a two-parameter case resembles a
horseback riding saddle (see Fig. 5b). For more detail on the role and
the numerical aspects of the Hessian computation, see for example
Marsili-Libelli (1992), Seber and Wild (1989) and Marsili-Libelli et al.
(2003).

The eigenvectors of the models in Equations (3) and (4) were also
shown in Fig. 2. For Equation (3) the eigenvalues are 10 and 0. The
Hessian is semi-positive definite indicating that an optimum exists but it

Fig. 3. One-dimensional dotty plots of m ( ) (left, a,c) Equation (3) with observations at =X 1 and =X 2 and = (0.5, 0.5)t T and (right, b,d) Equation (4) with
= =X X0.5, 0.51 2 and = =X X1, 01 2 and = (0.5, 0.5)t T . Red points represent parameter values that minimize the MSE (within ×5 10 4). (For interpretation of the

references to colour in this figure legend, the reader is referred to the Web version of this article.)
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Fig. 4. Examples of functions and their derivatives. Left column: (a) an example quadratic function = +y 22 with its (b) first and (c) second order derivatives.
Middle column: (d) an example cubic function = +y 1503 with its (e) first and (f) second order derivatives. Right column: (g) an example bi-modal function with its
(h) first and (i) second order derivatives.

Fig. 5. (a) A hypothetical response surface of two parameters that features a global maximum, a local maximum, a saddle point, and a flat area; the sub-plots are
quadratic functions (except the flat area) characterized by the Hessian, which approximate the response surface at those four points. (b) Contour plots of the response
surface and quadratic functions shown in (a) as well as the eigenvectors of the Hessian matrices derived at those points; the circled signs represent the signs of
eigenvalues, such that a positive/negative value indicates that the surface in the direction of the corresponding eigenvector curves up/down.
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is not unique. For Equation (4) the eigenvalues are approximately 1.31
and 0.19. The larger eigenvalue corresponds to the direction (eigen-
vector) along which the misfit changes the fastest.

In practice, the eigenvalues of the Hessian may not be examined
directly. The determinant of the Hessian can be calculated as the product
of eigenvalues (amongst other methods). If any of the eigenvalues are
zero, the determinant will therefore also be zero, which also tells the
analyst that the Hessian is singular and may have a flat response surface
in some direction. In statistics textbooks, the reader may come across
this approach in likelihood-based methods that analyse the observed
Fisher Information Matrix (FIM) or the expected FIM. The observed FIM
corresponds to the negative of the Hessian matrix when using the log-
likelihood as objective function. The expected FIM averages over the
likelihood function rather than using observed values. If the FIM is non-
singular, then the model structure is locally identifiable (Bellman and
Åström, 1970; Rothenberg, 1971). In general, it is difficult to demon-
strate singularity due to numerical errors. It is often better to perform a
rank test with a singular value decomposition (SVD) of the sensitivity
matrix, which consists of the partial derivatives of the model outputs
with respect to each parameter (see e.g. Miao et al., 2011).

As the Hessian indicated, the objective function may also be flat due
to interactions between parameters. The combined effect of varying two
parameters may cancel out such that the objective function does not
change. A variety of other indices have been proposed that measure the
strength of interaction of parameters or its effect on identifiability (see
e.g. Brun et al., 2001; Doherty and Hunt, 2009; Hill and Tiedeman,
2007; Sorooshian and Gupta, 1985). As an example, Active Subspaces
provide a global indicator (Constantine et al., 2014), similar to how the
eigendecomposition summarises the Hessian – if all singular values are
non-zero and of similar magnitude then the system is likely to be
globally identifiable. Alternatively, variance-based sensitivity analysis
methods can quantify the combined effect of specific combinations of
parameters, averaged across parameter space. However, sensitivity of a
combination of parameters (i.e. strong interaction) does not necessarily
mean that they are non-identifiable (Dobre et al., 2012). At any specific
point, the interaction may not result in a flat objective function.

Derivative-based methods, including the techniques using sensi-
tivity analysis, are relevant when the derivative can be calculated
(whether analytically or numerically) and non-identifiability is more
likely to occur due to flat surfaces than distinct optima; there are few
optima to find and examine. Derivative-based methods may not be
appropriate if there are numerical problems in the model or if the
model output or objective function is characterised by discontinuities or
many distinct solutions. In these situations, other approaches need to be
used (including examining the response surface).

2.3.5. Sensitivity versus identifiability
Identifiability analysis (IA) is closely related to sensitivity analysis

(SA). SA seeks to measure the sensitivity of a model response to per-
turbations in different model parameters. See Norton (2015) for an
introductory overview of SA, Saltelli et al. (2000) as a comprehensive
reference, and Razavi and Gupta (2015) and Pianosi et al. (2016) for
recent reviews of the state of the art.

If the objective function is insensitive to a parameter, it means that
the objective function is flat, and the parameter is not identifiable.
However, one needs to distinguish between sensitivity and identifia-
bility. Even if the objective function is sensitive to all parameters, it is
not guaranteed that the parameters are identifiable for the reasons
below.

SA aims to establish which parameters exert stronger (or weaker)
controls on the model response, which is an attribute of the forward
problem. In contrast, IA aims to establish which parameters are iden-
tifiable, given observations on the target response, which is an attribute
of the inverse problem. Measuring sensitivity on an objective function
combines attributes of the forward and inverse problems, but plays a
“filtering role” that may obscure the information gained (Gupta and

Razavi, 2018).
“Local” sensitivity analysis (LSA) at a nominal point in the para-

meter space is based on partial derivatives at that point, similar to the
approach discussed for identifiability in the previous section. The same
condition therefore applies, that assessing identifiability using LSA of
the objective function needs to be complemented by evaluation of other
local optima in order to determine whether a single global optimum
exists. LSA provides a limited view on sensitivity, only locally around
the nominal point (Saltelli and Annoni, 2010). Optimal parameter va-
lues therefore need to be obtained before using LSA to assess iden-
tifiability with an objective function.

Alternatively, a wide range of methods have been developed that
seek “global” sensitivity analysis (GSA), measuring sensitivity across
the entire parameter space. Examples include derivative-based methods
(Campolongo et al., 2007; Rakovec et al., 2014; Sobol’ and Kucherenko,
2009), variance-based methods (Homma and Saltelli, 1996; Sobol’,
2001), and variogram-based methods (Razavi et al., 2019; Razavi and
Gupta, 2016a, 2016b), the latter bridging derivative- and variance-
based methods by characterizing the response surface across the full
spectrum of perturbation scales (Haghnegahdar and Razavi, 2017).

If a parameter has no effect on the objective function anywhere in
parameter space, it also has no effect at the optimum, wherever it is
located. However, even if a parameter is sensitive on average across the
parameter space, it is not guaranteed that it is sensitive at the global
optimum – the parameter still may not be identifiable.

GSA also allows evaluating the effect of parameters on model out-
puts, and therefore investigating structural identifiability. Similarly, if a
parameter has no effect on the model output anywhere in parameter
space, it is non-identifiable. As noted above, it is also common practice
to use SA to identify interactions between parameters, while re-
membering that the absence (or presence) of interactions does not ne-
cessarily indicate (non-) identifiability. Sensitivity analysis is therefore
an effective tool for identifying non-identifiability, but not for ruling it
out. See Gupta and Razavi (2018) and Dobre et al. (2012) for further
detail on commonalities and differences between SA and IA.

2.3.6. Role of noise and systematic errors
As presented in Section 2.3.2, the use of an objective function

provides a mechanism for taking into account noise and errors in as-
sessing identifiability - we can assess whether the best fit is only at-
tainable using a single vector of parameter values. As equation (6)
depends on the observed data, non-uniqueness may indicate that the
properties of “errors” prevent uniqueness (Source III), in addition to
which quantities are observed (Source I) and the conditions represented
in the forcing data (Source II). By “errors”, we mean any discrepancy
between the modeled and observed systems. These errors can take
many forms: noise or systematic errors in the measurement of either
inputs or outputs, discrepancy between the model structure and mod-
eled system, as well as misrepresentation of the properties of errors
themselves, as captured by the objective function. We focus here on
general principles rather than explaining the differences in effect of
these different errors.

In addition to potentially affecting the identifiability of the optimal
solution, errors influence the identifiability problem in another key
way: the estimated parameters will generally change depending on the
data used (and the objective function invoked). Samples of observations
with different data errors result in different estimates of parameter
values. Values of parameters will therefore remain uncertain even if a
unique optimum solution can be identified when using noise-free data
(Vanrolleghem and Keesman, 1996).

If the parameters are anyway non-unique, this provides a strong
motivation for switching from optimisation-based to uncertainty-based
parameter estimation. In that case, rather than aiming to identify a
single parameter vector, the aim is to identify a set of many parameter
vectors that all adequately fit the data, i.e. to quantify the uncertainty
in parameters (see Matott et al. (2009) for a review of methods for
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quantifying uncertainty in parameters). As foreshadowed in Section
2.3.1, this is the approach preferred by Bayesian inference, which fo-
cuses on identifying a “credible region” of parameters - within which an
unobserved parameter falls with a given (subjective) probability. It can
also be approached more directly as a “set membership” problem, as
notably used in the Generalised likelihood uncertainty estimation
(GLUE) approach where only the set of “behavioural” parameters sa-
tisfying pre-defined constraints are retained from the prior set (Beven,
2006; Guillaume et al., 2015). It is worth repeating that even if the
concept of a unique parameter vector is no longer used in parameter
estimation, it is still useful in the context of identifiability analysis - in
helping to rule out that non-uniqueness is due to sources I and II - which
is often avoidable.

In addition to being non-unique, parameters estimated with noisy
data may also be biased - in the sense that the mean parameter estimate
may no longer represent the true value (where it is known). The un-
certainty and bias in parameters also tend to decrease as sample size
increases (depending on the properties of the errors), and increase as
uncertainty in measurements increases.

These phenomena can be illustrated with our simple objective
function m ( ), with a single (scalar) parameter. Consider the following
model for oxygen consumption rate

= +r X X35
8

1
80

( 1) 3
8

4
1

2
2 (10)

where is again the biomass parameter. We take two noise-free mea-
surements at = =X X1, 11 2 . We then investigate behaviour of the ob-
jective function for different true parameter values, summarised in
Fig. 6. In the top row of the figure, we have set = 0.5t and the bottom
row we have set = 0.7.t In the first column of Fig. 6 we plot the rate r
as a function of the parameter. The black dots depict r ( )t and the blue
dots represent one realization of noisy data = +d r ( )t , with = 0.1.
In the second column of Fig. 6 we plot the loss functions m ( ) for noise-

free and noisy observations. The loss function is minimized at the true
parameter value (black dot). The blue dot represents the estimated
parameter for the noisy data. The sensitivity of the recovered parameter
is heavily dependent on the true parameter value, even for the same
noise magnitude. In Fig. 6b, the parameter is less sensitive - the re-
sponse surface is flatter with noisy data. Many parameters produce a
rate r that is close to the data. In contrast when = 0.7t (Fig. 6e), the
model response has a much larger gradient around the estimated
parameter.

A sampling procedure can be used to estimate the reliability of re-
covering the true parameter in the presence of noise of varying mag-
nitude (Miao et al., 2011). For example, let the noise be normally
distributed with mean zero and standard deviation . The third column
of Fig. 6 depicts the recovered parameter values for 100 realizations of
the noise, for three levels of noise ( {0.01, 0.05, 0.1}). In every case,
we find a unique minimum (the parameter is at least locally identifi-
able), but the minimum is no longer the true parameter that we could
recover with noise-free data. The uncertainty of the estimated para-
meter depends on the noise level and the response surface in a local
region around the true parameter. When the response surface is flat (top
row), the parameter estimates are much more uncertain than when the
response surface has a larger gradient (bottom row).

In practice, noise and errors are usually unavoidable. An analyst
cannot tell for sure whether they are using or collecting the right type of
information to obtain reliable estimates of parameters or model outputs
representing real-world phenomena. Instead, they can only make an
educated judgement that is dependent on how closely that model
structure and data reflects reality. Identifiability analysis by definition
tests for non-uniqueness with a given model structure and understanding
of errors (and therefore objective function). If these assumptions poorly
reflect reality, then identifiability analysis may be of limited use in in-
forming the analyst's judgement. The better the model structure and the
dataset, the more useful identifiability analysis will be.

Fig. 6. Reliability of parameter estimation for the model given by Equation (10) with true parameter value vector for the top row, (a,b,c) at = 0.5t , and for the
bottom row (d,e,f) at = 0.7t . (left, a,d) model response surface as a function of . (middle, b,e) the misfit m ( ) with noisy and noise-free data, showing optimum.
(right, c,f) the variability in the estimated parameter as a function of the noise level.
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3. Identifiability analysis in practice

Parameter identifiability is a fundamental concept in parameter
estimation, and therefore in many types of environmental modeling.
Modelers should know whether the type of data they are using is cap-
able of identifying unique parameter values. They should know if they
do not have information about the right quantities within a given model
structure (Source I). They should know if the forcing data (and asso-
ciated response) does not reflect the conditions needed to estimate their
parameters (Source II). And they should know if the errors are such that
more data will not improve parameter uncertainty (Source III). First
tests are often even trivial to implement: simply repeat an optimisation
with different initialisations to check if it returns different values for
parameters (see e.g. Shin et al., 2015). Sensitivity analysis can be per-
formed using black box software, and dotty plots can easily be produced
for each parameter, amongst other methods (Borgonovo et al., 2017).

Knowing that an identifiability problem exists, however, is only a
starting point. Determining the cause of non-identifiability within a
model structure, forcing data or messy dataset is likely to fall at one of
two extremes: quite difficult, or trivial, for example, trying to estimate
snow-related parameters on a tropical island. Excluding the trivial case,
issues of identifiability tend by their very nature to be concealed from
the modeler's view. If the issues were obvious, the modeler would have
addressed them, and no identifiability issue would be experienced.

Similarly, improving identifiability is often non-trivial. It requires
thorough understanding of the cause(s) of non-identifiability, and the
time, knowledge and resources to collect or select new data, and modify
model structures or objective functions. Even simple fixes such as fixing
parameter values or using a different model structure may have sig-
nificant, and often overlooked, impacts on results.

While tools are available to support identifiability analysis, there is
still a great need for development of methods, software and training to
ensure all modelers are able to assess and react appropriately to non-
identifiability. In the meantime, to provide some guidance, we make
five pragmatic recommendations, and briefly discuss computational
considerations.

3.1. Know whether your model parameters are identifiable

It cannot be repeated too often: identifiability is a fundamental
concept in parameter estimation. Particularly given the difficulty of
eliminating non-identifiability, it is important to explicitly acknowledge
and document for other analysts how identifiability concerns have in-
fluenced the modeling process, and how they have been addressed.
Regardless of the response taken, the analyst should be transparent
about their treatment of identifiability. Documentation should describe
whether the model is identifiable and how this was assessed. If the
model is non-identifiable, the documentation should describe the ex-
pected consequences for the particular analysis, and the responses that
were taken.

As a starting point, a modeler should keep an eye open for symp-
toms of non-identifiability (Box 1), and apply simple diagnostics like
repeated optimisation, sensitivity analysis and 1 OR 2D dotty plots. If

there are signs of non-identifiability, a reviewer should at least want to
know what the source of the non-identifiability is in order to judge
whether it is acceptable. Model structures of some complex models are
known to be non-identifiable. For example, in spatially-distributed
groundwater modeling, there is a common risk of interactions between
parameters in adjacent grid cells, similar to the case described in
equation (3). Uniquely estimating transmissivity therefore depends on
having water level measurements within appropriate parts of the flow
region (Neuman, 1973). Similar problems have also been observed for
rainfall-runoff models with many parameters (Shin et al., 2015). If
identifiability is not already known, techniques in Section 2 can be used
either analytically, or with ideal input data and noise-free outputs, to
show the model structure is responsible (Source I).

Using synthetic data (real input data and noise-free outputs) can
reveal if the input data provide insufficient excitation of modes of
model behaviour (Source II). For example, parameters of some hydro-
logical models may only be active in rare conditions (Gupta and
Sorooshian, 1983), such as observed streamflow in a drought period
may not provide information about parameters related to flood periods,
and vice-versa. For some models, it can be possible to use analytical
methods to identify the data characteristics necessary to achieve per-
sistence of excitation (Norton, 2009). Other techniques can also be used
to assess information in data, such as by observing the effect of data on
parameter sensitivity (Wagener et al., 2001). Examples include time-
varying or spatially varying sensitivity analysis (Gupta and Razavi,
2018; Pianosi et al., 2016; Razavi and Gupta, 2019), and notablythe
Dynamic Identifiability Analysis technique (Wagener et al., 2003).

If tests suggest that neither the structure (Source I), nor input data
(Source II) are responsible, then the role of noise and systematic errors
can be explored in input data, output data, model structure and error
model, testing alternative model-data combinations. It may also be that
the optimisation algorithm is failing to find the unique solution due to
multiple regions of attraction, minor local optima, roughness, poor
sensitivity and non-convex shape of the response surface (Duan et al.,
1992).

3.2. Consider how non-identifiability fits within your analysis

In addition to helping to avoid negative effects of non-identifiability
(Box 1), it is worth keeping in mind the benefits of identifiability
analysis (Box 2) - there is a variety of ways it might influence modeling
and model-based analyses in practice. While non-identifiability means
the modeler lacks the appropriate information to choose between al-
ternative models, in practice the right information may take too much
time or resources to obtain, or may never be available at all. Depending
on the prediction to be made, it may not matter that multiple models
are plausible - the differences in prediction may be small enough to be
acceptable, or able to be addressed by decision makers through adap-
tive management (Williams, 2011). How best to handle non-identifia-
bility is highly dependent on purpose and context. The modeler must
use their professional judgement to select practices that suit their pro-
blem (consistent with expectations in their modeling domain), and
document the reasons for their choice, acknowledging possible

Box 1
Undesirable effects of non-identifiability

• Different runs/initialisations of an optimisation algorithms will return different values for parameters
• Using noise-free data still does not allow parameters (incl. initial conditions) to be uniquely identified
• Due to parameter non-uniqueness, estimates of physically meaningful parameters are not possible in models representing real-world pro-

cesses
• It will not be possible to use the model to predict, with reasonable accuracy an unobserved, physically meaningful, model output
• Predictions may be inaccurate because the estimated parameters failed to capture key behaviours of the system that were not present during

the model development period, such as due to climate change
• Estimates of insensitive parameters may be influenced by (overfitting) errors, or the modeler may have set them to an arbitrary value, such

that the model gives good performance in model development for the wrong reasons
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alternatives.
In addition to simply tolerating non-identifiability, there are three

other high level philosophical approaches possible (Wagener and
Gupta, 2005), which can be viewed as: quantifying the effect of lack of
information; improving the information used by obtaining the right
type of observations and/or inputs; and avoiding the need for missing
information by modifying the model. These four options are briefly
described here.

Consider whether non-identifiability can be tolerated: Uncertainty due
to identifiability issues (whether explicitly quantified or not) can be
assessed in terms of its risk, that is, its effect on the final product of the
analysis, such as quantities of predictive interest for decision making.
For example, if the uncertainty induced by non-identifiability does not
change a decision, then perhaps it can be ignored (Guillaume et al.,
2015). This is typically the default approach if modelers are aware of
identifiability issues. By professional judgment, modelers often assert
that a given issue is not significant, in order to be able to provide results
efficiently rather than futilely trying to tie up every loose end
(Guillaume et al., 2017).

Consider quantifying uncertainty due to non-identifiability: It may be
advantageous to formally quantify the effect of non-identifiable para-
meters. For example, if a process-based model is used to estimate model
outputs not used in parameter estimation, then a complex model may
be necessary even though it is not strictly identifiable. In the context of
unsaturated zone models in hydrology, for example, Brunner et al.
(2012) observed that certain observations can significantly reduce
predictive uncertainty without informing any specific parameters. In
cases such as these, the limitations of the model should be documented,
and the uncertainty induced by non-identifiability should be quantified.
For some problems, dedicated methods are available that identify
parameter vectors that yield identical outputs or objective function
values (e.g. Null-space Monte Carlo, Tonkin and Doherty, 2009).

Consider obtaining information to make the model identifiable: Some
symptoms of identifiability may be considered intolerable, such as non-
uniqueness of optimised parameters, lack of observability of a para-
meter, or lack of transferability of a model to specific conditions, for
instance from flood to drought in hydrological applications. In these
situations, steps can be taken to improve identifiability, by measuring
different quantities (Source I), obtaining data in different conditions
(Source II), or that is more accurate (Source III). Literature on data
acquisition planning and optimal input design (e.g. Dausman et al.,
2010; Freeze et al., 1992; Goodwin and Payne, 1977; Tiedeman et al.,
2004; Walsh et al., 2017), along with using soft data and expert
knowledge (Gharari et al., 2014) can be of assistance. Targeted reviews
of types of data used for parameter estimation can also provide gui-
dance (e.g. for hydrogeology, Schilling et al., 2019). Alternatively, it
may be possible to constrain the solution space by making assumptions
to reduce the number of unknowns, or providing information about
which values are preferred using prior distributions (Stuart, 2010) or
regularization (Tikhonov et al., 1995). Machine learning-based

methods provide another example – non-uniqueness can occur due to
redundant information in inputs (Maier et al., 2010) or local optima
due to non-linearities (Kingston et al., 2005), and steps can be taken to
avoid them, including through input variable selection (May et al.,
2011).

Consider modifying model information requirements: It may be more
appropriate to use a model that is identifiable with the available in-
formation (Grayson et al., 2002; Jakeman and Hornberger, 1993;
Young et al., 1996). The principle of parsimony suggests that un-
necessary complexity should be discarded - a number of model selection
criteria prefer models with less parameters (e.g. Akaike Information
Criterion,Akaike, 1974). In the case where particular observations can
reduce predictive uncertainty without informing any specific para-
meters, information is likely being provided about combinations of
parameters. These combinations could possibly be replaced by a single
parameter within a simplified model (e.g. Croke and Jakeman, 2004;
Young et al., 1996). This is different to eliminating parameters or fixing
parameter values. A single combined parameter captures information
from data about multiple, more detailed parameters and their total
effect after accounting for interactions present in the parameter esti-
mation data. Parameter elimination or fixing, on the other hand, in-
troduces new information in the form of assumptions about the value of
that parameter. If those assumptions are incorrect, even if the model
performs well in some circumstances, it will be right for the wrong
reasons, and may predict poorly.

Eliminating the symptoms of non-identifiability, however, typically
requires invasive changes to the model or model identification proce-
dure, for example using different or transformed parameters, selecting
specific data periods, changing model structure, and/or using a more
sophisticated objective function. It is important that these changes do
not undermine the ability to understand the concepts that went into
creating the model in the first place.

3.3. Computational considerations

Constructing response surfaces, cross sections, dotty plots, exploring
parameter sensitivities or estimating the impact of noise can require
large numbers of model evaluations. This can render identifiability
analysis infeasible if the model being analysed is computationally ex-
pensive. While high performance computing may be a solution in some
cases, it may also be possible to use computationally frugal methods
(Hill et al., 2016), or to build an approximation of the model's response
surface, to reduce the computational demands of identifiability ana-
lysis. The remainder of this section focuses on this last option, which is
rapidly maturing.

A response surface can be explicitly represented mathematically by
model emulation, resulting in a surrogate model. This has two key ad-
vantages. Firstly, having an analytical representation of the response
surface allows additional mathematical analyses. Secondly, the com-
putational cost of building and running a surrogate model is typically

Box 2
Benefits of identifiability analysis

• Assessing whether model complexity is suited to the type of information available in data
• Informing development of more parsimonious models, eliminating redundancy
• Identifying opportunities to reduce uncertainty and improve predictions
• Facilitating insight into the role of model structure assumptions, forcing data and errors on model output uncertainty
• Ensuring that the right type of information is used before embarking on further uncertainty analysis
• Using identifiability methods to understand and fix fundamental problems with model construction, making it easier to cope with other

sources of uncertainty, such as in data (see e.g. La Vigna et al., 2016) or in coding
• Helping to plan what data needs to be collected
• Evaluating plans for data collection (e.g. Dausman et al., 2010)
• Understanding the estimation of parameters, before evaluating whether system states can be estimated and controlled (observability and

controllability), which are also key topics in systems and control theory, outside the scope of this article (see Keesman, 2011)
• Establishing the behaviour of the model in known conditions, making it easier to understand behaviour of the model in broader conditions
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less than relying on the original model, therefore facilitating the use of
more computationally intensive methods. The efficacy of response
surface methods depends on the ability to build and capture the salient
features of the response surface with a feasible number of model si-
mulations. The approach known as Response Surface Methodology (Box
and Draper, 1987) approximates the response surface by a quadratic
function and allows analysis of flatness near the optimum. Although
requiring a limited number of model simulations, quadratic response
surfaces are often poor representations of a model response surface.
Alternative methods that can approximate the non-linearity of the
model response and higher-order interactions between variables are
typically needed.

Polynomial chaos expansions (PCE) (Sudret, 2008; Xiu and
Karniadakis, 2002) and Gaussian processes (GP) (Marrel et al., 2009;
Oakley and O'Hagan, 2004) are two popular and effective methods for
approximating highly non-linear response surfaces. GP and PCE can
both be efficiently used as surrogates for the simulation model in any of
the numerical identifiability methods outlined in this paper. For ex-
ample, gradient and Hessian data can be computed analytically from
the approximations and used for derivative-based identifiability ana-
lysis or the approximations can be used as surrogates within the like-
lihood function when conducting Bayesian inference (e.g. Blanchard
et al., 2010) or calibration using maximum likelihood estimation (e.g.
Arendt et al., 2012). In the water resources sector and in groundwater
modeling particularly, Razavi et al. (2012) and Asher et al. (2015) re-
spectively provide reviews of a range of surrogate modeling methods.

In addition to the aforementioned techniques based upon function
approximation, reduced order models can also be used to decrease the
computational cost of analyzing expensive simulation models
(Carlberg, 2015; Cui et al., 2015; Soize and Farhat, 2017). These
methods do not construct response surface approximations but rather
solve the governing equations on a reduced basis. The advantage of
such an approach is that one can cheaply obtain approximations of the
entire solution to the governing equations rather than a small number
of functions of that solution. Moreover, unlike surrogate methods, re-
duced order models do not suffer from the curse of parameter di-
mensionality.

The number of simulations required to build a response surface
grows rapidly with parameter dimension. Consequently, the practical
use of response surface methods is typically restricted to models with
the order of 10 parameters. For example, a survey of the literature has
shown that less than 65% of the applications of these methods are on
functions having less than ten parameters, and more than 85% have less
than 20 (Razavi et al., 2012). The exact number of simulations required
to achieve a given accuracy is model dependent. However simulation
requirements can be reduced by using methods that exploit the struc-
ture in the response surface (Constantine, 2015; Gorodetsky and
Jakeman, 2018; Jakeman et al., 2015) and goal-oriented approxima-
tions, thereby focussing computational effort on regions and/or di-
mensions of parameter space that significantly affect quantities of in-
terest. Lastly, when using a surrogate model, the user needs to be
mindful of “approximation uncertainty”, that is the potential errors of
the surrogate model that can be added to the process of parameter es-
timation. Razavi et al. (2012) illustrate this source of uncertainty by
simple examples (see Figs. 2, 3 and 6 therein) and review methods to
address it.

4. Conclusions

This article has provided an introductory overview to key issues in
identifiability analysis, and fundamental concepts and methods to
quantify and understand the impact of non-uniqueness of parameters on
modeling results. Identifiability analysis aims to (i) assess whether it is
possible to identify unique parameter values, and (ii) understand why
that occurs. It therefore makes an essential contribution to more sys-
tematically learning about sources of uncertainty and how to reduce

them, and hence improving the practice, credibility and outcomes of
modeling exercises in the long run.

Our discussion of identifiability analysis in practice emphasizes that
the right tools to use depend on modeling context, especially the pur-
pose, and the modeler's professional judgement. Our fundamental re-
commendation is therefore that assessment of whether a modeling ex-
ercise is fit for purpose explicitly needs to address three points:

• whether the model is identifiable
• the source(s) of any non-identifiability issue
• the extent to which any non-identifiability impacts the problem at

hand.

It is important to explicitly acknowledge and document for other
analysts how identifiability concerns have influenced the modeling
process, and how they have been addressed. Regardless of the response
taken, the analyst should be transparent about their treatment of
identifiability. Documentation should describe whether the model is
identifiable and how this was assessed. If the model is non-identifiable,
the documentation should describe the expected consequences for the
particular analysis, and the responses that were taken.

The modeler's professional judgement naturally depends on
knowing what alternative methods of identifiability analysis are avail-
able, and why they might be useful. The emphasis of this introductory
overview is therefore on awareness raising, encouraging wider ac-
knowledgement of non-identifiability as a critical issue and that there
are methods to assess it and its sources. There is, however, still much to
be done to make practices for assessing identifiability easier to apply,
and for them to be commonly applied. And there are huge opportunities
to improve identifiability of models and reduce uncertainties, especially
where there is a large community of resourceful researchers that uses a
particular non-identifiable model. There are several well-known hy-
drological and water quality models, for instance, where sensitivity
analysis indicates they are structurally non-identifiable. But other sec-
tors are replete with over-parameterized models that do not use miti-
gating mechanisms (such as regularization) or investigate alternative
model structure hypotheses that may lead to improved identifiability.
Promoting the thoughtful use of identifiability analysis practices pro-
vides a firm foundation for improving models into the future.
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