
18 May 2024

Model-Driven Fault Injection in Java Source Code / Elder Rodrigues , Leonardo Montecchi , Andrea
Ceccarelli. - ELETTRONICO. - (2020), pp. 414-425. (Intervento presentato al convegno INTERNATIONAL
SYMPOSIUM ON SOFTWARE RELIABILITY ENGINEERING) [10.1109/ISSRE5003.2020.00046].

Original Citation:

Model-Driven Fault Injection in Java Source Code

Publisher:

Published version:
10.1109/ISSRE5003.2020.00046

Terms of use:

Publisher copyright claim:

(Article begins on next page)

La pubblicazione è resa disponibile sotto le norme e i termini della licenza di deposito, secondo quanto
stabilito dalla Policy per l'accesso aperto dell'Università degli Studi di Firenze
(https://www.sba.unifi.it/upload/policy-oa-2016-1.pdf)

Availability:
This version is available at: 2158/1216639 since: 2022-02-15T18:41:41Z

IEEE

Questa è la Versione finale referata (Post print/Accepted manuscript) della seguente pubblicazione:

FLORE
Repository istituzionale dell'Università degli Studi

di Firenze

Open Access

DOI:

Model-Driven Fault Injection in Java Source Code
Elder Rodrigues Jr.

Universidade Estadual de Campinas
Campinas, SP, Brazil

elder.junior@students.ic.unicamp.br

Leonardo Montecchi
Universidade Estadual de Campinas

Campinas, SP, Brazil
leonardo@ic.unicamp.br

Andrea Ceccarelli
Università degli Studi di Firenze

Firenze, Italy
andrea.ceccarelli@unifi.it

Abstract—The injection of software faults in source code
requires accurate knowledge of the programming language, both
to craft faults and to identify injection locations. As such,
fault injection and code mutation tools are typically tailored
for a specific language and have limited extensibility. In this
paper we present a model-driven approach to craft and inject
software faults in source code. While its concrete application is
presented for Java, the workflow we propose does not depend
on a specific programming language. Following Model-Driven
Engineering principles, the faults and the criteria to select
injection locations are described using structured, machine-
readable specifications based on a domain-specific language.
Then, automated transformations craft artifacts based on OCL
and Java, which represent the faults to be injected and are able
to select the candidate injection locations. Finally, artifacts are
executed against the target source code, performing the injection
in the desired locations. We devise a supporting tool and exercise
the approach injecting 13 different kinds of software faults in the
Java source code of six different projects.

Index Terms—Software faults, fault libraries, metamodel,
OCL, code patterns, Java.

I. INTRODUCTION

It is several years that software fault injection, i.e., the de-
liberate injection of software faults [31], is a well-established
approach to evaluate the dependability of computer systems
[22]. Its growth in relevance has been also pushed by the
continuous increase of software size and complexity, which
makes software faults and software-related accidents more
likely to occur. It is in fact acknowledged that software faults
are a relevant threat to the dependability of computer-based
systems and a major cause of economical losses, with an
estimation of 3.6 billion people impacted by software faults
and USD 1.7 trillion revenue lost in 2017 [43]. It is then clear
that software fault injection, as a mean for fault removal and
fault forecasting [4], is a necessary technique.

Several fault injection approaches and tools have been pro-
posed. They differ on multiple aspects, ranging from the scope
of fault injection, the target system, the injection approach, or
the specification of faults themselves. Amongst the different
classes of fault injection approaches, in this paper we focus on
the injection of code changes, which was developed to closely
emulate software faults by introducing wrong code that mimics
the most typical programming bugs [31].

This work has received funding from the European Union’s Horizon
2020 research and innovation program under the Marie Sklodowska-Curie
grant agreement No 823788. This work has received funding from the
São Paulo Research Foundation (FAPESP) with grants #2018/11129-8 and
#2019/06799-7.

When injecting code changes, the artificial faults introduced
in the software should be realistic, i.e., similar to the real soft-
ware bugs, and the criteria for the injection should depend on
the target system and on the purpose of the testing campaign
[25]. Therefore, several authors have analyzed which are the
most common faults introduced by developers, and the support
of automated tools that inject realistic faults has improved in
recent years. While it would be useful to reuse existing tools
to create custom faults, or to alter some of the implemented
ones, this can be a hard task in practice [3]. In fact, to create
new injectors for code-change faults, a strong knowledge of
the language and of its low-level artifacts is needed (e.g., the
abstract syntax tree or the compiler).

In this paper we present and exercise a model-driven ap-
proach to craft and inject software faults in source code. Fol-
lowing Model-Driven Engineering (MDE, [39]) principles, the
faults and the criteria to select injection points are described
using structured, machine-readable, specifications based on
a domain-specific language (DSL, [44]). The advantage of
this approach is that the description of the fault is expressed
in a high-level language, tailored do the domain of fault
injection, and it does not require knowledge of the target
application, its programming language, or low-level artifacts.
Once transformations have been defined, any fault that can be
expressed with the DSL can be automatically injected, without
the need to write additional code. Also, faults are described
in an abstract way, and thus they can potentially be injected
in code written in any programming language, by defining
appropriate model transformations.

More specifically, we provide the following contributions:
i) we devise an MDE-based methodology for describing and
managing faults to be injected as structured specifications; ii)
we define a domain-specific language to realize such method-
ology; iii) we implement transformations and build a tool in
order to apply the whole methodology for software programs
written in Java; and iv) as case study, we use our DSL to
specify a fault library from the literature, and we apply our
methodology on six different Java projects, in which we inject
approximately 50,000 faults in the corresponding injection
points. All the source code, models, and transformations are
publicly available at [37].

The rest of the paper is organized as follows. First, Section II
presents background notions, and Section III describes the
related work. Then, Section IV illustrates our methodology,
while Section V details our domain-specific language and

transformations. Section VI details the proposed workflow
through an exemplary execution, while Section VII presents
the case study. Finally, Section VIII discusses the results,
limitations, and possible extensions of this work. Section IX
concludes the paper.

II. BACKGROUND

A. Model Driven Engineering

Model-Driven Engineering (MDE, [39]) refers to the sys-
tematic use of models as primary artifacts throughout the en-
gineering lifecycle. The idea is that the information should be
described and managed at the most abstract level as possible,
and concrete artifacts should be generated from this primary
information. MDE techniques combine: i) Domain Specific
Languages (DSLs, [44]), which formalize the information rel-
evant for a certain domain; and ii) model-transformations and
code generators [15], which analyze models and synthesize
different kinds of artifacts, such as source code, simulators, or
documentation.

One of the foundational concepts of MDE is metamodeling.
A metamodel [13] formally defines what are the constructs that
can appear in a certain class of models and their relations,
that is, the abstract syntax of a language. A model is said
to conform to a certain metamodel if it respects its abstract
syntax. A model transformation receives as input a model ma

that conforms to a metamodel A, and produces as output a
model mb that conforms to a metamodel B.

The ability to automatically transform models and synthe-
size various artifacts helps to ensure the consistency between
system requirements, specification, implementation, and eval-
uation models. Furthermore, MDE reduces human mistakes,
by the application of state-of-the-art development practices,
embedded in automated transformations.

MDE techniques are widely used in the industry practices
and bring several benefits [23]. According to [45], the benefit
is greater when those techniques are applied to specific parts or
aspects of the system. In fact, by targeting a specific problem,
(meta-)models and transformations are simpler and closer to
concepts of the involved domain.

B. Fault Injection

The ultimate goal of fault injection is to test how tolerant
a system or component is in the presence of faults. It can be
used to quantify the ability of a system to detect faults, to
recover from an unexpected failure, etc. [22]. Fault injection
can refer either to the injection of faults into hardware or into
software components; in this work we exploit software fault
injection to inject code changes in software source code.

In order to execute fault injection tests, a fault injection
environment is typically required, which mainly consists of
the following entities [22]:
Load Generator. Generates the sequence of inputs to be

applied to the target system, based on the description of
the intended workload provided by the Workload Library.

Injector. Injects faults into the target system. The faults to
be injected are provided by a Faultload Library.

TABLE I
FAULTS MODEL [17] TO BE IMPLEMENTED IN OUR APPROACH.

Fault ID Fault Name

MFC Missing Function Call
MIA Missing If Construct Around Statements
MIEB Missing If construct plus statements plus Else Before statement
MIFS Missing IF construct plus Statements
MLAC Missing AND expression in expression used as branch condition
MLOC Missing OR expression in expression used as branch condition
MLPA Missing Small and Localized part of the Algorithm
MVAE Missing Variable Assignment using an expression
MVAV Missing Variable Assignment using a value
MVIV Missing Variable Initialization using a value
WAEP Wrong Arithmetic expression in parameter of a function call
WPFV Wrong Variable used in parameter of a function call
WVAV Wrong Value Assigned to variable

Monitor. Observes the target system with the injected faults
and collects the generated data.

Controller. Coordinates the other entities.
Fault injection is effective if the injected faults are realistic,

because the goal is to estimate how tolerant a system is in
the presence of real faults. In the literature, several authors
have discussed what are the most common faults introduced by
developers, and the support of automated tools that inject faults
similar to real ones flourished in the last decades [16, 20, 24,
25, 29, 30, 38]. In this paper we have selected 13 faults that we
will use in the experimental evaluation of our approach. Such
faults are listed in Table I; they are the same originally selected
by Durães et al. [17], based on their empirical study on
the representativeness of different faults. More recent studies
confirm that this fault model can still be deemed up-to-date
and credible [31], and that it is substantially a subset of fault
models for Java [8, 38].

C. How we will exploit background knowledge

In this work, we are proposing a MDE approach for fault
injection, where faults can be specified through a DSL, that is,
a language tailored to the domain of fault injection. A collec-
tion of specifications constitutes the Faultload Library. Once
the specification is done, a model-transformation automatically
generates an implementation of the needed Injector(s). Given
any software in the target programming language, the injector
is able to i) find the possible injection points and then ii)
concretely inject the faults in the identified injection points.

III. RELATED WORK

The main contribution of this paper is to provide a frame-
work for describing fault patterns at abstract level, from which
injectors can be automatically derived, and to demonstrate its
application to Java software. To the best of our knowledge
there are few approaches that propose a similar contribution.

Numerous tools to inject faults in Java applications exist in
the state of the art (e.g., see [28]), and the authors usually
explain how to extend their tools in order to implement
injectors for additional faults. However, often the knowledge
of low level artifacts is still necessary. Our proposal here is to

define a language where it is possible to define fault patterns
at a high level of abstraction, and then automatically derive
(i.e., generate) the injector code. We generate fault-specific
code that finds the candidate injection points and then injects
the fault into the source code.

Few works adopt a high-level approach. Hoarau et al. [21]
investigated the possibility of injecting software faults in
Java applications using a high-level language called FAIL.
However, their strategy differs from our proposal, since FAIL
is used to describe fault scenarios at runtime (e.g., “do not
execute the last loop of while/for statements”). Conversely, our
language specifies injection points as code patterns, coupled
with a sequence of actions (e.g., “find a variable declaration
and delete its initialization”) to directly alter the source code.
Olah et al. [35] presented a model-based approach to specify
fault injection experiments and run-time monitoring. Although
their approach is based on MDE techniques, their work relies
on a third-party tool to provide the functionality to find
injection points and to perform the injection. Furthermore,
their approach injects faults in the Java bytecode, while we
operate on the source code.

Some studies use high-level languages to inject faults in
non-Java systems. The work by Navat et al. [32] aims to
automate fault injection in cyber-physical systems by inte-
grating the injection process within an MDE design flow.
However, the paper does not deal with a methodology for the
characterization and description of software faults, which is
instead one of the major contributions of our work. The recent
work by Cotroneo et al. [14] adopts a similar approach to the
one proposed in this paper, but it targets Python code. There
are also some differences in the realization. First, our language
is more expressive in the definition of injection points; for
example we can define patterns across different classes or
based on object-oriented concepts like inheritance and visibil-
ity modifiers. Conversely, their language appears to be more
expressive concerning the actions to be executed. Also, our
approach works with the abstract syntax (metamodel) and it
is in principle easier to be adapted to other languages.

Several works on mutation testing and on the generation of
mutants relied on the support of MDE, with the most relevant
to our paper being [7, 18, 19, 40]. Despite some similarities
especially in the usage of MDE principles, these works have
a different purpose, and none of them target the definition
of an application-independent approach to specify and inject
software faults in source code as we are proposing. In fact,
Wodel [18] is a DSL to generate mutants of models conform-
ing to arbitrary metamodels; Bartel et al. [7] generate a fault
model for the adaptation logic of adaptive systems; Simão
et al. [40] exploit transformational and logical programming
paradigms rather than MDE principles; and Gomez et al. [19]
introduce a tool to generate mutation testing tool for domain-
specific languages.

In the field of robustness testing, Moraes et al. [27] pre-
sented an extension of the UML Testing Profile [6] that
includes the main concepts of robustness testing, for the
purpose of improving documentation of experiments, while

our work permits to craft and actually inject software bugs.
Also, a relevant body of research in dependable cyber-

physical systems exploits MDE techniques and UML pro-
files. However, the purpose is typically to model failures
and understand their propagation into the system by some
kind of simulation [9, 26]. Finally, other works concentrate
on model-driven fault injection in embedded systems, for
example [5, 10, 12]. These works are specifically tailored to
embedded systems, thus assuming domain specificities like the
availability of specific input models or architectural paradigms.
Our paper targets generic Java software and thus requires a
more general approach.

IV. METHODOLOGY

In this section we describe the general workflow we envi-
sion for a model-driven injection of software faults, and the
concrete technical workflow we adopted to realize it.

A. General Workflow

The workflow we propose for fault injection supported by
MDE techniques is centered around a DSL that is used to
provide specifications of the faults to be injected as structured,
machine-readable, models. This follows the MDE principle
that everything is a model [13] and that therefore everything
should be treated like one.

In MDE, high-level specifications are automatically con-
verted into concrete artifacts (e.g., source code, test cases)
by model transformation and code generation algorithms.
Typically, both the model and the transformations are domain-
specific, that is, they embed the knowledge of a certain
domain, thus allowing a greater degree of abstraction.

In our case, the low-level artifacts are the injectors, which
are generated from fault specifications. Given a certain class of
systems (e.g., those written in Java) the generation of injectors
can be automated and embedded in model transformation
algorithms. Changing the class of target systems, for example
switching from Java to C++, requires an adaptation of the
transformation algorithms. However, the specification of the
faults, which are the input to the transformations, can remain
unchanged. The best practices for injection in C++ code could
again be embedded in the transformations.

The main benefit of this approach is that once the DSL and
the transformations are defined, the injector for all the possi-
ble specifications supported by the language is automatically
derived. This contrasts with common practice in the literature,
in which injectors for a limited selected set of selected faults
are programmed in an ad hoc fashion.

The workflow we propose consists of the following three
macro-steps:
Specification. The first step consists in writing a fault injec-

tion specification i.e., to create structured models using
the DSL (described in Section V later). In general, two
pieces of information are required in a fault specification:
i) identification of the injection point where the fault can
be injected; and ii) the action to be performed to inject
the fault e.g., removal or modification of a code element.

Fault Type

Structured Fault
Specification

Java Model

OCL query

Java Injector

Modified Java Model

*
Java Source Code
with faults Injected

Specification

1

2

3

4

6

Source Code
Re-generation

7
5

x

Injection Points
Identification

Fault Injection
in Model

Injection
Points
Selection

Source Code
Extraction

Injector
Generation

Java Source
Code

Fig. 1. Our concrete workflow for model-driven injection of software faults.

Generation. In the second step a set of model transformations
processes the fault specification (in the form of a struc-
tured model), and derives the artifacts that implement the
injector. That is, the second step derives a program that
is able to inject the fault specified using the DSL.

Injection. Finally, the derived artifacts that constitute the
injector are executed and the specified fault is injected
in the target software project.

This workflow is general and it can be realized for different
classes of systems. In the following we describe how we have
realized it for injecting faults in Java source code.

B. Technical Workflow

To better understand how we concretely implemented the
proposed workflow, we provide here more details about the
artifacts generated in each step, and how the faults are actually
injected into the source code. When possible, we reused
existing MDE tools and frameworks, in an effort to focus on
aspects purely related to fault injection.

The detailed workflow is presented in Figure 1 and is
discussed in the following.

1) Fault Specification: This step corresponds to the Speci-
fication step of the general workflow, and it is where faults to
be injected are specified.

We base our DSL on the recent work in [36], which defined
the CCSL (Coding Conventions Specification Language). The
original purpose of CCSL is to specify rules of coding
conventions (e.g., the SEI CERT Coding Conventions [41]),
and then generate checkers that are able to find violations of
such rules in the source code. Using CCSL it is possible to
define forbidden coding patterns by describing the involved
code elements and their relations. In particular, CCSL has been
applied for specifying coding rules for Java in [36].

Two pieces of information are needed to specify the injec-
tion of a fault: i) the injection points where the fault can be
injected; and ii) which actions are necessary to inject the fault.
For the first part we can reuse CCSL: instead of specifying
patterns of violations in the source code, we use it to specify
patterns of candidate injection points. Of course, additional

information that is specific of the fault injection domain needs
to be added to the language. How we reuse and extend CCSL
is described in Section V.

2) Injector Generation: In this step the injector is automat-
ically generated from the fault specification. The injector also
adopts a model-driven approach, that is, the manipulations are
made on a structured representation of the code and not on the
code itself. In this work we use the Java metamodel provided
by MoDisco [11], which provides a one-to-one representation
of source code elements. Metamodels that can be used with
other languages are available e.g., the Knowledge Discovery
Metamodel (KDM [34]).

Two artifacts are generated, corresponding to the two
pieces of information in the specification: an OCL query
(fault.ocl), and a Java class (faultAction.java).
The model-to-text generation of these two artifacts is imple-
mented with the Acceleo framework [1].

The OCL (Object Constraint Language) [33] is a declarative
language used to specify constraints in models and metamod-
els. Besides this original purpose, it can be used as a query
language for models. The generated OCL query is used to
retrieve the model elements that are possible injection points
for the fault. Once these elements have been identified, the
generated Java class is used to concretely apply the specified
actions e.g., delete or replace an element.

3) Source Code Extraction: In order to execute the OCL
query generated in the previous step, the structured model of
the target source code must be available. For this we rely on
the MoDisco tool [11], whose purpose is exactly to extract
a detailed structured model from a Java project. It should be
noted that MoDisco gives the possibility to extend its extractor
to other programming languages.

4) Injection Points Identification: Once the structured
model of the target project is available, the generated OCL
query (fault.ocl) is executed on it. The set of the possible
injection points is the output of this step.

5) Injection Points Selection: Once the list of possible
injection points have been retrieved, one or more algorithms
(strategies) are executed to select which injection points should
be used by the injector. The selection strategies are not gen-
erated automatically, and they need to be previously defined.

6) Fault Injection in Model: Once the injection points have
been selected, the generated Java injector is executed in order
to modify the code elements at the selected injection points,
and thus inject the specified fault. After this step, the extracted
model of the target project is now representing the source code
modified with the faults specified in Step 1.

7) Source Code Regeneration: The final step takes as input
the structured model representing the modified project, and it
regenerates the whole source code with the injected faults. To
perform this step we use again the MoDisco tool [11].

V. INJECTION SPECIFICATION METAMODEL

As it should be clear from the previous section, the main
contributions of this paper are i) the adaptation and extension

Rule

negated : Boolean = false

AtomicRuleCompositeRule

operator : LogicOperator = AND

Element

uniqueName : String

Context

Filter

negated : Boolean = false

[2..*] rules

[1..1] subject

[1..1] context

[0..*] contextElements

[0..*] filters

Fig. 2. CCSL core elements.

of CCSL for specifying faults to be injected, and ii) the trans-
formations that generate injectors from such specifications.
In this section we briefly recall about CCSL, we explain the
extensions that we introduced, and we discuss how it can be
used for the specification of faults.

A. Coding Conventions Specification Language

The CCSL has been defined using the Eclipse Modeling
Framework (EMF) [42], a well-known meta-modeling frame-
work that provides an unifying runtime layer for different
MDE tools withing Eclipse.

The main element of the CCSL metamodel is the Rule
metaclass, which represents a pattern that identifies a coding
rule. A rule can be either atomic or composite, as illustrated in
Figure 2. An AtomicRule consists of a context and a subject.
The Context describes the pattern to be searched in the source
code e.g., a class with name “Foo” that contains at least one
method called as “qux”. The context of a rule must contain
at least one Element and it may contain a certain number of
Filter instances.

The Element metaclass is the top of the hierarchy of classes
that represent elements of the source code e.g., classes, inter-
faces, methods, invocations, assignments, etc. The metamodel
of CCSL contains different subclasses of Element, which are
not reproduced here for the sake of brevity. The full CCSL
metamodel is available on GitHub [37]. The elements that
constitute the context (and their relations) form the base for
the pattern to be found in the code.

Filters are used to retain only elements of the context that
fulfill specific conditions e.g., to select only classes whose
name is matched by a regular expression. Filter is an abstract
metaclass, and it is extended by several concrete filters. A
filter can be negated, which means that only elements not
fulfilling the filter are selected. The full CCSL metamodel
contains different kind of filters; new ones can be added by
creating a new subclass of the Filter metaclass.

Finally, the subject of a rule identifies the programming
language element to which the rule applies. The subject is
always one of the elements defined in the context. In the
original CCSL work [36], the subject defined the element on
which an alert is raised in case a violation is identified. In this

rule : AtomicRule ruleCtx : Context class : JClass

name = equals

equals : Method

negated = true
includesTarget = true

f : HasSuperClassFilter

name = hashCode

hashCode : MethodsuperClass : JClass

filterContext : Context

context contextElements

subject

methodstarget

superClass

conltextElements

context

filters

methods

Fig. 3. MET09-J CCSL specification.

work the subject identifies the element that, if existing, will
be selected as injection point.

Complex rules can be specified as a CompositeRule, which
is essentially a connector to combine multiple rules using
Boolean logic operators (and, or, etc.).

B. CCSL Specification Example

As an example of a CCSL specification, consider the
following rule from the SEI CERT Coding Standard for Java
[41], where the first part (before the ellipsis) is the actual rule,
while the subsequent text is an explanation of the rationale.

“MET09-J: Classes that define an equals() method must also
define a hashCode() method. [. . .] The equals() method is used
to determine logical equivalence between object instances.
Consequently, the hashCode() method must return the same
value for all equivalent objects. Failure to follow this contract
is a common source of defects.”

The corresponding CCSL specification is illustrated in Fig-
ure 3, as a diagram of metaclass instances (abstract syntax).
Since the rule is composed of a simple statement, it is only
necessary to create an instance of the AtomicRule metaclass
(top left part of the figure). The subject of the rule is a Java
class (class element, top right part of the figure) that contains
a method named “equals”.

However, only classes that define an “equals” method and
do not define a “hashCode” method must be matched. This
can be achieved by applying a filter. The HasSuperClassFilter
recursively checks whether its target does not have (it is
negated) a super class with certain characteristics, specified by
the filterContext. In this case, the context of the filter includes
an instance of Method with name set to “hashCode”. Because
the attribute includesTarget of the HasSuperClassFilter is set
as true, the check is also performed on the target of the filter
itself, that is, it is also checked if the current class does not
contain a method named “hashCode”.

It should be noted that, while an Element (an its subclasses)
may in general have many different attributes, most of them
have a minimum multiplicity of zero. This means that only the
attributes that are needed for expressing the rule need to be
specified, and all the others may be left empty. It should also
be noted that the model in Figure 3 uses the abstract syntax of
the language. Language engineering tools like Xtext [2] can
be used to rapidly create textual editors for a DSL.

FaultTypeDescription

name : String

AtomicRule

 subject : Element
context : Context

InjectionAction

 target : Element

InjectionStrategy

[1..1] rule[1..*] actions

[1..*] strategies

Fig. 4. Definition of a fault type description in EMF notation.

C. Fault Injection Extensions — Metamodel

In this work we have extended the CCSL to describe fault
types, i.e., to define which elements will be modified in
the source code (injection points) and which actions will be
performed on the selected elements.

In order to specify fault types, we have created new meta-
classes and reused some from CCSL. The root of a fault type
specification is the newly introduced FaultTypeDescription
metaclass, illustrated in Figure 4.

The main metaclasses involved in the specification of a fault
type are described in the following.

FaultTypeDescription. This metaclass represents a fault to
be injected in the source code. A FaultTypeDescription
is composed of: i) a name; ii) a rule of type AtomicRule,
which defines the elements of source code that will
be targeted, i.e., the injection points; iii) actions to be
performed on such elements, as a list of InjectionAction;
and iv) injection strategies, as a list of InjectionStrategy.

AtomicRule. This is simply the AtomicRule metaclass im-
ported from the original CCSL metamodel.

InjectionAction. This metaclass represents an action to be
performed on its target element. The target element can
be the injection point itself or part of it. The Injection-
Action is an abstract metaclass, and it is extended by
several concrete actions, each one containing its own
implementation.

InjectionStrategy. While the AtomicRule metaclass defines
a single rule which selects code elements as possible
injection points, the InjectionStrategy defines a strategy
to determine which of the possible injection points will
be modified by the actions (e.g., only inject in 10% of
the available injection points). The InjectionStrategy is an
abstract metaclass, and it is extended by different concrete
strategies, each one containing its own implementation.

To specify the faults listed in Table I the following sub-
classes of InjectionAction have been defined:

i) DeleteAction — deletes an element;
ii) MoveScopeUp — moves a statement up to the containing

scope;
iii) DeleteRandomStatementBlock — deletes one random

statement from a block;
iv) ChangeLiteralValue — changes the value of a literal

value, e.g., the value of a literal number is incremented
by 1;

v) ReplaceArithmeticOperatorAction — changes the opera-
tor of an arithmetic expression e.g., a + b is changed to
a− b; and

vi) ReplaceVariableAccessAction — replaces the access to a
variable for another access of a variable of the same type,
e.g., the invocation foo(a) can be replaced for foo(b).

These actions allow to realize a wide range of different
injections. It should be noted that additional actions can be
added by creating new subclasses of InjectionAction in the
metamodel.

In this paper we have defined and used only one subclass
of InjectionStrategy: the AllStrategy, which simply selects all
the candidate injection points. This strategy is also the one
used by default when no strategy is provided in the fault type
specification. As explained later, creating other strategies is
only a programming exercise.

D. Fault Injection Extensions — Transformations

When CCSL is used to describe and check coding rules,
only one file is generated from the specification: an OCL
query to select elements with violations [36]. The OCL
query is derived from the information contained in the rule
specification, i.e., in an instance of the Rule metaclass.

Instead, the transformations that we implemented for this
work take as input an instance of the FaultTypeDescription
metaclass (Figure 4). As previously mentioned, two files are
generated from such specification: i) an OCL query to select
candidate injection points where the faults can be injected;
and ii) a Java class file that concretely injects the fault into
the selected injection points.

To generate the OCL query (fault.ocl) we basically
reuse the transformations available in the CCSL framework,
which are applied on the rule property of the FaultType-
Description element. This property contains an instance of the
AtomicRule CCSL metaclass, and thus can be used as input
to the existing transformations.

The idea behind the Java class implementing the injector
(faultAction.java) is simple. The class must contain
a doAction method, which implements the action itself. The
method receives the output of the OCL query as a parameter,
thus basically obtaining a reference to the identified injection
point in the model of the source code. Then, inside the
doAction code, the model is altered as needed, using the
APIs provided by EMF. This is possible because all the
other toolsets (Eclipse OCL and MoDisco) are also based
on EMF, and thus the output produced by the OCL query
is an Ecore object (subclass of the EObject metaclass). To
provide a unified access to the actions, the generated action
must implement the InjectionAction interface, which contains
the doAction method.

VI. EXEMPLARY EXECUTION OF THE WORKFLOW

To concretely illustrate the overall workflow of Figure 1,
we use here the fault Missing Variable Assignment Using an
Expression (MVAE) from Table I as running example. We use
circled numbers to recall the steps of the technical workflow.

rule : AtomicRule ruleCtx : Context
context

assignment : Assignment

contextElements

stmt : Statement

rightSide

negated = true

filter : TemplateFilter
target

filters

filterCtx : Context

context
LiteralValue

contextElements

fault : FaultTypeDescription

deleteAction : Action

rule

actions

subject

template

target

Fig. 5. Specification of the MVAE fault type using our language.

A. Specification

The first step 1 is to create the structured specification of
the fault to be injected using our DSL. We need therefore
to identify i) the injection points, and ii) the actions to be
performed. In this case the possible injection points are all
the variable assigments using an expression, while the action
is to delete the assignment.

The specification for the MVAE fault type is illustrated
in Figure 5. The root of the specification is an instance
of FaultTypeDescription, having an AtomicRule as the rule
attribute. The context of the rule is defined as an Assignment
where its rightSide is any statement (Statement is an abstract
metaclass in CCSL). The subject of the rule is the assignment
itself.

To select only assignments whose right side is an expression
we use a TemplateFilter. This kind of filter, available in
CCSL, provides an example of what should be matched in the
source code. In this case, the filter checks if the stmt instance
(i.e., the right side of the assignment) is compatible with the
LiteralValue metaclass. However, in this specification the filter
is negated (the negated attribute is set to true), and therefore
only instances that do not comply with the provided template
are selected. This means exactly that only assignments whose
right side is not a literal are returned.

The set of actions in the fault specification only contains a
DeleteAction (deleteAct instance). The target of the action is
the stmt, which is the right side of the Assignment. Therefore,
the right side of the Assignment will be deleted.

It should also be noted that the instance of FaultType-
Description does not contain a strategy. This means that
the AllStrategy will be used by default, i.e., all the existing
“variable assignments using an expression” in the source code
will be selected as an injection point.

B. Generation

Now that we have the specification of the fault we can
generate the injector 2 . As mentioned before, this step gen-
erates two files: an OCL query (MVAE.ocl) and a Java class
(MVAEAction.java).

The OCL query for the MVAE fault type is shown in
Figure 6. While it is not easy to read, it should be noted that
it is completely generated in automated way by combining
the information in the fault type specification with low-level
knowledge of the Java language (embedded in the transfor-
mation). In particular, it should be noted that the matching

Assignment.allInstances()->select(assignment: Assignment |
let stmt: ASTNode = assignment.rightHandSide
->asOrderedSet()->closure(v: ASTNode |
if (v.oclIsKindOf(ParenthesizedExpression)) then

v.oclAsType(ParenthesizedExpression).expression
else

v
endif

)->last() in stmt <> null and
(
stmt.oclIsKindOf(Statement) or
stmt.oclIsKindOf(Expression)

) and
not(
let stmtTemplate: ASTNode = stmt in
(

stmtTemplate.oclIsKindOf(StringLiteral) or
stmtTemplate.oclIsKindOf(CharacterLiteral) or
stmtTemplate.oclIsKindOf(NumberLiteral) or
stmtTemplate.oclIsKindOf(BooleanLiteral) or
stmtTemplate.oclIsKindOf(NullLiteral)

)
)

)

Fig. 6. Generated OCL query for the MVAE fault type.

public class MVAEAction implements InjectionAction {

@Override
public boolean doAction(ASTNode root) {
ASTNode target = getTarget(root);
if(target != null) {

return new DeleteAction().doAction(target);
}
return false;

}

private ASTNode getTarget(ASTNode root) {
if (root instanceof Assignment) {

Assignment assignment = (Assignment) root;
return assignment.getRightHandSide();

}
return null;

}
}

Fig. 7. Generated Java injector for the MVAE fault type.

of the LiteralValue element in the specification results in the
matching of five different metaclasses in the Java metamodel,
each corresponding to the concept of “literal value” of one of
the primitive datatypes.

The Java injector for the MVAE fault type is shown in
Figure 7. The MVAEAction class follows the implementation
pattern discussed in the previous section, with the doAction
method receiving a parameter of type ASTNode, that is, any
element of the Java metamodel. This node is then processed
based on the specified actions. In this case an instance of the
DeleteAction class is created and executed. This particular case
also includes a private method getTarget, which is used to
retrieve the target of the action when it is different from the
subject of the rule.

Now that the injector for the MVAE fault has been gener-
ated, it can be stored and used in multiple Java projects. If the
fault specification changes, of course the OCL and Java files
need to be re-generated.

C. Injection

The first step to actually inject the fault is to extract a
structured model of the code of the target project 3 , using

MoDisco [11]. The output of this step is a file in XMI format,
project.xmi, which conforms to the Java metamodel.

Then, all the candidate injection points in the project are
identified 4 . This is done by executing the OCL query
MVAE.ocl on the model of the project obtained in the
previous step (project.xmi). The results of this step is
a list of elements of the Java metamodel, that is a list of
ASTNode objects, which identify the possible injection points
available in the software.

Once that we have the candidate injection points, we need
to select which one will actually be modified 5 . This is done
by executing the specified strategy, taking as input the list
of the candidate injection points. We do not detail this step
in this paper, as we always select all the injection points.
Implementing other strategies simply means iterating ofter the
list of ASTNode elements obtained in the previous step, and
selecting a subset of them.

After the selection, we need to actually inject the faults
6 . This is done by iteratively invoking the doAction method
of the MVAEAction.java class, by passing each time one
injection point as parameter (in the form of an ASTNode
element). This injects the fault in the model representing the
project, and thus the file project.xmi now contains the
project code with the injected faults.

Finally, the concrete Java source code needs to be generated
from the model 7 . This step is performed by executing an
Acceleo code generation module included in the MoDisco
framework. The modified project is now available as Java
source code, and can be used as needed.

VII. EXPERIMENTAL CAMPAIGN AND RESULTS

In this section we report the experimental campaign we
performed to evaluate the proposed approach. We assess if
the proposed approach can inject a target fault model in real
software projects. We first discuss the experiment setup, in
terms of target software projects and faults that are injected,
and then we discuss the results. All the source code, models,
and transformations are publicly available at [37].

A. Experiment Setup

As target systems, we selected 6 public projects written
in Java from GitHub. We selected two of the most “starred”
projects with size less than 30MB for each of the following
categories: Cryptography, Security, and Artificial Intelligence.
We applied the size limit only for the sake of experiment
manageability. The selected projects are listed in Table II,
including their name, selected version, and a short description.

The objective of the experiment is to inject all the 13
fault types described in Table I using our methodology, thus
verifying its applicability for real fault injection campaigns.
We have translated the description of each fault type into
a machine-readable structured model, similarly to what has
been shown in Figure 5 for the MVAE fault type. Such
specifications are the input of our workflow, as discussed
before.

TABLE II
SOFTWARE PROJECTS SELECTED FOR THE EXPERIMENTAL CAMPAIGN.

GitHub Repository Description

cryptomator/cryptomator
1.5.0-beta2

Multi-platform transparent client-side encryption of
files hosted in the cloud.

libgdx/gdx-ai
1.8.2

Artificial Intelligence framework for games based on
libGDX.

microsoft/malmo
0.37.0

Platform for Artificial Intelligence experimentation and
research built on top of Minecraft.

spring-security-oauth
2.4.0.RELEASE

Support for adding OAuth1(a) and OAuth2 features for
Spring web applications.

google/tink
v1.3.0-rc3

Multi-language, cross-platform, open source library that
provides cryptographic APIs.

Netflix/zuul
v2.1.6

Zuul is a gateway service that provides dynamic rout-
ing, monitoring, resiliency, security, and more.

TABLE III
OVERVIEW ON HOW THE SELECTED FAULTS HAVE BEEN SPECIFIED AS A

FaultTypeDescription (PLEASE ALSO REFER TO FIGURE 4).

Name Rule Actions

MFC Find a method invocation (mInv) where
its container is a block, or any control
flow statement (it avoids the deletion of
an invocation such like int a = foo())

Delete mInv

MIA Find an if statement (ifStmt) that contains
any then statement (thenStmt) and does
not have the else part

Move thenStmt one scope
up and delete ifStmt

MIEB Find an if statement (ifStmt) with any
then statement and any else statement
(elseStmt)

Move elseStmt one scope up
and delete ifStmt

MIFS Find an if statement (ifStmt) that contains
any then statement and does not have the
else part

Delete ifStmt

MLAC
MLOC

Find an operand (op) in an AND/OR
expression (exp) where exp can be find
by making a recursively search in an if
condition expression

Delete op

MLPA Find a block (block) of a method decla-
ration

Delete one random state-
ment from block

MVAE
MVIV

Find a literal value (lit) where lit is being
used as a value of an variable assignmen-
t/initialization

Delete lit

WAEP Find an arithmetic expression (exp) where
exp is in a parameter of a method invo-
cation

Replace the arithmetic oper-
ator of exp to another one

WPFV Find a variable access (varAccess) where
varAccess is in a parameter of a method
invocation

Replace the (varAccess) to
another variable access of a
variable with same type.

WVAV Find a literal value (lit) where lit is being
used as a value of an assignment

Change the value of lit

Because of space constraints we are not able to show all
the fault type specifications. Table III gives an overview on
how fault types have been specified using our DSL. For all
the fault types we have used the AllStrategy, meaning that the
faults will be injected in all the candidate injection points.
Other strategies can be implemented, as discussed more in
details in Section VIII. We have used this strategy since the
objective of this experiment is to evaluate if our tool is able to
inject faults in a real software. The purpose of the experiment
is not to verify the efficacy of injecting a specific set of faults,

TABLE IV
NUMBER OF INJECTED FAULTS FOR EACH FAULT TYPE.

Operator Injection Points Successfully Injected
Number Percentage

MFC 15,261 15,261 100.0%
MIA 3,806 3,806 100.0%
MIEB 997 997 100.0%
MIFS 3,806 3,806 100.0%
MLAC 583 583 100.0%
MLOC 350 350 100.0%
MLPA 10,037 5,775 57.5%
MVAE 5,905 5,905 100.0%
MVAV 861 861 100.0%
MVIV 2,331 2,329 99.9%
WAEP 655 655 100.0%
WPFV 15,747 8,252 52.4%
WVAV 724 724 100.0%

Total 61.063 49.304 80.7%

for which a more accurate analysis of the requirements of the
involved systems would be needed.

B. Results

Table IV summarizes the results obtained by executing all
the generated injectors on the subject systems. The column
“Injection Points” reports the total number of candidate code
elements selected by the generated OCL query, while the two
columns under “Successfully Injected” report the number and
proportion of faults that were actually injected.

Our tool was able to find a total of 61,063 injection points
and it successfully injected 49,304 faults (80.7%). For most
fault types, 100% of injections were successful; exceptions are
the MLPA, MVIV, and WPFV faults. Such exceptions are due
to limitations in the information processed by the OCL query.

Consider for example WPFV, which consists in changing a
variable used as a parameter of a method invocation to another
of the same type. In this case the injection point has been
specified as any variable that is used in a method invocation,
while the action is responsible to find a new variable as
replacement (see Table III). However, the generated OCL
query may select a variable for which there is no other variable
of the same type in scope, thus being impossible for the Java
injector to actually inject the fault. When situations like this
occur, they are signalled by the doAction method returning
false.

We have also recorded the time required for injecting each
fault type in the subject systems, as illustrated in Figure 8.
The graph reports the total time required, in milliseconds,
to identify the injection points in the project and to inject
all the faults. However, most of the time is spent in the
identification of the injection points, while the injection time
is significantly smaller (more than one order of magnitude).
Considering the amount of injected faults, we believe the
performance is reasonable. The time required for each fault
type is highly related to two aspects: i) the total number of
injection points available in the project, and ii) the complexity
of the generated OCL query, which depends on the fault

specification. For example, the injection of MFC (Missing
Function Call) appears as the most time consuming in three of
the six projects. The MFC specification is quite simple, and
it generates a small OCL query. However, function calls are
among the most common statements in the code. Therefore,
it is plausible that the retrieval and then deletion of all the
function calls in a source code takes longer than other faults.

On the other hand, WAEP is the most time consuming in
the other three projects, although only 655 injection points
were identified across the six systems. Such a behavior oc-
curs because its specification uses the ArithmeticExpression
metaclass. When using such metaclass, the generated OCL is
larger due to specific checks that guarantee that an expression
is actually an arithmetic expression and not, for example, a
concatenation of strings.

VIII. DISCUSSION

We discuss here on threats to validity and on possible ex-
tensions of this work. These extensions constitute our planned
future work.

A. Threats to Validity

Our experiments investigated the use of model driven tech-
niques to automatically inject faults in Java source code. The
results indicate that the approach is feasible, as we successfully
injected about 50,000 faults in six different projects. We argue
that there is heterogeneity among projects, since they are
real projects developed by different teams and they belong
to different domains, as presented in Section VII-A.

We selected 13 fault types from the literature, and we
specified them using our DSL. To assess the proper behaviour
of our tool, large samples of the altered projects files have been
manually inspected for each fault type, and no deviations from
the expected behavior have been identified. Also, in all the
cases the toolchain always finished the injection process with
no visible failure. This means that the structured model used
as input of stage 7 was syntactically correct (conformed to
its metamodel), otherwise a warning would have been raised.

Last, it should be observed that, in our examples, all the
injected faults can activate i.e., it is not possible to enable only
a subset of the faulty pieces of code during a specific run. In
fact, this paper focuses on the definition of the methodology
to specify fault libraries. The definition of an experiment
controller and of an injector for tailored fault seeding are
outside the scope of the paper but represent our future works,
as discussed below.

B. Extensibility of the Approach

We recall that in our DSL a fault type is represented by
the FaultTypeDescription metaclass, which is composed of a
rule (the pattern to be searched), actions, and strategies. By
refining the fault type specification, it is possible to target more
specific faults in different ways.

Fist, it is possible to add more sophisticated conditions in
the rule that identifies suitable injection points. Consider for
example the specification of MVAE in Figure 5. This selects all

 100

 250

 500

 1000

 2500

 5000

 10000

 25000

MFC MIA MIEB MIFS MLAC MLOC MLPA MVAE MVAV MVIV WAEP WPFV WVAV

To
ta

l
in

je
ct

io
n
 t

im
e
 (

m
ill

is
e
co

n
d

s,
 l
o
g

a
ri

th
m

ic
 s

ca
le

)

Fault type

gdx-ai Malmo Tink Zuul Cryptomator Spring OAuth

Fig. 8. Time required to inject each fault type in each target project. The value includes both the time to select injection points and the actual injection time.

the variable assignments that use an expression, and removes
the assignment part. This of course results in a large number
of injection points. However, this fault specification can be
refined by adding more details on where these variable assign-
ments should be searched for. As an example, we could inject
faults only in methods of classes that extend an hypothetical
EncryptionAlgorithm class. This can be done by simply adding
a filter in the ruleCtx element in the specification of Figure 5,
and more specifically, a ContainerFilter, which filters code
elements based on their containing element.

After injection points are identified, in this work we only
used the AllStrategy, injecting in all the available points.
Creating other strategies is quite straightforward, as it is
sufficient to extend the InjectionStrategy metaclass and provide
the implementation of the strategy itself. This typically means
to apply some filter to the list of candidate injection points
identified by the OCL query. Example of strategies may be: i)
select only the first n injection points; or ii) select n random
injection points.

Another interesting option is to create fault types that inject
known vulnerabilities. For example, we can inject violations to
the previously mentioned MET09-J rule by selecting classes
that define both the equals and the hashCode methods, and
deleting the hashCode implementation. The specification to
inject a violation of the MET09-J rule is illustrated in Figure 9;
essentially, it has been derived by inverting the original CCSL
specification of the MET09-J rule (Figure 3). We have used the
proposed methodology to inject this fault type specification in
the six selected projects. This resulted in 24 injection points,
and the fault has been injected successfully in all of them.

Finally, the extensibility of the approach to other program-
ming languages besides Java needs to be investigated. Most
of the concepts in CCSL are common to many programming
languages, e.g., class, method, variable, etc., and therefore

faultType : FaultTypeDescription rule : AtomicRule
rule

ruleContext : Context
context

class : JClass

name = hashCode

hashCode : Method

subject

methods

contextElements

includesTarget = true

f : HasSubClassFilter

filters

filterContext : Context

context

subClass : JClass
contextElements

subClass

target

name = equals

equals : Method

methods

target

deleteAction : DeleteAction

actions

Fig. 9. Specification of the fault type introducing a violating the MET09-J
rule from [41].

the fault specifications could be reused as they are. However,
the transformations would need to be modified to adapt the
injection process to the specificities of the language. This, as
the rest of topics in this section, constitutes our future work.

IX. CONCLUSIONS

In this paper we proposed an approach to provide struc-
tured specifications of fault types, by applying model-driven
engineering techniques. To the best of our knowledge, there
is little work in this direction.

We have extended a language created to specify coding rules
in a structured way, CCSL, to be able to also specify fault
types. We then specified 13 common fault types and we ap-
plied them to six Java projects that belong to different domains.
In general, our tool was able to find 61,061 injection points
and to successfully inject 49,304 faults (80,7%), showing the
promising use of model-driven engineering for fault injection.

As our language has been designed to be a high-level
language where users do not need the knowledge of low-level
artifacts like abstract syntax tree, it is possible to create custom
faults and have them automatically injected for Java or other
languages, as long as appropriate transformations are defined.

REFERENCES

[1] Acceleo. https://www.eclipse.org/acceleo/. (Accessed
August 17, 2020).

[2] Xtext: Language Engineering for Everyone! https://www.
eclipse.org/Xtext/. (Accessed August 17, 2020).

[3] Joakim Aidemark, Jonny Vinter, Peter Folkesson, and
Johan Karlsson. GOOFI: Generic object-oriented fault
injection tool. In 2001 International Conference on
Dependable Systems and Networks, pages 83–88. IEEE,
2001.

[4] Algirdas Avizienis, J-C Laprie, Brian Randell, and Carl
Landwehr. Basic concepts and taxonomy of dependable
and secure computing. IEEE transactions on dependable
and secure computing, 1(1):11–33, 2004.

[5] Iban Ayestaran, Carlos F Nicolas, Jon Perez, Asier
Larrucea, and Peter Puschner. Modeling and simulated
fault injection for time-triggered safety-critical embedded
systems. In 2014 IEEE 17th International Symposium
on Object/Component/Service-Oriented Real-Time Dis-
tributed Computing, pages 180–187. IEEE, 2014.

[6] Paul Baker, Zhen Ru Dai, Jens Grabowski, Ina Schiefer-
decker, and Clay Williams. Model-driven testing: Using
the UML testing profile. Springer Science & Business
Media, 2007.

[7] Alexandre Bartel, Benoit Baudry, Freddy Munoz,
Jacques Klein, Tejeddine Mouelhi, and Yves Le Traon.
Model driven mutation applied to adaptative systems test-
ing. In 2011 IEEE Fourth International Conference on
Software Testing, Verification and Validation Workshops,
pages 408–413. IEEE, 2011.

[8] Tania Basso, Regina Moraes, Bruno P Sanches, and
Mario Jino. An investigation of java faults operators
derived from a field data study on java software faults. In
Workshop de Testes e Tolerância a Falhas, pages 1–13,
2009.

[9] Simona Bernardi, José Merseguer, and Dorina C. Petriu.
Dependability modeling and analysis of software systems
specified with UML. ACM Computing Surveys, 45(1),
2012.

[10] Valentina Bonfiglio, Leonardo Montecchi, Francesco
Rossi, Paolo Lollini, András Pataricza, and Andrea Bon-
davalli. Executable models to support automated soft-
ware fmea. In 2015 IEEE 16th International Symposium
on High Assurance Systems Engineering, pages 189–196.
IEEE, 2015.

[11] Hugo Bruneliere, Jordi Cabot, Frédéric Jouault, and
Frédéric Madiot. MoDisco: a generic and extensible
framework for model driven reverse engineering. In
Proceedings of the 25th IEEE/ACM International Con-
ference on Automated Software Engineering (ASE’10),
pages 173–174, 2010.

[12] Christian Buckl, Dominik Sojer, and Alois Knoll. Ftos:
Model-driven development of fault-tolerant automation
systems. In 2010 IEEE 15th Conference on Emerging
Technologies & Factory Automation (ETFA 2010), pages

1–8. IEEE, 2010.
[13] Jean Bézivin. On the unification power of models.

Software and Systems Modeling, (4):171–188, 2005.
[14] Domenico Cotroneo, Luigi De Simone, Pietro Liguori,

and Roberto Natella. ProFIPy: Programmable Software
Fault Injection as-a-Service. In Proceedings of the
50th IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN 2020), València, Spain, June
29-July 2 2020.

[15] Krzysztof Czarnecki and Simon Helsen. Classification
of model transformation approaches. In OOPSLA’03
Workshop on Generative Techniques in the Context of
Model-Driven Architecture, 2003.

[16] Murial Daran and Pascale Thévenod-Fosse. Software
error analysis: A real case study involving real faults and
mutations. ACM SIGSOFT Software Engineering Notes,
21(3):158–171, 1996.

[17] J. A. Duraes and H. S. Madeira. Emulation of software
faults: A field data study and a practical approach. IEEE
Transactions on Software Engineering, 32(11):849–867,
2006.

[18] Pablo Gómez-Abajo, Esther Guerra, and Juan de Lara.
Wodel: a domain-specific language for model mutation.
In Proceedings of the 31st Annual ACM Symposium on
Applied Computing, pages 1968–1973, 2016.

[19] Pablo Gómez-Abajo, Esther Guerra, Juan de Lara, and
Mercedes G Merayo. Mutation testing for dsls (tool
demo). In Proceedings of the 17th ACM SIGPLAN
International Workshop on Domain-Specific Modeling,
pages 60–62, 2019.

[20] Rahul Gopinath, Carlos Jensen, and Alex Groce. Muta-
tions: How close are they to real faults? In 2014 IEEE
25th International Symposium on Software Reliability
Engineering, pages 189–200. IEEE, 2014.

[21] William Hoarau, Sébastien Tixeuil, and Fabien
Vauchelles. Fault injection in distributed java
applications. In Proceedings 20th IEEE International
Parallel & Distributed Processing Symposium, pages
7–pp. IEEE, 2006.

[22] Mei-Chen Hsueh, Timothy K Tsai, and Ravishankar K
Iyer. Fault injection techniques and tools. Computer,
30(4):75–82, 1997.

[23] J. Hutchinson, J. Whittle, M. Rouncefield, and S. Kristof-
fersen. Empirical assessment of mde in industry. In 2011
33rd International Conference on Software Engineering
(ICSE), pages 471–480, May 2011.

[24] Tahar Jarboui, Jean Arlat, Yves Crouzet, Karama Ka-
noun, and Thomas Marteau. Analysis of the effects of
real and injected software faults: Linux as a case study.
In Proceedings of the 2002 Pacific Rim International
Symposium on Dependable Computing, pages 51–58.
IEEE, 2002.

[25] Henrique Madeira, Diamantino Costa, and Marco Vieira.
On the emulation of software faults by software fault
injection. In Proceeding International Conference on
Dependable Systems and Networks. DSN 2000, pages

417–426. IEEE, 2000.
[26] Vince Molnár and István Majzik. Model checking-based

software-fmea: Assessment of fault tolerance and error
detection mechanisms. Periodica Polytechnica Electri-
cal Engineering and Computer Science, 61(2):132–150,
2017.

[27] Regina Moraes, Hélene Waeselynck, and Jérémie Guio-
chet. UML-based modeling of robustness testing. In 2014
IEEE 15th International Symposium on High-Assurance
Systems Engineering, pages 168–175. IEEE, 2014.

[28] Aniello Napolitano, Gabriella Carrozza, Nuno Antunes,
and João Duraes. Survey on Software Faults Injection
in Java Applications. In Innovative Technologies for
Dependable OTS-Based Critical Systems, pages 101–
114. Springer, 2013.

[29] Roberto Natella, Domenico Cotroneo, Joao Duraes, and
Henrique Madeira. Representativeness analysis of in-
jected software faults in complex software. In 2010
IEEE/IFIP International Conference on Dependable Sys-
tems & Networks (DSN), pages 437–446. IEEE, 2010.

[30] Roberto Natella, Domenico Cotroneo, Joao A Duraes,
and Henrique S Madeira. On fault representativeness of
software fault injection. IEEE Transactions on Software
Engineering, 39(1):80–96, 2012.

[31] Roberto Natella, Domenico Cotroneo, and Henrique S
Madeira. Assessing dependability with software fault
injection: A survey. ACM Computing Surveys (CSUR),
48(3):1–55, 2016.

[32] Nicolas Navet, Ivan Cibrario Bertolotti, and Tingting Hu.
Software patterns for fault injection in cps engineering.
In 2017 22nd IEEE International Conference on Emerg-
ing Technologies and Factory Automation (ETFA), pages
1–6. IEEE, 2017.

[33] Object Management Group. Object Constraint Language.
formal/2014-02-03. Version 2.4, February 2014.

[34] Object Management Group. Architecture-Driven Mod-
ernization: Knowledge Discovery Meta-Model (KDM).
formal/16-09-01. Version 1.4, September 2016.

[35] János Oláh and István Majzik. A model based framework
for specifying and executing fault injection experiments.
In 2009 Fourth International Conference on Dependabil-
ity of Computer Systems, pages 107–114. IEEE, 2009.

[36] Elder Rodrigues Jr. and Leonardo Montecchi. Towards
a Structured Specification of Coding Conventions. In
Proceedings of the 24th IEEE Pacific Rim International
Symposium on Dependable Computing (PRDC 2019),
pages 168–177, Kyoto, Japan, December 1-3 2019.

[37] Elder Rodrigues Jr., Leonardo Montecchi, and Andrea
Ceccarelli. CCSL GitHub Repository. https://github.com/
Elderjr/Coding-Conventions-Specification-Language
(Accessed August 17, 2020).

[38] Bruno Pacheco Sanches, Tânia Basso, and Regina
Moraes. J-SWFIT: A Java software fault injection tool.
In 2011 5th Latin-American Symposium on Dependable
Computing, pages 106–115. IEEE, 2011.

[39] D. C. Schmidt. Guest editor’s introduction: Model-driven

engineering. IEEE Computer, 39(2):25–31, 2006.
[40] Adenilso da Silva Simão and José Carlos Maldonado.

MuDeL: A language and a system for describing and
generating mutants. Journal of the Brazilian Computer
Society, 8(1):73–86, 2002.

[41] Software Engineering Institute – Carnegie
Mellon University. SEI CERT Coding Standard.
https://wiki.sei.cmu.edu/confluence/display/seccode/
SEI+CERT+Coding+Standards/ (Accessed August 17,
2020).

[42] Dave Steinberg, Frank Budinsky, Marcelo Paternostro,
and Ed Merks. EMF: Eclipse Modeling Framework (2nd
Edition). Addison-Wesley Professional, 2008.

[43] Tricentis. Software fail watch: 5th edition. White
paper, avilable at https://www.tricentis.com/resources/
software-fail-watch-5th-edition/ (Accessed August 17,
2020), 2017.

[44] Markus Voelter. DSL Engineering: Designing, Imple-
menting and Using Domain-Specific Languages. Cre-
ateSpace Independent Publishing Platform, January
2013.

[45] Jon Whittle, John Hutchinson, and Mark Rouncefield.
The state of practice in model-driven engineering. IEEE
software, 31(3):79–85, 2014.

