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Abstract
In this manuscript, we consider the problem of minimizing a smooth function with
cardinality constraint, i.e., the constraint requiring that the �0-norm of the vector of
variables cannot exceed a given threshold value. A well-known approach of the liter-
ature is represented by the class of penalty decomposition methods, where a sequence
of penalty subproblems, depending on the original variables and new variables, are
inexactly solved by a two-block decomposition method. The inner iterates of the
decomposition method require to perform exact minimizations with respect to the
two blocks of variables. The computation of the global minimum with respect to the
original variables may be prohibitive in the case of nonconvex objective function. In
order to overcome this nontrivial issue, we propose a modified penalty decomposi-
tion method, where the exact minimizations with respect to the original variables are
replaced by suitable line searches along gradient-related directions. We also present a
derivative-free penalty decomposition algorithm for black-box optimization. We state
convergence results of the proposed methods, and we report the results of preliminary
computational experiments.
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1 Introduction

In this work, we consider the problem of minimizing a smooth function with a sparsity
constraint (cardinality constraint). Optimization problems where sparse solutions are
sought arise frequently in modern science and engineering. Just as examples, appli-
cations of sparse optimization regard compressed sensing in signal processing [1,2],
best subset selection [3–6] and sparse inverse covariance estimation [7,8] in statis-
tics, sparse portfolio selection [9] in decision science, neural networks compression
in machine learning [10,11].

It is well known that optimization problems involving the �0 norm are NP-hard
[12,13]. Hence, classes of algorithms have been proposed through the years to approx-
imately solve cardinality-constrained problems. Examples of effective methods are
given by the Lasso [14] and other �p-reformulation approaches [15,16].

Particularly useful algorithms designed to deal with cardinality-constrained opti-
mization problems are the greedy sparse simplex method [17] and the class of penalty
decomposition (PD) methods [18]. The former is specifically designed for problems
of the form (1), and the latter has been defined to deal with cardinality-constrained
problems characterized by the presence of further standard constraints. These meth-
ods, based on different approaches, present theoretical convergence properties and are
computationally efficient in the solution of cardinality-constrained problems. How-
ever, they require to exactly solve at each iteration suitable subproblems (of dimension
1 in the case of the greedy sparse simplexmethod, and of dimension n for PDmethods).
This may be prohibitive when either the objective function is nonconvex or the finite
termination of an algorithm applied to a convex subproblem cannot be guaranteed.
This latter issue typically occurs when the convex function is not quadratic. Note that
there are several applications of sparse optimization involving nonconvex objective
functions (see, e.g., [10]).

The aim of the present work is to tackle cardinality-constrained problems by defin-
ing convergent algorithms that do not require to compute the exact solution of (possibly
nonconvex) subproblems. To this aim, we focus on the approach of the PD methods
and we present two contributions:

(a) the definition of a PD algorithm performing inexact minimizations by an Armijo-
type line search [19] along gradient-related directions;

(b) the definition of a derivative-free PD method for sparse black-box optimization.

The two algorithms share the penalty decomposition approach, but differ significantly
in the inexact minimization steps and in the definition of the inner stopping criterion.
We perform a theoretical analysis of the proposed methods, and we state convergence
results that are equivalent to those of the original PD methods [18] but, in general,
weaker than those of the greedy sparse simplex method [17]. Finally, we remark
that, to our knowledge, convergent derivative-free methods for cardinality-constrained
problems were not known, and this makes the derivative-free algorithm proposed in
the present work particularly attractive. The paper is organized as follows. In Sect. 2,
we address optimality conditions for problem (1); we also describe the PD method
originally introduced in [18]. In Sect. 3, we propose a modified version of the PD
algorithm and we state global convergence results. In Sect. 4, we present a derivative-
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free PD method for black-box optimization and we prove the global convergence of
the proposed method. The results of preliminary computational experiments, limited
to a class of convex problems, are reported in Sect. 5 and show the validity of the
proposed approach. Finally, Sect. 6 contains some concluding remarks.

2 Background

In this work, we consider the following optimization problem

min
x∈Rn

f (x) s.t. ‖x‖0 ≤ s, (1)

where f : Rn → R is a continuously differentiable function, ‖x‖0 is the �0 norm of
x , i.e., the number of its nonzero components, and s is an integer such that 0 < s < n.
Throughout the paper, we make the following assumption.

Assumption 2.1 The function f : Rn → R is continuously differentiable and coercive
on Rn , i.e., for all sequences {xk} such that xk ∈ R

n and limk→∞ ‖xk‖ = ∞ we have
limk→∞ f (xk) = ∞.

The above assumption implies that problem (1) admits solution. Necessary optimality
conditions for problem (1) have been stated in [17], where the basic feasible (BF)
property has been introduced. We recall this notion hereafter.

Definition 2.1 We say that a point x̄ ∈ R
n is a BF-vector, if:

– when ‖x̄‖0 = s, it holds ∇i f (x̄) = 0 for all i s.t. x̄i �= 0;
– when ‖x̄‖0 < s, it holds ∇i f (x̄) = 0 for all i = 1, . . . , n.

It can be easily shown that if x� is an optimal solution of problem (1), then x� is a
BF-vector.

Necessary optimality conditions for cardinality-constrained problems with addi-
tional nonlinear constraints have been studied in [18]. Such conditions have been used
to study the convergence of the PD method proposed in the same work. In the case of
problem (1), the aforementioned necessary optimality conditions result simplified. In
particular, on the basis of the convergence analysis performed in [18], we introduce
the following definition.

Definition 2.2 We say that a point x̄ ∈ R
n satisfies Lu–Zhang first-order optimality

conditions if there exists a set I ⊆ {1, . . . , n} such that |I | = s, x̄i = 0 for all
i ∈ Ī = {1, . . . , n} \ I and ∇i f (x̄) = 0 for all i ∈ I .

If x� is an optimal solution, then x� satisfies Lu–Zhang first-order optimality con-
ditions [18]. It can be easily verified that a BF-vector satisfies Lu–Zhang conditions.
The converse is not necessarily true, i.e., Lu–Zhang conditions are weaker than the
optimality conditions expressed by BF property. We show this with the following
example.
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Example 2.1 Consider problem (1), letting

f (x) = (x1 − 1)2 + x22 + (x3 − 1)2

and s = 2. The point x̄ = [1 0 0] satisfies Lu–Zhang conditions, but it is not a BF-
vector. Indeed, let J = {1, 2}. We have that x̄ j = 0 for all j ∈ J̄ and ∇i f (x̄) = 0 for
all i ∈ J . Thus, x̄ satisfies Lu–Zhang conditions. On the other hand, ‖x̄‖0 < 2, and
∇3 f (x̄) �= 0, i.e., it is not a BF-vector.

2.1 The Projection onto the Feasible Set

Consider the problem of computing the orthogonal projection of a vector x̄ onto the
feasible set, i.e., the problem

min
x

‖x − x̄‖2 s.t. ‖x‖0 ≤ s. (2)

Since the feasible set is not convex, the solution of (2) is not unique. A globally optimal
solution can be computed in closed form taking the s components of x̄ with the largest
absolute value [17]. To formally characterize the solution, let us define the index set
I (x) of the largest nonzero variables (in absolute value) at a generic point x ∈ R

n ,
satisfying the following properties:

I (x) ∈ arg max
S⊆{1,...,n}

|S|

s.t. |S| ≤ s, i ∈ S ⇒ xi �= 0,

|xi | ≥ |x j | ∀ i ∈ S,∀ j /∈ S.

(3)

In general, the index set I (x) is not uniquely defined. Also, note that
I (x) = {i ∈ {1, . . . , n} : xi �= 0} if ‖x‖0 ≤ s.

Then, the solution x� of problem (2) is such that

x�
i = x̄i for i ∈ I (x̄), x�

i = 0 for i /∈ I (x̄). (4)

2.2 The Penalty DecompositionMethod

Applying the classical variable splitting technique [20], Problem (1) can be equiva-
lently expressed as

min
x,y∈Rn

f (x) s.t. ‖y‖0 ≤ s, x = y. (5)

For simplicity, in the following, we will denote Y = {y ∈ R
n : ‖y‖0 ≤ s}.

The quadratic penalty function associated with (5) is

qτ (x, y) = f (x) + τ

2
‖x − y‖2,

123



Journal of Optimization Theory and Applications

where τ > 0 is the penalty parameter.
In [18], the penalty decomposition (PD) method (see Algorithm 1) was proposed

to solve Problem (5). In particular, the approach is that of approximately solving a
sequence of penalty subproblems by a two-block decomposition method. The algo-
rithm starts from a point (x0, y0) that is feasible for problem (5). At every iteration,
the algorithm performs the block coordinate descent (BCD) method [21,22] w.r.t. the
two blocks of variables x and y, until an approximate stationary point of the penalty
function w.r.t. the x block is attained. Then, the penalty parameter τk is increased for
the successive iteration, where a higher degree of accuracy is required to approximate
a stationary point.

Note that, as discussed in Sect. 2.1, the y-update step can be performed by com-
puting the closed-form solution of the related subproblem. At the beginning of each
iteration, before starting the BCD loop, a test is performed to ensure that the points
of the generated sequence belong to a compact level set. This is done in order to
guarantee that the sequence generated by the PD method is bounded, so that it admits
limit points. In [18] it is proved that each limit point is feasible and satisfies Lu–Zhang
conditions.

Algorithm 1: PenaltyDecomposition
1 Input: τ0 > 0, θ > 1, x0 = y0 ∈ R

n s.t. ‖x0‖0 ≤ s, a sequence {εk } s.t. εk → 0,

Γ ≥ max{ f (x0),minx qτ0 (x, y0)}.
2 for k = 0, 1, . . . do
3 � = 0

4 u0 = xk

5 if minx qτk (x, yk ) ≤ Γ then
6 v0 = yk

7 else
8 v0 = y0

9 while ‖∇x qτk (u�, v�)‖ > εk do
10 u�+1 ∈ arg min

u
qτk (u, v�)

11 v�+1 ∈ arg min
v∈Y

qτk (u�+1, v)

12 � = � + 1

13 τk+1 = θτk

14 xk+1, yk+1 = u�, v�

15 Output: The sequence {xk }.

3 An Inexact Penalty DecompositionMethod

Algorithm 1 has been shown to be effective in practice [18]. However, it requires to
compute, in the inner iterations of the block decomposition method, the exact solution
of a sequence of subproblems in the x variables (see steps 5 and 10). This may be
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prohibitive when either the objective function is nonconvex or the finite termination
of an algorithm applied to a convex subproblem cannot be guaranteed. On the other
hand, the convergence analysis performed in [18] is strongly based on the assumption
that the global minima of the subproblems in the x variables are determined. In order
to overcome this nontrivial issue by preserving global convergence properties, we pro-
pose a modified version of the algorithm, suitable even for problems with nonconvex
objective function.

Algorithm 2: InexactPenaltyDecomposition
1 Input: τ0 > 0, θ > 1, x0 = y0 ∈ R

n s.t. ‖x0‖0 ≤ s, a sequence {εk } s.t. εk → 0, γ ∈ ]0, 1[ ,
β ∈ ]0, 1[ .

2 for k = 0, 1, . . . do
3 � = 0

4 α = ArmijoLineSearch(qτk , xk , yk , −∇x qτk (xk , yk ), γ, β)

5 xtrial = xk − α∇x qτk (xk , yk )

6 if qτk (xtrial, yk ) ≤ f (x0) then
7 u0, v0 = xk , yk

8 else
9 u0, v0 = x0, y0

10 while ‖∇x qτk (u�, v�)‖ > εk do
11 α� = ArmijoLineSearch(qτk , u�, v�, −∇x qτk (u�, v�), γ, β)

12 u�+1 = u� − α�∇x qτk (u�, v�)

13 v�+1 ∈ arg min
v∈Y

qτk (u�+1, v)

14 � = � + 1

15 τk+1 = θτk

16 xk+1 = u�

17 yk+1 = v�

18 Output: The sequence {xk }.

The proposed procedure is described in Algorithm 2. The exact minimization with
respect to the x variables is replaced by an Armijo-type line search along the steepest
descent direction of the penalty function. The line search procedure along a descent
direction d is shown in Algorithm 3.

We recall some well-known properties for the Armijo-type line search, later used
in the convergence analysis. These results can be found, for instance, in [19].

Algorithm 3: ArmijoLineSearch
1 Input: g : Rn × R

n → R, x, y ∈ R
n , d ∈ R

n , γ ∈ ]0, 1[ , β ∈ ]0, 1[ .
2 Compute

α = max
j∈N{β j : g(x + β j d, y) ≤ g(x, y) + γβ j ∇x g(x, y)T d} (6)

3 return α

It can be easily seen that the algorithm is well defined, i.e., there exists a finite
integer j such that β j satisfies the acceptability condition (6).
Moreover the following result holds.
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Proposition 3.1 Let g : Rn × R
n → R be a continuously differentiable function and

{xt , yt } ⊆ R
n × R

n. Let T ⊆ {0, 1, . . . , } be an infinite subset such that

lim
t→∞
t∈T

(xt , yt ) = (x̄, ȳ).

Let {dt } be a sequence of directions such that ∇x g(xt , yt )T dt < 0 and assume that
‖dt‖ ≤ M for some M > 0 and for all t ∈ T . If

lim
t→∞
t∈T

g(xt , yt ) − g(xt + αt d
t , yt ) = 0,

then we have

lim
t→∞
t∈T

∇x g(xt , yt )T dt = 0.

Remark 3.1 Step 12 of Algorithm 2 can be modified in order to make the algorithm
more general. More specifically, the steepest descent direction
−∇x qτk (u

�, v�) could be replaced by any gradient-related direction d�. In this sense,
we have the possibility of arbitrarily defining the updated point u�+1, provided that
qτk (u

�+1, v�) ≤ qτk (u
� + α�d�, v�), where α� is computed by an Armijo line search

along the descent direction d� that, in particular, may be −∇x qτk (u
�, v�). It can be

easily seen that this modification does not spoil the theoretical analysis we are going
to carry out hereafter, while it may bring significant benefits from a computational
perspective.

Remark 3.2 As outlined by [18], the stopping condition at line 10 of Algorithm 2 is
useful for establishing the convergence properties of the algorithm, but, in practice,
different rules could be employed with benefits in terms of efficiency. For example,
the progress of the decreasing sequence {qτk (u

�, v�)} might be taken into account. As
for the main loop, the whole algorithm can be stopped in practice as soon as xk and
yk are sufficiently close.

We now address the properties of the inexact penalty decomposition method. Let
us introduce the level set

L0( f ) = {x : f (x) ≤ f (x0)}.

Note that L0( f ) is compact, being f continuous and coercive on R
n . First we show

that also qτ (x, y) is a coercive function.

Lemma 3.1 The function qτ (x, y) is coercive on R
n × R

n.

Proof Let us consider any pair of sequences {xk} and {yk} such that at least one of the
following conditions holds

lim
k→∞ ‖xk‖ = ∞, (7)
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lim
k→∞ ‖yk‖ = ∞. (8)

Assume by contradiction that there exists an infinite subset K ⊆ {0, 1, . . . , } such
that

lim sup
k→∞
k∈K

qτ (xk, yk) �= ∞. (9)

Suppose first that there exists an infinite subset K1 ⊆ K such that

‖xk − yk‖ ≤ M, (10)

for some M > 0 and for all k ∈ K1. Recalling that f is coercive on Rn , from (7), (8)
we have that f (xk) → ∞ for k → ∞, k ∈ K1. From (10) we obtain

lim
k→∞
k∈K1

qτ (xk, yk) = lim
k→∞
k∈K1

f (xk) + τ

2
‖xk − yk2‖ = ∞,

and this contradicts (9). Then, we must have

lim
k→∞
k∈K

‖xk − yk‖ = ∞.

As f is coercive and continuous, it admits minimum overRn . Let f � be the minimum
value of f . Thus, we have

qτ (xk, yk) ≥ f � + τ

2
‖xk − yk‖2,

which implies that qτ (xk, yk) → ∞ for k → ∞, k ∈ K .
Then, we can conclude that, for any infinite set K , we have

lim
k→∞
k∈K

qτ (xk, yk) = ∞,

and this contradicts (9). �
Now, we can prove that Algorithm 2 is well defined, i.e., that the cycle between

step 10 and step 14 terminates in a finite number of inner iterations.

Proposition 3.2 Algorithm 2 cannot infinitely cycle between step 10 and step 14, i.e.,
for each outer iteration k ≥ 0, the algorithm determines in a finite number of inner
iterations a point (xk+1, yk+1) such that

‖∇x qτk (xk+1, yk+1)‖ ≤ ε. (11)
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Proof Suppose by contradiction that, at a certain iteration k, the sequence {u�, v�} is
infinite. From the instructions of the algorithm, we have

qτk (u
�+1, v�+1) ≤ qτk (u

0, v0).

Hence, for all � ≥ 0, the point {u�, v�} belongs to the level set

L0(qτk ) = {(u, v) ∈ R
n × R

n : qτk (u, v) ≤ qτk (u
0, v0)}.

Lemma 3.1 implies that L0(qτk ) is a compact set. Therefore, the sequence {u�, v�}
admits cluster points. Let K ⊆ {0, 1, . . .} be an infinite subset such that

lim
�→∞
�∈K

(u�, v�) = (ū, v̄).

Recalling the continuity of the gradient, we have

lim
�→∞
�∈K

∇x qτk (u
�, v�) = ∇x qτk (ū, v̄).

We now show that ∇x qτk (ū, v̄) = 0. Setting d� = −∇x qτk (u
�, v�) and taking into

account the instructions of the algorithm we can write

qτk (u
�+1, v�+1) ≤ qτk (u

�+1, v�) = qτk (u
� + α�d�, v�) < qτk (u

�, v�). (12)

Recalling again the continuity of the gradient, we have that d� → ∇x qτk (ū, v̄) for
� ∈ K and � → ∞, and hence ‖d�‖ ≤ M for some M > 0 and for all � ∈ K .

The sequence {qτk (u
�, v�)} is monotone decreasing, qτk (u, v) is continuous, and

hence, we have that
lim

�→∞ qτk (u
�, v�) = qτk (ū, v̄).

From (12), it follows lim
�→∞ qτk (u

�, v�)−qτk (u
�+α�d�, v�) = 0.Then, the hypothe-

ses of Proposition 3.1 are satisfied and we can write

lim
�→∞
�∈K

∇x qτk (u
�, v�)T d� = lim

�→∞
�∈K

−‖∇x qτk (u
�, v�)‖2 = 0,

which implies that, for � ∈ K sufficiently large, we have ‖∇x qτk (u
�, v�)‖ ≤ ε, i.e.,

the stopping criterion of step 10 is satisfied in a finite number of iterations, and this
contradicts the fact that {u�, v�} is an infinite sequence. �

Before stating the global convergence result, we prove that the sequence generated
by the algorithm admits limit points and that every limit point (x̄, ȳ) is such that x̄ is
feasible for the original problem (1).

Proposition 3.3 Let {xk, yk} be the sequence generated by Algorithm 2. Then, {xk, yk}
admits cluster points and every cluster point (x̄, ȳ) is such that x̄ = ȳ, and ‖x̄‖0 ≤ s.
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Proof Consider a generic iteration k. The instructions of the algorithm imply for all
� ≥ 0

qτk (u
�+1, v�+1) ≤ qτk (u

�+1, v�) = qτk (u
� − α�∇x qτk (u

�, v�), v�) ≤ qτk (u
�, v�),

and hence we can write

qτk (xk+1, yk+1) ≤ qτk (u
0 − α0∇x qτk (u

0, v0), v0). (13)

From the definition of (u0, v0), we either have (u0, v0) = (xk, yk) or (u0, v0) =
(x0, y0). In the former case, we have, by the definition of xtrial, that

qτk (u
0 − α0∇x qτk (u

0, v0), v0) = qτk (xtrial, yk) ≤ f (x0),

where the last inequality holds, as in this case the condition at line 6 is satisfied. In the
latter case, we have

qτk (u
0 − α0∇x qτk (u

0, v0), v0) ≤ qτk (u
0, v0) = qτk (x0, y0)

= f (x0) + τk

2
‖x0 − y0‖2 = f (x0).

Then, in both cases from (13) it follows

qτk (xk+1, yk+1) ≤ f (x0). (14)

We also have

f (xk+1) ≤ qτk (xk+1, yk+1) = f (xk+1) + τk

2
‖xk+1 − yk+1‖2 ≤ f (x0), (15)

and hence we can conclude that for all k ≥ 0 we have f (xk+1) ≤ f (x0). Therefore,
the points of the sequence {xk} belong to the compact set L0( f ), and this implies that
{xk} is a bounded sequence and that, for all k ≥ 0, f (xk) ≥ f � > −∞, f � being the
minimum value of f over Rn .

From (15), dividing by τk , we get

‖xk+1 − yk+1‖2 ≤ 2
f (x0) − f (xk+1)

τk
≤ 2

f (x0) − f �

τk
.

Taking limits for k → ∞, recalling that τk → ∞ for k → ∞, we obtain

lim
k→∞ ‖xk+1 − yk+1‖ = 0. (16)

Therefore, since {xk} is a bounded sequence, from (16), it follows that {yk} is bounded,
and hence the sequence {(xk, yk)} admits cluster points. Let (x̄, ȳ) be any cluster point
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of {(xk, yk)}, i.e., there exists an infinite subset K ⊆ {0, 1, . . .} such that

lim
k→∞
k∈K

(xk, yk) = (x̄, ȳ).

Again from (16) it follows x̄ = ȳ.
Finally, as ‖yk‖0 ≤ s for all k, recalling the lower semicontinuity of the �0-norm

‖ · ‖0, we can conclude that ‖x̄‖0 = ‖ȳ‖0 ≤ s. �
We are ready to state the global convergence result.

Theorem 3.1 Let {xk, yk} be the sequence generated by Algorithm 2. Then, {xk, yk}
admits cluster points and every cluster point (x̄, ȳ) is such that x̄ satisfies the Lu–Zhang
conditions for problem (1).

Proof Proposition 3.3 implies that the sequence {xk, yk} admits cluster points. Let
K ⊆ {0, 1, . . .} be an infinite subsequence such that

lim
k→∞
k∈K

(xk+1, yk+1) = (x̄, ȳ).

From Proposition 3.3, it follows x̄ = ȳ and

‖x̄‖0 ≤ s. (17)

Using (11) of Proposition 3.2, for all k ≥ 0, we have

‖∇ f (xk+1) + τk(xk+1 − yk+1)‖ ≤ εk,

so that, taking limits for k ∈ K and k → ∞, as εk → 0, we can write

lim
k→∞
k∈K

‖∇ f (xk+1) + τk(xk+1 − yk+1)‖ = 0. (18)

From the instructions of the algorithm, we have yk+1 ∈ arg min
y∈Y

qτk (xk+1, y), i.e.,

yk+1 is a solution of the problem

min
y

‖y − xk+1‖2 s.t. ‖y‖0 ≤ s.

From (4) it follows

yk+1
i = xk+1

i for i ∈ I (xk+1), yk+1
i = 0 for i /∈ I (xk+1),

where we recall that the index set I (xk+1) contains at most s elements, those corre-
sponding to the not null components of xk+1 with the largest absolute value.
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Note that |I (xk+1)| < s implies ‖xk+1‖0 < s and hence yk+1 = xk+1. Therefore,
we can write

− τk(xk+1
i − yk+1

i ) = 0

{∀ i ∈ I (xk+1), if |I (xk+1)| = s,
∀ i ∈ {1, . . . , n}, if |I (xk+1)| < s.

(19)

The index set I (xk+1) belongs to the finite set {1, . . . , n}; therefore, there exists an
infinite subset K1 ⊆ K such that I (xk+1) = I for all k ∈ K1.

Let I � = I (x̄). We show that I � ⊆ I . Indeed, assume by contradiction that there
exists i ∈ I � such that i /∈ I . Hence, ȳi = x̄i �= 0, while yk+1

i = 0 for all k ∈ K . This
is a contradiction, since yk+1 → ȳ for k → ∞, k ∈ K .

Therefore, we have the following possible cases:

(i) |I | = s, I = I �; (ii) |I | < s; (iii) |I | = s, I ⊃ I �.

We now prove each case separately:

(i) Let i ∈ I = I �; from (18) we have

lim
k→∞
k∈K1

∇i f (xk+1) + τk(xk+1
i − yk+1

i ) = 0,

and, using the first condition of (19), it follows τk(xk+1
i −yk+1

i ) = 0 for all k ∈ K1.

Therefore, recalling the continuity of the gradient, we can write

lim
k→∞
k∈K1

∇i f (xk+1) = ∇i f (x̄) = 0 ∀ i ∈ I �,

i.e., Lu–Zhang conditions hold with the set I = I �.
(ii) Let i ∈ {1, . . . , n}; similarly to the previous case, we have that

lim
k→∞
k∈K1

∇i f (xk+1) + τk(xk+1
i − yk+1

i ) = 0,

and using the second condition of (19) it follows τk(xk+1
i − yk+1

i ) = 0 for all
k ∈ K1. Therefore, we obtain

lim
k→∞
k∈K1

∇i f (xk+1) = ∇i f (x̄) = 0 ∀ i ∈ {1, . . . , n},

i.e., Lu–Zhang conditions hold taking any subset of {1, . . . , n} of cardinality s that
contains I ∗.

(iii) Let i ∈ I . By the same reasonings of case (i), we can write

lim
k→∞
k∈K1

∇i f (xk+1) = ∇i f (x̄) = 0 ∀ i ∈ I ,
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i.e., Lu–Zhang conditions hold with the set I .

Putting everything together, we have from (i), (ii) and (iii) that Lu–Zhang conditions
are always satisfied. �

As we can see, the proposed inexact version of the algorithm enjoys the same
convergence properties as the original, exact one. We also provide, in the following
remark, a better characterization of the algorithm, showing that the limit points are
often BF-vectors.

Remark 3.3 We note that, in both case (i) and case (ii) we have that x̄ satisfies the BF
optimality conditions. Moreover, note also that:

– If there exists a subsequence K̂ ⊆ K s.t. ‖xk‖0 = ‖x̄‖0 for all k ∈ K̂ ,
the only possible cases are cases (i) and (ii). Indeed, let us consider a fur-
ther subsequence K2 ⊆ K̂ , such that I (xk+1) = I for every k ∈ K2,
for some I ⊂ {1, . . . , n}. We know that K2 exists and that I ⊇ I �. Since
‖xk+1‖0 = ‖x̄‖0 ≤ s for every k ∈ K2, I and I � are the index sets of nonzero
variables of xk+1 and x̄ , respectively, which have the same cardinality. Therefore,
it cannot be I ⊃ I �. It follows that I = I �, so we fall into either case (i) or case
(ii), and thus, x̄ satisfies BF conditions.

– If there exists a subsequence K̂ ⊆ K such that ‖xk+1‖0 < s for all k ∈ K̂ , we
can again define K2 ⊆ K̂ such that I (xk+1) = I for every k ∈ K2, for some
I ⊂ {1, . . . , n}. In this case, we have |I | = ‖xk+1‖0 < s and case (ii) applies. It
follows that x̄ is a BF-vector.

4 A Derivative-Free Penalty DecompositionMethod

First-order information about the objective function is fundamental for the PDmethods
we have considered thus far. However, there are applications where the objective
function is obtained by direct measurements or it is the result of a complex system of
calculations, so that its analytical expression is not available and the computation of
its values may be affected by the presence of noise. Hence, in these cases the gradient
cannot be explicitly calculated or approximated.

Such lack of information has an impact on the applicability of Algorithm 2. In par-
ticular, the x update step and the inner loop stopping criterion are no more employable
as they are.

In this section, we propose a derivative-free modification of Algorithm 2 that,
similarly to [23–25], updates x by line search steps along the coordinate axes and
employs a stopping criterion based on the length of such steps.

The derivative-free PDmethod is described byAlgorithm4.At the x update step,we
employ as search directions the coordinate directions and their opposites. A tentative
step length α̃i is associated with each of these directions. At every iteration, all search
directions are considered one at a time; a derivative-free line search is performed along
each direction, according to Algorithm 5. If the tentative step size does not provide a
sufficient decrease, it will be reduced for the next iteration. If, on the other hand, the
tentative step size is of sufficient decrease, an extrapolation procedure is carried out;
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the tentative step size for that same direction at the successive iteration will be the
longest one tried in the extrapolation phase that provides a sufficient decrease. That
same step length is also used to move along the considered direction, provided it is
large at least εk ; otherwise, no movement is done along the direction. The inner loop
then stops when all tentative step sizes have become smaller than εk .

Algorithm 4: DerivativeFreeInexactPenaltyDecomposition
1 Input: τ0 > 0, θ > 1, δ ∈ ]0, 1[ , γ ∈ ]0, 1[ , σ > 1, x0 = y0 ∈ R

n s.t. ‖x0‖0 ≤ s, {εk } s.t. εk < 1
for all k and εk → 0, D = {d1, . . . , d2n} = {e1, . . . , en , −e1, . . . , −en}.

2 for k = 0, 1, . . . do
3 α̃0 = e ∈ R

2n

4 � = 0

5 xtrial = xk

6 for i = 1, . . . , 2n do
7 α̂i = LineSearch(qτk (x, yk ), di , 1, xk , γ, σ )

8 if α̂i > εk then
9 xtrial = xk + α̂i di

10 break

11 if qτk (xtrial, yk ) ≤ f (x0) then
12 u0, v0 = xk , yk

13 else
14 u0, v0 = x0, y0

15 while maxi=1,...,2n {α̃�
i } > εk do

16 u�(0) = u�

17 for i = 1, . . . , 2n do
18 α�

i = LineSearch(qτk (u, v�), di , α̃
�
i , u�(i − 1), γ, σ )

19 if α�
i = 0 then

20 α̃�+1
i = δα̃�

i

21 else
22 α̃�+1

i = α�
i

23 if α�
i > εk then

24 u�(i) = u�(i − 1) + α�
i d�

i

25 else
26 u�(i) = u�(i − 1)

27 u�+1 = u�(2n)

28 v�+1 ∈ arg min
v∈Y

qτk (u�+1, v)

29 � = � + 1

30 τk+1 = θτk

31 xk+1 = u�

32 yk+1 = v�

33 Output: The sequence {xk }.
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Algorithm 5: LineSearch
1 Input: f : Rn → R, d ∈ R

n , α0 ∈ R
+, x ∈ R

n , ]0, 1[ , γ ∈ ]0, 1[ , σ > 1.
2 α = α0

3 if f (x + αd) ≤ f (x) − γα2‖d‖2 then
4 Let β = α

5 repeat
6 Set α = β

7 Set β = σα

8 until f (x + βd) > f (x) − γβ2‖d‖2;
9 return α

10 Set α = 0;
11 return α

Hereafter, we show that Algorithm 4 enjoys the same convergence properties as
Algorithm 2. First, we prove that the line search procedure does not loop infinitely
inside our procedure.

Proposition 4.1 Algorithm 5 cannot infinitely cycle between steps 5 and 8.

Proof Assume by contradiction that Algorithm 5 does not terminate. Then, for j =
0, 1, . . ., we have f (x + σ jα0d) ≤ f (x) − γ σ 2 jα2

0‖d‖2. Taking limits for j → ∞,
we obtain that f (x + σ jα0d) → −∞, and this contradicts the fact that f is bounded
below, being f continuous and coercive. �

Note that, as shown by Proposition 4.1, qτk is coercive on R
n × R

n . We prove
that Algorithm 4 is well defined, i.e., the inner loop terminates in finite number of
iterations.

Proposition 4.2 Algorithm 4 cannot infinitely cycle between steps 15 and 29.

Proof Assume by contradiction that the algorithm loops infinitely. Then, for every
� = 0, 1, . . ., there exists i ∈ {1, . . . , 2n} such that α̃�

i > εk , i.e.,

max
i=1,...,2n

{α̃�
i } > εk . (20)

The instructions of the algorithm imply

qτk (u
�+1, v�+1) ≤ qτk (u

�+1, v�) ≤ qτk (u
�(i), v�) ≤ qτk (u

�(i−1), v�) ≤ qτk (u
�, v�).

Then, the decreasing sequence {qτk (u
�, v�)} tends to a finite value, being qτk con-

tinuous and coercive and hence bounded below. For any i ∈ {1, . . . , 2n}, we can
split the sequence of iterations {0, 1, . . .} into two subsequences K1 and K2 such that
K1 ∪ K2 = {0, 1, . . .}, K1 ∩ K2 = ∅. In particular, we denote by:
– K1 the set of iterations where α̃�+1

i = α�
i = α̃�

i σ
s > 0 for some s ≥ 0, s ∈ N;

– K2 the set of iterations where α̃�+1
i = δα̃�

i and α�
i = 0.
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Note that K1 and K2 cannot both be finite. Then, we analyze the following two cases,
K1 infinite (Case I) and K2 infinite (Case II).
Case (I). We have

qτk (u
�+1, v�+1) ≤ qτk (u

�+1, v�) ≤ qτk (u
�(i), v�) ≤ qτk (u

�(i − 1), v�) − γ (α̃�
i σ

s)2

≤ qτk (u
�(0), v�) − γ (α̃�

i )
2 = qτk (u

�, v�) − γ (α̃�
i )

2.

Taking limits for � ∈ K1, � → ∞, recalling that {qτk (u
�, v�)} tends to a finite limit,

we get

lim
�→∞
�∈K1

α̃�
i = 0, (21)

and hence, for � ∈ K1 sufficiently large, we have α̃�
i ≤ εk .

Case (II). For every � ∈ K2, let m� be the maximum index on {0, 1, . . .} such that
m� ∈ K1, m� < � (m� is the index of the last iteration in K1 preceding �). We can
assume m� = 0 if the index m� does not exist, that is, K1 is empty. Then, we can write
α̃�

i = δ�−m�α
m�

i . As � ∈ K2 and � → ∞, either m� → ∞ (if K1 is an infinite subset)
or � − m� → ∞ (if K1 is finite). Therefore, (21) and the fact that δ ∈ (0, 1) imply

lim
�→∞
�∈K2

α̃�
i = 0.

Thus, for � ∈ K2 sufficiently large, we have α̃�
i ≤ εk .

We can conclude that lim�→∞ α̃�
i = 0, so that, recalling that i is arbitrary, we get

maxi=1,...,n{α̃�
i } ≤ εk for � sufficiently large, and this contradicts (20). �

Next, we prove a technical result used later.

Proposition 4.3 Assume that the initial step sizes α̃0
i , with i = 1, . . . , n, are such

that α̃0
i > εk for all k. Then, for every k and for every i = 1, . . . , 2n, there exists

ρk
i ∈ ]0, cεk[ such that

∇x qτk (xk+1 + ρk
i di , yk+1)T di > −cεk,

with c = max{σ, 1/δ}.
Proof Given any iteration k, let � be the index of the last inner iteration. By definition of
�, we must have that α̃�+1

i ≤ εk for all i = 1, . . . , n.
From the instructions of the algorithm this implies that we have
u�+1 = u�(2n) = . . . = u�(0) = u�, and consequently v�+1 = v�. Consider any
i ∈ {1, . . . , 2n}. We have two cases:

1. α̃�+1
i = δα̃�

i ; in this case, α̃
�
i did not satisfy the sufficient decrease condition in the

LineSearch procedure, i.e.,

qτk (u
� + α̃�

i di , v
�) − qτk (u

�, v�) > −γ (α̃�
i )

2. (22)
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Using the mean value theorem, we can write

qτk (u
� + α̃�

i di , v
�) − qτk (u

�, v�) = α̃�
i ∇x qτk (u

� + ρ�
i di , v

�)T di , (23)

where ρ�
i ∈ ]0, α̃�

i [ . From (22) and (23), it follows:

∇x qτk (u
� + ρ�

i di , v
�)T di > −γ α̃�

i = −γ

δ
α̃�+1

i ≥ −γ

δ
εk .

Observe that α̃�
i ≤ εk/δ and hence ρ�

i ∈ ]0, εk/δ[ .
2. α̃�+1

i = α�
i ; from the instructions of the LineSearch procedure, we get

qτk (u
� + σα�

i di , v
�) − qτk (u

�, v�) > −γ (σα�
i )

2. (24)

Using the mean value theorem, we can write

qτk (u
� + σα�

i di , v
�) − qτk (u

�, v�) = σα�
i ∇x qτk (u

� + ρ�
i di , v

�)T di , (25)

where ρ�
i ∈ ]0, σα�

i [ . From (24) and (25), it follows

∇x qτk (u
� + ρ�

i di , v
�)T di > −γ σα�

i = −γ σ α̃�+1
i ≥ −γ σεk .

Observe that σα�
i = σ α̃�+1

i ≤ σεk and hence ρ�
i ∈ ]0, σεk[ .

Thus, in both cases we can write

∇x qτk (u
� + ρ�

i di , v
�)T di > −cεk, (26)

for some ρ�
i ∈ ]0, cεk[ and c = max{σ, 1/δ}.

Since α̃�+1
i ≤ εk for all i = 1, . . . , 2n, from the instructions of the algorithm,

we have u�+1 = u� and consequently v�+1 = v�. Hence, equation (26) holds with
u� = xk+1, and v� = yk+1. �

Now, we prove that the sequence generated by the algorithm admits limit points
and that every limit point is feasible for the original problem.

Proposition 4.4 Let {xk, yk} be the sequence generated by Algorithm 4. Then, {xk, yk}
admits cluster points and every cluster point (x̄, ȳ) is such that x̄ = ȳ, and ‖x̄‖0 ≤ s.

Proof Consider a generic iteration k. The instructions of the algorithm imply, for all
� ≥ 0,

qτk (xk+1, yk+1) = qτk (u
�+1, v�+1) ≤ qτk (u

�+1, v�) ≤ qτk (u
�, v�).

From the definition of (u0, v0), we either have (u0, v0) = (xk, yk) or
(u0, v0) = (x0, y0). In the former case, for some i ∈ {1, . . . , 2n} we have, by the
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definition of xtrial, that

qτk (u
1, v0) ≤ qτk (u

0 + α̂i di , v
0) = qτk (xtrial, yk) ≤ f (x0).

In the latter case, we have

qτk (u
0, v0) = qτk (x0, y0) = f (x0) + τk

2
‖x0 − y0‖2 = f (x0).

Then, in both cases it follows

qτk (xk+1, yk+1) ≤ f (x0). (27)

The rest of the proof follows the same reasonings used in the proof of Proposi-
tion 3.3, starting from the condition corresponding to (27), i.e., condition (14). �
Theorem 4.1 Let {xk, yk} be the sequence generated by Algorithm 4. Then, {xk, yk}
admits cluster points and every cluster point (x̄, ȳ) is such that x̄ satisfies the Lu–Zhang
conditions for problem (1).

Proof Proposition 4.4 implies that the sequence {xk, yk} admits cluster points. Let
K ⊆ {0, 1, . . .} be an infinite subsequence such that

lim
k→∞
k∈K

(xk+1, yk+1) = (x̄, ȳ).

From Proposition 4.4, it follows x̄ = ȳ and ‖x̄‖0 ≤ s. From the instructions of
the algorithm, we have yk+1 ∈ arg min

y∈Y
qτk (xk+1, y), i.e., yk+1 is a solution of the

problem

min
y

‖y − xk+1‖2 s.t. ‖y‖0 ≤ s.

From (4) it follows

yk+1
i = xk+1

i for i ∈ I (xk+1), yk+1
i = 0 for i /∈ I (xk+1),

where we recall that the index set I (xk+1) contains at most s elements, those corre-
sponding to the not null components of xk+1 with the largest absolute value.

Note that |I (xk+1)| < s implies ‖xk+1‖0 < s and hence yk+1 = xk+1. Therefore,
we can write

− τk(xk+1
i − yk+1

i ) = 0

{∀ i ∈ I (xk+1), if |I (xk+1)| = s,
∀ i ∈ {1, . . . , n}, if |I (xk+1)| < s.

(28)

The index set I (xk+1) belongs to the finite set {1, . . . , n}; therefore, there exists an
infinite subset K1 ⊆ K such that I (xk+1) = I for all k ∈ K1.
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Let I � = I (x̄). We have already shown in the proof of Theorem 3.1 that I � ⊆ I .
We consider the following possible cases:

(i) |I | = s, I = I �; (ii) |I | < s; (iii) |I | = s, I ⊃ I �.

We now prove each case separately:

(i) Let i ∈ I = I �; using the first condition of (28), we get τk(xk+1
i − yk+1

i ) = 0
for all k ∈ K1. From Proposition 4.3, recalling that

D = {d1, . . . , d2n} = {e1, . . . en,−e1, . . . ,−en},

we have that

∇ f (xk+1 + ρk
i ei )

T ei = ∇x qτk (xk+1 + ρk
i ei , yk+1)T ei > −cεk,

−∇ f (xk+1 + ρk
i+nei )

T ei = −∇x qτk (xk+1 − ρk
i+nei , yk+1)T ei > −cεk,

with c = max{σ, 1/δ}. Taking limits for k → ∞, k ∈ K1, recalling that εk → 0,
ρk

i , ρk
i+n ∈ ]0, cεk[ and the continuity of the gradient, we get

lim
k∈K1,k→∞ ∇ f (xk+1 + ρk

i ei )
T ei = ∇i f (x̄) ≥ 0,

lim
k∈K1,k→∞ −∇ f (xk+1 − ρk

i+nei )
T ei = −∇i f (x̄) ≥ 0,

from which it follows that ∇i f (x̄) = 0 for all i ∈ I �, i.e., Lu–Zhang conditions
hold with the set I = I �.

(ii) Let i ∈ {1, . . . , n}; the second condition of (28) implies τk(xk+1
i − yk+1

i ) = 0
for all k ∈ K1. Similarly to the previous case, we can write

∇ f (xk+1 + ρk
i ei )

T ei = ∇x qτk (xk+1 + ρk
i ei , yk+1)T ei > −cεk,

−∇ f (xk+1 + ρk
i+nei )

T ei = −∇x qτk (xk+1 − ρk
i+nei , yk+1)T ei > −cεk,

with c = max{σ, 1/δ}, and we can prove

lim
k→∞
k∈K1

∇i f (xk+1) = ∇i f (x̄) = 0 ∀ i ∈ {1, . . . , n},

i.e., Lu–Zhang conditions hold taking any subset of {1, . . . , n} of cardinality s
that contains I ∗.

(iii) Let i ∈ I . By the same reasonings of case (i), we can write

lim
k→∞
k∈K1

∇i f (xk+1) = ∇i f (x̄) = 0 ∀ i ∈ I ,

i.e., Lu–Zhang conditions hold with the set I .
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Table 1 List of datasets used for experiments on sparse logistic regression

Dataset N n Abbreviation

Heart (Statlog) 270 25 heart

Breast Cancer Wisconsin (Prognostic) 194 33 breast

QSAR Biodegradation 1055 41 biodeg

SPECTF Heart 267 44 spectf

Spambase 4601 57 spam

Adult a2a 2265 123 a2a

Putting everything together, we have, from (i), (ii) and (iii), that Lu–Zhang conditions
are always satisfied. �
Remark 4.1 As in Remark 3.3, if there exists a subsequence K̂ ⊂ K s.t. ‖xk‖0 = ‖x̄‖0
for all k ∈ K̂ or ‖xk‖0 < s for all k ∈ K̂ , x̄ is a BF-vector.

5 Preliminary Computational Experiments

In this section, we show the results of preliminary computational experiments, per-
formed to assess the validity of the proposed approach.

The purpose of these preliminary experiments is to evaluate the inexact minimiza-
tion strategy of the proposed algorithm (in both its gradient-based and derivative-free
versions), compared with the exact minimization approach of the original PDmethod.
To this aim, we consider the problem of sparse logistic regression, where the objective
function is convex, but the solution of the subproblems in the x variables cannot be
obtained in closed form, i.e., it requires the adoption of an iterative method.
Test Problems

The problem of sparse logistic regression [26] has important applications, for
instance, in machine learning [27,28]. Given a dataset having N samples {z1, . . . , zN },
with n features and N corresponding labels {d1, . . . , dN } belonging to {−1, 1}, the
sparse logistic regression problem can be formulated as follows:

min
w

L(w) =
N∑

i=1

log
(
1 + exp

(
−di (w

T zi )
))

s.t. ‖w‖0 ≤ s. (29)

The benchmark for this experiment is made up of 18 problems of the form (29),
obtained as described hereafter. We employed 6 binary classification datasets, listed
in Table 1. All the datasets are from the UCI Machine Learning Repository [29]. For
each dataset, we removed data points with missing variables; moreover, we one-hot
encoded the categorical variables and standardized the other ones to zero mean and
unit standard deviation. For every dataset, we chose 3 different values of s, in order to
define 3 different problems of the form (29). The considered values of s correspond
to the 25%, 50% and 75% of the number n of features of the dataset.
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Implementation Details
Algorithms 1, 2 and 4 have been implemented in Python 3.6. The algorithms start

from the feasible initial point x0 = y0 = 0 ∈ R
n . Their common parameters have

been set as follows: τ0 = 1 and θ = 1.1. The three algorithms differ only in the
x-minimization step. Concerning the line search parameters of Algorithm 2, we set
γ = 10−5 and β = 0.5. As for the derivative-free Algorithm 4, we set δ = 0.5,
γ = 10−5, σ = 2.

The x-minimization step for Algorithm 1 has been performed by the BFGS
[19] solver included in the SciPy library [30]. In particular, the inner iterates of
the BFGS solver have been stopped whenever the current point u�+1 is such that
‖∇x qτk (u

�+1, v�)‖ ≤ 10−5, i.e., when the current point is a good approximation of a
stationary point and hence, being the penalty function qτk strictly convex with respect
to u, of the global minimizer.

For a fair comparison, we employ for the three PD procedures the same stopping
criteria for the outer and the inner loop. Specifically, we used the practical stopping
criteria proposed in [18]: the inner loop stops when the decrease of the value of the
function qτk is sufficiently small, i.e., when qτk (u

�, v�)−qτk (u
�+1, v�+1) ≤ εin,where

εin = 10−4; the outer loop is stopped when x and y are sufficiently close, i.e., as soon
as ‖xk+1 − yk+1‖ ≤ εout, where εout = 10−4.

All the experiments have been carried out on an Intel(R) Core(TM) i7- 6700 CPU
@ 3.40GHz machine with 4 physical cores (8 threads) and 16 GB RAM.
Numerical Results

The three algorithms, Algorithm 1 called exact PD, Algorithm 2 called inexact PD,
and Algorithm 4 called DFPD, have been compared using performance profiles [31].
We recall that, in performance profiles, each curve represents, given a performance
metric, the cumulative distribution of the ratio between the result obtained by a solver
on an instance of a problem and the best result obtained by any considered solver on
that instance. The results of the comparison are shown in Figure 1.

From the results in Figure 1b, we can observe that the performances of the three
algorithms, in terms of attained objective function values, are quite close, with rather
slight fluctuations. It is worth remarking that different local minima can be attained by
different algorithms, even for equal starting points, because of the nonconvex nature
of problem (29).

On the other hand, as shown in Figure 1a, the inexact version of the PD algorithm
clearly outperforms the other two algorithms in terms of efficiency. This aspect can
be valuable in connection with a global optimization strategy, where many local min-
imizations have to be performed and the availability of an efficient local solver may
be useful. The derivative-free algorithm is about an order of magnitude slower than
its direct gradient-based counterpart, which is reasonable, considering that the size of
the considered problems is quite large in the perspective of derivative-free optimiza-
tion. In fact, the difference between the speed of gradient-based and derivative-free
methods on problems with relatively large size is usually even larger; here, this gap
is mitigated, since there is a large set of instructions shared by all the versions of the
algorithm.

On the whole, the computational experience, although limited to a single class of
problems, confirms the validity of the proposed approach. We remark that we tested
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Runtime Objective value

a b

Fig. 1 Performance profiles of runtime (a) and attained objective value (b) for the exact, inexact and
derivative-free penalty decomposition algorithms, on the 18 sparse logistic regression problems

the simplest implementation of the proposed algorithm, that is, performing, in the
x-minimization step, a single line search along the steepest direction. Benefits, in
terms of attained function values, could be obtained by performing more iterations of
a descent method and by introducing a suitable inner stopping criterion. As already
observed, this can be done to improve the effectiveness of the algorithm preserving
its global convergence properties.

6 Conclusions

In this paper, we have proposed two penalty decomposition-based methods for smooth
cardinality-constrained problems. In the first method, based on gradient information,
the exact minimization step of the original penalty decomposition method is replaced
by line searches along gradient-related directions. Thus, the contribution related to this
algorithm lies in the fact that it represents a viable technique, whenever a closed-form
solution of the subproblems in the original variables is not available (in both the convex
and nonconvex cases). The second method is a derivative-free algorithm for sparse
black-box optimization. We remark that, to our knowledge, derivative-free algorithms
for cardinality-constrained problems are not known, so that the presented method
seems to yield an important contribution in the field of sparse optimization. We state
global convergence results for the new penalty decomposition algorithms. We note
that the theoretical analysis is quite different from that of the related literature and that
it presents substantial differences for the two proposed algorithms. Although the main
focus of the work is theoretical, we have reported also the results of preliminary com-
putational experiments performed by the proposed penalty decomposition methods.
The obtained results, although limited to a single class of problems, show the validity
of the proposed approach. Further work will regard the extension of the presented
algorithms to the case of problems with additional equality and inequality constraints,
which, similarly to what is done by [18], might be handled by moving them into the
quadratic penalty term. Another interesting theoretical investigationmight concern the
substitution of the line search step by a trust-region framework. Such a modification,
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which we consider to be reasonable, would in fact require nontrivial changes to the
convergence analysis. Finally, the application of the derivative-free algorithm to real
sparse black-box problems would be of great interest.
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