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Neurons have been long regarded as the basic functional cells of the brain, whereas
astrocytes and microglia have been regarded only as elements of support. However,
proper intercommunication among neurons–astrocytes–microglia is of fundamental
importance for the functional organization of the brain. Perturbation in the regulation
of brain energy metabolism not only in neurons but also in astrocytes and microglia
may be one of the pathophysiological mechanisms of neurodegeneration, especially in
hypoxia/ischemia. Glial activation has long been considered detrimental for survival of
neurons, but recently it appears that glial responses to an insult are not equal but vary in
different brain areas. In this review, we first take into consideration the modifications of
the vascular unit of the glymphatic system and glial metabolism in hypoxic conditions.
Using the method of triple-labeling fluorescent immunohistochemistry coupled with
confocal microscopy (TIC), we recently studied the interplay among neurons, astrocytes,
and microglia in chronic brain hypoperfusion. We evaluated the quantitative and
morpho-functional alterations of the neuron–astrocyte–microglia triads comparing the
hippocampal CA1 area, more vulnerable to ischemia, to the CA3 area, less vulnerable.
In these contiguous and interconnected areas, in the same experimental hypoxic
conditions, astrocytes and microglia show differential, finely regulated, region-specific
reactivities. In both areas, astrocytes and microglia form triad clusters with apoptotic,
degenerating neurons. In the neuron–astrocyte–microglia triads, the cell body of a
damaged neuron is infiltrated and bisected by branches of astrocyte that create a
microscar around it while a microglial cell phagocytoses the damaged neuron. These
coordinated actions are consistent with the scavenging and protective activities of
microglia. In hypoxia, the neuron–astrocyte–microglia triads are more numerous in CA3
than in CA1, further indicating their protective effects. These data, taken from contiguous
and interconnected hippocampal areas, demonstrate that glial response to the same
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hypoxic insult is not equal but varies significantly. Understanding the differences of glial
reactivity is of great interest to explain the differential susceptibility of hippocampal areas
to hypoxia/ischemia. Further studies may evidence the differential reactivity of glia in
different brain areas, explaining the higher or lower sensitivity of these areas to different
insults and whether glia may represent a target for future therapeutic interventions.

Keywords: CA1 hippocampus, CA3 hippocampus, triads, confocal microscopy, brain metabolism, neurovascular
unit, glymphatic system, clasmatodendrosis

INTRODUCTION

Neuroglial cells were discovered over a century ago and were
first stained by the silver-chromate technique, characterized
and drawn by Camillo Golgi in 1903. The concept of the
physiological role of glial cells for substance exchange and
metabolic support to neurons remains quite valid today.
Activation of glia has been long considered solely detrimental
for survival of neurons. Nevertheless, more recently it appears
that the intercommunication among astrocytes–microglia and
neurons is different not only in health and disease but can
even modulate or control neurodegenerative mechanisms and
may also vary depending upon the type of insult, and the
different regions of the brain. No single-cell type in the brain
is likely to be solely responsible for the etiopathogenesis of
different neuropathological disorders such as Alzheimer’s disease
(AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis
(ALS), traumatic brain injury (TBI), or brain ischemia. It
is thus of the utmost importance to understand in deeper
details what it means for glia to engage in phenotype switches
and how they can influence surrounding cells. By becoming
reactive, astrocytes and microglia undergo a set of transcriptional,
functional, and morphological changes that transform them
into cells with different properties and functions. Disruption of
the finely tuned interplay between endothelial cells, pericytes,
astrocyte end-feet contacts, microglia, oligodendrocytes, and
neurons, all cells that form the neurovascular unit (NVU),
likely contributes to the pathophysiology of neurodegeneration
in chronic hypoxia and other neurodegenerative conditions

Abbreviations: ABCA1, ATP-binding cassette transporter; AD, Alzheimer’s
disease; ALS, Amyotrophic lateral sclerosis; APOE, Apolipoprotein E; BAI1,
Brain-specific angiogenesis inhibitor 1; bCCAo, Bilateral occlusion of the
common carotid arteries; BDNF, Brain-derived neurotrophic factor; CBF, Cerebral
blood flow; CNS, Central nervous system; CX3CL1, Fractalkine; CX3CR1,
Fractalkine receptor1; Cx43, Connexin43; CytC, Cytochrome C; FAO, Fatty acid
oxidation; GFAP, Glial fibrillary acidic protein; GLAST, Excitatory amino acid
transporter-1, EAAT-1; GLT1, Excitatory amino acid transporter-2, EAAT-2; HD,
Huntington’s disease; IBA1, Ionized calcium binding adaptor molecule 1; LPS,
Lipopolysaccharide; MCI, Mild cognitive impairment; MEGF10, Multiple EGF-
like-domains 10; MERTK, Proto-oncogene tyrosine-protein kinase MER; MHC,
Major histocompatibility complex; MMP, Matrix metalproteinases; MS, Multiple
sclerosis; mTOR, Mammalian target of rapamycin; MTP, Mitochondrial transition
pore; NeuN, Neuronal nuclei; NF-kB, Nuclear factor-kappa B; OGD, Oxygen and
glucose deprivation; PD, Parkinson’s disease; ROS, Reactive oxygen species; SL,
Stratum lucidum; SP, Stratum pyramidalis; SPARC, solid-phase attachment of red
cells; SR, Stratum radiatum; TBI, Traumatic brain injury; TGF-β, Transforming
growth factor-beta; TIC, Triple-labeling fluorescent immunohistochemistry
coupled with confocal microscopy; TNF-α, Tumor necrosis factor-α; TNF, Tumor
necrosis factor; VCI, Vascular cognitive impairments; VCID, Vascular cognitive
impairment and dementia; VEGF, Vascular endothelial growth factor.

such as AD or TBI. Indeed, the modified interplay among
neurons and astrocytes/microglia may shift the balance from
normal physiological conditions toward neurodegeneration (De
Keyser et al., 2008; Sofroniew, 2009), but the precise role
of astrocyte–microglia interactions with neurons in hypoxia-
dependent mechanisms of neurodegeneration has not been
clearly defined yet.

ALTERATIONS OF THE
CEREBROVASCULAR FUNCTIONALITY
IN CHRONIC HYPOXIA

Chronic cerebral hypoperfusion is one of the major mechanisms
that cause the cognitive decline and dementia in aged patients.
Chronic cerebral blood flow reduction is generally mild, with
no sharp drop in the acute phase. Reduced cerebral perfusion
correlates with the gravity of dementia and is a good predictor
of who, among the patients with mild cognitive impairment
(MCI), will later develop dementia (Gorelick et al., 2011).
Clinical studies indicate that cerebrovascular pathologies are
the primary causes of at least 20% of the cases of dementias
and are cofactors in the pathogenesis of Alzheimer’s disease
(AD) (Schneider et al., 2007; Gorelick et al., 2011; Toledo
et al., 2013) and other neurodegenerative disorders such as
Huntington disease (HD, Drouin-Ouellet et al., 2015) and ALS
(Winkler et al., 2013). Stenosis or partial occlusion of the internal
carotid arteries brings about reduction of cerebral blood flow
(CBF) associated with chronic ischemia. These mild, chronic
events result in impairment of memory and cognition in human
patients, independently of the presence in the brain of severe
lesions (Johnston et al., 2004; Marshall et al., 2012; Alosco et al.,
2013; Balestrini et al., 2013; Stefansdottir et al., 2013). More
intense reduction of CBF by about 40–50% causes suppression of
brain activity and more profound cognitive dysfunctions, which
are reversible after reestablishment of normal CBF (Tatemichi
et al., 1995; Marshall et al., 1999, 2012). Even more intense,
acute reductions of CBF cause ischemic stroke (Moskowitz
et al., 2010), which doubles the risk for dementia. Around
30% of stroke patients develop cognitive dysfunction within
3 years (Leys et al., 2005; Pendlebury and Rothwell, 2009;
Allan et al., 2011), and about 50% of patients younger than
50 years show cognitive deficits after a decade (Schaapsmeerders
et al., 2013). Nowadays, the general consensus is that most
cognitive impairments in the aged patients result from brain
dysfunction caused by mild, chronic, cumulative damage to
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tissue and cells (Gorelick et al., 2011). Some published papers
have revealed that the interplay between neurons and glial and
vascular cells is particularly important in the prevention or
development of vascular cognitive impairments (VCI) (Iadecola,
2010; Quaegebeur et al., 2011; Zlokovic, 2011). These data
(Iadecola, 2010; Quaegebeur et al., 2011; Zlokovic, 2011) provide
new avenues to reevaluate how modifications of cerebral blood
vessels and of glia–neuron interaction contribute to neuronal
dysfunctions and are responsible for cognitive impairment,
calling for a reappraisal of the role of glial and cerebrovascular
functionality in cognition.

The blood brain barrier (BBB) is disrupted in the course of
chronic cerebral hypoperfusion (Rosenberg, 2012). Indeed, brain
hypoxia is known to damage endothelial cells, pericytes, and
astrocytes (Jiang et al., 2018) and cause increased leakage from
the BBB (Al Ahmad et al., 2012), as demonstrated in vivo in a
rat model of brain hypoperfusion produced by bilateral stenosis
of the carotids (Ueno et al., 2002). Furthermore, breakdown
of the BBB causes extravasation of plasma proteins, such
as immunoglobulins, fibrinogen, and complement, all potent
proinflammatory molecules, and increases the production of
free radicals (Morgan et al., 1997; Yoshida et al., 2002; Davalos
and Akassoglou, 2012; Crehan et al., 2013). Fibrinogen activates
proinflammatory pathways that activate microglia and astrocytes
(Davalos et al., 2012; Holland et al., 2015). Extravasation
of proteins resulting from increased BBB permeability can
exacerbate tissue edema, compressing blood vessels, reducing
CBF, and increasing the hypoxic state of the tissue.

In addition, in rats and mice, cerebral hypoperfusion is
associated with inflammation of the white matter and oxidative
stress (Ihara et al., 2001; Masumura et al., 2001; Yoshizaki et al.,
2008; Huang et al., 2010; Dong et al., 2011; Juma et al., 2011;
Reimer et al., 2011). One of the main consequences of the
oxidative and proinflammatory stress induced by hypoperfusion
and consequent BBB breakdown is the damage to the myelin
sheath. This causes modification of the integrity of the axons,
demyelination, axonal loss, and decrease of the velocity of axon
potential transmission (Franklin and Ffrench-Constant, 2008;
Matute and Ransom, 2012). Axonal demyelination increases
the requirements of energy of the denuded axons, aggravating
the stress of the tissue. Indeed, oligodendrocytes are sensitive
to increased levels of ATP and glutamate, which overactivate
ionotropic glutamate receptors and P2X7 purinergic receptors
(Bakiri et al., 2009; Verkhratsky et al., 2009). Overactivation
of these receptors may kill oligodendrocytes by excitotoxicity
(Arbeloa et al., 2012). These data may explain the studies in
human patients that demonstrate a correlation between ischemic
demyelination and stroke outcome (De Groot et al., 2002;
Schmidt et al., 2003). All these effects amplify these pathogenic
processes, exacerbating the damage to the brain tissue.

Furthermore, tissue hypoxia and oxidative stress activate
transcription of many proinflammatory pathways through NF-
kB, activating the expression of cytokines and adhesion molecules
in vascular cells, reactive astrocytes, and activated microglia.
Inflammation and oxidative stress have negative effects on
the trophic interaction among the cells of the NVU. Reactive
oxygen species (ROS) and inflammation suppress the prosurvival

effects of endothelial cells on neurons by reducing BDNF levels
(Guo et al., 2008).

THE HIPPOCAMPUS

The hippocampus, a region of the brain fundamental for
memory encoding, shows numerous structural, morphological,
and electrophysiological alterations in many neurodegenerative
disorders such as AD (Thal et al., 2002; Braak et al., 2006;
Mueller et al., 2010; Small et al., 2011; Bartsch et al., 2015) and
in ischemia (De Jong et al., 1999; Zola et al., 2000; Liu et al.,
2005). All these alterations are at the basis of memory loss typical
of advanced age, of ischemia, and of AD. The hippocampus
forms a unidirectional network with the tri-synaptic pathway
that originates via the perforant path from the entorhinal cortex
(EC) and connects the dentate gyrus (DG) to CA3 and CA1
pyramidal neurons. CA3 neurons receive inputs from the DG
via the mossy fibers and send axons to CA1 pyramidal cells
via the Schaffer collateral pathway, as well as to CA1 in the
contralateral hippocampus via the associational commissural
pathway. In addition, CA1 neurons receive inputs directly from
the EC via the perforant path and send axons to the subiculum.
The hippocampal areas CA3 and CA1 have both morphological
and anatomical similarities and differences. For instance, the
pyramidal cell layer forms a continuum from CA3 to CA1
and have parallel inputs but have distinct network architectures
and diverging output pathways (Amaral and Witter, 1989;
Cenquizca and Swanson, 2007; Bahar et al., 2011). CA1 and CA3
subserve different functions and contribute to the processing
of specific information such as novelty detection, encoding,
short-term memory, intermediate-term memory, and retrieval
(Vazdarjanova and Guzowski, 2004). CA1 is fundamental for
mediating the association with temporal components and is
capable of maintaining short-term memories (Wiebe et al., 1997),
whereas CA3 is involved in processes associated with rapid
formation of spatial or contextual memory (Lee and Kesner,
2002, 2003; Kesner et al., 2004; Nakazawa et al., 2003). CA3
and CA1 hippocampal areas, although interconnected through
the Schaffer collaterals, and often considered as a continuum,
respond differently to ischemic/hypoxic conditions (Kirino,
2000). Nevertheless, it is still not completely clear how and
why these two contiguous, interconnected hippocampal areas
respond in a different way to an ischemic event. In patients
with cerebral hypoxia/ischemia, CA1 pyramidal neurons are
among the most vulnerable (Zola-Morgan et al., 1986; Petito
et al., 1987), as also repeatedly demonstrated in experimental
animal models of hypoxia/ischemia (reviewed by Schmidt-
Kastner and Freund, 1991) in the gerbil (Kirino, 1982), in
the rat (Pulsinelli et al., 1982), and in humans (Bartsch
et al., 2010, 2015). Indeed, since hippocampal CA1 circuits are
fundamental for the processes of memory formation (Bartsch
et al., 2010), impairment of CA1 neurons contributes to
memory deficits in patients with damages to the hippocampus
(Kadar et al., 1998).

The decrease of both oxygen (O2) and glucose supply caused
by cerebral hypoperfusion gives rise to signaling failure in the
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vulnerable neurons of CA1 hippocampus, with impairment of
hippocampally mediated learning and memory mechanisms (De
Jong et al., 1999; Liu et al., 2005; Farkas et al., 2006; Melani et al.,
2010; Lana et al., 2013). Many different hypotheses have been
brought about to explain the higher sensitivity of CA1 neurons
to deprivation of O2 and glucose caused by hypoxia or ischemia.
O2 and glucose deprivation in vitro (OGD) is an established and
widely used experimental model that allows exploring potential
differences in the responses of rat hippocampal CA1 and CA3
neurons to ischemia (Gee et al., 2006; Pugliese et al., 2006;
Cimarosti and Henley, 2008; Dixon et al., 2009; Sun et al., 2010).
A few minutes after the beginning of OGD, deprivation of energy
reduces the levels of intracellular ATP, with consequent failure
of the Na+/K+ pump, anoxic depolarization, and increased
extracellular levels of glutamate that is not taken up by the
neuronal or astrocytic glutamate uptake system (Jabaudon et al.,
2000; Rossi et al., 2000). Indeed, minutes after an ischemic
insult, increase of extracellular glutamate is detected in both
CA1 and CA3 areas (Mitani et al., 1992), leading in the gerbil
to activation of glutamate receptors and neurotoxicity (Urban
et al., 1990; Choi and Rothman, 1990). Glutamate NMDA
receptor (NR) subunits play a fundamental role in Ca2+-induced
excitotoxicity and are expressed differentially in the CA1 and
CA3 hippocampal areas. NR2C is less permeable to Ca2+ ions
than the other subunits (Chung et al., 2016). Interestingly,
GluN2C knockout mice show greater neuronal death in the
CA1 hippocampus a few hours after global cerebral ischemia
(Chung et al., 2016). Furthermore, the balance between kinase
and phosphatase activities in CA1 is in favor of tyrosine kinases,
while in CA3 it is in favor of phosphatases (Gee et al., 2006).
In the gerbil, ischemia increases tyrosine phosphorylation of
NR2A and NR2B subunits of NMDA receptors (Zalewska et al.,
2005). Furthermore, expression of NR2 receptor subtypes and
splice variants is higher in CA1 than in CA3, explaining the
higher vulnerability of CA1 after ischemia (Zola-Morgan et al.,
1986; Wu et al., 2008). These data, taken together, may be
one of the possible explanations of the higher sensitivity of
CA1 to ischemia.

Neurons consume 75–80% of total brain energy (Hyder et al.,
2013) for restoration of neuronal membrane potentials after
depolarization (Harris et al., 2012), for neurotransmitter
synthesis, vesicle packaging, axoplasmic transport, and
neurotransmitter release (Attwell and Laughlin, 2001; Rangaraju
et al., 2014; Pathak et al., 2015). Thus, energy demand in the
brain is not uniform but is higher where neurons have higher
neuronal activity. CA1 pyramidal neurons of the hippocampus
have a higher firing rate than CA3 neurons and have higher
energy demands (Mizuseki et al., 2012). For these reasons, it is
therefore possible that CA1 neurons are preferentially vulnerable
(Wilde et al., 1997; Padurariu et al., 2012) during an ischemic
stress (De Jong et al., 1999; Wilde et al., 1997).

Deprivation of energy reduces the levels of intracellular ATP,
modifies the ionic gradients, and inverts the glutamate uptake in
rat pyramidal CA1 and CA3 neurons in vitro (Jabaudon et al.,
2000; Rossi et al., 2000).

In addition, the vascular architecture of CA1 and CA3 areas
show anatomical differences. While CA1 is vascularized by

a large ventral artery, in CA3 many capillaries are present
in the vicinity of neurons (Duvernoy et al., 1983). Indeed,
increased neuronal activity is one of the major determinants
of the dynamic increase of CBF to supply more blood,
nutrients, and O2 to active neurons. Increased blood supply
depends on the concerted action of vascular cells, astrocytes,
and neurons (Iadecola, 2013). Many ions and vasoactive
compounds with opposing effects, such as nitric oxide (NO),
metabolites of arachidonic acid, adenosine, neurotransmitters,
and neuropeptides (Drake and Iadecola, 2007), act as signals
to regulate the hemodynamic changes of blood supply to
a brain area. All these molecules are generated by synaptic
activity of the afferents to the hippocampus from the basal
forebrain and brainstem, by interneurons, and by astrocytes
(Drake and Iadecola, 2007; Cauli and Hamel, 2010; Kleinfeld
et al., 2011). These highly coordinated signaling pathways, with
such a high degree of spatial precision and temporal definition
(Iadecola, 2004), are probably necessary to fulfill the higher
requirements of energy of CA1 in comparison to CA3 neurons
in physiological conditions and may help in explaining the
more intense sensitivity of CA1 to hypoxic/ischemic conditions.
Indeed, it has been demonstrated (Chip et al., 2013) that a
selective vascular vulnerability is present in CA1, which in
turn is responsible for the depletion of blood supply to the
CA1 subregions. Disruption of the BBB causes impairment
of the astrocyte–vascular communication, with consequent
modification of the BBB cytoarchitecture, alteration of regional
homeostasis, and energy deficiency that leads to energy crisis
(Alvarez et al., 2013). In case of increased energy demand, BBB
disruption affects the functionality of energy-craving neurons,
specifically those in CA1 that become unable to fulfill the
high requirements of energy necessary for their functional
homeostasis (Muddapu et al., 2020).

Furthermore, studies demonstrate that during ischemia the
levels of superoxide and ROS are higher in the CA1 than
in CA3 hippocampal area (Wilde et al., 1997; Wang et al.,
2005) and induce stress-activated mitochondrial transition pores
(MTPs) preferentially in CA1 than in CA3 rat hippocampus
(Mattiasson et al., 2003). Activation of MTPs causes Ca2+-
induced mitochondrial swelling that leads to microvacuolization
(Duchen, 1992) and disruption of the mitochondria, consequent
release of cytochrome C (CytC) in the cytoplasm, and apoptosis
(Suen et al., 2008). Furthermore, in the Mongolian gerbil, post-
ischemic mitochondrial damage is more severe in CA1 than
in CA3 (Radenovic et al., 2011), indicating that CA1 and
CA3 pyramidal neurons respond differently to similar stress
conditions. Thus, CA1 pyramidal neurons seem more sensitive
than CA3 neurons to the damage caused by production of ROS by
mitochondrial and oxidative stress, as demonstrated in the aged
mice (Kanak et al., 2013).

From all the data reported above, it appears that the real reason
for the differential sensitivity of CA1 to hypoxia is not completely
understood. Therefore, the study of the differences between
CA1 and CA3 hippocampal areas is of fundamental importance,
because it can explain the higher sensitivity of CA1 pyramidal
neurons to different types of insults observed in both animal
models of neurodegeneration and in patients (Mueller et al., 2010;
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Small et al., 2011; Bartsch and Wulff, 2015; Ugolini et al., 2018).
On these bases, we compared the changes of the interplay among
astrocytes–microglia and neurons as well as the modifications of
neuroinflammatory markers in CA1 and CA3 hippocampus of
rats in an in vivo model of cerebral hypoperfusion.

THE NEUROVASCULAR UNIT AND THE
GLYMPHATIC SYSTEM

The brain is dependent upon blood circulation in microvessels
for delivering O2 and nutrients to neurons and for disposal
of waste material. The NVU is composed by cells of different
types and functions, all working synergistically in a highly
regulated manner. Astrocyte endfeet surround the walls of
the vessels, which, together with perivascular microglia and
macrophages, survey the influx of molecules into the brain
(Dudvarski Stankovic et al., 2016). In ischemic trauma, the
disruption of blood vessels and BBB breakdown correlate
with the accumulation of activated microglia, suggesting that
microglia are associated with the dysfunction of blood vessels
(Barkauskas et al., 2015). Disruption of the NVU is strongly
associated with vascular dementia (Iadecola, 2013) and likely
contributes to the early stages of AD, as shown in animal
models of the disease (Iadecola et al., 1999; Iadecola, 2004;
Kelly et al., 2017).

Furthermore, it has been demonstrated that in aged rats the
decrease in the number of astrocytes is accompanied by decrease
in VEGF expression, which further amplifies the vascular
impairment (Bernal and Peterson, 2011). During ischemia,
astrocytes are injured and show morphological changes such
as swelling and vacuolization of the cell body and loss of
their distal processes. All these modifications of astrocytes,
named “clasmatodendrosis,” are caused by energy failure and
acidosis (Friede and van Houten, 1961; Hulse et al., 2001).
Clasmatodendrosis was first described by Cajal, as reported
by Penfield (1928), and later rediscovered by Friede and van
Houten (1961), and by Hulse and colleagues in hippocampal
organ cultures (Hulse et al., 2001). Clasmatodendrosis is found
in lesions of the white matter in patients with cerebrovascular
disease and AD (Tomimoto et al., 1997). It is also present
in the periventricular zone of patients with mixed dementia
(Sahlas et al., 2002), in the corpus callosum of hypoperfused
mice (Hase et al., 2017), in the hippocampus of rats with chronic
epilepsy (Kim et al., 2011), and in aged rats (Cerbai et al.,
2012). In AD and ischemia, clasmatodendrosis may represent
an acute response of astrocytes to energy failure coupled with
mitochondrial inhibition (Friede and van Houten, 1961; Kraig
and Chesler, 1990; Hulse et al., 2001). Clasmatodendrotic
morphological alterations of astrocytes are directly associated
with changes in cell function (Jiang et al., 2018). Furthermore,
an association between astrocyte injury and disruption of
the BBB has been described in post-stroke surviving elderly
patients (Chen et al., 2016). Disruption of the BBB can
lead to inefficient removal and accumulation of toxins in
the parenchyma, which may play a significant role in tissue
damage. In subjects with MCI (Wang et al., 2006), increased

permeability of the BBB has been observed at early stages of
AD (Starr et al., 2009). All these findings support the idea that
energy deficiency may be a cause of degeneration of neurons in
ischemic conditions.

The channel aquaporin4 (AQP4), located on astrocyte endfeet,
regulates the flux of water between blood and brain (Nagelhus
and Ottersen, 2013) and is involved in regulation of BBB
permeability (Tourdias et al., 2011). In mice, in the first few hours
after ischemia, AQP4 is upregulated in the ischemic core, while
the peak of its expression is found in the penumbra 48 h after
ischemia (De Castro et al., 2006). Furthermore, mice deficient
for AQP4 on astrocytes show significant reduction in water
uptake and reduced brain edema following stroke, in comparison
to wild-type animals (Haj-Yasein et al., 2011). After ischemia,
reactive astrocytes increase the expression of connexin 43 and
connexin 30 (Orellana et al., 2014), of AQP4 (Hirt et al., 2009;
Hoshi et al., 2011), as well as of trophic factors such as BDNF
(Neumann et al., 2015), which are molecules involved in neuron
protection or in ischemic tolerance.

In the few hours after cerebral ischemia, hypoxia caused by the
decrease of blood flow results in impairment of Na+/K+ ATPase,
accumulation of intracellular Na+ which recalls water into the
cell and induces cytotoxic edema (Simard et al., 2007). Astrocytes
are the major cell type involved in cytotoxic edema (Kimelberg,
1995), and one of the key molecular players is AQP4 (Manley
et al., 2000). The development of ischemic cellular damage causes
breakdown of BBB, giving rise to leakage of plasma proteins
to the extracellular space. Furthermore, swelling of astrocytes
may compress the vessels in the ischemic regions, further
decreasing the vessel caliber and exacerbating the hypoperfusion
(Syková, 2001).

Since most of the high-affinity glutamate transporters are
located on astrocyte membranes, astrocytes are the main cells
involved in reuptake of glutamate at the NVU (Dallérac and
Rouach, 2016). In the hippocampus, the two most expressed
isoforms of glutamate transporters are excitatory amino acid
transporter-1 (EAAT-1, GLAST in rodents) and excitatory
amino acid transporter-2 (EAAT-2, GLT1) (Holmseth et al.,
2012). In in vivo transient ischemia in the gerbil, astrocytic
immunoreactivity for GLT1 is upregulated between 30 min
and 12 hours after ischemia (Kim et al., 2006). In rat CA3
hippocampus, GLT1 immunoreactivity increases between 1 and
21 days after global ischemia (Bruhn et al., 2000). From these
data, it can be postulated that increased uptake of glutamate and
lactate may be the cause of astrocyte swelling the first hours/days
after ischemia (Landis, 1994; Kimelberg, 2005; Verkhratsky et al.,
2016). On the other hand, immunohistochemical studies show
that GLT1 expression decreases in CA1 rat hippocampus between
2 and 4 days after ischemia reperfusion (Bruhn et al., 2000).
Inconsistencies in these data may be due to differences of species
or of brain regions.

Astrogliosis has been shown to be present in many
neurodegenerative disorders, such as ischemia, AD, PD, ALS, and
MS (for references, see Li et al., 2019). In addition, astrogliosis
causes loss of AQP4 polarization in perivascular astrocytes,
which potentially represents a mechanism common to NVU
and glymphatic dysfunctions in many neurodegenerative diseases
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such as brain infarcts (Wang et al., 2017; Zbesko et al., 2018), AD
(Kress et al., 2014; Xu et al., 2015), and TBI (Iliff et al., 2014; Guo
et al., 2014; for references see also Rasmussen et al., 2018).

Nevertheless, reactive astrocytes seem to have both
detrimental and beneficial roles (Sofroniew, 2009; Liddelow
et al., 2017) in many neuropathological conditions such as
ischemia (Pekny et al., 2019; Amantea et al., 2010; Barreto
et al., 2011). The different responses of astrocytes to the
ischemic insults depend, at least in part, on the severity of
ischemia. In addition, other conditions such as age and spatial
localization of astrocytes can determine whether astrocytic
functions are protective or damaging, as will be discussed later.
Nevertheless, in mice it has been demonstrated that activation
of astrocytes is essential for induction of preconditioning,
or ischemic tolerance, indicating the importance of reactive
astrocytes for neuroprotection (Hirayama et al., 2015; for ref.
see Koizumi et al., 2018).

As reported above, other data demonstrate that, due to
metabolic stress, astrocytes located in CA1 have higher reaction
to ROS, while the activity of glutamate transporters is reduced,
leading to increased extracellular levels of glutamate that
cause higher stress to CA1 neurons in rats after transient
forebrain ischemia (Ouyang et al., 2007). Furthermore, astrocytes
in pathological conditions express and release cytokines that
disrupt the permeability of the BBB (Abbott, 2002). In
addition, the clasmatodendrotic modifications of astrocytes
that occur in ischemic conditions (Hulse et al., 2001) are
further causes of BBB derangement. Disruption of BBB and
of the glio-vascular network causes increase of endothelial
cell permeability, reduction of glucose transport, and increased
extracellular levels of toxic substances, which further increase
neuroinflammation (Abbott, 2002; Zhu et al., 2007; Miyazaki
et al., 2011; Freeman and Keller, 2012; Guan et al., 2013;
Sweeney et al., 2018a,b).

In addition to the NVU, more recently the glia-lymphatic
(glymphatic) system has come into focus as a highly specialized
transport system that facilitates disposal of extracellular waste
into the cervical and basal meningeal lymphatic networks or
the dural sinuses. The glymphatic system consists of a network
of perivascular or perineural channels supported by astrocytes
(Reeves et al., 2020). Astrocytic endfeet express high levels of
polarized AQP4 that facilitate not only the NVU but also the
glymphatic flow, disposing of and clearing the interstitium from
potentially toxic substances (Iliff et al., 2012). The glymphatic
system is impaired during aging (Kress et al., 2014), and its
dysfunction is involved in many neurodegenerative disorders,
particularly those in which accumulation of extracellular waste
such as Aβ and tau is an important pathogenetic mechanism,
such as AD (Weller et al., 2009; Iliff et al., 2012; Jessen et al.,
2015). Indeed, the glymphatic system represents a fundamental
pathway in the net clearance of Aβ (Iliff et al., 2013; Xu et al.,
2015). The clasmatodendrotic modification of astrocytes during
aging (Cerbai et al., 2012) and ischemia (Hulse et al., 2001)
may represent one of the causes not only of vascular but
also of glymphatic dysfunction. Dysfunction of the glymphatic
influx is secondary to acute ischemia, and multiple micro-
infarction (Gaberel et al., 2014; Wang et al., 2017), but the

astrocyte involvement on the efficiency of this system needs to
be completely understood.

PHYSIOLOGICAL AND PATHOLOGICAL
ACTIONS OF ASTROCYTES

Astrocytes, among the most represented glial cells in the
central nervous system, have distinctive morphologies that differ
both between and within regions of the brain. Astrocytes
have many housekeeping functions, which help maintain a
healthy brain (Verkhratsky and Nedergaard, 2018), Astrocytes
control the formation, maturation, and plasticity of synapses by
secreting thrombospondins, hevin, and solid-phase attachment
of red cells (SPARC), all proteins that regulate synapse
formation (Christopherson et al., 2005; Kucukdereli et al., 2011).
Astrocytes control neural circuit formation through TNF-α
(Stellwagen and Malenka, 2006) and TGF-β signaling (Diniz
et al., 2012, 2014a,b, 2017). In addition, healthy astrocytes
envelope synapses with their processes and are indispensable
for neurotransmitter homeostasis, release of gliotransmitters,
and maintenance and maturation of synapses (Pfrieger, 2009;
Heneka et al., 2010). Furthermore, neuronal activity excites
the membrane of astrocytes and, increasing intracellular Ca2+,
induces the release of gliotransmitters (Perea and Araque, 2007;
Navarrete et al., 2012; Araque et al., 2014), which are necessary
for synaptic plasticity, indicating that astrocytes are involved
in memory formation (Verkhratsky et al., 2011; Navarrete
et al., 2012). In addition, astrocytes control the levels of the
neurotransmitters GABA and glutamate at the synapses, thus
mediating the synaptic functions (Sofroniew and Vinters, 2010)
of the so-called tripartite synapse.

As already mentioned, healthy astrocytes maintain intimate
contact with endothelial cells and pericytes through gap
junctions, which allow intercellular diffusion of ions, regulate
water and ion homeostasis, maintain the pH, allow the diffusion
of small molecules, and contribute to functionality of the BBB
(Siqueira et al., 2018). In this way, astrocytes provide energy
required by neurons in the form of glucose (Rouach et al., 2008)
and lactate (Figley, 2011; Sotelo-Hitschfeld et al., 2015), as well
as trophic factors essential for neuronal survival (Nones et al.,
2012; Dezonne et al., 2013). As reported above, astrocytes form
an integral part of the BBB and of the glymphatic system and
regulate neurovascular coupling, vascular tone, and blood flow
(Sofroniew and Vinters, 2010; Macvicar and Newman, 2015;
Verkhratsky and Nedergaard, 2018; Govindpani et al., 2019).

Astrocytes are maintained actively in a resting state, but
the precise molecular signals that trigger astrocytic activation
at the initial phases of an insult are still not known. Recent
studies have demonstrated that different CNS injuries can
stimulate at least two types of astrocytes with different properties,
A2 reactive astrocytes that have beneficial, neuroprotective
properties, and A1 reactive astrocytes that are harmful to
neurons. A2 astrocytes are predicted to promote neuronal
survival, outgrowth, synaptogenesis, and phagocytosis. On the
contrary, A1 neuroinflammatory reactive astrocytes have harmful
effects, upregulating many genes that express proinflammatory
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proteins and other factors that are destructive for synapses
(for ref. see Liddelow and Barres, 2017). The “detrimental”
A1 astrocytes, stimulated by inflammatory stimuli, upregulate
genes associated with destruction of synapses and loss of
neurons (Zamanian et al., 2012), while the “helpful” A2
astrocytes, induced by an ischemic event (Zamanian et al.,
2012), upregulate cytokines such as TNFα. Inhibiting the
proinflammatory cytokine IL-12p40 (Zakharova and Ziegler,
2005), TNFα has anti-inflammatory properties. A2 astrocytes
upregulate neurotrophic factors and thrombospondins, predicted
to stimulate development of synapses and survival of neurons
(Zamanian et al., 2012).

A recent hypothesis postulates that in physiological conditions
astrocytes may exist as a continuum of heterogeneous, mixed
populations (Zhang and Barres, 2010; Khakh and Sofroniew,
2015; Ben Haim and Rowitch, 2016; Khakh and Deneen, 2019;
Pestana et al., 2020). Consequently, the states of astrocytes
vary in physiopathological conditions, depending not only on
the type of insult but also possibly on the brain structure
in which astrocytes are located (Liddelow and Barres, 2017).
For instance, it is not clear yet whether different astrocytes
located in different brain areas show the same morphofunctional
modifications after a similar insult or whether astrocytes react
differently to the same insult. The first hypothesis indicates
that astrocytic responses are controlled by intrinsic cues, while
the second hypothesis indicates that astrocytic responses are
controlled by external, environmental signals (Martín-López
et al., 2013; Bribian et al., 2018). Some recent insights give
way to the idea that there may exist an apparent continuum
in the intensity of astrocyte reactions to insults, which possibly
hides different, discrete reactive states. Nevertheless, astrocyte
reactivity differs among different areas of the brain. For instance,
it has been demonstrated in both mice and humans that during
aging astrocytes located in distinct brain regions have different
transcriptional profiles (Soreq et al., 2017; Boisvert et al., 2018;
Clarke et al., 2018) including glial fibrillary acidic protein
(GFAP) and serpin (Boisvert et al., 2018) that result in complex
region-specific molecular and morphological changes (Rodríguez
et al., 2014). In AD, astrocytes become hypertrophic or atrophic
depending not only on the stage of the disease but also to the
proximity of Aβ plaques (Rodríguez-Arellano et al., 2016).

Recent evidences show that, although microglia represent the
main phagocytic cells in the brain, astrocytes can participate in
phagocytosis (Wu et al., 2009; Lu et al., 2011; Iram et al., 2016;
Morizawa et al., 2017) after ischemia. Since so far astrocytes have
received only limited attention as phagocytes, the mechanisms
of astrocytic phagocytosis are still not completely understood.
Nevertheless, it has been demonstrated that astrocytes use the
ATP-binding cassette transporter (ABCA1) pathway (Morizawa
et al., 2017), as well as multiple EGF-like-domains 10 (MEGF10)
and proto-oncogene tyrosine-protein kinase MER (MERTK)
pathways for phagocytosis (Chung et al., 2013). Microglia use
the classical complement pathway to recognize and prune
unwanted synapses in the developing mouse brain. Other studies
suggest that astrocytes express other phagocytic receptors, such
as brain-specific angiogenesis inhibitor 1 (BAI1) and integrin
αvβ3 or αvβ5 (Park et al., 2007). Furthermore, in a transient

middle cerebral artery occlusion mouse model, most of the
phagocytic activity of astrocytes has a late onset after ischemia
(7 days) and is localized mainly in the penumbra around
the ischemic core (Morizawa et al., 2017), where neurons
are slightly damaged and still recoverable. Most of phagocytic
activity of microglia has an early onset after ischemia (1–
3 days) and is located in the ischemic core where astrocytes
are not phagocytic and where neurons and other cells are dead
(Morizawa et al., 2017). Indeed, since astrocytes are not as
mobile as microglia (Nimmerjahn et al., 2005; Okada et al.,
2006), they are not able to migrate from the penumbra to
the ischemic core. Astrocytes polarize their distal processes
without cell body migration and engulf apoptotic bodies derived
from dendrites of dying neurons, while microglia migrate
toward damaged neurons and completely engulf dendrites, cell
bodies, and nuclei (Damisah et al., 2020). Astrocytes located in
the penumbra can become phagocytic and can contribute to
clearance of debris and repair of the tissue (Morizawa et al.,
2017). Furthermore, phagocytic microglia engulf larger debris
than astrocytes (Morizawa et al., 2017), indicating that the size of
debris that can be phagocytosed by astrocytes is limited (Damisah
et al., 2020). Indeed, as will be discussed below, microglia can
phagocytose live neurons during injury (Brown and Neher, 2014),
inducing phagoptosis, a mechanism that contributes to neuronal
cell death (Fricker et al., 2012; Neher et al., 2013). Astrocytes
and microglia play specialized and orchestrated roles, acting in
a highly coordinated fashion with spatiotemporal differences in
different brain areas that can have important physiopathological
consequences (Morizawa et al., 2017).

In a less neuron-centric view of neurodegeneration, the
alterations of astrocytes, such as decreased maintenance of brain
homeostasis, impairment of buffering of extracellular glutamate,
and reduced supply of nutrients to neurons, may contribute
to the diffusion of damage to neurons and neurodegeneration
(Miller et al., 2017). In vitro it has been shown that A1 astrocytes
have a novel, deleterious function (Liddelow and Barres, 2017;
Liddelow et al., 2017). A1 astrocytes secrete a neurotoxin that
induces apoptosis in neurons and release toxic factors that target
specifically motor neurons and mediate cell death in a mouse
model of ALS (Re et al., 2014). We have first demonstrated
in CA1 (Cerbai et al., 2012) and later in CA3 (Lana et al.,
2016), as well as in DG (Lana et al., 2017b) of hypoperfused
rats, that astrocytes send branches to embrace, infiltrate, and
bisect apoptotic neurons (Figures 1G1,G2). This mechanism
is finalized to the fragmentation of apoptotic, dying neurons
to form cellular debris in order to spare and protect the
surrounding tissue from the damage caused by the release of
proinflammatory products in the parenchyma. Ours are the first
demonstrations that astrocyte branches infiltrate the cytoplasm
of apoptotic neurons, to bisect the dying neuron and form
debris. We have demonstrated that neuronal debris are indeed
more numerous in the CA1 and CA3 stratum radiatum (SR)
of hypoperfused rats than in controls, and neuronal debris are
all closely apposed to the branches of astrocytes (Figure 1B)
and ready to be phagocytosed by microglia (Figure 1E). While
adaptive, reactive astrogliosis has been shown to have beneficial
effects, suppression of astrocyte reactivity may also increase
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neuronal vulnerability, exacerbating the pathology and altering
regeneration (Burda and Sofroniew, 2014; Pekny et al., 2014). In
addition, it is possible that when astrocyte reactivity becomes too
intense, the release of neurotoxic factors, such as components
of the complement cascade that enhance synaptic degeneration
(Stevens et al., 2007; Hong et al., 2016; Sekar et al., 2016),
and of neurotoxins that cause the death of motor neurons (Di
Giorgio et al., 2007; Nagai et al., 2007; Lobsiger et al., 2007) could
be responsible for increased neurotoxicity. Thus, astrocytes can
behave as actors in causing or preventing neurodegeneration.

The comprehension of the multiple, contrasting roles
of astrocytes in the pathophysiological mechanisms of
neurodegeneration, a theme that only recently entered
into focus, will be of great interest in understanding the
pathogenesis of many neurodegenerative disorders such as AD,
PD, ALS, and TBI.

PHYSIOLOGICAL AND PATHOLOGICAL
ACTIONS OF MICROGLIA

Microglia represent 5–10% of the brain cells and are the resident
immune cells of the central nervous system (Frost and Schafer,
2016). In physiological conditions, the highly mobile processes
of microglia dynamically reorganize by cyclically forming and
withdrawing (Nimmerjahn et al., 2005), thus allowing microglia
to patrol the brain parenchyma (Nimmerjahn et al., 2005). Under
physiological circumstances, microglial cells in resting state
have small somata and fine, ramified branches. Upon detection
of proinflammatory stimuli, microglial cells activate rapidly
and become major actors of the neuroinflammatory response
(Crotti and Glass, 2015; Hickman et al., 2018). Microglial
cells that rapidly undergo morphological and genetic changes
upon activation are first responders to insults such as ischemic
brain injury (Kettenmann et al., 2011). Disruption of brain
homeostasis causes morphofunctional changes such as cell body
hypertrophy and thickening of the branches. Contemporarily,
many cell surface markers are upregulated, such as cluster of
differentiation (CD) 45, major histocompatibility complex II, and
CD68 (Ransohoff and Perry, 2009). Activated microglia have dual
roles in the ischemic brain, depending on the stimulus. Microglia
can acquire a spectrum of different but overlapping functional
phenotypes, including the classical pro-inflammatory and the
anti-inflammatory alternatively activated phenotypes. Microglia
produce a plethora of cytokines and chemokines that promote
inflammatory mechanisms, BBB dysregulation, and leukocyte
infiltration (da Fonseca et al., 2014). Activated microglia may
also have beneficial effects, phagocytosing cellular debris, and
suppressing inflammatory responses, as reported by Neumann
and coworkers (Neumann et al., 2006) in a model of ischemia
in rat organotypic hippocampal slices in vitro. The dual roles
of microglia may depend on their phenotypic polarization after
ischemia (Franco and Fernández-Suárez, 2015; Hu et al., 2015;
Jiang et al., 2016; Xiong et al., 2016). Microglial cells patrol the
parenchyma to detect and eliminate debris or apoptotic neurons
by phagocytosis (Hsieh et al., 2009; Lana et al., 2017a). It has
been shown by 2-photon imaging in the zebrafish spinal cord

(Morsch et al., 2015) and in mouse brain (Davalos et al., 2005;
Nimmerjahn et al., 2005) that microglia exhibit ramified
processes with high motility that allow a dynamic and continual
survey of brain parenchyma and have an active role in the
surveillance and maintenance of healthy brain. Indeed, activation
of microglia is now viewed as a multistage, reversible process that
generates multiple phenotypes of reactive cells with protective
abilities (Hanisch and Kettenmann, 2007; Ransohoff and Perry,
2009; Kettenmann et al., 2013). Microglial projections are
chemotactic sensors that extend toward injured cells in the “find-
me” step of neuron phagocytosis (Hanisch and Kettenmann,
2007). Therefore, damage of microglial projections may weaken
the neuroprotective activity of microglia. Reasonably, decreased
microglial migration may hamper its phagocytic efficacy, favoring
the accumulation of degenerating neurons and proinflammatory
neuronal toxic debris (Tian et al., 2012), typical of brain
aging (Cerbai et al., 2012). Nevertheless, it is still accepted
that chronic, exaggerated activation of microglia, such as in
chronic inflammatory diseases, can cause robust pathological
alterations and neurobehavioral complications (for references
see also Glass et al., 2010; Norden and Godbout, 2013). Recent
work from Barres’s lab demonstrates that during inflammatory
responses activated microglia modify their secretory profile,
increase the release of factors such as C1q, TNF-α, IL-1α,
and influence astrocyte activation (Liddelow et al., 2017).
Nevertheless, microglial activation and production of cytokines
have positive effects in early brain development (for ref. see Salter
and Beggs, 2014), in synaptic pruning (for references see Schafer
and Stevens, 2013), and in normal learning and memory in mice
(Ziv et al., 2006; Derecki et al., 2010).

It is now known that two types of activated microglia
exist, characterized by different phenotypes (Allen and Barres,
2009) and opposed effects. The proinflammatory M1 state
occurs when microglial cells are activated by an acute insult
and release proinflammatory mediators such as NO, ROS,
quinolinic acid, and cytokines such as TNFα, IL-1, IL-6, and
IL-18. The non-inflammatory, repairing M2 state of microglia,
associated with secretion of anti-inflammatory cytokines such
IL-4, IL-10, IL-13, and TNF-ß, also has a role in tissue repair.
The role of microglia in neurodegeneration depends on the
expression of apolipoprotein E (APOE) and triggering receptor
expressed on myeloid cells 2 (TREM2) (Krasemann et al.,
2017). In acute models of neurodegeneration, APOE regulates
TREM2, which in turn modulates the activation of microglia
(Krasemann et al., 2017).

Nevertheless, as for A1 and A2 astrocytes, this quite recent
classification of microglia in M1 and M2 states (Liddelow and
Barres, 2017) seems to be rather narrow, not corresponding to
the variety of microglia phenotypes so far discovered in the
brain. The activation profile of microglial cells is not an all
or none response but can be imagined as a continuous, highly
dynamic process that depends on the type of insult and is also
influenced by the area(s) of the brain, the stimuli, and disease
progression (De Biase et al., 2017; Keren-Shaul et al., 2017).
It can also change during the progression of the pathological
conditions. Indeed, the distinction between the protective or
pathogenic roles of activated microglia could depend on the
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FIGURE 1 | Characterization of neurodegeneration and alterations of the neuron–glia interplay in the bCCAo model of brain hypoperfusion in the rat.
(A) Representative images showing CytC + apoptotic neurons in CA1 SP of a bCCAo rat (arrows). Scale bar: 15 µm. Adapted from Lana et al. (2014).
(B) Representative image of a GFAP + astrocyte (green), a NeuN + damaged neuron (red, open arrow), and a NeuN + neuronal debris (in the circled area) in CA3 SR
of a bCCAo rat. The neuronal debris appear closely apposed to the astrocyte branches. Scale bar: 10 µm. Adapted from Lana et al., 2017a. (C1–C3)
Representative images showing NeuN + neurons (red) and calretinin + interneurons (green) in CA3 SP, SL, and SR of a bCCAo rat. Scale bar: 60 µm. (C2–C3)
Magnifications of the framed area in (C1) showing the Calretinin + interneurons (open arrows, C2) and the NeuN + ectopic neurons (arrows, C3), demonstrating that
ectopic neurons are not Calretinin+. Scale bar: 30 µm. Adapted from Lana et al., 2017a. (D1–D3) Representative images showing the colocalization of CytC (green)
with NeuN (red) in the cytoplasm of an apoptotic–ectopic neuron (open arrow, D1) in the proximity of CA1 SP of a bCCAo rat. An IBA1 + microglial
cell (blue, arrow, D1) projects its branches to surround the neuron. SP, appears indented in correspondence with the ectopic neuron (D1,D3, asterisk). Scale bar: 8 µm.

(Continued)
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FIGURE 1 | Continued
Adapted from Lana et al. (2014). (E) Representative image showing a NeuN + ectopic neuron (open arrow) undergoing phagocytosis by an IBA1 + microglial cell
(blue) in the proximity of CA1 SP of a bCCAo rat. The microglial cell resides on the top of the neuron and embraces it with its branches. Scale bar: 3 µm. Adapted
from Lana et al. (2014). (F) Representative image showing two NeuN + ectopic neurons (red) surrounded by GFAP + astrocyte branches (green) and phagocytosed
by IBA1 + microglial cells (blue) in CA1 SR of a bCCAo rat. In the framed area is shown a triad cluster. Scale bar: 10 µm. Adapted from Lana et al., 2014. (G1–G2)
Representative image showing four GFAP + astrocytes (green, arrowheads) projecting their branches toward a NeuN + neuron (red, open arrow) undergoing
phagocytosis by an IBA1 + microglial cells (blue) in CA1 SR of a bCCAo rat. Astrocyte branches form a glial “microscar” around the neuron. The digital subslicing of
the neuron along the dotted line (G1) and the 45◦ rotation (G2) show that an astrocyte branch infiltrates the neuronal cell body (arrow, G2). Scale bar: 10 µm.
Adapted from Lana et al. (2014). (H) Representative image showing a GFAP + TNFα + astrocyte (GFAP in red, TNFα in green) in CA3 SR of a bCCAo rat. Scale bar
15 µm. Adapted from Lana et al. (2017a).

timing, and/or severity of insult, and/or on the location of the
microglia cell. According to Halder and Milner (2019), in the
mouse spinal cord during the early phase of vascular damage
and leakage, microglia mediate a protective response to maintain
vascular integrity. When the damage is continued, microglia may
become inappropriately stimulated into a phagocytic phenotype.
Indeed, in the early stages of a model of ischemic stroke in the
mouse, microglia congregate around damaged blood vessels, but
later microglia switch from a repair phenotype into a phagocytic
one, removing the dying endothelial cells (Jolivel et al., 2015).
Furthermore, in a mouse model of cerebral ischemia, decreased
proliferation of microglia leads to increased neuronal death and
larger lesion after stroke, indicating a protective role of microglia
(Wolf et al., 2017).

Furthermore, regional differences may play an important role
in the resting status and responsiveness to insults. Indeed, in a
study it has been demonstrated in the mouse that the microglial
transcriptome and their sensitivity and response to insults vary
in a region-dependent way (Grabert et al., 2016). Furthermore,
microglia express many different receptors such as the purinergic
P2, toll-like, TNF-α, fractalkine R1 (CX3CR1), and TREM2
receptors, among many others (Mariani and Kielian, 2009;
Gelderblom et al., 2015; Hug et al., 2018). All these receptors have
a variety of functions, and their expression and the outcome of
their activation depend on the functional state of the cell and
on the pathological conditions. Depending on the nature of the
ligand and on the receptor, downstream intracellular pathways
translate their activation to detrimental or beneficial effects
(for references see Gomes-Leal, 2012). For instance, ATP binds
to different purinergic receptors with beneficial or detrimental
effect after ischemia (Gelderblom et al., 2015). ATP, activating
its receptors on microglia, stimulates the inflammasome, which
causes increased secretion of proinflammatory cytokines that
spread and intensify the inflammatory environment. ATP binds
to purinergic P2 receptors and is involved in the formation
or resolution of inflammation (Eltzschig et al., 2012). Among
the P2 purinergic receptors, the metabotropic G-protein-coupled
P2Y receptor (P2YR) and the nucleotide-gated ion channel
P2X receptor (P2XR) are the most studied. Within the P2YR
family, P2Y2R and P2Y6R both promote the phagocytic clearance
of apoptotic cells or bacteria, contributing to the termination
of inflammation (Koizumi et al., 2007). On the contrary,
microglial P2Y12R seems to be involved in mediating damage
in cerebral ischemia (Webster et al., 2013). The P2 × 7R
likely participates in the cerebral damage associated with stroke
(Domercq et al., 2010).

In preclinical studies, increased density and activation
of microglia following hypoperfusion (Reimer et al., 2011;
Manso et al., 2018) is associated with release of matrix
metalloproteinase-2 (MMP-2) (Simpson et al., 1999). MMPs
are proteases that degrade the extracellular matrix (ECM) and
the tight junctions between endothelial cells. Furthermore,
MMPs are involved in BBB breakdown after ischemia (Seo et al.,
2013) and can degrade myelin (Chandler et al., 1995). Increased
production of ROS by activated microglia may disrupt NO
signaling, causing endothelial dysfunction (Freeman and Keller,
2012). Thus, microglia may further damage the BBB through a
proinflammatory cascade that causes degradation of the ECM by
production of MMPs and by oxidative damage.

Age is a key risk factor for vascular cognitive impairment
and dementia (VCID) and is associated with modifications
of phenotype and functions of microglia (von Bernhardi
et al., 2015), which assume a more intense proinflammatory
phenotype (Norden and Godbout, 2013). Aging microglia have
less branchings, reduced motility, and lower migration rates
that confer an altered surveillance phenotype and have a
more sustained inflammatory response to damage (Damani
et al., 2011). The phenotypic modifications seem to be caused
by a shift in microglial metabolic pathways since activated
microglial cells treated with an inflammatory stimulus show
a reduction in mitochondrial oxidative phosphorylation (Nair
et al., 2019). Minocycline is a potent inhibitor of inflammatory
responses that has preclinical efficacy in several animal models
of VCID and particularly in vascular conditions in which
microglial cells are activated, including cerebral hypoperfusion
(Ma et al., 2015; Manso et al., 2018). Chronic administration
of minocycline reduces the number of microglial cells, restores
the hypoperfusion-induced impairment in white matter function,
and has protective effects (Ma et al., 2015; Manso et al., 2018).

Apoptosis is a mechanism of controlled cell death and may
subserve a homeostatic function to maintain and regulate the
number of cells in health and pathological conditions (Kerr et al.,
1972; Becker and Bonni, 2004). Increased apoptosis is thought to
be a physiological mechanism that helps maintain normal tissue
homeostasis through resolution of low-grade inflammation, such
as those that develop during normal aging (Gupta et al., 2006).
Therefore, in the chronic, low-grade inflammatory conditions
typical of chronic brain hypoperfusion, brain parenchyma
surveillance by astrocytes and patrolling by microglia seem to be
aimed at reducing the spreading of inflammation from apoptotic
neurons and debris, preventing further damage to neighboring
neurons. As a consequence, under these conditions, astrocytes
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and microglia have a protective role, cooperating in the disposal
of neuronal debris by phagocytosis or of whole neurons by
phagoptosis (Lana et al., 2017a), clearing dysfunctional synapses,
controlling proinflammatory mediators, and diffusing damage to
neighboring cells. How apoptosis causes neurons to be disposed
of is still uncertain. The principal mechanism is probably by
triggering the release of intercellular signals, such as the “find-me”
signals ATP and fractalkine (CX3CL1) (Noda et al., 2011; Cerbai
et al., 2012) and the “eat-me” signals such as phosphatidylserine
(PS) (reviewed in Márquez-Ropero et al., 2020), which recall and
activate phagocytic cells such as microglia to engulf and consume
the neuron. The release of “don’t eat me” signals from neurons,
such as CD47-SIRPα or CD200-CD200L, maintains microglia
in a quiescent state and suppresses phagocytosis (reviewed
in Michell-Robinson et al., 2015). Astrocytes and microglia
express membrane receptors, such as CX3CR1, P2Y6, P2Y12,
stabilin 1, SIRPα, TREM2, MerTK, and CD11b (Takahashi et al.,
2005; Peri and Nüsslein-Volhard, 2008; Wakselman et al., 2008;
Mazaheri et al., 2014), that recognize molecules released by
damaged neurons (Harrison et al., 1998; Noda et al., 2011),
causing the phagocytosis of degenerating neurons and neuronal
debris. Nevertheless, in a model of hypoperfusion in the rat, no
significant decrease of pyramidal neurons in both CA1 and CA3
(Cerbai et al., 2012; Lana et al., 2016) was found. The damaged
neurons are possibly replaced by the continuous addition of
newborn neurons by neurogenesis (see below).

METABOLISM OF ASTROCYTES AND
MICROGLIA DURING HYPOPERFUSION

The brain is an energetically demanding organ, and most of
energy supply, in form of ATP, is utilized by neurons to
meet the high energy requirements necessary for neuronal
activity such as the synthesis and release of neurotransmitters
and neuromodulators and for the maintenance of the ionic
gradients necessary for synaptic activity (Attwell and Laughlin,
2001). In astrocytes, energy stores are localized mainly as
glycogen that represents a short-term buffer for transient energy
requirements from neurons (Kong et al., 2002) that do not
store energy. Brain metabolic requests and modifications strongly
influence the origin and progression of many neurodegenerative
disorders such as AD and PD (for references see Aldana,
2019). Nevertheless, an important fraction of energy in the
brain is not directly requested by neurons for their activity.
Normal brain activity mainly depends on metabolic plasticity
of astrocytes and requires not only glucose supply from blood
but also glycogen stored in astrocytes that fuels specific activity
in the brain and that can last beyond the limits of glucose
supply from blood (Brown and Ransom, 2007). Glycogen in
astrocytes is essential for the survival of axons, and its depletion
is related to brain dysfunctions and neurodegeneration (Wender
et al., 2000). Noradrenaline and insulin regulate glycolysis
and glycogenesis in astrocytes, while ATP production in the
mitochondria and oxidation of fatty acids is regulated by
the thyroid hormone (Morita et al., 2019). In response to
inflammation or oxidative stress, astrocytes upregulate glycolysis

producing ATP and lactate, which support energy metabolism to
neurons but also accelerate neurodegeneration by fueling reactive
astrocytes (Almeida et al., 2001). It appears therefore that the
energy metabolism of reactive astrocytes is a determinant of
physiological processes, and its impairments or modifications
may cause significant decline of brain functions (Morita
et al., 2019). It has also been shown that in hypoxic/ischemic
conditions the neuroprotective A2 reactive astrocytes upregulate
fatty acid oxidation (FAO) (Zamanian et al., 2012), which
is neuroprotective. Upregulation of fatty acid metabolism
attenuates inflammation by clearing fatty acid from the nearby
parenchyma (Takahashi et al., 2014). The ketone bodies,
produced by fatty acid oxidation in astrocytes, maintain the
energy metabolism in neurons, compensating for the glucose
metabolism damaged by ischemia and by production of ROS
(Takahashi et al., 2014).

Microglia, for their role in brain development, for their
continuous scanning of brain parenchyma to maintain a healthy
environment, and for their harmful responses to injuries and
activation of repair programs (Aldana, 2019; Engl and Attwell,
2015), have large energy demands. Furthermore, during insults
and brain tissue damage, microglia are the first responders
to pathological changes to homeostasis, migrate to the site
of injury, modify their morphology retracting their processes,
and phagocytose debris and cells (Davalos et al., 2005). It
is not completely understood whether microglial motility and
phagocytosis are powered by oxidative phosphorylation or by
glycolytic pathways, but either one or both these processes
represent a significant energy demand (Engl and Attwell, 2015).

Recent findings demonstrate that peripheral immune cells can
adapt to environmental challenges, modifying their metabolic
pathways in order to utilize nutrients other than glucose, such as
fatty acids or amino acids (Van den Bossche et al., 2017). Recently,
it has been demonstrated (Bernier et al., 2020) in models of
hypoglycemia or aglycemia that activities of microglia, such as
process motility and damage sensing functions, are maintained
by alternative metabolic pathways such as glutaminolysis, which
depend on mammalian target of rapamycin (mTOR) activation.
This metabolic plasticity sustains mitochondrial metabolism
even in brain neuroenergetic crisis, allowing microglia to
maintain their fundamental surveillance and phagocytic roles
(Bernier et al., 2020). Furthermore, in aged mice, microglia
display changes in metabolic profile such as modifications of
proteins involved not only in inflammatory signaling but also
in mitochondrial function and cellular metabolism (Flowers
et al., 2017). Indeed, oxidative stress is associated with non-
pathological aging, and functional decline of mitochondria in
microglia increases the production of ROS and inflammatory
mediators that in turn may increase oxidative stress.

Therefore, it appears that perturbation in the regulation of
brain energy metabolism in neurons, as well as in astrocytes and
microglia, may be one of the pathophysiological mechanisms of
neurodegenerative disorders among which AD, PD, ALS, and
HD, and this can be even more important in hypoxia/ischemia-
dependent pathologies. Indeed, metabolic disturbances such as
high blood pressure, atherosclerosis, obesity, and diabetes are
among the most important risk factors for dementia (Kivipelto
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et al., 2006), as shown by epidemiological studies. Deficits of
energy metabolism such as hypometabolism of glucose and
mitochondrial dysfunctions in both neurons and astrocytes are
early indicators of neurodegenerative disorders such as AD, PD,
ALS, and HD (Hoyer, 1993; Diehl-Schmid et al., 2007; Edison
et al., 2013; Adiele and Adiele, 2019).

NEURON–ASTROCYTE–MICROGLIA
INTERACTIONS IN THE HIPPOCAMPUS
IN A RAT MODEL OF CHRONIC
HYPOPERFUSION

Brain chronic hypoperfusion is a progressive, dynamic process
induced by partial carotid occlusion during aging, heart failure,
hypotension, atherosclerosis of large or small vessels, and
carotid stenosis. Brain chronic hypoperfusion causes multiple
progressive modifications that eventually lead to vascular
dementia and neurodegeneration (Chmayssani et al., 2007;
Farkas et al., 2007; Ozacmak et al., 2007), which may manifest
with cognitive dysfunctions.

The rat model of brain chronic hypoperfusion, obtained
with the permanent bilateral occlusion of the common carotid
arteries (bCCAo) (Sarti et al., 2002a,b; Farkas et al., 2007;
Lana et al., 2014, 2017a), represents a model of cerebrovascular
stenosis in aging humans. This model is helpful in investigating
the mechanisms and effects of long-term chronic cerebral
hypoperfusion (Farkas et al., 2007). bCCAo in the rat causes
chronic cerebral hypoperfusion mainly in the forebrain and
leads to early disruption of the BBB, to white matter rarefaction
with axonal and myelin damage, to neuroinflammation, and to
hippocampal and cortical neuronal damage (Ciacciarelli et al.,
2020). Indeed, the infarcts generated by bCCAo are seen not only
in the striatum and the dorsolateral cortex but also in areas such
as the hippocampus, thalamus, and hypothalamus (Ciacciarelli
et al., 2020). Among the plausible explanations for the unexpected
brain damages to the latter brain areas are (i) anomalies of
the circle of Willis (Kitagawa et al., 1998), (ii) production of
neurotoxic molecules that propagate to the hippocampus and
cause ischemic damage (Xie et al., 2011), and (iii) overexcitation
of the hippocampal neuronal network by glutamate produced
after the occlusion. In addition, an alternative explanation is
that small and deep arteries beyond the circle of Willis, such as
the anterior choroidal artery (AchA), the lateral hypothalamic
artery (LHA), and the ventral thalamic artery (VTA), have a
function in the supply of blood to deep brain areas. The AchA
provides the major blood supply to the anterior hippocampus and
other deep areas. In addition, these blood vessels can originate
directly from the internal carotid artery, proximally to the origin
of middle cerebral artery (MCA). Therefore, whereas distal
occlusions cause lesions to the striatum, the piriform cortex, and
portions of the parietal–temporal cortex, proximal occlusions
may produce damage to the anterior hippocampus, thalamus,
and/or hypothalamus.

In our investigations in the rat model of bCCAo (Lana et al.,
2014, 2017a), we highlighted and characterized the quantitative,
morphological, and functional alterations on neuron, astrocyte,

and microglial interactions that may be relevant for the
neurodegenerative processes in CA1 and CA3 hippocampus. Our
findings demonstrate the existence of common and differential
features of the interplay among neurons and glia in the two
hippocampal areas, which may help in explaining the higher
sensitivity of pyramidal neurons in CA1 to hypoxia leading
to neurodegeneration. We developed the innovative ex vivo
method of the triple-labeling fluorescent immunohistochemistry
coupled with confocal microscopy (TIC) and digital imaging,
which we exploited to make comparisons between areas CA1
and CA3 of the hippocampus. Using this novel method, we
also implemented the new technique of digital subslicing (Lana
et al., 2014, 2017a), which allows to visualize the intimate
interplay among different cells, and the colocalization of different
antigens that can take place within the cell. With this novel
method, we studied the morphological and functional alterations
of the neuron–astrocyte–microglia triad as a possible mechanism
responsible on one side for neuroprotection and on the other one
for the neurodegeneration that characterizes animal models of
neurodegenerative diseases such as AD or ischemia (Lana et al.,
2014, 2017a; Fusco et al., 2018; Ugolini et al., 2018).

In CA1 and CA3 str. pyramidalis (SP) of hypoperfused
rats, numerous apoptotic neurons are present, characterized by
intense and uniform CytC immunostaining in the cytoplasm
(Figure 1A), a hallmark of the late phases of apoptosis (Suen
et al., 2008). In both CA1 and CA3 str. radiatum (SR) of
hypoperfused rats in the proximity of SP, we found the presence
of numerous neurons with pyramidal shape, the so-called ectopic
neurons. More specifically, in area CA3 the ectopic neurons
are localized mainly in str. lucidum (SL) (Figures 1C1–C3),
which is an “a-neuronal” region of CA3, as paradigmatically
defined by Amaral and Lavenex (2007). Ectopic neurons are not
interneurons (see Figures 1C1–C3) but likely are degenerating
pyramidal neurons that derive from SP and are being detached
from it. Indeed, ectopic neurons infiltrated by astrocyte branches
(see Figures 1G1,G2), are located in close proximity to SP, which
appears indented in correspondence with the ectopic neuron
(Figures 1D1,D3, asterisk). We hypothesize that apoptotic CA1
neurons are removed from CA1 SP, possibly by astrocyte
branches through signaling molecules such as the Cx43 and/or
CX3CL1 (Noda et al., 2011; Cerbai et al., 2012). The ectopic
neurons detached from the pyramidal layer in CA1 and CA3 are
apoptotic and undergo the process of phagocytosis by microglia
(Figures 1D1–D3). Furthermore, as a consequence of apoptosis,
ectopic neurons are fragmented to form neuronal debris, present
in high density in both CA1 and CA3 SR of hypoperfused
rats (circled area in Figure 1B). This is possibly a protective
mechanism that avoids the diffusion of inflammatory damage to
surrounding neurons in response to proinflammatory substances
released in the parenchyma.

As demonstrated in other models of neurodegeneration,
astrocyte branches, infiltrating the neuronal cell body, may
trigger or accelerate the fragmentation of apoptotic neurons
(Polazzi and Monti, 2010; Cerbai et al., 2012; Huizinga et al.,
2012). Neuronal debris are located throughout SR of CA1 and
CA3, not in a random position but mostly closely apposed to
astrocyte branches (circled area in Figure 1B). This phenomenon

Frontiers in Cellular Neuroscience | www.frontiersin.org 12 November 2020 | Volume 14 | Article 585833

https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-neuroscience#articles


fncel-14-585833 November 5, 2020 Time: 22:49 # 13

Lana et al. Neurons–Astrocytes–Microglia Interplay in Brain Hypoxia

is similar to that observed in normal brain aging and LPS-induced
neuroinflammation (Cerbai et al., 2012; Lana et al., 2016, 2017b).

We postulate that the detachment of a neuron from the
pyramidal layer to form ectopic neurons that are fragmented into
neuronal debris is part of a common mechanism of neuronal
death in the hippocampus in a milieu of hypoxia/ischemia,
in acute or chronic inflammatory conditions that can lead to
neurodegeneration.

Despite all the above mechanisms, in hypoperfused rats, the
quantity of CA1 and CA3 pyramidal neurons does not decrease
(Lana et al., 2014, 2017a). Increased neurogenesis (Farkas et al.,
2007; Dirnagl, 2012; Maraula et al., 2013) during the restitution
phase of brain chronic hypoperfusion can explain this apparently
contradictory result. Newborn neurons migrating from the
subgranular zone of the DG to CA1 and CA3 pyramidal layers
possibly reintegrate the apoptotic neurons.

Numerous phagocytic events by microglia on the ectopic
neurons detached from the pyramidal layer (Figure 1E) also
involve astrocytes that form peculiar clusters of cells with
neurons and microglia that we define “triads.” In a triad, one
or more astrocyte(s) project its branches toward a neuron
that is phagocytosed by a microglial cell (Figures 1F,G1).
According to our findings, the branches of astrocytes involved
in the triad exert a fundamental role. They form a protective
microscar around the neuron that is undergoing phagocytosis, to
prevent the spread in the surrounding tissue of proinflammatory
mediators and of neuronal debris, which could initiate an
inflammatory response potentially harmful for other healthy
neurons. Astrocyte branches exert a noxious effect on the
neuron that is involved in the triad: they can infiltrate
the neuronal body to help or accelerate its fragmentation
(see Figures 1G1,G2). The mechanism of infiltration and
fragmentation of the neuronal cell body by astrocytes branches,
first demonstrated in our laboratory in models of normal brain
aging and acute inflammation (Cerbai et al., 2012), was later
confirmed in a model of ALS (Re et al., 2014) and in other
papers published by our group (Lana et al., 2014, 2016). The
triad formation and the astrocyte-mediated fragmentation of
the ectopic-apoptotic neurons to form debris (Cerbai et al.,
2012; Lana et al., 2014, 2016, 2017a,b) could be a common
mechanism of neuronal death in a neurodegenerative milieu
in the hippocampus. We also hypothesize that this could be a
general mechanism of neuronal death also valid in healthy tissue
for senescent neurons. In the hippocampus of hypoperfused
rats, the expression of TNF-α increases in astrocytes and
dendrites of pyramidal neurons in both CA1 and CA3 SR
(Figure 1H). Microglia and astrocytes can both recognize danger
signals, including those released by cellular debris produced
from apoptotic cells, and can cooperate and help clearing
apoptotic neurons or neuronal debris (Medzhitov and Janeway,
2002; Milligan and Watkins, 2009). This concerted action can
prevent or reduce release of proinflammatory mediators and
consequent injury to neighboring neurons (Nguyen et al., 2002;
Turrin and Rivest, 2006).

Some events reflect a common response of CA1 and CA3 to
the hypoperfusion, but the two areas show different responses
to the ischemic insult. In particular, these differences are related

mainly to behavior of glial cells, confirming their primary
function in influencing the pathophysiology of the brain. In CA1
SR of hypoperfused rats, astrocytes show no modifications (Lana
et al., 2014), whereas in CA3 SR, astrocytes significantly increase
in response to hypoperfusion but do not appear hypertrophic
or hyperactivated (Lana et al., 2017a). Higher demand of O2
and nutrient supply by pyramidal neurons that are in a hypoxic
and hypoglycemic state due to hypoperfusion can possibly cause
the increase of astrocyte density, which can balance the reduced
trophic support to CA3 neurons. This response of astrocytes,
contrary to that observed in CA1, is possibly a protective effect
of astrocytes toward neurons.

Astrogliosis, a late-emerging event during chronic cerebral
hypoperfusion (Pappas et al., 1996; Farkas et al., 2004,
2006, 2007; Schmidt-Kastner et al., 2005), has long been
considered a negative phenomenon. This idea is rapidly
changing, thanks to new data that suggest a more elaborated
and diversified role of astrocytes upon different insults leading
to neurodegenerative disorders such as AD, ALS, and stroke
(Sofroniew, 2009; Verkhratsky et al., 2013; Burda and Sofroniew,
2014). Dysfunctions in the reactivity of astrocytes can be
the primary cause, or can contribute to loss of normal
functions of neurons, leading to or increasing neurodegeneration
(Sofroniew, 2009).

Another remarkable difference is the behavior of microglia
which decreases in CA1 (Lana et al., 2014) and increases
in CA3 SR of hypoperfused rats (Lana et al., 2017a). These
differences may explain the higher sensitivity of CA1 pyramidal
cells to an ischemic insult. Recruitment and activation of
microglia to the site of the insult generally is believed a
negative mechanism that causes accumulation of neurotoxic
phagocytes. Recently, microglial activation following neuronal
injury is considered a reversible multistep process that represents
mainly a protective mechanism (Minghetti and Levi, 1998;
Streit et al., 1999; Polazzi and Contestabile, 2002; Hanisch and
Kettenmann, 2007; Ransohoff and Perry, 2009; Kettenmann
et al., 2013). In microglia-depleted organotypic cultures, CA1
pyramidal cell death increases, suggesting a neuroprotective role
of microglia (Montero et al., 2009). Apoptotic neurons can
release diffusible signals that enhance microglia neuroprotective
properties. In turn, microglia release molecules that can rescue
neurons from apoptosis (Polazzi et al., 2001). Phagocytosis
of apoptotic cells by microglia decreases the production
of pro-inflammatory cytokines, such as TNF-α and IL-12,
without affecting the secretion of anti-inflammatory, potentially
neuroprotective molecules, such as IL-10 and TGF-ßl (Magnus
et al., 2001). During ischemia, microglia are responsible for the
phenomenon of phagoptosis (also called primary phagocytosis),
first defined by Brown and Neher (2012) as “death caused
by being devoured.” Phagoptosis represents the phagocytosis
of whole neurons that show no sign of neurodegeneration
(Zhang et al., 2015). It is triggered by a stressful stimulus
which is too mild to cause cell death, too intense to allow
restoration of the healthy neuron, but sufficient to release
“find-me” signals that activate and recruit microglia and
astrocytes for phagocytosis (Ravichandran, 2011; Kao et al., 2011;
Brown and Neher, 2012).
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FIGURE 2 | Schematic representation of the different responses of neurons
and astrocytes–microglia to ischemia/hypoxia in areas CA1 (A) and CA3 (B).
The increase of apoptotic neurons (shown in dark red) is comparable in the
two regions, but the density of ectopic pyramidal neurons in CA3 (dark red) is
higher than in CA1. Pyramidal apoptotic neurons translocate from their
competence layer to the underlying SR (CA1) or SL (CA3) to form triad
clusters, be fragmented by astrocytes and be phagocytosed by microglia.
This mechanism is finalized to the protection of the surrounding neurons in
CA1 SP. In CA3 of ischemic rats, microglia and triads are significantly more
numerous than in CA1, a further sign of better responsiveness of CA3 to
hypoxia. Astrocytes are more numerous in CA3, possibly because of the
increased trophic request of the tissue. This effect may be a further
mechanism of a better response of CA3 to the ischemic insult. In CA3,
astrocytes and microglia may help control the inflammatory process and the
ensuing diffusion of the cellular damage to the surrounding tissue.

Thus, formation of triads appears as a specific mechanism
for clearance of neurons under degeneration, not only through
the mechanism of phagocytosis but also through phagoptosis
(Brown and Neher, 2014). The increase of microglia that
help in the disposal of damaged neurons (Nathan and Ding,
2010) may result in anti-inflammatory and neuroprotective
effects (Liesz et al., 2009). Increased microglia in area CA3 of
hypoperfused rats during the restitution phase (Farkas et al.,
2007; Dirnagl, 2012) may release anti-inflammatory cytokines
that trigger an anti-inflammatory milieu (Spite and Serhan,
2010). Microglia in CA3 SR (Beynon and Walker, 2012)
phagocytose apoptotic pyramidal neurons or neuronal debris,
promoting tissue repair and the resolution of inflammation.
Taken together, our results demonstrate that effects of astrocytes
and microglia in pathological conditions may contribute to
neuronal damage but may also be a mechanism of protection
to control the proinflammatory process and the diffusion of the
cellular damage to the surrounding cells.

CONCLUSION

The data of this review contribute to deepening the concept that
the interactions that occur among the different cell populations
of the CNS give rise to reciprocal networks of morphological and
functional reliance and dependency. To comprehend the peculiar
aspects of the onset and progression of neurodegeneration, it is
necessary to consider that any tissue, and mainly the nervous
tissue, is not composed by a collection of independent elements
but rather by interdependent cell populations that interact and
cooperate to maintain the homeostasis and functionality of
the organ. Different types of insults that affect one population
modifying its functionality reasonably reverberate to the others,
either favoring or dysregulating their activities. In the neuron–
astrocyte–microglia triads, the cell body of a damaged neuron
is infiltrated and bisected by astrocyte branches that form a
microscar around it and is embraced by microglia cells for
the purpose of phagocytosing it. While activation of glia has
long been considered as a detrimental mechanism for neuron
survival, recently it is emerging that this is not always the case.
Nevertheless, in contiguous, interconnected hippocampal areas,
the responses of glia to the same insult are not equal but vary
significantly from CA1 area to CA3.

The comparison between the response of areas CA1 and
CA3, shown schematically in Figure 2, helps to understand
the differential reactivities of the two areas in hypoxia and
to understand why pyramidal neurons in CA3 show higher
adaptation than those in CA1 to hypoxia/ischemia (Lana et al.,
2014, 2017a). The increase of apoptotic neurons is similar in
the two regions, but in CA3 the density of ectopic pyramidal
neurons is significantly higher than in CA1. The translocation
of neurons from their competence, pyramidal layer to the
contiguous SL or SR allows the damaged neurons to be
fragmented by astrocytes to form neuronal debris that can
be phagocytosed by microglial cells in the triad clusters. All
these mechanisms are protective effect toward the surrounding
neurons. In addition, the migration of neurons from the SP
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can decrease the diffusion of toxic/proinflammatory compounds
to neighboring vital neurons. Likely, in CA3 the scavenging
mechanism on degenerating pyramidal neurons is more active,
explaining the lower sensitivity of the hippocampal CA3 area to
the ischemic insult. Indeed, in CA3 of ischemic rats microglia
is significantly higher than in the CA1 area where microglia
decrease. As mentioned earlier, since activation of microglia is
considered a protective mechanism (Hanisch and Kettenmann,
2007; Ransohoff and Perry, 2009; Kettenmann et al., 2013), the
increase of microglia in CA3 may explain the better response
of this area to an ischemic insult, in comparison to CA1.
Lastly, in CA3 there is a significant increase of astrocytes, a
phenomenon that can depend on the increased trophic request
of the tissue and may represent a sign of a better response
of CA3 to the ischemic insult. Finally, the neuron–astrocyte–
microglial triads are significantly more numerous in CA3 than
in CA1 of ischemic rats, further indicating the protective effects
of the triads. Taken together, these results demonstrate that in
CA3 astrocytes and microglia interplay with apoptotic neurons
may represent a protective mechanism able to control the

inflammatory process and the diffusion of the cellular damage to
the neighboring tissues.

It is of great interest to verify if the differences of glial reactivity
in these two contiguous hippocampal areas are mirrored in many
other areas of the brain, reflecting the higher or lower sensitivity
to different insults, and whether they may represent targets for
future therapeutic interventions.
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