


A mio nonno



Contents

1 Introduction 4

1.1 Motivations and structure of the thesis . . . . . . . . . . . . . . . . . . . . 4

1.2 Technical remarks about coding and noncoding DNA . . . . . . . . . . . . 5

2 Identification and clustering of intergenic sequences 8

2.1 Identification of intergenic sequences . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Shine-Dalgarno sequences . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Spectral Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Sequences alignment . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.2 The normalized Laplacian matrix . . . . . . . . . . . . . . . . . . . 15

2.2.3 Clustering algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.4 Silhouette . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Base composition analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Other bacterial species . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5 Resume of the method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 Shared compositional and functional features of clustered intergenic se-

quences 35

3.1 Results for E. coli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1.1 Structural features of clusters . . . . . . . . . . . . . . . . . . . . . 37

3.1.2 Correlations between clustering and biological features . . . . . . . 39

3.2 Other bacterial species . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3.1 About STRING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3.2 COG categories enrichment . . . . . . . . . . . . . . . . . . . . . . 47

3.4 Comparison with other methods identifying biological functions of IGSs . . 48

2



4 Thermodynamics of DNA denaturation in a model of bacterial inter-

genic sequences 50

4.1 The Model of bacterial IGSs . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2 The denaturation dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2.1 Denaturation for IGSs of E. coli . . . . . . . . . . . . . . . . . . . . 59

4.2.2 Other bacterial species . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3 Final remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5 Features of BCA in eukaryotes for coding and noncoding regions 69

5.1 IGSs in eukaryotes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.1.1 Constrains in eukaryotic BCA . . . . . . . . . . . . . . . . . . . . . 72

5.1.2 Reproducing the spatial distribution of weak and strong bases for

the BCA of eukaryotic IGSs . . . . . . . . . . . . . . . . . . . . . . 76

5.2 BCA of genes in H. sapiens and E. coli . . . . . . . . . . . . . . . . . . . . 83

6 Conclusions 89

7 Ringraziamenti 91

3



Chapter 1

Introduction

The work described in this physics Ph.D. thesis consists in applying methods and tech-

niques of statistical mechanics to genetic problems, related to the study of DNA sequences.

In this introductory chapter we present the philosophy that guided the development of

this research, and afterwards we include a short technical introduction.

1.1 Motivations and structure of the thesis

The research problems tackled in this thesis concern four different items to which we

devote separate chapters. For what concerns the first two chapters, our work has taken

inspiration from a previous contribution [1] that focused on the study of noncoding (pro-

moter) sequences in eukaryotes. Through a collaboration with the genetics group of Pro-

fessor Renato Fani we have moved the object of our research towards noncoding sequences

in some bacterial species. The first goal has been to define a method able to uniquely

identify noncoding DNA sequences in proximity of genes in bacteria, similar to promoters

in eukaryotes; the method is described in chapter 2. More precisely, following the ap-

proach proposed in [1], we have clustered these DNA sequences on the basis of structural

similarities. Making use of updated databases, we have found a correspondence between

structural features and biological properties. This analysis is illustrated in chapter 3 and

has produced the following publication [2]: Lenzini L, Di Patti F, Livi R, Fondi M, Fani

R, Mengoni A. A Method for the Structure-Based, Genome-Wide Analysis of Bacterial

Intergenic Sequences Identifies Shared Compositional and Functional Features. Genes.

2019; 10(10):834.

The next goal has been to study the sequences from a point of view of the thermo-

dynamics of denaturation taking into account most of the above identified noncoding
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bacterial DNA sequences. In fact, taking advantage of the availability of real noncoding

sequences, we have investigated the correspondence between structural and thermody-

namic properties. This part of the research is described in chapter 4. The results of this

study were reported in the following paper [3]: Leonardo Lenzini, Francesca Di Patti, Ste-

fano Lepri, Roberto Livi, and Stefano Luccioli. Thermodynamics of dna denaturation in

a model of bacterial intergenic sequences. Chaos, Solitons & Fractals, 130:109446, 2020.

The last part of this work, contained in chapter 5, concerns the reexamination of

the intergenic eukaryotic sequences previously studied in [1]. In particular we have an-

alyzed compositional features of different eukaryotic species along the phylogenetic tree.

This systematic investigation has yielded the empirical observations about the presence

of structural constraints characterizing such sequences. By this analysis it has emerged

a correlation between evolutionary trends and compositional structures of noncoding se-

quences in analogy with what has been observed in coding components. Despite its

interest and novelty, a clear interpretation about the presence of these constrains is still

lacking. Certainly further investigations are necessary to possibly reach the goal of a

convincing biological interpretation. In this perspective these results can be viewed as a

preliminary step still insufficient for producing a publication.

1.2 Technical remarks about coding and noncoding

DNA

The four basic ”bricks” of DNA are the nitrogenous bases called adenine (A), thymine (T),

guanine (G) and cytosine (C). They are divided into purines (A and G) and pyrimidines

(T and C) on the base of the number of heterocyclic rings that compose them (two for

the first one, one for the second one). Each nitrogenous base can bind to a molecule

of pentose sugar (deoxyribose) and to a phosphate group thus obtaining a nucleotide.

A DNA molecule consists of two complementary strands, each of which is a polymer

composed of the four nucleotides, connected to each other by forming covalent bonds

between the phosphate group and the sugar molecule. The two filaments wrap around

each other forming the well-known double helix structure thanks to the creation of bonds

(i.e. the well-known hydrogen bonds) between the nitrogenous bases, with a very specific

coupling rule: A mates with T forming two hydrogen bonds , while G with C forming

three (see Figure 1.1). For this reason the former are called weak nucleotides, while the
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Figure 1.1: Structure of DNA.

Figure 1.2: Scheme of protein synthesis in bacteria.

latter strong [4, 5].

DNA stores the biological information of an organism, its main role is to encode

the information concerning the structure of proteins in sequences called genes. The gene

sequence is first read and transcribed by an enzyme (RNA polymerase) in an RNA strand,

which is translated into proteins by ribosomes according to the genetic code: each sequence

of three nucleotides, called codon, is converted into an amino acid which will form the

protein polymer (see Figure 1.2). This code is “universal”, i.e. it is the same for all species

[6]. However there is a lot of information encoded in DNA besides genes. Consider that

in many species genes account for only a small fraction of the genome: DNA is not a

mere sequence of genes, there is a large part of noncoding DNA where instructions for

the correct use of information expressed by genes are contained, a kind of “dark matter”

whose role is till on debate [7].

Many regulatory mechanisms act at various stages of protein synthesis, we will be

interested in regulation in the transcription phase. The element of DNA that plays a key

role in this phase is called promoter, a DNA sequence located upstream the transcrip-

tion start site (TSS) of a gene. In eukaryotes inside promoters we find short sequences,
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called binding sites, whose task is binding specific proteins called Transcription Factors.

Through complex biochemical mechanisms, transcription factors control the activity of

the RNA polymerase, that transcribes the gene. In bacterial transcription RNA poly-

merase is bound to another protein, the sigma factor, responsible for anchoring the RNA

polymerase to DNA by recognizing specific binding sites within the promoter, called con-

sensus sequences. The promoters, by means of interaction with the sigma factor, are able

to inhibit or intensify the transcription and expression of the corresponding gene.

Our aim is to obtain information about the general properties of the noncoding re-

gion located upstream a gene and their structure, instead of investigating the few base

pairs that make up the binding sites. We don’t limit our analysis to the study of the

promoters itself but we will focus on a larger noncoding region. We therefore propose to

find common features among these regions to find a relationship between the structure

of their sequences and their biological function, a correlation between the composition of

their groups and the genes they regulate. Note that gene regulation mechanisms may also

have a key role in evolution. One could conjecture that the main mechanism for evolu-

tion of later, more complex organisms is the expansion and modification of gene families.

Nevertheless, striking similarities in gene content have been observed since the beginning

of genomic studies in the comparison of different species: see, for instance, [8], where

chimpanzee and human biological differences are hypothesized to be due to regulatory

mutations, since their genes and proteins are almost identical. This has been observed

also for different but related phyla, that can share nearly identical sets of Hox genes

(i.e. developmental genes controlling morphogenesis), despite their great morphological

diversity and the long span of time since their divergence from a common ancestor [9].

There is evidence that morphological changes in animals have been shaped by evolution-

ary changes in developmental gene regulation, and not in genes themselves [9, 10, 11]. In

other words, the differences at protein level between different species can be minimal; the

different features we observe in different species are mostly due to how and when such

proteins are produced and used in an organism.
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Chapter 2

Identification and clustering of

intergenic sequences

In this chapter we used Escherichia coli as a case study for illustrating the identification

procedure of intergenic sequences (IGSs), that are expected to be correlated with regu-

lation and expression of genes. Hereinafter we term IGS a noncoding portion of DNA

with the peculiar features that we are going to describe in the following sections. The

database of E. coli genome used in this thesis has been downloaded from NCBI (Na-

tional Center for Biotechnology Information) [12], a part of the United States National

Library of Medicine (NLM), the branch of the National Institutes of Health (NIH), that

houses GenBank sequence database [13], an open access containing all publicly available

nucleotide sequences with annotated TSC (Translation Start Codon) of all genes.

2.1 Identification of intergenic sequences

In analogy with what studied in the previous papers concerning the study of structural

features of promoters in eukaryotes [1], we expect that noncoding regions of bacterial

DNA close to the TSS are correlated with regulation/expression of genes. In what follows

we call these regions intergenic sequences (IGSs). In order to identify IGSs we have to

introduce first the concept of intergenic region (IGR): this region extends between the

TSC of one gene and the end of the previous coding region on the same strand (see

Figure 2.1). For instance, in E. coli the average length of the IGRs is close to 2000 base

pairs (bps) on both strands (see Figure 2.2). Data employed to produce this figure have
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been dowloaded from NCBI (National Center for Biotechnology Information)1 [12]. This

database provides also the position of TSC, identified by an ATG triplet: in Figure 2.1

the TSC is represented by a black square.

Figure 2.1: Scheme of identification of IGRs, RIGRs and IGSs in DNA bacterial strands: in green we

denote the two DNA strands; the arrows denote the transcription direction; the black squares locate the

TSCs, while the red circles locate the TSSs.

It is well known that the genome of bacterial species exhibits quite peculiar structures.

For instance, they contain operons, i.e. groups of genes separated by short noncoding

regions, that we assumed to be poorly relevant to our analysis. Accordingly, we have

associated to the entire group of genes inside the operons a single IGR upstream the first

TSC. In order to identify the genes contained in the operons we used DOOR (Database

of prOkaryotic OpeRons) [14, 15, 16], an operon database developed by Computational

Systems Biology Lab (CSBL) at University of Georgia, covering 2072 bacteria genomes

and with overall accuracy of 90%.

Moreover, most of these IGRs contain reverse complements of other genes on the op-

posite strand. A first step in the direction of the identification of IGSs amounts to restrict

the extension of IGRs to the regions between genes, irrespectively of the strand they be-

long to. We term these regions restricted IGR (RIGR) (see Figure 2.1). The outcome

of this procedure is a collection of RIGRs with different lengths, whose distribution is

reported in Figure 2.3: these regions extend between the end of a gene and the beginning

of the following gene if the latter belongs either to the same or to the opposite strand.

Since the statistical methods that we are going to use in the following section necessitate

sequences with the same length, we have to establish a criterion to define the reference

length. We can observe that the average length of RIGRs is approximately 250 bps. In

order to increase the statistical significance we have subtracted from this number the

variance of this distribution, which amounts to about 50 bps, thus yielding sequences of

length of 200 bps upstream the TSC.

1To avoid potential background noise, in this work we considered only chromosomal DNA and dis-
carded plasmid DNA.
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Figure 2.2: E. coli. The frequency ν(lIGR) of IGRs versus their length, lIGR, expressed in bps. The

binning is over 100 bps. The distribution is truncated at 12000 bps.

Figure 2.3: E. coli. The frequency ν(lRIGR) of RIGRs versus their length, lRIGR, expressed in bps. The

binning is over 5 bps and the distribution is truncated at 600 bps. The peak close to 0 is due to the

simplifying assumption of setting to 0 the contribution from overlapping coding regions.
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2.1.1 Shine-Dalgarno sequences

As a final step for the identification of the IGSs, we have considered that regulatory

features should be better ascribed to structural patterns belonging to sequences upstream

the TSS (this is denoted by the red circle in Figure 2.1). We assume that the position of

TSS in bacterial genomes corresponds to the first nucleotide of a Shine-Dalgarno sequence

(SDS), everywhere this sequence is found. The SDS is a purine-rich ribosomal binding site,

usually located a dozen bps upstream the TSC. The typical six-base consensus sequence is

AGGAGG. The Base Composition Analysis (BCA) (see section 2.3) of the 200-bps-long

noncoding sequences of E. coli (as well as those of the other bacteria analyzed in this

thesis) exhibits a peak of the density of G nucleotides in the vicinity of 10 bps upstream the

TSC, thus signaling the typical occurrence of SDS in this part of the noncoding sequences

(data not reported). It is well known that the presence of a SDS is associated to the

position of the TSS. This indicates that the 200-bps-long noncoding sequences of E. coli

contain a noncoding region that is transcribed and not translated. Since our clustering

analysis (see section 2.2) aims at characterizing structural similarities between strictly

noncoding regions, we want to eliminate from any 200-bps-long noncoding sequence its

portion upstream the TSC, that is transcribed and not translated. Moreover, following

[17] we have considered as indicators of the TSS also all of its subsequences: GGA,

GAG, AGG, GGAG, GAGG, AGGA, AGGAG, GGAGG. In more detail, the procedure

for identifying SDSs is implemented as follows: for each of the 200-bps-long noncoding

sequence we start looking for the longest SDS (AGGAGG) and if we do not find it we pass

to shorter SDSs, proceeding in dissent order of length, up to the three bps long SDSs. The

different kinds of SDSs and their frequency in E. coli genome are reported in Figure 2.4.

For instance, in E. coli the SDSs are found in approximately 88% of the previously

identified sequences, extending over 200 bps upstream the TSC. By performing a complete

identification of SDSs in E. coli genome, we have checked that they are typically found in

a range extending over the first 25 bps upstream the TSC (see Figure 2.5), so we look for

the presence of a SDS in the first 25 bps upstream the TSC 2. When we find a sequence

of nucleotides matching with a SDS we annotate the position of its first nucleotide and

we associate it to the TSS of the corresponding gene or operon. Accordingly, we adopt

the criterion of considering as IGSs those sequences extending upstream 175 bps from

2The seemingly magic number 25 stems from the direct inspection of Shine-Dalgarno motifs in the
noncoding sequences of E. coli : the probability of finding a Shine-Dalgarbo motif upstream the TSC
practically vanishes beyond 25 bps.
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the TSS 3(see Figure 2.1). For those genes that are not preceeded by a SDS, the TSS

coincides with the TSC, and consistently we identify the IGS with the 175 bps upstream

the TSC.

The overall selection procedure applied to the E. coli NCBI database provides us 2553

equal-length IGSs, each one made of 175 bps. The same criterion has been adopted for

the other bacterial species (see section 2.4) and we have found that a length of 175 bps

for equal-length IGSs applies also to the other species. It is evident that the criterion

Figure 2.4: E. coli. The frequency νSDS of the different SDSs located upstream the TSC, listed along

the horizontal axis.

adopted for identifying equal-length IGSs unavoidably introduces portion of coding or

reverse complement of coding sequences into the statistical sample of IGSs. On the other

hand we have directly checked that in E. coli only 434 IGSs contain more than 50% of

coding portions and this poorly affects the statistical significance of the chosen sample.

Similar figures are found for the other bacterial species analyzed in this thesis.

2.2 Spectral Clustering

The aim of the procedures described in this section is to collect the annotated IGSs into

clusters depending on the similarity between the sequences. This procedure consists of

three main steps:

3 In order to remove the ambiguity due to the possible presence of various SDSs in the noncoding
sequence upstream the TSC we have adopted the criterion of taking the longest one as a reference for
identifying the corresponding IGS.
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Figure 2.5: E. coli. The frequency ν(pSDS) of the position pSDS of the SDSs upstream the TSC.

• aligning each sequence with all the others (pairwise alignment), thus obtaining a

matrix whose entries are similarity scores;

• analyzing the eigenvalues of the Laplacian matrix, computed by the similarity ma-

trix, for determining the appropriate number of clusters;

• making use of the eigenvectors of the Laplacian matrix to work out the k-means

algorithm, which allows us to associate each IGS to the selected clusters.

2.2.1 Sequences alignment

The basic idea of a sequence alignment is to identify regions of similarity that may be re-

lated with functional or structural properties as well as evolutionary relationships. Clearly,

any alignment procedure cannot be based on a perfect match between sequences, but it

has to take into account important biological features such as mutations and insertions

or deletions occurred during the evolution. For this reason, the standard approach to

this problem is to implement computational methods that make use of a substitution

matrix to assign positive and negative scores to nucleotide matches or mismatches, and a

gap penalty for matching a nucleotide in one sequence to a gap in the other one. These

algorithms, in general, fall into two categories: global and local techniques. An example

of alignment is reported in Figure 2.6.

A global algorithm spans the entire length of the sequence, while a local alignment

focuses on identifying regions of similarity within long sequences that are often widely
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Figure 2.6: We report an example of alignment of two sequences. The gap insertions (horizontal dashes)

in both sequences are shown, as well as matches (vertical bars) and mismatches (black points) between

sequences.

different overall. In this paper we have made use of the two most popular alignment

methods, the Needleman-Wunsch global algorithm [18] and the Smith-Waterman local

algorithm [19] implemented in the EMBOSS package version 6.6.0 [20].

A key aspect of the procedure, which may give rise to a marked difference in the

best match score calculated by the two algorithms, is the choice of the penalty value to be

assigned to the introduction of a new gap in the alignment (GAPOPEN) and the value for

each consecutive gap (GAPEXTEND); the scoring matrix for the nucleotide substitution

has been taken equal to the standard EDNAFULL matrix for both methods:

A T G C


A +5 −4 −4 −4

T −4 +5 −4 −4

G −4 −4 +5 −4

C −4 −4 −4 +5

. (2.1)

It assigns different scores to matched/mismatched nucleotides depending on the partic-

ular symbols aligned; these scores are computed based on the relative frequency of one

nucleotide to be substituted to another in a collection of known alignments. The scoring
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matrix is symmetric, meaning that the score assigned to substituting symbol x for symbol

y is the same as that of substituting y for x.

Unfortunately there’s no way to set a priori the optimal choice of parameters and thus

the best option is to tune the values depending on the results obtained. Regarding our

work, the trials we performed suggest to use a high GAPOPEN value (typically set equal

to 10) and a low GAPEXTEND penalty (0.5) in order not to penalize long gap sequences.

This setting favors the scores of very similar sequences yielding an easier detection of the

suitable number of clusters (see subsection 2.2.2). Moreover, in the EMBOSS code, gaps

inserted at the beginning or at the end of the sequence have no penalty. In this way, we

do not observe a significant difference between the two algorithms, and the outcome of

aligning N IGSs gives essentially the same similarity matrix S in both cases.

2.2.2 The normalized Laplacian matrix

The following step is the application of the same clustering strategy adopted for H. sapiens

in [1], that takes into account the global properties of the identified IGSs, instead of specific

short regulatory motifs. The clustering procedure is based on the spectral analysis of a

similarity matrix: the entries of such matrix are obtained by the alignment algorithm,

that quantifies the similarity between IGSs. Since the number of identified IGSs in E. coli

is relatively small, the alignment protocol and the diagonalization of the similarity matrix

can be performed with avoiding the computational limitations encountered for much larger

sets of promoters, as those typically found in eukaryotes (see [1]).

A convenient way to represent the N × N entries sij of the symmetric similarity

matrix S, is to introduce a network, whose nodes coincide with the IGSs, while the entry

sij represents the weighted link between sequence i and j. For the purpose of our work,

however, dealing with a fully connected network is not the best approach. The risk is

that the noise induced by the fact that even the alignment of two random sequences gives

a positive score, may hide the real common features among IGSs, making the clustering

procedure unfruitful. For this reason, it is of paramount importance to substitute S with a

weighted adjacency matrix W , for which two nodes are connected only if their alignment

score is larger that a certain threshold s∗, namely wij = sij if sij ≥ s∗ and wij = 0

otherwise. To estimate s∗, we have used two methods that we describe in the following.

Finally, in order to manage a set of more homogeneous data, we have operated the

normalization wij → wij/max{wij}. Following [21], once an appropriate similarity matrix
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is obtained, the first step of the clustering procedure is the determination of the number

of clusters. For this purpose, we introduce the normalized Laplacian Lsym = D−1/2(D −

W )D−1/2 where the degree matrix D is defined as the diagonal matrix with entries di =∑N
j=1wij. In some particularly successful cases, Lsym has a block structure, and the

multiplicity of its null eigenvalue determines the number of connected components. In real

cases, however, data is well mixed, and Lsym has a unique null eigenvalue corresponding

to one connected component, which includes the whole data set. The solution of the

problem comes from the matrix perturbation theory [22]. Indeed, given the spectrum

λ1 ≤ λ2 ≤ . . . ≤ λN of Lsym, the information about the number of clusters is carried by

those eigenvalues which are located close to the null one. The idea is that the actual Lsym

can be read as a perturbation of an ideal block matrix, and thus the first k values of the

spectrum act as fluctuations of the corresponding null eigenvector of the ideal case, with

multiplicity k. In practice, the more the first k eigenvalues are distant from the others,

the more effective will be the separation of data into the k groups.

Hence, the eigenvalues of the Laplacian matrix, associated to the similarity matrix, are

expected to highlight the presence of possible clusters of IGSs for E. coli . The result of

our analysis is shown in Figure 2.7, where we report these eigenvalues in ascending order.

Symbols with different colors correspond to the eigenvalues obtained for two different

values of the similarity threshold s∗. In particular, the red eigenvalues have been obtained

by the unbiased averaging procedure adopted for estimating the similarity threshold in

eukaryotes [1]. In this first method s∗ has been estimated by reordering randomly the

nucleotides of each one of the N annotated IGSs and then applying to this new set of N

randomized sequences the alignment algorithm. The arithmetic mean of the sij obtained

for the randomized sequences provides a preliminary estimate of s∗. By iterating this

procedure to perform a further averaging over different estimates, we have checked that

the preliminary estimate is pretty stable. The second method for estimating s∗ is based

on the computation of the alignment score of each one of the annotated IGSs with ten

realizations of the random reordering of its nucleotides. Then s∗ is computed as the

arithmetic mean of the alignment scores obtained for all IGSs. Since in E. coli the

length of IGSs is definitely smaller than the one of eukaryotic promoters, we have adopted

this second, more effective statistical procedure for the determination of the similarity

threshold, which actually yields a better discrimination of the eigenvalues. In fact, this

method yields an estimate of the threshold that is typically higher than the one obtained

with the former procedure. For instance, in Figure 2.7 the eigenvalues of the Laplacian
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Figure 2.7: E. coli. The first twenty eigenvalues in ascending order of the normalized Laplacian matrix

obtained by the alignment of the IGSs. Red crosses and blue circles correspond to different values of

the similarity threshold, determined by the two statistical approaches described in the present section.

A better discrimination of the three main eigenvalues is obtained for a higher similarity threshold (blue

circles), which corresponds to the second statistical approach, better suited for short sequences, as the

annotated IGSs.

matrix obtained by the second method (blue symbols) are lower than those obtained by

the first method (red symbols), while their relative separation is more pronounced. Since

we are interested in highlighting structural similarities between the relatively short IGSs

of bacterial species, we have constructed the Laplacian matrix making use of the second

method.

By this procedure we have obtained the blue eigenvalues shown in Figure 2.7. They

allow us to identify three different clusters, corresponding to the three lowest nonzero

eigenvalues, that can be distinguished from the total set, because of their sensibly different

values between each other. Hereinafter they will be referred to as C0, C1 and C2.

2.2.3 Clustering algorithm

We are now able to apply the spectral clustering algorithm in order to assign each IGS

to one of the clusters. The starting point is the computation of the first k eigenvectors

u1, . . . , uk of Lsym, so as to form a new matrix U ∈ RN×k containing the vectors u1, . . . , uk

as columns. Let T ∈ RN×k be the matrix obtained from U by normalizing the rows to

norm 1, namely, ti,j = ui,j/
(∑

k u
2
i,k

)1/2
. For i = 1, . . . , N we denote by yi ∈ Rk the

vector corresponding to the i−th row of T . The last point consists in applying the k-
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means algorithm to the points yi so as to find C1, . . . , Ck clusters. The iterative procedure

of the algorithm works as follows: first, select k random points as initial centroids. Then,

form k clusters assigning each point yi to its closest centroid, according to Euclidean

distance. Recompute the centroids as the mean of the points of each cluster. Repeat until

the difference between the centroids coordinates of two consecutive steps reaches a fixed

tolerance. For instance, in Figure 2.8 this tolerance was fixed to 10−8.

The reliability of this procedure is illustrated by representing the distribution of IGS in

the so-called clustering space, shown in Figure 2.8. Each point in this space corresponds

to an IGS, while IGSs with a high similarity score are represented as nearby points. Each

of the 2553 IGS has been unambiguously associated to one of the three clusters.

0

0.5
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-0.5

1

0

0.5

1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Cluster 0

Cluster 1

Cluster 2

Figure 2.8: E. coli. Distribution of points in the clustering space relative to the alignment of the IGSs.

Each point represents an IGS and the color code corresponds to the three clusters identified by the

Clustering Algorithm.

2.2.4 Silhouette

Silhouette index allows to evaluate the consistency of a clustering procedure, measuring

how similar an object is to its own cluster compared to other clusters. The silhouette value

ranges from -1 to +1, where positive values indicate that the assignment of the object

to a cluster is good, while negative values stand for a bad assignment. The clustering

configuration is more appropriate the more objects are characterized by a silhouette value

close to +1. Now we illustrate how to calculate the silhouette.

18



For a data point i in the cluster Ck with Nk elements, we define

a(i) =
1

Nk − 1

∑
j∈Ck

d(i, j), (2.2)

where the sum is over all the data points and d(i, j) is the Euclidean distance between

the two points. The value a(i), the average distance of i with all other data points in the

same cluster, is as a measure of how well i is assigned to its cluster. Let

b(i) = min
h6=k

1

Nh

∑
j∈Ch

d(i, j) (2.3)

be the smallest mean distance of i to all points in any other cluster Ch with Nh elements,

of which i is not a member.

The silhouette value for a data point i is

s(i) =
b(i)− a(i)

max(a(i), b(i))
. (2.4)

So if a(i) < b(i) then s(i) will be positive, negative otherwise.

To ascertain the consistency of the clustering procedure we have calculated the silhou-

ette values of each point. The distributions of these values for each cluster are reported

in Figure 2.9. We can observe that the vast majority of values are positive, with a shift of

the distribution towards the value +1, thus confirming that the clustering configuration

is appropriate4.

The clustering method has been applied also to bacterial species different from E. coli,

a Gram positive bacterium (Bacillus subtilis) and an extremophilic bacterium (Pseudoal-

teromonas haloplanktis). The results are reported in section 2.4. Altogether, the analysis

based on clustering by alignment yields similar results for IGSs in different bacterial

species. This indicates that, irrespectively of the considered bacterium, each identified

cluster of IGSs is associated to the presence of global structural properties. Now, the main

question concerns the identification of the structural features characterizing the different

clusters.

4We have observed that the silhouette criterion improves for the division into two clusters (corre-
sponding to the first two eigenvalues of the Laplacian matrix). On the other hand the heuristic rule to
establish the number of appropriate clusters (see subsection 2.2.2) amounts to choose it for first eigenval-
ues which maintain a significant difference between each other. This is why we have chosen to consider
three clusters. A posteriori this heuristic choice is justified by the significantly different structural features
characterizing the BCA of the three clusters, as shown in Figure 2.12.
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Figure 2.9: E. coli. Distribution of silhouette values relative to the clustering of the IGSs. On the vertical

axis we report the frequency ν(s) of IGSs versus the silhouette value s; this value is between -1 and +1.

The average values are 0.42 for cluster C0, 0.39 for C1 and 0.39 for C2.

2.3 Base composition analysis

In order to characterize a set of N equal-length sequences, it is useful to represent the

spatial distribution of each nucleotide along the IGSs by the so-called Base Composition

Analysis. In practice, we compute the density ρx(`) of each nucleotide x = A, T GC at

position ` along the IGS defined as

ρx(`) =
1

N

N∑
i=1

sxi (`), (2.5)

with sxi (`) = 1 if in the i-th IGS the nucleotide x is present at position `, sxi (`) = 0

otherwise. For what concerns the annotated IGSs of the bacteria considered in this paper

` = −175, . . . ,−1, while the position 0 corresponds to the first nucleotide of the SDS, or

to the TSC for those IGSs where the SDS is lacking.

In this section, we take the opportunity to report the BCA of the three clusters

obtained after the clustering procedure, as we can see in Figure 2.11.

Since, for not too large values of N , BCA typically exhibits sensible fluctuations, the

density profile of nucleotides can be better represented by a smoothing procedure, where
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Figure 2.10: E. coli. BCA of the IGSs: on the vertical axis we report the density ρx(`) of each of the

four nucleotides x = A (blue), T(red), G (yellow), C (purple) as a function of the position ` along the

annotated 2553 IGSs.
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Figure 2.11: E. coli. Base composition analysis in the clusters of the IGSs: on the vertical axis we report

the density ρx(`) of each of the four nucleotides x = A (blue), T(red), G (yellow), C (purple) as a function

of the position ` along the IGS belonging to the clusters C0 (left panel), C1 (central panel) and C2 (right

panel).
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Figure 2.12: E. coli. Smoothed Base composition analysis in the clusters of the IGSs: on the vertical

axis we report the averaged density ρ̄(`) for a = 15 bps of each of the four nucleotides A (blue), T(red),

G (yellow), C (purple) as a function of the position ` along the IGSs belonging to the clusters C0 (left

panel), C1 (central panel) and C2 (right panel).

we proceed to a further averaging of the density inside a ”window” of 2a bps; in formulae

ρ̄x(`) =
1

N

N∑
i=1

1

1 + 2a

`′=`+a∑
`′=`−a

sxi (`
′). (2.6)

For E. coli we report in Figure 2.12 the result of this procedure.

2.4 Other bacterial species

Here we insert all information concerning other bacterial species: B. subtilis and P. halo-

planktis. For each bacterium we highlight the major differences.

All the figures are qualitatively very similar to those of E. coli. We can notice a differ-

ence for what concerns the BCA of the cluster C0. In fact in E. coli and in P. haloplanktis

the weak nucleotides show the same profile in their spatial distributions (first panel of

Figure 2.11), while in B. subtilis have a specular behavior, when A grows T decreases and

vice versa (see first panel of Figure 2.21).
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Figure 2.13: B. subtilis. The frequency ν(lIGR) of IGRs versus their length, lIGR, expressed in bps. The

binning is over 100 bps. The distribution is truncated at 12000 bps.

Figure 2.14: B. subtilis. The frequency ν(lRIGR) of RIGRs versus their length, lRIGR, expressed in bps.

The binning is over 5 bps and the distribution is truncated at 600 bps. The peak close to 0 is due to the

simplifying assumption of setting to 0 the contribution from overlapping coding regions.
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Figure 2.15: B. subtilis. The frequency νSDS of the different SDSs located upstream the TSC, listed

along the horizontal axis.

Figure 2.16: B. subtilis. The frequency ν(pSDS) of the position pSDS of the SDSs upstream the TSC.
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Figure 2.17: B. subtilis. The first twenty eigenvalues in ascending order of the normalized Laplacian

matrix obtained by the alignment of the IGSs. Red crosses and blue circles correspond to different values

of the similarity threshold, determined by the two statistical approaches described in subsection 2.2.2.

A better discrimination of the three main eigenvalues is obtained for a higher similarity threshold (blue

crosses), which corresponds to the second statistical approach, better suited for short sequences, as the

annotated IGSs.

Figure 2.18: B. subtilis. Distribution of points in the clustering space relative to the alignment of the

IGSs. Each point represents an IGS and the color code corresponds to the three clusters identified by

the Clustering Algorithm described in subsection 2.2.3.
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Figure 2.19: B. subtilis. Distribution of silhouette values relative to the clustering of the IGSs. On the

vertical axis we report the frequency ν(s) of IGSs versus the silhouette value s; this value is between -1

and +1. The average values are 0.42 for all the clusters.
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Figure 2.20: B. subtilis. BCA of the IGSs: on the vertical axis we report the density ρx(`) (see section 2.3)

of each of the four nucleotides x = A (blue), T (red), G (yellow), C (purple) as a function of the position

` along the annotated 2338 IGSs.
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Figure 2.21: B. subtilis. Base composition analysis in the clusters of the IGSs: on the vertical axis we

report the density ρx(`) (see section 2.3) of each of the four nucleotides x = A (blue), T (red), G (yellow),

C (purple) as a function of the position ` along the IGS belonging to the clusters C0 (left panel), C1

(central panel) and C2 (right panel).
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Figure 2.22: B. subtilis. Smoothed Base composition analysis in the clusters of the IGSs: on the vertical

axis we report the averaged density ρ̄(`) for a = 15 bps (see section 2.3) of each of the four nucleotides

A (blue), T(red), G (yellow), C (purple) as a function of the position ` along the IGSs belonging to the

clusters C0 (left panel), C1 (central panel) and C2 (right panel).

For P. haloplanktis the more remarkable difference with E. coli, but also with B. sub-

tilis, is the shape of the distribution of points in the clustering space (see Figure 2.28).

This seemingly unusual distribution is due to the presence of scattered points which cor-

respond to IGSs very far from the centroid of the different clusters. This is peculiar of

this bacterium; on the other hand if these few atypical IGSs would be eliminated from the
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sample one should recover a point distribution very similar to those reported in Figure 2.8

and Figure 2.18.

Figure 2.23: P. haloplanktis. The frequency ν(lIGR) of IGRs versus their length, lIGR, expressed in bps.

The binning is over 100 bps. The distribution is truncated at 12000 bps.

Figure 2.24: P. haloplanktis. The frequency ν(lRIGR) of RIGRs versus their length, lRIGR, expressed in

bps. The binning is over 5 bps and the distribution is truncated at 600 bps. The peak close to 0 is due

to the simplifying assumption of setting to 0 the contribution from overlapping coding regions.
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Figure 2.25: P. haloplanktis. The frequency νSDS of the different SDSs located upstream the TSC, listed

along the horizontal axis.

Figure 2.26: P. haloplanktis. The frequency ν(pSDS) of the position pSDS of the SDSs upstream the

TSC.
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Figure 2.27: P. haloplanktis. The first twenty eigenvalues in ascending order of the normalized Laplacian

matrix obtained by the alignment of the IGSs. Red crosses and blue circles correspond to different values

of the similarity threshold, determined by the two statistical approaches described in subsection 2.2.2.

A better discrimination of the three main eigenvalues is obtained for a higher similarity threshold (blue

crosses), which corresponds to the second statistical approach, better suited for short sequences, as the

annotated IGSs.

Figure 2.28: P. haloplanktis. Distribution of points in the clustering space relative to the alignment of

the IGSs. Each point represents an IGS and the color code corresponds to the three clusters identified

by the Clustering Algorithm described in subsection 2.2.3.
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Figure 2.29: P. haloplanktis. Distribution of silhouette values relative to the clustering of the IGSs. On

the vertical axis we report the frequency ν(s) of IGSs versus the silhouette value s; this value is between

-1 and +1. The average values are 0.48 for cluster C0, 0.56 for C1 and 0.58 for C2.
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Figure 2.30: P. haloplanktis. BCA of the IGSs: on the vertical axis we report the density ρx(`) (see

section 2.3) of each of the four nucleotides x = A (blue), T(red), G (yellow), C (purple) as a function of

the position ` along the annotated 2091 IGSs.
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Figure 2.31: P. haloplanktis. Base composition analysis in the clusters of the IGSs: on the vertical axis we

report the density ρx(`) (see section 2.3) of each of the four nucleotides x = A (blue), T(red), G (yellow),

C (purple) as a function of the position ` along the IGS belonging to the clusters C0 (left panel), C1

(central panel) and C2 (right panel).
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Figure 2.32: P. haloplanktis. Smoothed Base composition analysis in the clusters of the IGSs: on the

vertical axis we report the averaged density ρ̄(`) for a = 15 bps (see section 2.3) of each of the four

nucleotides A (blue), T(red), G (yellow), C (purple) as a function of the position ` along the IGSs

belonging to the clusters C0 (left panel), C1 (central panel) and C2 (right panel).

2.5 Resume of the method

In summary, the proposed clustering method, summarized in Figure 2.33, allows us to

detect specific similarities among IGSs associated also to relatively short regular subse-

quences. This method can be sketched in five steps. As shown in section 2.4 these features
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are conserved in other bacterial species.

1- First we identify the IGRs, all the noncoding portions that are upstream the TSCs

annotated in the genome considered, including also the reverse complement of the

genes on the opposite strand.

2- Starting from the IGRs we can build the set of the RIGRs by selecting only the non-

coding part between the TSC of a gene and the end of the previous one, regardless

of the strand where is located. With the help of an operon database only those that

precede the TSC of a transcriptional unit (single gene or operon) are selected. We

annotate the length in term of bps of each RIGR. Calculating the distribution of

the lengths, mean and standard deviation, we can choose a common length for all

the RIGRS.

3- The presence of the SDSs is useful to detect approximately the position of the TSSs

so as to eliminate the transcribed and not translated part for each sequence.

4- These “cleaned up” noncoding sequences, the IGSs, can be compared using alignment

algorithms that provide a similarity score between them.

5- Similarity matrix containing these scores is processed with a clustering algorithm and

the IGSs are divided into clusters based on compositional similarities.

Finally, it’s possible “to interweave” the information contained in each cluster with the

ones associated with biological-type databases in order to check if they are expression of

functional characteristics, as we can see in the next chapter.
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Figure 2.33: Workflow of the clustering procedure described in this chapter.
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Chapter 3

Shared compositional and functional

features of clustered intergenic

sequences

It is well known that noncoding regions of DNA contain important functional elements,

that mainly concern regulatory activities and changes in gene expression. Such functional

elements have been identified as the participation in reproducible biochemical events, for

instance Transcription Factor (TF) association, chromatin structure- or histone-modification

[7]. Moreover, noncoding DNA is expected to play the role of a major substrate for critical

changes, driving phenotypic modifications and differences between species or individuals,

thus representing the basis for evolution as well as for disease-associated regulatory vari-

ants [8, 23, 24, 25]. In particular, the genetic programming of complex eukaryotes appears

to be significantly correlated to the variability of noncoding DNA [26, 27]. Accordingly,

considerable efforts have been devoted by several research groups to the study of noncoding

DNA regions, mainly in eukaryotes. Traditional in silico approaches are based on compar-

ative genomics, that relies upon evolutionary conservation as a property for identifying

functional regions. For instance, pairwise or multiple sequence alignments have been used

for predicting noncoding RNA transcripts or TF binding sites [28, 29, 30, 31, 32, 33]. By

comparing genomic DNA from closely and distantly related species, functional elements

may be recognized on the basis of their conservation. Comparative analyses can be ap-

plied also within a species to find paralogous regions deriving from duplication events

within a genome [34] or even function-related patterns based on sequence similarities [35].

These sequence-based analyses, together with experimental techniques [36, 37, 38], have
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proved quite effective for predicting functional noncoding sequences and their biological

implications [39]. On the other hand, as a consequence of the variability of regulatory

regions, it is quite difficult to establish the accuracy of such methods in estimating the TF

binding or the transcriptional output [40, 41]. In fact, it is well known that, at variance

with coding sequences that are well conserved even across distantly related species, reg-

ulatory regions are relatively flexible, since most TFs tolerate considerable variations in

target sequences [42]. The high turnover rate both in adjacent putatively non-functional

DNA and in duplicated TF binding sites often disrupts sequence conservation and makes

alignments impossible (e.g., see [43, 44, 45]). Moreover, transcriptional rewiring [46] may

explain events of sequence similarity loss, but retention of similar function. Accordingly,

in noncoding DNA, sequence similarity may not necessarily correspond to functional ho-

mology.

For all these reasons the comparative approach among specific sequence elements in

the noncoding regions of DNA is certainly useful, but insufficient to obtain an exhaustive

description of DNA double helix functional properties. Many other approaches have

been proposed to fill the gap. Among them we just mention the various techniques that

run motif-finding algorithms on sets of sequences and incorporate the information of

experimentally known TF binding sites in position-specific weight matrices [47, 48, 49],

or rely on the study of the three-dimensional structure of DNA [50, 51] and on neural

network optimization procedures [52, 53]. For instance, more recently other methods or

databases aiming at identifying prokaryotic promoters have been proposed [54, 55].

Along this direction, a structure-based genome-wide analysis of the eukaryotic promot-

ers was proposed as a new approach to a comprehensive identification of the correlations

between the structural properties of promoter sequences and the kind of genes they reg-

ulate [56, 35]. In particular, BCA and specific entropic indicators were employed for

identifying structural similarities among different classes of promoters [57, 58]. Moreover,

the region around the TSS was shown to exhibit a very distinctive structural profile, which

seems to be actively maintained by non-neutral selective constraints. Such structural pro-

file is primarily related to a non-random distribution of nucleotides along the promoter

close to the TSS [56, 35]. This kind of approach has been further refined in [1], where

it was found that promoter sequences in Homo sapiens, can be classified into three main

groups: two of them are distinguished by the prevalence of weak or strong nucleotides

and are characterized by short compositionally biased sequences, while the most frequent

regular sequences in the third group are strongly correlated with transposons. Moreover,
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the comparison of the promoter database of H. sapiens with those of other species indi-

cates that structural complexity characterizes also the evolutionary content appearing in

mammalian promoters, at variance with ancestral species in the phylogenetic tree, that

exhibit a definitely lower level of differentiation among promoters. This notwithstanding,

evolutionary selection of regulatory DNA sequences is at work in all organisms [59, 60, 61]

and it is reasonable to expect that in prokaryotes also a genome-wide approach can be

effective in identifying possible correlations between structure and regulation/expression

of genes.

In this chapter we develop a computational method based on the compositional anal-

ysis of bacterial IGSs to analyze the structure of noncoding sequences close to the TSS

in various bacterial species, while searching for possible correlations with the expression,

regulation and biological functions of the genes they correspond to. The overall strategy

of this approach is illustrated making use of E. coli, as a primary case study (although

the method has been applied to other prokaryotes, mostly leading to overlapping results).

3.1 Results for E. coli

3.1.1 Structural features of clusters

The complex structure of nucleotide sequences in the IGSs considered in this thesis is

essentially due to the presence of some regular patterns, that allows for a structural

clustering. For instance, although obviously regulatory motifs exist also in bacteria, they

are much less complex (typically, homogeneous sequences) and much shorter than in

eukaryotes [40, 62, 63]. In Figure 2.10 we report the BCA of all the 2553 IGSs of E. coli:

it has been obtained by measuring the positional density of nucleotides along both strands.

The first feature that emerges is the well-known dominance of weak nucleotides (A and

T) with respect to strong ones (G and C). Only close to the null position one observes

peculiar peaks, corresponding to the typical enrichment of purines close to the TSS. This

is an indication that our selection procedure of IGSs consistently identifies such known

enrichment [64].

If one subdivides the IGSs into the three clusters represented in the clustering space

shown in Figure 2.8, one obtains the smoothed BCA (see (2.6) in section 2.3, where is

reported also the original BCA) reported in the panels of Figure 2.12. Cluster C0 is quite

similar to the total BCA , although the separation between weak and strong nucleotides is
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amplified. Cluster C1 is characterized by the dominance of T nucleotides, the depression

of G nucleotides, while A and C nucleotides exhibit a similar intermediate dependence on

the position. Finally, Cluster C2 shows similar trends with respect to C1, with weak and

strong nucleotides exchanging their role between themselves. A posteriori we can conclude

that the clustering procedure is effective in identifying differences and similarities among

the annotated IGSs. Anyway, at variance with eukaryotes, the noncoding regions of

bacterial species exhibit a definitely lower level of complexity.

A more careful inspection of the BCA analysis of E. coli indicates that the structural

differences among the three clusters is associated to the presence of regular motifs of

weak nucleotides, like homogeneous patches of A and T, or period-2 sequences made of

AT pairs. In fact, we have found that C1 and C2 contain IGSs that are typically enriched

by homogeneous segments of T and A nucleotides, respectively. These segments extend

over a few to some tens of nucleotides, while their most frequent length (as observed also

in eukaryotes [1]) is close to six nucleotides. For instance, the number of homogeneous

T-segments of length equal or larger than 6 nucleotides in the IGSs of C1 is approxi-

mately four times larger than homogeneous A-segments and AT-segments. Similarly, in

C2 homogeneous A-segments occur twice with respect to homogeneous T-segments and

five times more than AT-segments. Conversely, in C0 there are more regular A-, T- and

AT-segments than those found in the other clusters and their absolute numbers are com-

parable (238, 292 and 185, respectively). Actually, we have also found that there is a

sort of symmetry between the IGSs in C1 andC2, where homogeneous segments of weak

nucleotides of an IGS in one strand appear as reverse complements in another IGS on

the opposite strand. Such homogenous motifs have been recognized as typical sequences,

favoring the diffusion of transcription factors along the DNA chain in search of the TSS

[65].

Anyway, we are aware that the annotated IGSs of E. coli contain coding portions.

More precisely, only 1356 IGSs do not contain any coding portion and half of them are

found to belong to C0, while the remaining IGSs are approximately equally shared between

C1 and C2. The average length of noncoding portions in the remaining 1197 IGSs is 102

bps and again they are almost equally shared in C1 and C2, while only 262 are contained

in C0. This figures indicate that our clustering analysis is certainly influenced by the

presence of coding portions, despite they play a minor role with respect to noncoding

ones. On the other hand, there is not a sharp correspondence between the content of

coding portions and the IGSs contained in the three clusters and we can conclude that
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the statistical significance of our clustering analysis is sufficient for identifying structural

differences and similarities among the annotated IGSs.

3.1.2 Correlations between clustering and biological features

Once grouped IGSs into clusters the further step was to investigate possible correlations

inside each cluster with biological properties. This task has been accomplished making use

of the STRING database [66], which provides us information about various features related

to the interactions in genetic networks. In particular, we have focused our analysis on

genetic co-expression and co-occurrence in E. coli : details about the content of biological

information associated to such features and the way they are quantified by a score is

shortly discussed in subsection 3.3.1.

We have considered all genes and operons associated with the IGSs belonging to a

cluster and we have constructed the corresponding genetic network, whose nodes represent

single genes as well as genes belonging to an operon (we indicate with Ngenes the total

number of nodes of the network and with NIGS the number of IGSs in a cluster). A

network link is established between two genes if the corresponding element in the matrix

determined by the score of the STRING algorithm overtakes a threshold value, that we

have fixed to 0.7, in order to obtain a sparse matrix with a high level of ”affinity” between

pairs of connected nodes (see subsection 3.3.1). Then, we have computed the size, NLCC,

and the total numbers of links per node, Nlink, of the largest connected component (LCC)

of the network. The results are reported in Table 3.1 and Table 3.2, together with the

average values (NLCC and N link) and the variances (σLCC and σlink) of the same quantities,

obtained by averaging over a 1000 random samplings of the IGSs (and of the corresponding

genes) in the networks, built up by grouping the same total number of IGSs in each cluster.

The values obtained by our clustering method correspond to values of the co-expression

and co-occurrence indicators, that are typically close to, or just beyond, the border of the

variance range.
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Table 3.1: Co-expression networks for E. coli. We compare the features of the co-expression networks

for each cluster between the three clusters obtained by the clustering method and other three clusters

obtained by averaging over a 1000 random samplings of the IGSs.

NIGS Ngenes NLCC NLCC σLCC
NLCC−NLCC

σLCC
Nlink N link σlink

Nlink−N link

σlink

C0 930 1543 32 53.6 21.4 −1.01 82 341.9 238.8 −1.09

C1 812 1451 62 43.3 17.6 1.06 707 269.4 194.0 2.26

C2 811 1325 59 42.7 17.8 0.92 261 263.8 197.2 −0.01

Table 3.2: Co-occurrence networks for E. coli. We compare the features of the co-occurrence networks

for each cluster between the three clusters obtained by the clustering method and other three clusters

obtained by averaging over a 1000 random samplings of the IGSs.

NIGS Ngenes NLCC NLCC σLCC
NLCC−NLCC

σLCC
Nlink N link σlink

Nlink−N link

σlink

C0 930 1543 338 267.7 35.4 1.99 1022 665.5 123.2 2.89

C1 812 1451 146 214.4 35.4 −1.93 326 503.8 110.5 −1.61

C2 811 1325 179 213.8 35.2 −0.99 447 497.1 111.1 −0.45

Hence, clustering IGSs by structural similarity suggests the existence of a correlation

with co-expression and co-occurrence. Establishing more precise relations, if any, with

specific motifs appearing in the IGSs belonging to each cluster demands a deeper inspec-

tion about the mechanisms associated to gene expression and regulation. However, this

issue is beyond the aims of this thesis.

In order to understand whether genes belonging to a specific biological function were

over-represented in any of the identified clusters, we performed a functional enrichment

analysis using COG categories and evaluating statistical significance (if any) using a neg-

ative binomial test. Data obtained for E. coli are shown in Figure 3.1, whereas results for

B. subtilis and P. haloplanktis are reported in section 3.2 (see Figure 3.2 and Figure 3.3).

Overall we observed a few enriched functional categories for each of the E. coli clusters.

In particular, 3 COG functional categories were found to be over- and down-represented

in C0, respectively. The first set included genes involved in the transport and metabolism

of inorganic ion, in the production and conversion of energy as well as genes lacking a
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functional annotation. The second set included genes involved in information processing

(translation, ribosomal structure and biogenesis), coenzyme and nucleotide metabolism.

The other two clusters included over-represented categories (cell membrane biogenesis and

metabolism and information processing of C1 and coenzyme metabolism of C2) as well as

down-represented ones (inorganic ion transport and energy production and metabolism of

C2). Despite only a few cellular processes displayed a significant trend in the clustering

of IGSs, it is worth noticing that some functional categories fall in more than one cluster,

but always with an opposite trend, according to the functional enrichment analysis. For

instance, this is the case of COG J over-represented in C1 and down-represented in C0,

COG P and C, over-represented in C0 and down-represented in C2 and COG H over-

represented in C2 and down-represented in C0. It might be tempting to speculate that

this peculiar distribution of genes belonging to the same process category among the

identified clusters and due to the structure of their IGSs could reflect differences in the

regulatory features of the corresponding genes. Additional analyses/experiments will be

needed to evaluate the robustness of this association.

15 15

C − Energy production and conversion

F − Nucleotide transport and metabolism

H − Coenzyme transport and metabolism

J − Translation, ribosomal structure and biogenesis 

P − Inorganic ion transport and metabolism

X − No Functional Class Found

0 5 10

C0

Percentage of genes

J − Translation, ribosomal structure and biogenesis 

M − Cell wall/membrane/envelope biogenesis

X − No Functional Class Found

0 5 10

C1

Percentage of genes

C − Energy production and conversion

H − Coenzyme transport and metabolism

P − Inorganic ion transport and metabolism

0 2 4 6

C2

Percentage of genesGenome background

Clustered sequences

Figure 3.1: COG functional enrichment analysis of clustered genes in E. coli. We report the significantly

enriched or depleted COG functional categories belonging to each of the identified clusters (C0, C1, C2)

in respect to the genome background. Clustered Sequences refers to the functional annotation of the

sequences that were clustered according to our method (i.e. after the analysis of IGSs) in each of the

three clusters. Genome background refers to the functional annotation of the entire genome (i.e. of each

gene of the considered organism).

3.2 Other bacterial species

Here we insert all information concerning other bacterial species: B. subtilis and P. halo-

planktis. Comparing Table 3.1 with Table 3.3, Table 3.5 and Table 3.2 with Table 3.4,

Table 3.6 what stands out immediately is the smaller number of clusters for which the

co-expression and co-occurrence networks are statistically significant. This can be at-
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tributed to the lower amount of data available for these two bacteria. In particular for

P. haloplanktis the cluster C1 seems to be the only statistically relevant.

Table 3.3: Co-expression networks in B. subtilis. We compare the features of the co-expression networks

for each cluster between the three clusters obtained by the clustering method and other three clusters

obtained by averaging over a 1000 random samplings of the IGSs.

NIGS Ngenes NLCC NLCC σLCC
NLCC−NLCC

σLCC
Nlink N link σlink

Nlink−N link

σlink

C0 749 1341 25 25.7 14.4 −0.05 63 169.6 189.7 −0.56

C1 856 1346 41 30.6 15.6 0.67 417 199.1 201.2 1.08

C2 884 1487 16 32.3 16.5 −0.99 28 217.5 212.2 −0.89

Table 3.4: Co-occurrence networks in B. subtilis. We compare the features of the co-occurrence networks

for each cluster between the three clusters obtained by the clustering method and other three clusters

obtained by averaging over a 1000 random samplings of the IGSs.

NIGS Ngenes NLCC NLCC σLCC
NLCC−NLCC

σLCC
Nlink N link σlink

Nlink−N link

σlink

C0 749 1341 73 50.2 16.6 1.38 162 119.8 60.9 −0.69

C1 856 1346 71 63.1 17.4 0.45 198 158.3 77.0 0.52

C2 884 1487 38 67.4 18.4 −1.60 85 170.1 84.2 −1.01
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H − Coenzyme transport and metabolism
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K − Transcription
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K − Transcription

R − General function prediction only

X − No Functional Class Found

0 10 20

H − Coenzyme transport and metabolism

J − Translation, ribosomal structure and biogenesis 

N − Cell motility

0 1 2 3
Background

Clustered sequences

Percentage of genes Percentage of genes

Percentage of genes

C0 C1

C2

Figure 3.2: COG functional enrichment analysis of clustered genes in B. subtilis. We report the signif-

icantly enriched or depleted COG functional categories belonging to each of the identified clusters (C0,

C1, C2) in respect to the genome background. Clustered Sequences refers to the functional annotation

of the sequences that were clustered according to our method (i.e. after the analysis of IGSs) in each of

the three clusters. Genome background refers to the functional annotation of the entire genome (i.e. of

each gene of the organism considered).

Table 3.5: Co-expression networks in P. haloplanktis. We compare the features of the co-expression

networks for each cluster between the three clusters obtained by the clustering method and other three

clusters obtained by averaging over a 1000 random samplings of the IGSs.

NIGS Ngenes NLCC NLCC σLCC
NLCC−NLCC

σLCC
Nlink N link σlink

Nlink−N link

σlink

C0 664 1074 22 23.0 12.0 −0.08 36 102.7 108.8 −0.61

C1 718 1182 47 26.8 13.8 1.46 305 124.6 128.4 1.40

C2 709 1079 24 26.1 12.0 −0.16 42 122.1 121.6 −0.66
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Table 3.6: Co-occurrence networks in P. haloplanktis. We compare the features of the co-occurrence

networks for each cluster between the three clusters obtained by the clustering method and other three

clusters obtained by averaging over a 1000 random samplings of the IGSs.

NIGS Ngenes NLCC NLCC σLCC
NLCC−NLCC

σLCC
Nlink N link σlink

Nlink−N link

σlink

C0 664 1074 58 45.3 21.2 0.60 129 104.8 71.7 0.34

C1 718 1182 89 51.4 21.5 1.75 441 120.3 77.1 4.16

C2 709 1079 36 51.8 22.5 −0.70 76 122.6 86.2 −0.54

V − Defense mechanisms

X − No Functional Class Found

0 5 10 15 20

Background

Clustered sequences

C1

Percentage of genes

J − Translation, ribosomal structure and biogenesis 

N − Cell motility

0 1 2 3 4 5

C2

Percentage of genes

Figure 3.3: COG functional enrichment analysis of clustered genes in P. haloplanktis. We report the

significantly enriched or depleted COG functional categories belonging to each of the identified clusters

(C0, C1, C2) in respect to the genome background. Clustered Sequences refers to the functional annotation

of the sequences that were clustered according to our method (i.e. after the analysis of IGSs) in each of

the three clusters. Genome background refers to the functional annotation of the entire genome (i.e. of

each gene of the organism considered).

The scarcity of data also concerns the COG database of B. subtilisand P. haloplanktis

(the cluster C0 in the last bacterium doesn’t present any enriched functional category).

Nevertheless, we have an evident similarity concerning the COG functional enrichment

analysis of clustered genes in B. subtilis and P. haloplanktis, and in particular the ones

in cluster C2 for both. In fact, we can see from the last panel on the right in Figure 3.2

and Figure 3.3 that COG N (cell motility) is over-represented, while COG J (translation,

ribosomal structure and biogenesis) is down-represented.

44



3.3 Materials and Methods

3.3.1 About STRING

STRING (Search Tool for the Retrieval of Interacting Genes) is a database of known

and predicted protein-protein interactions (PPI). The interactions include direct (phys-

ical) and indirect (functional) associations; they stem from computational prediction,

from knowledge transfer between organisms, and from interactions aggregated from other

(primary) databases. Thanks to this database we can build the network of predicted as-

sociations for a particular group of genes (or proteins). The network nodes are the genes.

The weighted edges represent the predicted functional associations. In fact, STRING pro-

vides a score for each protein-protein association. The scores take values from zero to one

and indicate the estimated likelihood that a given interaction is biologically meaningful,

specific and reproducible, given the supporting evidence. There are seven evidence chan-

nels that together contribute to providing the total evidence, that is the protein-protein

association score.

We have analyzed the channels separately. In particular we focused on the co-expression

and co-occurrence channels. (i) The co-expression channel: for this channel gene expres-

sion data originating from a variety of expression experiments are normalized, pruned

and then correlated. Pairs of proteins that are constantly similar in their expression

patterns, under different conditions, will receive a high interaction score. (ii) The co-

occurrence channel: in this channel, STRING calculates the phylogenetic distribution of

the orthologs of all proteins in a given organism. If two proteins show a high similarity in

this distribution, i.e. if their orthologs tend to be present or absent in the same subsets

of organisms, then an association score is assigned.

Co-expression

During the course of its life, a bacterium must regulate the type, quantity and activity

of proteins and other macromolecules they produce. After the transcription of DNA in

RNA, information is translated for the production of specific proteins. These processes

are known by the collective name of gene expression. From gene expression profiles under

different experimental conditions, we go to check which pairs of genes exhibit the same

behavior, since the transcription levels of two co-expressed genes rise and lower simulta-

neously. Apart from these direct evidences, STRING also takes into account properties
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transferred from one organism to another. This so-called “interolog” transfer is based on

the observation that co-expressed orthologs in an organism often are co-expressed also

in another (this inference is the more confident the better orthology relationships that

can be established). However, mostly poorly studied organisms benefit of the transfers

of interaction between genes, where the fraction of interactions supported by transfers

from other organisms can even reach 99%. On the other hand, in well-studied model

organisms as E. coli, the corresponding fraction is below 20%. In Figure 3.4 it is reported

a co-expression pattern for a set of genes present in E. coli.

Figure 3.4: In the triangular matrices above, the intensity of the color indicates the confidence level with

which two proteins are functionally associated, considering the total expression data in the organism. On

the left are reported the data found directly for E. coli, on the right those relating to the same orthologs

present in other organisms.

Thanks to the one-to-one correspondence between one IGS and the corresponding

transcriptional unit (formed by a gene or an operon), from the clustering we can build a

co-expression network, where the nodes are the genes and the weighted edges are given

by the PPI score of the co-expression channel. We choose a threshold for the score, below

which, the link is deleted, above it is arbitrarily set to one. We analyzed the characteristic

properties of this undirected and unweighted graph based on gene co-expression.

Co-occurrence

We adopted the same procedure for the co-occurrence channel. Because of the so-called

divergent evolution, it may be that proteins or genes that share a common origin may

have reached very different structures and functions. The genes, in fact, can undergo an

independent evolution, to give rise to the so-called paralogous genes, that is, genes present

within the same genome that code for different products but originate from a single
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ancestral gene. The co-occurrence concerns the so-called orthologous genes, which are

instead homologous genes, present in different but related species, which code for proteins

with similar structures and functions. Figure 3.5 shows how STRING has organized this

data.

Figure 3.5: Below and above this diagram, the names of some genes are reported, on the left the phy-

logenetic tree. The colored squares indicate the presence of the gene in the correspondent clade. The

color denotes, for the gene of interest, the similarity of the nucleotide sequence with that one of a given

genome contained in STRING. For groups of genomes that have collapsed into the phylogenetic tree, two

distinct colors indicate the lowest and the highest similarity observed in that clade.

At the base there is a phylogenetic tree built through cladistic methods: the living

are classified on the basis of the degree of kinship, or on the distance in time of the last

common ancestor; organisms are divided in clades, i.e. groups having a common ancestor

and all its descendants. For each gene of a given organism we check in what other

organisms it is present and with what similarity. In this channel, STRING evaluates the

phylogenetic distribution of orthologs of all genes in a given organism. If two genes show

a high similarity in this distribution, that is their orthologs are present or absent roughly

in the same subsets of organism, then a high score of the co-occurence channel is assigned.

3.3.2 COG categories enrichment

To conduct functional enrichment, each gene whose upstream intergenic region was clus-

tered in one of the three clusters was assigned to a specific functional category using a

BLAST [67] search against the COG database [68], with default parameters and consider-

ing a hit as significant if E-value < 1e−20. The exact binomial test implemented in the R
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package [69] was used to assess over- and under-represented functional categories against

the corresponding genomic background. The Blast2Go package [70] was used to assess

over- and under-represented GO terms in each cluster.

3.4 Comparison with other methods identifying bio-

logical functions of IGSs

Now that we have illustrated our method for classifying IGSs a priori on the basis of

structural properties and a posteriori on the one of biological functionalities, it makes

sense to compare it with other similar methods, in particular the ones already mentioned

in [28, 29, 30, 31, 32, 33], to highlight the differences. In [28, 29, 30] noncoding conserved

sequences are taken into consideration. In [28] it is shown that conserved noncoding

segments contain an enrichment of transcription factor binding sites, when compared to

the sequence background in which the conserved segments are located and that this en-

richment of binding sites was not observed in coding sequences. Also the comparative

sequence analysis executed in [29] for identifying sequences that are conserved across

multiple species revealed substantial fraction of the bases within this sequences (approx-

imately 70%) resides within noncoding regions. Initial characterization of these “Multi-

species Conserved Sequences” has revealed sequences that correspond to clusters of tran-

scription factor-binding sites, noncoding RNA transcripts, and other candidate functional

elements. In [30] it is found that conserved noncoding sequences are significantly more

conserved than protein-coding genes and noncoding RNAs within the mammalian class,

from primates to monotremes to marsupials. The pattern of substitutions in conserved

noncoding sequences differed from that seen in protein-coding and noncoding RNA genes

and resembled that of protein-binding regions. A three-way multiple alignment between

the genomes (human, mouse and rat) carried on in [31] to detect noncoding sequences is

at the base of a graph theoretic clustering algorithm, akin to the highly successful meth-

ods used in elucidating protein sequence family relationships. The algorithm is applied

to a highly filtered set of about 700000 human-rodent evolutionarily conserved regions,

not resembling any known coding sequence. From these, roughly 12000 non-singleton

clusters have been obtained, dense in significant sequence similarities. Reference [32]

contains a method that can accurately identify pairs of functional noncoding orthologs

at evolutionarily diverged loci by searching for conserved transcription factor binding
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sites arrangements, detecting approximately 300 pairs of diverged elements that are likely

to share common ancestry and have similar regulatory activity. It can be argued that

transcription factor binding sites composition is often necessary to retain and sufficient

to predict regulatory function in the absence of overt sequence conservation, revealing

an entire class of functionally conserved, evolutionarily diverged regulatory elements. In

[33] a comparative method for genome-wide identification of families of regulatory RNA

structures had been proposed: it has been applied to a 41-way genomic vertebrate align-

ment in order to find regulatory RNA structures that are often members of families with

multiple paralogous instances across the genome. Family members share functional and

structural properties, which allow them to be studied as a whole, facilitating both bio-

informatic and experimental characterization. Known families identified include both

noncoding RNAs and cis-regulatory structures. They also identify tens of new families

supported by strong evolutionary evidence and other statistical evidence, such as GO term

enrichments. These findings exemplify the diversity of post-transcriptional regulation and

provide a resource for further characterization of new regulatory mechanisms and families

of noncoding RNAs.

In the light of the methods described above, ours differs significantly from all of them,

because it aims at the identification of structural elements or properties inherent the

whole set of IGSs inside a species and, then, at a comparison among different species. In

particular, the three main identifying features of our method are listed hereafter.

1- The object of our research, the IGSs, are sequences of DNA upstream the TSS,

charged with regulation at its very first step, since it is noncoding non-transcribed

DNA (unlike noncoding RNA).

2- IGSs belonging to the same organism are considered and the structural similarities

are identified among sequences upstream the TSS unambiguously determined by the

identification procedure, regardless of whether they are conserved or not.

3- The IGSs are 175-bps long and the alignment procedure takes into consideration the

whole sequence globally in its length without focusing specifically on the transcrip-

tion factor binding sites allowing a correspondence between functional properties

and large-scale structural features.
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Chapter 4

Thermodynamics of DNA

denaturation in a model of bacterial

intergenic sequences

In the past decades DNA denaturation attracted the interest of various researchers, which

introduced and studied statistical and dynamical models of this fundamental biological

process. In a historical perspective one basic step in this direction was accomplished by

the celebrated Lifson-Poland-Scheraga (LPS) model [71], where the mechanism of denat-

uration was described by a simplified stochastic dynamics of H-bonds breaking, driven

by thermal fluctuations. The statistical mechanics of this model has been widely in-

vestigated, since the crucial feature of the LPS model is that the effective interaction is

long-ranged, so that this 1D model may exhibit a true phase transition. The nature of this

phase transition has been a longly debated problem. In fact, it depends on the long-range

parameter, usually denoted by α, and also on the presence of disorder as a manifesta-

tion of the random-like structure in the sequence of weak and strong bases forming the

DNA double-strand structure. The present scenario can be summarized as follows. The

homogeneous LPS-model exhibits a continuous phase transition for 1 < α < 2, while the

transition turns to a first-order one for α > 2 [72]. When structural weak disorder is

considered it has been rigorously proven that the phase transition is continuous for any

value of α [73]. This notwithstanding, even an approximate estimate of the values of the

critical exponents in the disordered case for α > 2 is still an open problem (e.g., see [74]).

Anyway, it has been shown that the LPS model identifies an universality class of wetting

processes, that are equivalent to specific random walk processes in the upper half-plane
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(e.g., see [73, 74]). The dynamics and statistics of various models of DNA denatura-

tion, taking into account explicitly its 3D structure, have been also widely investigated

by numerical simulations, e.g. see [75, 76, 77, 78, 79, 80, 81]. All of these studies have

pointed out again the difficulty of a clear-cut identification of the order of the phase tran-

sition (e.g., see [82]). Experimental studies on DNA denaturation also seem to confirm

the ambiguities inherent the identification of the denaturation phase transition (e.g., see

[83, 84, 85]). One can argue that this is due to various factors affecting experimental

studies, including the way experimental protocols are defined, finite size effects, etc. An

alternative approach to DNA denaturation relies on a dynamical description, where this

process can be represented as a crossover between different dynamical regimes of relatively

short strands, rather than a true thermodynamic transition, which, by definition, stems

from the singularities inherent the thermodynamic limit. The basic features of the LPS

model has provided inspiration also for the definition of dynamical models. For instance,

a stochastic dynamics of the LPS model has been analyzed in [86], pointing out that above

the critical temperature the system undergoes a gelation phenomenon, i.e. relaxation to

equilibrium in a finite time, due to the long-range nature of the interaction. Hamiltonian

models of DNA denaturation, where the nature of both the stacking and the basis interac-

tions forces acting in a double strand together with isotopic disorder effects are explicitly

taken into account, have also been proposed in the past. Among these models the most

popular is certainly the Peyrard-Bishop one [87] (see also [88]). The LPS approach has

inspired further refinements of this model aiming at introducing a cooperative effect in

bond denaturation by a suitable nonlinear contribution to the base-pair stacking interac-

tion potential [89]. The importance of this ingredient is that, while previous models, like

the Peyrard-Bishop one [87], required unrealistically weak stacking interactions to avoid a

too high denaturation temperature, it increases significantly the entropy associated with

melting and, accordingly, it lowers the denaturation temperature in such a way that more

realistic stacking potential parameters can be used. The adequacy of this phenomenolog-

ical model for describing the melting transition in short oligonucleotides made of a few

tens of base-pairs (bps) has been checked in [90]. It is also important to mention that the

presence of the melting transition in DNA is reproduced also by this class of Hamiltonian

models on the basis of statistical mechanics arguments. In fact, despite the short-range

nature of interactions in such 1D models, a true phase transition can be characterized

by an entropic stabilization of a nonlinear field configuration, i.e. a soliton-like domain

wall, with macroscopic energy content [91, 92]. This peculiar condensation phenomenon
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is analogous to the gelation process outlined in [86] for the stochastic dynamics of the

LPS model. A recent and complete review about the physical aspects concerning DNA

dynamics is available in [93].

In this thesis we adopt the same model introduced in [89], together with the physical

values of its phenomenological parameters. In particular, in this manuscript we want to

study the phenomenon of denaturation in DNA IGSs of different bacterial species, ex-

tracted from the NCBI database [12]. In section 4.1 we shortly review the main features

of the model applied to the IGS identified in chapter 2. In fact, these IGSs correspond

to the DNA regions containing relevant motifs of gene expression and regulation. Study-

ing the features of their denaturation process is particularly important for understanding

the suitable thermodynamic conditions under which the transcription process of the genes

they regulate can be efficiently performed. The protocol employed for studying the denat-

uration process in these IGSs is described in section 4.2. The results obtained for E. coli

are illustrated in subsection 4.2.1, while the ones obtained for different bacterial species

are shown in subsection 4.2.2, where we also comment on the similarities and differences

among IGSs of bacteria living in different environments, that influence significantly their

metabolism.

4.1 The Model of bacterial IGSs

The model adopted in this paper is the one introduced in [89], describing a simplified

double-strand dynamics of DNA. It represents interacting nucleotides A,T, G and C as

mass points displaced along two chains with longitudinal and transverse interactions.

The displacement of the i-th nucleotide from its equilibrium position is denoted by wi

on the upper strand and by vi on the lower one. The interaction between neighboring

nucleotides on the same strand is characterized by a stacking potential, containing a

harmonic component and an effective nonlinear interaction, yielding a cooperative effect in

the denaturation process. As discussed in [89], this is a crucial ingredient for observing the

denaturation phase transition in this one-dimensional model. The transverse interaction

between bps is governed by a Morse potential, that is designed for including the effect

due to hydrogen bonds and also the repulsive interaction of the phosphate groups, partly

screened by the sorrounding solvent action.

Since in this manuscript we are interested to analyze the thermodynamics of the

denaturation process in real IGSs of bacterial species, we have explicitly taken into account
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that the four different nucleotides have different masses: the symbols m+
i and m−i denote

the mass of the i-th nucleotide in the upper and lower strands, respectively, i = 1, . . . , N

labelling the N bps along the double strand.

Now we illustrate the passages yielding the Hamiltonian used for this thesis. From

[87], the system is described by the Hamiltonian

H =
∑
i

[
1

2
mẋ2i +

k

2
(xi+1 − xi)2

]
+[

1

2
mẏ2i +

k

2
(yi+1 − yi)2 +Di(e

−aiyi − 1)2
]
,

(4.1)

where xi = (wi + vi)/
√

2, yi = (wi − vi)/
√

2 and m is the average mass of the four

nucleotides. Let’s add the stacking potential as in [89], which takes into account the

interaction between the electronic distributions of adjacent bases:

H =
∑
i

[
1

2
mẋ2i +

k

2
(xi+1 − xi)2

]
+[

1

2
mẏ2i +

k

2
(1 + ρe−α(yi+1+yi))(yi+1 − yi)2+

Di(e
−aiyi − 1)2

]
(4.2)

Let’s recover the degeneracy in the masses of the four nucleotides and, writing the Hamil-

tonian with the real coordinates and momenta, it becomes

H =
∑
i

1

2
m+
i ẇ

2
i +

k

2
(wi+1 − wi)2+

1

2
m−i v̇

2
i +

k

2
(vi+1 − vi)2+

k

2
ρ exp

(
−αwi+1 + wi − vi+1 − vi√

2

)
×
(
wi+1 − wi + vi+1 − vi√

2

)2

+

Di

(
exp

(
−ai

wi − vi√
2

)
− 1

)2

,

(4.3)

where m+
i and m−i are the masses of the nucleotide in the position i on the upper and

lower strand respectively. The complete Hamiltonian reads

H =
N∑
i=1

(
H+
h (i) +H−h (i) + V (i)

)
, (4.4)
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where

H+
h (i) =

1

2
m+
i ẇ

2
i +

k

2
(wi+1 − wi)2 (4.5)

is the harmonic energy of the upper strand,

H−h (i) =
1

2
m−i v̇

2
i +

k

2
(vi+1 − vi)2 (4.6)

is the harmonic energy of the lower strand and

V (i) =
k

2
ρ exp

(
− α√

2
(wi+1 + wi − vi+1 − vi)

)
×

1

2
(wi+1 − wi − vi+1 + vi)

2 +

Di

(
exp

(
−ai

wi − vi√
2

)
− 1

)2

.

(4.7)

The first term in the above equation stems from the stacking interaction, while the sec-

ond one is the Morse potential. Notice that we have to rewrite the overall Hamiltonian

introduced in [89] as a function of the real particle coordinates, because considering dif-

ferent nucleotide masses does not allow us to use the reduced form of the Hamiltonian

therein reported. Another consequence of this choice is that the spectrum of linear waves,

obtained via the harmonic approximation, contains an (almost) acoustic component, cor-

responding to slow collective motion of the backbone. As shown later, this will affect the

low-frequency dynamics in the non-denaturated phase.

The values of the physical parameters have been borrowed from [90]: k = 0.025 eV/Å2,

ρ = 2, α = 0.35 Å−1, DAT = 0.05 eV, DGC = 0.075 eV, aAT = 4.2 Å−1 and aGC = 6.9

Å−1. The masses of the four nucleotides are known to take the values mA = 0.0343 eV

ps2/Å2, mT = 0.0333 eV ps2/Å2, mG = 0.0360 eV ps2/Å2 and mC = 0.0318 eV ps2/Å2.

The IGSs of bacteria species have been selected according to the procedure described

in chapter 2. In what follows we investigate the thermodynamics of denaturation of these

IGSs. Due to their structural differences, we expect that also the denaturation tempera-

ture should be different for IGSs belonging to the three structural clusters. Moreover, our

study will concern various bacterial species, in order to point out that the denaturation

transition in their IGSs is significantly correlated to their structural features.

54



4.2 The denaturation dynamics

All numerical simulations of model (4.4) reported in this paper have been performed by

imposing periodic boundary conditions. This choice is appropriate, because the IGSs are

portions of longer chains, so that neither free nor fixed boundary conditions can be consid-

ered close to the real conditions in DNA. For instance, we have checked that free boundary

conditions fasten the denaturation process, while fixed boundary conditions anomalously

favour the process of bps recombination, thus yielding unrealistic underestimates and

overestimates, respectively, of the denaturation temperature (data not reported).

Molecular dynamics has been performed making use of a symplectic integration algo-

rithm, based on the fourth order Runge-Kutta method with coefficients taken from [94].

Initial conditions have been sampled by choosing typical thermal configurations from a

canonical Gibbs distribution. Most of the simulations reported in this paper correspond

to a canonical setup, i.e. the temperature of the double-chain is fixed by putting in con-

tact its dynamical variables with a thermal reservoir. For this purpose we have adopted

a standard scheme of a Maxwellian thermostat [95]. More precisely, the velocities of all

mass particles (nucleotides) at integer multiples of a given time interval tth are updated

by assigning them new values drawn from a Maxwell-Boltzmann distribution at given

temperature T . Between two actions of the thermostat, energy is conserved thanks to

the symplectic integration algorithm. As we shall discuss in detail in the following sec-

tion, we have also performed some molecular dynamics simulations in a microcanonical

setup, i.e. making the double-chain evolve deterministically, after having switched-off the

thermostat.

Suitable time scales for the molecular dynamics simulations can be tuned by consider-

ing the typical frequencies present in model (4.4). Given the adopted physical parameters

of the model, one can easily realize that there is a minimum and a maximum frequency,

namely

νmin =
1

N

√
k

m̄
≈ 5× 106 Hz (4.8)

νmax =
1

2π

√
2DGCa2GC

mC

≈ 2.4× 109 Hz , (4.9)

where m̄ = 0.0339 eV ps2/Å2 is the average mass of nucleotides. The former corresponds

to a period T = 1
νmin

= 203 ps, which indicates the minimum duration for any meaningful
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simulation run, while the latter, according to the Nyquist-Shannon theorem, allows to es-

timate a lower bound for the sampling frequency νs > 2νmax, implying that the sampling

time interval ts = ν−1s has to be smaller than 0.21 ps: ts = 0.2 ps has been chosen hence-

forth. Anyway, we have checked that in all the explored range of parameters this choice

guarantees a sufficient statistical sampling, while avoiding the storage of exceedingly large

data sets.

The integration time step ∆t of the symplectic integration algorithm must be suffi-

ciently smaller than ts: we have taken ∆t = 10−2 ps, because it allows to keep energy

conservation up to the sixth significative figure.

One further important time scale to be properly tuned in the canonical setup is tth,

i.e. the time interval between successive actions of the thermal reservoir. In order to cope

with this task we have performed preliminary molecular dynamics simulations in both

setups by measuring the (unnormalized) dynamical structure factor of the coordinate of

the upper strand for an IGS of E. coli,

Sw(k, ν) =

〈∣∣∣∣∣
∫ τ

0

N∑
j=1

wj(t)e
i2π(νt− k

N
j)dt

∣∣∣∣∣
2〉

, (4.10)

where τ is the total integration time and the brackets represent an average over an en-

semble of independent molecular dynamics trajectories of the same IGS in the dynamical

phase below the denaturation transition1. The choice of measuring Sw(k, ν) is not a prej-

udice of generality, since very similar results are obtained by measuring the structure

factor of the coordinate of the lower strand.

The upper panel of Figure 4.1 shows Sw(k, ν) for the isolated double-chain: as expected

the peaks in the low frequency region correspond to νmin and its harmonics, while in the

high frequency region one can single out fast decay tails immediately after νmax. The

three lower panels, from top to bottom, show the same quantity for canonical simulations

with tth = 102, 10 and 1 ps. For tth = 102 ps some spectral components of the isolated

chain are still distinguishable, but the thermalization process results to be extremely

slow (i.e. O(108∆t)). The high-frequency spectrum of the isolated double-chain is still

reasonably reproduced for tth = 10 ps and the thermalization time results to be two

orders of magnitude smaller (i.e. O(106∆t)). Upon this outcome, this appears as a

suitable compromise for a thermalized dynamics keeping relevant dynamical features of

1In the calculation of the structure factor the wi has been subtracted by their average value to avoid
a peak at zero frequency.
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the double-chain, while allowing a reasonable thermalization time. In fact, in the third

case, tth = 1 ps, an even faster thermalization is attained, but the price to pay is the

wiping of any signature of the deterministic dynamics of the double-chain. In summary,

this spectral analysis allows one to properly tune, with respect to the typical time scales

of the model, the response time of the thermostat in canonical molecular dynamics.

(a) (b)

(c) (d)

Figure 4.1: E. coli. The structure factor Sw(k, ν) of the upper-strand coordinates of an IGS for different

values of the time scale tth of the thermal reservoir: isolated chain (a), tth = 100 ps (b), tth = 10 ps

(c) and tth = 1 ps (d). The dashed line on the left and the dot-dashed line on the right single out the

values of νmin and νmax, respectively. In each panel we report data for some of lowest wavenumber values

k = 1, 2, 4, 8 (long-wavelength limit). Averages have been performed over 25 independent molecular

dynamics trajectories. Simulation parameters are ∆t = 10−3 ps, run time tI = 1628 ps, ts = 10−2 ps.

Since we aim at characterizing the denaturation process in bacteria IGSs, modeled

by Hamiltonian (4.4), we have to establish a microscopic condition for bps denaturation.

Making reference to the adopted physical parameters, we use the common criterion [87, 89,

90] that the chemical bond at site i is open (or denaturated) if the relative displacement

of the nucleotides in the asymmetric Morse potential (see (4.7)) overtakes a given typical

length, specifically

(wi − vi)/
√

2 > 2Å . (4.11)
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In fact, this choice is equivalent to a dynamical configuration, where the interaction force

originated by the Morse potential in (4.7) becomes negligible.

In order to characterize the denaturation dynamics of an IGS of length N we consider

three different indicators:

• the one that indicates if the IGS is denaturated or not

D(t) =


1 if the sequence

is fully denaturated at time t,

0 otherwise;

(4.12)

• the relative length of the largest open bubble at time t

b(t) =
1

N

∑
i∈Sb

δi(t) , (4.13)

where Sb represents the support of the largest open bubble at time t and

δi(t) =

1 if the bond at site i is open,

0 otherwise;

(4.14)

• the one that indicates if the transcription bubble (the first 14 bps upstream the

TSS) is open or not

c(t) =


1 if the trascription bubble

is fully denaturated at time t,

0 otherwise.

(4.15)

The first quantity, D(t), is a natural order parameter of the denaturation transition and

provides a global statistical measure of the denaturated configuration. The “bubble” order

parameter b(t) aims at catching the role of entropic, i.e. configurational, fluctuations in

the denaturation process, while c(t) points directly to a specific feature associated with the

denaturation of the IGS region, where the RNA-polymerase can intrude the double-chain

to start the gene transcription process [96].
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4.2.1 Denaturation for IGSs of E. coli

In this section we first focus our study on the canonical setup for the dynamics of the

IGSs of E. coli. In particular, we study the denaturation transition by averaging over a

subset of typical sequences belonging to the three clusters C0, C1 and C2 introduced in

chapter 2. In particular, in order to obtain an effective statistical sampling, we have chosen

Ns different IGSs from each cluster and we have studied their denaturation dynamics for

different values of the thermostat temperature T . The numerical protocol adopted for

measuring 〈D〉 has been worked out by considering for any value of T the fraction of

IGSs that are fully denaturated in the set of the chosen IGSs, whose dynamics has been

sampled at integer multiples of the sampling time ts = 0.2 ps, over an integration time

tI ∼ O(106∆t) = O(104) ps. In fact, this choice of tI guarantees that any IGS has

reached a thermal equilibrium state for every value of T in the explored range around the

denaturation transition temperature Td. In order to improve the statistics we have also

averaged over Nr different realizations of the dynamics of each IGS, in formulae

〈D〉 =
ts
tI

1

Ns

1

Nr

Nr∑
j=1

Ns∑
m=1

tI/ts∑
n=1

D(j)
m (n) , (4.16)

where D
(j)
m (n) is the quantity defined in (4.12) for the j-th realization of the m-th sequence

at discrete time n. The results are reported in Figure 4.2, where the error bars have been

computed as the standard error of the mean defined by the formula

σD =

√√√√∑Nr
j=1

∑Ns
m=1

(
〈D(j)

m 〉 − 〈D〉
)2

(NsNr − 1)(NsNr)
, (4.17)

where

〈D(j)
m 〉 =

ts
tI

tI/ts∑
n=1

D(j)
m (n) . (4.18)

By adopting the criterion of identifying Td when 〈D〉 = 0.5, we observe that the

structural features of the three clusters identify three different values of Td. More precisely,

IGSs from clusters C1 and C2 have very close values of Td, because of their structural

similarity, while Td for the IGSs from cluster C0 is significantly smaller. Anyway, for all

clusters Td is found to be close to 350 K, quite a realistic temperature for the thermal

denaturation of a DNA strand. It is important to point out that the minimum energy

involved in the process of a single bond breaking, 0.050 eV, is significantly larger than the
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energetic equivalent of the denaturation temperature kBTd ≈ 0.030 eV, thus confirming

that even in relatively short IGSs, like those of E. coli (and also of other bacterial species,

as we show hereafter), the thermal denaturation process is a cooperative dynamical effect,

which is driven by statistical fluctuations.

Figure 4.2: E. coli. The average fraction of denaturated IGSs 〈D〉 of the three different clusters, C0,

C1 and C2, as a function of temperature T . The parameters adopted in these numerical simulations are

tI = 106∆t, Ns = 18 and Nr = 20.

In order to obtain a complete characterization of the thermodynamics of denatura-

tion in bacteria IGSs we have performed also molecular dynamics simulation of isolated

double-chains, i.e. in a microcanonical setup. As we have pointed out in the introduction,

a comparison between the results obtained by the canonical setup and by the microcanon-

ical one is worthwhile, because the presence of a phase transition in the thermodynamic

limit for the 1D model (4.4) does not guarantee for the statistical ensemble equivalence

and one could expect to recover some trace of such inequivalence also in the denatura-

tion dynamics. In order to save computational time we limit this analysis to the set of

sequences, belonging to the cluster C0 of E. coli. In Figure 4.3 we compare the denatu-

ration curves in the canonical and in the microcanonical ensembles: the difference in the

denaturation temperatures is sizeable.
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Figure 4.3: E. coli. The average fraction of denaturated intergenic sequences 〈D〉 from cluster C0 for

different values of the temperature T . In this figure we compare the results obtained by the canonical (red)

and the microcanonical (blue) setups. We observe a remarkable difference, which is due to the crucial

effect played by thermal fluctuations in determining the denaturation transition, driven by cooperative

interactions between nucleotides. The parameters adopted in these numerical simulations are tI = 106∆t,

Ns = 6 for cluster, Nr = 15.

This result can be interpreted by considering that the denaturation transition in the

canonical ensemble of model (4.4) is due to the entropic stabilization of a soliton-like

domain wall, which contains a finite amount of the macroscopic energy [91, 92]. Such

a condensation phenomenon may not necessarily occur in a microcanonical description,

where energy conservation does not allow for the large amplitude fluctuations induced by

the contact of the double-chain with a thermal reservoir. Accordingly, one can conjecture

that the cooperative effect of fluctuations in determining the denaturation transition could

be significantly weakened in a microcanonical scenario. For finite double-chains, like those

considered in this paper, the finding of different denaturation temperatures in the two

setups provides a partial confirmation of this conjecture.

We have also studied the denaturation dynamics in the canonical setup by performing

the same kind of statistical measurements for the average extension of the largest bubble,

〈b〉, and of the denaturation of the transcription bubble, 〈c〉, as defined in (4.16) by

replacing D(t) with b(t) and c(t), respectively. The results obtained for 〈b〉 are shown

in Figure 4.4, together with the corresponding standard error of the mean σb . We can

assume that Td in the three clusters can be identified looking by the position of the peaks

of σb: actually, the higher the fluctuations of the largest bubble the closer we are to Td.

We can observe that the estimates of Td are in very good agreement with those obtained
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by the heuristic criterion adopted for 〈D〉.

Figure 4.4: E. coli. The average value (upper panel) and the variance (lower panel) of the largest bubble

length from the three different clusters, C0, C1 and C2, for different values of the temperature T , expressed

in K degrees. The parameters adopted in these numerical simulations are the same of Figure 4.2.

For what concerns 〈c〉 (see Figure 4.5) we find that Td, identified as the value at which

half of the configurations have the transcription bubble denaturated (i.e. 〈c〉 = 0.5), is

slightly smaller than the estimate obtained by the previous statistical analyses. This is

due to the increasing gradient of weak basis in this region (see section 2.3), although the

actual values are very close to the previous ones. We can conclude that in the canonical

setup the identification of Td doesn’t depend significantly on the choice of the indicator.
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Figure 4.5: E. coli. The average fraction of the denaturated transcription bubble 〈c〉 of intergenic se-

quences from the three different clusters, C0, C1 and C2, for different values of the temperature T ,

expressed in K degrees. The parameters adopted in these numerical simulations are the same of Fig-

ure 4.2.

Specific heats and caloric curves

For completeness here we discuss another method for determining the denaturation tem-

perature. Through the fluctuation-dissipation relation, let us define the specific heat for

a single IGS:

C =
〈E2〉 − 〈E〉2

NkBT 2
, (4.19)

where E is the total energy of the system and the average is made on temporal sampling

and on Nr different realizations of the dynamics. Due to finite size effects, this quantity

signals the occurrence of a phase transition exhibiting a bump a the critical value of the

temperature. We execute the same calculation for one IGS for each cluster of E. coli. From

Figure 4.6 we can see that the three curves obtained from a polynomial fit of the real

values of C have the desired shape and provide comparable denaturation temperatures.
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Figure 4.6: E. coli. Specific heat of the three different clusters, C0, C1 and C2, as a function of tempera-

ture T . The circles correspond to the values obtained by the numerical simulations, the continuous lines

to the best polynomial fit. The parameters adopted in these numerical simulations are tI = 106∆t and

Nr = 20.

We also report the caloric curves (see Figure 4.7), one for each cluster. All three

have two branches with a defined slope corresponding to the two distinct phases, the

non-denatured one at low energies and the denatured one at high energies, connected by

flatter segment that corresponds to the position of the bump of the specific heat C.
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Figure 4.7: E. coli. Caloric curves of the three different clusters, C0, C1 and C2. The circles correspond

to the values obtained by the numerical simulations, the continuous lines to the best polynomial fit. The

parameters adopted in these numerical simulations are tI = 106∆t and Nr = 20.
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4.2.2 Other bacterial species

We have compared the results obtained for E. coli IGSs with those of three other bacterial

species, namely B. subtilis, P. haloplanktis and S. coelicolor. The BCA of the first three

species are also reported in the figures of section 2.3 and section 2.4. Here we show the

BCA of the fourth bacterium, S. coelicolor (see Figure 4.8).
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Figure 4.8: S. coelicolor. BCA of the IGSs: on the vertical axis we report the density ρx(`) of each of

the four nucleotides x = A (blue), T(red), G (yellow), C (purple) as a function of the position ` along

the annotated 8022 IGSs.

As a first step of this comparison, in Figure 4.9 we report 〈D〉, averaged over the

whole samples of the IGSs for each species. The Td of B. subtilis and P. haloplanktis are

quite close to each other, but a bit smaller than the Td of E. coli. This is consistent with

the strong similarity of the BCA of the former two species (see again section 2.4), while

the moderately higher contribution of strong bases in the BCA of E. coli yields a higher

value of Td. The IGSs of the fourth species, S. coelicolor, exhibits very different structural

properties, not only because of the dominance of the strong bases with respect to the

weak ones (see Figure 4.8), but also because the clustering procedure identifies a single

gigantic cluster containing most of the IGSs. In fact, for this species we obtain Td ≈ 363

K, which is definitely higher than the Td of the other species. Altogether, this statistical

studies confirm that the estimate of Td is consistent also in these bacterial species, as we

have observed for E. coli.

For what concerns the division in clusters we can see almost the same scenario for

E. coli and P. haloplanktis (compare Figure 4.2 and Figure 4.11), while for B. subtilis (see
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Figure 4.10) the cluster C1 exhibits a lower denaturation temperature respect to the other

two (for E. coli and P. haloplanktis this role is played by cluster C0); the cause could be

attributed to a higher concentration of the nucleotide T respect to the one of A, and of C

respect to the one of G. In fact, between the two weak bases T has the smallest mass, the

same is true for C for the strong bases. This fact makes understand the importance of

the difference of the masses among the four nucleotides in the denaturation process which

should not only be attributed to the number of covalent bonds between the two strands,

and therefore to the mere division between weak and strong bases.

Figure 4.9: The average fraction of denaturated intergenic sequences 〈D〉 of E. coli, B. subtilis, P. halo-

planktis and S. coelicolor for different values of the temperature T , expressed in K degrees. The param-

eters adopted in these numerical simulations are tI = 106∆t, Ns = 6 and Nr = 20.

In order to provide further details about the denaturation indicator 〈D〉 for different

clusters, hereafter we report the data for B. subtilis (see Figure 4.10) and P. haloplanktis

(see Figure 4.11).
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Figure 4.10: B. subtilis. The average fraction of denaturated intergenic sequences 〈D〉 of the three

different clusters, C0, C1 and C2, as a function of temperature T . The parameters adopted in these

numerical simulations are tI = 106∆t, Ns = 12 and Nr = 15.

Figure 4.11: P. haloplanktis. The average fraction of denaturated intergenic sequences 〈D〉 of the three

different clusters, C0, C1 and C2, as a function of temperature T . The parameters adopted in these

numerical simulations are tI = 106∆t, Ns = 12 and Nr = 15.

Finally, for the indicators 〈b〉 and 〈c〉 of the other species qualitatively similar results

to E. coli are found (data not reported).
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4.3 Final remarks

In the physical literature devoted to the study of DNA denaturation much attention

has been attracted by the definition of suitable model ingredients able to capture the

cooperativeness intrinsic to this phenomenon. A systematic analysis of this phenomenon

for IGSs preceding the TSS of coding sequences (genes) to our knowledge was still lacking.

In this thesis, we have focused our attention on IGSs of several bacterial species.

They extend over a not too large number of nucleotides (typically 175 bps), thus making

possible a careful and extended computational study of the denaturation process. Our

numerical simulations confirm that thermal fluctuations play a crucial role in amplifying

the collective effects ruling denaturation, while indicating that the actual denaturation

temperature is associated to the structural features of the IGSs. For instance, specific

algorithms allow to group the IGSs of E. coli and other bacterial species into three simi-

lar populations, each one characterized by different structural features and, accordingly,

different values of the typical denaturation temperature. Moreover, we have reported the

study of a peculiar bacterial species (S. coelicolor), whose IGSs are characterized by a

dominance of strong nucleotides (C- and G-type). In this case the adopted model con-

sistently predicts a sensibly higher denaturation temperature, with respect to the other

bacterial species, where the structure of IGSs is dominated by weak nucleotides (A- and

T-type).

Similar studies could be extended to any other species along the phylogenetic tree,

although in eukaryotes the relatively large extension of IGSs, even limited to promoters,

would demand a considerable computational effort to be properly worked out.
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Chapter 5

Features of BCA in eukaryotes for

coding and noncoding regions

In the previous chapters we dealt with IGSs of prokaryotic organisms. Among the various

features we have found that, due for the peculiarities of the genome consisting largely of

coding regions, we have considered few hundred bps upstream the TSS to find sequences

that are significantly distinct from the coding ones. In eukaryotes the situation is com-

pletely upside down (i.e. in H. sapiens noncoding DNA is approximately 98% of the

genome [97]), so it makes sense to examine several hundred bps long IGSs.

In the first part of the present chapter we try to find common features between non-

coding regions of different eukaryotic organisms by analyzing their BCA. We show that

some conservation laws exist in the abundance of the four nucleotides. Besides, we notice

that the density profile of the weak nucleotides and the strong ones is not randomly ar-

ranged in the non coding sequences upstream the TSS, but it has a very specific functional

dependence on the distance from the TSS. Surprisingly, we highlight that this function is

the same for all the eukaryotes, unless the parameters contained in the function itself.

In the second part of the chapter we deal with the properties of the coding regions of

Homo sapiens, in particular focusing on the well-known three-base periodicity property

of the genes. We give an explanation a posteriori, based on the different abundance of

amino acids in nature. To reinforce this conclusion we repeat the same analysis also for

E. coli.
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5.1 IGSs in eukaryotes

A promoter is a region of DNA where transcription of a gene is initiated. Eukaryotic

promoters are much more complex and diverse than prokaryotic promoters. Eukaryotic

promoters span a wide range of DNA sequences. There are three main portions that make

up a promoter: core promoter, proximal promoter, and distal promoter. The final portion

of the promoter region is called the distal promoter which is upstream of the proximal

promoter. The distal promoter also contains transcription factor binding sites, but mostly

contains regulatory elements. It is not unusual to have several regulatory elements such

as enhancers several thousands bps away from the TSS. So for eukaryotes we can consider

1000 bps as the length of IGSs. In Figure 5.1 we report the BCA of several eukaryotic

organisms (data have been download from the Eukaryotic Promoter Database [98, 99]),

the ones we have examined in this thesis.
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Figure 5.1: BCA of some eukaryotic organisms.
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We can see that, for what concerns Eukaryotes, the general feature, distinctive of their

position along the phylogenetic tree, is the presence of a positive gradient of strong bases

(CG) and a complementary negative one in the weak bases (AT). It is worth pointing out

that the BCA in eukaryotic promoters results from the merging of two different popula-

tions (obeying different statical rules, if any), i.e. the TATA-less promoters that exhibit

the above mentioned gradient and the TATA-with promoters, where a split between weak

and strong basis (in favour of the former) is observed, apart a very short region close to

the TSS. Going down the phylogenetic tree one observes that the gradient region becomes

shorter until it disappears. On the other hand, in E. coli and other similar bacteria, the

BCA of IGSs exhibits a positive gradient of weak bases (and a negative one of strong

bases), although there are exceptions, like the bacterium S. coelicolor, that lives in hot

environments.

5.1.1 Constrains in eukaryotic BCA

First of all let us introduce the discrete variable ` = −1000, ...,−1 to indicate the position

of a nucleotide along a sequence and the functions Ar(`), Tr(`), Gr(`) and Cr(`) that are

the real profiles of the nucleotide frequencies appearing in the BCA of a chosen organism.

By observing in Figure 5.1 the trends of the four nucleotides in function of the position in

different organisms we can speculate that some constraints among their abundance exist.

To better analyze this aspect we introduce also the ideal continuous functions A(`), T (`),

G(`) and C(`) (we evaluate them only in the discrete positions located by `) that respect

exactly these constraints. This is an heuristic hypothesis that we’ll verify a posteriori.

There is the obvious relation A(`) +T (`) +G(`) +C(`) = 1 due to the definition of BCA.

The other constrains we hypothesize for the continuous functions, valid for the range

` = −1000, ...,−45 (in order to avoid the TATA-box region where we can find particular

motifs), are:

1) A(`) = T (`) and G(`) = C(`),

2) A(`) + T (`) ≡ W (`) = aeb` + ced` + f ,

3) A(`) +G(`) = 0.5 and T (`) + C(`) = 0.5,

4) A(`) + C(`) = 0.5 and T (`) +G(`) = 0.5,

where a, b, c, d, f are constants that depend on the considered organisms and have been

found by a fit procedure (this aspect will be analyzed diffusely in the next section). The
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constrain 3) can be read as the abundance of the purines and pyrimidines for every position

along the chain is constant, and in particular it is 50% for both.

To quantify the correctness of the previous relations we use the following procedure

that illustrate, for simplicity, for the first one. We calculate the best fit function P20(`)

(we used a degree twenty polynomial) for the difference Ar(`)−Tr(`) and we evaluate the

corresponding chi-squared defined as

χr =

√√√√ −45∑
`=−1000

(Ar(`)− Tr(`)− P20(`))2. (5.1)

We do the same for the function that corresponds to the constraint, in this case the null

constant function, obtaining the chi-squared

χ =

√√√√ −45∑
`=−1000

(Ar(`)− Tr(`)− 0)2. (5.2)

In general, the goodness of the j-th bond relation with j = 1, 2, 3, 4 can be estimated

thanks to the parameter obtained by the ratio between the two chi-squared:

cj =
χ

χr
. (5.3)

We will say that the lower the value of cj is the better the hypothesized constrain for that

organism is imposed. In the following figures we report the cj values for every species

(similar colors indicate closer species in the phylogenetic tree).
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Figure 5.2: On the vertical axes the values of c1 are reported for different species ordered on the horizontal

axis according to the phylogenetic tree.
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Figure 5.3: On the vertical axes the values of c2 fare reported or different species ordered on the horizontal

axis according to the phylogenetic tree.
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Figure 5.4: On the vertical axes the values of c3 are reported for different species ordered on the horizontal

axis according to the phylogenetic tree.
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Figure 5.5: On the vertical axes the values of c4 are reported for different species ordered on the horizontal

axis according to the phylogenetic tree.

We can see the all the four constraints are valid in first approximation for every

studied organism. We’ll analyze in more detail the consequences represented by the

second constraint.
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5.1.2 Reproducing the spatial distribution of weak and strong

bases for the BCA of eukaryotic IGSs

In this section we consider the IGSs of each organism as binary sequence of two nucleotides:

A and T are substituted by a W, G and C by a S. The constraint 2) tells us that, for the

IGSs of an eukaryote1, the average behavior of the weak nucleotides in function of the

position along the sequence can be described in first approximation by the sum of two

exponentials translated by a proper constant. We report in Figure 5.6 the BCA for every

studied organism calculated for the binary IGSs with the fits obtained2 estimating the

parameters of the function

W (`) = aeb` + ced` + f. (5.4)

If we consider the corresponding continuous functionW (x) of the variable x ∈ [−800,−45],

we have that W (x) satisfy the following second order differential equation:

d2

dx2
W (x)− (b+ d)

d

dx
W (x) + bdW (x)− bdf = 0. (5.5)

1We can speculate that the same constraint exists also for prokaryotes but we have to reduce the
length in term of bps of the IGSs since the noncoding portion of the genome is very restricted.

2We have fitted the function Wr(`) from ` = −800 to ` = −45 to minimize boundary effects.
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Figure 5.6: BCA of weak W and strong S bases in some eukaryotic organisms. The thick yellow lines correspond to the functions

W (`) = aeb` + ced` + f .
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Each species is characterized by a different set of parameters that we can divide into

two types based on their dimensions: a, c and f with the dimension of a frequency (rate

of a nucleotide for a given position `) on one hand, b and d on the other hand that have

the dimensions of an inverse length. We can construct a three-dimensional space where

to arrange the species taken into consideration and where the coordinates are given by

the three parameters a, c and f , see Figure 5.7.

Figure 5.7: Parameter space with coordinates a, c and f .

We can do the same for the couple of parameters b and d obtaining the two-dimensional

space represented in Figure 5.8.
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Figure 5.8: Parameter space with coordinates b and d.

Now we can evaluate the euclidian distance of a point representing a species from
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the point of H. sapiens. This distance can quantify how much the species is far from

H. sapiens from an evolutive point of view. Let DC the distance in the three-dimensional

space and DL the one in the other space calculated for every organisms. In Figure 5.9

and Figure 5.10 we report the values of these distances for every species.

0
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1

Figure 5.9: On the vertical axes the values of DC are reported for different species ordered on the

horizontal axis according to the phylogenetic tree.
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Figure 5.10: On the vertical axes the values of DL are reported for different species ordered on the

horizontal axis according to the phylogenetic tree.

We can notice that the distribution of the distance DC shows a growing trend moving

away from H. sapiens, more pronounced than that of DL.

Always observing the obtained fit, we can notice that, especially for the less evolved
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organisms, the true profiles present a sort of undulation. We hypothesize that a better

fit function could be the following one with two sinusoidal modulations, one for each

exponential:

Wsin(`) = aeb`[1 + g1 sin(h1`+ φ1)] + ced`[1 + g2 sin(h2`+ φ2)] + f. (5.6)

To evaluate the goodness of the previous choice for the fit function we calculate again the

chi-squared

χsin =

√√√√ −45∑
`=−800

(Ar(`) + Tr(`)−Wsin(`))2, (5.7)

and we compare it with the corresponding chi-squared calculated for the function W (`)

(5.4):

χ =

√√√√ −45∑
`=−800

(Ar(`) + Tr(`)−W (`))2, (5.8)

The results are reported in Figure 5.11 and show an improvement with the choice of this

second fit function.

Figure 5.11: On the vertical axes the ratio of χsin/χ are reported for different species ordered on the

horizontal axis according to the phylogenetic tree.

The “new” fits obtained with the function of (5.6) are shown in Figure 5.12: the

quality of the fits is so good that it is hardly appreciable by the sides of figures.
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Figure 5.12: BCA of weak W and strong S bases in some eukaryotic organisms. The thick magenta lines correspond to the functions

Wsin(`) = aeb`[1 + g1 sin(h1` + φ1)] + ced`[1 + g2 sin(h2` + φ2)] + f . The overlap between the fit functions and the profiles of the

BCA makes the latter not clearly visible.
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Following the previous logic we can build the two artificial spaces: the second one will

become four-dimensional because we add the third and fourth coordinates to b and d,

i.e. h1 and h2, which have the same dimension. We procede with the calculation of the

distance of every species from H. sapiens point.
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Figure 5.13: On the vertical axes the values of DC are reported for different species ordered on the

horizontal axis according to the phylogenetic tree.
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Figure 5.14: On the vertical axes the values of DL are reported for different species ordered on the

horizontal axis according to the phylogenetic tree.

Now the growing trend is more pronounced also for the distance DL.

This classification based on the fits is consistent with the one of the phylogenetic tree,

even if not completely equivalent. We can conclude that the structural properties of the
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IGSs are correlated with evolution.

5.2 BCA of genes in H. sapiens and E. coli

Protein-coding DNA sequences are characterized by the long-known three-base periodicity

property. The reason for this periodicity is probably due to the biased distribution towards

codon triplets, which is a consequence of genetic code degeneracy. However, the way

in which three-base periodicity is produced has not been elucidated [100]. The initial

discovery was made in 1980 observing periodicity in DNA sequences by applying the

autocorrelation function to chromatin DNA [101]. It was confirmed by a spectral analysis

of DNA sequences defining the Fourier transform of a sequence of bases [102], and then

was compared the Fourier analysis of coding, noncoding and random sequences and was

proposed a reason for the 3-periodicity property found in coding sequences [103].

First we define the BCA of the coding sequences, aligned starting from the TSC. The

genes have different lengths in terms of base pairs, so in the BCA formula the normaliza-

tion constant also depends on the position along the sequence:

ρx(`) =
1

N(`)

N(`)∑
i=1

sxi (`). (5.9)

We consider sequences of L = 1000 nucleotide maximum length, from ` = 0 (first site

of the TSC) to ` = 999. We visualize the gene as a sequence of codons in order to identify

the first, second and third nucleotide according to the position that the occupy in the

codon which they belong to. In the panels on the left of Figure 5.15 and Figure 5.16

the BCA of a coding region are shown, respectively for H. sapiens and E. coli. The four

signals exhibits a periodic behavior. Let’s introduce now the power spectrum of the signal

of G (we could have chosen any other nucleotide):

P (k) =

∣∣∣∣∣
L−1∑
`=0

Gr(`)e
− 2πk`

L
i

∣∣∣∣∣
2

, (5.10)

where the index k of the frequency response corresponds to an angular frequency ω(k) =

2πk/N . In the panels on the right of Figure 5.15 and Figure 5.16 we report the power

spectrum of Gr(`), respectively for H. sapiens and E. coli, from which we can see that

there is a peak for k = N/3, that is ω = 2π/3 ' 2.1, corresponding to a period of 3 bps.

To better understand this aspect we can think of a gene as a discrete quaternary signal
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Figure 5.15: H. sapiens. BCA of a coding portion and relative power spectrum.
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Figure 5.16: E. coli. BCA of a coding portion and relative power spectrum.

characterized by the 3-base periodicity property. In principle, by averaging signals not in

phase but with the same periodicity, we should obtain a same periodicity signal in which

the amplitude is more decreased the greater the number of added signals. Contrary to

what we would have expected, we see from Figure 5.15 and Figure 5.16 that the BCA

maintains a clear 3-base periodicity. Moreover the same positions within a triplet exhibit

similar nucleotide frequencies. The differences of the abundance of the four nucleotides in

the three positions can be attributed to the codon usage bias, that refers to differences in

the frequency of occurrence of synonymous codons (different codons that encode the same

amino acid) in coding DNA (see data of GenScript Codon Usage Frequency database in

Figure 5.17 and Figure 5.18).

For example, we consider all the codons that have the nucleotide A in the second

position; the sum of their frequency will give the probability of finding A in the second

position of the triplette. We repeat the same calculation for all the nucleotides in every

position (values are reported in Table 5.1 and Table 5.2 in the columns indicated by 1°GS,

2°GS and 3°GS). Now we want to compare these values with the frequencies obtained in

the BCA. We calculate the average frequencies of each nucleotide for all the positions, 1°,

2° and 3°. For example, to obtain the average frequency of A in the second position in
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Figure 5.17: H. sapiens. GenScript Codon Usage Frequency Table. For each codon, the table displays

the frequency of usage of each codon (second column) and the relative frequency of each codon among

synonymous codons (first column).
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Figure 5.18: E. coli. GenScript Codon Usage Frequency Table. For each codon, the table displays

the frequency of usage of each codon (second column) and the relative frequency of each codon among

synonymous codons (first column).
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BCA data, we do the average of the frequency of A for all the 2° position in the first 1000

bps:

Ā2° =
1

N2°

∑
`∈{2°}

Ar(`), (5.11)

where the sum runs over the second position of the codons and N2° is the number of these

positions in the first 1000 bps. The corresponding error will be given by the standard

deviation. The values are reported in Table 5.1 and Table 5.2 in the columns indicated

by 1°, 2° and 3°. The values not compatible with those of the GenScript Codon Usage

Frequency database are highlighted in red.

Table 5.1: H. sapiens. The columns relative to the position with GS contain the value in percentage

obtained from GenScript Codon Usage Frequency, in the others the ones calculated from BCA.

1°GS 1° 2°GS 2° 3°GS 3°

A 26.68 26.4± 3.9 31.17 29.1± 1.7 18.88 20.8± 1.3
T 17.03 16.9± 1.1 26.44 24.7± 4.0 21.83 22.0± 1.2
G 31.65 31.6± 1.9 19.10 21.5± 1.3 29.07 28.7± 3.8
C 24.64 25.0± 1.5 23.29 24.8± 1.4 30.22 28.6± 1.8

Table 5.2: E. coli. The columns relative to the position with GS contain the value in percentage obtained

from GenScript Codon Usage Frequency, in the others the ones calculated from BCA.

1°GS 1° 2°GS 2° 3°GS 3°

A 26.24 25.2± 4.1 29.62 28.7± 2.2 19.38 18.2± 2.0
T 16.05 15.9± 1.2 29.69 30.6± 4.0 27.28 26.1± 1.9
G 34.58 34.8± 2.5 17.98 18.0± 1.4 27.84 28.9± 4.2
C 23.13 24.1± 1.6 22.71 22.6± 1.6 25.50 26.7± 1.8

We want to verify if also for coding sequences the constraints 3) and 4) of subsec-

tion 5.1.1 are respected. Results are reported in Table 5.3 and Table 5.4 (the values

highlighted in red are not compatible with the constraints). We can see that both con-

Table 5.3: H. sapiens. Constraints of the BCA

(the values are reported in percentage).

1° 2° 3°

A+G 58.1± 2.4 50.5± 2.7 49.5± 2.9
T+C 41.9± 2.4 49.5± 2.7 50.5± 2.9

A+C 51.5± 2.6 53.9± 2.9 49.3± 2.7
T+G 48.5± 2.6 46.1± 2.9 50.7± 2.7

Table 5.4: E. coli. Constraints of the BCA (the

values are reported in percentage).

1° 2° 3°

A+G 60.0± 2.4 46.7± 3.0 47.1± 3.1
T+C 40.0± 2.4 53.3± 3.0 52.9± 3.1

A+C 49.3± 2.9 51.3± 3.2 44.9± 2.7
T+G 50.7± 2.9 48.7± 3.2 55.1± 2.7

straints are not always respected, but that the validity of one often excludes the validity
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of the other. Therefore we can conclude that the type of satisfied constraint for nucleotide

abundances depends on the position considered in the codon triplet, but the sum of the

abundance of a weak base with a strong one (the purines A+G and the pyrimidines T+C

or A+C and T+G) is always compatible with 50% in all of the three positions.
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Chapter 6

Conclusions

In this thesis we have developed a method to identify for a given prokaryotic organism

same length noncoding sequences of DNA (the IGSs), that do not even undergo the

transcription process by RNA polymerase. The sequences obtained so far have been

compared pairwise and then, thanks to a clustering procedure, they have been divided

into groups based on structural similarities highlighted by BCA.

As next step we have characterized from a biological point of view the obtained clus-

ters for each organism. We have used two databases in order to do this. The first one,

STRING, has allowed us to create biological networks among the genes regulated by the

corresponding IGSs. We have built co-expression and co-occurrence networks and with

a statistical procedure we have seen which cluster gave rise to networks with different

features respect to networks created by choosing randomly IGSs. The second database

used, COG, has allowed us to univocally associate a biological function to each IGS; then,

through a functional enrichment analysis, a functional category in a cluster has been seen

to be over- or down-represented respect to the genome background. Results have high-

lighted that, for the bacteria for which we have made the previous analysis, all the clusters

(with the exception of C0 in P. haloplanktis) exhibit both over-represented and under-

represented functions. Sometimes the same function is over-represented in one cluster

and down-represented in another. Moreover for the cluster C2, the one with a greater

predominance of A, we have obtained the same identical results both for B. subtilis and

for P. haloplanktis. It would be interesting to further investigate biological correlations

using other databases and to expand the study to other prokaryotic organisms by looking

for possible similarities between IGSs belonging to different species.

Focusing on the fact that in correspondence with the IGSs the DNA is opened to begin
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transcription, we have performed a thermodynamic analysis at the denaturing process.

To model the nucleotide chain we have used the Dauxois-Peyrard-Bishop model in which,

among the various contributes to the potential energy, there is the one given by the Morse

potential which takes into account the transverse bonds between the two opposite strands,

introducing a difference for what concerns weak and strong bases. This effect is evident

in the denaturation curves obtained for E. coli, B. subtilis and P. haloplanktis compared

with that of S. coelicolor. The IGSs of the last bacterium are rich of strong bases, unlike

those of the other three that instead have a similar BCA with a predominance of weak

bases; this has the consequence of having obtained a denaturation temperature higher for

S. coelicolor. The study of the denaturing properties for individual clusters had the merit

of highlighting the importance of the changes we have made to Dauxois-Peyrard-Bishop

model. In fact, if in Dauxois-Peyrard-Bishop model the four nucleotides had the same

mass, we have introduced a “degeneration” in the masses in the symplectic algorithm

reproducing the dynamics of the chain coupled with a thermostat. The cluster C1 and C2

in B. subtilis, on the base of the division in weak and strong bases, should have provided

the same result for Td. On the other hand, we can observe that the Td is sensibly lower

for C1. In fact, among the found clusters the C1 of B. subtilis is the one with the largest

separation between T, the nucleotide with the smallest mass, and G, the nucleotide with

the biggest mass. A natural development of this line of research would be to apply

the study of denaturation dynamics to eukaryotic IGSs, although it must be taken into

account that this would involve a much higher computational cost.

For what concerns the understanding of the constraints observed in the BCA of non-

coding sequences in eukaryotes, it would be important to improve and extend this analysis

in order to reveal if and how the constraints are correlated with evolution or depending

on combination with other causes. At the present stage of the research it is a fully open

problem.
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