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A boundary value problem associated with the
difference equation with advanced argument

�
(
anΦ(�xn)

)+ bnΦ(xn+p) = 0, n ≥ 1 (∗)

is presented, where Φ(u) = |u|αsgn u, α > 0, p is a
positive integer and the sequences a, b, are positive.
We deal with a particular type of decaying solution
of (∗), that is the so-called intermediate solution (see
below for the definition). In particular, we prove the
existence of this type of solution for (∗) by reducing it
to a suitable boundary value problem associated with
a difference equation without deviating argument.
Our approach is based on a fixed-point result for
difference equations, which originates from existing
ones stated in the continuous case. Some examples
and suggestions for future research complete the
paper.

This article is part of the theme issue ‘Topological
degree and fixed point theories in differential and
difference equations’.

1. Introduction
Consider the equation

�
(
anΦ(�xn)

)+ bnΦ(xn+p) = 0, (P)

where � is the forward difference operator �xn = xn+1 −
xn, Φ is the operator Φ(u) = |u|αsgn u, α > 0, p is a positive
integer and the sequences a, b are positive for n ≥ 1,

2021 The Author(s) Published by the Royal Society. All rights reserved.

http://crossmark.crossref.org/dialog/?doi=10.1098/rsta.2019.0374&domain=pdf&date_stamp=2021-01-04
https://doi.org/10.1098/rsta/379/2191
mailto:dosla@math.muni.cz
http://orcid.org/0000-0002-6261-1419


2

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A379:20190374

................................................................

and satisfy

∞∑
i=1

Φ∗
(

1
ai

)
< ∞,

∞∑
i=1

bi = ∞, (1.1)

where Φ∗ is the inverse of the map Φ, that is Φ∗(u) = |u|1/αsgn u.
Equation (P) appears in the discretization process for searching spherically symmetric

solutions of certain nonlinear elliptic equations with weighted ϕ-Laplacian, see e.g. [1]. A special
case of (P) is the discrete half-linear equation

�
(
anΦ(�yn)

)+ bnΦ(yn+1) = 0, (H)

which has been studied extensively from various points of view, especially with regard to the
oscillation and the qualitative behaviour of non-oscillatory solutions, see [2, ch. 3] and references
therein.

As usual, a non-trivial solution x of (P) is said to be non-oscillatory if xn is either positive or
negative for any large n and oscillatory otherwise. By virtue of the Sturm separation criterion,
see e.g. [2, Section 8.2.1.], all the solutions of (H) have the same behaviour with respect to the
oscillation. In other words, either all non-trivial solutions of (H) are non-oscillatory or all the
solutions of (H) are oscillatory. Thus, equivalently, we say that (H) is non-oscillatory if (H) has a
non-oscillatory solution. Nevertheless, for equation (P) with p �= 1, the situation is different, since
in this case oscillatory solutions and non-oscillatory solutions may coexist.

In this paper, we deal with the existence of particular types of non-oscillatory solutions, that is
solutions x of (P) such that xn > 0, �xn < 0 for large n and

lim
n

xn = 0, lim
n

x[1]
n = anΦ(�xn) = −∞, (1.2)

where x[1] is called the quasi-difference of x. Solutions satisfying (1.2) are called intermediate
solutions. This terminology originates from the corresponding continuous case and is due to the
fact that, when (1.1) is satisfied, any non-oscillatory solution x of (P) satisfies either limn xn = �x �=
0, or (1.2), or limn xn = 0, limn x[1]

n = −�x, 0 < �x < ∞, see [3,4]. The investigation of intermediate
solutions is a hard problem, due to difficulties in finding suitable sharp upper and lower bounds
for these solutions, see e.g. [5, p. 241] and [6, p. 3], in which these facts are pointed out for the
continuous case.

In the half-linear case the problem of the existence of intermediate solutions has been
completely solved by the following.

Theorem 1.1. Assume (1.1).

(i1) Equation (H) does not have intermediate solutions if

∞∑
n=1

bnΦ

⎛
⎝ ∞∑

k=n+1

Φ∗
(

1
ak

)⎞⎠+
∞∑

n=1

Φ∗
(

1
an+1

n∑
k=1

bk

)
< ∞.

(i2) Equation (H) has intermediate solutions if (H) is non-oscillatory and

∞∑
n=1

bnΦ

⎛
⎝ ∞∑

k=n+1

Φ∗
(

1
ak

)⎞⎠+
∞∑

n=1

Φ∗
(

1
an+1

n∑
k=1

bk

)
= ∞.

Proof. The assertion follows from theorem 3.1 (b), (c) and theorem 3.2. in [7], with minor
changes. �
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Here, we present a comparison result which allows us to solve the boundary value problem
(BVP) ⎧⎨

⎩�(anΦ(�xn)) + bnΦ(xn+p) = 0, p > 1,

limn xn = 0, limn x[1]
n = −∞

(1.3)

by reducing it to the existence of intermediate solutions in the half-linear case. The main result is
the following.

Theorem 1.2. Assume (1.1) and

lim sup
n

bn < ∞. (1.4)

Then the BVP (1.3) is solvable, i.e. equation (P) with p > 1 has intermediate solutions, if and only if the
half-linear equation

�
(
an+p−1Φ(�yn)

)+ bnΦ(yn+1) = 0, (H 1)

has intermediate solutions.

Theorem 1.2 will be proved by means of a fixed-point result for discrete operators acting in
Fréchet spaces, see theorem 2.2.

Combining theorem 1.1 and the comparison theorem 1.2, we get necessary and sufficient
conditions for the existence of intermediate solutions of difference equation with advanced
argument.

Corollary 1.3. Assume (1.1) and (1.4).

(i1) Equation (P) with p > 1 has intermediate solutions if (H 1) is non-oscillatory and

∞∑
n=1

bnΦ

⎛
⎝ ∞∑

k=n+1

Φ∗
(

1
ak+p−1

)⎞⎠+
∞∑

n=1

Φ∗
(

1
an+p

n∑
k=1

bk

)
= ∞. (1.5)

(i2) Equation (P) with p > 1 does not have intermediate solutions if

∞∑
n=1

bnΦ

⎛
⎝ ∞∑

k=n+1

Φ∗
(

1
ak+p−1

)⎞
⎠+

∞∑
n=1

Φ∗
(

1
an+p

n∑
k=1

bk

)
< ∞.

2. Fixed-point approaches
Boundary value problems for difference equations in R

n are often solved by reducing the problem
to a fixed-point equation for a possibly nonlinear operator in a suitable function space. Thus, the
existence of a solution is obtained by applying a fixed-point theorem, for instance the Tychonoff
theorem, the Schauder theorem, the Leray–Schauder continuation principle or Krasnoselkii-
type fixed point theorems on cones. For a survey on this topic, we refer to the papers [8–10]
and the monographies [11,12]. In particular, in [12, ch. 2], see also [11, ch. 5], certain BVPs
are studied by means of a nonlinear Leray–Schauder alternative. This approach is based on a
very general method given in [13]. In particular, in [13] the authors present a Leray–Schauder
continuation principle in locally convex topological vector spaces, which unifies the Leray–
Schauder alternative theorem and the Tichonov fixed-point theorem. More precisely, let E be a
Hausdorff locally convex topological vector space with a family of seminorms generating the
topology. The following holds.

Theorem 2.1 ([13, [Theorem 1.1]]). Let Q be a convex closed subset of E and let T : Q × [0, 1] → E

be a continuous map with relatively compact image. Assume that:

(i1) T(x, 0) ∈ Q for any x ∈ Q;
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(i2) for any (x, λ) ∈ ∂Q × [0, 1) with T(x, λ) = x there exists open neighbourhoods Ux of x in E and Iλ
of λ in [0, 1) such that

T
(

(Ux ∩ ∂Q) × Iλ
)

⊂ Q.

Then the equation
x = T(x, 1)

has a solution.

Some of the above quoted results have a discrete counterpart. For instance, a method for
solving BVPs associated with difference systems is given in [10, theorem 2.1]. Due to the
peculiarities of the discrete case, it may be applied to functional difference equations, including
equations with deviating arguments or sum difference equations.

Now, we present an existence result which generalizes, in the particular case of scalar
difference equations, [10, theorem 2.1].

Denote by Nn and Nm,n, the sets

Nn = {i ∈ N : i ≥ n ∈ N}
and

Nm,n = {i ∈ Nm : i < n, m, n ∈ N, m < n}
and let X be the space of all real sequences defined on Nm. Hence X is a Frechét space with the
topology of pointwise convergence on Nm. From the discrete Arzelà–Ascoli theorem (e.g. [11,
theorem 5.3.1]), any bounded set in X is relatively compact. We recall that a set Ω ⊂ X is bounded
if and only if it consists of sequences which are equibounded on Nm,n for any n > m. Clearly, if
Ω ⊂ X is bounded, then Ω� = {�u, u ∈ Ω} is bounded, too.

Using, with minor changes, a discrete counterpart of a compactness and continuity result
stated in [14, theorem 1.3] for the continuous case, we have the following.

Theorem 2.2. Consider the BVP⎧⎨
⎩�(anΦ(�xn)) = g(n, x), n ∈ Nm

x ∈ S,
(2.1)

where g : Nm × X → R is a continuous map, and S is a subset of X.
Let G : Nm × X

2 → R be a continuous map such that G(k, u, u) = g(k, u) for all (k, u) ∈ Nm × X. If there
exist a non-empty, closed, convex set Ω ⊂ X, and a bounded, closed subset SC ⊂ S ∩ Ω such that the
problem ⎧⎨

⎩�(anΦ(�xn)) = G(n, x, q), n ∈ Nm

x ∈ SC,
(2.2)

has a unique solution for any q ∈ Ω fixed, then (2.1) has at least a solution.

Proof. Let T be the operator T : Ω → SC which maps every q ∈ Ω into the unique solution x =
T(q) of (2.2). Let us show that the operator T is continuous with relatively compact image. The
relatively compactness of T(Ω) follows immediately since SC is bounded. To prove the continuity
of T in Ω , let {qj} be a sequence in Ω , qj → q∞ ∈ Ω , and let vj = T(qj). Since T(Ω) is relatively
compact, {vj} admits a subsequence (still indicated with {vj}) which converges to v∞ ∈ X. As vj ∈
SC and SC is closed, then v∞ ∈ SC. Taking into account the continuity of G, we obtain

�(anΦ(�v∞
k )) = lim

j
�(anΦ(�v

j
k)) = lim

j
G(k, qj, vj) = G(k, q∞, v∞).

The uniqueness of the solution of (2.2) yields v∞ = T(q∞), and therefore T is continuous on Ω . By
the Tychonoff fixed-point theorem, T has at least one fixed point in Ω , which is a solution of (2.1),
as it can be easily checked, taking into account that SC ⊂ S. �
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As follows from the proof of theorem 2.2, no explicit form of the fixed-point operator is needed
for the solvability of (2.1). A key point for the unique solvability of (2.2) in theorem 2.2 is the choice
of the map G. To this aim, in our opinion, the best cases are the following two, namely

(i1) G(n, q, x) = g̃(n, q), (i2) G(n, q, x) = g̃(n, q)Φ(xn+1).

In the case (i2), the equation in (2.2) is a half-linear equation and in this situation a very large
variety of results is known, see e.g. [2, ch. VIII]. An application in this direction is in [10, Section 4].

In the case (i1), that is when the function G does not depend on x and the equation in (2.2)
is affine, theorem 2.2 can be particularly useful to solve BVPs associated to difference equations
with deviating arguments. Indeed, in this case, it can lead to a BVP associated with a second-order
difference equation without deviating argument. An application of this fact is in the following
section.

3. Proof of theorem 1.2
For proving theorem 1.2, the following auxiliary result is needed.

Lemma 3.1. Assume (1.1) and (1.4). Let x be an eventually positive decreasing solution of (P) such
that limn xn = 0. Then the series

∞∑
i=2

Φ∗
⎛
⎝ 1

ai+p−1

i−1∑
k=1

bkΦ(xk+p)

⎞
⎠

converges.

Proof. Without loss of generality, suppose 0 < xn ≤ 1, �xn < 0 for n ≥ m0 ≥ 1. We claim that for
any k, j ≥ m0 we have ∣∣∣x[1]

j − x[1]
k

∣∣∣≤ B|j − k|, (3.1)

where B = supi≥1 bi. For simplicity, suppose k ≥ j. Summing (P) we have

x[1]
k − x[1]

j = −
k−1∑
i=j

biΦ(xi+p), (3.2)

where, as usual,
∑k

i=k1
γi = 0 if k < k1. Since |xi| ≤ 1 and bi ≤ B, the inequality (3.1) follows. Further,

from (3.2),

∞∑
i=m0

Φ∗
⎛
⎝ 1

ai+p−1

i−1∑
k=m0

bkΦ(xk+p)

⎞
⎠=

∞∑
i=m0

Φ∗
(

1
ai+p−1

(
x[1]

m0 − x[1]
i

))

=
∞∑

i=m0

Φ∗
(

1
ai+p−1

(
x[1]

m0 − x[1]
i − x[1]

i+p−1 + x[1]
i+p−1

))
.

Since ∣∣∣x[1]
i − x[1]

i+p−1 + x[1]
i+p−1 − x[1]

m0

∣∣∣≤ ∣∣∣x[1]
i − x[1]

i+p−1

∣∣∣+ ∣∣∣x[1]
i+p−1

∣∣∣+ ∣∣∣x[1]
m0

∣∣∣ ,

in view of (3.1) we obtain∣∣∣∣∣∣
∞∑

i=m0

Φ∗
(

1
ai+p−1

(
x[1]

i − x[1]
m0

))∣∣∣∣∣∣≤
∞∑

i=m0

Φ∗
⎛
⎝B(p − 1) +

∣∣∣x[1]
m0

∣∣∣
ai+p−1

+

∣∣∣x[1]
i+p−1

∣∣∣
ai+p−1

⎞
⎠ .

In virtue of (1.1), the series
∞∑

i=m0

Φ∗
⎛
⎝B(p − 1) +

∣∣∣x[1]
m0

∣∣∣
ai+p−1

⎞
⎠
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converges. Since

∞∑
i=m0

Φ∗
⎛
⎝
∣∣∣x[1]

i+p−1

∣∣∣
ai+p−1

⎞
⎠= −

∞∑
i=m0

�xi+p−1 = xm0+p−1,

using (1.1) and the inequality

Φ∗(X + Y) ≤ σα(Φ∗(X) + Φ∗(Y)),

where

σα =
{

1 if α ≥ 1

2(1−α)/α if α < 1
,

we obtain the assertion. �

Proof of theorem 1.2. First, we prove that if (P) has intermediate solutions, then (H 1) has
intermediate solutions.

Let x be an intermediate solution of (P) and, without loss of generality, assume for n ≥ n0 ≥ 1

0 < xn < 1, �xn < 0. (3.3)

In view of (1.4), there exists L > 0 such that for any n ≥ n0

n+p−2∑
i=n

bi ≤ L. (3.4)

Moreover, let M be a positive constant, M < 1, such that

Φ(M) ≤

∣∣∣x[1]
n0

∣∣∣
L +

∣∣∣x[1]
n0

∣∣∣ . (3.5)

Let X be the Fréchet space of real sequences defined for n ≥ n0, endowed with the topology of
convergence on Nn0 , and consider the subset Ω ⊂ X defined by

Ω = {
u ∈ X : Mxn+p−1 ≤ un ≤ xn+p−1

}
.

For any u ∈ Ω consider the BVP⎧⎨
⎩�

(
an+p−1Φ(�zn)

)+ bnΦ(un+1) = 0, n ≥ n0

z[1]
n0 = x[1]

n0 , limn zn = 0,
(3.6)

where z[1] denotes the quasi-difference of z, that is

z[1]
n = an+p−1Φ(�zn). (3.7)

For any u ∈ Ω we have
n∑

k=n0

bkΦ(uk+1) ≤
n∑

k=n0

bkΦ(xk+p).

Hence, using lemma 3.1, we have

lim
n

∞∑
i=n

Φ∗
⎛
⎝ 1

ai+p−1

⎛
⎝ i−1∑

k=n0

bkΦ(uk+1)

⎞
⎠
⎞
⎠= 0.

Thus, a standard calculation shows that for any u ∈ Ω the BVP (3.6) has the unique solution z. Let
T be the operator which associates to any u ∈ Ω the unique solution z of (3.6).
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Summing the equation in (3.6) and using (3.2) we get

z[1]
n = x[1]

n0 −
n−1∑
k=n0

bkΦ(uk+1) ≥ x[1]
n0 −

n−1∑
k=n0

bkΦ(xk+p) = x[1]
n .

Since x[1] is decreasing for n ≥ n0 and p > 1, we obtain for n ≥ n0

z[1]
n ≥ x[1]

n+p−1 (3.8)

i.e. in view of (3.7),

an+p−1Φ(�zn) ≥ an+p−1Φ(�xn+p−1),

that is,

�zn ≥ �xn+p−1.

Since limi zi = limi xi = 0, we obtain for n ≥ n0

zn ≤ xn+p−1. (3.9)

Now, let us prove that for n ≥ n0

zn ≥ Mxn+p−1. (3.10)

Summing the equation in (3.6) and using (3.7) we get

z[1]
n = x[1]

n0 −
n−1∑
k=n0

bkΦ(uk+1) ≤ x[1]
n0 − Φ(M)

n−1∑
k=n0

bkΦ(xk+p),

or, using (3.2),

z[1]
n ≤ x[1]

n0 + Φ(M)
(

x[1]
n − x[1]

n0

)
= Φ(M)x[1]

n+p−1 + Φ(M)
(

x[1]
n − x[1]

n+p−1

)
+ (1 − Φ(M))x[1]

n0 . (3.11)

From (3.2)–(3.4), we also have

x[1]
n − x[1]

n+p−1 =
n+p−2∑

i=n

biΦ(xi+p) ≤
n+p−2∑

i=n

bi ≤ L.

Thus, from (3.11) we obtain

z[1]
n ≤ Φ(M)x[1]

n+p−1 +
(

L +
∣∣∣x[1]

n0

∣∣∣)Φ(M) + x[1]
n0 . (3.12)

In the view of (3.5) we have (
L +

∣∣∣x[1]
n0

∣∣∣)Φ(M) + x[1]
n0 ≤ 0.

Hence, from (3.12) we get for n ≥ n0

z[1]
n ≤ Φ(M)x[1]

n+p−1 (3.13)

or, in view of (3.7), �zn ≤ M �xn+p−1, and (3.10) follows, since limi zi = limi xi = 0. Thus, in virtue
of (3.9) and (3.10), the operator T maps Ω into itself, that is

T (Ω) ⊂ Ω .

Denote by S the boundary conditions in (3.6), i.e.

S =
{
v ∈ X : an0+p−1Φ(�vn0 ) = x[1]

n0 , lim
n

vn = 0
}

For any z ∈ T (Ω) we have z ∈ S. Since T (Ω) ⊂ Ω , we get z ∈ Ω ∩ S.
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Denote by SC the subset of X given by

SC = S ∩ Ω .

Since limn xn = 0, it holds

SC =
{
v ∈ X : an0+p−1Φ(�vn0 ) = x[1]

n0 , Mxn+p−1 ≤ vn ≤ xn+p−1

}
.

Thus SC is a bounded and closed subset of X. Applying theorem 2.2 we obtain that the operator
T has a fixed point z ∈ SC. Clearly the sequence z is a solution of (H 1) and limn zn = 0. Since
z ∈ T (Ω), from (3.8) and (3.13), we get

x[1]
n+p−1 ≤ z[1]

n ≤ Φ(M)x[1]
n+p−1

and so limn z[1]
n = −∞. Hence z is an intermediate solution of (H 1).

Now, we prove the opposite, that is if (H 1) has intermediate solutions, then (P) has
intermediate solutions.

The argument is similar to the one given above, with minor changes. Let y be an intermediate
solution of (H 1) such that for n ≥ n0 ≥ 1

0 < yn < 1, �yn < 0,

and define

n1 = n0 + p.

In view of (1.4), there exists Λ > 0 such that for any n ≥ n1

n−1∑
i=n−p+1

bi ≤ Λ. (3.14)

Without loss of generality, we can suppose

Λ <

∣∣∣y[1]
n1

∣∣∣ , (3.15)

where y[1]
n1 = an1+p−1Φ(�yn1 ). Moreover, let H > 1 be a positive constant such that

Φ(H) ≥

∣∣∣y[1]
n1

∣∣∣∣∣∣y[1]
n1

∣∣∣− Λ
. (3.16)

Let X1 be the Fréchet space of the real sequences defined for n ≥ n1, endowed with the topology
of convergence on Nn1 . Define the subset Ω1 of X1

Ω1 = {
u ∈ X1 : yn−p+1 ≤ un ≤ Hyn−p+1

}
and for any u ∈ Ω1 consider the BVP⎧⎨

⎩�
(
anΦ(�wn)

)+ bnΦ(un+p) = 0, n ≥ n1

w[1]
n1 = y[1]

n1 , limn wn = 0,
(3.17)

where w[1] and y[1] denote the quasi-differences of w and y, respectively, that is the sequences

w[1]
n = anΦ(�wn), y[1]

n = an+p−1Φ(�yn). (3.18)

As before, for any u ∈ Ω1 the BVP (3.17) has a unique solution w. Thus, let T be the operator which
associates with any u ∈ Ω1 the unique solution w of (3.17). Summing the equation in (3.17) and
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using (3.18) we get

w[1]
n = y[1]

n1 −
n−1∑
k=n1

bkΦ(uk+p) ≤ y[1]
n1 −

n−1∑
k=n1

bkΦ(yk+1) = y[1]
n . (3.19)

Since y[1] is decreasing for n ≥ n0 and p > 1, we have y[1]
n ≤ y[1]

n−p+1 for n ≥ n1, and from (3.19) we
obtain

w[1]
n ≤ y[1]

n−p+1 (3.20)

i.e.
�wn ≤ �yn−p+1,

which implies

wn ≥ yn−p+1, (3.21)

since limi wi = limi yi = 0.
Now, let us prove that

wn ≤ H yn−p+1. (3.22)

Summing the equation in (3.17) we get

w[1]
n = y[1]

n1 −
n−1∑
k=n1

bkΦ(uk+p) ≥ y[1]
n1 − Φ(H)

n−1∑
k=n1

bkΦ(yk+1),

that is

w[1]
n ≥ y[1]

n1 + Φ(H)
(

y[1]
n − y[1]

n1

)
= Φ(H)y[1]

n−p+1 +
(

y[1]
n − y[1]

n−p+1

)
Φ(H) + (1 − Φ(H))y[1]

n1 . (3.23)

From (H 1) and (3.14) we have

y[1]
n − y[1]

n−p+1 = −
n−1∑

i=n−p+1

biΦ(yi+1) ≥ −Λ.

Thus, from (3.23) we obtain

w[1]
n ≥ Φ(H)y[1]

n−p+1 − ΛΦ(H) + y[1]
n1 − Φ(H)y[1]

n1 = Φ(H)y[1]
n−p+1 +

(∣∣∣y[1]
n1

∣∣∣− Λ
)

Φ(H) + y[1]
n1 ,

or, in view of (3.15) and (3.16),

w[1]
n ≥ Φ(H)y[1]

n−p+1 (3.24)

i.e.
�wn ≥ H �yn−p+1.

Since limi wi = limi yi = 0, from here we get (3.22). Hence, in virtue of (3.21) and (3.22), the operator
T maps Ω1 into itself, i.e.

T (Ω1) ⊂ Ω1.

Using the same argument to the one given in the sufficiency part, denote by S1 the boundary
conditions in (3.17). Applying theorem 2.2 with SC = S1 ∩ Ω1, we get that the operator T has a
fixed point w ∈ S1 ∩ Ω1. Clearly the sequence w is a solution of (P) and limn wn = 0. Since w ∈
T (Ω1), from (3.20) and (3.24), we get

Hy[1]
n−p+1 ≤ w[1]

n ≤ y[1]
n−p+1

and so limn w[1]
n = −∞.

Hence w is an intermediate solution of (P) and the proof is complete. �
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4. Suggestions and examples
The following example illustrates theorem 1.2 and corollary 1.3.

Example 4.1. Consider the difference equation with advanced argument

�
(
(n − p + 1)1+αΦ(�xn)

)+ γΦ(xn+p) = 0, n ≥ p ≥ 2, (4.1)

where γ is a positive constant. Using theorem 1.2 and corollary 1.3, it is easy to show that (4.1)
has intermediate solutions if and only if

0 < γ ≤
(

1
1 + α

)α+1
. (4.2)

Indeed, consider the half-linear equation

�
(
n1+αΦ(�xn)

)+ γΦ(xn+1) = 0. (4.3)

A standard calculation shows that (1.1) is satisfied. Moreover, using the change of variable

yn = n1+αΦ(�xn) (4.4)

the equation (4.3) is transformed into the generalized discrete Euler equation

�
(
Φ∗(�yn)

)+ γ 1/α

(
1

n + 1

)(1+α)/α
Φ∗(yn+1) = 0,

which is non-oscillatory if γ satisfies (4.2) and oscillatory if

γ >

(
1

1 + α

)α+1
, (4.5)

see e.g. [15]. Since the transformation (4.4) maintains the oscillatory behaviour, see e.g. [16], we
get that (4.3) is non-oscillatory if and only if (4.2) is satisfied. Moreover, as an = n1+α , bn = γ , we
have

∞∑
n=p

Φ∗
⎛
⎝ 1

an+p

n∑
k=p

bk

⎞
⎠= γ 1/α

∞∑
n=p

(
n

n + p

)1/α 1
n + p

= ∞

and so the condition (1.5) is satisfied. Hence, from corollary 1.3−i1) equation (4.1) has intermediate
solutions if (4.2) is satisfied. When (4.5) holds, as claimed, the half-linear equation (4.3) is
oscillatory and it does not admit intermediate solutions. Thus, from theorem 1.2, equation (4.1)
does not have intermediate solutions, either.

The existence of intermediate solutions for (P) does not depend on condition (1.4), as the
following example shows.

Example 4.2. Consider the difference equation with advanced argument

�
(
(n + 1)! �xn

)+ (n + p)! xn+p = 0, p ≥ 2. (4.6)

A direct computation shows that x = {1/n!} is an intermediate solution of (4.6). Nevertheless, for
(4.6), assumption (1.4) is not verified and theorem 1.2 cannot be applied. Hence, it is an open
problem if theorem 1.2 continues to hold when condition (1.4) failed.

Example 4.1 suggests the following two comparison results.
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Corollary 4.3. Assume (1.1) and (1.4). Suppose that

an ≥ n1+α , and
∞∑

n=N

Φ∗
(

n
an+p

)
= ∞,

where N ≥ p. Set L = supn≥N bn. If b is bounded away from zero and

L <

(
1

1 + α

)1+α

,

then the equation

�
(
(n − p + 1)1+αΦ(�xn)

)+ bnΦ(xn+p) = 0, n ≥ p ≥ 2, (4.7)

has intermediate solutions.

Proof. Consider the equation

�
(
n1+αΦ(�xn)

)+ LΦ(xn+1) = 0. (4.8)

Reasoning as in example 4.1, we get that (4.8) is non-oscillatory. Hence, in virtue of the Sturm
comparison theorem, see e.g. [2, ch. 8.2], the half-linear equation (H) is non-oscillatory. Moreover,
since b is bounded away from zero, there exists ε > 0 such that bn ≥ ε for any n ≥ 1. Hence

∞∑
n=N

Φ∗
(

1
an+1

n∑
k=1

bk

)
≥ Φ∗(ε)

∞∑
n=N

Φ∗
(

n
an+1

)
= ∞,

which implies (1.5). Hence, applying corollary 1.3−i1) to the equation (4.7), we get the assertion.
�

Corollary 4.4. Assume (1.1) and (1.4). Moreover, suppose that for n ≥ N ≥ p,

an ≤ n1+α .

Set � = infn≥N bn. If

� >

(
1

1 + α

)1+α

,

then the equation (4.7) does not have intermediate solutions.

Proof. The argument is similar to the one given in corollary 4.3. Consider the half-linear
equation

�
(
n1+αΦ(�xn)

)+ � Φ(xn+1) = 0. (4.9)

Reasoning as before, we get that (4.9) is oscillatory. Hence, in virtue of the Sturm comparison
theorem, also (H) is oscillatory, and so (H) does not have intermediate solutions. Thus, applying
theorem 1.2 to the equation (H), we obtain the assertion. �

Some suggestions for future research are in order.

(1) As claimed, theorem 2.1 from [13] gives a very general fixed point result, which is based
on a continuation principle in a Hausdorff locally convex space. Further, in [13] the
solvability to certain BVPs in the continuous case is also given. It should be interesting
to establish corresponding discrete versions of these existence results, especially for [13,
theorem 2.2], which deals with a scalar equation. It could be useful for studying discrete
BVPs when it is hard to find an appropriate bounded closed set Ω which is mapped
into itself, as, for instance occurs for intermediate solutions to Emden–Fowler superlinear
discrete equation

�(an|�xn|α sgn �xn) + bn|xn+1|β sgn xn+1 = 0 , α < β,

see, e.g. [7, Section V.].
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(2) The proof of theorem 1.2 does not work if p ≤ 0. Indeed, in this case the half-linear
equation (H 1) is not defined, due to the shift in the weight coefficient a of the discrete
operator

(Dx)n = �(anΦ(�xn)).

Further, when p < 0, the sequence {un+p} in BVP (3.17) has to be defined not only for
n ≥ n1, but also for any i ≥ n1 + p. Consequently, when (P) is an equation with delay, the
solvability of (1.3) requires a different approach, which will be presented in a forthcoming
paper [17].

(3) Theorem 1.2 establishes a comparison between the asymptotic decay of intermediate
solutions of (P) with the one of an associated half-linear equation. Recently, in some
particular cases, a precise asymptotic analysis of intermediate solutions for discrete half-
linear equations has been made in the framework of regular variation, see [18]. It should
be interesting to apply this approach for obtaining a precise description of the asymptotic
behaviour also for intermediate solutions of the equations with advanced argument.
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10. Marini M, Matucci S, Řehák P. 2006 Boundary value problems for functional difference
equations on infinite intervals. Adv. Difference Equ. 2006, 1–14. Art. 31283. (doi:10.1155/ADE/
2006/31283)

11. Agarwal RP, O’Regan D. 2001 Infinite interval problems for differential, difference and integral
equations. Dordrecht, The Netherlands: Kluwer Academic Publishers.

12. O’Regan D 1997 Existence theory for nonlinear ordinary differential equations. Mathematics and
its Applications, vol. 398. Dordrecht, The Netherlands: Kluwer Academic Publishers Group.

13. Furi M, Pera MP. 1987 A continuation method on locally convex spaces and applications
to ordary differential equations on noncompact intervals. Ann. Polon. Math. 47, 331–346.
(doi:10.4064/ap-47-3-331-346)

https://doi.org/doi:10.1016/S0898-1221(98)80014-X
https://doi.org/doi:10.1619/fesi.56.81
https://doi.org/doi:10.1155/ADE/2006/31283
https://doi.org/doi:10.1155/ADE/2006/31283
https://doi.org/doi:10.4064/ap-47-3-331-346


13

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A379:20190374

................................................................

14. Cecchi M, Furi M, Marini M. 1985 On continuity and compactness of some nonlinear operators
associated with differential equations in noncompact intervals. Nonlinear Anal. 9, 171–180.
(doi:10.1016/0362-546X(85)90070-7)
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