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Abstract: This review is focused on the description and discussion of the alterations of astrocytes and
microglia interplay in models of Alzheimer’s disease (AD). AD is an age-related neurodegenerative
pathology with a slowly progressive and irreversible decline of cognitive functions. One of AD’s
histopathological hallmarks is the deposition of amyloid beta (Aβ) plaques in the brain. Long regarded
as a non-specific, mere consequence of AD pathology, activation of microglia and astrocytes is
now considered a key factor in both initiation and progression of the disease, and suppression
of astrogliosis exacerbates neuropathology. Reactive astrocytes and microglia overexpress many
cytokines, chemokines, and signaling molecules that activate or damage neighboring cells and
their mutual interplay can result in virtuous/vicious cycles which differ in different brain regions.
Heterogeneity of glia, either between or within a particular brain region, is likely to be relevant in
healthy conditions and disease processes. Differential crosstalk between astrocytes and microglia
in CA1 and CA3 areas of the hippocampus can be responsible for the differential sensitivity of the
two areas to insults. Understanding the spatial differences and roles of glia will allow us to assess
how these interactions can influence the state and progression of the disease, and will be critical for
identifying therapeutic strategies.

Keywords: TgCRND8; amyloid plaques; CA1 hippocampus; CA3 hippocampus; triads; confocal
microscopy; astrocytes; microglia; clasmatodendrosis

1. Introduction

Alzheimer’s disease (AD) is an age-related neurodegenerative pathology with a slowly progressive
and irreversible decline of memory and of cognitive functions that involves many brain regions.
AD histopathological hallmarks include the deposition of extracellular amyloid beta (Aβ) fibrils and
plaques in the brain [1], and intracellular neurofibrillary tangles (NFTs).

AD is a neurodegenerative disorder characterized by atrophy of the brain, dysfunctions of
neurotransmission, and loss of synapses [2,3]. AD pathophysiological mechanisms are complex and
still not completely understood, although it is known that the central cholinergic neurotransmission
is the first to be damaged [4], leading to progressive impairment of memory and cognition [5].
The accumulation of extracellular Aβ peptides [6–8], of intracellular neurofibrillary tangles (NFTs)
of hyperphosphorylated tau protein [9], and neuroinflammation [10,11] are the most “classically”
recognized physiopathological mechanisms of AD. Low-grade pro-inflammatory conditions that
develop during aging are considered a prodrome of AD [12–15]. Franceschi and coworkers [16,17]
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introduced the term “inflammaging” which describes the progressive changes occurring in the aging
brain, characterized by low-grade chronic up-regulation of certain pro-inflammatory responses and
neuroinflammation. The association between inflammation, aging and AD is based upon complex
molecular and cellular changes that are not still completely understood. A systemic increase in
proinflammatory molecules induces Aβ deposition on the neuron soma [12,18], and in turn Aβ

deposition triggers the NOD-like receptor family, which stimulates inflammation [13]. This mechanism
of mutual reinforcement causes an increase in Aβ burden in the normal aged brain [19]. When Aβ

homeostasis is lost as a result of aging or other risk factors that enhance production or aggregation of
Aβ [20], or which suppress its clearance [21], oligomeric and fibrillar Aβ species begin to accumulate,
and the first plaques appear. Aβ peptide first forms small soluble oligomers that grow into protofibrils
and finally into dense insoluble structures that accumulate in the brain in form of extracellular Aβ

plaques [22–24]. The hypothesis that Aβ plaques are solely responsible for the pathology of AD is
widely accepted but it has not been demonstrated conclusively yet. An alternative hypothesis is that
soluble Aβ species are more toxic than fibrillar Aβ and cause more profound synaptic dysfunction
and neuronal loss [25–28]. Recent studies have also documented the presence of toxic oligomeric
species of Aβ and tau within the AD brain, supporting the idea that these species can propagate and
induce neuronal dysfunction and degeneration (for references see [29,30]). In addition to Aβ plaques,
tau oligomer hyperphosphorylation causes the collapse of microtubules and forms NFTs, leading to
neuronal death, cognitive decline and brain atrophy (for references see [31]). The presence of reactive
glial cells within the amyloid plaques has already been described by Alois Alzheimer [32,33] and
confirmed by later studies that identified both reactive astrocytes and microglia that infiltrate the Aβ

deposits (among many others, [34–37]). Furthermore, there is compelling evidence that age-related
vasculopaties and breakdown of the blood–brain barrier (BBB) are early causative factors in AD
pathogenesis [38,39]. Indeed, lesions of the neurovascular unit are found together with the classic
signs of AD such as Aβ plaques or neurofibrillary tangles in around half of dementia patients and
it is becoming increasingly evident that vascular pathology is a common and early symptom in AD
(see references in [40]).

In response to damaging stimuli, the brain, like any other organ, puts in place restoration
mechanisms organized by numerous cells and signaling molecules. Indeed, the main function
of astrocytes and microglia is protective, aimed at the preservation of the neurons, and many
molecular cascades expressed by these cells are neuroprotective. Long regarded as a non-specific,
mere consequence of AD pathology, activation of microglia and astrocytes is now considered a key
factor, not only in protective mechanisms, but also in both the initiation and progression of the
disease, and suppression of astrogliosis exacerbates neuropathology [41]. Some studies suggest that
microglia dictate the profile of reactive astrocytes, but others indicate that astrocytes play a pivotal role,
or that they are controlled by peripheral inflammatory cells [42,43], or that there may be a continuous
multidirectional interplay between these two glia cell systems with a continuous crosstalk with neurons.
This mutual interplay can form a virtuous/vicious cycle that depends on many different factors.
Indeed, reactive astrocytes and microglia overexpress many cytokines, chemokines, and signaling
molecules that could activate or damage neighboring cells [44–46]. When the equilibrium between
the beneficial vs. the deleterious mode of astrocytes and microglia is altered, these cells can initiate
and even exacerbate the neuropathological condition. Furthermore, there is increasing evidence of
glial heterogeneity in the healthy brain [47–49], reinforcing the idea that different populations of glia
cells may have distinct roles in disease pathogenesis. Different populations of astrocytes and microglia
have mutual interactions that play critical roles not only in physiological conditions, but also in many
diseases, and how cellular heterogeneity interconnects with disease is still not known. Therefore,
it appears that heterogeneity of glia, either between brain regions or within a particular brain region,
is likely to be relevant in healthy conditions and disease processes.

Similarly, glia–glia as well as glia–glia–neuron interactions are increasingly recognized as critical
in both the healthy brain and in disease (for references see [50]). It is therefore timely to take
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into consideration not only how each cell type behaves in health and disease separately, but also
how microglia and astrocytes talk to each other, and to neurons. This approach will give a more
comprehensive account of how their dysregulation can be involved in central nervous system (CNS)
injury or disease. Furthermore, many of the genes involved with increased risk of developing
neurodegenerative diseases such as AD are predominantly glial genes (for references see [51]),
indicating the direct involvement of glia in this pathology.

This review is focused on the description and discussion of the alterations of astrocytes and
microglia, and of the changes of the interplay between neurons and glia in models of Alzheimer’s
disease. In the last part, we will focus our attention on recent data that demonstrate a differential
reactivity of astrocytes and microglia in CA1 and CA3 areas of the hippocampus in TgCRND8 mice,
a transgenic mouse model of Aβ deposition [37].

2. Astrocytes Involvement in AD

Astrocytes, the most numerous glia cells in the brain, have many housekeeping functions, maintain
the homeostasis of the CNS and are responsible for neuroprotection and defense (for references see [52]).
Traditionally, astrocytes are divided into two major groups based on their location and structure, namely
protoplasmic astrocytes and fibrous astrocytes. Protoplasmic astrocytes have a bushy phenotype,
are located in the gray matter and are in direct contact with blood vessels via their endfeet. Fibrous
astrocytes are located in the white matter, where they support myelination processes (for references
see [53]).

In the healthy brain, astrocytes regulate the formation, maturation, and plasticity of synapses [54,55],
are indispensable for neurotransmitter homeostasis [56,57], and control the formation of neural
circuits [58–62]. Astrocytes release gliotransmitters [63–66] necessary for synaptic plasticity [65,67],
and control GABA and glutamate extracellular levels at the synapses. Astrocytes mediate the synaptic
functions [68,69] and are thus involved in memory formation [65–67,70,71]. Healthy astrocytes are
fundamental cells of the neurovascular unit, and help maintaining the integrity and the functionality of
the BBB and of the glymphatic system [52,68,72–74]. It has been proposed that vascular dysregulation
and breakdown of the BBB may be the first steps in AD pathogenesis [38,39], affecting Aβ clearance [75].
Furthermore, the glymphatic system facilitates the clearance of interstitial solutes including Aβ

and tau [76]. Astrogliosis causes loss of AQP4 polarization in perivascular astrocytes, which may
represent a mechanism common to neurovascular unit (NVU) and glymphatic dysfunctions in many
neurodegenerative diseases such as AD [77,78]. It has been shown that the glymphatic function is
disrupted around microinfarcts, especially in the aging brain [76]. All these data taken together may
suggest that microlesions of the neurovascular unit, also disrupting the glymphatic system, may trap
proteins within the brain parenchyma, increasing the risk of amyloid plaque formation [76].

Yet, the understanding of the multiple, contrasting roles of astrocytes in pathological mechanisms
entered into focus only very recently. Pathological phenotypes of astrocytes are responsible for three
major responses to insults: (i) reactive astrogliosis, (ii) astroglial atrophy and loss of function and (iii)
pathological remodeling [41,79].

In AD patients and in amyloid-mouse models of AD [80–83], astrocytes have high levels of
GABA. In two different mouse models of AD, APP/PS1 mice (APP KM670/671NL (Swedish), PSEN1
L166P) [81] and 5xFAD mice (APPSwFlLon, PSEN1*M146L*L286V) mice [83], tonic release of GABA
from hypertrophic astrocytes [81–83] located in the vicinity of Aβ plaques was demonstrated. At first,
release of GABA from astrocytes, activating GABAA and GABAB receptors, causes a decrease in
glutamate release, with a consequent decrease in excitotoxicity and neuroinflammation [84]. Later,
the excess of GABA can unbalance the subtle inhibitory–excitatory equilibrium in the neuronal network,
inducing inhibition of synaptic plasticity [82]. It has also been shown that astrocytes degeneration
may cause the downregulation of glutamate transporters. The two most expressed isoforms of
glutamate transporters in the hippocampus are EAAT-1 (Excitatory amino acid transporter-1, GLAST in
rodents), and EAAT-2 (Excitatory amino acid transporter-2, GLT1) [85], mainly expressed on astrocytes.
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Decreased expression of either one or both glutamate transporters compromises the ability of astrocytes
to reuptake the excess of glutamate, and to regulate glutamatergic transmission. This in turn results in
severe excitotoxicity that underlies rapid thedevelopment of severe dementia, as shown in Wernicke
encephalopathy [86,87]. In AD pathogenesis the situation seems still controversial. In AD patients,
the Aβ peptide has been shown to downregulate the functional activity of glutamate transporters [88].
However, in a subsequent study, the Aβ peptide was reported to increase the cell surface expression
of GLAST and augment the glutamate clearance ability of cultured astrocytes [89]. Nevertheless,
it has been reported that impairment of glutamate uptake is involved in the pathogenesis of AD and
other neurodegenerative disorders such as Parkinson’s disease, Huntington’s disease, and epilepsy
(reviewed in detail elsewhere [90,91]).

In AD, in different brain regions and subregions, astrocytic modifications are highly heterogeneous
and can result in either hypertrophy or atrophy [37,92–94]. In a triple transgenic mouse model of AD,
Aβ plaques trigger astrogliosis, which is, however, different among brain regions. Indeed, Aβ causes
hypertrophy of astrocytes mainly in the CA1 region of the hippocampus [37,95] in the entorhinal
and prefrontal cortex it causes little sign of astrogliosis [96,97]. Furthermore, in the hippocampus
hypertrophic astrocytes are located in close proximity to Aβ plaques, both in animal models [95] and in
post mortem brain tissue from AD patients [98,99], a strategic location that is considered neuroprotective.
Indeed, it has been demonstrated with PET (Positron Emission Tomography) scan in human patients
that the decrease in astroglial reactivity parallels the switch from mild cognitive impairment to AD,
again demonstrating the neuroprotective role of astrogliosis, at least in the prodromal phases of AD [94].
More distantly from the plaques, astrocytes look atrophic [95].

Recent studies have demonstrated that different CNS injuries stimulate at least two types of
astrocytes with strikingly different properties, A1 reactive astrocytes, with detrimental properties for
neurons, and A2 reactive astrocytes with beneficial, neuroprotective properties. Indeed, A2 reactive
astrocytes release neurotrophic factors and cytokines that promote neuronal survival and neurogenesis,
as well as synaptogenesis and repair of the damaged synapses. Among the neurotrophic factors or
cytokines released by A2 astrocytes are BDNF, IL-6, CLCF1, GDF15, and thrombospondins. In addition,
A2 astrocytes release gliotransmitters such as glutamate, GABA, ATP, and neuromodulators such as
kynurenic and acid d-serine [100,101]. In the presence of high levels of proinflammatory cytokines,
activated astrocytes increase ROS and NO production through induction of the NF-κB pathway [102].
A1 neuroinflammatory astrocytes upregulate many genes that express proinflammatory proteins and
other neurodegenerative substances [100]. Recently it has been demonstrated that astrocytes in their
A1 state release factors that are toxic to neurons and oligodendrocytes, and lose their phagocytic
activity and possibly their ability to dispose of Aβ plaques [101]. Suppression of astroglial reactivity
and phagocytosis exacerbates Aβ load and reduces neuroprotection [103].

Although astrocytes so far have been shown to acquire these two distinct reactive states,
more recently it has been postulated that they may acquire many possible activated states in both the
healthy and diseased brain (also see [51]). As mentioned above, these different states depend not only
on the type of insult but also on the brain structure in which they are located [100]. Indeed, nine different
groups of astrocytes have been defined [104]. This result possibly indicates that astrocytes acquire a
reactive phenotype in function of the local microenvironment, even in healthy conditions [104].

Nevertheless, it is not understood completely yet whether astrocytes located in different cerebral
structures respond to the same insult with the same morphofunctional modifications or whether
they react differently to the same insult. In other words, whether astrocyte responses to injuries
are controlled by intrinsic cues, or whether they depend upon external signals that come from the
environment [105,106]. A third hypothesis is that there may exist a continuum in the diversity and
intensity of astrocyte reaction, which possibly hides different, discrete reactive states. Recent work
has demonstrated that astrocytes located in distinct anatomical regions have different molecular
profiles [107,108], suggesting that astrocytes have site-specific functional roles. Astrocytes derived
from different CNS regions respond differently to Aβ in vitro [109]. Indeed, this finding indicates
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that astrocyte heterogeneity is at least partially intrinsic, possibly due to preexisting differences
between astrocytes from distinct brain regions [47,107,110–114]. In the mouse, hippocampus specific,
age-exacerbated reactive astrogliosis causes higher vulnerability to age-related neurodegeneration [115].
For instance, an age-related morphofunctional modification of astrocytes called clasmatodendrosis,
has been found in the rat hippocampus [116–120]. In addition, in the white matter of patients with
cerebrovascular dementia and AD [121], and in patients with mixed dementia [122], astrocytes show
morphofunctional modifications typical of clasmatodendrosis, which correlate directly to changes in
cell function [123]. Clasmatodendrotic astrocytes show swollen and vacuolized cell bodies, shorter
branches, and loss of distal processes that cause less endfeet coverage of brain vessels. These latter
modifications can contribute to vascular deficits observed during aging and in AD. Furthermore,
since astrocyte endfeet are main components of the BBB, their fragmentation by clasmatodendrosis
can contribute to the impairment of the functionality of the barrier. Aβ clearance is essential for
neuroprotection against AD, and in mouse models of AD the impairment of Aβ clearance increases
neurodegeneration [124]. The deposition of high quantities of fibrillar Aβ modifies the interactions
between astrocytes and neurons [117], possibly decreasing Aβ peptide disposal to the circulating
system, and consequently, increasing Aβ deposition in brain parenchyma [125] that may play a
significant role in neuronal damage. Therefore, clasmatodendrosis can hamper astrocyte-mediated Aβ

clearance from neurons and increase fibrillar Aβ deposition [117,126].
It has been shown that Aβ reacts with receptors located on astrocytes such as CD36 (cluster

of differentiation 36), RAGE (receptor for advanced glycation end products), SCARA-1 (scavenger
receptor A-1), and MARCO (macrophage scavenger receptor with collagenous structure). RAGE is
one of the most characterized scavenger receptors, and binding to Aβ causes proinflammatory
modifications in astrocytes [127]. RAGE mediates the phagocytic profile of astrocytes [128] and the
interaction with other ligands, including S100β, involved in Alzheimer disease neuroinflammation [129].
SCARA-1 is involved in Aβ clearance [108], while MARCO may decrease the inflammatory response of
microglia [130], and CD36 and RAGE are implicated in the scavenging activity of microglia caused by
Aβ (for references see [131]). CD36 cooperates with toll like receptors (TLR-6 and TLR-4), causing ROS
production and inflammasome activation [132]. We know that expression of many proinflammatory
proteins is increased in astrocytes but, interestingly, not only genes that are upregulated but also those
that are down regulated may help understand the roles of reactive astrocytes in disease pathogenesis.
However, no established list of down-regulated genes across multiple diseases and especially in
AD so far exists [133]. To make things even more complicated, in an animal model of AD different
proinflammatory proteins are expressed at different levels in astrocytes located in different areas within
the hippocampus [37]. Indeed, molecular changes in astrocytes are highly context specific, with about
50% of modified gene expression that depends on the type of brain damage [134].

It has been shown that astrocytes can participate with microglia in phagocytic events [135–139].
Astrocytes use the ABCA1 [138], MEGF10, and MERTK [140], as well as BAI1 and integrin αvβ3
or αvβ5 [141] pathways for phagocytosis. Since astrocytes are not as mobile as microglia [142,143],
they are not able to migrate, but polarize their distal processes, and engulf apoptotic bodies derived
from dendrites of dying neurons or other toxic material such as Aβ. Astrocytes and microglia play
orchestrated roles in a highly coordinated way, with differences in different brain areas that can have
important physiopathological consequences [138]. Reactive astrocytes have dual roles in Aβ plaque
degradation. The phagocytic role of reactive astrocytes in amyloid pathology may contribute to the
clearance of dysfunctional synapses or synaptic debris, thereby restoring impaired neural circuits and
reducing the inflammatory impact of damaged neurons [144].

Notwithstanding all this new evidence, the role of astrocytes in AD is still controversial. On one
side, astrocytes are able to remove Aβ fibrils from neuron membranes [126] for their disposal [125].
On the contrary, it has been demonstrated that astrocytes may also contribute directly to Aβ peptide
overproduction especially in the presence of increased cellular stress caused by environmental factors
and increased neuroinflammation [126,145–149]. On the other side, a decrease in the size of astrocytes
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and reduction in the number of GFAP-positive primary branches is observed in the hippocampus,
prefrontal cortex, and entorhinal cortex at the early stages of the pathology in mouse models of
AD [95–97,150]. These phenotypic modifications can possibly cause decreased Aβ disposal and
increased Aβ extracellular levels.

In the healthy brain, astrocytes are organized in non-overlapping domains while reactive astrocytes
lose their domain organization. The significance of astrocytic domains in health and their spatial
dysregulation in disease remains unclear. Many chronic neurological disorders are accompanied by
chronically stressed, degenerated, and atrophic astrocytes with loss of function, which adds to the
progression of the disease. At the early stages of AD, gliosis is markedly increased, and reactive
astrocytes are located around Aβ plaques [95,151,152], while large numbers of astrocytes undergo
atrophy [153]. In these conditions, astrocytes undertake a series of phenotypic and functional
changes [154] that lead to the formation of a sort of scar around the plaque. Scar formation starts as a
defensive reaction aimed at the isolation of the plaque from the healthy tissue for neuron survival.
To this aim, astrocytes release neuroprotective agents such as BDNF, VEGF, CLCF1, thrombospondins
and bFGF, or IL6 and GDF15 [154].

3. Microglia Involvement in AD

Microglia, the primary immune cells of the central nervous system, patrol the brain parenchyma as
sensors, to detect and eliminate debris or apoptotic neurons by phagocytosis [155], and to restore tissue
homeostasis. It has been shown [142,156] that microglia have very mobile ramified branches that allow
a dynamic and continual survey of the parenchyma and phagocytosis of damaged neurons. Microglia
actively maintain their protective role during normal aging [157–160] by clearing dying neurons [161],
but this ability is considerably decreased in a proinflammatory context [155]. In parallel, in an animal
model of AD the phagocytic activity and clearance capacity of microglia inversely correlate with Aβ

plaque deposition and aging [162].
It is known that microglia exist in different phenotypes (for references see [163]).

The proinflammatory M1 state occurs when microglia, activated after an acute insult, release
proinflammatory cytokines such as TNFa, IL-1, IL-6, IL-18. The M2 non-inflammatory state of
microglia is associated with secretion of anti-inflammatory cytokines such IL-4, IL-10, IL-13 and
TNF-ß. Nevertheless, this quite recent classification of microglia in M1 and M2 states [100] seems
to be rather narrow, not corresponding to the variety of microglia phenotypes so far discovered in
the brain [164,165]. It is becoming evident that each subtype of microglia has intrinsic heterogeneity,
displays intrinsic properties and performs unique functions [164,165]. Furthermore, the microglia
activation profile is not an all-or-none phenomenon but rather a continuum of different levels of
activation states, which depend on the type of insult and its progression, as well as on the area(s) of the
brain where microglia cells are located [48,166]. Data from animal models of AD show that activated
microglia are recruited at the site of Aβ deposition, interact with Aβ deposits and regulate Aβ levels in
the brain [167,168].

The role of microglia in neurodegenerative disorders such as AD is influenced by the expression
of apolipoprotein E (APOE) and triggering receptor expressed on myeloid cells 2 (TREM2) [169].
In acute models of neurodegeneration, it has been demonstrated that APOE regulates TREM2,
which in turn modulates the activation of microglia [169]. TREM2, by sustaining cellular energetic
and biosynthetic metabolism, has been also linked to the regulation of microglia metabolism [170],
which has a key role in maintaining the high microglial activity needed to deal with the excess of
amyloid deposition. This effect has been linked to the more intense microglia response to plaque
formation in AD, which in turn causes a harmful chronic inflammatory response [171]. Variants of
TREM2 impair phagocytic properties, inflammatory responses, energy metabolism, plaque compaction
and activation of microglia, affecting the progression of AD [170,172,173]. In addition, toll like receptor
4 (TLR4), expressed on microglia, plays an important role in neuroinflammation [174]. Nevertheless,
studies on TLR4 and on TREM2-deficient mice give conflicting results on AD pathology [175].
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TREM2-deficient APP-PS1 mice display reduced accumulation of microglia around plaques and TLR4,
which can be stimulated by both fibrillar and oligomeric forms of Aβ [176], has also been suggested
to be protective in AD [177,178]. Further, activation of toll like receptor 2 (TLR2), which can be
stimulated by fibrillar Aβ, activates microglia into a more pro-inflammatory profile, with detrimental
effects on AD pathology [176]. Therefore, activated microglia perform phagocytosis of Aβ deposits,
contributing to Aβ clearance and removal of cytotoxic debris from the brain [157,179–183]. Indeed,
plaque-associated microglia cells exhibit signs of uptake of the Aβ peptide, giving evidence that
they can inhibit additional fibrillization of Aβ and plaque growth [184], thus protecting neighboring
neurons [185]. Furthermore, in TREM2 deficient mice, loss of microglia clustering around Aβ

plaques increases AD risk, supporting the idea that microglia can have a protective effect, decreasing
AD pathogenesis [185], as also shown in PS2APP (PS2N141I x APPswe) mice in which continuing
microglial response seemed to impart preserved cognitive performance [186]. Nevertheless, sustained
activation of microglia can increase Aβ deposition, phagocytosing healthy neurons [181,187–190] and
intensifying neurodegeneration [12,17]. The phagocytosis of whole neurons that show no sign of
neurodegeneration [174] is defined as phagoptosis (also called primary phagocytosis). Phagoptosis
was first described by Brown and Neher [191] and defined as ”death caused by being devoured”.
It is triggered by a stimulus which is too mild to cause neuronal death per se but too intense to
allow the neuron to recover, and sufficient to release “find-me” signals that activate and recruit
microglia and astrocytes for phagocytosis [191–193]. Microglia associated with Aβ plaques show
a neurodegenerative phenotype, regulated by the TREM2-APOE pathway, which suppresses the
phagocytosis of apoptotic neurons [169]. Microglia projections are chemotactic sensors that extend
towards injured cells in the “find-me” step of neuron phagocytosis [157]. Their age-related impairment
may weaken the neuroprotective activity of microglia. Reasonably, decreased microglia migration
may hamper its phagocytic efficacy, thus favoring the accumulation of degenerating neurons and
proinflammatory toxic debris [194], typical of brain aging [116]. Indeed, microglia phagocytoses Aβ

fibrils less efficiently in aged mice than in young mice [195]. Nevertheless, it is still accepted that
amplified, exaggerated, or chronic microglia activation can lead to robust pathological changes and
neurobehavioral complications such as in chronic inflammatory diseases [196] (for references see
also [197]). Furthermore, it has been demonstrated in animal models of AD that microglia, in response
to soluble Aβ, can phagocytose synapses [198], while depletion of microglia prevents loss of neurons
and dendritic spines [199], further suggesting a pathogenic role for microglia. Furthermore, senescence
of microglia is thought to contribute to neurodegenerative disorders [200]. Proliferation of microglia in
a mouse model of β-amyloidosis increases three times in comparison to controls and microglia priming
early in life can induce functional changes that may contribute to age-related neurodegenerative
diseases [201].

Nevertheless, examples exist of positive effects of active microglia and production of cytokines
in early brain development [202], in the support, synaptic pruning [203] and in normal memory
and learning [204]. A unique, novel subtype of protective microglia, disease-associated microglia
(DAM), has recently been described [166]. DAM cells have enhanced phagocytic activity in both AD
transgenic mice and human AD brains [166]. DAM cells express genes that encode a large number of
factors that contribute to disease mitigation [166]. As reported by Keren-Shaul and colleagues [166],
the function of the genes expressed by DAM are first TREM2-independent and later TREM2-dependent.
The transition to fully-activated DAM does not occur in the absence of the TREM2 receptors, supporting
the idea that TREM2 is necessary to mitigate the disease by supporting phagocytosis at late stage
of the disease. The function of TREM2 during the first period of AD is the phagocytosis of Aβ

peptides, with no evident inflammation [166,205]. An increased level of TREM2 during this stage is
a defensive factor linked to Aβ clearance [166,206]. In more advanced stages of the AD, the role of
TREM2 evolves. TREM2-expressing microglia cause extensive inflammation and neurodegeneration
interacting with accumulating NFT [207,208]. Corroborating this, is the observation that the absence
of TREM2 in microglia at the late stage of AD, but not at the early stage, exacerbates the disease
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symptomatology [209,210]. Complement C3 is one of the most highly upregulated genes involved in
this reaction [108] from microglia, also responsible for excessive release of proinflammatory mediators
and induction of proliferation of A1 reactive astrocytes [101]. It appears, therefore, that none of the
genes expressed by DAM cells represents the primary cause of the disease but, rather, they affect
AD time-course and progression rate. Distinct microglia subpopulations may have different roles at
different times in disease progression [166], and may be located in different brain areas, but further work
will be needed to dissect out these features. Microglial activation does not develop in an all-or-none
fashion; rather it develops as a continuum, time- and space-dependent phenotypic remodeling,
typically associated with neuroprotection and maintainance of brain homeostasis. The modifications
of microglia states are generally fully and rapidly reversible [156].

Boosting microglia defensive capabilities with cell-specific therapies may offer new avenues for
preventing or reversing neurodegeneration.

4. Astrocytes-Microglia Crosstalk in AD Mechanisms

Glia cells and neurons communicate with each other in both health and disease conditions
(for further references see [211]). Astrocytes–microglia crosstalk is maintained via growth factors,
gliotransmitters, cytokines, chemokines, innate-immunity mediators, ATP, mitogenic factors, NO,
ROS, and glutamate. ATP derived from astrocytes, binding to purinergic P2Y12 and P2Y6 receptors
expressed on microglia, promotes microglial processes extension and phagocytosis [212]. Microglia
express and release cytokines, such as IL-1β, TNF-α, and IL-6, which regulate astrocytic responses and
decrease P2Y1 receptors on astrocytes to enable tissue remodeling and repair [213]. Astrocyte–microglia
interplay through activation of the complement is fundamental to the modulation of Aβ pathology
and neuroinflammation in mouse models of AD [108]. Aβ induces expression of complement factor
C3 from astrocytes [214]. Astrocyte-secreted C3 interacts with the C3a receptor (C3aR) on microglia
to regulate microglial phagocytosis [214]. Furthermore, cleavage products of C3, such as C3a, C3b,
and iC3b mediate phagocytosis of Aβ by microglia [215–217]. A different set of cytokines produced
by activated microglia, such as IL-1α, TNF-α and complement factor C1q, induce in astrocytes a
neurotoxic state.

Furthermore, astrocytes, microglia, and neurons intercommunicate via extracellular vesicles
called exosomes [218] that can contain mRNA [219] and miRNA [220] (for further references see [221]),
capable of modulating gene expression in distant cells.

Recent work from Barres’s lab demonstrates that activated microglia cells adapt their secretory
profile increasing the release of factors such as C1q, TNF-α, IL-1α, influencing astrocyte activation
during inflammatory responses [101]. When microglia are close to astrocytes, they establish many
contacts with astrocytes branches, where the mechanosensor integrin-b1 is highly accumulated [222].
Indeed, integrin-b1, specifically localized in high density at the contact sites microglia/astrocytes,
possibly controls the dynamic remodeling of microglia branch tree [222], as has also been demonstrated
in the spinal cord [223]. In CA1 of aged rats, it is demonstrated that microglia branches are smaller and
shorter and have lower expression of IBA1 than those of young rats [222]. As a consequence, it appears
that microglia have impaired mobility and phagocytic activity, which results in the accumulation of
neuronal debris [116,224] and toxic compounds that can start a vicious cycle of neurodegeneration.
Microglia cells in the proximity of disrupted astrocyte branches, such as those of clasmatodendrotic
astrocytes, show amoeboid morphology, have shorter and enlarged projections, and have lower
accumulation of integrin-b1 [222]. These data suggest that impairment of the direct interaction between
astrocytes and microglia may hamper branching and migration of microglia, with consequent lower
mobility, and less scavenging capacity of these cells.

It has been demonstrated in two different APP transgenic mouse models that almost complete
ablation of resident microglia does not alter Aβ plaque load [225] extending and confirming previous
work [226], and suggesting that resident microglia are not important in the de novo formation of
amyloid [225].
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5. Region-Specific Modifications in AD

Many neurological conditions, including AD, occur in a region-specific way and have differential
regulatory mechanisms of gene expression [227]. Alzheimer’s disease primarily affects the hippocampus
and cortex, damaging and destroying the connections between neurons and later causing cell death.
Although initial symptoms are minor, this damage leads to impairments in learning, memory,
and thinking, and is eventually fatal [228–230].

In both animal models and in AD patients, CA1 is the most vulnerable region of the hippocampus
to neuronal loss [231–237], while CA3 is a lesser damaged area [238,239]. Among AD patients,
a variable degree of atrophy between CA1 and CA3 is often found, CA3 being the least damaged
area [238,239]. Nevertheless, no conclusive explanation on the differential sensitivity of CA1 has so far
been given. Therefore, to study and compare the results obtained in these two hippocampal areas is
fundamental, and can help explaining the more pronounced sensitivity of CA1 pyramidal neurons to
neurodegenerative insults, both in experimental animal models and in humans [236,237,240–242].

The hippocampus is often described as a unitary structure formed by distinct areas, but it is
becoming evident that this is hardly the case. The unique molecular and synaptic milieu of its
spatial domains in CA1 in comparison to CA3 lead us to ask how AD pathophysiology can be more
prominent in one region versus the other one. The hippocampal areas CA3 and CA1 have distinct
functions, contributing uniquely to specific information processing such as novelty detection, encoding,
short-term memory, intermediate-term memory and retrieval [243]. CA3 is involved in processes
associated to rapid formation of spatial or contextual memory [244–247], whereas CA1 is critical
for mediating associations with temporal components, serving as a “holding memory”, capable of
maintaining short-term memory representations [248].

It has been proposed that functional and morphological changes of neurons in the hippocampus
are associated with changes in microglial cell response during AD progression [249]. Significant
progress has been made in understanding the relationships of amyloid pathology with hippocampal
dysfunctions, but complete understanding of this process across hippocampal anatomical areas
remains incomplete. Memory impairment, particularly episodic and spatial memory, is the most
important symptom of AD, often related to the dysfunction of pyramidal neurons in CA1 and the
entorhinal cortex [231,238,250,251]. Our recent data [37] lend support to the idea that the Aβ load
exerts greater effects on CA1 than on CA3. However, in different transgenic mouse models of AD,
it has also been found that learning and memory deficits are not directly correlated to Aβ load [252].
Therefore, other factors, besides Aβ deposition, may be involved in CA1 pyramidal degeneration and
memory deficits.

6. Differential Patterns of Glia Activation and Neurodegeneration in CA1 and CA3 Hippocampus

In recent years, it has become more and more evident that neurodegenerative processes manifest
with differential, regional-specific patterns in the brain. This heterogeneity is the expression of the
diverse sensitivity and response of neurons and glia to a noxious stimulus in the different regions and
subregions of the brain. Moving in this framework, and to investigate the differential susceptibility
of different brain areas to insults, we investigated animal models of neurodegenerative conditions
such as normal brain aging, LPS-induced neuroinflammation, brain chronic hypoperfusion, brain focal
ischemia and AD [37,116,117,222,224,253–256].

Investigating the transgenic mouse model of Aβ deposition [37], we postulated that differential
patterns of neurodegeneration are at the basis of the more pronounced sensitivity of CA1, found in AD
and in other pathological conditions in animal models and in humans [240–242]. The comparison of
plaque deposition, glia activation, inflammatory markers in CA1 and CA3 can help to explain their
different functional, structural, and morphological alterations in AD [257] and the higher sensitivity
of CA1 pyramidal neurons to insults, found in both experimental animals and humans [240–242].
Using an animal model of Aβ deposition, the double transgenic TgCRND8 mouse, expressing a double
mutant form of human APP (K670/M671L and V717F) [36,258], and dissecting the hippocampus
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in areas CA1 and CA3 and into their subregions, it was possible to study plaque deposition, glia
activation, inflammatory markers and neurodegeneration. The quantitative and morpho-functional
alterations of neurons, astrocytes, microglia, as well as of markers of apoptosis and inflammation were
evaluated taking advantage from the method of triple labelling fluorescent immunohistochemistry
coupled to confocal microscopy (TIC). Most of the parameters involved in the pathophysiological
mechanisms of AD, such as plaque deposition, astrocytes and microglia activation, as well as neuron
degeneration show area-dependent differences [37]. Figure 1 summarizes the data obtained, that depict
a heterogeneous reactive milieu in the two hippocampal subregions.
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Figure 1. (A,B) Representative confocal photomicrographs of GFAP immunostaining of an astrocyte
(green) in CA1 SR of a WT (A) and a TgCRND8 mouse (B). Scale bar: 15 µm. (C,D): representative
confocal photomicrographs of IBA1 immunostaining of microglia (green) in CA1 of a WT (C) and a
TgCRND8 mouse (D). Scale bar: 20 µm. (E,F): Representative confocal photomicrographs of CD68
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immunostaining of reactive microglia (red) in CA1 SR of a WT (E) and a TgCRND8 mouse (F).
Scale bar: 20 µm. (G,H) Representative confocal photomicrographs of NeuN immunostaining of
neurons (red) in CA1 SP of a WT (G) and a TgCRND8 mouse (H). Scale bar: 60 µm. (I,J) Representative
confocal photomicrographs of triple immunostaining of neurons (NeuN, red), astrocytes (GFAP,
green), and microglia (IBA1, blue) in the CA1 SR of a WT (I) and of TgCRND8 mouse (J).
Neuron–astrocyte–microglia triads are evidenced in (J) (framed areas). Scale bar: 40 µm. (K1–K4):
representative confocal photomicrographs of triple immunostaining of astrocytes ((K2), green,
white arrows), microglia ((K3), red, open arrows), and amyloid beta (Aβ) plaques ((K4), blue, asterisks)
in CA1 SR of a 6 months old TgCRND8 mouse. The merge is shown in panel (K1). Scale bar: 50 µm.
(L1–L3) Double staining immunohistochemistry with anti iNOS ((L3), green) and anti GFAP ((L2), red)
antibodies in CA1 SR of a TgCRND8 mouse. iNOS is colocalized in astrocytes ((L1), open arrows).
Scale bar: 25 µm. (M1–M3) Double staining immunohistochemistry with anti TNF-α ((M3), green)
and anti GFAP ((M2), red) antibodies in CA1 SR of a TgCRND8 mouse. TNF-α was colocalized in
astrocytes ((M1), open arrows). Scale bar: 25 µm. (N1–N3) Double staining immunohistochemistry
with anti IL-1β ((N3), green) and anti GFAP ((N2), red) antibodies in CA1 SR of a TgCRND8 mouse.
IL-1β is colocalized in astrocytes ((N1), open arrows). Scale bar: 25 µm. (O,P): representative
photomicrographs of Cyt C immunostaining of apoptotic neurons ((O,P) red) in CA1 SP of WT and a
TgCRND8 mouse. The open arrows point to apoptotic neurons in CA1 SP. Scale bar: 100 µm. (Q1,Q2)
Confocal magnification of Cyt C positive apoptotic neurons ((Q2), red, open arrow) in CA1 SP of a
TgCRND8 mouse. Scale bar: 30 µm. (Modified from [37]).

The pattern of distribution of the Aβ plaques [37] show that medium and large plaques are
significantly more numerous than small plaques in CA1 than in CA3. This result indicates that Aβ

fibrils in CA1 are either more actively secreted or less efficiently disposed of and continue to accumulate
in the parenchyma, enlarging the amyloid plaques that over time become complex. Aβ plaques
induce the production and release of pro-inflammatory cytokines by neurons and astrocytes [183,259],
which promote a shift in microglia activity, from surveillance/maintenance mode, to execution of
immune tasks. Although studies on appearance and development of Aβ plaques have yielded
inconsistent results [184,226,260], according to Serrano-Pozo et al. [261], the average plaque size
varies among individuals and correlates with age of symptoms onset, allowing speculation that large
plaque size predisposes an individual to early AD onset. It has also been shown that the radius of
Aβ plaques grows constantly over 6 months in mice, showing that the amount of soluble Aβ is the
primary and limiting factor in plaque growth [262], and indicating a critical relationship between
Aβ concentration in the parenchyma and Aβ plaque growth [260]. Aβ is added continuously in
layers to the existing plaques during the presence of excessive soluble Aβ [260,262]. Additional
evidence shows hippocampal subregional-specific patterns of neurodegeneration at different stages
of Aβ deposition [263,264]. Nevertheless, the question arises as to why contiguous regions of the
hippocampus have such significant differences in terms of plaque load. One different hypothesis may
lie in the results recently published by Pascoal and collaborators [265]. They demonstrated in subjects
with mild cognitive impairment and in transgenic rats that distant Aβ induces regional metabolic
vulnerability, whereas the interaction between local Aβ with a vulnerable environment drives the
clinical progression of dementia [265].

Hypertrophic astrocytes as well as activated microglia are located preferentially around large
Aβ plaques (Figure 1(K1–K4)), in agreement with data obtained by Bolmont et al. [184] in the cortex
of APPPS1 transgenic mice. Astrocytes and microglia located more distantly from the plaques are
in a less reactive state [37]. Nevertheless, the specific reactive phenotype of microglia [266] and
astrocytes [95] is determined not only by the proximity to plaques, but also by the size of plaque and
by the distribution within different brain areas. The involvement of astrocytes in AD progression
depends upon the brain area involved and the severity of the disease. Indeed, in the hippocampus,
AD progression has been associated with early atrophy of astrocytes [267,268] that, at later stages of the
disease, coexists with reactive astrocytes around plaques [95,97]. Nevertheless, differently from CA3,
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high levels of astrogliosis are present in CA1, evidenced by increased recruitment of strongly reactive
astrocytes, with long and hypertrophic branches (Figure 1A,B). Furthermore, the proinflammatory
mediators TNF-α, IL-1β, as well as iNOS increase in CA1 astrocytes, and only to a lesser extent in
CA3 [37]. In models of AD, TNF-α usually is expressed in the brain mainly by activated microglia,
and less by activated astrocytes and neurons [254,269,270]. Aβ deposition activates astrocytes and
induces increased expression and release of cytokines, interleukins, NO and other proinflammatory
mediators [11,271]. Increased expression and release of TNF-α by astrocytes activates cell-surface
TNF-α type I receptors containing death domains [183,259,272], and increases pro-apoptotic cascades
in a significant number of pyramidal neurons [270], exacerbating AD pathology [273]. In addition,
cytokines can stimulate iNOS in astrocytes [37], increasing the release of NO, which is toxic to neurons.
It has been demonstrated that iNOS is upregulated in the brain of AD patients [274], and iNOS KO in
mouse models of AD results in a protective effect towards the pathology [275]. Many studies have
shown that the gradual deposition of Aβ peptides and overproduction of inflammatory mediators
activate astrocytes, further inducing the expression and release of cytokines, interleukins, NO and
other proinflammatory mediators [11,271].

In the hippocampus of transgenic mice and in AD patients, reactive astrocytes surrounding
Aβ plaques enwrap and engulf axonal synapses [144] and endocytose extracellular monomeric and
oligomeric Aβ [276]. When astrocytes engulf large amounts of Aβ protofibrils, incomplete digestion
results in intracellular load of high levels of partially truncated toxic Aβ, which can cause severe
lysosomal dysfunction [277]. Accumulation of Aβ by astrocytes gives rise to enlarged extracellular
microvesicles that contain N-terminally truncated Aβ and can induce apoptosis of neurons [277].

Total microglia and reactive M1-like microglia increase in both CA1 and CA3 of transgenic mice
(Figure 1C–F) and are polarized towards plaques [37]. It appears that the inflammatory milieu triggered
by plaque deposition recruits microglia and increases its reactivity. Microglia activation may exacerbate
inflammation, increase Aβ-deposition, and intensify neurodegeneration [278]. As pointed out above,
microglia can assume two different phenotypic forms, M1 and M2 [279]. While M1 microglia express and
release proinflammatory cytokines [280,281], M2 microglia, phagocytosing apoptotic or degenerating
neurons, is active in the surveillance of the parenchyma and maintenance of tissue homeostasis,
preventing secondary inflammatory mechanisms and promoting tissue regeneration [282,283]. In AD,
as for astrocytes, pro-inflammatory and detrimental, or anti-inflammatory and even protective
properties have been attributed to microglia [11,200,284].

All these different findings may suggest that microglia may acquire heterogeneous activation
states, and microglia can be protective or detrimental, depending on the region where they
are located. Increased reactivity state of microglia and astrogliosis augment the formation of
neuron–astrocytes–microglia triads in CA1. The concerted actions of astrocytes and microglia in the
formation of triads with neurons help recognize danger signals, including cellular debris produced
from apoptotic or necrotic cells [285], and help to dispose of damaged neurons or neuronal debris
by phagocytosis [116,253]. Degenerating neurons are engulfed by microglia, and reactive astrocytes
cooperate in the phagocytic event, infiltrating and dissecting the body of the damaged neuron and
forming a microscar around it, possibly to prevent the spread of noxious neuronal debris in the tissue
(Figure 1J).

In addition, neurons respond differently in CA1 and CA3 to the insult caused by Aβ deposition:
in CA1, pyramidal neurons are significantly smaller than in controls (Figure 1G–J), many of them
are apoptotic (Figure 1(O–Q2)), and their number is decreased, while in CA3 these alterations are
significantly less frequent. The loss of CA1 pyramidal neurons, which undergo neuronal death by
apoptosis, causes shrinkage of the CA1 pyramidal cell layer. All these modifications may be at the
basis of memory loss which has been repeatedly demonstrated in this transgenic mouse model of Aβ

deposition, even at early stages of Aβ deposition [258] or in the absence of plaques [286], at a stage in
which microglia are activated. Indeed, microglia activation during the early phases of Aβ deposition
may be deleterious due to potential adverse effects associated with inflammation, neurotoxicity
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and degeneration. It has been demonstrated that activated microglia can release proinflammatory
cytokines such as IL-1β, IL-6 and TNFα, and generate ROS that enhance oxidative stress [287,288].
Furthermore, activated microglia can stimulate synaptic pruning and the phagocytic activity of live
neurons [188], thus increasing neurodegeneration and impairing synaptic function [181]. Furthermore,
neuroinflammation can enhance Aβ accumulation through perturbations of microglia phagocytic
clearance of Aβ, thus enhancing Aβ deposition [289]. Furthermore, recent studies have demonstrated
that microglia may play an important role in regulating astrocytes activation. Indeed, fragmented
mitochondria released from activated microglia trigger the A1 astrocytic response and propagate
inflammatory neurodegeneration [290]. A1 astrocytes have a reduced ability to support neuronal
survival, outgrowth and synaptogenesis and can induce cell death in neurons [101,290].

All these mechanisms taken together may be the cause of the significant loss of CA1 pyramidal
neurons and shrinkage of CA1 stratum pyramidale [37]. The loss of CA1 pyramidal neurons is
caused—at least in part—by increased apoptosis, more pronounced in CA1 than in CA3. In CA1,
the proinflammatory milieu above described intensifies pro-apoptotic cascades possibly targeted by
increased TNF-α, expressed and released by astrocytes (Figure 1(M1–M3)) [270,272], and exacerbating
AD pathology [273]. In addition, stimulation of iNOS by cytokines in astrocytes (Figure 1(L1–L3))
may cause increased release of NO that can be toxic to neurons. Indeed, iNOS is upregulated in AD
patients’ brains [274] and iNOS KO is protective in mouse models of AD [275].

Characterizing the quantitative and morpho-functional alterations of neurons and glia in the
CA1 and CA3 subregions of the hippocampus, it was possible to confirm the existence of differential
and regional-specific patterns of glia activation that possibly mirror and/or cause neurodegeneration.
All these mechanisms, taken in the perspective of other published results [116,117,222,224,253–256]
can help explaining the higher sensitivity of CA1 pyramidal neurons in AD.

7. Conclusions

These findings allow us to shed light on the different sensitivity and response of communicant
and tightly interconnected regions toward noxious stimuli or conditions such as Aβ plaque formation
(See Figure 2).
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Astrocytes in their A1 state release factors that are toxic to neurons and oligodendrocytes,
become less synaptogenic and lose their phagocytic activity and possibly their ability to dispose
of Aβ plaques [101]. This latter mechanism can be the cause of the prevalence of medium and
large plaques in CA1. High levels of Aβ that form medium and large plaques can stimulate
the release of pro-inflammatory cytokines by neurons and astrocytes [183,259] which promote the
shift of microglia from surveillance/maintenance mode (M2), to execution of immune tasks (M1).
In both CA1 and CA3 of transgenic mice microglia cells are polarized towards large Aβ plaques [37],
indicating that the inflammatory milieu triggered by plaque deposition can cause increased recruitment
of microglia, and significant increase in its reactivity. It is now thought that microglia undergo
phenotypic activation in response to fibrillar beta-amyloid (fAβ) deposits that form amyloid plaques.
However, despite the presence of abundant plaque-associated microglia in animal models of the
disease [37] and in the brains of AD patients, it has been reported that microglia fail to efficiently
clear fAβ deposits [155,166]. Recent transcriptomics studies have shown that in neurodegenerative
diseases, chronic neuroinflammatory states and in advanced aging microglia gradually adopt a unique
phagocytic DAM phenotype [166,291–293]. DAM microglia first maintain Aβ plaques in a benign state,
expressing factors that prevent tau hyperphosphorylation and neuronal damage [166]. Nevertheless,
the existence of both pro-inflammatory and anti-inflammatory DAM microglia has been demonstrated,
with consequent potential benefits of suppressing the pro-inflammatory DAM phenotype [294]. Indeed,
in more advanced stages of AD, TREM2-expressing microglia cause extensive inflammation and
neurodegeneration [207,208]. Microglia can assist the clearance of age related Aβ accumulation or can
promote inflammatory reaction to it, eventually causing widespread neurodegeneration. This difference
can be driven not only by the time-course of the disease, but also by spatial cues.

Microglia can be seen also neuroprotective or neurotoxic depending also on the crosstalk with
astrocytes. Indeed, the concomitant presence in CA1 of A1-type reactive astrocytes, which lose their
ability to phagocytose damaged neurons [138] can start a vicious cycle in which microglia that has
lost its scavenging activity is no longer able to dispose of the amyloid fibrils that add up making
plaques bigger and bigger and less disposable. This is in line with recent evidence that demonstrates
subregional-specific patterns of neurodegeneration at different stages of Aβ deposition [263,264].

In CA1 and CA3, contiguous and interconnected regions of hippocampus, astrocytes and microglia
show differential, finely regulated, and region-specific reactivities, which are different depending upon
the physiopathological conditions. Whether glial cells adopt phenotypes that aggravate tissue injury or
promote brain repair, most likely depends on different set of factors, such as the nature of the damaging
element, the time course of injury, the severity score that determine the precise arrangements of signals
deriving from the surrounding environment. Therefore, the response is possibly not univocal but
largely depends on the disease context.

The idea that the same stimulus/injury activates different types of astrocytes/microglia cells
in different regions of the brain raises many questions. How many reactive astrocytes/microglia
cell types are there? What are the cell–cell interactions that induce reactive astrocytes and/or
microglia? What are the relevant extracellular and intracellular signaling pathways that induce
reactive astrocytes/microglia? In the same way that microglia can have simultaneously multiple
profiles of activation, the A1 and A2 phenotypes can represent the extremes of a continuous spectrum
of reactive profiles. The mechanisms regulating these diverse functional properties remain unknown,
but evidence suggests that environmental cues, especially microglia-derived signals [101,295] may
be important.

A complete understanding of the spatial differences and roles of glia will allow us to assess how
these interactions can influence the disease state, the progression of disease, and will be critical to
identify therapeutic strategies for recovery.

Author Contributions: M.G.G.: conceptualization, writing—original draft preparation, writing—review and
editing, funding acquisition; D.L.: writing—review and editing, F.U.: preparation of the figures. All authors have
read and agreed to the published version of the manuscript.
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