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Abstract: Curtobacterium flaccumfaciens pv. flaccumfaciens (Cff ) is a Gram-positive phytopathogenic
bacterium attacking leguminous crops and causing systemic diseases such as the bacterial wilt of
beans and bacterial spot of soybeans. Since the early 20th century, Cff is reported to be present
in North America, where it still causes high economic losses. Currently, Cff is an emerging plant
pathogen, rapidly spreading worldwide and occurring in many bean-producing countries. Infected
seeds are the main dissemination pathway for Cff, both over short and long distances. Cff remains
viable in the seeds for long times, even in field conditions. According to the most recent EU legislation,
Cff is included among the quarantine pests not known to occur in the Union territory, and for
which the phytosanitary inspection consists mainly of the visual examination of imported bean
seeds. The seedborne nature of Cff combined with the globalization of trades urgently call for the
implementation of a highly specific diagnostic test for Cff, to be routinely and easily used at the official
ports of entry and into the fields. This paper reports the development of a LAMP (Loop-Mediated
Isothermal Amplification) specific for Cff, that allows the detection of Cff in infected seeds, both by
fluorescence and visual monitoring, after 30 min of reaction and with a detection limit at around
4 fg/µL of pure Cff genomic DNA.

Keywords: Loop-Mediated Isothermal Amplification; LAMP; Curtobacterium flaccumfaciens pv.
flaccumfaciens; bacterial wilt of bean; tan spot of soybean; quarantine plant pathogen; molecular
diagnostics

1. Introduction

Curtobacterium flaccumfaciens pv. flaccumfaciens (Cff ) is a highly damaging plant pathogenic
Gram-positive bacterium, causing serious diseases among several cultivated and wild leguminous
species. The host range of this pathogen includes common bean (Phaseolus vulgaris L.), cowpea (Vigna
unguiculata L.), mung bean (V. radiata L.), and soybean (Glycine max L.) [1,2]. Cff was firstly described in
1922 in the USA and was later recorded in Canada, Mexico, South America, Australia and, more recently,
in Iran [1,3,4]. Cff was listed into the A2 list of the European and Mediterranean Plant Protection
Organization (EPPO) for pests recommended for quarantine regulation since 1975 [5], and since 2019 it
is included in the List 1, Annex II A, of quarantine pathogens for EU that have not known to occur in the
Union territory [6,7]. Currently, in Europe Cff is reported to be present in Russia and Turkey, although
with a restricted distribution [5,8]. However, recent sporadic reports have been recorded in Spain,
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Germany, and Austria, with disease outbreaks occurring on bean, soybean, and cowpea, respectively,
which have been promptly followed by Cff eradication [5,9,10]. These outbreaks raised great concern
among the EU Member States, for which the dry pulse crop area has grown considerably since 2013 as
a result of the current Common Agricultural Policy (CAP) towards a more sustainable agriculture [11],
and where the climatic conditions are favorable to the establishment of Cff [2]. This quarantine
phytopathogen is also a potential threat to the wide biodiversity of the many bean cultivars and other
legumes originating from Europe. Most of these local varieties are promoted worldwide as traditional
products. They are marked by specific European food quality logos, and often represent an essential
income in rural areas.

In this overall frame, the seedborne nature of Cff is a serious concern as it allows the rapid spread
of this plant pathogen over long distances, through the movement of infected seeds on a global market
scale [12–14]. Although most Cff -infected seeds are asymptomatic, the current testing methods are still
based on the visual examination of seed crops and harvested seeds [1]. Some semi-selective culture
media and immunological tests have also been reported for Cff, but they generally have low sensitivity
and specificity, and are time-consuming [for a recent review, 4]. Currently, among the PCR-based
assays developed so far for Cff [15,16], the primer pair CffFOR2/CffREV4 has been demonstrated to be
highly effective and sensitive for the detection of Cff in contaminated bean seeds [16–18], and in/on
alternative host plants and weeds [19–22].

As no effective chemicals against this pathogenic bacterium are known, the availability of a
specific and sensitive diagnostic test for the rapid detection of Cff on plant materials, possibly at
the port of entry and into the fields, is a pivotal step towards the successful prevention of disease
outbreaks. Traditional PCR-based assays are mostly unsuitable for direct field use, as well as for
less well-equipped laboratories. Conversely, Loop-Mediated Isothermal Amplification (LAMP) is a
technique particularly useful for on-site testing [23]. The LAMP reaction is isothermal, and thus can be
performed in a simple heating block or a water bath, without the need for any specialized thermal
cycler. In addition, positive results can be observed in less than an hour with the naked eye or by
using a portable fluorescent reader, thus removing the post-amplification steps of electrophoresis, gel
staining, and imaging. Recently, several LAMP assays have been successfully developed for some
plant pathogenic bacteria [24–28], and sometimes also tested at field level [24,27].

This paper describes the development of a simple, sensitive, and highly specific LAMP assay for the
cost- and time-saving quali-quantitative detection of Cff, whose effectiveness was successfully compared
to the conventional PCR-based method adopted so far for this phytopathogen. The LAMP-specific
primers here designed are targeting the Cff genomic region specifically amplified with the primer pair
CffFOR2/CffREV4 on any C. flaccumfaciens isolate pathogenic on bean, regardless of its host of isolation.
This LAMP assay was shown to be highly effective in detecting Cff in infected bean plants and seeds.

According to its performances, this LAMP method is a valuable diagnostic tool, which can be
easily applied where an early and rapid diagnosis of the presence of this quarantine phytopathogen on
bean seeds is required.

2. Materials and Methods

2.1. Bacterial Strains and Growth Conditions

The bacterial strains used in this study are listed in Table 1. The Cff strains include several different
colony variants of this pathogen, that are yellow-, red- and orange-pigmented strains [21]. In addition
to Cff strains isolated from leguminous plants and from several alternative hosts, C. flaccumfaciens
isolates that are not pathogenic on beans, and the type strains of the four other C. flaccumfaciens
pathovars betae, ilicis, oortii, and poinsettiae, were also used. Furthermore, closely related species (i.e.,
Clavibacter michiganensis subsp. michiganensis (Cmm)), as well as other important bean phytopathogens
(i.e., Pseudomonas savastanoi pv. phaseolicola (Psp) and Xanthomonas axonopodis pv. phaseoli (Xap)),
were also tested (Table 1).
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Table 1. Bacterial strains used in this study.

Bacteria Strain Source a Host of
Isolation Pathogenicity b LAMP c PCR c

Curtobacterium flaccumfaciens
pv. flaccumfaciens (Cff )

Type ICMP 2584 Common bean + + +

50R ICMP 22071 Common bean + + +

80O ICMP 22069 Common bean + + +

Cb222 ICMP 21399 Common bean + + +

Cb302 − Common bean + + +

Cb926 − Common bean + + +

Cff110 − Common bean + + +

Cff137 ICMP 22066 Common bean + + +

Cff151 − Common bean + + +

Cff153 − Common bean + + +

Cff155 − Common bean + + +

Cff156 − Common bean + + +

Cff178 NCPPB 178 Common bean + + +

Cff558 NCPPB 558 Common bean + + +

Cff567 NCCPB 567 Common bean + + +

Cff1412 NCPPB 1412 Common bean + + +

Cff1751 NCPPB 1751 Common bean + + +

10eg ICMP 22079 Eggplant + + +

Cw101 − Cowpea + + +

Cw110 − Cowpea + + +

Eg502 ICMP 22055 Eggplant + + +

Eg505 ICMP 22054 Eggplant + + +

P701 ICMP 22078 Bell pepper + + +

P99O ICMP 22053 Bell pepper + + +

Tom50 ICMP 22062 Tomato + + +

Tom803 ICMP 22083 Tomato + + +

Tom806 ICMP 22059 Tomato + + +

Tom930 ICMP 22057 Tomato + + +

Tom999 ICMP 22082 Tomato + + +

CFgs5 − Soybean + + +

CFgs6 − Soybean + + +

CFgs12 − Soybean + + +

CFgs14 − Soybean + + +

CFgs15 − Soybean + + +

CFgs18 − Soybean + + +

Curtobacterium flaccumfaciens

Tom827 ICMP 22084 Tomato − − −

Xeu15 ICMP 21400 Chilli pepper − − −

Cmmeg20 ICMP 22056 Eggplant − − −

CFha4 − Sunflower − − −

CFha5 − Sunflower − − −

CFha8 − Sunflower − − −

Curtobacterium flaccumfaciens
pv. betae (Cfb) Type ICMP 2594 Red beet − − −

Curtobacterium flaccumfaciens
pv. ilicis (Cfi) Type ICMP 2608 American holly − − −

Curtobacterium flaccumfaciens
pv. oortii (Cfo) Type ICMP 2632 Tulip − − −
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Table 1. Cont.

Bacteria Strain Source a Host of
Isolation Pathogenicity b LAMP c PCR c

Curtobacterium flaccumfaciens
pv. poinsettiae (Cfp) Type ICMP 2566 Poinsettia − − −

Clavibacter michiganensis subsp.
michiganensis (Cmm) Type ICMP 2550 Tomato − − −

Pseudomonas savastanoi
pv. phaseolicola (Pph) Type NCPPB 1449 Lablab purpureus − − −

Xanthomonas axonopodis
bbpv. phaseoli (Xap) Type NCPPB 3035 Common bean − − −

a ICMP International Collection of Micro-organisms from Plant, Auckland, New Zealand; NCCPB National Collection
of Plant Pathogenic Bacteria, Sand Hutton, UK. b Pathogenicity assessed on tests carried out on common bean plants.
c Samples testing positive (‘+’) or negative (‘−’), using LAMP assay and endpoint PCR with CffFOR2/CffREV4
primer pair [16,17].

Bacterial strains were routinely grown at 26 ◦C on Luria Bertani (LB) [29] medium both as liquid
and solid cultures, while Cff strains were specifically plated on nutrient broth yeast extract agar medium
(NBY) [30]. Bacteria were preserved for long-term storage at −80 ◦C in LB broth, supplemented with
40% glycerol (w/v), and subcultured when required.

2.2. Bacterial DNA Extraction and Thermal Lysis

Bacterial DNA extraction and purification were carried out using the Puregene® DNA Isolation
Kit (Qiagen GmbH, Hilden, Germany), as recommended by the manufacturer. The yield and quality of
the extracted DNA were evaluated both spectrophotometrically by using Nanodrop ND-100 (Nanodrop
Technologies, Waltham, MA, USA), and visually by standard agarose gel electrophoresis (1% agarose
(w/v) in TBE 1X) [31], respectively. The DNA was then stored at −20 ◦C until needed. Bacterial DNA
was also obtained by thermal lysis of single colonies, each picked up from fresh agar plates with
a sterile loop and diluted in sterile bidistilled water (100 µL/pellet), incubated at 95 ◦C for 15 min,
and then immediately cooled on ice. After a quick spin in a microcentrifuge, 5 µL lysate was directly
used in amplification reactions as a template.

2.3. Primer Design

Several primer sets for the specific LAMP amplification of Cff DNA were designed by using
the Primer Explorer V5 software (Eiken Chemicals, Tokyo, Japan) (http://primerexplorer.jp/lampv5e),
targeting the same 306 bp nucleotide sequence on which the conventional PCR-based protocol used
for Cff identification was also based [16,17]. A manual check for the best default program parameters
and a BLAST search for potential aspecific homologies (http://www.ncbi.nlm.nih.gov/blast) were also
carried out. For comparison, the primer pair CffFOR2/CffREV4 was also used [16]. Primers were
synthesized and HPLC-purified at Eurofins (Hamburg, Germany).

2.4. LAMP Reaction

The 25 µL LAMP reaction mixture contained 15 µL of GspSSD Isothermal Mastermix ISO-001
(Optigene, Horsham, UK), the CffF3 and CffB3 outer primers (200 nM each), the CffFIP and CffBIP inner
primers (800 nM each), and, as a template, a 5 µL solution of purified genomic DNA from Cff strains
reported in Table 1, at a concentration depending on the experimental purposes. In negative controls,
the template consisted of sterilized molecular grade bidistilled water. Cross-reactivity with non-target
species was tested, by using purified DNA from non-pathogenic C. flaccumfaciens strains, or closely
related bacteria (i.e., Cmm), or other plant pathogenic bacteria occurring on beans (i.e., Psp and Xap).
The optimized reaction was run at 63 ◦C for 30 min in the CFX96™ real-time fluorometer (Bio-Rad,
Hercules, CA, USA), with fluorescence data recorded at 60 s time intervals. The LAMP generated
amplicons (5 µL/reaction) were also endpoint analyzed on agarose gel (2% agarose (w/v) in TBE 1X) [31],

http://primerexplorer.jp/lampv5e
http://www.ncbi.nlm.nih.gov/blast
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with 5 µL reaction/well, then stained with ethidium bromide (0.5 µg/mL), and UV-visualized by using
the Molecular Imager® Gel Doc™ XR System (Bio-Rad).

A colorimetric LAMP assay was also performed, by using the WarmStart Colorimetric LAMP
2× master mix (New England BioLabs, Ipswich, MA, USA), according to the manufacturer’s
recommendations, and carried out at 63 ◦C for 30 min in a 25 µL final reaction. Sterilized molecular
grade bidistilled water was included in each analysis as a negative control. Six independent experiments
were conducted with three replicates for each sample.

2.5. Detection of Cff in Artificially and Naturally Infected Bean Plant Materials

The in planta performances of the newly developed Cff -specific LAMP assay have been assessed
both on bean plants artificially inoculated with Cff and on naturally Cff -infected bean seeds of the
Iranian cultivar (cv.) Pak.

Artificial inoculations on certified commercial bean seeds of the Italian cv. Cannellino (Linea
Mediterranea srl, Pomezia-Roma, Italy) were performed by using the hilum injury method [32].
Each seed was injured by piercing the hilum with a sterile needle. Then, bean seeds were soaked for 1 h
in a fresh Cff bacterial suspension (OD600 = 0.5, corresponding approximately to 108 colony-forming
unit/mL (CFU/mL)). Seeds used as negative controls were soaked in sterile physiological solution (SPS;
0.85% NaCl in bidistilled water). Inoculated and uninoculated bean seeds were then separately sown in
15 cm diameter plastic pots (1 seed/pot) with Cornell peat-lite mix, and incubated in a growth chamber
with a 16 h photoperiod and temperature of 22 ± 2 ◦C. Plants were monitored daily for the appearance
of symptoms, and at 14 days post-infection (d.p.i.), three true leaves from each Cff -inoculated and
control plant were detached and used for DNA extraction, which was carried out with NucleoSpin®

Plant II (Macherey-Nagel, Düren, Germany), according to the manufacturer’s recommendations.
The resulting total genomic material contained both the host plant (bean) DNA and the bacterial DNA
(Cff ). This DNA was then used as a template for both conventional PCR and LAMP assays. Three
independent experiments were performed, with six replicates for each experimental condition for
each run.

Samples (10 seeds each, corresponding to about 4.225 ± 0.350 g) of healthy-looking and
symptomatic Cff -naturally infected bean seeds cv. Pak were separately washed three times in
sterile distilled water. These seeds were derived from a Cff -infested area in Iran. Cff -free certified
seeds of the same cultivar were used as a negative control. Each sample was then finely grounded,
and transferred into 20 mL of SPS, under shaking conditions for 12–14 h. Any seed particle and
residue were then eliminated by filtering the suspension on a sterile gauze, and the filtrate was then
centrifugated at 6000× g, for 20 min at 4 ◦C. The supernatant was discharged, while the pellet was
resuspended in 1 mL SPS, and then directly used for the amplification tests. Three independent
experiments were performed, and six samples for each condition (i.e., healthy-looking and symptomatic
Cff -infected seeds, and certified Cff free seeds) at each run were used.

3. Results

3.1. Design and Selection of LAMP Primers

As a target sequence for LAMP primer design, the highly conserved 306 pb DNA fragment
amplified by the Cff specific endpoint PCR-based test [4,16,17] (GenBank Accession Numbers AJ307048,
AJ307049, and AJ307051) was selected. Among the primers generated by Primer Explorer V5, a set of
four LAMP primers was chosen as the most appropriate candidate, according to several key parameters,
such as GC content, melting temperature (Tm), distances between primers, and stability of primer
ends expressed as free energy (∆G). These primers were also in silico analyzed by BLAST searches,
and no homology hits were found but the expected Cff target sequence (data not shown).

The selected LAMP primers recognize six distinct regions on the target sequence, and consist
of the two outer primers named CffF3 and CffB3, and the two inner hybrid primers named CffFIP
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and CffBIP (CffFIP = sequences F1c + F2; CffBIP = sequences B1c + B2). The primer sequences and
their main features are reported in Table 2. Their annealing sites on the target sequence are shown in
Figure S1. The stability of the ends of the selected LAMP primers, expressed as ∆G, appeared to be
high, in particular to those ends essential as starting points for DNA synthesis. In particular, the 3′

ends of the outer primers CffF3 and CffB3, and of the sequences F2 and B2 of the internal hybrid
primers, showed ∆G values definitely lower than −4 Kcal/mol (Table 2), to guarantee a high degree
of stability [33]. Similarly, the ∆G values for the 5′ ends of the F1c and B1c sequences of the internal
primer pair were −5.17 and −5.69, respectively.

Table 2. Sequences and features of the LAMP primers designed and used in this study for Cff
specific detection.

Primers
Name Type Primer Sequence

5′-3′
Length

(bp)
Tm
(◦C)

GC
(%)

5’ ∆G
(kcal/mol)

3’ ∆G
(kcal/mol)

CffF3 Forward
outer CGTTAGTGAAGGCTGACGAA 20 59.3 50 −4.51 −5.26

CffB3 Reverse
outer TTCCCGGTGTTCAGTTGAC 19 59.2 53 −6.14 −4.67

CffFIP
(F1c + F2)

Forward
inner

GTTTGCATCCGTACGGGGCG-
ACTAGCACCGACGGAACC

38
(20 + 18)

65.8;
60.6

65;
61

−5.17;
−4.18

−7.97;
−5.46

CffBIP
(B1c + B2)

Reverse
inner

TTCGGTCCTGCAGTTAGTCAGC-
GAATAGTTCGCGGCGTGG

40
(22 + 18)

64.2;
60.2

55;
61

−5.69;
−3.08

−5.75;
−7.18

Finally, primer design is the main challenging step in the development of a new LAMP assay as
the probability of secondary structures formation is increased by the high number of primers required
(four as a minimum). According to their ∆G values, the LAMP primers here designed and selected
were predicted to be poorly prone towards the formation of both cross- and self-dimers as well as of
hairpins (Table S1).

No additional suitable loop primers were identified using Primer Explorer V5, with the short size
of the template as the only limiting factor. However, loop primers have been demonstrated to be not
essential for a successful LAMP reaction, although a reduction in amplification times can sometimes be
achieved [34–36].

3.2. Optimization of LAMP Assay for Cff Detection

The optimal temperature and reaction time of the LAMP assay for Cff detection have been
established by using pure DNA of the Cff type strain ICMP 2584 (40 ng/reaction) as template, and
accordingly to the assessment of both gel electrophoresis and real-time fluorescence data.

Pure Cff ICMP 2584T DNA was tested at six different amplification temperatures, within the
range 62–67 ◦C, and the reaction time was 30 min as recommended by the manufacturer. The typical
ladder-like DNA multiple bands of LAMP reaction have been detected on an agarose gel in positive
samples for all the tested amplification temperatures (Figure 1A).

No unspecific amplifications or primers cross-annealing were observed, regardless of the reaction
temperature. Similarly, the real-time fluorescence monitoring showed successful reactions to take place
within the range 62 ◦C–67 ◦C on positive samples, and the plateau was reached after 15 min (Figure 1B).
The reaction threshold times ranged from 5 to 9 min for amplification temperatures between 62 ◦C and
65 ◦C, while higher times (i.e., 12 and 15 min) were needed at higher temperatures (i.e., 66 ◦C–67 ◦C)
(Figure 1). Accordingly, the optimal conditions established for this Cff -specific LAMP assay were
63 ◦C with a 30-min running time (corresponding to 30 cycles of 1 min/each), then used for all the
following applications.
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out on Cff ICMP 2584T DNA (40 ng/reaction) used as a template, and at temperatures ranging from
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3.3. Specificity and Sensitivity of the LAMP Assay for Cff Detection

The specificity of the LAMP primers designed here was assessed by testing, as a template,
the purified genomic DNA (40 ng/reaction) from 35 Cff strains, having different geographical origin
and isolated from several different host plants, including P. vulgaris L., V. unguiculata L., Capsicum annum
L., Solanum lycopersicum L., and S. melongena L. Moreover, DNAs from non-target phytopathogenic
bacteria were also included, such as several C. flaccumfaciens strains, or the type strains from the
C. flaccumfaciens pathovars betae, ilicis, ooorti, and poinsettiae, or bacteria taxonomically related to
Cff (i.e., Cmm), or bacteria that are pathogenic on common bean and seedborne (i.e., Psp and Xap)
(Table 1). All the Cff strains tested here gave positive results, as assessed by both real-time fluorescence
monitoring and gel electrophoresis analysis. No cross-reactivity or aspecific amplification were found
to occur when DNA from non-target bacteria species was used as a template (Table 1). Therefore, this
LAMP assay for Cff detection has a specificity fully comparable with that of the existing conventional
PCR test for this quarantine phytopathogen [16,17] (Table 1).

In order to evaluate the analytical sensitivity of the LAMP assay developed here, the smallest
known amount of target DNA detected in each test sample was assessed. Several ten-fold serial
dilutions of Cff ICMP 2584T pure genomic DNA were used as a template, prepared in sterilized
molecular grade bidistilled water and ranging from 100 fg/reaction to 100 ng/reaction, in a 25 µL final
volume. The fluorescence-based real-time monitoring showed that this LAMP reaction is able to detect
Cff genomic DNA down to 0.1 pg/reaction after 20 min. As expected, the amplification time was
shorter as the DNA template concentration increased, and positive signals were obtained just after
15 min with 1 pg/reaction Cff DNA as a template (Figure 2A). The agarose electrophoresis analysis of
LAMP products confirmed these data. The characteristic ladder-like DNA bands were observed when
Cff DNA was used as a template in the range of 100 ng–100 fg per reaction (Figure 2B).
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DNA/reaction, respectively; M - Gene Ruler 100 pb Plus DNA Ladder; C = negative control. 

3.4. LAMP Detection of Cff on Artificially and Naturally Infected Bean Samples 

Firstly, bean plants cv. “Cannellino” artificially inoculated with Cff ICMP 2584T by hilum injured 
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using the primer pair CffFOR2-CffREV4 [16,17]. Positive results were obtained only for Cff inoculated 

Figure 2. Determination of the analytical sensitivity of the LAMP assay for Cff detection. Isothermal
amplifications were carried out on tenfold diluted test samples of Cff ICMP 2584T DNA (from 100 ng
to 100 fg per 25 µL reaction). Data assessment was based on (A) real-time fluorescence monitoring
and (B) 2% agarose gel electrophoresis analysis of the LAMP products. (A) NC = negative control.
1 cycle = 1 min reaction. (B) Lanes 1–7: 100 ng, 10 ng, 1 ng, 0.1 ng, 10 pg, 1 pg, and 0.1 pg of genomic
DNA/reaction, respectively; M - Gene Ruler 100 pb Plus DNA Ladder; C = negative control.

3.4. LAMP Detection of Cff on Artificially and Naturally Infected Bean Samples

Firstly, bean plants cv. “Cannellino” artificially inoculated with Cff ICMP 2584T by hilum injured
method were used to validate the LAMP assay for Cff detection. Initially, the DNA extracted from
both Cff inoculated and uninoculated bean plants were subjected to conventional PCR, carried out
using the primer pair CffFOR2-CffREV4 [16,17]. Positive results were obtained only for Cff inoculated
plant samples, where the characteristic single 306 bp amplicon was specifically visualized on agarose
gel (Figure 3A).
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Figure 3. LAMP assay results from Cff -artificially infected bean plants cv. Cannellino. The Cff type
strain ICMP 2584 was used for artificial inoculation. (A) Cff infection was confirmed by conventional
PCR carried out using the primer pair CffFOR2/CffREV4. Lanes: 1, 2, 3, 4: Cff -inoculated bean plants;
5: uninoculated bean plant; 6: Cff ICMP 2584T pure DNA; 7: negative control, sterilized molecular
grade water as a template; M - Gene Ruler 100 pb Plus DNA Ladder. (B) Real-time monitoring of
LAMP reaction for Cff detection on bean plants artificially inoculated with Cff ICMP 2584T or with SPS.
Sterilized molecular grade water was used as a negative control (NC).

When the LAMP reaction was monitored by fluorescent real-time analysis, the DNA extracted
from every artificially Cff -inoculated plant showed a positive amplification curve, just after 5 min.
No amplification signals were recorded using, as a template, the DNA extracted from control
uninoculated plants (Figure 3B). Data were further confirmed by agarose gel electrophoresis analysis
of the LAMP products (data not shown).
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This LAMP assay has been evaluated also on naturally Cff -infected bean seeds, where the presence
of this phytopathogen is often asymptomatic. To this aim, bean seeds belonging to the cv. “Pak”,
collected in Iran from fields previously assessed as Cff -infected, were used for DNA extraction [17],
and then tested by conventional PCR with the primer pair CffFOR2/CffREV4 and by LAMP fluorescence
real-time monitoring (data not shown). The infection level was about 72%. Seeds to be considered as
Cff infected were those testing positive both by PCR and LAMP assays, regardless of the presence of
any symptoms.

A protocol for the direct visual detection of LAMP results was also developed. The pH indicator
dye used here turned from pink to yellow, as a consequence of the pH value decrease upon DNA
amplification [37]. This protocol for visual LAMP was applied and tested on naturally Cff -infected
bean seeds belonging to the cv. “Pak”, and highly reproducible results were obtained. As shown in
Figure 4, the colorimetric visual readouts of LAMP results were positive within a time period of 15 to
30 min after the start of the incubation at 63 ◦C, when DNA extracted from the Cff -naturally infected
bean seeds cv. “Pak” was used as a template, regardless of whether or not these seeds showed or not
any symptoms.Microorganisms 2020, 8, x FOR PEER REVIEW 9 of 12 
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Figure 4. Visual detection of LAMP products obtained with bean seed samples cv. “Pak” for Cff
detection. Visual detection of LAMP products from bean seed samples cv. “Pak” for Cff detection.
Positive samples show a color change, from pink (negative samples) to yellow. Uninfected (samples 1
and 2) and naturally Cff -infected (samples 3, 4, 5, 6, 7). Molecular grade water was used as a template
in negative controls (sample 8).

The detection rate was similar to that previously obtained by conventional PCR and LAMP
fluorescence monitoring. Samples containing, as a template, DNA from Cff -free certified seeds cv.
“Pak” always scored as negative. Controls with DNA template replaced with sterile PCR-grade water
also scored as negative. At last, no false positive or false negative results were detected.

4. Discussion

Cff is an important seedborne bacterial phytopathogen, with a high negative impact on the
yields of beans as well as of other legumes [2,4,38,39]. The increasing worldwide spreading of Cff
in bean-producing areas is strongly driven by the global expansion of international trades of plant
materials, as well as by the multifaceted impact of climate change on plant-pathogen interaction
and on weather conducive conditions [40]. It is important to point out that leguminous crops are
essential for food security, as they are a staple food and help fighting hunger in less developed
countries, and contribute to healthy eating habits worldwide. Furthermore, legumes have a pivotal
role in a sustainable agriculture, and in climate change mitigation. Their symbiotic relationship with
nitrogen-fixing rhizobia bacteria allows these crops to strongly improve soil health, and to reduce the
expensive and polluting use of synthetic nitrogen fertilizers in agriculture [41].
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Therefore, more research is urgently needed on these crops, as well as on their most important
diseases and pathogens, including Cff. As it occurs in other seedborne phytopathogens, the availability
of accurate and highly specific seed health tests is among the most important and essential means
of control for Cff. Indeed, dramatic outbreaks can easily be caused by inadequate surveillance and
quarantine regulatory procedures, following the entry and establishment of a new and emerging plant
pathogen. Indeed, the interception of Cff during a port of entry inspection of plant material is extremely
difficult, because Cff -infected seeds are mostly asymptomatic [1,38]. Furthermore, the existing assay
developed so far for Cff detection on plant material [16,17] requires several specialized equipment
and instruments and takes longer times in comparison to other most recent molecular diagnostic
approaches such as LAMP [23]. LAMP has also several advantages in comparison to traditional
PCR-based approaches, such as its low cost, ease in use, and suitability for in-field/on-site testing.

The only challenging step of the LAMP approach is the correct design of effective primers. Due to
the high number of primers needed for each primer set, and the limited options as far as target
sequences are concerned, the risk related to the formation of secondary structures can be high. In this
paper, we present the development of a LAMP assay for the specific detection of Cff. The newly
developed assay targets the unique and highly conserved 306 bp sequence, that was successfully used
for the design of the PCR-based assay for Cff and widely applied for in planta testing [16,17].

The optimized conditions established for the Cff–specific LAMP detection are 63 ◦C as amplification
temperature, and 30 min as running time. The analytical sensitivity of the LAMP assay for Cff detection
is 100 fg/reaction, which was detected by real-time fluorescence monitoring after 20 min, with 5 min
needed to detect 100 ng/reaction. The sensitivity was further confirmed by tests carried out on
Cff -infected plant samples. The four LAMP primer set here designed was thus demonstrated to be
highly performant, without loop primers, that sometimes have been reported to cause unwanted
instability in amplification [42,43].

Lastly, a procedure was developed to visualize LAMP amplification easily and directly through
naked eyes, 30 min after isothermal incubation of samples. The colorimetric pH-sensitive indicator
used here allowed the avoidance of the usual drawbacks related to other colorimetric indicators,
often producing false-positive results [44–46]. To the best of our knowledge, this is the first time that
a LAMP assay was developed for the specific quali-quantitative detection of Cff. This LAMP assay
provides a reliable, specific, and sensitive testing procedure, able to reveal the presence of Cff DNA on
bean seeds and other plant materials, rapidly and with the naked eye, thus substantially reducing the
risk of disease outbreaks by Cff due to its early detection.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-2607/8/11/1705/s1,
Figure S1. Location of annealing sites of the four Cff -specific LAMP primers here designed on the target sequence.
Table S1: Free Energy (∆G; kcal/mol) values for cross-dimers combination, and for self-dimers and harpins
formation for the Cff LAMP primers designed in this study.
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