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Differential response of digesta- and
mucosa-associated intestinal microbiota to
dietary insect meal during the seawater
phase of Atlantic salmon
Yanxian Li1*† , Leonardo Bruni2†, Alexander Jaramillo-Torres1, Karina Gajardo1, Trond M. Kortner1 and
Åshild Krogdahl1

Abstract

Background: Intestinal digesta is commonly used for studying responses of microbiota to dietary shifts, yet
evidence is accumulating that it represents an incomplete view of the intestinal microbiota. The present work aims
to investigate the differences between digesta- and mucosa-associated intestinal microbiota in Atlantic salmon
(Salmo salar) and how they may respond differently to dietary perturbations. In a 16-week seawater feeding trial,
Atlantic salmon were fed either a commercially-relevant reference diet or an insect meal diet containing ~ 15%
black soldier fly (Hermetia illucens) larvae meal. The digesta- and mucosa-associated distal intestinal microbiota were
profiled by 16S rRNA gene sequencing.

Results: Regardless of diet, we observed substantial differences between digesta- and mucosa-associated intestinal
microbiota. Microbial richness and diversity were much higher in the digesta than the mucosa. The insect meal
diet altered the distal intestinal microbiota resulting in higher microbial richness and diversity. The diet effect,
however, depended on the sample origin. Digesta-associated intestinal microbiota showed more pronounced
changes than the mucosa-associated microbiota. Multivariate association analyses identified two mucosa-enriched
taxa, Brevinema andersonii and Spirochaetaceae, associated with the expression of genes related to immune
responses and barrier function in the distal intestine, respectively.

Conclusions: Our data show that salmon intestinal digesta and mucosa harbor microbial communities with clear
differences. While feeding insects increased microbial richness and diversity in both digesta- and mucosa-associated
intestinal microbiota, mucosa-associated intestinal microbiota seems more resilient to variations in the diet
composition. To fully unveil the response of intestinal microbiota to dietary changes, concurrent profiling of
digesta- and mucosa-associated intestinal microbiota is recommended whenever feasible. Specific taxa enriched in
the intestinal mucosa are associated to gene expression related to immune responses and barrier function. Detailed
studies are needed on the ecological and functional significance of taxa associated to intestinal microbiota dwelling
on the mucosa.
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Background
The global population is projected to reach 9.7 billion in
2050 [1], requiring an increase in the food supply by 25–
70% [2]. Producing more safe and high-quality food in a
sustainable way to meet the global population growth is
a great challenge for our generation. Fish are considered
as nutritionally valuable part of the human diet and play
an important role in the global food supply [3, 4]. The
average annual growth rate of world food fish consump-
tion in the period 2019–2030 is projected to be 1.4%,
reaching 28 million tonnes live weight in 2030 [5]. At-
lantic salmon (Salmo salar) is the most produced marine
fish species and one of the most economically important
farmed fish worldwide [6]. While Atlantic salmon are
strictly carnivorous in the wild, farmed Atlantic salmon
have experienced a substantial shift in the diet compos-
ition due to a limited supply of marine ingredients. Mar-
ine ingredients used for Norwegian farmed Atlantic
salmon have gradually been replaced by plant sources,
decreasing from ~ 90% in 1990 to ~ 25% in 2016 [7].
Due to concerns on the economic, environmental and
social sustainability of the current raw materials for At-
lantic salmon farming [6], more sustainable alternative
feed ingredients, such as insects [8] and single-cell or-
ganisms (bacteria, yeasts and microalgae) [9], have been
developed and used. One of the insect species with the
greatest potential as an alternative feed ingredient for
salmon aquaculture is black soldier fly (BSF; Hermetia
illucens), which is now produced at industrial scale in
Europe. In terms of protein quality, BSF larvae have a fa-
vorable essential amino acid profile closer to fishmeal
than that of soybean meal [10]. The nutritional value of
BSF larvae meal has been extensively evaluated in vari-
ous fish species including Atlantic salmon [11–21].
However, how dietary BSF larvae meal may influence
the intestinal health, function and microbiota of fish re-
mains largely unexplored.
It is now well established that intestinal microbiota

plays a pivotal role in host development and physiology,
from being an essential element for the development of
normal gut functions and immunity [22, 23] to modulat-
ing lipid metabolism and energy balance [24, 25]. Recent
advances in sequencing technologies have transformed
our ability to study the composition and dynamics of
fish intestinal microbiota, leading to increasing interest
in selective manipulation of intestinal microbiota. Diet is
one of the key factors in shaping the intestinal micro-
biota. While long-term dietary habits have a consider-
able effect on the structure and activity of host intestinal
microbiota [26–28], short-term dietary change also alters
the intestinal microbiota in a rapid and reproducible
way [29]. Different dietary components selectively pro-
mote or suppress the growth of certain microbial clades,
which in turn could inflict important effects on the host

health and disease resistance [30, 31]. The use of alter-
native feed ingredients may not only affect the nutrient
utilization, fish growth, health, welfare and product qual-
ity, but also intestinal microbiota in Atlantic salmon
[32–34]. While studies in mammals and fish have re-
vealed substantial differences between the digesta- and
mucosa-associated intestinal microbiota [32, 35–38],
most studies investigating diet effects on the intestinal
microbiota of fish have sampled the digesta only or a
mixture of digesta and mucosa. Evidence is accumulat-
ing that digesta- and mucosa-associated intestinal micro-
biota in fish respond differently to dietary changes [32,
39–42]. Profiling only one of or a mixture of digesta-
and mucosa-associated microbiota may obscure the re-
sponse of intestinal microbiota to dietary changes.
Characterizing intestinal microbiota and its associa-

tions with host responses is an essential step towards
identifying key microbial clades promoting fish health
and welfare. Ultimately, a milestone in the fish micro-
biota research would be knowing how to selectively ma-
nipulate the microbiota to improve the growth
performance, disease resistance and health status of
farmed fish. The main aims of the present study were (i)
to compare distal intestinal microbiota of Atlantic sal-
mon fed a commercially relevant diet or an insect meal
diet, (ii) to further explore the dissimilarity between
digesta- and mucosa-associated microbiota and the dif-
ferences in their response to dietary changes, and (iii) to
identify associations between microbial clades and host
responses. This work was part of a larger study consist-
ing of a freshwater and seawater feeding trial that aimed
to investigate the nutritional value and possible health
effects for Atlantic salmon of a protein-rich insect meal
produced from BSF larvae. The results presented herein
focus on the intestinal microbiota in seawater phase At-
lantic salmon fed an insect meal diet containing ~ 15%
BSF larvae meal for 16 weeks.

Results
To aid readers in interpreting the data we report here,
results on the feed utilization, growth performance, fillet
quality, intestinal histopathology and gene expression,
which have been reported elsewhere [43–45], are sum-
marized as the following. In brief, there was lack of evi-
dence that the insect meal diet negatively affected the
feed utilization, growth performance or fillet quality of
Atlantic salmon. Profiling of genes related to lipid me-
tabolism, immune responses, barrier functions and stress
responses in the proximal and distal intestine showed lit-
tle evidence of diet effect. Histopathological examination
of intestinal segments showed enterocyte steatosis in the
proximal and mid intestine in both diet groups, but it
was less severe in the proximal intestine of fish fed the
insect meal diet.
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Hereafter, different sample groups are named based on
the combination of diet (REF vs. IM) and sample origin
(DID vs. DIM). Hence, in addition to the extraction
blanks, library blanks and mock, we have four different
sample types, i.e., REF-DID, REF-DIM, IM-DID and IM-
DIM.

qPCR
Since Cq values of most mucosa DNA templates were
out of the linear range of the standard curve, the raw Cq
value was used as a proxy of 16S rRNA gene quantity in
the diluted DNA templates (Fig. S1). On average, REF-
DID showed the highest 16S rRNA gene quantities
(mean Cq = 24.7), followed by the mocks (mean Cq =
26.1) and IM-DID (mean Cq = 28.4). Irrespective of diet,
mucosa DNA templates (REF-DIM, IM-DIM) showed
similar 16S rRNA gene quantities (mean Cq = 30) that
were close to extraction blanks (mean Cq = 32.4).

Characteristics of the sequence data
The high-throughput sequencing generated a total num-
ber of 7.5 million raw reads for biological samples. The
median of raw reads per sample was 96,231, with the
minimum and maximum value being 14,940 and 151,
916, respectively. After the sequence denoising and ASV
filtering, a total number of 1620 unique ASVs was gen-
erated. The mean percentage of chloroplasts and mito-
chondria removed from the ASV table before filtering
out contaminants was 7.4 and 0.2%, respectively. The
mean percentage of chloroplast varied considerably be-
tween digesta (7.1%) and mucosa (0.2%) samples and be-
tween diets within digesta samples, e.g. REF-DID (24.9%)
and IM-DID (4.4%). The number of effective sequences
retained for the downstream data analysis was 3.6 mil-
lion. The median of effective sequences per sample was
46,372, with the minimum and maximum value being
951 and 106,591, respectively.

Taxonomic composition
All the eight bacterial species included in the mock were
successfully identified at genus level with E. faecalis, L.
fermentum, L. monocytogenes and S. aureus further being
annotated at the species level (Fig. S2A). At the genus
level, the average Pearson’s r between the expected and
observed taxonomic profile of the mock was 0.33,
whereas the Pearson’s r between the observed taxonomic
profile of the mock was 0.98. The relative abundance of
most Gram-positive bacteria, L. monocytogenes and E.
faecalis in particular, were underestimated. In contrast,
the relative abundance of Gram-negative bacteria was
overestimated. Most ASVs (97.5–99.9%) in the extrac-
tion and library blanks were classified as Pseudomonas
(Fig. S2B), which was the main contaminating taxon re-
moved from the biological samples. Other contaminating

ASVs removed from the biological samples were classi-
fied as Curtobacterium, Jeotgalicoccus, Modestobacter,
Cutibacterium, Hymenobacter, Brevundimonas, Micro-
coccus, Sphingomonas, Devosia, Sphingomonas auran-
tiaca and Marinobacter adhaerens. The exact sequence
and taxonomy of the contaminating ASVs and their rela-
tive abundance in the extraction and library blanks are
available in Table S1.
The taxonomic composition of mucosa samples

showed higher similarity than that of the digesta sam-
ples, which were more diet-dependent (Fig. 1). At the
phylum level, the dominant taxa of mucosa samples for
both diets were Spirochaetes (REF-DIM, 72%; IM-DIM,
47%) (mean relative abundance), Proteobacteria (REF-
DIM, 21%; IM-DIM, 23%), Firmicutes (REF-DIM, 1%;
IM-DIM, 11%), Tenericutes (REF-DIM, 4%; IM-DIM,
8%) and Actinobacteria (REF-DIM, 1%; IM-DIM, 9%).
For digesta samples, the dominant taxa of REF-DID were
Tenericutes (33%), Proteobacteria (31%), Firmicutes
(25%) and Spirochaetes (9%), whereas IM-DID was dom-
inated by Firmicutes (45%), Actinobacteria (25%), Proteo-
bacteria (17%), Tenericutes (7%) and RsaHF231 (4%)
(Fig. 1a). At the genus level, the dominant taxa of mu-
cosa samples for both diets were Brevinema (REF-DIM,
52%; IM-DIM, 25%), Spirochaetaceae (REF-DIM, 20%;
IM-DIM, 22%), Aliivibrio (REF-DIM, 18%; IM-DIM,
18%) and Mycoplasma (REF-DIM, 4%; IM-DIM, 8%).
For digesta samples, the dominant taxa of REF-DID were
Mycoplasma (33%), Aliivibrio (20%), Photobacterium
(10%), Brevinema (6%) and Lactobacillus (5%), whereas
IM-DID was dominated by Aliivibrio (15%), Lactobacil-
lales (14%), Corynebacterium 1 (13%), Bacillus (8%),
Mycoplasma (7%) and Actinomyces (5%) (Fig. 1b).

Core ASVs
In total, 339 ASVs were identified as core ASVs based
on their prevalence in each sample type (Fig. 2; Table
S2). Three ASVs, classified as Aliivibrio, Brevinema
andersonii, and Mycoplasma respectively, were identified
as core ASVs in all the sample types. The Brevinema
andersonii ASV was universally present in all the sam-
ples. Additionally, 11 ASVs were identified as core ASVs
for digesta samples (REF-DID and IM-DID), which were
classified as Geobacillus (1 ASV), Lactobacillus (3 ASVs),
Mycoplasma (2 ASVs), Photobacterium (3 ASVs),
Streptococcus (1 ASV) and Weissella (1 ASV). Two add-
itional core ASVs were identified for the mucosa sam-
ples (REF-DIM and IM-DIM), which were classified as
Brevinema andersonii and Spirochaetaceae, respectively.
Six additional core ASVs were identified for fish fed the
insect meal diet (IM-DID and IM-DIM), which were
classified as Actinomyces, Corynebacterium 1, Coryne-
bacterium aurimucosum ATCC 70097, Lactobacillales,
RsaHF23 and Spirochaetaceae, respectively. No
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additional core ASVs were identified for fish fed the ref-
erence diet (REF-DID and REF-DIM). Lastly, 308 ASVs
were found to be more prevalent in IM-DID than in any
other sample type.

Alpha-diversity
Regardless of diet, all the alpha-diversity indices were
higher in digesta samples than mucosa samples (p <
0.05) (Fig. 3). Independent of sample origin, all the
alpha-diversity indices were higher in fish fed the IM
diet than those fed the REF diet (p < 0.05). A significant
interaction between the diet and sample origin effect
was detected for the observed ASVs (p < 0.001) and
Faith’s phylogenetic diversity (p < 0.001), both of which
showed a stronger diet effect in digesta samples than
mucosa samples.

Beta-diversity
The PCoA plots built on the Jaccard and unweighted
UniFrac distance matrix showed clear separations of
samples belonging to different dietary groups and sam-
ple origins (Fig. 4a-b). However, the average distance

Fig. 1 Top 10 most abundant taxa of all samples at phylum (a) and genus (b) level. The samples are grouped by the sample type. The mean
relative abundance of each taxon within the same sample type is displayed on the right side. o__, order; f__, family; REF, reference diet; IM, insect
meal diet; DID, distal intestine digesta; DIM, distal intestine mucosa

Fig. 2 Venn’s diagram showing the shared and unique core ASVs in
each sample type. The core ASVs were computed using a
prevalence threshold at 80%. REF, reference diet; IM, insect meal
diet; DID, distal intestine digesta; DIM, distal intestine mucosa
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between samples from different dietary groups was
dependent on sample origin. Specifically, mucosa sam-
ples from different dietary groups formed clusters close
to each other, whereas digesta samples from different
dietary groups were far apart. The PCoA plots built on
the Aitchison and PHILR transformed Euclidean dis-
tance matrix also showed separations of samples belong-
ing to different dietary groups and sample origins (Fig.
4c-d). Again, the average distance between samples from
different dietary groups was dependent on sample origin.
Mucosa samples from different dietary groups formed
clusters boarding (Fig. 4c) or overlapping (Fig. 4d) each
other, whereas digesta samples from different dietary
groups were more clearly separated.
The PERMANOVA and its following conditional con-

trasts largely confirmed the PCoA results. Regardless of
the distance matrix used, both main factors had

significant effects on the beta-diversity and their inter-
action was significant as well (p < 0.05) (Table 2). Results
on the tests of homogeneity of multivariate dispersions
are shown in Table 3. For Jaccard distance, significant
differences in the multivariate dispersions were observed
between digesta and mucosa samples for both diets
(REF-DID VS. REF-DIM, p = 0.045; IM-DID VS. IM-
DIM, p = 0.002), and between diets for digesta samples
(REF-DID VS. IM-DID, p = 0.002). For unweighted Uni-
Frac distance, IM-DID showed lower multivariate dis-
persions than other sample types resulting in significant
differences compared to REF-DID (p = 0.002) and IM-
DIM (p = 0.002). For Aitchison distance, REF-DIM
showed lower multivariate dispersions than other sample
types resulting in significant differences compared to
REF-DID (p = 0.046) and IM-DIM (p = 0.046). For PHIL
R transformed Euclidean distance, the differences in the

Fig. 3 The sample origin and diet effects on the alpha-diversity of distal intestinal microbiota in seawater phase Atlantic salmon. The p value of
the main effects and their interaction are displayed on the top-right corner of each sub-plot. Asterisks denote statistically significant differences (*,
p < 0.05; **, p < 0.01; ***, p < 0.001). PD, phylogenetic diversity; REF, reference diet; IM, insect meal diet; DID, distal intestine digesta; DIM, distal
intestine mucosa
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multivariate dispersions among the sample types were
not significant (p > 0.05).

Significant associations between microbial clades and
sample metadata
The multivariate association analysis identified 53 taxa
showing significant associations with the metadata of
interest (Fig. 5a). The diagnostic plots showing the raw
data underlying the significant associations are shown in
Figs. S3–8. Forty-seven differentially abundant taxa were
identified for the sample origin effect, 45 of which, in-
cluding Bacillus, Enterococcus, Flavobacterium, Lactoba-
cillus, Lactococcus, Leuconostoc, Mycoplasma,
Peptostreptococcus, Photobacterium, Staphylococcus,
Streptococcus, Vagococcus and Weissella, showed lower
relative abundances in the mucosa than the digesta (Fig.
S3). In contrast, two taxa belonging to the Spirochaetes
phylum, Brevinema andersonii and Spirochaetaceae,
were enriched in the mucosa (Fig. 5b). Thirty-six differ-
entially abundant taxa were identified for the diet effect,
26 of which showed increased relative abundances in
fish fed the IM diet (Fig. S4). Among these 26 taxa, some
were enriched in both intestinal digesta and mucosa
which included Actinomyces, Bacillaceae, Bacillus, Beu-
tenbergiaceae, Brevibacterium, Corynebacterium 1, En-
terococcus, Lactobacillales, Microbacterium,
Oceanobacillus and RsaHF231 (partially illustrated as
Fig. 5c). For the histological scores, the relative abun-
dance of Sphingobacteriaceae and RsaHF231 were found
to increase and decrease, respectively, in fish scored ab-
normal regarding lamina propria cellularity (LPC) in

distal intestine (Fig. S5). The relative abundance of Aci-
netobacter and Pseudomonas were negatively correlated
with the distal intestine somatic index (DISI) (Fig. S6).
Six taxa, including Actinomyces, Brevinema andersonii,
Kurthia, Lysobacter, Microbacterium and the Sphingo-
bacteriaceae, were found to associate with the expres-
sion of genes related to immune responses (Fig. S7).
Notably, the relative abundance of Brevinema andersonii
showed a clear positive correlation with the expression
levels of immune genes (Fig. 5d), which decreased as the
PC1 of the PCA increased. Furthermore, 3 taxa includ-
ing Cellulosimicrobium, Glutamicibacter and the Spiro-
chaetaceae were found to associate with the expression
of genes related to barrier functions (Fig. S8). The rela-
tive abundance of the Spirochaetaceae showed a negative
correlation with the expression levels of barrier function
relevant genes (Fig. 5e), which decreased as the PC1 of
the PCA increased.

Discussion
Core microbiota
In accordance with previous studies in Atlantic salmon
[33, 46–51], Aliivibrio, Brevinema andersonii and Myco-
plasma were identified as core microbiota in the present
study. Aliivibrio is commonly found in the seawater
phase Atlantic salmon intestine [48–50, 52–56] and has
been identified as a core taxon of both wild and captive
Atlantic salmon [47, 49, 50]. Provided its common pres-
ence in seawater, Aliivibrio may have originated from
the surrounding water and colonized the intestinal mu-
cosa as Atlantic salmon constantly drink seawater to

Fig. 4 The sample origin and diet effects on the beta-diversity of distal intestinal microbiota in seawater phase Atlantic salmon. The PCoA plots
were built on Jaccard (a), unweighted UniFrac (b), Aitchison (c) and phylogenetic isometric log-ratio (PHILR) transformed Euclidean (d) distance
matrix, respectively. PCo, principle coordinate; REF, reference diet; IM, insect meal diet; DID, distal intestine digesta; DIM, distal intestine mucosa
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Fig. 5 (See legend on next page.)
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prevent dehydration in a hyperosmotic environment.
Currently, Aliivibrio comprises of four closely related
species including Aliivibrio fischeri, Aliivibrio logei, Alii-
vibrio salmonicida and Aliivibrio wodanis, which were
split from the Vibrio genus and reclassified as Aliivibrio
in 2007 [57]. Strains of A. fischeri and A. logei have been
described as bioluminescent symbionts of certain fishes
and squids [58], whereas A. salmonicida and A. wodanis
have been identified as pathogens for Atlantic salmon
causing cold-water vibriosis [59] and ‘winter ulcer’ [60],
respectively. We identified 7 Aliivibrio ASVs in this
study, four of which, including the core Aliivibrio ASV,
were closely related and clustered with unknow Aliivi-
brio species in the reference database. Among the known
Aliivibrio species, A. logei is most closely related to the
core Aliivibrio ASV, which was also the predominant
Aliivibrio ASV found in the present study. One of the
Aliivibrio ASVs, which was detected at very low abun-
dances (< 0.00015%), was closely related to A. wodanis.
These observations coincide with previous findings in
Arctic seawater-farmed Atlantic salmon [54], suggesting
that Aliivibrio in the salmon intestine mostly comprises
of commensal species.
Though Spirochaetes has typically been found in low

abundances in the Atlantic salmon intestine [32, 36, 40,
52, 61], two recent studies have identified Brevinema
andersonii as a core taxon of both digesta- and mucosa-
associated intestinal microbiota in seawater phase Atlan-
tic salmon [48, 49]. Notably, Brevinema andersonii is
also a predominant taxon in the digesta and mucosa in
one of the studies [49]. Brevinema andersonii was ini-
tially isolated from short-tailed shrews (Blarina brevi-
cauda) and white-footed mice (Peromyscus leucopus) as
an infectious pathogen [62]. This taxon has also been
found in the intestine and gill tissue of rainbow trout
(Oncorhynchus mykiss) [63], and intestinal digesta of
Senegalese sole (Solea senegalensis) [64].
Mycoplasma is widely distributed in nature and well

known for its minute size and lack of cell wall. It seems

to be particularly well-adapted to Atlantic salmon intes-
tine [65]. Like Aliivibrio, it has been frequently identified
as a core taxon of both wild and captive Atlantic salmon
[33, 46, 48–51]. Notably, it was found to be more abun-
dant in marine adults than in freshwater juvenile Atlan-
tic salmon [50] and sporadically predominate intestinal
microbial community in the digesta [33, 49, 50, 54, 66]
and mucosa [48] reaching > 90% of total reads in ex-
treme cases. Due to its small compact genome and lim-
ited biosynthesis capacities, Mycoplasma typically forms
obligate parasitic or commensal relationships with its
host to obtain necessary nutrients such as amino acids,
fatty acids and sterols [67]. Recent shotgun-
metagenomic sequencing of the Atlantic salmon Myco-
plasma revealed that it is closely related to Mycoplasma
penetrans [33, 68]. It was suggested that the presence of
riboflavin encoding genes and lack of pathogenicity fac-
tors in the metagenome-assembled Mycoplasma genome
is indicative of a symbiotic relationship between the
Mycoplasma and Atlantic salmon [68].

Sample origin effect
In line with previous findings in mammals and fish [32,
35–38], we observed substantial differences between
digesta- and mucosa-associated microbiota. The micro-
bial richness and diversity were much higher in the
digesta than the mucosa, as previously observed in sea-
water phase Atlantic salmon [32, 36, 49]. Furthermore,
most of the bacterial taxa in the distal intestine, includ-
ing those commonly found in the Atlantic salmon intes-
tine such as Bacillus, Enterococcus, Flavobacterium,
Lactobacillus, Lactococcus, Leuconostoc, Mycoplasma,
Peptostreptococcus, Photobacterium, Staphylococcus,
Streptococcus, Vagococcus and Weissella, were less abun-
dant in the mucosa than in the digesta. These results are
suggestive of a selection pressure from the host that de-
termines which microbial clades colonize and flourish in
the intestinal mucus layer [69]. In this study, two taxa
belonging to the Spirochaetes phylum, Brevinema

(See figure on previous page.)
Fig. 5 Significant associations between microbial clades and sample metadata. a Heatmap summarizing all the significant associations between
microbial clades and sample metadata. Color key: -log(q-value) * sign (coefficient). Cells that denote significant associations are colored (red or
blue) and overlaid with a plus (+) or minus (−) sign that indicates the direction of association: Diet (+), higher abundance in salmon fed the IM
diet; Sample_origin (+), higher abundance in mucosa samples; Histology_LPC (+), higher abundance in salmon scored abnormal regarding lamina
propria cellularity (LPC) in the distal intestine; DISI (+), positive correlation between microbial clade abundance and distal intestine somatic index
(DISI); qPCR_immune_response (+) / qPCR_barrier_function (+), negative correlation between microbial clade abundance and the gene
expression levels. b Taxa that are more abundant in the intestinal mucosa than the digesta. c Representative taxa showing increased relative
abundances in both intestinal digesta and mucosa of salmon fed the IM diet. d The positive correlation between the relative abundance of
Brevinema andersonii and immune gene expression levels in the distal intestine. Note that the expression levels of the immune genes decreased
as the PC1 of the PCA increased. e The negative correlation between the relative abundance of the Spirochaetaceae and the expression levels of
barrier function relevant genes. Also note that the expression levels of the barrier function relevant genes decreased as the PC1 of the PCA
increased. p__, phylum; o__, order; f__, family; FDR, false discovery rate; N.not.zero, number of observations that are not zero; REF, reference diet;
IM, insect meal diet
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andersonii and Spirochaetaceae, were more abundant in
the distal intestine mucosa than the digesta. As afore-
mentioned, Spirochaetes were typically found in low
abundances in the Atlantic salmon intestine. Yet a re-
cent study also showed that irrespective of diets Brevi-
nema andersonii seemed to be more abundant in the
intestinal mucosa than the digesta of seawater phase At-
lantic salmon [49]. Known for high motility and chemo-
tactic attraction to mucin, some Spirochaetes can
penetrate the mucus and associate with the intestinal
mucosa [70–72]. Further work is required to confirm
whether these taxa are consistently enriched in the intes-
tinal mucus layer of seawater phase Atlantic salmon.

Diet effect
Diet is one of the key factors in shaping the fish intes-
tinal microbiota. In agreement with previous findings in
rainbow trout [42, 73, 74] and laying hens [75, 76], we
found that the insect meal diet altered the distal intes-
tinal microbiota assemblage resulting in higher microbial
richness and diversity. Our findings, showing that the in-
sect meal diet increased the relative abundance of Acti-
nomyces, Bacillus, Brevibacterium, Corynebacterium 1
and Enterococcus, are in accord with recent studies in
rainbow trout fed diets containing 30% BSF larvae meal
[42, 74]. Importantly, these results were partly confirmed
in other studies employing fluorescence in situ
hybridization for targeted profiling of changes in the in-
testinal microbiota. Specifically, increased absolute abun-
dance of Lactobacillus/Enterococcus was found in
rainbow trout fed 20% dietary BSF larvae meal [77],
whereas increased absolute abundance of Bacillus, En-
terococcus and Lactobacillus was documented in Siberian
sturgeon (Acipenser baerii) fed 15% BSF larvae meal
[78].
The increases in the relative abundance of specific mi-

crobial clades in Atlantic salmon fed the insect meal diet
may be explained by feed-borne microbiota and/or feed
composition. Bacterial taxa, including Actinomyces, Ba-
cillus, Brevibacterium, Corynebacterium, Enterococcus,
Oceanobacillus and RsaHF231, have been found in BSF
whole larvae or larvae intestine [79–82]. The fact that
RsaHF231 has not been documented in fish before indi-
cates that these bacterial taxa may have partially origi-
nated from BSF larvae meal. Our results from the
freshwater feeding trial showed that these bacterial taxa
were also enriched in the intestinal digesta and mucosa
of Atlantic salmon smolts fed an insect meal diet con-
taining 60% soldier fly larvae meal. Importantly, these
bacterial taxa were also detected in the feed pellets
which contained considerable amount of bacterial DNA
(unpublished data). Given the hydrothermal treatments
the feed pellets underwent during the extrusion, the
feed-borne microbiota profiled by the DNA sequencing

techniques could have largely originated from dead bac-
teria and bacterial spores rather than living bacteria. As
sequencing-based methods cannot differentiate between
living and dead cells, future studies should investigate to
what extent the feed-borne microbiota may contribute
to, or confound the observed diet effects on intestinal
microbiota, using methods that distinguish living and
dead bacteria such as viability PCR and RNA sequencing
[83]. On the other hand, unique nutrients in the insect
meal diet such as chitin, an essential component of the
insect exoskeleton, may have selectively promoted the
growth of certain intestinal microbes. Many bacterial
species belonging to Bacillus can produce chitinase [84].
Bacillus and Lactobacillus were two of the predominant
taxa in the intestinal mucosa of Atlantic salmon fed a
5% chitin diet, the former of which displayed the highest
in vitro chitinase activity [85].

Significant interactions between diet and sample origin
effect
We observed in the present study that the diet effect on
the intestinal microbial community richness and struc-
ture was dependent on the sample origin, with mucosa-
associated intestinal microbiota showing higher resili-
ence to the dietary change. Our results corroborate pre-
vious findings in rainbow trout revealing that mucosa-
associated intestinal microbiota was less influenced by
dietary inclusion of 30% BSF larvae meal compared to
digesta-associated intestinal microbiota [41, 42]. Results
from molecular-based studies on salmonid intestinal
microbiota hitherto suggest that diet modulates digesta-
and mucosa-associated intestinal microbiota to varying
degrees with the latter generally being more resilient to
dietary interventions [32, 39–42, 48]. As such, current
practices of profiling only one of or a mixture of digesta-
and mucosa-associated microbiota may obscure the re-
sponse of intestinal microbiota to dietary changes. To
fully unveil the response of intestinal microbiota to diet-
ary changes, we recommend concurrent profiling of
digesta- and mucosa-associated intestinal microbiota
whenever it is feasible.

Significant associations between microbial clades and
sample metadata
To our knowledge, only a few studies have carried out
association analysis between intestinal microbial clades
and host responses in Atlantic salmon. As such, our re-
sults should be treated as preliminary observations and
critically evaluated in later studies. Herein, we highlight
the significant associations between two mucosa-
enriched taxa and host gene expressions in the intestine.
Specifically, Brevinema andersonii, part of the core
microbiota, was associated with the expression of genes
related to pro- and anti-inflammatory responses whereas
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the Spirochaetaceae was associated with the expression
of genes related to barrier function. Intestinal microbiota
is well known to modulate the local immune responses
and intestinal epithelial barrier function [86]. Further-
more, it is hypothesized that mucosa-associated micro-
biota plays a more crucial role in shaping the host
immunity in that it can interact both directly and indir-
ectly with intestinal epithelial barrier whereas digesta-
associated microbiota can only interact indirectly [69].
Taken together, further research should be undertaken
to investigate the potential ecological and functional sig-
nificance of these two taxa for seawater phase Atlantic
salmon.

Quality control: use of mock and negative controls
As in any field of research, conducting a well-controlled
microbiome study requires great care in the experiment
design such as setting up appropriate experimental con-
trols. The use of mock as a positive control allows for
critical evaluation and optimization of microbiota profil-
ing workflow. That all the bacterial taxa in the mock
were correctly identified at the genus level indicates that
the current workflow is reliable for the taxonomic profil-
ing of intestinal microbiota. Furthermore, the taxonomic
profile of mock from different DNA extraction batches
was fairly similar, suggesting that the results generated
by the current workflow are also largely reproducible.
However, the low concordance between the expected
and observed relative abundance of bacterial taxa in the
mock is reminiscent of the fact that bias is introduced at
different steps of the marker-gene survey [87–89],
among which DNA extraction and PCR amplification
are the two largest sources of bias due to preferential ex-
traction and amplification of some microbial clades over
others. In line with previous observations that Gram-
positive bacteria may be more subjective to incomplete
lysis during DNA extraction due to their tough cell walls
[90, 91], the recovery of most Gram-positive bacteria in
the mock was lower than the expected. The insufficient
lysing of Gram-positive bacteria in the mock was largely
mitigated in our later experiments by using a mixture of
beads with different sizes for the bead beating during
DNA extraction (unpublished data). The bias in the
marker-gene sequencing experiments, as reflected in the
observed taxonomic profile of the mock, highlights the
necessity of validating such results by absolute quantifi-
cation techniques such as cultivation (if possible), qPCR,
flow cytometry and fluorescence in situ hybridization.
Reagent contamination is a common issue in

molecular-based studies of microbial communities. The
main contaminating taxon identified in this study is
Pseudomonas, which has been reported as a common re-
agent contaminant in numerous studies [92–98]. Given
the dominance of Pseudomonas in the negative controls

of both DNA extraction and PCR, most of the observed
contamination has likely derived from PCR reagents
such as molecular-grade water [99–101]. Notably,
Pseudomonas has also been isolated from intestinal
digesta and mucosa of Atlantic salmon by traditional
culturing approaches [85, 102–104], and reported as a
member of Atlantic salmon core microbiota in culture-
independent studies [32, 36, 46, 47, 51, 105]. Due to the
low taxonomic resolution of amplicon sequencing, it is
difficult to discern contaminating taxa from true signals
solely based on taxonomic labels. The inclusion of nega-
tive controls, coupled with quantifications of microbial
DNA concentration in the samples, has enabled fast and
reliable identification of contaminating taxa in this study.
Besides Pseudomonas, other common reagent contami-
nants, including Bradyrhizobium, Burkholderia, Coma-
monas, Methylobacterium, Propionibacterium, Ralstonia,
Sphingomonas and Stenotrophomonas [97, 99, 101, 106–
110], have also been frequently reported as members of
Atlantic salmon intestinal microbiota, indicating that
existing studies of Atlantic salmon intestinal microbiota
may have been plagued with reagent contamination that
is hard to ascertain due to lack of negative controls. As
reagent contamination is unavoidable, study-specific and
can critically influence sequencing-based microbiome
analyses [99, 111, 112], negative controls should always
be included and sequenced in microbiome studies espe-
cially when dealing with low microbial biomass samples
like intestinal mucosa.

Conclusions
In summary, we confirmed previous findings in mam-
mals and fish that intestinal digesta and mucosa har-
bor microbial communities with clear differences.
Regardless of diet, microbial richness and diversity
were much higher in the digesta than the mucosa.
The insect meal diet altered the distal intestinal
microbiota assemblage resulting in higher microbial
richness and diversity. The diet effect was however
dependent on the sample origin, with mucosa-
associated intestinal microbiota being more resilient
to the dietary change. To fully unveil the response of
intestinal microbiota to dietary changes, concurrent
profiling of digesta- and mucosa-associated intestinal
microbiota is recommended whenever feasible. Lastly,
we identified two mucosa-enriched taxa, Brevinema
andersonii and Spirochaetaceae, which were associated
with the expression in the distal intestine of genes re-
lated to immune responses and barrier function, re-
spectively. As mucosa-associated microbiota could
play a more critical role in shaping the host metabol-
ism, their potential functional significance for sea-
water phase Atlantic salmon merits further
investigations.
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Methods
Experimental fish, diet and sampling
A 16-week seawater feeding trial with Atlantic salmon
(initial body weight = 1.40 kg, S.D. = 0.043 kg) was con-
ducted at the Gildeskål Research Station (GIFAS), Nord-
land, Norway. The experimental fish were randomly
assigned into 6 adjacent square net pens (5 × 5m) with a
depth of 5 m, each containing 90 fish. The fish were fed,
in triplicate net pens, either a commercially-relevant ref-
erence diet (REF) with a combination of fish meal, soy
protein concentrate, pea protein concentrate, corn glu-
ten and wheat gluten as the protein source, or an insect
meal diet (IM) wherein all the fish meal and most of the
pea protein concentrate were replaced by insect meal
produced from BSF larvae. Formulation and proximate
composition of the experimental diets are shown in
Table 1. The diets were formulated to be isonitrogenous
(39% crude protein), isolipidic (29% crude lipid) and iso-
energetic (25MJ/kg DM gross energy), and to meet the
nutrient requirements of Atlantic salmon. The diets
were extruded, dried and vacuum coated with oils, pro-
ducing feed pellets with a diameter size of 3.5 mm (Car-
gill, Dirdal, Norway). The insect meal was produced by
Protix Biosystems BV (Dongen, The Netherlands). The
fly larvae were grown on feed substrates containing

seaweed (Ascophyllum nodosum) and vegetable wastes
(60:40). After 8 days of growing, the larvae were har-
vested and partially defatted before being dried and
ground to make the insect meal. The insect meal con-
tains about 52% crude protein and 18% crude lipid. Fish
were fed by hand until apparent satiation once or twice
daily depending on the duration of daylight. During the
feeding trial, the water temperature was 8.3 ± 3.7 °C, dis-
solved oxygen 8.9 ± 1mg/L and salinity 31.6 ± 0.8 ‰.
Further details on the nutritional composition of the in-
sect meal and diets have been reported elsewhere [45].
At the termination of the feeding trial, the average

body weight of fish reached 3.7 kg. Six fish were ran-
domly taken from each net pen, anesthetized with tri-
caine methanesulfonate (MS222®; Argent Chemical
Laboratories, Redmond, WA, USA) and euthanized by a
sharp blow to the head. After cleaning the exterior of
each fish with 70% ethanol, the distal intestine, i.e., the
segment from the increase in intestinal diameter and the
appearance of transverse luminal folds to the anus, was
aseptically removed from the abdominal cavity, placed in
a sterile Petri dish and opened longitudinally. Only fish
with digesta along the whole intestine were sampled to
ensure that the intestine had been exposed to the diets.
The intestinal digesta was gently scraped and collected
into a 50mL skirted sterile centrifuge tube and mixed
thoroughly using a spatula. An aliquot of the homogen-
ate was then transferred into a 1.5 mL sterile Eppendorf
tube and snap-frozen in liquid N2 for the profiling of
digesta-associated intestinal microbiota. A tissue section
from the mid part of the distal intestine was excised and
rinsed in sterile phosphate-buffered saline 3 times to re-
move traces of the remaining digesta. After rinsing, the
intestinal tissue was longitudinally cut into 3 pieces for
histological evaluation (fixed in 4% phosphate-buffered
formaldehyde solution for 24 h and transferred to 70%
ethanol for storage), RNA extraction (preserved in RNA-
later solution and stored at − 20 °C) and profiling of
mucosa-associated intestinal microbiota (snap-frozen in
liquid N2), respectively. The collection of microbiota
samples was performed near a gas burner to secure
aseptic conditions. After the sampling of each fish, tools
were cleaned and decontaminated by a 70% ethanol
spray and flaming. Microbiota samples of the distal in-
testine digesta (DID) and mucosa (DIM) were trans-
ported in dry ice and stored at − 80 °C until DNA
extraction.

DNA extraction
Total DNA was extracted from ~ 200mg distal intestine
digesta or mucosa using the QIAamp® DNA Stool Mini
Kit (Qiagen, Hilden, Germany; catalog no., 51,504) with
some modifications to the manufacturer’s specifications
as described before [32], except that 2 mL prefilled bead

Table 1 Formulation and proximate composition of the
experimental diets

REF IM

Ingredients (% wet-weight)

Fishmeal LT94 10 0

Black soldier fly larva meala 0 14,75

Soy protein concentrate 25 25

Corn gluten meal 7,5 7,5

Wheat gluten meal 3,35 6,88

Pea protein concentrate 55 8,8 2,84

Fish oil 10,18 14,76

Rapeseed oil 20,95 14,73

Binder 12,32 11,24

Additives 1,89 2,29

Chemical composition (wet-weight basis)

Dry matter (%) 93 95

Crude Protein (%) 38 39

Crude Lipid (%) 29 29

Ash (%) 4,6 4,5

Carbohydrates (%) 11,6 11,4

Gross energy (MJ/kg) 24,6 25

TBARS (nmol/g) 3 4,9

REF reference diet, IM insect meal diet, TBARS Thiobarbituric acid
reactive substances
aPartially defatted. Crude protein: 52%, crude lipid: 18%. Produced by the
Protix Biosystems BV (Dongen, The Netherlands)
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tubes (Qiagen; catalog no., 13,118–50) were used for the
bead beating. For quality control purposes, a companion
“blank extraction” sample was added to each batch of
sample DNA extraction by omitting the input material,
whereas an additional microbial community standard
(ZymoBIOMICS™, Zymo Research, California, USA;
catalog no., D6300), i.e. mock, was included for each
DNA extraction kit as a positive control. The mock con-
sists of 8 bacteria (Pseudomonas aeruginosa, Escherichia
coli, Salmonella enterica, Lactobacillus fermentum, En-
terococcus faecalis, Staphylococcus aureus, Listeria
monocytogenes, Bacillus subtilis) and 2 yeasts (Saccharo-
myces cerevisiae, Cryptococcus neoformans).

Amplicon PCR
The V1–2 hypervariable regions of the bacterial 16S
rRNA gene were amplified using the primer set 27F (5′-
AGA GTT TGA TCM TGG CTC AG-3′) and 338R (5′-
GCW GCC WCC CGT AGG WGT-3′) [113]. The PCR
was run in a total reaction volume of 25 μL containing
12.5 μL of Phusion® High-Fidelity PCR Master Mix
(Thermo Scientific, CA, USA; catalog no., F531L),
10.9 μL molecular grade H2O, 1 μL DNA template and
0.3 μL of each primer (10 μM). The amplification pro-
gram was set as follows: initial denaturation at 98 °C for
3 min; 35 cycles of denaturation at 98 °C for 15 s, anneal-
ing decreasing from 63 °C to 53 °C in 10 cycles for 30 s
followed by 25 cycles at 53 °C for 30 s, and extension at
72 °C for 30 s; followed by a final extension at 72 °C for
10 min. For samples with faint or invisible bands in the
agarose gel after PCR, the PCR condition was optimized
by applying serial dilutions to the DNA templates to re-
duce the influence of PCR inhibitors. All the digesta
samples were diluted 1:2 in buffer ATE (10 mM Tris-Cl,
pH 8.3, with 0.1 mM EDTA and 0.04% NaN3) whereas
all the mucosa samples were diluted 1:32. The formal
amplicon PCR was run in duplicate incorporating two
negative PCR controls, which were generated by re-
placing the template DNA with molecular grade H2O.
The duplicate PCR products were then pooled and ex-
amined by a 1.5% agarose gel electrophoresis.

Quantification of 16S rRNA gene by qPCR
To assist in identifying contaminating sequences, the
16S rRNA gene quantity in the diluted DNA templates
used for the amplicon PCR was measured by qPCR. The
qPCR assays were performed using a universal primer
set (forward, 5′-CCA TGA AGT CGG AAT CGC TAG-
3′; reverse, 5′-GCT TGA CGG GCG GTG T-3′) that
has been used for bacterial DNA quantification in previ-
ous studies [114, 115]. The assays were carried out using
the LightCycler 96 (Roche Applied Science, Basel,
Switzerland) in a 10 μL reaction volume, which con-
tained 2 μL of PCR-grade water, 1 μL diluted DNA

template, 5 μL LightCycler 480 SYBR Green I Master
Mix (Roche Applied Science) and 1 μL (3 μM) of each
primer. Samples, together with the extraction blanks and
mock, were run in duplicate in addition to Femto™ bac-
terial DNA standards (Zymo Research; catalog no.,
E2006) and a no-template control of the qPCR assay.
The qPCR program encompassed an initial enzyme acti-
vation step at 95 °C for 2 min, 45 three-step cycles of
95 °C for 10 s, 60 °C for 30 s and 72 °C for 15 s, and a
melting curve analysis at the end. Quantification cycle
(Cq) values were determined using the second derivative
method [116]. The specificity of qPCR amplification was
confirmed by evaluating the melting curve of qPCR
products and the band pattern on the agarose gel after
electrophoresis. The inter-plate calibration factor was
calculated following the method described in [117],
using the bacterial DNA standards as inter-plate
calibrators.

Sequencing
The sequencing was carried out on a Miseq platform fol-
lowing the Illumina 16S metagenomic sequencing library
preparation protocol [118]. Briefly, the PCR products
were cleaned using the Agencourt AMPure XP system
(Beckman Coulter, Indiana, USA; catalog no., A63881),
multiplexed by dual indexing using the Nextera XT
Index Kit (Illumina, California, USA; catalog no., FC-
131-1096) and purified again using the AMPure beads.
After the second clean-up, representative libraries were
selected and analyzed using the Agilent DNA 1000 Kit
(Agilent Technologies, California, USA; catalog no.,
5067–1505) to verify the library size. Cleaned libraries
were quantified using the Invitrogen Qubit™ dsDNA HS
Assay Kit (Thermo Fisher Scientific, California, USA;
catalog no., Q32854), diluted to 4 nM in 10mM Tris
(pH 8.5) and finally pooled in an equal volume. Negative
controls with library concentrations lower than 4 nM
were pooled in equal volume directly. Due to the low di-
versity of amplicon library, 15% Illumina generated PhiX
control (catalog no., FC-110-3001) was spiked in by
combining 510 μL amplicon library with 90 μL PhiX
control library. The library was loaded at 6 pM and se-
quenced using the Miseq Reagent Kit v3 (600-cycle)
(Illumina; catalog no., MS-102-3003).

Sequence data processing
The raw sequence data were processed by the DADA2
1.14 in R 3.6.3 [119] to infer amplicon sequence variants
(ASVs) [120]. Specifically, the demultiplexed paired-
ended reads were trimmed off the primer sequences
(forward reads, first 20 bps; reverse reads, first 18 bps),
truncated at the position where the median Phred qual-
ity score crashed (forward reads, at position 290 bp; re-
verse reads, at position 248 bp) and filtered off low-
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quality reads. After trimming and filtering, the run-
specific error rates were estimated and the ASVs were
inferred by pooling reads from all the samples sequenced
in the same run. The chimeras were removed using the
“pooled” method after merging the reads. The resulting
raw ASV table and representative sequences were
imported into QIIME2 (version, 2020.2) [121]. The tax-
onomy was assigned by a scikit-learn naive Bayes
machine-learning classifier [122], which was trained on
the SILVA 132 99% OTUs [123] that were trimmed to
only include the regions of 16S rRNA gene amplified by
our primers. ASVs identified as chloroplasts or mito-
chondria were excluded from the ASV table. The ASV
table was conservatively filtered to remove ASVs that
had no phylum-level taxonomic assignment or appeared
in only one biological sample. Contaminating ASVs were
identified based on two suggested criteria: contaminants
are often found in negative controls and inversely correl-
ate with sample DNA concentration [98]. The ASVs fil-
tered from the raw ASV table were also removed from
the representative sequences, which were then inserted
into a reference phylogenetic tree built on the SILVA
128 database using SEPP [124]. The alpha rarefaction
curves and the core metrics results were generated with
a sampling depth of 10,000 and 2047 sequences per sam-
ple, respectively (Fig. S9). For downstream data analysis
and visualization, QIIME2 artifacts were imported into R

using the qiime2R package [125] and a phyloseq [126]
object was assembled from the sample metadata, ASV
table, taxonomy and phylogenetic tree. The core ASVs
were calculated using a prevalence threshold at 80% and
visualized by the Venn’s diagram. The alpha-diversity in-
dices, including observed ASVs, Pielou’s evenness, Shan-
non’s index and Faith’s phylogenetic diversity (PD), were
computed via the R packages microbiome [127] and pi-
cante [128]. For beta-diversity analyses, we used distance
matrices including Jaccard distance, unweighted UniFrac
distance, Aitchison distance and phylogenetic isometric
log-ratio (PHILR) transformed Euclidean distance. Since
rarefying remains to be the best solution for unweighted
distance matrices [129], the Jaccard distance and un-
weighted UniFrac distance were computed in QIIME2
using the rarefied ASV table. The compositionality-
aware distance matrices, Aitchison distance and PHILR
transformed Euclidean distance, were calculated using
the unrarefied ASV table. The Aitchison distance was
computed by the DEICODE plugin in QIIME2, a form of
Aitchison distance that is robust to high levels of spars-
ity by using the matrix completion to handle the exces-
sive zeros in the microbiome data [130]. The PHILR
transform of the ASV table was performed in R using
the philr package [131]. The selected distance matrices
were explored and visualized by the principal coordi-
nates analysis (PCoA).

Multivariate association analysis
To reduce the multiple testing burden, the ASV table
was collapsed at the genus level before running the
multivariate association analysis. Bacterial taxa of very
low abundance (< 0.01%) or low prevalence (present in
< 25% of samples) were removed from the feature table.
The microbial clades were then tested for significant as-
sociations with metadata of interest by MaAsLin2 (ver-
sion, 0.99.12) (https://huttenhower.sph.harvard.edu/
maaslin2) in R, using the default parameters. The results
of the analysis are the associations of specific microbial
clades with metadata, deconfounding the influence of
other factors included in the model. Association was

Table 2 PERMANOVA results and subsequent conditional contrasts

Distance matrix Main effects Interaction Conditional contrasts

Diet Sample origin REF-DID
VS.
IM-DID

REF-DIM
VS.
IM-DIM

REF-DID
VS.
REF-DIM

IM-DID
VS.
IM-DIM

Jaccard 0.001 0.001 0.001 0.001 0.001 0.001 0.001

Unweighted UniFrac 0.001a 0.001 0.001 0.001a 0.001 0.001 0.001

Aitchison 0.001 0.003 0.004 0.002 0.004 0.004a 0.002a

PHILR (Euclidean)b 0.001 0.001 0.001 0.001 0.005 0.001 0.001

REF reference diet, IM insect meal diet, DID distal intestine digesta, DIM distal intestine mucosa
aMonte Carlo p value
bPhylogenetic isometric log-ratio transformed Euclidean distance

Table 3 Test of homogeneity of multivariate dispersions among
groups

Distance matrix Conditional contrasts

REF-DID
VS.
IM-DID

REF-DIM
VS.
IM-DIM

REF-DID
VS.
REF-DIM

IM-DID
VS.
IM-DIM

Jaccard 0.002 0.087 0.045 0.002

Unweighted UniFrac 0.002 0.711 0.200 0.002

Aitchison 0.453 0.046 0.046 0.369

PHILR (Euclidean)a 0.240 0.266 0.240 0.266

REF reference diet, IM insect meal diet, DID distal intestine digesta, DIM distal
intestine mucosa
aPhylogenetic isometric log-ratio transformed Euclidean distance
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considered significant when the q-value was below 0.25.
Metadata included in the multivariate association testing
are fixed factors Diet + Sample origin + distal intestine
somatic index (DISI) + lamina propria cellularity (histo-
logical scores) + immune response (qPCR) + barrier
function (qPCR), and random factors FishID + NetPen.
FishID was nested in NetPen, and NetPen nested in
Diet. The methodological approach to these parameters
was reported in a previous study [44]. Lamina propria
cellularity reflects the severity of inflammation in the
distal intestine. Based on the degree of cellular infiltra-
tion within the lamina propria, a value of normal, mild,
moderate, marked or severe was assigned. To make the
data appropriate for the association testing, the highly
skewed five-category scores were collapsed into more
balanced binary data, i.e., normal and abnormal. The
immune-related genes included for the association test-
ing were myeloid differentiation factor 88 (myd88),
interleukin 1β (il1β), interleukin 8 (il8), cluster of differ-
entiation 3 γδ (cd3γδ), transforming growth factor β1
(tgfβ1), interferon γ (ifnγ), interleukin 17A (il17a), fork-
head box P3 (foxp3) and interleukin 10 (il10), whose ex-
pression levels were higher in the distal intestine of fish
assigned abnormal regarding lamina propria cellularity.
Since the expression levels of immune-related genes
were highly correlated, we ran a principal component
analysis (PCA) and extracted the first principle compo-
nent (PC1) for the association testing to avoid multicolli-
nearity and reduce the number of association testing.
For genes relevant to the barrier function, which in-
cluded claudin-15 (cldn15), claudin-25b (cldn25b), zo-
nula occludens 1 (zo1), E-cadherin / cadherin 1 (cdh1)
and mucin-2 (muc2), we also used the PC1 of the PCA
for the association testing based on the same
considerations.

Statistics
All the statistical analyses were run in R except for the
PERMANOVA, which was run in PRIMER (version 7;
PRIMER-e). The differences in the alpha-diversity indi-
ces were compared using linear mixed-effects models via
the lme4 package [132]. Predictor variables in the
models included the fixed effects Diet + Sample origin +
Diet x Sample origin, and the random effects FishID +
NetPen. The models were validated by visual inspections
of residual diagnostic plots generated by the ggResidpa-
nel package [133]. The statistical significance of fixed
predictors was estimated by Type III ANOVA with
Kenward-Roger’s approximation of denominator degrees
of freedom via the lmerTest package [134]. When the
interaction between the main effects was significant,
conditional contrasts for the main effects were made via
the emmeans package [135]. To compare the differences
in beta-diversity, we performed the PERMANOVA [136]

using the same predictors included in the linear mixed-
effects models. Terms with negative estimates for com-
ponents of variation were sequentially removed from the
model via term pooling, starting with the one showing
the smallest mean squares. At each step, the model was
reassessed whether more terms needed to be removed
or not. Conditional contrasts for the main effects were
constructed when their interaction was significant.
Monte Carlo p values were computed as well when the
unique permutations for the terms in the PERMANOVA
were small (< 100). The homogeneity of multivariate dis-
persions among groups was visually assessed with box-
plots and was formally tested by the permutation test,
PERMDISP [137], via the R package vegan [138]. Mul-
tiple comparisons were adjusted by the Benjamini-
Hochberg procedure where applicable. Differences were
regarded as significant when p < 0.05.
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Additional file 1: Figure S1. Quantification of bacterial 16S rRNA gene
in different sample types using qPCR. Since the Cq values of most
mucosa-associated samples were out of the linear range of the standard
curve, the Cq value was used as a proxy of 16S rRNA gene quantity
which is reliable for the screening of contaminant sequences. Data are
presented as mean ± 1 standard deviation overlaying the raw data
points. Abbreviations: REF, reference diet; IM, insect meal diet; DID, distal
intestine digesta; DIM, distal intestine mucosa. Figure S2. Taxonomic
profile of the mock (A) and contaminating features in the negative con-
trols (B). The lowest level of taxonomic ranks was displayed for each
taxon. EB, extraction blank; LB, library blank. Figure S3. Microbial clades
showing significant associations with sample origin. p__, phylum; o__,
order; f__, family; FDR, false discovery rate; N.not.zero, number of non-
zero observations; REF, reference diet; IM, insect meal diet. Figure S4. Mi-
crobial clades showing significant associations with diet. p__, phylum;
o__, order; f__, family; FDR, false discovery rate; N.not.zero, number of
non-zero observations; REF, reference diet; IM, insect meal diet. Figure
S5. Microbial clades showing significant associations with histological
scores on lamina propria cellularity in the distal intestine. p__, phylum;
f__, family; FDR, false discovery rate; N.not.zero, number of non-zero ob-
servations. Figure S6. Microbial clades showing significant associations
with distal intestine somatic index (DISI). FDR, false discovery rate; N.not.-
zero, number of non-zero observations. Figure S7. Microbial clades
showing significant associations with immune gene expressions in the
distal intestine. Since the expression levels of immune genes were highly
correlated, we ran a principle component analysis (PCA) and used the
first principle component (PC1) for the association testing to avoid multi-
collinearity and reduce the number of association testing. Note that the
expression levels of immune genes decrease as the PC1 increases from
left to right. Hence, a positive correlation coefficient denotes a negative
association between the microbial clade and immune gene expressions,
and vice versa. f__, family; FDR, false discovery rate; N.not.zero, number of
non-zero observations. Figure S8. Microbial clades showing significant
associations with expressions of barrier function related genes in the dis-
tal intestine. Since the expression levels of barrier function related genes
were highly correlated, we ran a principle component analysis (PCA) and
used the first principle component (PC1) for the association testing to
avoid multicollinearity and reduce the number of association testing.
Note that the expression levels of barrier function related genes decrease
as the PC1 increases from left to right. Hence, a positive correlation coeffi-
cient denotes a negative association between the microbial clade and
barrier function related gene expressions, and vice versa. f__, family; FDR,
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false discovery rate; N.not.zero, number of non-zero observations. Figure
S9. Rarefaction curves based on Observed ASVs for the different sample
types. The rarefaction analysis showed that mucosa samples (REF-DIM,
IM-DIM) reached the saturation phase at a subsampling depth of 2000 se-
quences whereas digesta samples (REF-DID, IM-DID) reached the satur-
ation phase at a subsampling depth of 9500 sequences. To preserve a
maximum number of samples for the downstream data analysis, we rar-
efied the ASV table to 2047 sequences per sample which left out 2 sam-
ples. To ensure that the subsampling depth of 2047 sequences per
sample produced reliable comparisons of microbial communities, we
computed compositionality-aware distance matrices, the Aitchison dis-
tance and PHILR transformed Euclidean distance, which do not require
rarefying and use all the sequences in the samples.

Additional file 2: Table S1. Contaminating features removed from the
ASV table.

Additional file 3: Table S2. The prevalence of core ASVs in different
sample types.
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