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Abstract 

NMR spectroscopy represents a powerful, versatile and reproducible technique 

for the analysis of complex biological matrices. In fact, virtually, all biologically 

relevant molecules are characterized by at least one NMR signal with a specific 

intensity, frequency (or chemical shift) and magnetic relaxation properties, all 

reflecting the chemical environment surrounding the detected nucleus. 

In a high-throughput vision of metabolomic analysis, the very high reproducibility, the 

minimal sample preparation required, and the possibility to simultaneously detect all 

metabolites presenting NMR active nuclei, make NMR spectroscopy one of the most 

suitable techniques for the analysis of any type of biological matrix, enabling the rapid 

and global evaluation of an NMR spectrum in its entirety or the determination of the 

concentrations of all metabolic features that are above the µM detection limit. 

The NMR versatility allowed a wide variety of metabolomic applications in life 

science research, especially for both human and veterinary biomedicine. As 

metabolites indicate intermediate and end-points of gene expression and cell activity, 

under the combined influence of external stimuli, metabolomics can provide a holistic 

approach to understand the phenotype of a certain biological system, holding promises 

for both clinical and precision medicine. 

In this context, the presented thesis aims at demonstrating the potential of untargeted 

NMR-based metabolomic approach in biomedical research, addressing different 

topics, mainly regarding the use of untargeted NMR-based metabolomic on body 

fluids to disentangle characteristic fingerprints and/or metabolic markers for different 

types of both human and animal diseases or healthy conditions; also with the aim of 

paving the way to personalized individual’s healthcare.  

Considering the occasional misunderstandings present in the literature about the 

different aims of “fingerprinting” and “profiling” approaches of the untargeted 

analysis, and the different tools to achieve them, this thesis also proposes a study where 

we demonstrate that the criticism on the main drawbacks of the commonly used 

bucketing procedure of NMR spectra are not valid when an untargeted metabolomic 

analysis is planned via a fingerprinting approach.  

In conclusion, the results presented in this thesis contribute to the demonstration that 

untargeted NMR-based metabolomics, coupled with biochemistry, analytical 

chemistry, bioinformatic tools and statistical analysis, can be considered as a 

comprehensive analytical technique with reasonable and actual prospects of being 

implemented in biomedical research. 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Main abbreviations and acronyms  

 

HPLC: high-performance liquid chromatography 

UHPLC: ultra-high-performance liquid chromatography 

CSF: cerebrospinal fluid  

EBC: exhaled breath condensate 

TMSP: trimethylsilylpropanoic acid 

PCA: Principal Component Analysis 

OPLS-DA: Orthogonal-Partial Least Square Discriminant Analysis 

M-PLS: Multilevel Partial Least Squares Analysis 

k-NN: k-Nearest Neighbour  

SVM: Support Vector Machine 

RF: Random Forest 

ROC: Receiver Operating Characteristic 

AUC: Area under the curve 

PQN: Probabilistic Quotient Normalization 

FDR: False Discovery Rate 

PD: Parkinson’s Disease 

dnPD: de novo Parkinson’s disease patients, recently diagnosed 

advPD: patients with late PD under pharmacological treatment 

CTR: healthy controls 

AIS: Acute Ischemic Stroke 

rt-PA: recombinant tissue plasminogen activator 

3M-nI: not-impaired AIS patients 

3M-I: impaired AIS patients 

3M-nD: survivors AIS patients 

3M-D: deceased AIS patients 

PCa: Prostate Cancer 

APPs: acute-phase proteins 

BO: bilateral orchidectomy 

CRCP: castration-resistant prostate cancer 



 

GlycA, GlycB: glycoprotein A, B 

MetS: metabolic syndrome 

BEF: bioactive-enriched food 

DHA: Docosahexaenoic acid (C22:6, n-3, DHA) 

AC: anthocyanins 

O-BG: oat β-glucans  

LDA: Left Displaced Abomasum 

RDA: Right Displaced Abomasum 
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Chapter 1 

Introduction 
 

1.1. Metabolomics: a tipping point for systems biology 
 

Nowadays, scientists are increasingly interested in deepening the knowledge and 

the understanding of biological mechanisms not only at the molecular level, but also 

focusing on the effects of an ongoing biological process in the organism as a whole. 

This approach, usually known as systems biology, requires the use of physical, 

molecular, biochemical and chemical approaches to investigate how the interactions 

among biomolecules impact the functionality of the entire organism.1,2 

Omic strategies, such as genomics, transcriptomics and proteomics aim of identifying 

the whole set of genes, proteins and other biomolecules contained in a biological 

specimen. For this reason, they have represented real revolutionary tools in the frame 

of systems biology research. A problem that should not be underestimated is that 

genomics, protein expression and molecular biology operate on different timescales 

from one another, making it difficult to find causal linkages.1 In addition, lifestyle and 

environmental factors greatly impact on metabolism and it became problematic to 

unravel their effects from gene-related outcomes.  

Metabolomics can overcome these problems. It represents a more recent -omic science 

which merges optimally with the general philosophy of systems biology; indeed, it 

provides an integrated picture of biochemistry in a huge variety of organisms (human, 

animals, plants, microorganisms etc.), dealing with the identification and 

characterization of 103 – 104 different metabolites (small molecules < 1500 Da) in a 

certain biological sample (e.g. cells, tissues, body fluids etc.),3 taking into account both 

endogenous and exogenous sources of variations (Figure 1). 

 
Figure 1. Metabolomics in systems biology: the flow of information proceeds from the genome to the 

transcriptome, the proteome and finally to the metabolome. From left to right they are increasingly 

variable during an individual lifespan, and all concur to the definition of the phenotype. Figure taken 

from Vignoli et al.3 
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Consequently, metabolites, differently from genes and proteins, reflect what is 

happening in the organism at the time of sampling; they act as direct signatures of 

biochemical processes, thereby providing crucial information for the understanding of 

molecular mechanisms of disease and health statuses.  

1.2. Metabolomics: one science, many experimental approaches 
 

Metabolomic studies can be planned applying two main methodological 

approaches: untargeted and targeted (Table 1). The former provides a global 

estimation of a sample by analysing all, or as many as possible, metabolic features 

present in the biological specimen. The latter involves the monitoring of a panel of 

metabolites selected a priori, on the basis of known biochemical pathways or pre-

identified biomarkers that result to be certainly related to the disease or the condition 

under study.3 The untargeted approach, achievable via metabolic fingerprinting or 

profiling, allows both sample classification (fingerprinting) and the identification and 

characterization of the metabolic features associated to specific physiological or 

pathological conditions (profiling).4  

 

Table 1. Main metabolomic glossary. Adapted from Fiehn-Nielsen,5 and Oliver.4 

Term Definition 

Metabolites Low molecular weight organic molecules (<1500 

Da) involved in metabolic processes as 

intermediate substrates or end-point products 

with different biological functions (i.e. fuel, 

structure, signalling, catalytic and inhibitory 

effects on enzymes, defence from toxins etc.). 

Metabolome The quantitative ensemble of all low molecular 

weight organic molecules within an entire 

organism, an organ, a biofluid, a tissue or a cell 

in a particular physiological or developmental 

state. 

Metabolomics The quantitative measurement of the dynamic 

multiparametric metabolic response of living 

systems to pathophysiological stimuli or genetic 

modifications, under the combined effect of 

environmental stimuli.  

Untargeted analysis The comprehensive analysis of all the 

measurable analytes in a sample, including 

chemical unknowns. 

Targeted analysis Measurement and monitoring of a panel of 

biochemically- and chemically-characterized 

metabolites, selected a priori on the basis of 

known metabolic pathways or pre-identified 

biomarkers, undoubtedly associated with a 

specific metabolic condition of interest. 

Metabolic fingerprinting Global, high-throughput, rapid analysis of all 

metabolites that are present in a biological 
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sample to provide sample classification (even 

without metabolite identification). 

Metabolic profiling The identification and quantification of as many 

as possible metabolites above the detection limit 

of the chosen analytical platform. 

 

Nuclear magnetic spectroscopy (NMR) and mass spectrometry (MS) are the leading 

analytical techniques for metabolomic research.1,3,6 Both of them provide 

concentrations of metabolites and molecular structures, and they yield information 

about many molecules in a single measurement, but each technique has its own 

strengths and weaknesses. 

MS studies usually require separation and derivatization of metabolites from the 

biofluid matrix before the detection, typically through high-performance liquid 

chromatography (HPLC) or alternatively, gas chromatography (GC). This last one can 

be applied to make metabolites more volatile. In this light, the MS technique requires 

several steps for the analytical preparation of samples. Recent methodological 

improvements allowed LC-MS to analyse various metabolites with different molecular 

characteristics ranging from hydrophobic to hydrophilic features; while the application 

of ultra-high performance liquid chromatography (UHPLC) lowered the detection 

limit from nanomolar down to femtomolar. Nevertheless, MS reproducibility still 

remains the main limitation of this technique for metabolomic studies; indeed, in MS 

experiments many compounds give variables responses when present in complex 

mixtures. Consequently, NMR, although overshadowed by MS in terms of sensitivity, 

offers key advantages, especially for high-throughput metabolomic analyses. NMR 

does not damage analytes, thus enabling the investigation of metabolites in intact 

tissues. Then, it requires a minimal and fast sample preparation, and any molecule 

containing NMR active nuclei can be detected simultaneously, while for MS several 

tailored experiments are generally requested for specific chemical species (Table 2).3 

 

Table 2. Main strengths and weaknesses of NMR and MS for metabolomic research. Table adapted 

from Vignoli et al.3 

Technology NMR MS 

Reproducibility Very high Fair 

Detection limit Micromolar range Picomolar range 

Sample preparation Minimal Several steps: metabolites 

separation/derivatization 

Volume of original samples 

consumed 

0.1-0.5 mL 0.01-0.2 mL 

Types of detected molecules Any molecule containing 

NMR active nuclei 

Most of organic molecules and 

some inorganic 

Types of experiments All metabolites above 

detection limit can be observed 

simultaneously 

Several: tailored for specific 

chemical species 

Ambiguous/false 

identification 

Origin: compounds with 

degenerate chemical shifts, 

chemical shifts variability due 

Origin: compounds (e.g. 

isomers) that can match with a 

given atomic composition or a 
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to experimental conditions 

(e.g. pH, temperature, ionic 

strength), presence of only 

singlet. To overcome these 

issues, 2D experiments, 

spiking of authentic reference 

compounds need to be 

performed. 

parent ion mass. Experimental 

approaches: LC-MS/MS 

 

Additionally, NMR is an intrinsically quantitative technique: in the spectra, the 

integral of each peak reflects directly the number of nuclei with non-zero magnetic 

moment giving rise to that peak. 

In conclusion, NMR and MS are two complementary techniques and the weaknesses 

of one are compensated by the strengths of the other. The peculiarities of NMR, 

coupled with chemometric tools, make it a more suitable approach for untargeted 

metabolomic applications, with the aim of characterizing metabolic fingerprint of 

diseases or any condition of interest, generating new biochemical mechanistic 

hypothesis. On the contrary, the high sensitivity of MS lends well this technique for 

confirming or validating pre-existing hypothesis on biochemical pathway in a mostly 

targeted approach.  

1.3. NMR and metabolomics 

NMR had contributed very significantly to metabolomic research, despite its lower 

sensitivity compared to MS. Advantages and strengths of NMR, including its highly 

reproducibility, quantitative nature, ability to detect metabolites in intact 

biospecimens, compensate for its main limitations (see §1.2). Recently, improvements 

of NMR sensitivity and resolution have been reported,7,8 making this methodology 

increasingly useful for the analysis of a huge variety of biological samples, especially 

for biomedicine research. 

1.3.1. Types of samples 

 

Through NMR spectroscopy, we can analyse a wide range of samples, including 

samples from plants, animals and related based-foods (e.g. fruits and vegetables, wine, 

oil, milk, meat etc.), microorganisms (e.g. yeasts, bacteria) and human or animal body 

fluids (i.e. urine, blood serum or plasma), faeces, organ tissues, culture media, cells, 

etc. The choice of sample depends on the question being asked with, for example, 

biofluids typically investigated to identify new clinical biomarkers, whereas tissues 

and cells are commonly studied to explore mechanisms related to pathophysiological 

processes. Tens-hundreds of small molecules, mainly amino acids, carbohydrates, 

organic acids, alcohols and other organic compounds (Figure 2) can be detected in a 

sample through NMR which can contribute also to the definition of the overall lipid 

composition of the biosystem (i.e. high-density and low-density lipoproteins; short-

chain fatty acids; mono-, di-, tri- triglycerides; free cholesterol, cholesterol esters; total 
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cholesterol; glycerophosphocholines; sphingomyelins, etc.) in a so-called lipidomic 

vision.9,10  

 

 
Figure 2. Number of detectable and quantifiable metabolites with >50% occurrence of different 

biological samples, by 1H-NMR spectra: urine,11 serum,12 saliva,13 CSF,14 EBC,15 faecal extracts, cell 

lysates (e.g. ovary and glioblastoma cells)16,17 and intact tissues (e.g. liver and pancreas).18,19 Figure 

taken from Vignoli et al.3 

 

Before performing the analysis, sample-specific considerations need always to be 

pondered. Different types of cells reflect different metabolomes, and intracellular 

metabolites vary with respect to endogenous and exogenous stimuli (e.g. treatment 

with a drug, genetic manipulation or mutation, protein overexpression etc.), 

evidencing up- or down-regulating specific biochemical pathways. The 

complementary biological information provided by the exo-metabolome is 

fundamental to complete the analysis.20 NMR data from tissues are more complicated 

to interpret: they reflect the organ-specific biochemistry (e.g. aerobic respiration, lipid 

metabolism etc.), but they are also affected by the heterogeneous composition of tissue 

extracellular matrix and microenvironment. However, tissue samples directly report 

the condition of the diseased organ, where metabolic variations with respect to a 

healthy status are expected to be more pronounced. Compartmentalised biofluids, such 

as cerebrospinal fluid (CSF) and exhaled breath condensate (EBC) represent the 

biochemistry of the central nervous system and that of the respiratory tract, 

respectively. Saliva, another compartmentalised biofluid, report metabolic changes 

related both to oral disorders and distant pathologies.21,22 

Systemic body fluids like urine or blood plasma/serum have a general fainter 

biochemical correlation with a diseased organ or apparatus, but their simple, minimally 

invasive collection and their ability to reflect the overall response of the organism to 

the disease condition, are strength points for high-throughput metabolomic analyses. 

On the other hand, blood and urine are considerably different in terms of chemical 

composition, with blood reporting a better defined and stable metabolome, while urine 

metabolites being heavily influenced by lifestyle factors, such as food and liquid 

intake, physical activity, use of drugs etc.  
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In particular, blood represents an optimal and suitable biological matrix for 

metabolomic analysis. It carries nutrients, dissolved gases, hormones and metabolic 

wastes12, but it also regulates pH and ion composition of interstitial fluids; it allows 

for the defence against toxins and pathogens, and it plays a key role for the stabilization 

of body temperature. Moreover, through its interaction with every tissue and every 

organ in the body, it offers a snapshot of the metabolic state of an organism, providing 

pivotal information for detecting, managing and monitoring virtually all disease 

statuses or other conditions of interest. For these reasons, blood specimens have been 

mainly studied in this PhD thesis.  

In the light of the above considerations, the preservation of the chemical composition 

of the in vivo metabolome and the feature of spectral reproducibility, are key factors 

for the global significance and performance of metabolomic analysis by NMR.  

 

1.3.2. NMR-based metabolomic applications: the state of the art 

 

The NMR versatility allowed for a wide variety of metabolomic applications in life 

science research, ranging from human and veterinary health to the exploratory 

characterization of plants, animals, related based-foods, microorganisms and 

environment (Figure 3).  

 

 
Figure 3. NMR-based metabolomics in life sciences: applications in different fields, ranging from the 

exploration of microorganisms, animals, agri-food to human research. Figure adapted from web sources. 

 

As metabolites indicate intermediate and end-points of gene expression and cell 

activity, under the combined influence of external stimuli, metabolomics can provide 

a holistic approach to understand the phenotype of an organism, holding promises for 
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both clinical and precision medicine. In this context, many biomedical fields, 

summarized in three broad areas (Figure 4), might benefit from metabolomic studies.  

 
Figure 4. Scheme of the main steps of metabolomic analysis and related applications in biomedicine. 

Adapted from Nicholson et al.1 and web sources.  

 

As it has been previously stated, NMR-based metabolomics is being increasingly 

applied to disease diagnosis and characterization (disease fingerprint). Cancer is 

probably the most studied pathology so far via NMR metabolomics.23–26 

Cardiovascular diseases,27–29 cerebrovascular diseases30,31 and neurologic 

disorders,32,33 provided other excellent targets for this -omic science.  

Metabolomics also offers a cost-effective and productive route for the discovering of 

new drug targets and to predict and monitor individual response to drug treatments 

(pharmacometabolomics).6,34,35 Other metabolomic applications include the 

monitoring of the effects of surgical and non-surgical interventions,36–38 dietary 

treatments,39–41 the understanding of metabolic unbalances underlying pathologies and 

the mechanisms at the basis of the development of poor patients ‘outcomes. Moreover, 

metabolomics is promising as a clinical tool for molecular epidemiology, with the most 

challenging goal of detecting early metabolic disturbances even before the 

manifestation of disease symptoms, providing early diagnosis, tailored therapies and 

identifying metabolites or fingerprints useful as novel risk biomarkers of a specific 

pathology, for disease recurrence or stratification.  
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For the sake of completeness, it is important to underline that metabolomics also 

proved to be effective for veterinary medicine,42 in particular in the frame of disease 

diagnosis, drug discovery and investigation of animal health status.43–45 

Considering all the relevant results listed in the literature and the potentiality of NMR-

based metabolomics for the biomedical field, the need of deepening researches to 

identify i) new disease fingerprints and ii) a panel of small molecules that can be useful 

to deepen the knowledge of pathological mechanisms is still urgent.  

 

1.3.3. NMR-based metabolomic workflow 

 

Initially, a metabolomic workflow relies on a straightforward formulation of the 

biological question to be addressed. This step is crucial because it will determine the 

experimental design that follows. Depending on the biological problem at issue, the 

type of metabolomic approach (targeted vs. untargeted), types of samples (e.g. body 

fluids, tissues and/or intact organisms), sample size, experimental conditions (e.g. 

frequency of sample collection, metabolic quenching to interrupt certain enzymatic 

activity), storage conditions, analytical platform to be used, must be defined before 

performing sample collection and the analysis. Considering the comparative character 

of metabolomic studies, a group of samples that did not undertake the investigated 

condition (control samples) and test samples (carrying information on the investigated 

condition) should be usually defined in the experimental design. 

A schematic representation of a typical NMR-based metabolomic workflow is 

illustrated in Figure 5.  

 
Figure 5. Typical steps followed for metabolomic analyses by NMR. 

 

Sample collection, handling and storage constitute critical phases of metabolomic 

research, and the adoption of standard operating procedures is fundamental to maintain 

sample biostability and to guarantee reproducible results.46,47 
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Sample preparation can vary widely, it is intimately related to the sample type, the 

metabolomic approach and the elected analytical platform. Processes such as solvent-

mediated extractions or buffering could be necessary. The second step regards data 

acquisition by NMR spectroscopy. Differently from other omics sciences, 

metabolomics imposes a big analytical challenge due to the huge variety of chemical 

species that biological samples exhibit. In this terms, appropriate NMR pulse 

sequences need to be implemented and applied. Acquired raw data are subjected to 

pre-processing steps (mainly, baseline correction, phasing, alignment and/or 

bucketing) and pre-treatment procedure (second step) before the statistical analysis. 

Metabolomic data are quite complex to be interpreted and they require chemometric 

tools to address the aim of the research (third step). Multivariate analysis, comprising 

unsupervised method such as Principal Component Analysis (PCA) and supervised 

method, such as Orthogonal-Partial Least Square Discriminant Analysis (OPLS-DA), 

Multilevel Partial Least Squares analysis (M-PLS) and machine learning algorithms 

(e.g. support vector machines, random forest) are often employed for sample overview, 

classification and prediction. Alongside the common multivariate approaches, 

univariate analysis, based on common Student’s t-test, analysis of variance, Kruskal–

Wallis test and Wilcoxon signed-rank test, is also used to corroborate multivariate 

results. Statistical models must be validated and their robustness need to be checked 

in order to avoid overfitting of data, by using internal cross-validation schemes, 

permutation tests, receiver operating characteristic (ROC) curve estimation, or when 

possible, advocating an external and independent validation cohort.  

In a more systematic and comprehensive approach, metabolic and lipidic association 

networks can be useful to infer metabolite-metabolite and metabolite-lipid significant 

associations. However, Chapter 3 will bring more details about chemometric tools and 

statistical procedures in NMR-based metabolomics.  

Before concluding, untargeted metabolomic studies require metabolite identification. 

For such purposes, free databases such as HMDB,48 KEGG,49 PubChem,50 and 

libraries like AMIX (Bruker) and AssureNMR (Bruker) can be used in NMR-based 

metabolomic research. As a last step, metabolomic data need a biological 

interpretation and several databases (e.g. KEGG, MetaboLights51) or online tools, 

such as MetaboAnalyst52 are available for this purpose. 
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Chapter 2 

Aims of this thesis 
 

Metabolomics is a developing and emerging technique that holds promises for 

different fields, providing powerful insights into the mechanisms of both human and 

animal diseases and health status. This work is mainly a methodological thesis 

covering different topics with the principal aim of demonstrating the potential of 

untargeted NMR-based metabolomics in the biomedical field.  

In the first section of this thesis, particular attention is paid, in the frame of human 

biomedicine research, to: 

1) prove the usefulness of untargeted NMR-based metabolomics applied on blood 

serum or plasma samples to unravel fingerprints/metabolic markers of 

neurological disorders, i.e. Parkinson’s disease and ischemic stroke, and 

prostate cancer; mainly to uncover the underlying molecular mechanisms 

characterizing different stages of the diseases and to enable patients’ 

stratification and characterization of metabolic changes occurring after the 

onset of the pathology; 

2) provide predictive and prognostic metabolic markers of three-months poor 

outcomes of ischemic stroke (i.e. mortality, development of neurological 

impairment, haemorrhagic transformation of the cerebral lesion and non-

response to the commonly applied thrombolytic therapy), to better characterize 

the post-stroke course of the pathology from a metabolic point of view and to 

enable a more tailored patient care;  

3) prove the usefulness of metabolomics in the framework of personalized 

lifestyle management by unravelling blood serum fingerprints for dietary 

interventions phenotypes in subjects at risk for metabolic syndrome; 

Since metabolomics has so many applications in the biomedical field, the same 

analytical technique can find potential applications in veterinary medicine, for disease 

characterization or to monitor animal health status. In this framework, the second 

section of this thesis is dedicated to: 

1) prove the effectiveness of untargeted NMR-based metabolomics applied on 

animal sample extracts (serum and/or liver, urine) to provide 

fingerprints/biomarkers of displaced abomasum in dairy cows and Erlichia 

canis infection in dogs; 

2) demonstrate the ability of NMR-based metabolomics in monitoring the health 

status of premature calves in order to prevent calves’ mortality or pathologies.  

A third and last section of this PhD thesis is dedicated to demonstrate the robustness 

of the equidistant bucketing in performing the NMR fingerprinting of biological 
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samples. During the last years, the bucketing procedure has been improperly criticised 

and abandoned because of a growing interest in profiling technique; indeed, since most 

medical and also food analyses require quantifiable properties, bucketing has become 

less important. The work here reported, shows that equidistant bucketing maintains all 

the necessary information, especially the one encoded in chemical shifts data, to 

perform the NMR fingerprint of the most commonly analysed biofluids (blood serum 

and urine).   
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Chapter 3 

Methodologies 
 

3.1. Sample preparation 

As previously stated in Chapter 1 (§1.3.3), pre-analytical processes are crucial for 

the global performance of molecular analyses of biological samples. Indeed, several 

steps, such as primary sample collection, transport and storage should avoid the 

generation of artificial profiles, ensuring the detection of the original metabolome and 

lipidome of a sample. The impact of non-appropriate pre-analytical procedures could 

be tremendous and this is one of the main causes that make the comparison of 

metabolomic data, collected from multicentric studies, difficult. Some molecules, 

constituting the metabolome, are very sensitive to sample conditions; for example, 

very low temperature (-80°C) is used to store samples, avoiding their denaturation or 

to quench enzymatic activity.  

Analytical NMR preparation of common biofluids, such as blood and urine, requires 

minimal steps. Typically, they consist mainly on adding a buffer solution to sample 

matrix, to avoid pH variation and to easily reference chemical shifts values to existing 

resonances in published databases. A measured amount of a reference compound such 

as tetramethylsilane (TMS) for organic solvents and trimethylsilylpropanoic acid 

(TMSP) or sodium 2,2-dimethyl-2-silapentane-5-sulphonate (DSS) for aqueous 

solutions is often added to the sample. The addition of small quantity of deuterated 

solvents, generally D2O, provides the signal to stabilize the magnetic field, also 

allowing the optimization of NMR peaks resolution. To extract fractions (e.g. serum, 

urine, liver etc.), the analytical preparation of samples depends on the nature of the 

extract: hydrophilic or lipophilic Typically, for organic fractions, chloroform or 

methanol-chloroform mixtures are added in different proportions, while D2O is 

preferred to reconstitute polar fractions. 

Usually, NMR analysis requires an original sample volume ranging from 0.1 to 0.5 

mL, and it must not be forgotten that several and specific practical consideration (e.g. 

solvent, pH, temperature etc.) should be considered always according to the specific 

biological matrix under study. Generally, NMR sample preparation must meet the 

main following criteria: i) ease of use; ii) reduction of unwanted source of variation 

and artifacts; iii) robustness of the analysis and iv) reproducibility.53  

3.2. NMR pulse sequences: tips for 1D metabolomic applications 
 

NMR spectroscopy represents a powerful, versatile and reproducible technique for 

the analysis of complex biological matrices because any biological molecule 

containing one or more atoms with a non-zero magnetic moment is theoretically 

detectable by NMR.54 Virtually, all biologically relevant molecules are characterized 
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by at least one NMR signal with a specific intensity, frequency (or chemical shift) and 

magnetic relaxation properties, all reflecting the chemical environment surrounding 

the detected nucleus.55 

One-dimensional (1D) 1H-NMR spectroscopy is the most widely used technique for 

metabolomic research, since proton is the most abundant and sensitive nucleus present 

in biomolecules. For solution-state NMR experiments, the main problem that must be 

addressed is related to the detection of protons of biomolecules in aqueous samples at 

µM concentrations with a background of almost 100 M water protons.53 Indeed, typical 

biological samples usually contain a large quantity of water and only small amounts 

of D2O can be added to offer sufficient signal for the deuterium lock, but without 

compromising the detection of exchangeable protons in the sample. Therefore, the 

larger water signal needs to be reduced using water-suppression techniques in order to 

observe and quantify signals from the metabolites of interest, which are ranging in 

micromolar concentrations. The simplest strategy to suppress water consists of a 

method called “pre-saturation” that applies a weak radio-frequency irradiation for a 

period of the order of the solvent T2 to selectively saturate the solvent resonance.56 

Gradient-based solvent suppression techniques can be also used to obtain efficient 

water signal reduction, such as the WATERGATE scheme, which uses a composite 

pulse, surrounded by two symmetric pulsed-field gradients with the aim of attenuating 

the water resonance.57  

Among the large variety of NMR pulse sequences available to date, only few of them 

are suitable for the metabolomic analysis. One challenge is to obtain at the same time, 

access to the measurement of relative or absolute concentrations of the metabolites in 

their original mixture and to make the analysis as fast as possible. 

Indeed, NMR-based metabolomics build up on the high-throughput investigation of 

large cohorts of biological systems. Urine and blood serum or plasma are analysed 

considering their natural isotopic abundance, while metabolic fingerprint/profiling 

strategies largely aim of providing 1D or 2D profiles relevant for the 

identification/quantification of the greatest number of detectable metabolites in a 

biological sample. Moreover, in recent years, the standardization of metabolomic 

NMR experiments has been increasingly requested for constructing reliable spectral 

databases for metabolite identification, comparisons across different collection 

centers, and for studies which aim of developing universal sample classification 

models based on spectral data. Consequently, only few complementary pulse 

sequences, following standardized protocols, are commonly used for most NMR-based 

metabolomic applications.58–60  

The 1D 1H NOESY pulse sequence with water pre-saturation is the most popular 

acquisition scheme, applied in the frame of metabolic fingerprint of biological 

samples, to detect both small molecules and macromolecules. It has the advantage of 

needing minimal parameter optimization. The 1D 1H NOESY pulse sequence involves 

a series of three 90° radio frequency pulses (Figure 6 A), where the first pulse creates 

transverse spin magnetization, the second and the third ones, separated by a mixing 

time τm, correspond to the NOESY filter, which improves the quality of water 
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suppression.61 1D 1H NOESY spectra provide a complete and quantitative fingerprints 

of the observed metabolites and for this reason, they will be widely used in this PhD 

thesis. 

 
Figure 6. Standard one-dimensional NMR pulse sequences for metabolomic analysis. Figure taken from 

the “NMR-based metabolomics” book.56 (A) 1H NOESY with water pre-saturation during the recycle 

delay and optional pulsed field gradients to improve water suppression. The mixing time τm is typically 

set to 100 ms. (B) Carr–Purcell–Meiboom–Gill (CPMG) pulse sequence, with water presaturation 

during the relaxation delays. (C) Stimulated-echo sequence with bipolar-gradient pulse pairs and 

longitudinal eddy currents delay62 for acquisition of diffusion-edited spectra. 

 

A challenging issue to be solved, during the observation of small metabolites from 

complex mixtures, is the common presence of macromolecules, whose corresponding 

broad background signals may cover the presence of low-concentrated small 

metabolites. Considering that large macromolecules usually have relaxation time (T2) 

shorter than those of small metabolites, transverse relaxation properties can be used to 

selectively detect small molecules. This is the aim of the Carr-Purcell-Meiboom-Gill 

(CPMG) experiment, consisting in a 180° pulse train (Figure 6 B) to achieve 

relaxation editing by the attenuation of the fast-relaxing species.63 Specifically, each 

180° pulse generates a spin echo at time 2τ, and the amplitude of these echoes decays 

exponentially with a time constant corresponding to the transverse relaxation time T2. 

The fast-relaxing signals from macromolecules are allowed to decay without any 

significant loss for the slow-relaxing small metabolites, by choosing a suitable delay 

2τn before acquisition of the spin echo, typically in the order of 60 to 100 ms.56 
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Another approach for spectral editing according to molecular size is based on the 

differences in rates of molecular diffusion between the molecular species. In this way, 

only signals from molecules with restricted translational mobility, i.e. 

macromolecules, can be detected. In other words, diffusion-edited spectroscopy relies 

on the attenuation of NMR signals of metabolites that diffuse rapidly along the sample 

matrix in the presence of a pulsed gradient (Figure 6 C). 

The above-described experiments are commonly used for metabolomic analysis of 

blood serum or plasma (Figure 7), while in the case of urine, the application of 1D 1H 

NOESY pulse provides sufficient information. It should be pointed out that some 

experts prefer physically removing macromolecular components via centrifugation 

with 3000 MWCO Amicon Ultra-0.5 filters followed by NOESY acquisition, rather 

than applying the CPMG sequence.8,64 

 

 
Figure 7. Typical 600 MHz 1H NMR spectra of a serum sample are reported: A) 1H NOESY presat 

spectrum; B) 1H Diffusion-edited spectrum; C) 1H CPMG spectrum. Spectra are calibrated at the 

anomeric glucose signal at 5.24 ppm. After pre-saturation, residual water signal is marked with an 

asterisk (*). 

3.3. NMR data pre-processing and pre-treatment 
 

For any metabolomic study, the intermediate step (data pre-processing) between 

recording NMR raw data and applying statistical analysis, represents a crucial 

procedure for the final performance of the research. Indeed, data pre-processing, with 

data pre-treatment methods, allow the reduction of variances caused by measurements, 

by biology or by combined effects which are not of interest or which might interfere 

with subsequent data modelling.  

Each NMR spectrum must be adequately adjusted for phase and baseline, using 

automatic procedures; manual adjustments are discouraged for metabolomics because 

they can add operator-biased artefacts. Spectra need also to be properly aligned to a 

known resonance of a reference signal, ideally not interacting with any sample 
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molecule; for example deuterated trimethylsilylpropanoic acid (TMSP) may bind 

macromolecules (e.g. albumin protein) and its use is discouraged in samples like 

plasma or serum, where alternative internal references are preferred (e.g. the anomeric 

doublet of glucose at 5.24 ppm).65 For the same reason, the use of TMSP as a standard 

for quantification is discouraged. Absolute quantification of molecules can be carried 

out using alternative approaches, such as the production of an artificial NMR signal 

based upon PULCON66 or ERETIC67 methods. Software systems like the B.I. (Bruker 

IVDr) platform for the analysis and metabolites/lipids quantification in biofluids (e.g. 

serum/plasma and urine) are actually used, also in the “Results” section of this PhD 

thesis.  

When NMR is applied to metabolomic profiling, some practitioners prefer to work 

with full resolution spectra, applying specific algorithms for peak alignment, such as 

the icoshift,68 to assure the comparability of NMR peaks across multiple spectra. 

Alternatively, NMR metabolomic fingerprinting of samples can be obtained by 

transforming NMR spectra into data matrix, by means of binning or -bucketing 

techniques. These methods allow the integration of NMR spectra within small spectral 

regions, called “bins” or “buckets”. Many sophisticated algorithms exist to bin 1D 

NMR spectra, but the most commonly and simply method is the equidistant binning 

of 0.02-0.04 ppm53,69, which allows the division of the spectrum into evenly spaced 

integral regions with a fixed spectral width. 

To compare signal – or bucket – intensities in different biological samples, it is 

important to refer to the same amount of total sample. Since large physiological 

variation in metabolite concentration is always present, a preliminary step to correct 

dilution effect is requested. For example, urines exhibit significant metabolite 

concentration fluctuations due to the different hydration state of the individual, 

therefore normalization is generally applied, as pre-treatment step, to correct global 

signal intensity.70 For blood/serum metabolomics, normalization is less crucial; indeed 

blood matrix is less variable and it is under a stricter physiological control; 

nevertheless, serum/plasma normalization can compensate for non-physiological 

sources of variation, especially from experimental inaccuracies and/or artifacts. 

The most popular normalization technique is total area normalization, where each 

NMR variable (e.g. a bucket or a data point) is divided by a constant number 

representing either the integral of the reference peak or the sum of binning of all 

spectra. In the research for the “best performing” normalization method, a plethora of 

strategies/algorithms have been developed. For biofluids, especially urine, 

Probabilistic Quotient Normalization (PQN)71 is considered a good choice. It works 

by calculating a reference spectrum (e.g. the median spectrum), then for each spectrum 

of the dataset, each NMR variable is divided by the corresponding variable in the 

reference spectrum, and the median of all the obtained quotients represents the 

normalization factor. PQN assumes that variations in the concentration of biological 

interest, affect only few portions of the NMR spectrum, while dilution effects will 

influence all signals.  
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Before concluding this paragraph, few words must be said on scaling methods. Scaling 

procedures are data pre-treatment approaches that divide each NMR variable (e.g. a 

bucket or single metabolite) by the scaling factor, which is different for each variable, 

with the aim of adjusting for the fold differences between the different metabolites, 

making entire profiles more comparable. Different methods exist, like auto-scaling, 

pareto-scaling etc., and they are generally applied when, within the same dataset, 

different typologies of data (e.g. clinical and metabolomic data) must be analysed 

together.  

 

3.4. Statistical analysis 
 

NMR-based metabolomic analysis generates a large quantity of complex, 

multifaceted data. To obtain comprehensive and meaningful results, the statistical 

analysis represents a key part of the metabolomic workflow. Starting from full or 

bucketed NMR spectra, or from a list of metabolite concentrations, metabolomic 

analysis principally aims at: i) visualizing the overall differences, trends, relationships 

among different samples; ii) detecting whether there is a significant difference among 

sample groups under study; iii) highlighting spectral regions mostly contributing to 

mentioned differences; and iv) constructing reliable and robust predictive model to 

correctly classify new samples.3,53 Applying multivariate statistics, we can achieve 

these goals, by either i) unsupervised (no assumptions made on the samples) or ii) 

supervised methods (samples are defined into classes, or each sample is associated to 

an outcome yi value).  

Generally, multivariate methods represent samples as points in the space of the initial 

variables. Then, samples can be projected into a lower dimensionality space, i.e. 

components or latent variables, such as a line, a plane or a hyperplane. In the newly 

defined latent variables, the coordinates of samples are defined as the “scores”, while 

the direction of variance to which they are projected are named “loadings”. The 

loadings vector for each latent variable contains the weights of each of the initial 

variables in that latent variable.  

Unsupervised methods usually represent the first step for the statistical analysis, 

helping in the visualization of the data, detection of possible outliers or evident 

metabolic signatures. Among the different unsupervised methods, Principal 

Component Analysis (PCA)72 is the most popular and commonly used technique. It 

involves the projection of the data in a new space using just few dimensions (data 

reduction). Each principal component (PC) represents a linear combination of the 

original NMR variables (e.g. buckets or metabolite concentrations); they are 

orthogonal and independent from all the others. The first PC (PC1) expresses the 

maximum percentage of variance inside the dataset and thus, the greatest amount of 

meaningful information. In the successive PCs, the value of variance decreases in such 

a way that the last PCs have less significantly importance, thus expressing mainly noise 

variability. 
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Geometrically, PCA can be viewed as a rotation of the reference system to maximize 

the data structure, minimizing the noise. The original data matrix (X) is factorized into 

two new matrices: the score matrix T and the loading matrix P: 

 

T = X P 

 

The score matrix T represents a simplified description of the original observations in 

a reduced dimensional space, enclosing the coordinates of the original data in the new 

principal component space. As previously stated, the loading matrix P contains the 

weights of the original variables to transform them into the scores. Typically, the first 

columns of the score matrix can be plotted against the second or the third one, in the 

so-called “score plot” (Figure 8 A), where each sample is represented by a dot. 

Similarly, the coefficients responsible for sample groups separations are depicted in 

the “loading plot” (Figure 8 B). If in the score plot of PC1 vs. PC2 (Figure 8), a 

separation between sample groups is evident, the loadings of the corresponding PCs 

provide evidences on which original variables are responsible for that discrimination.  

 

 
Figure 8. Example of PCA analysis on biofluids. A) PCA Score Plot: PC1 vs. PC2, where each dot in 

the plot represents a different 1H NMR spectrum corresponding to a sample; grey dots: group 1; black 

dots: group 2; white dots: group 3. B) PCA loadings plot of PC1, where the most significant metabolites 

in the score plot are evidenced from the highest loadings (e.g. lactic acid, creatine, histidine). Figure 

adapted from our research group material. 

 

Conversely, supervised methods use a priori knowledge to generate models that are 

closely focused on evaluating the effects of interest. The main goal of supervised data 

analysis is to extend the information already available from pre-existing samples to 

new samples, so that prediction can be performed in the frame of disease diagnosis 

and/or prognosis. 

Supervised analysis includes methods based on projection and data reduction, such as 

Projection to Latent Structures (PLS)73–75 and its orthogonal variant (OPLS).76 
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PLS is multivariate linear regression method similar in concept to PCA, which finds 

the relations between two matrices, data X and response Y, by maximizing the 

covariance of their latent variables. Using this approach, it is possible to understand 

which variables (e.g. NMR bucket or metabolites) of X are more correlated to the 

response (e.g. disease/health status) and to make predictions of new samples. OPLS is 

a modification of the previous PLS method; showing the same predictive power as 

PLS, but providing better interpretation of relevant variables than PLS. This is possible 

by decomposing the data in the so-called “predictive” information related to the Y 

response and the “orthogonal” structured information not related to the response, such 

as instrumental or unwanted biological variations. 

To overcome issues related to the large between-subjects variability, the multilevel 

PLS77 analysis is applied. In a multilevel PLS, between-subject variation is separated 

from the within-subject variation by subtracting the individual specific average, and 

only the within-subject variation is considered for the analysis.  

Reduction techniques like PCA and PLS can be applied in combination with Canonical 

Analysis (CA) to enhance sample groups discrimination. CA allows discriminant 

projection by maximizing between-class distance and minimizing within-class 

distance. In addition, both PCA, PLS, OPLS and M-PLS can be applied in combination 

with Discriminant Analysis (DA) to infer the best discrimination among groups and 

also in the frame of predictive analyses.  

For classification and predictive purposes, machine learning supervised methods are 

largely employed, especially k-Nearest Neighbours (k-NN) and Support Vector 

Machines (SVM) are the widespread algorithms for metabolomic analyses.  

To date, k-NN is probably the simplest and computationally easiest classification 

algorithm: it works in a local neighbourhood around a considered test sample that must 

be classified. The neighbourhood is generally estimated by the Euclidean distance and 

the closest k (e.g. 3≤k) objects are used to calculate the group membership (based on 

a “majority voting”) of a new sample78 (Figure 9 A). The choice of k size largely 

influences the quality of results: small k values leads to the building of a statistical 

model where significant statistical fluctuations are present; while large k values can 

reduce statistical errors, but they flat many details of the sample distribution.  

SVM is based on a different concept: it uses a statistical learning paradigm to construct 

a “borderline” (a line, a plane or a hyper-plane) tract in the sample space (Figure 9 B), 

separating the different classes of samples.79 
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Figure 9. Classification of an unknown sample (white square) among two groups (black dots and grey 

stars) with different methods: A) k-NN classification; B) SVM. 

 

A relatively new and powerful machine learning algorithm is the so-called “random 

forest”. This approach represents a powerful machine learning algorithm with many 

strengths: i) it can deal with large number of predictor variables simultaneously; ii) it 

avoids overfitting problems; iii) it can be applied when there are more variables that 

samples; iv) it is relatively insensitive to noise; v) it allows visualization of data in a 

reduced discriminant space using the proximity matrix calculated during the process 

of forest growing; vi) the percentage of trees in the forest that assigns one sample to a 

specific class can be interpreted as a probability of class belonging; and vii) it gives an 

unbiased estimation of the classification error using the out-of-bag samples, avoiding 

the need for additional cross validation. 

Random Forest algorithm can be used for data classification and predictive modelling. 

The first goal (i.e. classification) is derived from a randomly grown ensemble (forest) 

of decision trees based on the following steps: i) original data are randomly divided 

using bootstrapping into two separated sets: the training and test set; ii) an ensemble 

of decision trees is grown using the training set, where each of the trees is built on 

randomly selected NMR variables at each decision node; iii) as soon as all the trees 

are built, an unbiased assessment of the classification error using the out-of-bag 

samples is performed, enabling the estimation of the model performances.80,81 

Moreover, for each sample, the percentage of trees in the forest that assign one sample 

to a specific class can be inferred as a probability of class belonging, making this 

approach very useful for predictive modelling purposes.82,83 

Generally, since the main risk of supervised approaches is the overfitting of data, it is 

a good practice to validate results by simply using an independent validation set, if 

available, or with more sophisticated approaches, such as cross-validation schemes. 

Cross-validation (CV) methods require an initial splitting of the dataset in a training 

set and in a validation set and secondly, by these techniques, one (Leave-One-Out, 

LOO) or many (Leave-Many-Out, LMO) samples are randomly removed from the 

training set and then, they are tested. Indeed, the model is construct on the training part 

of the dataset, while excluded samples are used to assess the model performances, 
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generating a confusion matrix that express sensitivity, specificity and accuracy. 

Sensitivity, also called the “true positive rate”, is defined as the ratio between true 

positives (TP) and all positives (P), while specificity, also defined as “true negative 

rate”, represent the ratio between true negative (TN) and all negatives (N). Finally, 

accuracy is defined as the ratio between the sum of TP and TN and the total sample 

population (P + N).  

In order to assure the best analysis performance, the use of permutation test to estimate 

the statistical significance of the results is strongly recommended. The employment of 

independent training and validation sets is the preferred approach in the medical 

community, even if much attention should be given to pre-analytical procedures for 

collecting samples from different hospitals or countries.  

 

The complexity of 1H-NMR spectra imposes not straightforward or simple processes 

for the metabolite identification. Commonly, many NMR peaks can be directly 

assigned in one-dimensional spectra on the basis of chemical shifts and multiplicity of 

resonances. A help is offered by online databases like HMDB48 for human metabolites, 

PubChem,50 KEGG49 and so on. For doubtful cases, the spiking of authentic standard 

molecules is advocated, while, sometimes, 2D NMR spectra offer additional 

information for assigning new metabolites.  

The increasing need for a completely automatic assignment and quantification of 

metabolites leads to the continuous development of automated tools, such as the recent 

B.I (Bruker IVDr) platform for urine, CSF and serum/plasma samples. Meanwhile, 

other tools for semi-automatic quantitation have been developed, like BATMAN84 and 

BAYESIL64 tools, mostly based on Bayesian inference, ASICS85 (a linear model) and 

the NMR Suite Software Package (Chenomx Inc., Edmonton, Canada) which offers a 

complete assistance for spectral deconvolution, peak fitting, integration and 

quantitation of the selected peaks.  

 

With the aim of identifying a metabolite or a panel of metabolites that can represent a 

possible biomarker for the condition under study, each metabolic feature needs to be 

investigated in a separated manner from all the others, excluding any possible inter-

relationships. This goal is achievable applying univariate statistical analysis: 

statistical tests, correlation analysis and ROC curves are the most employed 

approaches. Considering the biological assumption that metabolite concentrations do 

not follow a normal distribution, non-parametric tests are often used. Wilcoxon-Mann-

Whitney86 test is the non-parametric version of the classical Student t-test, used to 

compare the distribution of a metabolite between two groups. The null hypothesis (H0) 

claims that two randomly selected samples from two populations, actually belong to 

the same population; the alternative hypothesis (Ha) states that H0 is retained false, 

thus the two population are different. When there is the need to compare two related 

samples, matched samples or repeated measurements on the same specimens (pairwise 

comparison), the Wilcoxon signed rank test87 is applied. When the groups to be 
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compared are more than two, Kruskal-Wallis88 test (the analogue of the parametric 

Analysis of Variance) or Friedman89 test (for paired samples) are employed.  

On the whole, the output of all these tests is a P-value, that expresses the probability 

of obtaining an equally extreme result equal or a more extreme one than that what was 

actually observed, assuming the null hypothesis to be true. Conventionally, when the 

P-value is less than the significance level at 0.05 or 0.01, the null hypothesis is rejected 

and the considered variable is deemed statistically different in the case group. Because 

in metabolomic untargeted studies, we look one after thousands of variables, multiple 

testing corrections must be applied to avoid random false positive. Bonferroni90 and 

Benjamini-Hochberg91 are the most widely used corrections. It is worth saying that P-

values are often misused and misinterpred,92 their significance depends strictly from 

population dimension and distribution. For these reasons, statisticians proposed the 

use of the effect size in the place of P-values, as an alternative measure of evidence.93 

Effect size represents the standardized measure of the magnitude of the observed 

phenomena.  

Before concluding, it is important to mention the role of ROC curves and correlation 

analysis in determining metabolic features associated to the condition of interest. 

ROC curves are graphical representations that illustrate the diagnostic ability of a 

binary classifier. The curve is generated by plotting sensitivity versus one minus 

specificity for all possible thresholds of the test. The accuracy is derived from the area 

under the ROC curve (AUC). Area values equal to 1 represent a perfect test, while an 

area of 0.5 stands for a worthless test. However, ROC analysis finds application also 

to check a multivariate supervised classifier, not only in the frame of univariate 

analysis.  

Last but not least, Pearson correlations can be calculated to test whether there is a 

linear association between metabolites and clinical data or other biological features. 

Correlations are expressed by a coefficient (R), ranging from +1 (totally correlated), 0 

(no correlation) and -1 (totally anticorrelated).  

In conclusion, from metabolite/lipid to metabolite/lipid correlation maps, metabolic 

networks with a biological meaning can be inferred;94–96 indeed, association networks 

generally provide interesting information to describe the status of the biosystem or to 

compare the same across different conditions in the frame of a more systematic and 

comprehensive approach.  
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Chapter 4 

Results 
 

4.1. NMR-based metabolomics for human biomedicine 
 

Metabolomics offers a snapshot of the metabolic dynamism of an organism, 

reflecting the response of the living system to pathophysiological stimuli, genetic 

mutations and external environment, thus providing crucial information for detecting, 

managing and monitoring any disease or healthy condition of interest.  

Particularly in the context of human medicine, metabolomics has been used to deepen 

the knowledge on the mechanisms of several pathologies, to characterize metabolic 

profiles of diseases with the aim of discovering new biomarkers or identifying 

biochemical pathways involved in disease pathogenesis. Moreover, the identification 

of new metabolites as metabolic markers turned out to be useful for early disease 

diagnosis or prevention and also to design or to personalize dietary interventions or 

therapeutic strategies.  

In this thesis, I assess the potentiality of untargeted NMR-based metabolomics in 

characterizing firstly, the metabolic components of two main neurological diseases, 

i.e. Parkinson’s disease and ischemic stroke and secondly, an inflammatory metabolic 

profile of South African men with prostate cancer. Therefore, four studies, with 

different focuses are here presented. In this section, NMR-based metabolomics was 

also applied in the field of nutrition and lifestyle management, to investigate, on the 

human serum metabolome and lipoprotein profiles of subjects at risk for metabolic 

syndrome (MetS), the effect of the consumption of tailored bioactive enriched foods 

(BEFs).  

The first study here proposed, aims at providing evidences of the existence of serum 

metabolic fingerprints that differentiate de novo drug untreated Parkinson’s disease 

(PD) patients from advanced PD patients under dopaminergic treatment and healthy 

matched controls, also in relation to sex, using training (n=131) and validation (n=198) 

cohorts of German subjects (§ 4.1.1). This study is a part of the PROPAG-AGEING 

project, an H2020 EU-funded project that aims of identifying new molecular 

signatures for early diagnosis of PD. The main issue of this project is to answer to the 

central question of why is advancing age the most important risk factor for developing 

idiopathic PD, proposing a new rational and approach by starting from the hypothesis 

that the elderly physiology represents the environment which feeds PD onset and 

progression and that there is an apparent continuum between healthy ageing and 

neurodegenerative motor disorders. In the PROPAG-AGEING project, PD is assumed 

to be totally embedded within the basic molecular and cellular mechanisms of the 

ageing process.97 Therefore, the final purpose is to detect the combination of all the 

alterations able to shifting the phenotype of elderly people from a physiological 

condition to PD. In this framework, the identification of markers of early PD diagnosis 
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is possible, before motor symptoms occur, and using common human biofluids such 

as urine or serum. 

To our knowledge, the study proposed in this thesis, represents the first large NMR-

based metabolomic application dealing with the characterization of serum profiles of 

de novo Parkinson’s disease patients free from dopaminergic treatment compared to 

advanced PD patients undergoing pharmacological treatment and healthy sex/age-

matched volunteers. Our results evidenced that both in the training and in the 

validation cohorts, 1D NMR fingerprinting analysis succeeded to discriminate 

between de novo PD patients and healthy controls (75% of overall predictive accuracy) 

and between de novo PD and advanced PD patients (89% of overall predictive 

accuracy), thus identifying characteristics signatures describing early and advanced 

stages of the disease, although advanced PD patients are pharmacologically treated. A 

more pronounced fingerprinting of early PD disease was evidenced in men with 

respect to women (overall discrimination accuracy of 73.5% between male de novo 

PD patients and male healthy controls), confirming the increasing evidences that risk 

of developing PD is higher in men than in women.98 Applying univariate, logistic 

regression and ROC curve analyses, we have also showed and validated that increased 

levels of ketone bodies, particularly acetone, and decreased levels of lipoproteins and 

cholesterol in de novo PD patients, define the early stage of PD. Our results suggest 

that de novo PD patients are characterized by increased oxidative defences and a 

contemporary worsening of the oxidative stress status. Moreover, our results support 

a potential role of ornithine in monitoring PD progression under dopaminergic 

treatment. Current results need to be integrated and better interpreted with complete 

clinical data, but in a future perspective, our findings might allow the development of 

tailored interventions that meet distinct needs of diseased men and women, generally 

improving patient care.  

In the frame of neurological and cerebrovascular diseases, ischemic stroke represents 

the leading cause of death and neurological impairments and there is an increasing 

need of deepening the research of effective biomarkers for the clinical practice and for 

a better understanding of the dysregulation in the pathophysiological mechanisms of 

the disease, also investigating molecular processes according to patients’ outcomes 

and different phases of the disease. Using retrospective data from the Italian 

multicentric observational MAGIC study99, which involved ischemic stroke patients 

treated with intravenous thrombolysis with the recombinant tissue plasminogen 

activator (rt-PA), we firstly aimed at identifying serum metabolic and lipidic predictors 

of three-month poor outcomes (mortality, developments of neurological and motor 

impairment, haemorrhagic transformation of the cerebral lesion and the non-response 

to the thrombolytic therapy), using samples from 243 acute ischemic stroke patients 

treated with rt-PA. To this purpose, logistic regression and ROC curve analyses were 

applied on an array of 18 metabolites and 112 lipids, quantified via 1D NOESY 1H-

NMR spectra of serum samples that have been collected before and 24h after the 

thrombolytic intervention (§ 4.1.2). Adjusting for clinical and demographic 

determinants of unfavourable outcomes, various metabolomic features, especially 
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lipids related to HDL, LDL, VLDL particles and ketone bodies, resulted statistically 

significantly associated with each of the assessed post-acute ischemic stroke poor 

outcome. Generally, the addition to baseline ROC curve models, related only to 

clinical determinants of unfavourable outcomes, of the top three statistically 

significant metabolic features (selected from the previous logistic regression analysis), 

improved the area under the curve for the prediction of three-month poor outcomes. 

However, statistically significant improvements were detected only when selected 

metabolomic features (estimated 24h after the transient cerebral ischemia) have been 

added to the ROC curve models including baseline clinical characteristics for the 

detection of impairments development, haemorrhagic transformation of the stroke and 

non-response to the intravenous thrombolysis with rt-PA.  

Secondly, with the aim of investigating, over a period of three-months, metabolic 

variations with respect to the thrombolytic therapy, within-subject metabolic changes 

were explored in a subset of the study population (n = 173), considering serum samples 

collected before, 24h after and three-months after the thrombolysis. Many statistically 

significant changes (FDR < 0.01) are described for the majority of quantified 

metabolites and lipid parameters. In particular, our results suggest that the 

thrombolytic intervention seems to induce significant variations that reflect a general 

condition of energy failure, oxidative stress and systemic inflammation. 

Thirdly, applying standard multivariate, univariate, network reconstruction and 

differential analysis of metabolite-metabolite and metabolite-lipid association 

networks built from an array of 18 serum metabolites and 110 lipids in a set of 248 

patients from the same retrospective cohort (of which, 22 died and 82 developed 

impairments within three-months from acute ischemic stroke treated with intravenous 

rt-PA), we deeply explored differences in metabolite and lipid connectivity of patients 

who did not develop impairments and who survived the transient cerebral ischemia 

from the related opposite conditions (§ 4.1.3). We report statistically significant 

differences in the connectivity patterns of both low and high-molecular weight 

metabolites, implying underlying variations in the metabolic pathways involving 

leucine, glycine, glutamine, tyrosine, phenylalanine, citric, lactic and acetic acids, 

ketone bodies and different lipids, thus characterizing patients ‘outcomes. Our results 

indicate that dysregulations of the above-mentioned metabolites and lipids 

connectivity are involved mainly in mechanisms that show how energy failure, 

glutamate-induced neurotoxicity, oxidative stress and neuroprotection play important 

roles in the progression of the pathology after the thrombolytic treatment, affecting 

survivor’s outcomes. Acetone emerges as largely involved in the determination of both 

impairment development and mortality in acute ischemic stroke treated with 

thrombolytic therapy. In conclusion, these on-going studies provide promising 

information on underlying metabolic variations which occur in the serum metabolome 

and lipoprotein profiles of post-acute ischemic stroke patients with respect to poor 

outcomes. Results here reported also evidence how metabolite-metabolite and 

metabolite-lipid association networks of acute ischemic stroke patients differ 
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according to the patient’ s outcome, providing new insights for their actual use in the 

clinical practice.  

As for neurodegenerative and cardiovascular diseases, cancer research has recently 

relied on advances in -omics sciences thanks to the progressive understanding of the 

biology, aetiology and the possibility of developing novel diagnostic test and 

therapeutic treatments. Among these, metabolomics offers new opportunities due to 

its important role in connecting the genotype with the phenotype. In § 4.1.4, a first 

NMR-based metabolomic study for high risk prostate cancer (PCa) in African men is 

presented. Briefly, the study identifies inflammation as a driving phenotype in the most 

aggressive form of PCa, and it allows the characterization of the altered metabolic and 

lipoprotein profiles, paving the way to a better understanding of the metabolic changes 

occurring in PCa and to new therapeutic strategies. To these aims, plasma samples 

from a cohort of South African men with PCa have been profiled using the NMR-

spectroscopy and we reported that plasma of patients with very high risk and 

aggressive cancer, have a peculiar metabolic phenotype characterized by higher levels 

of the inflammatory markers GlycA and GlycB. Therefore, the results achieved in this 

study answer to the urgent need for new insights into the molecular mechanisms which 

characterize the increased rate of aggressive and lethal PCa in men of African ancestry. 

Last but not least, considering the high capability of metabolomics in offering cost-

effective and productive route for the personalized lifestyle management, in § 4.1.5, 

the potential of untargeted NMR-based metabolomics in investigating variations in the 

human serum metabolome of subjects at risk for Metabolic Syndrome (MetS), which 

occurs after specific dietary interventions, is demonstrated. The present on-going study 

belong to the large intervention study (LIS) that was included in the frame of the EC 

FP7 PATHWAY-27 project with the aim of confirming or better investigating the 

observations obtained in the pilot studies,100,101 where the best enrichments, i.e. 

docosahexanoic acid (DHA), anthocyanins (AC) and oat beta-glucans (O-BG) within 

the best food matrices (dairy-, egg- and bakery- based foods) were selected. In 

particular, we applied untargeted NMR-based metabolomics to investigate, on the 

human serum metabolome and lipoprotein profiles of subjects at risk for MetS: i) the 

effect of dairy-based food enriched with docosahexaenoic acid (C22:6, n-3, DHA) and 

O-BG; ii) the effect of egg-based food enriched with DHA and AC; iii) the effect of 

bakery-based food enriched with DHA and AC; iv) the effect of food matrices in 

determining the bioavailability of bioactives, administering a combination of dairy-, 

egg- and bakery-based foods without bioactives (placebo). To these aims, serum 

samples collected before (t0) and 12 weeks after (t1) the dietary interventions have been 

collected from four different centers: Italy, France, Germany and UK.  

DHA, AC and O-BG are well-known bioactives able to have a positive impact on 

MetS,102–104 acting on cell regulation of lipid metabolism, inflammation and being 

effective in modulating risks factors. However, there are evidences of synergies 

between the above-mentioned bioactives,105,100,106 but the effect of the food matrices 

on bioactives combinations (e.g. DHA + AC or DHA + O-BG) need to be deeply 

investigated. Applying multivariate and univariate analyses to 1D 1H-NMR spectra of 
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serum samples, our preliminary results show a synergism of DHA and AC in inducing 

changes mainly in the lipoprotein profiles of subjects, independently from the egg- or 

bakery-based food matrix that was chosen. Moreover, the daily assumption of the three 

selected food matrices seems to alter the whole metabolic profiles of subjects, since 

the placebo treatment led to the discrimination between t0 and t1 samples considering 

specific recruitment centres. 

In conclusion, this study deepened the current scientific understanding of the impact 

of different bioactives embedded in various food matrices, especially evidencing their 

synergies and the role of the food matrix in bioactives delivery and proposing actual 

use of bakery- and egg-based foods enriched with DHA and AC on subjects at risk for 

metabolic syndrome.  
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4.1.1. Nuclear Magnetic Resonance-based metabolomics to characterize serum 

sex-related metabolic profiles of drug-naïve Parkinson’s disease patients 

with respect to healthy controls and patients with advanced disease and 

under dopaminergic treatment 
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Abstract 

 

Here, we present multivariate and univariate approaches to infer metabolic 

differences which characterize the serum metabolic profiles of recently diagnosed, 

drug-naïve Parkinson’s disease patients (dnPD), advanced PD patients (advPD) under 

dopaminergic treatment and healthy controls (CTR), applying Nuclear Magnetic 

Resonance (NMR)–based metabolomics in large training and validation cohorts of 

German subjects. We deeply explored metabolite and lipid variations of patient 

groups, also in relation to sex, evidencing a more pronounced fingerprinting of the 

pathology in male patients. Moreover, differences among signatures of early and 

advanced stages of the disease were highlighted, regardless of the dopaminergic 

treatment. We report and validate statistically significant variations in the 

concentration of ketone bodies, especially acetone, histidine, lipoproteins and 

cholesterol among groups under study, underlying differences associated to oxidative 

stress, which seems to mainly characterize the early stage of the disease from the 

advanced one. Ornithine was highlighted as a possible marker to follow disease 

progression.  

 

Introduction 

 

Parkinson’s disease (PD) is the second most common neurodegenerative 

disease, after Alzheimer’s disease, affecting 1% of the population above 60 years,1 and 

contributing significantly to the increasing of public health costs. PD patients suffer 

from a various range of motor symptoms, i.e. tremor, rigidity, postural instability, 

bradykinesia, and non-motor manifestations, such as autonomic sensory, 

neuropsychiatric symptoms and sleep disorders.2 These symptoms are mainly caused 

by a progressive degeneration of dopaminergic neurons from the nigrostriatal pathway, 

formation of Lewy bodies and microgliosis.3 To date, the diagnosis of PD depends 

primarily on the onset of motor symptoms, and the rate of misdiagnosis is especially 

high in the first 5 years due to the clinical overlap to other movement disorders and 

the lack of objective biomarkers.4  

Despite many years of investigations on metabolic perturbances in PD,5–9 the 

mechanisms of PD aetiopathogenesis, progression and the efficacy of drug treatment 

on the disease evolution need to be deeply explored and validated. Currently, routine 

analytical tests have not yet provided sufficient information to identify reliable 

biomarkers to detect early neurodegeneration in PD, to monitor the progression of the 

disease and to detect the effects of therapy intervention.  

Nuclear Magnetic Resonance (NMR)-based metabolomics proved to be efficient in 

characterizing the metabolic signature of diseases10–14 and in the context of molecular 

epidemiology.15,16 Metabolomics has the potential to provide valuable insights to 

deepen the knowledge regarding the aetiopathogenesis of PD, to identify signatures 

differentiating patient groups and to reveal sensitive PD biomarkers which can be 

important in the early diagnosis and in monitoring disease progression and the efficacy 



Results | 33 

of drug treatments.17–21 To date, few metabolomic-based studies attempted to 

characterize blood samples of de novo PD patients,20,22 and independent, large-scale 

validation and comparison with other overlapping movement disorders are still 

needed. 

In this work, we aimed of providing evidences of the existence of serum metabolic 

fingerprints differentiating drug-naïve (or de novo) PD patients and advanced PD 

patients under dopaminergic treatment from healthy control, also in relation to sex, 

using independent large training and validation cohorts and applying multivariate, 

univariate, logistic regression and Receiver Operating Characteristics (ROC) curve 

analyses. The subjects included in this study are a subset of the cohorts analysed in the 

H2020 Project “PROPAG-AGEING” (www.propag-ageing.eu/project). An overview 

of the study design is illustrated in Figure 1.  

 

Material and Methods 

 

Patient cohorts  

The study population consists of a total of 329 German subjects, i.e. de novo 

Parkinson’s disease patients, patients in advanced stage of disease under 

pharmacological treatment and healthy controls. In detail, patient cohorts were divided 

as follows (see Figure 1): firstly, a training cohort consisting of 72 drug-naïve 

Parkinson’s disease patients (dnPD) and 59 healthy control subjects (CTR) for a total 

of 131 subjects as part of the longitudinal DeNoPa cohort, as previously 

published.23,24,25,26 Available samples from baseline visit were chosen with enough 

remaining volume. Secondly, it was selected a validation cohort, consisting of an 

independent set of 156 dnPD, 20 CTR and 22 samples from subjects with advanced 

Parkinson’s disease and under dopaminergic treatment (advPD), for a total of 198 

subjects, as a part of the cross-sectional Kassel cohort. Patients enrolled in the study 

were clinically phenotyped before collection of samples. Phenotyping included 1,5 

Tesla magnetic resonance imaging (MRI) to determine structural abnormalities, 

quantitative levodopa testing, smell identification test (Sniffin’ sticks, Burghardt 

Messtechnik GmbH, Wedel, Germany), Mini Mental Status Examination (MMSE) 

followed by further cognitive testing and video-supported polysomnography to 

determine REM sleep behaviour disorder in a subset of patients. The phenotyping was 

done based on these results and in accordance to established criteria for PD (UK Brain 

Bank Criteria)27, Multiple System Atrophy (MSA), Dementia with Lewy bodies 

(DLB), Progressive Supranuclear Palsy, Corticobasal Degeneration (CBD), 

Alzheimer’s disease and Frontotemporal Dementia (FTD). Subjects with marked 

vascular lesions in MRI indicative of a vascular comorbidity and subjects with normal 

pressure hydrocephalus by MRI were excluded.  

An overview of the demographic characteristics of analysed patients is reported in 

Table 1. 

 

Ethical Issues 
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The study was conducted according to the Declaration of Helsinki and with 

informed written consent provided by all subjects. The study was approved by the 

ethics committee of the Physician’s Board Hesse, Germany (Approval No. FF89/2008 

for DeNoPa) and the University Medical Center Goettingen, Germany (Approval No. 

9/7/04 and 36/7/02 for Kassel cohort).  

 

NMR sample preparation and analyses 

Serum samples were collected in the morning with the subjects fastened, 

centrifuged, aliquoted and frozen at -80°C until analysis. Samples have been prepared 

according to common standard procedures for metabolomic studies.28-30  

The analytical preparation of serum samples and their NMR spectra acquisition 

followed the protocols detailed elsewhere.29 

For each serum specimen, the 1D NOESY, 1D CPMG and 1D DIFFUSION-EDITED 

pulse sequences were applied to acquire different types of 1H-NMR spectra, using a 

Bruker 600 MHz spectrometer, with a proton Larmor frequency of 600.13 MHz and 

equipped with a 5 mm PATXI 1H-13C-15N and 2H decoupling probe. The instrument 

includes a z axis gradient coil, an automatic tuning-matching (ATM) and an automatic 

and refrigerate sample changer (SampleJet). To stabilize approximately, at the level of 

± 0.1 K, the sample temperature, a BTO 2000 thermocouple was employed and each 

NMR tube was kept for about 5 min inside the NMR probe head to equilibrate the 

acquisition temperature of 310 K.  

 

Spectral Processing 

Before applying Fourier transform, raw data were multiplied by an exponential 

function of 0.3 Hz line-broadening factor. Transformed spectra were automatically 

corrected for phase and baseline distortions and calibrated to a reference (anomeric 

glucose proton signal at 5.24 ppm), using Topspin 3.2 software (Bruker BioSpin). 

Each 1D serum spectrum, in the range of 0.2 – 10.0 ppm, was bucketed into 0.02 ppm 

chemical shift segments using AMIX (version 3.8.4) software (Bruker BioSpin). 

Regions containing residual water signal (between 4.68 and 4.84 ppm) were removed.  

 

Serum and lipoprotein identification and quantification 

Twenty-seven metabolites (3-hydroxybutyrate, acetate, acetoacetate, acetone, 

alanine, citrate, creatine, creatinine, dimethylsulfone, formate, glucose, glutamine, 

glycine, histidine, isoleucine, lactate, leucine, methionine, N,N-dimethylglycine, 

ornithine, phenylalanine, sarcosine, succinate, trimethylamine N-oxide, tyrosine and 

valine) and 114 lipids were unambiguously identified and quantified (in terms of 

absolute concentrations) from 1D 1H-NOESY NMR spectra using the AVANCE 

Bruker IVDr (Clinical Screening and In Vitro Diagnostics research, Bruker BioSpin)31 

software. For all serum samples, different lipoproteins (VLDL, LDL, IDL, HDL) and 

different lipoprotein subclasses, classified according to density and size, for a total of 

15 subclasses (VLDL-1 to VLDL-5, LDL-1 to LDL-6 and HDL-1 to HDL-4), were 

detected. For each main class and subclass, reported data consist in concentrations of 
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lipids (total cholesterol, free cholesterol, phospholipids, and triglycerides) contained 

in each fraction. Concentrations of apolipoproteins Apo-A1 and ApoA2 are estimated 

for HDL class and each relative subclass, while Apo-B concentrations are calculated 

for VLDL, IDL classes and all LDL subclasses.  

 

Statistical Analysis 

 

All data analyses were performed using R (version 3.6.1), an open source software for 

the statistical management of data,32 using NMR data from 1D NOESY spectra. 

 

Exploratory Analysis 

Multivariate data analysis was conducted on bucketed 1D NOESY spectra of 

all available samples. Principal Component Analysis (PCA) was used as a first 

exploratory approach33 to investigate, in an unsupervised manner, the data structure 

and highlighting the possible presence of metabolite and lipids signatures 

differentiating dnPD, advPD patients and CTR both in the training and in the test 

cohorts. PCA analysis was performed on data scaled to unit variance.  

 

Predictive modelling 

Orthogonal Projections to Latent Structures Discriminant Analysis (OPLS-

DA), was employed as supervised technique;34 a total of nine classification models 

were built to discriminate CTR from dnPD in both cohorts and advPD from dnPD 

patients in the validation set, also including sex-dependent discrimination analyses. 

Models were built using bucketed 1D NOESY spectra of all available samples.  

When unbalanced number of subjects has been compared, OPLS-DA models were 

built by reducing groups to the same size by randomly sampling, thus including in the 

model an equal number of subjects from each group. The procedure was repeated 100 

times and results are averaged over the 100 models.  

All discriminant and predictive analyses were performed on bucketed 1D-NOESY 

spectra without prior normalization. 

Overall, for different classifications, accuracy, sensitivity and specificity were 

calculated according to standard definitions, by means of a Monte-Carlo cross-

validation scheme (MCCV, R script in-house written). Briefly, 90% of the data were 

randomly chosen at each iteration as a training set to build the model. Then, the 

remaining 10% was tested. The full procedure was repeated 100 times to derive an 

average discrimination accuracy, sensitivity and specificity.  

To test the efficacy of the training model in discriminating dnPD from CTR subjects, 

bucketed 1D-NOESY spectra of the validation serum samples were blindly projected 

onto the OPLS-DA score plot resulting from the training model. 

 

Univariate Analysis 

Univariate Wilcoxon test35 was employed to compare metabolite and lipid 

concentrations between patient groups (CTR vs. dnPD, CTR vs. advPD and dnPD vs. 
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advPD) of both training and test cohorts and with respect to sex (we performed male 

and female independent comparisons). Benjamini & Hochberg method36 was applied 

to correct for multiple testing and adjusted P-values (FDR) < 0.05 were considered 

statistically significant. Log2 fold change (FC) ratios of the median intensities were 

also calculated for all analyses performed. Effect sizes were estimated for groups 

comparisons using Cliff’s delta formulation37 (Cd), which contributes to the 

characterization of the meaningful signals by giving an estimation of the magnitude of 

the separation in the different comparisons. Magnitude is evaluated using the 

thresholds provided in Romano et al.38, where Cd values < 0.147 are considered 

“negligible”, (Cd) < 0.33 are defined “small”, while (Cd) < 0.474 are reported as 

“medium” and (Cd) > 0.474 are considered “large”. 

Using calculated log2 fold change ratios for all comparisons, an heatmap analysis was 

performed (“gplots” R package) on the most statistically significant metabolites and 

lipids. To its reconstruction, we select only the variables that showed FDR <0.05 and 

log2FC ≥ |0.5| values (supplementary Table S1) in more than one comparison 

performed (see Figure 4 for details).   

 

Logistic regression and ROC analysis 

Association between each statistically significant analyte of the training cohort 

and the disease was assessed and validated using logistic regression in combination 

with ROC curve analysis. Before performing any analysis, continuous values of the 

analytes were standardized by centering and dividing by two standard deviations39 

using the “rescale” function of the R package “arm”.  

Firstly, a binomial logistic regression model was built, for each statistically significant 

analyte found in the training cohort (i.e. a metabolite or a lipid concentration), using 

the “glm” function in the R package “stats”. These analytes (metabolites and lipids) 

were used as the predictors (x), while the dichotomic variable indicating the status (i.e. 

CTR or dnPD) was used as the dependent variable (y) to be predicted. 

The fitted values obtained for each analyte and for each subject were used to estimate 

areas under the ROC curves (AUC values, using the “colAUC” function of the R 

package “caTools”). Subsequently, the fitted regression models built on the training 

set were used to predict probabilities of samples in the validation cohort (values 

between 0 and 1) to be classified as CTR or dnPD (“predict.glm” function in the R 

package “stats”). These predicted probabilities were used to calculate AUC values for 

the validation cohort that were further compared with AUC values reported for the 

training cohort.   

 

Results and Discussion 

 

Exploratory Analysis 

As a first unsupervised approach, Principal Component Analysis (PCA) was 

applied on all available samples (from both training and validation cohorts) to obtain 

an overview of the variation in the data. Figure 2 shows the PCA 3D score plot on 
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bucketed 1D NOESY spectra color-coded by subject status proving the absence of 

evident outlier samples.  

 

Predictive modelling: OPLS-DA analysis 

OPLS-DA analysis was chosen as supervised approach to extrapolate the 

hidden variables that could be used to characterize the serum metabolomic profile of 

dnPD patients from healthy volunteers and dnPD patients from subjects with advanced 

stage of the disease and under pharmacological treatment.  

Firstly, the training cohort was used to explore differences between de novo patients 

and healthy subjects and to derive a discriminant serum fingerprint to correctly classify 

the new test samples to the corresponding category (dnPD or CTR). 

The OPLS-DA model built on bucketed serum 1D NOESY spectra of the training 

cohort showed an evident discrimination between subject groups, reporting an overall 

predictive accuracy of 74.8%, a specificity of 72.9% and a sensitivity of 76.4% for the 

classification of dnPD and CTR (Table 2, Figure S1).  

Since it has been widely demonstrated that differences between two sexes could affect 

manifestation, epidemiology and pathophysiology of many diseases and sex 

discrimination is apparent in metabolomics profiles,40–45 two independent cross-

validated models were created for male (Table 2, Figure S1) and female training 

subjects (Table 2, Figure S1). As shown in Table 2, between the two sexes, the male 

model (n=76) performs better, with an overall predictive accuracy of 73.5% compared 

to the 60.2% predictive accuracy of the female model (n=55).  

The OPLS-DA model built on the re-sampled bucketed 1D NOESY spectra of advPD 

and dnPD patients shows an overall mean predictive accuracy of 88.9%, a mean 

specificity of 90.1 and a mean sensitivity of 87.1, evidencing a clear discrimination 

between de novo Parkinson’s disease patients and those under dopaminergic treatment. 

Considering the heterogeneity of the disease, we can speculate that such differences 

may be related to different underlying mechanisms which characterize the more 

cognitive decline of late PD. However, we cannot exclude a potential variation of the 

serum metabolome of advPD patients induced by the pharmacological treatment; 

indeed, further investigations should be needed. Recently, the potentiality of 

multivariate analysis in revealing metabolic changes among patient groups in order to 

discover signatures differentiating early PD from disease progression, has been 

reported.46  

In our study, the availability of a test cohort allowed the validation of the existence of 

a serum metabolic fingerprint differentiating healthy from de novo drug-naïve patients. 

Indeed, the efficacy of the global training model in discriminating dnPD serum 

samples from CTR, was tested using bucketed 1D-NOESY spectra from the validation 

set which were blindly projected onto the OPLS-DA discrimination space obtained 

from the previously described training model including all female and male subjects 

(Figure S2 A, B). New test samples are predicted with an overall accuracy of 74.4%, 

a sensitivity of 75.6% and a specificity of 65% (Table 3, Figure S2 A, B), thus 

confirming the presence of a fingerprint discriminating CTR from dnPD drug-free 
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patients. Further, projecting onto the OPLS-DA discrimination space of the training 

model, the 22 bucketed serum 1D-NOESY spectra of advPD subjects, serum metabolic 

signatures characterizing healthy from diseased and different stages of the pathology 

were definitely highlighted. 

Indeed, all the advPD patients resulted to be correctly classified as PD patients, with 

an accuracy of 100% (Figure S2 C). This last result supports the idea of the presence 

of a specific metabolomic signature of PD in sera of affected patients, regardless of 

the dopaminergic treatment, since the use of PD medication from advPD patients does 

not influence the classification of those subjects in a model where only patients free 

from L-DOPA administration are included.  

Afterwards, all dnPD and CTR samples, received for both the training and validation, 

were used together to increase the number of subjects in the OPLS-DA model. Mixing 

the two cohorts (228 dnPD and 79 matched CTR), the final re-sampled OPLS-DA 

model reported a mean accuracy of 76.3%, a mean sensitivity of 76.1% and a mean 

specificity of 76.5% (Table 4).  

In addition, to fully confirm previous results related to sex-differences, two separated 

sex-dependent models were created using the combined cohort.  Mean values of 

accuracy, sensitivity and specificity were obtained for male and female OPLS-DA 

models. The obtained results confirm what previously reported. Indeed, male dnPD 

patients resulted to be discriminated from CTR better than women (mean accuracy of 

male of the overall model: 75.0%; mean accuracy of women of the overall model: 

64.7%, as reported in Table 4).  

Increasing evidence pointed to biological sex as a crucial determining factor in the 

development and phenotypical expression of PD. It has been reported that the risk of 

developing PD is twice higher in men than in women.47,48 In our case, the observation 

of a more pronounced discriminating metabolic fingerprint of PD in men could support 

the idea that the disease development might involve different pathogenetic 

mechanisms in male and female subjects.  

 

Univariate Analysis 

Metabolites and lipids were initially compared across all dnPD and CTR 

subjects of the training cohort to reveal metabolic changes between the two groups. A 

total of 25 metabolic features resulted to be statistically significantly different (FDR < 

0.05), independently from the sex: acetone, ornithine and phenylalanine appear to be 

significantly higher in dnPD patients when compared to healthy individuals, while all 

the 22 statistically significant lipid fractions concentrations are decreased in dnPD 

group (Figure 3).  

To deeply explore metabolic variations, serum metabolic profiles of all CTR, dnPD 

and advPD patients have been investigated, also considering sex-related comparisons. 

Figure 4 reports the heatmap and the cluster analysis of 37 selected metabolic features 

across the different analyses we performed.  

We observed increased levels of ketone bodies (acetone, acetoacetate and 3-

hydroxybutyrate), decreased levels of LDL particles (especially LDL-3 and LDL-4 
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related parameters) and free cholesterol related to IDL particles in dnPD patients when 

compared to healthy subjects, considering both training, test cohorts and sex-

dependent comparisons. Saliva ketone bodies, such as acetoacetate and acetoin, were 

found to be elevated in early PD patients with respect to healthy controls, indicating a 

probable decreased utilization of these compounds and their association with 

mitochondrial dysfunction.49,50 AdvPD patients show significant higher levels of 

ornithine and lower levels of histidine when compared to dnPD and CTR of the 

validation set. These observations are in line with a general condition of oxidative 

stress and increased oxidative stress defences that seems to characterize the serum 

profiles of de novo drug-untreated patients. Changes in the metabolism of ketone 

bodies occur during stress conditions and in the past, the biochemistry of ketogenesis 

and its role in neurological diseases  and oxidative stress has been deeply explored.51 

Ketone bodies seems to have the chemical potential to be active antioxidants,51 proving 

benefits in diseases associated with oxidative stress, as in the case of Parkinson’s 

disease. However, there are conflicting evidences for the antioxidant role of ketone 

bodies, especially acetoacetate seems to have a more pronounced pro-oxidant action.51 

The antioxidant/pro-oxidant dichotomy of these substances can depend largely on the 

complexity of mammalian metabolism that can derive more free radicals from ketone 

bodies, thus favouring a general body condition of oxidative stress which may 

exacerbate the progression of the pathology. 

To date, the exact mechanisms of serum acetone in determining the onset of PD remain 

not completely elucidated, but our results support previous evidences of the role of 

acetone in PD.17 

Higher acetone, 3-hydroxybutyrate and acetate levels have been described also in 

blood samples of other neurodegenerative diseases, such as multiple sclerosis52 and 

amyotrophic lateral sclerosis53 patients. 

Histidine resulted to be statistically significantly higher in dnPD when compared with 

advPD patients and this metabolite can act as an antioxidant since the presence of its 

imidazole ring helps in scavenging ROS. Increased concentrations of histidine and 

phenylalanine have been recently observed also in saliva of PD patients,50 thus 

suggesting alterations in neurotransmitters, especially dopamine.54 

Regarding serum ornithine, increased levels have been previously detected in the 

advanced PD group.9 By arginase activity on arginine, ornithine lead to the formation 

of urea whose related pathways seems to be perturbated in PD.9 Why elevated serum 

levels of this metabolite are associated with the pathological mechanisms of PD 

progression remains unclear, but our results support the hypothesis that serum 

ornithine concentrations can be a marker of the advancement of the pathology.  

Several studies pose lipids as central players in the Parkinson’s disease:55-62 various 

subclasses of fatty acyls, glycerolipids, phospholipids, sterol and lipoproteins 

contribute to PD pathogenesis, even if sometimes, controversial, fragmented and not 

always reproducible information is available from the literature. Our results evidenced 

a statistically significant decrease of concentrations of small low-density lipoproteins 

in dnPD patients. Lower LDL-related parameters, especially LDL-cholesterol levels 
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have been associated with higher PD risk57,58,62 and generally, small dense LDL 

particles (sdLDL) are more susceptible to oxidation than larger LDLs. Therefore, we 

suggest that sdLDL particles may provide an optimal substrate for ROS oxidative 

action which appears to be increased in dnPD patients. Moreover, univariate analysis 

reported also decreased levels of free-cholesterol associated to IDL in dnPD when 

compared both to healthy volunteers and patients with advanced disease. This 

observation supports previous evidences of a prominent role of cholesterol in PD.59–61 

In conclusion, from the cluster analysis (Figure 4), we obtain two main clusters, 

corresponding to the levels of advPD patients’ metabolites and dnPD patients’ 

metabolites, respectively; corroborating the existence of a different metabolomic 

profile in this two group of subjects.  The second mentioned cluster is in turn composed 

by two main subgroups. Looking at them it clearly emerges that these groups are 

categorized according to the cohort of origin. It is clear that differences between the 

two cohorts exist, and in this lies the importance of external validation. 

More in detail, from the clustering analysis (Figure 4), we observed that comparisons 

including only male subjects tend to cluster with the relative sex-independent 

evaluation, thereby supporting results from the multivariate analysis, where the 

discrimination accuracy of the training male model was reported as almost similar to 

that of the overall predictive model (Table 2).  

 

Logistic regression and ROC analysis 

Several binomial logistic regression models were built using the statistically 

significant metabolites obtained by comparing the serum profile of CTR and dnPD 

patients of the training cohort (see Figure 3). The corresponding AUCs (Areas Under 

the Curves) have been calculated (Table 5). Looking at the measures of separability 

between the two groups, all the selected metabolites and lipids have a >60% chance to 

distinguish between case (dnPD) and control (CTR) groups, but among them, only 

phenylalanine (AUC: 0.715, OR: 4.91) and acetone (AUC: 0.696, OR: 3.42) appear to 

be the most associated metabolites to the early PD detection. 

The existence of metabolic biomarkers effectively related to the disease condition was 

confirmed after considering the validation set of samples. Indeed, using each selected 

variable, we estimated for all subjects of the validation set, the predicted probability 

to be classified as the control (CTR, probability = 0) or the case group (dnPD, 

probability = 1) and for each analyte, AUC values were estimated (Table 5). Of them, 

acetone and cholesterol resulted to have higher chance to discriminate dnPD from 

healthy controls (AUC values are respectively of 0.793 and 0.78), highlighting acetone 

as a potential biomarker implicated in early onset of Parkinson’s disease, and 

evidencing the prominent role of cholesterol in characterizing dnPD from CTR. Lower  

serum cholesterol levels were previously reported to occur in PD patients, independent 

of nutritional status and body mass index (BMI) and dysregulation of cholesterol 

trafficking was shown to be involved in the pathogenesis of neurodegeneration in 

PD.23 
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Phenylalanine even showing a log2FC<|0.5| (see Figure 3 and Table S1), resulted to 

be able to discriminate dnPD from CTR in the training set, but it is not validated in the 

test cohort. LDL particles and related parameters showed a >70% chance to distinguish 

between CTR and dnPD, confirming what previously discussed in the univariate 

analysis section.  

 

Conclusions 

 

To our knowledge, this is the first large NMR-based metabolomic study 

dealing with the characterization of serum profiles of de novo Parkinson’s disease 

patients free from dopaminergic treatment compared to advanced PD patients 

undergoing dopaminergic treatment and healthy sex/age-matched volunteers. 

Here, 1D NMR fingerprinting analysis succeeded to discriminate between subject 

groups, identifying characteristics signatures describing early and advanced stages of 

the disease, although advPD patients are pharmacologically treated. A more 

pronounced fingerprinting of PD disease was evidenced in men with respect to women.  

The use of a large number of subjects (n=329) and the presence of an external 

validation cohort represent major strength points of this study.  

Applying univariate, logistic regression and receiver operating characteristic analyses, 

we have also shown that increased levels of ketone bodies, particularly acetone, 

histidine and decreased levels of lipid (small dense LDL particles and related 

parameters, free cholesterol related to LDL) in dnPD patients, suggest that the early 

stage of PD may be characterized by increased oxidative defences and a worsening of 

the oxidative stress status. However, further biological investigations are needed to 

deeply explore how an unbalance between body’s oxidative defences and increasing 

in ROS level might lead to the pathology’s progression. 

Our results also support a potential role of ornithine in monitoring PD progression 

under dopaminergic treatment.  

In conclusion, this study provides new insights regarding the different serum metabolic 

features involved in the characterization of early and advanced stages of the 

Parkinson’s disease, also in relation to the two sexes and the dopaminergic treatment. 

In a future perspective, our findings might allow the development of tailored 

interventions that meet distinct needs of men and women, generally improving patient 

care.  
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Tables 

 

Table 1. Main demographic characteristics of the population under study; mean ± 

standard deviation and P-values (P) are reported.  

 
 Training cohort Validation cohort 

 dnPD CTR P dnPD CTR P advPD 

P 

(advPD 

vs 

dnPD) 

P 

(advPD 

vs 

CTR) 

Age 65.1±9.4 64.5±6.9 0.68 65±11.4 71.7±5.1 6·10-5 68.9±7.3 0.05 0.16 

Sex 

(male/tot) 
40/72 36/59 / 83/156 8/20 / 15/22 / / 

BMI 27.7±5 26.7±3.8 0.25 27.1±4.9 26.2±3.2 0.35 25.9±3.7 0.25 0.8 

UPDRS 

III 
19±10.2 0.4±0.9 7.4·10-24 23±12.8 / / 34.4±15.8 0.003 / 

Hoehn and 

Yahr stage 
1.8±0.6 0 1.6·10-35 2±0.8 / / 3.1±0.6 6.7·10-8 / 

MMSE 28.4±1.3 28.7±1.2 0.27 28±1.9 / / 5.4±0.002 0.002 / 

 

 

Table 2. Performances of the OPLS-DA 1D-NOESY models discriminating dnPD 

patients from CTR subjects of the training cohort. Overall model (considering all the 

samples from the training cohort), male and female models (considering separately 

male and female training groups of cases and controls). Accuracy%, specificity% and 

sensitivity% are reported. 

 

 Overall Male Female 

Accuracy % 74.8 73.5 60.2 

Specificity % 72.9 74.2 58.6 

Sensitivity % 76.4 72.9 61.4 
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Table 3. Confusion matrix of CTR and dnPD subjects tested on the overall OPLS-DA 

training model. 

 

  Actual Class 

  CTR dnPD 

Predicted Class 

CTR 13 True Negative 7 False Negative 

dnPD 38 False Positive 118 True Positive 

 

Table 4. Performances of the OPLS-DA 1D-NOESY models discriminating dnPD 

patients from CTR subjects combining the training and the test cohorts. Overall model 

(considering all the samples), male and female models (considering separately male 

and female groups of cases and controls). Accuracy%, specificity% and sensitivity% 

are reported. 

 

 Overall Male Female 

Accuracy % 76.3 75 64.7 

Specificity % 76.5 76.6 62.6 

Sensitivity % 76.1 73.4 66.9 

 

Table 5. AUC values for training and test samples. For training binomial logistic 

regression models, Odds Ratio (OR), 95% Confidence Interval (CI), P-value and 

related values adjusted with the Benjamini-Hochberg correction (FDR) are also 

reported.  

 

 OR (95% CI) P-value FDR AUC TRAINING 

 

AUC TEST 

Ornithine 5.74 (2.33 -14.11) 1.4·10-4 2.75·10-3 0.681 0.518 

Phenylalanine 4.91 (2.11 - 11.41) 2.2·10-4 2.75·10-3 0.715 0.504 

Acetone 3.42 (1.49 - 7.87) 3.75·10-3 4.94·10-3 0.696 0.793 

Cholesterol 0.36 (0.17 - 0.77) 8.33·10-3 8.33·10-3 0.635 0.780 

LDL - Cholesterol 0.29 (0.13 - 0.63) 1.91·10-3 3.9·10-3 0.667 0.740 

Apo - B100 0.30 (0.14 - 0.64) 2.03·10-3 3.9·10-3 0.654 0.747 

LDL – HDL - Cholesterol 0.34 (0.16 - 0.71) 4.00·10-3 5·10-3 0.654 0.577 

Apo - B100 / Apo - A1 0.36 (0.17 - 0.76) 7.16·10-3 7.46·10-3 0.645 0.609 
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Total Particle Number ApoB 0.30 (0.14 - 0.64) 2.03·10-3 3.9·10-3 0.654 0.747 

LDL Particle Number 0.26 (0.12 - 0.58) 9.55·10-4 3.9·10-3 0.677 0.752 

LDL – 4 Particle Number 0.35 (0.16 - 0.71) 4.75·10-3 5.39·10-3 0.641 0.691 

LDL – 5 Particle Number 0.32 (0.15 - 0.67) 2.48·10-3 3.9·10-3 0.655 0.623 

Triglycerides - LDL 0.28 (0.13 - 0.62) 1.63·10-3 3.9·10-3 0.651 0.721 

Cholesterol - LDL 0.29 (0.13 - 0.63) 1.91·10-3 3.9·10-3 0.667 0.740 

Free Cholesterol - LDL 0.33 (0.15 - 0.72) 5.11·10-3 5.55·10-3 0.652 0.745 

Phospholipids - LDL 0.28 (0.13 - 0.62) 1.70·10-3 3.9·10-3 0.669 0.748 

Apo – B - LDL 0.26 (0.12 - 0.58) 9.55·10-4 3.9·10-3 0.677 0.752 

Triglycerides LDL - 3 0.32 (0.14 - 0.69) 3.71·10-3 4.94·10-3 0.636 0.764 

Triglycerides LDL - 4 0.31 (0.14 - 0.66) 2.38·10-3 3.9·10-3 0.646 0.668 

Triglycerides LDL - 5 0.33 (0.16 - 0.69) 3.54·10-3 4.94·10-3 0.655 0.633 

Cholesterol LDL - 5 0.31 (0.15 - 0.66) 2.47·10-3 3.9·10-3 0.653 0.617 

Free Cholesterol LDL - 5 0.30 (0.14 - 0.64) 1.94·10-3 3.9·10-3 0.656 0.646 

Phospholipids LDL - 5 0.31 (0.15 - 0.66) 2.25·10-3 3.9·10-3 0.655 0.617 

Apo – B LDL - 4 0.33 (0.16 - 0.71) 4.74·10-3 5.39·10-3 0.641 0.691 

Apo – B LDL - 5 0.32 (0.15 -0.67) 2.50·10-3 3.90·10-3 0.655 0.623 
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Figures 

 

Figure 1. Study design flowchart illustrating the number participants: de novo drug 

untreated Parkinson’s disease patients (dnPD), healthy control subjects (CTR) and 

advanced Parkinson’s disease under dopaminergic treatment (advPD). 

 

 
 

Figure 2. PCA 3D score plot of the whole study population. Each dot represents a 0.02 

ppm bucketed 1D-NOESY 1H-NMR spectrum color-coded by subject groups: green 

dots, healthy controls (n=79); blue dots, de novo Parkinson’s disease patients (n=228) 

and red dots, advanced PD patients pharmacologically treated (n=22).  
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Figure 3. Bar-plot of log2 fold changes values (Log2FC). Statistically significant 

variables (FDR < 0.05) quantified in serum spectra of training cohort are reported. 

Negative Log2FC values mean higher concentrations in CTR subjects, while positive 

Log2FC refers to higher concentration levels in dnPD. Effect size (Cliff’s delta) is also 

shown for each variable. 

 

 
 

Figure 4. Two-way hierarchical clustering heatmap of significant metabolites. To 

build the heatmap, only the metabolites that showed significant P-values in more than 

one comparison were selected. Subsequently, only those metabolites that showed 

log2FC ≥ |0.5| values in at least one comparison were retained. Euclidian distance and 

complete linkage were used to generate the dendrogram. Color key describes the 

log2FC. Positive log2FC values mean higher metabolite level in case group (dnPD or 

advPD, depending on the performed analysis); negative log2FC values mean lower 

metabolite level in case group. Italic numbers refer to P-value < 0.05, underlined and 

bolded numbers refer to FDR < 0.05. Numbers from 1 to 4 represent the Cliff’s delta 

effect size, defined as: 1, negligible; 2, small; 3, medium; 4, large effect size. Each 

column coded with letters from “A” to “M” represents the comparison of metabolites’ 

levels of different group of subjects. A, B, C, D and H are obtained using serum 

samples of subjects of the validation cohort, where A refers to the comparison of CTR 

vs. advPD; B, male CTR vs. male advPD; C, female CTR vs. female advPD; D, dnPD 

vs. advPD and H, CTR vs. dnPD. I, L and M are obtained considering samples of the 

training cohort: I, male CTR vs. male dnPD; L, CTR vs. dnPD; M, female CTR vs. 

dnPD. E, F and G are obtained combining subjects of the training and validation 

cohorts; E, male CTR and male dnPD; F, CTR vs. dnPD and G, female CTR vs. female 

dnPD. 
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Supplementary Material 

 

Table S1. Complete list of log2(FoldChange) ratios of univariate group comparisons.  

 

 
I CTR vs 

dnPD 

II CTR vs 

dnPD 

I M CTR vs 

dnPD 

I W CTR 

vs dnPD 

II dnPD vs 

advPD 

II CTR vs 

advPD 

II M CTR vs 

advPD 

II W CTR vs 

advPD 

I,II CTR vs 

dnPD 

I,II M CTR 

vs dnPD 

I,II W CTR 

vs dnPD 

Acetate -0.14 0.16 -0.13 -0.18 0.06 0.23 0.14 0.44 0.30 0.32 0.16 

Acetoacetate 0.00 0.70 0.07 0.00 -0.45 0.25 1.00 -0.32 0.26 0.56 0.00 

Acetone 0.70 0.70 0.91 0.49 -0.36 0.34 0.40 -0.32 0.72 0.89 0.54 

Alanine 0.02 -0.10 -0.03 0.18 -0.02 -0.13 -0.10 -0.13 0.03 -0.03 0.10 

ApoB10/ApoA1 -0.25 -0.18 -0.28 -0.08 0.07 -0.10 -0.01 -0.23 -0.23 -0.19 -0.19 

Citrate 0.08 0.06 0.19 -0.03 0.00 0.00 0.00 0.00 -0.14 -0.08 -0.21 

Creatine -0.09 -0.22 -0.42 0.13 -1.00 -1.22 -1.32 -1.21 -0.42 -0.44 -0.20 

Creatinine 0.03 -0.04 -0.01 -0.03 -0.05 -0.10 -0.21 0.00 0.00 -0.02 -0.02 

Dimethylsulfone 0.00 -0.15 -0.06 -0.19 0.36 0.22 0.16 0.00 0.00 0.00 0.12 

Formate 0.11 0.22 0.13 -0.06 -1.00 -0.78 -0.78 -0.78 0.21 0.23 0.16 

Glucose -0.05 -0.03 -0.06 -0.01 -0.02 -0.05 0.04 -0.19 0.01 0.06 -0.01 

Glutamine 0.01 0.00 0.02 -0.01 -0.10 -0.10 -0.05 -0.19 -0.01 -0.02 -0.01 

Glycine 0.15 0.10 0.13 0.00 0.25 0.35 0.41 0.29 0.18 0.11 0.14 

ApoA1-HDL.1 0.13 -0.58 0.05 0.05 -0.01 -0.60 -0.38 -0.57 -0.08 -0.21 -0.21 

ApoA1-HDL2 0.10 -0.33 0.06 -0.02 -0.09 -0.42 -0.22 -0.41 -0.04 -0.09 -0.09 

ApoA1-HDL3 0.05 -0.21 0.15 -0.05 -0.22 -0.44 -0.28 -0.41 -0.04 -0.08 -0.08 

ApoA1-HDL4 -0.03 -0.04 -0.04 -0.01 -0.15 -0.19 -0.21 -0.26 -0.04 -0.03 -0.03 

ApoA2-HDL1 0.00 -0.67 -0.07 0.07 0.14 -0.53 -0.48 -0.64 -0.26 -0.33 -0.33 

ApoA2-HDL2 -0.04 -0.39 0.00 -0.17 -0.05 -0.44 -0.33 -0.35 -0.17 -0.18 -0.18 
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ApoA2-HDL3 0.00 -0.26 0.01 -0.10 -0.16 -0.41 -0.19 -0.41 -0.16 -0.16 -0.16 

ApoA2-HDL4 -0.06 -0.04 0.00 -0.09 -0.12 -0.15 -0.06 -0.17 -0.04 0.04 0.04 

Chol-HDL1 0.11 -0.59 -0.05 0.00 -0.03 -0.61 -0.57 -0.45 -0.16 -0.21 -0.21 

Chol-HDL2 0.08 -0.35 0.15 -0.08 -0.16 -0.51 -0.24 -0.38 -0.10 -0.07 -0.07 

Chol-HDL3 0.11 -0.28 0.17 0.04 -0.26 -0.54 -0.26 -0.43 0.00 -0.12 -0.12 

Chol-HDL4 -0.05 -0.03 -0.02 -0.05 -0.17 -0.20 -0.20 -0.31 -0.03 -0.03 -0.03 

FreeChol-HDL1 0.08 -0.64 -0.12 -0.13 -0.53 -1.16 -1.10 -0.62 -0.22 -0.35 -0.35 

FreeChol-HDL2 0.12 -0.42 0.12 -0.29 -0.35 -0.77 -0.64 -0.71 -0.11 -0.20 -0.20 

FreeChol-HDL3 0.00 -0.47 0.03 -0.16 -0.62 -1.09 -0.69 -0.68 -0.20 -0.44 -0.44 

FreeChol-HDL4 -0.08 -0.17 -0.10 -0.06 -0.26 -0.44 -0.43 -0.49 -0.20 -0.24 -0.24 

Phosp-HDL1 0.14 -0.62 0.02 0.14 0.06 -0.56 -0.36 -0.47 -0.09 -0.24 -0.24 

Phosp-HDL2 0.13 -0.36 0.14 0.01 -0.07 -0.42 -0.16 -0.36 -0.07 -0.07 -0.07 

Phosp-HDL3 0.03 -0.24 0.13 -0.08 -0.19 -0.43 -0.23 -0.47 -0.03 -0.09 -0.09 

Phosp-HDL4 -0.05 -0.05 -0.01 -0.08 -0.09 -0.14 -0.15 -0.25 -0.05 -0.06 -0.06 

Trigl-HDL1 0.02 -0.22 0.31 -0.13 -0.08 -0.31 -0.01 -0.48 -0.11 -0.09 -0.09 

Trigl-HDL2 0.06 -0.12 0.07 0.17 -0.17 -0.30 0.11 -0.34 -0.13 -0.01 -0.01 

Trigl-HDL3 -0.02 0.07 0.02 -0.17 -0.20 -0.13 0.13 -0.18 -0.10 -0.06 -0.06 

Trigl-HDL4 -0.05 0.22 0.00 0.01 -0.20 0.02 0.15 0.08 0.02 -0.05 -0.05 

Histidine 0.09 -0.07 0.10 0.07 -2.03 -2.10 -2.47 -0.30 0.97 1.00 0.97 

IDL -0.19 -0.37 -0.20 -0.18 -0.09 -0.45 -0.07 -0.44 -0.30 -0.35 -0.35 

Isoleucine 0.04 0.19 0.02 0.00 -0.18 0.02 -0.07 -0.54 -0.03 -0.08 -0.12 

Lactate 0.24 -0.37 0.25 0.26 0.17 -0.20 -0.14 -0.05 -0.03 0.06 -0.21 

LDL1 -0.01 -0.41 0.03 -0.11 0.20 -0.21 0.18 -0.26 -0.19 -0.17 -0.17 

LDL2 -0.25 -0.43 -0.22 -0.20 0.12 -0.31 -0.14 -0.40 -0.18 -0.06 -0.06 

LDL3 -0.29 -0.60 -0.28 -0.04 -0.11 -0.71 -0.87 -0.50 -0.43 -0.46 -0.46 
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LDL4 -0.34 -0.60 -0.49 0.00 -0.57 -1.17 -0.89 -0.73 -0.50 -0.62 -0.62 

LDL5 -0.29 -0.20 -0.37 -0.04 -0.22 -0.42 -0.37 -0.22 -0.28 -0.31 -0.31 

LDL6 -0.13 -0.13 -0.18 -0.03 -0.10 -0.23 -0.29 -0.19 -0.14 -0.15 -0.15 

LDLChol/HDL

Chol 
-0.41 -0.07 -0.35 -0.01 -0.07 -0.15 -0.14 -0.15 -0.32 -0.24 -0.24 

LDL -0.23 -0.34 -0.28 -0.05 0.00 -0.33 -0.28 -0.26 -0.25 -0.32 -0.32 

ApoB-LDL1 -0.01 -0.41 0.03 -0.11 0.20 -0.21 0.18 -0.26 -0.19 -0.17 -0.17 

ApoB-LDL2 -0.25 -0.43 -0.22 -0.20 0.12 -0.31 -0.14 -0.40 -0.18 -0.06 -0.06 

ApoB-LDL3 -0.29 -0.60 -0.28 -0.04 -0.11 -0.71 -0.87 -0.50 -0.43 -0.47 -0.47 

ApoB-LDL4 -0.34 -0.60 -0.49 0.00 -0.57 -1.17 -0.89 -0.73 -0.50 -0.62 -0.62 

ApoB-LDL5 -0.29 -0.20 -0.37 -0.04 -0.22 -0.42 -0.37 -0.22 -0.28 -0.31 -0.31 

ApoB-LDL6 -0.13 -0.13 -0.18 -0.03 -0.10 -0.23 -0.29 -0.19 -0.14 -0.15 -0.15 

Chol-LDL1 -0.01 -0.28 -0.20 -0.06 0.16 -0.12 0.10 -0.37 -0.13 -0.25 -0.25 

Chol-LDL2 -0.28 -0.49 -0.22 -0.13 0.19 -0.30 -0.04 -0.40 -0.19 -0.04 -0.04 

Chol-LDL3 -0.34 -0.57 -0.23 -0.05 -0.16 -0.74 -0.83 -0.47 -0.47 -0.52 -0.52 

Chol-LDL4 -0.30 -0.54 -0.47 0.11 -0.46 -1.00 -1.09 -0.65 -0.50 -0.55 -0.55 

Chol-LDL5 -0.26 -0.16 -0.36 -0.02 -0.22 -0.39 -0.41 -0.08 -0.30 -0.29 -0.29 

Chol-LDL6 -0.13 -0.13 -0.18 0.08 -0.09 -0.22 -0.30 -0.17 -0.13 -0.14 -0.14 

FreeChol-LDL1 -0.04 -0.29 -0.06 -0.21 0.03 -0.26 0.03 -0.48 -0.16 -0.30 -0.30 

FreeChol-LDL2 -0.13 -0.47 0.03 -0.19 0.00 -0.47 -0.16 -0.43 -0.18 -0.02 -0.02 

FreeChol-LDL3 -0.29 -0.48 -0.12 -0.17 -0.29 -0.77 -0.80 -0.55 -0.41 -0.40 -0.40 

FreeChol-LDL4 -0.17 -0.41 -0.32 -0.05 -0.48 -0.90 -1.16 -0.86 -0.36 -0.53 -0.53 

FreeChol-LDL5 -0.18 -0.22 -0.31 -0.05 -0.24 -0.46 -0.45 -0.12 -0.27 -0.33 -0.33 

FreeChol-LDL6 -0.07 -0.20 -0.15 0.02 -0.12 -0.32 -0.36 -0.11 -0.13 -0.16 -0.16 

Phosps-LDL1 0.04 -0.24 -0.05 -0.11 0.14 -0.10 0.23 -0.31 -0.12 -0.18 -0.18 
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Phosps-LDL2 -0.29 -0.46 -0.17 -0.14 0.17 -0.29 -0.06 -0.37 -0.18 0.01 0.01 

Phosps-LDL3 -0.30 -0.55 -0.21 -0.07 -0.15 -0.71 -0.77 -0.45 -0.42 -0.48 -0.48 

Phosps-LDL4 -0.28 -0.50 -0.43 0.07 -0.43 -0.93 -0.93 -0.59 -0.43 -0.52 -0.52 

Phosps-LDL5 -0.25 -0.17 -0.34 -0.04 -0.21 -0.37 -0.38 -0.10 -0.29 -0.28 -0.28 

Phosps-LDL6 -0.12 -0.17 -0.15 0.02 -0.07 -0.24 -0.32 -0.12 -0.12 -0.13 -0.13 

Trigl-LDL1 -0.02 -0.43 -0.19 -0.03 -0.06 -0.49 -0.11 -0.42 -0.23 -0.25 -0.25 

Trigl-LDL2 -0.13 -0.47 -0.07 -0.08 0.00 -0.46 -0.33 -0.38 -0.25 -0.33 -0.33 

Trigl-LDL3 -0.17 -0.40 -0.34 -0.02 0.07 -0.33 0.00 -0.31 -0.21 -0.40 -0.40 

Trigl-LDL4 -0.26 -0.58 -0.36 -0.12 -0.21 -0.79 -0.13 -0.63 -0.44 -0.48 -0.48 

Trigl-LDL5 -0.27 -0.11 -0.38 -0.08 -0.09 -0.20 -0.14 -0.25 -0.36 -0.39 -0.39 

Trigl-LDL6 -0.11 -0.18 -0.15 -0.10 0.02 -0.15 -0.35 -0.12 -0.11 -0.17 -0.17 

Leucine 0.01 0.21 -0.06 0.13 -0.07 0.14 0.25 -0.10 0.10 0.09 0.18 

ApoA1-HDL 0.05 -0.20 0.04 0.00 -0.21 -0.40 -0.13 -0.42 -0.04 -0.08 -0.08 

ApoA2-HDL 0.00 -0.18 0.01 -0.09 -0.08 -0.26 -0.05 -0.32 -0.09 -0.07 -0.07 

ApoB-IDL -0.19 -0.37 -0.20 -0.18 -0.09 -0.45 -0.07 -0.44 -0.30 -0.35 -0.35 

ApoB-LDL -0.23 -0.34 -0.28 -0.05 0.00 -0.33 -0.28 -0.26 -0.25 -0.32 -0.32 

ApoB-VLDL 0.04 0.26 0.10 0.19 -0.15 0.10 0.03 0.19 -0.05 -0.03 -0.03 

Chol-HDL 0.05 -0.21 0.03 0.04 -0.15 -0.37 -0.29 -0.35 -0.01 -0.08 -0.08 

Chol-IDL -0.22 -0.43 -0.34 0.00 -0.09 -0.52 -0.27 -0.50 -0.35 -0.47 -0.47 

Chol-LDL -0.23 -0.38 -0.26 -0.08 -0.10 -0.48 -0.38 -0.27 -0.26 -0.34 -0.34 

Chol-VLDL 0.02 0.38 0.08 0.42 -0.18 0.20 0.07 0.44 -0.02 -0.05 -0.05 

FreeChol-HDL 0.09 -0.35 -0.04 -0.06 -0.29 -0.64 -0.68 -0.43 -0.11 -0.26 -0.26 

FreeChol-IDL -0.19 -0.39 -0.32 0.02 -0.11 -0.50 -0.28 -0.56 -0.34 -0.37 -0.37 

FreeChol-LDL -0.16 -0.38 -0.30 -0.09 -0.18 -0.56 -0.44 -0.34 -0.27 -0.37 -0.37 

FreeChol-VLDL 0.05 0.27 0.10 0.50 -0.28 -0.01 -0.18 0.34 -0.02 -0.05 -0.05 
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Phosps-HDL 0.07 -0.23 0.11 -0.03 -0.16 -0.39 -0.21 -0.39 -0.04 -0.10 -0.10 

Phosps-IDL -0.04 -0.28 -0.22 0.22 -0.25 -0.53 -0.43 -0.28 -0.19 -0.26 -0.26 

Phosps-LDL -0.19 -0.38 -0.25 -0.08 -0.08 -0.46 -0.36 -0.26 -0.22 -0.30 -0.30 

Phosps-VLDL -0.01 0.31 0.05 0.67 -0.29 0.02 -0.29 0.30 -0.03 -0.06 -0.06 

Trigl-HDL 0.06 -0.15 0.03 0.06 -0.12 -0.27 0.13 -0.28 -0.06 -0.18 -0.18 

Trigl-IDL -0.09 -0.01 -0.24 0.41 -0.79 -0.80 -1.30 0.10 -0.03 -0.24 -0.24 

Trigl-LDL -0.17 -0.25 -0.20 -0.08 -0.10 -0.36 -0.17 -0.36 -0.24 -0.27 -0.27 

Trigl-VLDL -0.01 0.18 -0.03 0.76 -0.50 -0.33 -0.72 0.05 -0.13 -0.03 -0.03 

ApoA1 0.03 -0.19 0.02 0.00 -0.21 -0.40 -0.15 -0.40 -0.05 -0.12 -0.12 

ApoA2 0.00 -0.19 0.02 -0.10 -0.09 -0.27 -0.05 -0.32 -0.10 -0.07 -0.07 

ApoB100 -0.15 -0.28 -0.19 -0.05 -0.09 -0.37 -0.27 -0.23 -0.22 -0.21 -0.21 

Chol -0.08 -0.27 -0.13 -0.08 -0.09 -0.36 -0.34 -0.22 -0.18 -0.23 -0.23 

HDLChol 0.05 -0.21 0.03 0.04 -0.15 -0.37 -0.29 -0.35 -0.01 -0.08 -0.08 

LDLChol -0.23 -0.38 -0.26 -0.08 -0.10 -0.48 -0.38 -0.27 -0.26 -0.34 -0.34 

Trigl -0.03 0.06 -0.11 0.26 -0.32 -0.26 -0.25 0.01 -0.06 -0.09 -0.09 

Methionine 0.32 0.15 0.41 0.36 -0.74 -0.58 -0.74 -0.36 -0.32 -0.43 -0.13 

N,N-

Dimethylglycine 
0.22 0.00 0.00 0.22 -1.00 -1.00 -1.00 0.00 -1.00 -1.00 -1.32 

Ornithine 1.14 0.00 1.15 0.58 0.63 0.63 0.71 0.19 -0.13 -0.17 -0.13 

Phenylalanine 0.21 0.06 0.23 0.17 -0.01 0.05 0.08 -0.05 0.19 0.23 0.10 

Pyruvic-acid -0.01 -0.11 -0.10 0.18 0.16 0.06 0.25 -0.08 -0.01 0.08 -0.07 

Sarcosine 0.00 0.13 0.00 0.17 0.00 0.13 0.22 -0.74 0.00 0.00 0.32 

Succinic-acid 0.42 -0.17 0.42 0.00 0.00 -0.17 0.32 -0.74 0.00 0.19 0.00 

Total -0.15 -0.28 -0.19 -0.05 -0.09 -0.37 -0.27 -0.23 -0.22 -0.21 -0.21 
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Trimethylamine

-N-oxide 
0.00 -0.12 0.37 -0.46 -0.58 -0.70 -0.81 -0.66 0.00 0.25 -0.25 

Tyrosine 0.05 -0.13 0.01 0.18 -0.11 -0.24 -0.23 -0.19 0.09 0.04 0.05 

Valine 0.03 0.12 0.05 0.17 -0.01 0.10 0.12 -0.24 0.08 0.15 0.02 

VLDL 0.04 0.26 0.10 0.19 -0.15 0.10 0.03 0.19 -0.04 -0.03 -0.03 

Chol-VLDL1 0.00 0.14 -0.17 0.82 -0.16 -0.02 0.09 0.26 -0.04 -0.16 -0.16 

Chol-VLDL2 0.04 0.01 -0.04 0.48 -0.22 -0.21 -0.52 0.34 -0.06 -0.02 -0.02 

Chol-VLDL3 0.09 0.32 0.18 0.50 -0.19 0.13 -0.37 0.43 0.07 0.01 0.01 

Chol-VLDL4 0.05 0.12 0.13 0.23 0.20 0.32 0.11 0.43 0.00 -0.11 -0.11 

Chol-VLDL5 0.18 0.08 0.13 0.27 0.09 0.17 0.43 0.23 0.19 0.13 0.13 

FreeChol-

VLDL1 
-0.29 -0.10 -0.29 0.69 -0.37 -0.47 -0.31 -0.06 -0.21 -0.23 -0.23 

FreeChol-

VLDL2 
0.05 0.24 -0.07 0.40 -0.46 -0.22 -0.58 0.35 -0.01 0.05 0.05 

FreeChol-

VLDL3 
0.14 0.31 0.19 0.73 -0.38 -0.07 -0.10 0.45 0.12 0.02 0.02 

FreeChol-

VLDL4 
0.22 0.28 0.15 0.38 -0.09 0.19 0.13 0.47 0.01 -0.03 -0.03 

FreeChol-

VLDL5 
0.35 -0.01 0.42 0.06 0.38 0.37 0.86 0.79 0.44 0.34 0.34 

Phosps-VLDL1 -0.17 0.08 -0.30 0.61 -0.43 -0.35 -0.22 -0.02 -0.03 -0.18 -0.18 

Phosps-VLDL2 -0.04 0.15 -0.07 0.35 -0.52 -0.37 -0.65 0.24 0.09 -0.04 -0.04 

Phosps-VLDL3 0.04 0.28 0.17 0.39 -0.29 0.00 -0.27 0.42 0.01 0.00 0.00 

Phosps-VLDL4 0.07 0.18 0.21 0.12 0.06 0.24 0.17 0.27 0.04 0.01 0.01 

Phosps-VLDL5 0.15 0.26 0.15 0.21 0.00 0.26 0.34 0.23 0.11 0.04 0.04 
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Trigl-VLDL1 -0.18 0.16 -0.30 0.69 -0.65 -0.50 -0.71 -0.10 -0.17 -0.16 -0.16 

Trigl-VLDL2 -0.04 0.31 0.02 0.43 -0.83 -0.52 -1.34 0.24 -0.09 -0.06 -0.06 

Trigl-VLDL3 0.13 0.23 0.20 0.38 -0.52 -0.29 -0.65 0.38 0.01 0.07 0.07 

Trigl-VLDL4 0.18 0.12 0.15 0.24 -0.01 0.11 0.08 0.17 0.04 0.00 0.00 

Trigl-VLDL5 0.18 -0.02 0.17 0.28 -0.03 -0.05 0.06 0.13 0.03 -0.05 -0.05 

3-

Hydroxybutyrat

e 

0.62 0.85 0.62 0.62 -0.66 0.19 -0.01 0.00 0.85 0.92 0.60 

*Abbreviations are reported as follows: Trigl: triglycerides; Chol: cholesterol; Phosp: phospholipids; M: males; W: women: I: training cohort; II: validation cohort.  
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Figure S1. OPLS-DA score plots of bucketed 1D-NOESY 1H NMR serum spectra. A) 

OPLS-DA score plot of overall training cohort; B) OPLS-DA score plot of male 

training subjects; C) OPLS-DA score plot of female training subjects. Colours code 

for individual status: CTR (green dots) and dnPD patients (blue dots). Ellipses indicate 

the confidence interval (P-value < 0.05) for each group.  
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Figure S2. OPLS-DA score plot of training model discriminating CTR (green dots) 

from dnPD patients (blue dots). “+” light green symbol: validation samples of true 

healthy controls; “+” dark blue symbol: validation samples of true dnPD; “+” red 

symbol: validation samples of advPD, all predicted as true PD patients.  
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4.1.2. NMR-based metabolomics to predict three-month adverse outcomes and 

to estimate metabolic variations in ischemic stroke treated with 

intravenous thrombolysis 
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Candidate’s contributions: acquisition of NMR spectra, statistical analysis of NMR 

data, interpreting results and writing of the manuscript. 
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Introduction 

 

Ischemic stroke (IS) is a leading cause of death and disability continuously 

increasing,1 and contributing significantly to health costs. There is an urgent need to 

deep the research of effective biomarkers useful for the clinical practice and to better 

understand and interpret occurring dysregulation in the pathophysiological 

mechanisms of the disease. 

Metabolic perturbations are believed to be fundamental events that contribute to the 

ischemic stroke, to its progression and to the development of subsequent unfavourable 

outcomes.2–9 Regarding the knowledge about biomarkers associated with poor 

prognosis in the setting of stroke patients treated with thrombolysis, few evidences are 

reported (e.g. glucose).10 Dyslipidaemia is a known risk factor contributing to the onset 

of ischemic stroke; for example, high levels of total cholesterol and low-density 

lipoprotein (LDL) cholesterol increase the risk for cerebral ischemia.11,12 However, the 

effects of lipid levels on clinical outcomes after ischemic attack are controversial: high 

total cholesterol and LDL cholesterol levels have been associated with better 

functional and vital outcomes after stroke,13,14 while low LDL cholesterol level 

increased the risk of early symptomatic intracranial heamorrhage15 and total 

cholesterol was related to worse functional outcome in ischemic stroke patients after 

the thrombolytic treatment.16 Therefore, the effective contribution of lipid levels to 

stroke outcomes, particularly after thrombolysis, needs to be further investigated. 

In this framework, comprehensive analytical techniques provide a great chance to 

identify key metabolic features involved in the onset, in the progression of the disease 

and also in the development of patient’s poor outcomes. Nuclear Magnetic Resonance 

(NMR)-based metabolomics can provide crucial information. Indeed, it allows a high-

throughput analysis of various types of samples (e.g. blood, urine, cells and tissues), 

giving information on hundreds of different metabolites and lipid features present in 

biological matrices.17,18 In particular, multivariate and univariate analyses proved to 

be efficient in characterizing the metabolic signature of several pathologies,19–22 and 

in the context of molecular epidemiology.23,24  

Here, using a subset of the ischemic stroke patients, treated with intravenous 

thrombolysis and enrolled in the MAGIC study25,26, we mainly aimed at providing 

metabolic insights underlying susceptibility to three-month post-acute ischemic stroke 

mortality, impairments and symptomatic intracerebral haemorrhage, developed after 

the intravenous (i.v.) thrombolytic treatment with recombinant tissue plasminogen 

activator (rt-PA). Moreover, we retrospectively explored metabolic features associated 

with the non-response to the thrombolysis. To all these purposes, we applied firstly, 

logistic regression and Receiver Operating Characteristics (ROC) curve analysis 

considering: metabolites and lipids quantified in i) 1D NOESY NMR spectra from 243 

serum samples collected before (t1) and 24h after the rt-PA therapy (t2); and ii) pre - 

24h post metabolite and lipid variations (Δ(pre-post)rt-PA). 

Secondly, with the aim of investigating, in a larger time scale, metabolic variations 

with respect to the thrombolytic therapy, within-subject metabolic changes were 
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explored considering serum samples at t1, t2 and samples collected at the outcome 

evaluation (at three-months (t3)). An overview of the study design is reported in Figure 

1.  

 

Material and Methods 

 

Study Population and Outcomes 

The study population consists of a total of 243 patients who had an acute 

ischemic stroke (AIS) and were admitted for thrombolysis treatment with rt-PA in 14 

different Italian centres, registered in the Safe Implementation of thrombolysis in 

Stroke-International Stroke Thrombolysis Register (SITS-ISTR, 

www.sitsinternational.org), according to SITS-Monitoring Study criteria,27 in the 

frame of the national, observational and multicentric MAGIC study.25,26  

The whole study focuses on the analysis of serum samples collected at three different 

time-points: before (t1), 24h after (t2) and 3 months after (t3) the administration of rt-

PA. Poor outcomes were defined at evaluation (i.e. three months after AIS ) as follows: 

i) mortality; ii) disability or impairment; iii) development of symptomatic intracerebral 

haemorrhage (sICHRCT12); and iv) non-response to thrombolytic treatment. 

Impairment was defined according to the modified Rankin disability score and 

dichotomized into good (modified Rankin scale, 0–2) or poor (modified Rankin scale, 

3–6) outcome. A detailed description of clinical and demographic characteristics of 

the patients are reported previously in Gori et al.26 

 

Ethical Issues 

The study protocol was approved by the local Ethical Committee of the Careggi 

University Hospital (Florence) and it complies with the Declaration of Helsinki. All 

patients gave informed consent.  

 

NMR serum sample collection and preparation 

Whole venous blood was collected in tubes without anticoagulant, before and 

24 h after thrombolysis. Tubes were centrifuged at room temperature at 1500 g for 

15 min, and the supernatants were stored in aliquots at −80℃ until NMR 

measurements. For metabolomic analyses, serum samples were prepared following the 

details reported elsewhere.17 

 

NMR experiments 

Serum samples were analysed using a Bruker 600 MHz spectrometer working 

at 600.13 MHz proton Larmor frequency equipped with a 5 mm PATXI 1H-13C-15N 

and 2H decoupling probe. This includes a z axis gradient coil, an automatic tuning-

matching (ATM) and an automatic and refrigerate sample changer (SampleJet). To 

stabilize approximately, at the level of ± 0.1 K, the sample temperature (310 K), a BTO 

2000 thermocouple was employed and each NMR tube was kept for at least 5 min 

inside the NMR probe head to equilibrate the acquisition temperature of 310 K.  
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For each serum specimen, the 1D NOESY, 1D CPMG and 1D DIFFUSION-EDITED 

pulse sequences were applied to acquire 1H-NMR spectra. Raw NMR data were 

multiplied by an exponential function of 0.3 Hz line-broadening factor, before the 

application of Fourier transform. Phase and baseline distortions were automatically 

corrected and transformed spectra were calibrated to the glucose doublet at 5.24 ppm 

using TopSpin 3.2 (BrukerBioSpin).  

 

Metabolite and Lipid identification and quantification 

18 metabolites and 112 lipid fractions were unambiguously identified and 

estimated from 1H 1D NOESY NMR spectra according to Bruker’s B.I.-LISA 

protocols, version 1.0 (Bruker IVDr Lipoprotein subclass analysis).28 In all serum 1D 

NOESY NMR spectra, VLDL, LDL, IDL, HDL and 15 different subclasses, (VLDL-

1 to VLDL-5, LDL-1 to LDL-6 and HDL-1 to HDL-4) were quantified. For each main 

class and subclass, reported data consist in concentrations of lipids (total cholesterol, 

free cholesterol, phospholipids and triglycerides) contained in each fraction. 

Concentrations of apolipoprotein Apo-A1 and ApoA2 were estimated for HDL class 

and each relative subclass, while Apo-B concentrations are calculated for VLDL, IDL 

classes and all LDL subclasses. 

 

Statistical Analysis 

 

Software 

All statistical analyses and graphical illustrations were generated using R 

(version 3.5.3), an open source software for statistical management of data.29 

 

Logistic regression analyses 

As main explanatory variables, we considered baseline (t1), 24h post (t2) rt-PA 

and single patient’s relative pre-24h post rt-PA variation (Δ(pre-post)rt-PA) of 

metabolites and lipids concentrations. 

Pre-post thrombolysis variation was calculated using the formula: {[(t2 metabolite or 

lipid concentrations) – (t1 metabolite or lipid concentrations)]/[(t1  metabolite or lipid 

concentrations + t2 metabolite or lipid concentrations)/2]}.  

The net effect of each variable’s at t1, t2 or considering Δ(pre-post)rtPA, on the four poor 

outcomes, was estimated by logistic regression analysis, including as covariates 

different patients’ characteristics, i.e. age, sex, baseline or 24h post-blood glucose (for 

t1 and t2 models, respectively), baseline NIHSS, time onset-to treatment, blood 

collection center and risk factors and comorbidities (i.e. history of atrial fibrillation, 

congestive heart failure, recent infections or inflammations, hypertension, diabetes, 

hyperlipidaemia and smoke).  

Odd Ratios (OR) values and 95% Confidence Interval (95% CI) were reported for each 

analysed metabolite or lipid. Benjamini- Hochberg method30 was used to correct for 

multiple testing. P-values and FDR values < 0.05 were deemed both statistically 

significant, depending on the specific condition. 
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Receiver Operating Characteristic curves (ROC) analysis 

Three-months adverse outcomes were evaluated also applying ROC curve 

analysis (“roc” function of the R package “pROC”) on selected analytes at t1, t2 and 

considering specific patient’s relative metabolites and lipids Δ(pre-post)rt-PA.  

In detail, for each analysis, we estimated values of the area under the ROC curve 

(AUC-ROC) for two different logistic regression models. Firstly, we calculated AUC 

values for “baseline” models that included only clinical and risk factors known to 

affect the outcomes. Secondly, to quantify how much the addition of a combination of 

new metabolomic features (metabolites and/or lipids) correctly increases the risk 

predicted by the baseline ROC curve for events and non-events; we added to each 

baseline logistic regression model, a combination among the top three statistical 

significant metabolites and/or lipids (P-values < 0.05), choosing on the basis of the 

results of the previous logistic regression analyses. 

It is important to point out that, in order to avoid overfitting, before performing any 

ROC analysis, all built logistic regression models were cross-validated using the leave-

one-out scheme (R script in-house developed).  

 

Univariate Analysis 

Pairwise metabolic changes in AIS patients, occurring with respect to the 

thrombolytic therapy, were evaluated over the all three time-points, i.e, t1, t2 and t3, 

applying the Friedman test31 followed by post-hoc Nemenyi analysis. It was necessary 

to use a subset (n=173) of the study population included in this study, since not all AIS 

patients furnished serum samples at t3.  

Benjamini- Hochberg method30 was used to correct for multiple testing and FDR 

values < 0.01 were considered statistically significant.  

 

Results 

 

Logistic regression analysis 

Metabolites and lipids concentrations were used to build logistic regression 

models for the evaluation of their net effect on three-months poor outcomes, i.e. 

mortality, impairments, haemorrhagic transformation and non-response to the 

thrombolytic intervention. All the calculated effects of metabolites and lipids 

concentrations at t1 are listed in the supplementary Table S1. In Table 1, we reported 

only metabolic variables statistically significant associated to the outcomes. Among 

them, triglycerides related to the HDL-3 subfraction is the only analyte presenting a 

statistically significant association (P-value < 0.05) with three-months mortality. 

Seventeen different lipids, mainly related to small dense VLDL, LDL and HDL 

particles, resulted to be statistically associated (P-value < 0.05) with the appearance of 

three-months impairments. Before starting the thrombolytic therapy, acetone and 3-

hydroxybutyrate resulted to be the only metabolic variables associated both to the 
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development of symptomatic intracranial haemorrhage and to the non-response to the 

intravenous thrombolysis.    

Considering analytes concentrations estimated for t2 serum samples (Table 1), we 

reported many metabolic features statistically associated to each poor outcome. More 

specifically, HDL triglycerides, LDL-6 related cholesterol, triglycerides and 

phospholipids, HDL-3 and HDL-4 triglycerides are statistically associated (P-value < 

0.05) to three-months mortality; while acetate, 3-hydroxybutyrate and twenty-four 

different lipids resulted to be statistically related with the development of impairments. 

Among the twenty-four lipids: triglycerides, total cholesterol and free cholesterol 

estimated for LDL-6 subfractions appear as the most statistically significant associated 

variables. Nineteen lipids were associated to the development of intracranial 

haemorrhage, especially lipids related to bigger and less dense VLDL particles. 

Regarding the evaluation of non-response to the thrombolysis, we estimated 

statistically significant association (P-value < 0.05) for phenylalanine, VLDL-5 

phospholipids, HDL-4 triglycerides, HDL-2 free cholesterol, acetone and 3-

hydroxybutyrate. These last two metabolites also reported FDR values < 0.05. The 

complete list of all calculated net effects at t2 is reported in supplementary Table S2.  

Finally, all the net effects of Δ(pre-post)rt-PA, estimated from each quantified 

metabolite and lipid fraction, on the evaluated outcomes, are reported in 

supplementary Table S3, where many statistically significant (P-value < 0.05) 

associations between metabolic features and outcomes were highlighted and 

summarized in Table 1. In particular, when in the logistic regression analysis, we 

related Δ(pre-post)rt-PA metabolites and lipids concentrations to the three-months 

mortality; triglycerides related to LDL, HDL particles and LDL-1, LDL-2 and HDL-4 

sub-particles appear as the statistically associated variables (P-values < 0.05). 

Glutamate, acetate, free cholesterol, phospholipids and Apo A2 related mainly to 

HDL-1 and HDL-2 resulted to be statistically associated with three-month impairment 

(P-value < 0.05). If we consider the logistic regression model built to evaluate the 

development of intracranial haemorrhage, we found that phenylalanine, pyruvate and 

glucose are the most statistically associated (P-values <0.05) metabolites, while 

among lipid parameters, phospholipids related to VLDL particles are the most 

statistically associated analytes (P-value <0.05). In conclusion, alanine, acetone, total 

particle number of Apo B100, related LDL-3 sub-particles and HDL-4 triglycerides 

appear as the most statistically significant (P-value < 0.05) predictors of non-response 

to the therapeutic thrombolytic treatment.  

 

ROC curve analysis 

The addition of selected statistically significant (P-value < 0.05) metabolites 

and/or lipid parameters to baseline models (hereunder referred as “Bas1” for pre rt-

PA,  Δ(pre-post)rt-PA and “Bas2”  for 24h post rt-PA), built for t1, t2, Δ(pre-post)rt-PA 

and including only baseline characteristics, risk factors and comorbidities, generally 

improved the area under the curve for the prediction of bad events for the AIS patients 

with respect to cases where the AUC-ROC values have been obtained only considering 
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baseline clinical characteristics and risk factors (i.e. age, gender, blood collection 

center, time onset-to-treatment, recent infections or inflammations, glycemia, NIHSS 

and history of atrial fibrillation and congestive heart failure).  

AUC values for “baseline” and “baseline plus metabolic features” ROC models, built 

for t1, t2 and Δ(pre-post)rt-PA, are listed in Table 2, together with relative 95% 

confidence intervals. P-values are also reported to highlight significant changes in the 

prediction of poor outcomes after considering the association of metabolomic and 

clinical features. 

In detail, statistically significant increases of baseline AUC values for the prediction 

of impairment, haemorrhagic transformation and non-response to the thrombolysis, 

were observed considering only t2 concentrations of metabolites and lipids. For the 

prediction of three-months impairments, the addition of 24h post rt-PA values of 

VLDL-5 cholesterol, LDL-6 free cholesterol, LDL-5  Apo B, to the “Bas2” ROC 

model, led to a statically significant increase in the already good value of baseline 

AUC [model Bas2: AUC = 0.807 (95% CI 0.748-0.866), model Bas2 + E: AUC = 

0.844 (95% CI 0.791 – 0.895), P-value = 0.037] (Table 2). Instead, for predicting 

intracranial haemorrhagic transformation of cerebral infarction, the addition of VLDL-

2 cholesterol, phospholipids and triglycerides statistically increased the baseline non-

informative AUC value of 0.556 to a less accurate value of prediction corresponding 

to 0.636 [model Bas2: AUC = 0.556, (95% CI 0.438-0.673), model Bas2 + H: AUC = 

0.636 (95% CI 0.536 – 0.736), P-value = 0.039] (Table 2). 

Lastly, age, sex, blood-glucose, baseline NIHSS, time onset-to-treatment, history of 

atrial fibrillation, congestive heart failure, recent infections or inflammations and the 

blood collection centre are unable to predict the response to intravenous thrombolysis 

at t2 [model Bas2: AUC = 0.560, (95% CI 0.486-0.635)]. However, adding 3-

hydroxybutyrate and acetone to the above-described ROC curve model, the area under 

the curve increases to a value of 0.617 (95% CI 0.545-0.69), with a P-value = 0.015 

(model Bas2 + K, Table 2), thus providing a less accurate predictive power of the new 

model, but encouraging further researches in this direction.  

 

Univariate analysis 

To identify within-subject variations in metabolites and lipids levels related to 

variations introduced by the thrombolytic intervention, the Friedman test followed by 

post-hoc Nemenyi analysis was applied on assigned metabolites and lipids, 

considering all time-points of blood-collections (t1, t2 and t3). Many statistically 

significant variations of concentrations (FDR < 0.01) are described for the majority of 

quantified metabolites and lipid parameters (supplementary Table S4). Looking at the 

FDR values reported in Table 3, the thrombolytic intervention seems to induce 

significant variations both in the metabolome and in the lipidome of AIS patients; 

metabolic variables change mainly between t1 and t3. Specifically, between t1 and t2, 

lipid parameters related mainly to HDL particles presented the highest statistically 

significant difference (FDR < 10-4), together with citrate and lactate. Interestingly, 

between t2 and t3, lipids related mainly to LDL particles and LDL sub-particles change 
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significantly, reporting FDR values ranging from 10-14 to 10-5. Acetone, 3-

hydroxybutyrate, glycine, glucose and glutamine also vary with FDR < 10-5. Lastly, 

the significant variation in LDL related parameters, acetone, 3-hydroxybutyrate and 

glycine concentration at t3, has been confirmed, after considering the comparison of 

metabolites and lipids values at t1 and t3.  

 

Discussion 

 

In this large cohort of AIS patients treated with intravenous thrombolysis, we 

found that, firstly, for the prediction of three-months death: baseline HDL-3 

triglycerides; 24h post rt-PA levels of LDL-6 triglycerides, HDL triglycerides, LDL-

6 cholesterol and Δ(pre-post)rt-PA variations of triglycerides related to LDL, HDL and 

LDL-2 particles are statistically associated to post-stroke mortality, but they are not 

able to statistically significantly improve the AUC of the baseline ROC model for the 

prediction of the bad event. 

Secondly, for the prediction of three-month impairment development: t1 levels of 

HDL-3 phospholipids, HDL phospholipids main fraction, HDL/LDL cholesterol 

improved the AUC of the baseline ROC model; while the addition of t2 concentrations 

of VLDL-5 cholesterol, LDL-6 free cholesterol and LDL-5  Apo B values to related 

baseline ROC models, significantly improved the AUC (P-value < 0.05). Instead, a 

maintenance in the predictive power of the ROC model was observed when Δ(pre-

post)rt-PA of the top three statistically significant metabolic features associated to the 

development of three-months impairments have been added to the baseline ROC 

model (Table 2). 

Thirdly, baseline acetone, 3-hydroxybutyrate, pre-post rt-PA variation of VLDL 

phospholipids, VLDL-2 cholesterol and VLDL-2 phospholipids resulted statistically 

associated to the onset of intracranial haemorrhage, but they did not improve the AUC 

values of related ROC predictive models. Only adding the combination of VLDL-2 

cholesterol/phospholipids/triglycerides, estimated at t2, to baseline ROC model, we 

obtained a significant improvement in the AUC. 

Lastly, t2 levels of ketone bodies (i.e. acetone and 3-hydroxybutyrate) resulted to be 

statistically associated to the non-response to thrombolysis, and they also improved 

the ability of the ROC model in predicting the bad event, while the addition of baseline 

values (t1) of the same features did not statistically improve the AUC of the baseline 

ROC model, as for the addition of Δ(pre-post)rt-PA variations of acetone, LDL-3 

particle number and LDL-3  Apo-B values.  

Considering within-subject metabolic variations, we noted that generally, HDL-related 

lipid parameters tend to decrease after the thrombolysis (t2) and then, their levels 

increase again at three-months (t3) from the acute ischemic stroke, but without 

returning to the baseline concentrations (t1). Instead, LDL-related parameters present 

an opposite behaviour: they tend to increase at t2, while at t3, their concentrations reach 

values lower than those at t1. Mean values of acetone, 3-hydroxybutyrate and glucose 
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increase at t2, while glycine and glutamine present the highest mean values at t3. 

Lactate and citrate were found to be statistically increased at t1. 

In the light of the above, we can firstly state that metabolic alterations occurring in the 

post-AIS course, mainly affect the serum lipidome of patients rather than the serum 

metabolome. In particular, we observed that t2 triglycerides levels, associated mainly 

with HDL and LDL particles, seem to be related to three-months mortality, while 

alteration of cholesterol and phospholipids levels mainly related to smaller and denser 

VLDL and LDL sub-particles may be involved in the development of post-stroke 

impairments and neurological disabilities. Acetone and 3-hydroxybutyrate appear as 

largely involved in the symptomatic development of intracranial haemorrhage and in 

the non-response to the thrombolytic therapy.  

Many studies evidenced relationships between lipidic features and ischemic 

stroke,3,6,32–34 demonstrating how these molecules play effective roles in the aetiology 

and progression of the disease. Serum cholesterol has been found to be an independent 

predictor for long-term functional outcomes and higher serum total cholesterol levels 

have been associated with better prognosis.35 Triacylglycerols have been significantly 

associated with ischemic stroke,36 but the biological mechanisms by which they could 

affect the mortality or the survival of IS patients need further investigations. Since 

triglycerides are hydrolysed to fatty acids to furnish alternative energy source during 

stress conditions, we can hypothesize that their statistically significant association with 

post-stroke mortality may evidence a situation of energy failure, thus leading to an 

increase of energy demand and to an enhanced transition from aerobic to anaerobic 

glycolysis. As a consequence, levels of pyruvate and lactate may change; in our case, 

the statistically significant decrease of lactate concentrations, after the thrombolysis, 

may suggest its decreased role in providing substitute energy fuel and in metabolic 

pathways of neuroprotection where it is normally largely involved.37 Moreover, during 

cerebral ischemia, citrate and ketone bodies levels can change to restore energy 

homeostasis. Recently, Di Marino and co-workers demonstrated a significant increase 

of serum ketone bodies in response to angioplasty-induced ischemia applied in patients 

with stable angina, hypothesizing that changes in the metabolism of ketone bodies 

could be related to the reperfusion oxidative stress; in other words, it seems that they 

are playing a fundamental role in free radical homeostasis during ischemia-reperfusion 

injury.38 Then, there are various studies, where the biochemistry of ketogenesis and its 

role for cardiovascular diseases,39,40 neurological diseases and oxidative stress41 have 

been deeply explored. Ketone bodies seem to have the chemical potential to be active 

antioxidants,41 proving benefits in diseases associated with oxidative stress, as in the 

case of ischemic stroke. However, there are conflicting evidences for the antioxidant 

role of ketone bodies.41 

Other studies demonstrated that acetone is increased in the exhaled breath of patients 

with heart failure,42 a condition which can often occur after stressful situation, as in 

the case of cerebral ischemia, but the exact mechanisms that lead to increasing 

concentration of exhaled or serum acetone and other ketone bodies need further 

biological investigations.  
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Before concluding, we also reported statistically significant associations of low-

density lipoproteins (especially small and denser LDL and VLDL) estimated at t2, with 

three-months death and impairments development. In past studies, it has been shown 

that AIS is associated with adverse distributions of LDL and HDL subclasses, and 

particularly, short-term mortality is linked to increased levels of small dense LDL 

particles (sdLDL).43 Our results also evidence the role of low LDL and VLDL 

cholesterol, estimated at t2, in increasing the risk of early symptomatic intracranial 

haemorrhage development (e.g. VLDL cholesterol: OR = 2.6, P-value = 0.007, all 

associations are reported completely in Table 1). 

Moreover, the statistical significant changes in HDL concentrations passing from t1 to 

t2 could reflect a general condition of inflammation, since recently, it has been reported 

that inflammation may alter the lipoprotein profile as well, for example, modulating 

the HDL functions.44 However, changes in HDL-related parameters may depend on 

the activity of rt-PA. Indeed, generated plasmin after rt-PA activity on plasminogen 

can degrade non-target proteins, including Apo A1 which represents the major protein 

constituent of HDL particles. In a past study,45 authors demonstrated that treatment 

with alteplase and tenecteplase induced apoA1 proteolysis, potentially causing a 

transient impairment of HDL atheroprotective functions.46  

 

Conclusions 

 

In summary, using logistic regression and ROC curve analysis on baseline, 24h 

post- and Δ(pre-post)rt-PA metabolites and lipids concentrations; various metabolomic 

features, especially lipids related to HDL, LDL, VLDL particles and ketone bodies, 

resulted statistically significantly associated with each of the assessed post-AIS poor 

outcome, but to date, few statistically significant metabolites and/or lipids may 

represent new promising biomarkers to predict especially three-months disability, 

intracranial haemorrhagic transformation of the stroke and the non-response to the 

thrombolytic therapy. Instead, applying univariate pairwise analysis in a larger time-

scale of three-months with respect to the beginning of the i.v. thrombolysis, many 

metabolic changes, in both serum metabolome and lipoprotein profiles, reflect a 

general condition of energy failure, oxidative stress and systemic inflammation.  

One limitation of this study is the lack of a control groups of stroke patients not treated 

with rt-PA and a further limitation rests upon the lack of subsequent blood sampling 

to determine more in detail, the metabolic variations during the first phase of the post-

stroke course. In addition, it must be kept in mind that this study was a retrospective 

observational study, and for various subjects, clinical information was missing, thus 

may leading to selection bias.  

To conclude, our results support the usefulness of the metabolomic analysis for the 

identification of a more-detailed risk profile in AIS patients in relation to three-months 

poor outcomes and at different time-points of blood collection with respect to the 

thrombolytic treatment. Present findings encourage the application of NMR-based 

metabolomics for a fast and reproducible definition of the metabolic pattern of AIS 
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patients associated with three-months mortality, impairments, haemorrhagic stroke 

transformation and non-response to the thrombolytic therapy, providing additional 

information compared to what is already known from the clinic. However, further 

biological explanations are needed to deepen the understanding of the specific role of 

rt-PA in post-stroke variations on patient’s serum metabolome.  

 

References 

 

(1)  Feigin Valery L.; Norrving Bo; Mensah George A. Global Burden of Stroke. 

Circulation Research 2017, 120 (3), 439–448. 

https://doi.org/10.1161/CIRCRESAHA.116.308413. 

(2)  Wesley, U. V.; Bhute, V. J.; Hatcher, J. F.; Palecek, S. P.; Dempsey, R. J. Local 

and Systemic Metabolic Alterations in Brain, Plasma, and Liver of Rats in Response 

to Aging and Ischemic Stroke, as Detected by Nuclear Magnetic Resonance (NMR) 

Spectroscopy. Neurochem. Int. 2019, 127, 113–124. 

https://doi.org/10.1016/j.neuint.2019.01.025. 

(3)  Jung, J. Y.; Lee, H.-S.; Kang, D.-G.; Kim, N. S.; Cha, M. H.; Bang, O.-S.; Ryu, 

D. H.; Hwang, G.-S. 1H-NMR-Based Metabolomics Study of Cerebral Infarction. 

Stroke 2011, 42 (5), 1282–1288. https://doi.org/10.1161/STROKEAHA.110.598789. 

(4)  Szpetnar, M.; Hordyjewska, A.; Malinowska, I.; Golab, P.; Kurzepa, J. The 

Fluctuation of Free Amino Acids in Serum during Acute Ischemic Stroke. Current 

Issues in Pharmacy and Medical Sciences 2016, 29 (4), 151–154. 

https://doi.org/10.1515/cipms-2016-0031. 

(5)  Wang, D.; Kong, J.; Wu, J.; Wang, X.; Lai, M. GC-MS-Based Metabolomics 

Identifies an Amino Acid Signature of Acute Ischemic Stroke. Neurosci. Lett. 2017, 

642, 7–13. https://doi.org/10.1016/j.neulet.2017.01.039. 

(6)  Liu, P.; Li, R.; Antonov, A. A.; Wang, L.; Li, W.; Hua, Y.; Guo, H.; Wang, L.; 

Liu, P.; Chen, L.; Tian, Y.; Xu, F.; Zhang, Z.; Zhu, Y.; Huang, Y. Discovery of 

Metabolite Biomarkers for Acute Ischemic Stroke Progression. J. Proteome Res. 2017, 

16 (2), 773–779. https://doi.org/10.1021/acs.jproteome.6b00779. 

(7)  Kimberly, W. T.; Wang, Y.; Pham, L.; Furie, K. L.; Gerszten, R. E. Metabolite 

Profiling Identifies a Branched Chain Amino Acid Signature in Acute Cardioembolic 

Stroke. Stroke 2013, 44 (5), 1389–1395. 

https://doi.org/10.1161/STROKEAHA.111.000397. 

(8)  Liu, M.; Zhou, K.; Li, H.; Dong, X.; Tan, G.; Chai, Y.; Wang, W.; Bi, X. 

Potential of Serum Metabolites for Diagnosing Post-Stroke Cognitive Impairment. 

Mol Biosyst 2015, 11 (12), 3287–3296. https://doi.org/10.1039/c5mb00470e. 

(9)  Ke, C.; Pan, C.-W.; Zhang, Y.; Zhu, X.; Zhang, Y. Metabolomics Facilitates 

the Discovery of Metabolic Biomarkers and Pathways for Ischemic Stroke: A 

Systematic Review. Metabolomics 2019, 15 (12), 152. 

https://doi.org/10.1007/s11306-019-1615-1. 

(10)  Hasan, N.; McColgan, P.; Bentley, P.; Edwards, R. J.; Sharma, P. Towards the 

Identification of Blood Biomarkers for Acute Stroke in Humans: A Comprehensive 



| 74 

Systematic Review. Br J Clin Pharmacol 2012, 74 (2), 230–240. 

https://doi.org/10.1111/j.1365-2125.2012.04212.x. 

(11)  Tirschwell, D. L.; Smith, N. L.; Heckbert, S. R.; Lemaitre, R. N.; Longstreth, 

W. T.; Psaty, B. M. Association of Cholesterol with Stroke Risk Varies in Stroke 

Subtypes and Patient Subgroups. Neurology 2004, 63 (10), 1868–1875. 

https://doi.org/10.1212/01.wnl.0000144282.42222.da. 

(12)  Kurth, T.; Everett, B. M.; Buring, J. E.; Kase, C. S.; Ridker, P. M.; Gaziano, J. 

M. Lipid Levels and the Risk of Ischemic Stroke in Women. Neurology 2007, 68 (8), 

556–562. https://doi.org/10.1212/01.wnl.0000254472.41810.0d. 

(13)  Vauthey, C.; de Freitas, G. R.; van Melle, G.; Devuyst, G.; Bogousslavsky, J. 

Better Outcome after Stroke with Higher Serum Cholesterol Levels. Neurology 2000, 

54 (10), 1944–1949. https://doi.org/10.1212/wnl.54.10.1944. 

(14)  Dyker, A. G.; Weir, C. J.; Lees, K. R. Influence of Cholesterol on Survival after 

Stroke: Retrospective Study. BMJ 1997, 314 (7094), 1584–1588. 

https://doi.org/10.1136/bmj.314.7094.1584. 

(15)  Bang, O. Y.; Saver, J. L.; Liebeskind, D. S.; Starkman, S.; Villablanca, P.; 

Salamon, N.; Buck, B.; Ali, L.; Restrepo, L.; Vinuela, F.; Duckwiler, G.; Jahan, R.; 

Razinia, T.; Ovbiagele, B. Cholesterol Level and Symptomatic Hemorrhagic 

Transformation after Ischemic Stroke Thrombolysis. Neurology 2007, 68 (10), 737–

742. https://doi.org/10.1212/01.wnl.0000252799.64165.d5. 

(16)  Restrepo, L.; Bang, O. Y.; Ovbiagele, B.; Ali, L.; Kim, D.; Liebeskind, D. S.; 

Starkman, S.; Vinuela, F.; Duckwiler, G. R.; Jahan, R.; Saver, J. L. Impact of 

Hyperlipidemia and Statins on Ischemic Stroke Outcomes after Intra-Arterial 

Fibrinolysis and Percutaneous Mechanical Embolectomy. Cerebrovasc. Dis. 2009, 28 

(4), 384–390. https://doi.org/10.1159/000235625. 

(17)  Vignoli, A.; Ghini, V.; Meoni, G.; Licari, C.; Takis, P. G.; Tenori, L.; Turano, 

P.; Luchinat, C. High-Throughput Metabolomics by 1D NMR. Angew. Chem. Int. Ed. 

Engl. 2019, 58 (4), 968–994. https://doi.org/10.1002/anie.201804736. 

(18)  Takis, P. G.; Ghini, V.; Tenori, L.; Turano, P.; Luchinat, C. Uniqueness of the 

NMR Approach to Metabolomics. TrAC Trends in Analytical Chemistry 2019, 120, 

115300. https://doi.org/10.1016/j.trac.2018.10.036. 

(19)  Meoni, G.; Lorini, S.; Monti, M.; Madia, F.; Corti, G.; Luchinat, C.; Zignego, 

A. L.; Tenori, L.; Gragnani, L. The Metabolic Fingerprints of HCV and HBV 

Infections Studied by Nuclear Magnetic Resonance Spectroscopy. Scientific Reports 

2019, 9 (1), 4128. https://doi.org/10.1038/s41598-019-40028-4. 

(20)  Vignoli, A.; Orlandini, B.; Tenori, L.; Biagini, M. R.; Milani, S.; Renzi, D.; 

Luchinat, C.; Calabrò, A. S. Metabolic Signature of Primary Biliary Cholangitis and 

Its Comparison with Celiac Disease. J. Proteome Res. 2019, 18 (3), 1228–1236. 

https://doi.org/10.1021/acs.jproteome.8b00849. 

(21)  Vignoli, A.; Paciotti, S.; Tenori, L.; Eusebi, P.; Biscetti, L.; Chiasserini, D.; 

Scheltens, P.; Turano, P.; Teunissen, C.; Luchinat, C.; Parnetti, L. Fingerprinting 

Alzheimer’s Disease by 1H Nuclear Magnetic Resonance Spectroscopy of 



Results | 75 

Cerebrospinal Fluid. J. Proteome Res. 2020, 19 (4), 1696–1705. 

https://doi.org/10.1021/acs.jproteome.9b00850. 

(22)  Caracausi, M.; Ghini, V.; Locatelli, C.; Mericio, M.; Piovesan, A.; Antonaros, 

F.; Pelleri, M. C.; Vitale, L.; Vacca, R. A.; Bedetti, F.; Mimmi, M. C.; Luchinat, C.; 

Turano, P.; Strippoli, P.; Cocchi, G. Plasma and Urinary Metabolomic Profiles of 

Down Syndrome Correlate with Alteration of Mitochondrial Metabolism. Scientific 

Reports 2018, 8 (1), 2977. https://doi.org/10.1038/s41598-018-20834-y. 

(23)  Vignoli, A.; Tenori, L.; Giusti, B.; Takis, P. G.; Valente, S.; Carrabba, N.; 

Balzi, D.; Barchielli, A.; Marchionni, N.; Gensini, G. F.; Marcucci, R.; Luchinat, C.; 

Gori, A. M. NMR-Based Metabolomics Identifies Patients at High Risk of Death 

within Two Years after Acute Myocardial Infarction in the AMI-Florence II Cohort. 

BMC Med 2019, 17 (1), 3. https://doi.org/10.1186/s12916-018-1240-2. 

(24)  Di Donato, S.; Mislang, A. R.; Vignoli, A.; Mori, E.; Vitale, S.; Biagioni, C.; 

Hart, C.; Becheri, D.; Del Monte, F.; Luchinat, C.; Di Leo, A.; Mottino, G.; Tenori, 

L.; Biganzoli, L. Serum Metabolomic as Biomarkers to Differentiate Early from 

Metastatic Disease in Elderly Colorectal Cancer (Crc) Patients. Annals of Oncology 

2016, 27. https://doi.org/10.1093/annonc/mdw335.20. 

(25)  Inzitari Domenico; Giusti Betti; Nencini Patrizia; Gori Anna Maria; Nesi 

Mascia; Palumbo Vanessa; Piccardi Benedetta; Armillis Alessandra; Pracucci 

Giovanni; Bono Giorgio; Bovi Paolo; Consoli Domenico; Guidotti Mario; Nucera 

Antonia; Massaro Francesca; Micieli Giuseppe; Orlandi Giovanni; Perini Francesco; 

Tassi Rossana; Tola Maria Rosaria; Sessa Maria; Toni Danilo; Abbate Rosanna. 

MMP9 Variation After Thrombolysis Is Associated With Hemorrhagic 

Transformation of Lesion and Death. Stroke 2013, 44 (10), 2901–2903. 

https://doi.org/10.1161/STROKEAHA.113.002274. 

(26)  Gori, A. M.; Giusti, B.; Piccardi, B.; Nencini, P.; Palumbo, V.; Nesi, M.; 

Nucera, A.; Pracucci, G.; Tonelli, P.; Innocenti, E.; Sereni, A.; Sticchi, E.; Toni, D.; 

Bovi, P.; Guidotti, M.; Tola, M. R.; Consoli, D.; Micieli, G.; Tassi, R.; Orlandi, G.; 

Sessa, M.; Perini, F.; Delodovici, M. L.; Zedde, M. L.; Massaro, F.; Abbate, R.; 

Inzitari, D. Inflammatory and Metalloproteinases Profiles Predict Three-Month Poor 

Outcomes in Ischemic Stroke Treated with Thrombolysis. J. Cereb. Blood Flow 

Metab. 2017, 37 (9), 3253–3261. https://doi.org/10.1177/0271678X17695572. 

(27)  Wahlgren, N.; Ahmed, N.; Dávalos, A.; Ford, G. A.; Grond, M.; Hacke, W.; 

Hennerici, M. G.; Kaste, M.; Kuelkens, S.; Larrue, V.; Lees, K. R.; Roine, R. O.; 

Soinne, L.; Toni, D.; Vanhooren, G.; SITS-MOST investigators. Thrombolysis with 

Alteplase for Acute Ischaemic Stroke in the Safe Implementation of Thrombolysis in 

Stroke-Monitoring Study (SITS-MOST): An Observational Study. Lancet 2007, 369 

(9558), 275–282. https://doi.org/10.1016/S0140-6736(07)60149-4. 

(28)  Jiménez, B.; Holmes, E.; Heude, C.; Tolson, R. F.; Harvey, N.; Lodge, S. L.; 

Chetwynd, A. J.; Cannet, C.; Fang, F.; Pearce, J. T. M.; Lewis, M. R.; Viant, M. R.; 

Lindon, J. C.; Spraul, M.; Schäfer, H.; Nicholson, J. K. Quantitative Lipoprotein 

Subclass and Low Molecular Weight Metabolite Analysis in Human Serum and 



| 76 

Plasma by 1H NMR Spectroscopy in a Multilaboratory Trial. Anal. Chem. 2018, 90 

(20), 11962–11971. https://doi.org/10.1021/acs.analchem.8b02412. 

(29)  Ihaka, R.; Gentleman, R. R: A Language for Data Analysis and Graphics. J 

Comput Stat Graph 1996, 5, 299–314. 

(30)  Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical 

and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society. 

Series B (Methodological) 1995, 289–300. 

(31)  Conover, W. J. Practical Nonparametric Statistics, 3rd, 3rd edition.; Wiley: 

New York, 1999. 

(32)  Yang, L.; Lv, P.; Ai, W.; Li, L.; Shen, S.; Nie, H.; Shan, Y.; Bai, Y.; Huang, 

Y.; Liu, H. Lipidomic Analysis of Plasma in Patients with Lacunar Infarction Using 

Normal-Phase/Reversed-Phase Two-Dimensional Liquid Chromatography-

Quadrupole Time-of-Flight Mass Spectrometry. Anal Bioanal Chem 2017, 409 (12), 

3211–3222. https://doi.org/10.1007/s00216-017-0261-6. 

(33)  Ding, X.; Liu, R.; Li, W.; Ni, H.; Liu, Y.; Wu, D.; Yang, S.; Liu, J.; Xiao, B.; 

Liu, S. A Metabonomic Investigation on the Biochemical Perturbation in Post-Stroke 

Patients with Depressive Disorder (PSD). Metab Brain Dis 2016, 31 (2), 279–287. 

https://doi.org/10.1007/s11011-015-9748-z. 

(34)  Makihara, N.; Okada, Y.; Koga, M.; Shiokawa, Y.; Nakagawara, J.; Furui, E.; 

Kimura, K.; Yamagami, H.; Hasegawa, Y.; Kario, K.; Okuda, S.; Naganuma, M.; 

Toyoda, K. Effect of Serum Lipid Levels on Stroke Outcome after Rt-PA Therapy: 

SAMURAI Rt-PA Registry. Cerebrovasc. Dis. 2012, 33 (3), 240–247. 

https://doi.org/10.1159/000334664. 

(35)  Pan, S.-L.; Lien, I.-N.; Chen, T. H.-H. Is Higher Serum Total Cholesterol Level 

Associated with Better Long-Term Functional Outcomes after Noncardioembolic 

Ischemic Stroke? Arch Phys Med Rehabil 2010, 91 (6), 913–918. 

https://doi.org/10.1016/j.apmr.2010.02.002. 

(36)  Labreuche, J.; Deplanque, D.; Touboul, P.-J.; Bruckert, E.; Amarenco, P. 

Association between Change in Plasma Triglyceride Levels and Risk of Stroke and 

Carotid Atherosclerosis: Systematic Review and Meta-Regression Analysis. 

Atherosclerosis 2010, 212 (1), 9–15.  

https://doi.org/10.1016/j.atherosclerosis.2010.02.011. 

(37)  Berthet, C.; Castillo, X.; Magistretti, P. J.; Hirt, L. New Evidence of 

Neuroprotection by Lactate after Transient Focal Cerebral Ischaemia: Extended 

Benefit after Intracerebroventricular Injection and Efficacy of Intravenous 

Administration. Cerebrovasc. Dis. 2012, 34 (5–6), 329–335. 

https://doi.org/10.1159/000343657. 

(38)  Di Marino, S.; Viceconte, N.; Lembo, A.; Summa, V.; Tanzilli, G.; Raparelli, 

V.; Truscelli, G.; Mangieri, E.; Gaudio, C.; Cicero, D. O. Early Metabolic Response 

to Acute Myocardial Ischaemia in Patients Undergoing Elective Coronary 

Angioplasty. Open Heart 2018, 5 (1). https://doi.org/10.1136/openhrt-2017-000709. 



Results | 77 

(39)  Cotter, D. G.; Schugar, R. C.; Crawford, P. A. Ketone Body Metabolism and 

Cardiovascular Disease. Am. J. Physiol. Heart Circ. Physiol. 2013, 304 (8), H1060-

1076. https://doi.org/10.1152/ajpheart.00646.2012. 

(40)  Martin-Lorenzo, M.; Zubiri, I.; Maroto, A. S.; Gonzalez-Calero, L.; Posada-

Ayala, M.; de la Cuesta, F.; Mourino-Alvarez, L.; Lopez-Almodovar, L. F.; Calvo-

Bonacho, E.; Ruilope, L. M.; Padial, L. R.; Barderas, M. G.; Vivanco, F.; Alvarez-

Llamas, G. KLK1 and ZG16B Proteins and Arginine–Proline Metabolism Identified 

as Novel Targets to Monitor Atherosclerosis, Acute Coronary Syndrome and 

Recovery. Metabolomics 2014, 11 (5), 2. https://doi.org/10.1007/s11306-014-0761-8. 

(41)  McPherson, P. A. C.; McEneny, J. The Biochemistry of Ketogenesis and Its 

Role in Weight Management, Neurological Disease and Oxidative Stress. J. Physiol. 

Biochem. 2012, 68 (1), 141–151. https://doi.org/10.1007/s13105-011-0112-4. 

(42)  Marcondes-Braga, F. G.; Gutz, I. G. R.; Batista, G. L.; Saldiva, P. H. N.; Ayub-

Ferreira, S. M.; Issa, V. S.; Mangini, S.; Bocchi, E. A.; Bacal, F. Exhaled Acetone as 

a New Biomarker of Heart Failure Severity. Chest 2012, 142 (2), 457–466. 

https://doi.org/10.1378/chest.11-2892. 

(43)  Zeljkovic, A.; Vekic, J.; Spasojevic-Kalimanovska, V.; Jelic-Ivanovic, Z.; 

Bogavac-Stanojevic, N.; Gulan, B.; Spasic, S. LDL and HDL Subclasses in Acute 

Ischemic Stroke: Prediction of Risk and Short-Term Mortality. Atherosclerosis 2010, 

210 (2), 548–554. https://doi.org/10.1016/j.atherosclerosis.2009.11.040. 

(44)  McGarrah, R. W.; Kelly, J. P.; Craig, D. M.; Haynes, C.; Jessee, R. C.; 

Huffman, K. M.; Kraus, W. E.; Shah, S. H. A Novel Protein Glycan-Derived 

Inflammation Biomarker Independently Predicts Cardiovascular Disease and Modifies 

the Association of HDL Subclasses with Mortality. Clin. Chem. 2017, 63 (1), 288–

296. https://doi.org/10.1373/clinchem.2016.261636. 

(45)  Gomaraschi, M.; Ossoli, A.; Vitali, C.; Pozzi, S.; Vitali Serdoz, L.; Pitzorno, 

C.; Sinagra, G.; Franceschini, G.; Calabresi, L. Off-Target Effects of Thrombolytic 

Drugs: Apolipoprotein A-I Proteolysis by Alteplase and Tenecteplase. Biochem. 

Pharmacol. 2013, 85 (4), 525–530. https://doi.org/10.1016/j.bcp.2012.11.023. 

(46)  Meilhac, O. High-Density Lipoproteins in Stroke. In High Density 

Lipoproteins: From Biological Understanding to Clinical Exploitation; von 

Eckardstein, A., Kardassis, D., Eds.; Handbook of Experimental Pharmacology; 

Springer International Publishing: Cham, 2015; pp 509–526. 

https://doi.org/10.1007/978-3-319-09665-0_16. 

 

 

 



| 78 

Tables 

 

Table 1. Effect of statistically significantly (P-values < 0.05 and/or FDR < 0.05) associated pre (t1), 24h post (t2) and Δ(pre-post) rt-PA 

metabolites and lipids concentrations on three-month mortality, impairments, symptomatic intracerebral haemorrhage (sICHRCT12) and on 

the non-response to i.v. thrombolysis intervention, adjusting for major determinants for unfavourable outcomes, i.e. age, sex, time onset-to-

treatment, pre or 24h post rt-PA blood glucose level (for t1 and t2 models, respectively), baseline NIHSS, history of atrial fibrillation, 

congestive heart failure, recent infections or inflammations, hypertension, diabetes, hyperlipidaemia, smoke and blood collection center. 

 

Three-month mortality Three-month impairments SICHRCT12 Non-response to thrombolysis 

Analytes 
OR 

(95% CI) 
P FDR Analytes 

OR 

(95% CI) 
P FDR Analytes 

OR 

(95% CI) 
P FDR Analytes 

OR 

(95% CI) 
P FDR 

PRE (or BASELINE) rt-PA (t1) 

SubTrigl 

HDL-3 

0.55 (0.30-

1.0) 
0.04 0.98 

LDL-HDL-

Chol 

1.69 (1.16-

2.46) 

0.00

6 
0.18 3-HB 

0.65 (0.45-

0.94) 
0.02 0.39 3-HB 

0.71 (0.52-

1.0) 

0.0

3 
0.27 

    
Apo-B100-

Apo-A1 

1.73 (1.16-

2.59) 

0.00

7 
0.18 Acetone 

0.69 (0.48-

1.00) 
0.04 0.43 Acetone 

0.66 (0.48-

0.91) 

0.0

1 
0.21 

    LDL-6 PN 
1.47 (1.03-

2.09) 

0.03

5 
0.27         

    
LMF Phosp 

HDL 

0.55 (0.36-

0.85) 

0.00

7 
0.18         

    
LMF ApoA1 

HDL 

0.64 (0.43-

0.96) 

0.03

3 
0.27         

    
SubChol 

VLDL-5 

0.584 (0.39-

0.87) 

0.00

9 
0.18         

    
SubPhosp 

VLDL-5 

0.61 (0.41-

0.91) 

0.01

6 
0.22         

    
SubTrigl 

LDL-6 

1.53 (1.07-

2.18) 

0.01

9 
0.22         
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SubChol 

LDL-6 

1.52 (1.06-

2.18) 

0.02

4 
0.22         

    
SubFreeChol 

LDL-6 

1.64 (1.13-

2.38) 

0.00

9 
0.18         

    
SubPhosp 

LDL-6 

1.44 (1.01-

2.05) 

0.04

7 
0.31         

    
SubApoB 

LDL-5 

1.47 (1.03-

2.09) 

0.03

5 
0.27         

    
SubChol 

HDL-3 

0.66 (0.43-

0.99) 

0.04

6 
0.31         

    
SubPhosp 

HDL-2 

0.60 (0.39-

0.92) 

0.01

8 
0.22         

    
SubPhosp 

HDL-3 

0.51 (0.33-

0.80) 

0.00

4 
0.18         

    
SubApoA1 

HDL-2 

0.61 (0.40-

0.93) 

0.02

3 
0.22         

    
SubApoA1 

HDL-3 

0.60 (0.39-

0.93) 

0.02

2 
0.22         

24h POST rt-PA (t2) 

LMF Trigl 

HDL 

0.46 (0.22-

0.94) 
0.03 0.73 Aceticacid 

1.77 (1.16-

2.69) 

0.00

8 
0.14 Trigl 

2.60 (1.09-

6.20) 
0.03 0.20 Phe 

0.7 (0.52-

0.95) 

0.0

2 
0.13 

SubTrigl 

LDL-6 

1.97 (1.19-

3.26) 

0.00

8 
0.73 3-HB 

1.473(1.009-

2.15) 

0.04

5 
0.40 

LMF Trigl 

VLDL 

3.076 (1.21-

7.79) 
0.02 0.14 3-HB 

0.54 (0.38-

0.77) 

0.0

01 
0.009 

SubChol 

LDL-6 

2.004 (1.05-

3.83) 
0.04 0.73 LDL-Chol 

1.54 (1.009-

2.34) 

0.04

5 

0.22

5 
LMF Trigl IDL 

2.51 (1.08-

5.85) 
0.03 0.205 Acetone 

0.58 (0.40-

0.84) 

0.0

04 
0.04 

SubPhosp 

LDL-6 

1.95 (1.02-

3.74) 
0.04 0.73 Apo-B100 

1.69 (1.11-

2.58) 

0.01

5 
0.14 

LMF Chol 

VLDL 

2.64 (1.30-

5.35) 

0.00

7 
0.12 

SubPhosp 

VLDL-5 

1.36 (1.002-

1.84) 

0.0

5 
0.64 

SubTrigl 

HDL-3 

0.47 (0.23-

0.95) 
0.04 0.73 

LDL-HDL-

Chol 

1.65 (1.12-

2.44) 

0.01

1 
0.12 

LMF FreeChol 

VLDL 

2.87 (1.33-

6.19) 

0.00

7 
0.119 

SubTrigl 

HDL-4 

1.62 (1.16-

2.27) 

0.0

04 
0.51 
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SubTrigl 

HDL-4 

0.46 (0.23-

0.95) 
0.04 0.73 

Apo-B100-

Apo-A1 

1.87 (1.20-

2.90) 

0.00

5 

0.06

7 

LMF Phosp 

VLDL 

3.15 (1.38-

7.19) 

0.00

6 
0.119 

SubFreeChol 

HDL-2 

0.72 (0.52-

0.99) 

0.0

4 
0.64 

    TPN ApoB 
1.69 (1.11-

2.58) 

0.01

5 
0.14 

SubTrigl 

VLDL-2 

3.22 (1.43-

7.21) 

0.00

5 
0.12     

    LDL PN 
1.61 (1.06-

2.43) 

0.02

6 
0.19 

SubTrigl 

VLDL-3 

2.60 (1.26-

5.35) 

0.00

9 
0.12     

    LDL3 PN 
1.51 (1.002-

2.29) 

0.04

9 
0.22 

SubChol 

VLDL-1 

3.31 (1.23-

8.91) 

0.01

8 
0.14     

    LDL6 PN 
1.925 (1.27-

2.91) 

0.00

2 

0.05

2 

SubChol 

VLDL-2 

3.18 (1.46-

6.91) 

0.00

3 
0.12     

    
LMF Trigl 

VLDL 

1.56 (1.01-

2.41) 

0.04

4 
0.22 

SubChol 

VLDL-3 

2.46 (1.25-

4.85) 

0.00

9 
0.12     

    
LMF Chol 

IDL 

1.58 (1.05-

2.38) 

0.02

8 

0.19

4 

SubChol 

VLDL-4 

1.97 (1.096-

3.53) 
0.02 0.18     

    
LMF Chol 

LDL 

1.54 (1.009-

2.34) 

0.04

5 

0.22

5 

SubFreeChol 

VLDL-1 

3.078 (1.14-

8.31) 
0.03 0.19     

    
LMF 

FreeChol LDL 

1.62 (1.06-

2.47) 

0.02

6 

0.19

4 

SubFreeChol 

VLDL-2 
2.64 (1.25-5.6) 0.01 0.13     

    
LMF Phosp 

HDL 

0.63 (0.42-

0.96) 

0.03

1 
0.2 

SubFreeChol 

VLDL-3 

2.53 (1.21-

5.29) 
0.01 0.14     

    
LMF ApoB 

LDL 

1.61 (1.059-

2.43) 

0.02

6 
0.19 

SubPhosp 

VLDL-1 

3.51 (1.28-

10.085) 
0.01 0.14     

    
SubTrigl 

VLDL-1 

1.60 (1.05-

2.45) 

0.02

9 
0.19 

SubPhosp 

VLDL-2 

3.27 (1.51-

7.12) 

0.00

3 
0.12     

    
SubChol 

VLDL-5 

0.46 (0.30-

0.71) 
0.01 

0.05

2 

SubPhosp 

VLDL-3 

2.55 (1.27-

5.11) 

0.00

8 
0.12     

    
SubPhosp 

VLDL-5 

0.55 (0.36-

0.83) 

0.00

5 

0.06

7 

SubTrigl HDL-

4 

1.77 (1.01-

3.089) 
0.04 0.27     
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SubTrigl 

LDL-6 

1.89 (1.25-

2.86) 

0.00

3 

0.05

2 
        

    
SubChol 

LDL-6 

1.87 (1.24-

2.81) 

0.00

3 

0.05

2 
        

    
SubFreeChol 

LDL-6 

1.98 (1.31-

3.0) 

0.00

1 

0.05

2 
        

    
SubPhosp 

LDL-6 

1.81 (1.21-

2.71) 

0.00

4 

0.06

1 
        

    
SubApoB 

LDL-3 

1.51 (1.001-

2.29) 

0.04

9 
0.22         

    
SubApoB 

LDL-5 

1.92 (1.27-

2.91) 

0.00

2 

0.05

2 
        

    
SubPhosp 

HDL-3 

0.67 (0.45-

1.0) 

0.04

8 
0.22         

Δ(pre-post)rt-PA 

LMF Trigl 

LDL 

0.56 (0.35-

0.90) 
0.02 0.76 Glu 

1.56 (1.05-

2.32) 

0.02

6 
0.44 Phe 

0.55 (0.34-

0.88) 
0.01 0.21 Ala 

1.35 (1.011-

1.80) 

0.0

4 
0.26 

LMF Trigl 

HDL 

0.54 (0.33-

0.9) 
0.02 0.76 Aceticacid 

1.56 (1.003-

2.42) 

0.04

8 
0.44 Pyruvicacid 

0.55 (0.32-

0.94) 
0.03 0.21 Acetone 

0.71 (0.53-

0.94) 

0.0

2 
0.26 

SubTrigl 

LDL-1 

0.53 (0.30-

0.95) 
0.03 0.76 

SubFreeChol 

HDL-2 

1.52 (1.033-

2.23) 

0.03

3 
0.89 Glucose 

0.54 (0.31-

0.96) 
0.03 0.213 Apo-B100 

0.74 (0.56-

0.99) 

0.0

4 
0.88 

SubTrigl 

LDL-2 

0.52 (0.29-

0.93) 
0.03 0.76 

SubPhosp 

HDL-1 

1.49 (1.037-

2.15) 

0.03

1 
0.89 Trigl 

1.63 (1.015-

2.62) 
0.04 0.27 TPN 

0.74 (0.56-

0.99) 

0.0

4 
0.88 

SubTrigl 

HDL-4 

0.60 (0.37-

0.96) 
0.03 0.76 

SubApoA2 

HDL-1 

1.52 (1.045-

2.20) 

0.02

8 
0.89 VLDL PN 

1.81 (1.11-

2.96) 
0.02 0.22 LDL3 PN 

0.69 (0.51-

0.94) 

0.0

2 
0.88 

    
SubApoA2 

HDL-2 

1.54 (1.057-

2.25) 

0.02

5 
0.89 

LMF Trigl 

VLDL 

1.68 (1.027-

2.74) 
0.04 0.27 

SubApoB 

LDL-3 

0.69 (0.51-

0.94) 

0.0

2 
0.88 

        LMF Trigl IDL 
1.78 (1.033-

3.068) 
0.04 0.27 

SubTrigl 

HDL-4 

1.42 (1.038-

1.94) 

0.0

3 
0.88 
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LMF Chol 

VLDL 

1.753 (1.094-

2.808) 
0.02 0.22     

        
LMF FreeChol 

VLDL 

1.797 (1.117-

2.89) 
0.02 0.22     

        
LMF Phosp 

VLDL 

2.112 (1.268-

3.518) 

0.00

4 
0.22     

        
LMF ApoB 

VLDL 

1.813 (1.11-

2.96) 
0.02 0.22     

        
SubTrigl 

VLDL-2 

1.768 (1.048-

2.983) 
0.03 0.27     

        
SubTrigl 

VLDL-4 

1.815 (1.031-

3.193) 
0.04 0.27     

        
SubChol 

VLDL-2 

1.957 (1.207-

3.172) 

0.00

6 
0.22     

        
SubChol 

VLDL-3 

1.694 (1.013-

2.833) 
0.04 0.27     

        
SubChol 

VLDL-4 

1.593 (1.016-

2.497) 
0.04 0.27     

        
SubFreeChol 

VLDL-1 

1.917 (1.129-

3.254) 
0.02 0.22     

        
SubPhosp 

VLDL-2 

2.199 (1.316-

3.675) 

0.00

3 
0.22     

        
SubPhosp 

VLDL-3 

2.042 (1.176-

3.546) 
0.01 0.22     

        
SubPhosp 

VLDL-4 

1.719 (1.055-

2.803) 
0.03 0.27     

        
SubTrigl HDL-

3 

1.721 (1.103-

2.683) 
0.02 0.22     
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SubTrigl HDL-

4 

1.63 (1.039-

2.557) 
0.03 0.27     

* Main abbreviations are reported as follows: NIHSS: National Institutes of Health Stroke Scale; OR: odds ratio; CI: confidence interval; P: P-values; trigl: triglycerides; chol: cholesterol; 

phosp: phospholipids; Apo: apolipoprotein; LMF: lipoprotein main fraction; Sub: subfraction; PN: particle number; 3-HB: 3-hydroxybutyrate. Amino acids are reported with the three 

letters code. 

 

 

Table 2. ROC curve models for pre- (t1), 24h post- (t2) and Δ(pre-post)rt-PA metabolites/lipids values considering four different post-stroke 

poor outcomes, defined at three months from the bad event (i.e. mortality, impairments, haemorrhagic transformation and non-response to 

the i.v. thrombolytic treatment). AUC values are reported both for baseline models (built considering only clinical characteristics, risk factors 

and comorbidities) and for models obtained after adding selected combinations among the top three statistically significant metabolomic 

features, selected from previous logistic regression analysis. P-values are also reported to evidence significant changes (highlighted in green) 

in the prediction of poor outcomes after considering the associations of metabolomic and clinical features. After adding metabolomic features 

to baseline clinical ROC models, we reported in yellow AUC increases. 
 

Bas1: age, gender, blood collection center, time onset-to-treatment, recent infections or inflammations, baseline values of glycemia, NIHSS and history of atrial fibrillation and congestive 

heart failure; Bas2: age, gender, blood collection center, time onset-to-treatment, 24h post rt-PA glycemia, recent infections or inflammations, baseline values of NIHSS, history of atrial 

fibrillation and congestive heart failure. A: HDL-3 triglycerides; B: LDL-6 triglycerides, HDL triglycerides, LDL-6 cholesterol; C: main fraction triglycerides LDL, HDL, LDL-2 

 Mortality Impairment Haemorrhage No response to thrombolysis 

 model AUC 95% CI P-value model AUC 95% CI P-value model AUC 95% CI P-value model AUC 95% CI P-value 

t1 

Bas1 0.72 
0.612-

0.836 
0.825 

Bas1 0.81 
0.758-

0.871 
0.193 

Bas1 0.58 
0.454-

0.700 
0.349 

Bas1 0.54 
0.467-

0.614 
0.258 

Bas1 + A 0.72 
0.609-

0.826 
Bas1 + D 0.83 

0.774-

0.880 
Bas1 + G 0.59 

0.459-

0.713 
Bas1 + J 0.55 

0.479-

0.625 

t2 

Bas2 0.76 
0.662-

0.854 
0.155 

Bas2 0.81 
0.748-

0.866 
0.037 

Bas2 0.56 
0.438-

0.673 
0.039 

Bas2 0.56 
0.486-

0.635 
0.015 

Bas2 + B 0.80 
0.730-

0.880 
Bas2 + E 0.84 

0.791-

0.895 
Bas2 + H 0.64 

0.536-

0.736 
Bas2 + K 0.62 

0.545-

0.69 

Δ(pre-

post)rt-PA 

Bas1 0.72 
0.612-

0.836 
0.29 

Bas1 0.81 
0.758-

0.871 
0.57 

Bas1 0.58 
0.454-

0.700 
0.063 

Bas1 0.54 
0.467-

0.614 
0.062 

Bas1 + C 0.74 
0.636-

0.85 
Bas1 + F 0.81 

0.756-

0.87 
Bas1 + I 0.65 

0.531-

0.776 
Bas1 + L 0.58 

0.509-

0.654 
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triglycerides; D: HDL-3 phospholipids, HDL phospholipids main fraction, HDL/LDL cholesterol; E: VLDL-5 cholesterol, LDL-6 free cholesterol, LDL-5 apolipoprotein B; F: glutamate, 

HDL-1 apolipoprotein A2, HDL-2 apolipoprotein A2; G: 3-HB, acetone; H: VLDL-2 cholesterol/phospholipids/triglycerides; I: main fraction VLDL phospholipids, VLDL-2 cholesterol, 

VLDL-2 phospholipids; J: 3-HB, acetone; K: 3-hydroxybutyrate, acetone; L: acetone, LDL-3 particle number, LDL-3 apolipoprotein B.
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Table 3. Metabolites and lipids univariate pairwise-variations related to the 

thrombolytic intervention (rt-PA). Metabolic variations are evaluated in serum 

samples collected before (t1), 24h (t2) and three-month (t3) after rt-PA, using the 

Friedman test followed by post-hoc Nemenyi analysis. FDR values are reported for 

each comparison performed. FDR < 0.01 are highlighted in light grey. 

 
 t1-t2 t2-t3 t1-t3 

Creatinine 8.53E-01 8.53E-01 8.53E-01 

Ala 4.63E-01 3.09E-04 1.31E-02 

Glu 9.44E-01 9.44E-01 9.44E-01 

Gln 2.52E-01 6.80E-06 3.37E-03 

Gly 4.01E-01 1.69E-09 1.69E-06 

His 6.24E-01 3.06E-01 7.16E-01 

Ile 8.91E-01 8.91E-01 8.91E-01 

Leu 8.79E-01 8.79E-01 8.79E-01 

Phe 6.99E-01 3.25E-01 6.71E-01 

Tyr 9.53E-01 9.53E-01 9.53E-01 

Val 7.69E-01 9.90E-01 7.69E-01 

Aceticacid 2.18E-01 4.48E-03 6.80E-06 

Citricacid 7.80E-06 1.29E-01 1.20E-02 

Lacticacid 1.53E-05 9.62E-02 2.73E-02 

3-HB 8.79E-01 1.08E-08 9.98E-10 

Acetone 2.56E-04 1.02E-13 5.34E-07 

Pyruvicacid 9.35E-01 8.62E-02 1.06E-01 

Glucose 4.80E-01 1.65E-06 2.19E-04 

Trigl 6.18E-02 1.78E-01 2.45E-04 

Chol 2.67E-02 4.79E-04 9.98E-10 

LDL-Chol 7.32E-01 2.76E-07 7.67E-06 

HDL-Chol 2.16E-01 9.61E-01 2.16E-01 

Apo-A1 2.60E-05 8.79E-01 1.22E-04 

Apo-A2 1.83E-03 4.00E-02 4.96E-01 

Apo-B100 5.97E-01 7.15E-07 4.79E-09 

LDL-HDL-Chol 1.44E-01 6.99E-10 1.69E-05 

Apo-B100-Apo-A1 1.25E-03 7.23E-14 8.27E-07 

Total PN ApoB 6.31E-01 6.18E-07 5.68E-09 

VLDL PN 5.63E-01 1.19E-03 2.15E-02 

IDL PN 1.10E-02 7.32E-01 1.48E-03 

LDL PN 9.03E-01 1.51E-08 2.02E-09 

LDL-1 PN 5.42E-02 3.84E-04 4.03E-09 

LDL-2 PN 2.25E-03 5.34E-11 1.87E-03 

LDL-3 PN 9.25E-01 2.84E-10 1.70E-09 

LDL-4 PN 9.90E-01 4.47E-06 4.47E-06 

LDL-5 PN 3.86E-01 9.30E-05 8.48E-03 

LDL-6 PN 7.95E-01 7.60E-02 2.40E-02 
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LMF Trigl VLDL 4.64E-02 7.32E-01 8.96E-03 

LMF Trigl IDL 3.15E-01 4.00E-02 4.90E-04 

LMF Trigl LDL 4.96E-01 1.74E-04 1.43E-06 

LMF Trigl HDL 1.65E-06 1.02E-01 6.48E-03 

LMF Chol VLDL 1.44E-01 1.44E-01 1.48E-03 

LMF Chol IDL 5.40E-03 3.15E-01 2.60E-05 

LMF Chol LDL 7.32E-01 2.76E-07 7.67E-06 

LMF Chol HDL 2.16E-01 9.61E-01 2.16E-01 

LMF FreeChol VLDL 7.05E-02 4.64E-02 2.00E-05 

LMF FreeChol IDL 1.31E-02 3.71E-01 1.52E-04 

LMF FreeChol LDL 1.00E+00 7.43E-08 7.43E-08 

LMF FreeChol HDL 1.95E-06 2.99E-03 9.59E-14 

LMF Phosp VLDL 6.18E-02 7.95E-01 1.85E-02 

LMF Phosp IDL 1.20E-02 4.01E-01 1.71E-04 

LMF Phosp LDL 8.79E-01 1.49E-07 1.10E-06 

LMF Phosp HDL 1.17E-05 6.19E-02 4.00E-02 

LMF ApoA1 HDL 9.58E-04 9.44E-01 1.69E-03 

LMF ApoA2 HDL 2.45E-04 6.18E-02 1.78E-01 

LMF ApoB VLDL 5.63E-01 1.19E-03 2.15E-02 

LMF ApoB IDL 1.10E-02 7.32E-01 1.48E-03 

LMF ApoB LDL 9.03E-01 1.51E-08 2.02E-09 

SubTrigl VLDL-1 2.25E-03 9.75E-01 2.52E-03 

SubTrigl VLDL-2 2.54E-01 1.63E-01 8.66E-01 

SubTrigl VLDL-3 4.32E-01 1.07E-01 4.32E-01 

SubTrigl VLDL-4 2.52E-03 2.25E-03 9.75E-01 

SubTrigl VLDL-5 1.68E-03 2.97E-12 5.34E-04 

SubChol VLDL-1 3.40E-06 9.94E-01 3.40E-06 

SubChol VLDL-2 6.14E-01 6.14E-01 2.11E-01 

SubChol VLDL-3 5.36E-02 7.16E-01 9.84E-03 

SubChol VLDL-4 3.71E-01 4.66E-02 3.71E-01 

SubChol VLDL-5 7.15E-07 6.48E-12 1.29E-01 

SubFreeChol VLDL-1 1.18E-02 3.86E-01 2.16E-01 

SubFreeChol VLDL-2 2.40E-01 2.40E-01 6.13E-03 

SubFreeChol VLDL-3 2.33E-02 8.66E-01 8.96E-03 

SubFreeChol VLDL-4 9.68E-01 1.55E-02 1.42E-02 

SubFreeChol VLDL-5 1.20E-02 1.29E-01 7.80E-06 

SubPhosp VLDL-1 6.40E-05 3.01E-01 1.10E-02 

SubPhosp VLDL-2 1.00E+00 1.00E+00 1.00E+00 

SubPhosp VLDL-3 9.94E-01 9.94E-01 9.94E-01 

SubPhosp VLDL-4 1.55E-02 6.13E-03 8.79E-01 

SubPhosp VLDL-5 1.48E-05 1.12E-08 3.28E-01 

SubTrigl LDL-1 6.65E-01 4.65E-05 1.24E-06 

SubTrigl LDL-2 9.61E-01 3.07E-04 1.93E-04 

SubTrigl LDL-3 9.90E-01 9.38E-11 1.18E-10 

SubTrigl LDL-4 3.86E-01 4.37E-05 4.92E-03 
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SubTrigl LDL-5 1.00E+00 3.71E-02 3.71E-02 

SubTrigl LDL-6 7.64E-01 2.73E-02 5.56E-03 

SubChol LDL-1 2.67E-02 2.29E-03 1.32E-08 

SubChol LDL-2 2.52E-03 8.36E-10 6.74E-03 

SubChol LDL-3 7.95E-01 3.54E-08 7.15E-07 

SubChol LDL-4 9.53E-01 1.02E-05 2.19E-05 

SubChol LDL-5 5.80E-01 1.34E-04 3.71E-03 

SubChol LDL-6 9.44E-01 2.52E-02 1.85E-02 

SubFreeChol LDL-1 4.01E-01 2.45E-04 9.21E-07 

SubFreeChol LDL-2 1.97E-02 6.75E-08 8.48E-03 

SubFreeChol LDL-3 7.32E-01 1.19E-09 6.36E-08 

SubFreeChol LDL-4 9.81E-01 3.96E-08 2.56E-08 

SubFreeChol LDL-5 6.14E-01 4.97E-05 1.38E-03 

SubFreeChol LDL-6 7.80E-01 8.62E-02 2.16E-01 

SubPhosp LDL-1 8.00E-02 7.38E-04 3.01E-08 

SubPhosp LDL-2 2.99E-03 1.64E-10 2.52E-03 

SubPhosp LDL-3 7.64E-01 4.90E-08 1.27E-06 

SubPhosp LDL-4 8.39E-01 3.38E-06 2.82E-05 

SubPhosp LDL-5 5.63E-01 3.09E-04 7.76E-03 

SubPhosp LDL-6 5.80E-01 2.54E-01 4.30E-02 

SubApoB LDL-1 5.42E-02 3.84E-04 4.03E-09 

SubApoB LDL-2 2.25E-03 5.34E-11 1.87E-03 

SubApoB LDL-3 9.25E-01 2.84E-10 1.70E-09 

SubApoB LDL-4 9.90E-01 4.47E-06 4.47E-06 

SubApoB LDL-5 3.86E-01 9.30E-05 8.48E-03 

SubApoB LDL-6 8.10E-01 8.13E-02 2.85E-02 

SubTrigl HDL-1 8.21E-05 7.10E-03 4.01E-01 

SubTrigl HDL-2 4.14E-03 6.62E-02 5.13E-01 

SubTrigl HDL-3 2.75E-04 1.53E-03 8.25E-01 

SubTrigl HDL-4 5.08E-01 8.53E-01 6.24E-01 

SubChol HDL-1 1.48E-03 1.53E-01 1.98E-01 

SubChol HDL-2 2.41E-01 9.98E-01 2.41E-01 

SubChol HDL-3 1.83E-03 7.95E-01 9.27E-03 

SubChol HDL-4 2.33E-02 5.04E-03 7.80E-01 

SubFreeChol HDL-1 1.07E-06 1.44E-01 2.78E-03 

SubFreeChol HDL-2 2.56E-08 4.29E-04 1.02E-01 

SubFreeChol HDL-3 4.32E-01 8.53E-01 5.56E-01 

SubFreeChol HDL-4 7.95E-01 1.42E-02 4.99E-02 

SubPhosp HDL-1 6.15E-04 7.38E-04 9.75E-01 

SubPhosp HDL-2 7.69E-04 1.44E-01 1.44E-01 

SubPhosp HDL-3 1.52E-04 1.15E-01 8.13E-02 

SubPhosp HDL-4 5.97E-01 2.72E-01 5.97E-01 

SubApoA1 HDL-1 1.12E-03 1.12E-03 1.00E+00 

SubApoA1 HDL-2 1.49E-07 1.25E-03 1.08E-01 

SubApoA1 HDL-3 1.07E-06 7.32E-01 2.48E-05 
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SubApoA1 HDL-4 9.03E-01 4.30E-02 7.10E-02 

SubApoA2 HDL-1 9.19E-09 4.08E-10 8.25E-01 

SubApoA2 HDL-2 6.99E-10 7.11E-10 9.94E-01 

SubApoA2 HDL-3 1.65E-06 7.67E-06 9.03E-01 

SubApoA2 HDL-4 8.91E-01 8.91E-01 8.91E-01 

* To perform multiple comparison among the three-time points, 173 subjects have been used.  

Main abbreviations are reported as follows: trigl: triglycerides; chol: cholesterol; phosp: phospholipids; Apo: 

apolipoprotein; LMF: lipoprotein main fraction; Sub: subfraction; PN: particle number; 3-HB: 3-hydroxybutyrate. 

Amino acids are reported with the three letters code. 

 

Figures 

 

Figure 1. Graphical representation of the analysis followed to identify, in serum 

samples, possible predictors of three-months poor outcomes of acute ischemic stroke 

(AIS) and to estimate metabolic variations with respect to intravenous thrombolysis 

with recombinant tissue plasminogen activator (rt-PA). Blood samples were collected 

before (t1), 24h after (t2) and 3-months after (t3) the administration of rt-PA. Poor 

outcomes were defined at three-months as follow: mortality, impairment development, 

haemorrhagic transformation of the lesion, non-response to the thrombolysis. For each 

time-point of blood collection, three different types of 1D NMR spectra have been 

acquired and 1D NOESY spectra were used to estimate metabolites and lipids 

concentrations; t1, t2 and Δ(t1-t2) concentrations were employed for logistic regression 

and ROC curve analysis; while a pairwise univariate analysis was conducted using t1, 

t2 and t3 concentrations of metabolic variables. 
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Supplementary Material 

 

Table S1. Effect of pre (t1) rt-PA metabolites and lipids levels on three-months mortality, impairments, symptomatic intracerebral 

haemorrhage (sICHRCT12) and on the response to i.v. thrombolysis intervention, adjusting *for major determinants for unfavourable 

outcomes. 

 
 Three-months mortality  Three-months impairments  SICHRCT12  Non-response to thrombolysis 

 OR (95% CI) P FDR  OR (95% CI) P FDR  OR (95% CI) P FDR  OR (95% CI) P FDR 

Creatinine 1.668 (0.875-3.181) 0.12 0.709  0.833 (0.527-1.318) 0.435 0.771  0.98 (0.602-1.596) 0.935 0.951  1.243 (0.912-1.695) 0.169 0.894 

Ala 1.177 (0.718-1.931) 0.517 0.795  1.27 (0.858-1.878) 0.232 0.771  1.251 (0.669-2.338) 0.483 0.951  0.926 (0.693-1.237) 0.602 0.894 

Glu 1.305 (0.808-2.108) 0.277 0.795  0.811 (0.546-1.205) 0.299 0.771  1.104 (0.63-1.934) 0.728 0.951  1.103 (0.825-1.476) 0.509 0.894 

Gln 1.104 (0.585-2.082) 0.76 0.805  0.866 (0.59-1.27) 0.461 0.771  0.811 (0.437-1.507) 0.508 0.951  0.997 (0.734-1.352) 0.982 0.982 

Gly 1.202 (0.71-2.033) 0.493 0.795  1.051 (0.714-1.546) 0.801 0.892  1.311 (0.69-2.491) 0.408 0.951  0.932 (0.694-1.251) 0.638 0.894 

His 1.228 (0.867-1.739) 0.248 0.795  1.143 (0.851-1.537) 0.375 0.771  1.4 (0.382-5.133) 0.611 0.951  0.947 (0.728-1.231) 0.682 0.894 

Ile 0.992 (0.6-1.641) 0.974 0.974  0.999 (0.684-1.457) 0.995 0.995  1.044 (0.609-1.791) 0.875 0.951  0.967 (0.731-1.277) 0.811 0.973 

Leu 1.157 (0.716-1.868) 0.552 0.795  1.087 (0.758-1.557) 0.65 0.78  1.08 (0.63-1.851) 0.78 0.951  0.946 (0.715-1.25) 0.695 0.894 

Phe 1.107 (0.697-1.758) 0.667 0.805  1.258 (0.89-1.779) 0.194 0.771  1.05 (0.623-1.769) 0.855 0.951  0.867 (0.653-1.153) 0.327 0.894 

Tyr 1.165 (0.711-1.908) 0.544 0.795  1.334 (0.919-1.936) 0.13 0.771  1.164 (0.676-2.003) 0.584 0.951  0.934 (0.699-1.246) 0.642 0.894 

Val 1.732 (0.976-3.074) 0.06 0.709  1.108 (0.767-1.601) 0.585 0.78  1.433 (0.808-2.543) 0.219 0.951  0.985 (0.736-1.319) 0.92 0.982 

Aceticacid 0.599 (0.1-3.58) 0.575 0.795  0.819 (0.416-1.611) 0.562 0.78  5.628 (0.402-78.742) 0.199 0.951  1.184 (0.835-1.68) 0.342 0.894 

Citricacid 0.876 (0.385-1.996) 0.753 0.805  0.76 (0.396-1.458) 0.409 0.771  1.047 (0.414-2.645) 0.923 0.951  1.361 (0.843-2.196) 0.207 0.894 

Lacticacid 1.525 (0.849-2.739) 0.157 0.709  1.106 (0.753-1.624) 0.608 0.78  1.297 (0.576-2.919) 0.53 0.951  1.011 (0.751-1.362) 0.941 0.982 

3-HB 0.795 (0.449-1.407) 0.43 0.795  1.131 (0.81-1.579) 0.471 0.771  0.648 (0.447-0.939) 0.022 0.392  0.708 (0.519-0.967) 0.03 0.269 

Acetone 0.901 (0.533-1.525) 0.698 0.805  1.17 (0.825-1.658) 0.378 0.771  0.692 (0.48-0.997) 0.048 0.434  0.66 (0.477-0.913) 0.012 0.215 

Pyruvicacid 1.491 (0.906-2.454) 0.116 0.709  1.042 (0.694-1.564) 0.842 0.892  1.022 (0.514-2.029) 0.951 0.951  1.132 (0.825-1.553) 0.443 0.894 

Glucose 1.356 (0.497-3.699) 0.552 0.795  1.405 (0.702-2.813) 0.337 0.771  1.296 (0.441-3.805) 0.638 0.951  0.784 (0.457-1.343) 0.375 0.894 

Trigl 0.779 (0.409-1.485) 0.448 0.983  1.105 (0.754-1.621) 0.608 0.771  0.961 (0.578-1.6) 0.88 0.996  1.091 (0.822-1.448) 0.547 0.982 
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Chol 0.949 (0.514-1.749) 0.866 0.983  1.237 (0.835-1.833) 0.289 0.568  1.172 (0.674-2.036) 0.574 0.996  0.973 (0.727-1.303) 0.856 0.982 

LDL-Chol 1.055 (0.584-1.904) 0.86 0.983  1.43 (0.972-2.105) 0.069 0.33  1.077 (0.632-1.836) 0.785 0.996  0.935 (0.7-1.249) 0.649 0.982 

HDL-Chol 0.705 (0.394-1.262) 0.24 0.983  0.716 (0.484-1.059) 0.095 0.385  0.999 (0.592-1.685) 0.996 0.996  0.933 (0.696-1.252) 0.645 0.982 

Apo-A1 0.657 (0.364-1.185) 0.163 0.983  0.669 (0.444-1.009) 0.055 0.32  1.078 (0.631-1.844) 0.783 0.996  1.082 (0.799-1.464) 0.611 0.982 

Apo-A2 0.829 (0.455-1.508) 0.538 0.983  0.806 (0.544-1.196) 0.284 0.568  1.195 (0.699-2.041) 0.515 0.996  1.004 (0.74-1.363) 0.98 0.991 

Apo-B100 0.93 (0.492-1.757) 0.822 0.983  1.459 (0.99-2.149) 0.056 0.32  1.041 (0.603-1.799) 0.885 0.996  1.018 (0.766-1.353) 0.901 0.988 

LDL-HDL-Chol 1.306 (0.685-2.491) 0.417 0.983  1.689 (1.158-2.462) 0.006 0.177  1.258 (0.707-2.238) 0.435 0.996  0.991 (0.748-1.314) 0.951 0.991 

Apo-B100-Apo-A1 1.255 (0.763-2.065) 0.371 0.983  1.735 (1.161-2.593) 0.007 0.177  1.027 (0.633-1.665) 0.915 0.996  0.945 (0.713-1.252) 0.693 0.982 

TPN 0.93 (0.492-1.757) 0.822 0.983  1.459 (0.99-2.149) 0.056 0.32  1.041 (0.603-1.799) 0.885 0.996  1.018 (0.766-1.353) 0.901 0.988 

VLDL_PN 0.805 (0.438-1.478) 0.484 0.983  1.081 (0.738-1.585) 0.689 0.827  0.936 (0.575-1.524) 0.791 0.996  1.148 (0.865-1.524) 0.338 0.982 

IDL_PN 0.983 (0.55-1.757) 0.954 0.983  1.167 (0.798-1.707) 0.426 0.639  1.003 (0.6-1.676) 0.991 0.996  1.092 (0.825-1.446) 0.539 0.982 

LDL_PN 1.124 (0.614-2.058) 0.705 0.983  1.446 (0.981-2.13) 0.062 0.323  1.027 (0.606-1.744) 0.92 0.996  0.953 (0.716-1.268) 0.741 0.982 

LDL1_PN 0.927 (0.512-1.679) 0.803 0.983  1.013 (0.689-1.489) 0.948 0.974  0.83 (0.488-1.412) 0.493 0.996  0.959 (0.711-1.293) 0.781 0.982 

LDL2_PN 0.743 (0.405-1.362) 0.336 0.983  1.171 (0.813-1.686) 0.397 0.639  0.868 (0.511-1.473) 0.6 0.996  0.925 (0.69-1.24) 0.602 0.982 

LDL3_PN 1.33 (0.728-2.429) 0.353 0.983  1.381 (0.937-2.036) 0.103 0.387  0.99 (0.58-1.689) 0.969 0.996  0.869 (0.648-1.166) 0.35 0.982 

LDL4_PN 1.462 (0.873-2.447) 0.148 0.983  1.122 (0.779-1.616) 0.536 0.711  1.095 (0.664-1.807) 0.722 0.996  0.997 (0.745-1.334) 0.983 0.991 

LDL5_PN 1.083 (0.593-1.978) 0.795 0.983  1.275 (0.879-1.847) 0.2 0.514  1.164 (0.679-1.995) 0.58 0.996  1.076 (0.805-1.439) 0.619 0.982 

LDL6_PN 0.908 (0.446-1.848) 0.79 0.983  1.466 (1.026-2.094) 0.035 0.27  1.295 (0.687-2.44) 0.424 0.996  0.971 (0.729-1.292) 0.838 0.982 

LMF_Trigl_VLDL 0.815 (0.427-1.557) 0.536 0.983  1.18 (0.801-1.737) 0.403 0.639  1.013 (0.594-1.727) 0.962 0.996  1.067 (0.801-1.421) 0.656 0.982 

LMF_Trigl_IDL 0.762 (0.401-1.449) 0.407 0.983  1.054 (0.723-1.538) 0.784 0.894  0.929 (0.567-1.523) 0.77 0.996  1.089 (0.822-1.442) 0.553 0.982 

LMF_Trigl_LDL 1.009 (0.595-1.712) 0.973 0.983  1.167 (0.802-1.699) 0.419 0.639  0.908 (0.567-1.452) 0.686 0.996  1.092 (0.823-1.448) 0.543 0.982 

LMF_Trigl_HDL 0.654 (0.357-1.2) 0.17 0.983  0.769 (0.522-1.132) 0.184 0.514  0.944 (0.575-1.55) 0.82 0.996  1.281 (0.949-1.731) 0.106 0.982 

LMF_Chol_VLDL 0.813 (0.422-1.569) 0.538 0.983  1.078 (0.737-1.576) 0.699 0.831  1.134 (0.663-1.941) 0.645 0.996  1.172 (0.886-1.551) 0.267 0.982 

LMF_Chol_IDL 1.023 (0.547-1.913) 0.943 0.983  1.272 (0.865-1.87) 0.221 0.514  1.151 (0.663-2) 0.617 0.996  1.083 (0.818-1.434) 0.577 0.982 

LMF_Chol_LDL 1.055 (0.584-1.904) 0.86 0.983  1.43 (0.972-2.105) 0.069 0.33  1.077 (0.632-1.836) 0.785 0.996  0.935 (0.7-1.249) 0.649 0.982 

LMF_Chol_HDL 0.705 (0.394-1.262) 0.24 0.983  0.716 (0.484-1.059) 0.095 0.385  0.999 (0.592-1.685) 0.996 0.996  0.933 (0.696-1.252) 0.645 0.982 

LMF_FreeChol_VLDL 0.739 (0.376-1.455) 0.382 0.983  1.076 (0.731-1.584) 0.71 0.835  1.06 (0.619-1.816) 0.832 0.996  1.139 (0.857-1.514) 0.371 0.982 
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LMF_FreeChol_IDL 0.967 (0.521-1.796) 0.916 0.983  1.22 (0.828-1.797) 0.314 0.607  1.099 (0.638-1.893) 0.734 0.996  1.096 (0.828-1.451) 0.523 0.982 

LMF_FreeChol_LDL 1.24 (0.666-2.309) 0.497 0.983  1.416 (0.953-2.103) 0.085 0.372  1.164 (0.677-2) 0.583 0.996  0.907 (0.675-1.22) 0.52 0.982 

LMF_FreeChol_HDL 0.85 (0.477-1.514) 0.58 0.983  0.853 (0.558-1.305) 0.464 0.661  1.363 (0.8-2.325) 0.255 0.996  0.917 (0.679-1.24) 0.575 0.982 

LMF_Phosp_VLDL 0.804 (0.426-1.516) 0.5 0.983  1.051 (0.712-1.551) 0.802 0.897  1.016 (0.596-1.73) 0.954 0.996  1.115 (0.835-1.49) 0.459 0.982 

LMF_Phosp_IDL 0.914 (0.492-1.696) 0.774 0.983  1.175 (0.801-1.725) 0.41 0.639  1.056 (0.608-1.834) 0.846 0.996  1.08 (0.813-1.434) 0.595 0.982 

LMF_Phosp_LDL 1.112 (0.612-2.021) 0.727 0.983  1.345 (0.911-1.986) 0.135 0.467  1.026 (0.6-1.756) 0.924 0.996  0.933 (0.697-1.249) 0.639 0.982 

LMF_Phosp_HDL 0.76 (0.416-1.386) 0.37 0.983  0.55 (0.357-0.847) 0.007 0.177  0.917 (0.529-1.591) 0.759 0.996  0.998 (0.742-1.343) 0.991 0.991 

LMF_ApoA1_HDL 0.573 (0.314-1.047) 0.07 0.983  0.644 (0.431-0.965) 0.033 0.27  1.01 (0.602-1.696) 0.969 0.996  1.115 (0.825-1.505) 0.48 0.982 

LMF_ApoA2_HDL 0.803 (0.438-1.474) 0.48 0.983  0.802 (0.541-1.19) 0.274 0.568  1.15 (0.671-1.972) 0.612 0.996  1.005 (0.741-1.363) 0.972 0.991 

LMF_ApoB_VLDL 0.805 (0.439-1.479) 0.485 0.983  1.081 (0.738-1.585) 0.689 0.827  0.936 (0.575-1.524) 0.791 0.996  1.149 (0.865-1.524) 0.338 0.982 

LMF_ApoB_IDL 0.983 (0.55-1.757) 0.954 0.983  1.167 (0.798-1.707) 0.426 0.639  1.003 (0.6-1.675) 0.992 0.996  1.092 (0.825-1.446) 0.539 0.982 

LMF_ApoB_LDL 1.124 (0.614-2.059) 0.705 0.983  1.446 (0.981-2.13) 0.062 0.323  1.028 (0.606-1.744) 0.92 0.996  0.953 (0.716-1.268) 0.741 0.982 

SubTrigl_VLDL-1 0.799 (0.42-1.52) 0.494 0.983  1.188 (0.801-1.762) 0.391 0.639  1.006 (0.586-1.725) 0.984 0.996  1.015 (0.759-1.357) 0.92 0.99 

SubTrigl_VLDL-2 1.059 (0.58-1.934) 0.853 0.983  1.266 (0.868-1.846) 0.22 0.514  1.213 (0.708-2.077) 0.483 0.996  1.071 (0.806-1.423) 0.638 0.982 

SubTrigl_VLDL-3 0.972 (0.528-1.788) 0.927 0.983  1.249 (0.847-1.842) 0.262 0.568  1.165 (0.679-2) 0.579 0.996  1.124 (0.844-1.496) 0.424 0.982 

SubTrigl_VLDL-4 0.865 (0.479-1.563) 0.631 0.983  1.114 (0.762-1.627) 0.578 0.757  0.975 (0.588-1.619) 0.923 0.996  1.139 (0.856-1.516) 0.371 0.982 

SubTrigl_VLDL-5 0.722 (0.41-1.274) 0.261 0.983  0.782 (0.537-1.137) 0.197 0.514  0.831 (0.505-1.369) 0.468 0.996  1.069 (0.811-1.41) 0.634 0.982 

SubChol_VLDL-1 0.756 (0.386-1.482) 0.416 0.983  1.088 (0.735-1.61) 0.674 0.827  1.023 (0.598-1.749) 0.935 0.996  1.098 (0.822-1.466) 0.528 0.982 

SubChol_VLDL-2 0.955 (0.511-1.784) 0.886 0.983  1.062 (0.729-1.546) 0.755 0.869  1.2 (0.707-2.037) 0.499 0.996  1.195 (0.904-1.579) 0.211 0.982 

SubChol_VLDL-3 0.98 (0.52-1.846) 0.949 0.983  1.203 (0.823-1.758) 0.34 0.639  1.253 (0.72-2.182) 0.425 0.996  1.174 (0.887-1.553) 0.262 0.982 

SubChol_VLDL-4 0.907 (0.492-1.673) 0.755 0.983  1.045 (0.717-1.523) 0.818 0.897  1.209 (0.706-2.071) 0.489 0.996  1.201 (0.906-1.593) 0.204 0.982 

SubChol_VLDL-5 0.655 (0.365-1.177) 0.157 0.983  0.584 (0.391-0.874) 0.009 0.177  0.748 (0.451-1.242) 0.262 0.996  1.158 (0.872-1.538) 0.311 0.982 

SubFreeChol_VLDL-1 0.742 (0.378-1.458) 0.387 0.983  1.087 (0.735-1.607) 0.676 0.827  0.978 (0.574-1.667) 0.935 0.996  1.088 (0.814-1.456) 0.569 0.982 

SubFreeChol_VLDL-2 0.888 (0.468-1.683) 0.715 0.983  1.167 (0.798-1.706) 0.425 0.639  1.079 (0.639-1.821) 0.777 0.996  1.151 (0.871-1.521) 0.323 0.982 

SubFreeChol_VLDL-3 0.879 (0.465-1.661) 0.69 0.983  1.2 (0.819-1.759) 0.35 0.639  1.093 (0.639-1.871) 0.745 0.996  1.129 (0.853-1.494) 0.397 0.982 

SubFreeChol_VLDL-4 0.941 (0.506-1.75) 0.848 0.983  1.089 (0.748-1.585) 0.657 0.822  1.135 (0.664-1.939) 0.643 0.996  1.156 (0.875-1.526) 0.308 0.982 

SubFreeChol_VLDL-5 0.596 (0.301-1.181) 0.138 0.983  0.798 (0.527-1.209) 0.288 0.568  0.815 (0.489-1.359) 0.434 0.996  1.125 (0.836-1.515) 0.436 0.982 
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SubPhosp_VLDL-1 0.773 (0.4-1.492) 0.442 0.983  1.189 (0.802-1.761) 0.389 0.639  1.039 (0.606-1.781) 0.89 0.996  1.035 (0.776-1.382) 0.814 0.982 

SubPhosp_VLDL-2 1.041 (0.568-1.908) 0.897 0.983  1.242 (0.852-1.81) 0.259 0.568  1.204 (0.712-2.037) 0.489 0.996  1.117 (0.843-1.48) 0.44 0.982 

SubPhosp_VLDL-3 0.94 (0.512-1.728) 0.843 0.983  1.2 (0.82-1.757) 0.349 0.639  1.1 (0.65-1.861) 0.724 0.996  1.161 (0.875-1.539) 0.301 0.982 

SubPhosp_VLDL-4 0.923 (0.51-1.672) 0.792 0.983  1.063 (0.73-1.549) 0.75 0.869  1.059 (0.633-1.772) 0.828 0.996  1.191 (0.898-1.58) 0.225 0.982 

SubPhosp_VLDL-5 0.624 (0.344-1.129) 0.119 0.983  0.611 (0.409-0.912) 0.016 0.224  0.843 (0.508-1.398) 0.509 0.996  1.174 (0.885-1.557) 0.265 0.982 

SubTrigl_LDL-1 0.877 (0.516-1.49) 0.627 0.983  1 (0.687-1.457) 1 1  0.819 (0.528-1.27) 0.372 0.996  1.08 (0.815-1.432) 0.592 0.982 

SubTrigl_LDL-2 1 (0.606-1.651) 1 1  1.037 (0.709-1.517) 0.853 0.908  0.769 (0.491-1.207) 0.254 0.996  1.029 (0.773-1.371) 0.843 0.982 

SubTrigl_LDL-3 1.042 (0.618-1.755) 0.878 0.983  1.001 (0.684-1.464) 0.996 1  0.81 (0.505-1.299) 0.382 0.996  0.99 (0.744-1.319) 0.947 0.991 

SubTrigl_LDL-4 1.325 (0.787-2.231) 0.289 0.983  1.052 (0.72-1.537) 0.792 0.894  0.956 (0.585-1.563) 0.857 0.996  1.111 (0.828-1.491) 0.481 0.982 

SubTrigl_LDL-5 1.323 (0.756-2.314) 0.327 0.983  1.101 (0.763-1.589) 0.608 0.771  1.075 (0.645-1.793) 0.782 0.996  1.111 (0.839-1.472) 0.462 0.982 

SubTrigl_LDL-6 1.235 (0.687-2.219) 0.48 0.983  1.527 (1.072-2.176) 0.019 0.224  1.35 (0.728-2.502) 0.341 0.996  0.886 (0.671-1.171) 0.396 0.982 

SubChol_LDL-1 0.92 (0.504-1.679) 0.786 0.983  0.994 (0.679-1.456) 0.975 0.993  0.868 (0.501-1.502) 0.612 0.996  0.952 (0.705-1.285) 0.746 0.982 

SubChol_LDL-2 0.739 (0.404-1.35) 0.325 0.983  1.182 (0.822-1.699) 0.366 0.639  0.897 (0.53-1.517) 0.685 0.996  0.9 (0.671-1.206) 0.479 0.982 

SubChol_LDL-3 1.274 (0.712-2.279) 0.415 0.983  1.37 (0.936-2.005) 0.105 0.387  1.057 (0.63-1.773) 0.835 0.996  0.851 (0.635-1.14) 0.279 0.982 

SubChol_LDL-4 1.473 (0.886-2.449) 0.135 0.983  1.136 (0.791-1.632) 0.489 0.687  1.161 (0.69-1.954) 0.574 0.996  0.956 (0.714-1.281) 0.763 0.982 

SubChol_LDL-5 1.053 (0.576-1.924) 0.867 0.983  1.266 (0.871-1.839) 0.217 0.514  1.146 (0.672-1.953) 0.617 0.996  1.056 (0.789-1.414) 0.715 0.982 

SubChol_LDL-6 0.93 (0.467-1.851) 0.836 0.983  1.517 (1.058-2.176) 0.024 0.224  1.288 (0.693-2.395) 0.424 0.996  0.934 (0.7-1.245) 0.641 0.982 

SubFreeChol_LDL-1 0.915 (0.497-1.683) 0.774 0.983  1.04 (0.709-1.524) 0.842 0.908  0.964 (0.552-1.685) 0.898 0.996  0.964 (0.713-1.304) 0.813 0.982 

SubFreeChol_LDL-2 0.655 (0.351-1.224) 0.185 0.983  1.181 (0.817-1.706) 0.377 0.639  0.985 (0.583-1.665) 0.956 0.996  0.931 (0.691-1.255) 0.639 0.982 

SubFreeChol_LDL-3 1.171 (0.646-2.123) 0.602 0.983  1.298 (0.88-1.914) 0.188 0.514  1.013 (0.588-1.746) 0.963 0.996  0.865 (0.643-1.164) 0.339 0.982 

SubFreeChol_LDL-4 1.348 (0.754-2.41) 0.314 0.983  1.255 (0.859-1.834) 0.239 0.546  1.077 (0.649-1.788) 0.773 0.996  0.926 (0.688-1.245) 0.609 0.982 

SubFreeChol_LDL-5 1.118 (0.604-2.066) 0.723 0.983  1.32 (0.906-1.923) 0.149 0.485  1.164 (0.679-1.995) 0.581 0.996  1.02 (0.761-1.367) 0.896 0.988 

SubFreeChol_LDL-6 1.01 (0.537-1.903) 0.974 0.983  1.64 (1.13-2.382) 0.009 0.177  1.45 (0.813-2.588) 0.208 0.996  0.919 (0.693-1.218) 0.555 0.982 

SubPhosp_LDL-1 0.895 (0.49-1.632) 0.717 0.983  0.954 (0.649-1.403) 0.812 0.897  0.828 (0.48-1.428) 0.497 0.996  0.964 (0.713-1.303) 0.811 0.982 

SubPhosp_LDL-2 0.763 (0.417-1.393) 0.378 0.983  1.136 (0.789-1.635) 0.494 0.687  0.864 (0.508-1.47) 0.589 0.996  0.913 (0.68-1.224) 0.542 0.982 

SubPhosp_LDL-3 1.284 (0.712-2.314) 0.406 0.983  1.333 (0.908-1.958) 0.143 0.478  1.017 (0.601-1.72) 0.95 0.996  0.856 (0.638-1.149) 0.301 0.982 

SubPhosp_LDL-4 1.489 (0.897-2.472) 0.124 0.983  1.151 (0.799-1.659) 0.449 0.657  1.113 (0.673-1.841) 0.676 0.996  0.945 (0.704-1.269) 0.707 0.982 
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SubPhosp_LDL-5 1.068 (0.589-1.936) 0.829 0.983  1.227 (0.844-1.783) 0.284 0.568  1.133 (0.667-1.924) 0.645 0.996  1.066 (0.796-1.426) 0.669 0.982 

SubPhosp_LDL-6 0.927 (0.468-1.835) 0.827 0.983  1.436 (1.005-2.051) 0.047 0.315  1.27 (0.686-2.354) 0.447 0.996  0.931 (0.699-1.239) 0.624 0.982 

SubApoB_LDL-1 0.927 (0.512-1.68) 0.803 0.983  1.013 (0.689-1.489) 0.948 0.974  0.83 (0.488-1.412) 0.492 0.996  0.959 (0.711-1.293) 0.782 0.982 

SubApoB_LDL-2 0.742 (0.405-1.362) 0.336 0.983  1.171 (0.813-1.687) 0.397 0.639  0.868 (0.511-1.473) 0.599 0.996  0.925 (0.69-1.241) 0.603 0.982 

SubApoB_LDL-3 1.33 (0.728-2.429) 0.353 0.983  1.382 (0.937-2.036) 0.103 0.387  0.99 (0.58-1.69) 0.97 0.996  0.869 (0.648-1.166) 0.35 0.982 

SubApoB_LDL-4 1.462 (0.874-2.448) 0.148 0.983  1.122 (0.779-1.616) 0.537 0.711  1.095 (0.664-1.807) 0.722 0.996  0.997 (0.745-1.334) 0.983 0.991 

SubApoB_LDL-5 1.083 (0.593-1.978) 0.795 0.983  1.274 (0.879-1.847) 0.2 0.514  1.164 (0.679-1.995) 0.58 0.996  1.076 (0.805-1.439) 0.619 0.982 

SubApoB_LDL-5 0.908 (0.446-1.848) 0.789 0.983  1.466 (1.026-2.094) 0.035 0.27  1.295 (0.687-2.44) 0.424 0.996  0.971 (0.729-1.292) 0.837 0.982 

SubTrigl_HDL-1 0.753 (0.415-1.367) 0.351 0.983  0.86 (0.584-1.265) 0.443 0.655  0.934 (0.563-1.55) 0.791 0.996  1.137 (0.846-1.528) 0.394 0.982 

SubTrigl_HDL-2 0.684 (0.383-1.22) 0.198 0.983  0.844 (0.576-1.238) 0.387 0.639  0.993 (0.603-1.635) 0.979 0.996  1.19 (0.883-1.603) 0.252 0.982 

SubTrigl_HDL-3 0.548 (0.302-0.998) 0.049 0.983  0.786 (0.54-1.144) 0.208 0.514  0.924 (0.576-1.484) 0.745 0.996  1.266 (0.943-1.7) 0.117 0.982 

SubTrigl_HDL-4 0.555 (0.288-1.069) 0.078 0.983  0.725 (0.478-1.101) 0.131 0.467  0.949 (0.562-1.603) 0.845 0.996  1.318 (0.978-1.775) 0.069 0.982 

SubChol_HDL-1 0.806 (0.431-1.507) 0.5 0.983  0.878 (0.589-1.31) 0.525 0.711  0.984 (0.562-1.725) 0.956 0.996  0.91 (0.676-1.224) 0.532 0.982 

SubChol_HDL-2 0.738 (0.412-1.322) 0.307 0.983  0.694 (0.465-1.036) 0.074 0.337  0.894 (0.525-1.524) 0.682 0.996  0.965 (0.717-1.299) 0.816 0.982 

SubChol_HDL-3 0.746 (0.407-1.365) 0.342 0.983  0.656 (0.434-0.992) 0.046 0.315  0.954 (0.572-1.59) 0.856 0.996  0.932 (0.69-1.259) 0.648 0.982 

SubChol_HDL-4 0.938 (0.511-1.72) 0.836 0.983  0.898 (0.609-1.324) 0.586 0.76  1.134 (0.687-1.87) 0.624 0.996  0.919 (0.68-1.241) 0.581 0.982 

SubFreeChol_HDL-1 1.015 (0.569-1.809) 0.961 0.983  0.968 (0.645-1.453) 0.877 0.926  1.3 (0.737-2.293) 0.365 0.996  0.906 (0.676-1.214) 0.507 0.982 

SubFreeChol_HDL-2 1.282 (0.69-2.38) 0.432 0.983  0.854 (0.563-1.296) 0.459 0.661  1.361 (0.774-2.392) 0.285 0.996  0.912 (0.674-1.234) 0.551 0.982 

SubFreeChol_HDL-3 0.971 (0.508-1.856) 0.929 0.983  0.866 (0.569-1.319) 0.503 0.691  1.337 (0.763-2.345) 0.311 0.996  0.938 (0.684-1.285) 0.689 0.982 

SubFreeChol_HDL-4 1.145 (0.629-2.084) 0.659 0.983  1.02 (0.684-1.521) 0.923 0.965  1.257 (0.731-2.159) 0.408 0.996  0.926 (0.678-1.264) 0.626 0.982 

SubPhosp_HDL-1 0.828 (0.442-1.553) 0.557 0.983  0.768 (0.506-1.164) 0.213 0.514  0.957 (0.543-1.685) 0.879 0.996  0.964 (0.716-1.298) 0.81 0.982 

SubPhosp_HDL-2 0.754 (0.413-1.376) 0.357 0.983  0.598 (0.39-0.916) 0.018 0.224  0.834 (0.481-1.448) 0.52 0.996  1.013 (0.753-1.361) 0.934 0.991 

SubPhosp_HDL-3 0.721 (0.387-1.343) 0.303 0.983  0.514 (0.327-0.805) 0.004 0.177  0.835 (0.498-1.4) 0.494 0.996  1.015 (0.758-1.359) 0.921 0.99 

SubPhosp_HDL-4 0.956 (0.516-1.771) 0.885 0.983  0.75 (0.501-1.125) 0.164 0.507  1.055 (0.645-1.727) 0.831 0.996  0.974 (0.723-1.311) 0.862 0.982 

SubApoA1_HDL-1 0.664 (0.346-1.273) 0.218 0.983  0.743 (0.489-1.128) 0.163 0.507  0.975 (0.567-1.675) 0.926 0.996  1.049 (0.778-1.413) 0.754 0.982 

SubApoA1_HDL-2 0.714 (0.397-1.286) 0.262 0.983  0.612 (0.401-0.933) 0.023 0.224  0.873 (0.515-1.482) 0.615 0.996  1.05 (0.787-1.402) 0.739 0.982 

SubApoA1_HDL-3 0.626 (0.333-1.178) 0.147 0.983  0.602 (0.39-0.929) 0.022 0.224  0.906 (0.545-1.508) 0.705 0.996  1.038 (0.772-1.396) 0.803 0.982 
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SubApoA1_HDL-4 0.761 (0.41-1.413) 0.387 0.983  0.846 (0.565-1.267) 0.416 0.639  1.187 (0.701-2.01) 0.523 0.996  1.021 (0.752-1.386) 0.896 0.988 

SubApoA2_HDL-1 0.919 (0.514-1.641) 0.774 0.983  0.77 (0.516-1.149) 0.201 0.514  0.975 (0.564-1.683) 0.926 0.996  1.033 (0.778-1.372) 0.822 0.982 

SubApoA2_HDL-2 0.92 (0.53-1.594) 0.765 0.983  0.808 (0.549-1.19) 0.281 0.568  0.885 (0.529-1.479) 0.641 0.996  1.036 (0.78-1.377) 0.807 0.982 

SubApoA2_HDL-3 0.865 (0.477-1.567) 0.632 0.983  0.755 (0.502-1.134) 0.176 0.514  0.96 (0.568-1.622) 0.878 0.996  1.029 (0.766-1.381) 0.852 0.982 

SubApoA2_HDL-4 1.043 (0.555-1.962) 0.896 0.983  0.962 (0.649-1.426) 0.847 0.908  1.251 (0.738-2.119) 0.406 0.996  0.943 (0.693-1.285) 0.712 0.982 

*Logistic regression analyses adjustment for age, sex, time onset-to-treatment, pre rt-PA blood glucose level, baseline NIHSS, history of atrial fibrillation, congestive heart failure, recent 

infections or inflammations, hypertension, diabetes, hyperlipidaemia, smoke and blood collection center. False Discovery Rate correction was applied to P values (P) using the Benjamini 

& Hochberg method (FDR).  

Main abbreviations: CI: confidence interval; NIHSS: National Institutes of Health Stroke Scale; OR: odds ratio; trigl: triglycerides; chol: cholesterol; phosp: phospholipids; Apo: 

apolipoprotein; LMF: lipoprotein main fraction; PN: particle number; 3-HB: 3-hydroxybutyrate. Amino acids are reported with the three letters code.  

 

Table S2. Effect of 24h post (t2) rt-PA metabolites and lipids levels on three-months mortality, impairments, symptomatic intracerebral 

haemorrhage (sICHRCT12) and on the response to i.v. thrombolysis intervention, adjusting *for major determinants for unfavourable 

outcomes. 

 
 Three-months mortality  Three-months impairments  SICHRCT12  Non-response to thrombolysis 

 OR (95% CI) P FDR  OR (95% CI) P FDR  OR (95% CI) P FDR  OR (95% CI) P FDR 

Creatinine 1.429 (0.778-2.624) 0.25 0.643  1.199 (0.818-1.757) 0.352 0.704  0.668 (0.426-1.046) 0.078 0.543  0.789 (0.577-1.08) 0.138 0.447 

Ala 1.252 (0.733-2.138) 0.411 0.673  1.073 (0.736-1.563) 0.715 0.74  1.343 (0.824-2.189) 0.237 0.707  1.221 (0.91-1.64) 0.184 0.447 

Glu 1.33 (0.72-2.457) 0.363 0.673  1.071 (0.714-1.606) 0.74 0.74  1.267 (0.712-2.256) 0.421 0.768  0.775 (0.56-1.075) 0.127 0.447 

Gln 1.125 (0.648-1.951) 0.676 0.8  0.676 (0.445-1.027) 0.066 0.397  0.931 (0.54-1.605) 0.796 0.895  1.188 (0.868-1.625) 0.283 0.463 

Gly 1.201 (0.655-2.202) 0.554 0.8  0.921 (0.629-1.35) 0.675 0.74  1.11 (0.618-1.996) 0.727 0.872  0.978 (0.724-1.321) 0.883 0.883 

His 1.258 (0.798-1.985) 0.323 0.673  1.141 (0.836-1.558) 0.406 0.732  1.645 (0.427-6.341) 0.47 0.768  0.856 (0.626-1.169) 0.328 0.492 

Ile 0.635 (0.326-1.235) 0.181 0.542  0.927 (0.637-1.348) 0.692 0.74  1.315 (0.771-2.242) 0.314 0.707  0.91 (0.689-1.202) 0.505 0.568 

Leu 1.134 (0.62-2.073) 0.684 0.8  0.89 (0.602-1.316) 0.559 0.74  0.867 (0.528-1.423) 0.571 0.857  0.844 (0.634-1.125) 0.248 0.447 

Phe 1.483 (0.884-2.487) 0.136 0.542  1.276 (0.882-1.845) 0.195 0.586  0.711 (0.444-1.137) 0.154 0.556  0.7 (0.516-0.949) 0.022 0.13 

Tyr 1.082 (0.659-1.777) 0.756 0.8  1.355 (0.924-1.986) 0.12 0.431  0.98 (0.639-1.504) 0.927 0.948  0.891 (0.671-1.185) 0.429 0.514 

Val 1.447 (0.869-2.411) 0.155 0.542  0.93 (0.649-1.333) 0.692 0.74  1.106 (0.687-1.781) 0.678 0.872  0.886 (0.66-1.19) 0.42 0.514 
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Aceticacid 0.807 (0.487-1.335) 0.403 0.673  1.77 (1.164-2.692) 0.008 0.137  1.238 (0.718-2.136) 0.442 0.768  1.201 (0.884-1.633) 0.242 0.447 

Citricacid 1.476 (0.914-2.381) 0.111 0.542  1.275 (0.844-1.926) 0.249 0.64  1.016 (0.625-1.651) 0.948 0.948  0.901 (0.645-1.259) 0.542 0.574 

Lacticacid 1.602 (0.996-2.578) 0.052 0.542  1.359 (0.937-1.971) 0.106 0.431  0.908 (0.568-1.452) 0.687 0.872  0.829 (0.622-1.105) 0.202 0.447 

3-HB 1.082 (0.681-1.721) 0.739 0.8  1.473 (1.009-2.152) 0.045 0.397  0.67 (0.434-1.033) 0.07 0.543  0.541 (0.382-0.766) 0.001 0.009 

Acetone 1.02 (0.686-1.518) 0.921 0.921  1.201 (0.82-1.759) 0.348 0.704  0.811 (0.556-1.184) 0.279 0.707  0.577 (0.397-0.84) 0.004 0.037 

Pyruvicacid 1.545 (0.906-2.635) 0.11 0.542  0.866 (0.595-1.259) 0.451 0.739  0.679 (0.42-1.1) 0.116 0.543  0.816 (0.614-1.085) 0.161 0.447 

Glucose 0.832 (0.387-1.788) 0.637 0.8  1.087 (0.666-1.774) 0.738 0.74  0.596 (0.31-1.146) 0.121 0.543  0.832 (0.558-1.239) 0.364 0.504 

Trigl 1.292 (0.577-2.89) 0.533 0.994  1.413 (0.921-2.168) 0.113 0.297  2.605 (1.094-6.201) 0.03 0.204  1.179 (0.858-1.618) 0.31 0.637 

Chol 1.192 (0.606-2.347) 0.611 0.994  1.434 (0.943-2.182) 0.092 0.275  1.264 (0.733-2.177) 0.399 0.785  0.892 (0.657-1.21) 0.461 0.695 

LDL-Chol 1.117 (0.588-2.122) 0.734 0.994  1.536 (1.009-2.34) 0.045 0.225  0.94 (0.55-1.604) 0.82 0.934  0.829 (0.611-1.124) 0.228 0.637 

HDL-Chol 1.028 (0.552-1.913) 0.931 0.994  0.818 (0.554-1.207) 0.311 0.507  0.919 (0.562-1.504) 0.738 0.924  0.848 (0.626-1.149) 0.287 0.637 

Apo-A1 0.673 (0.359-1.261) 0.216 0.994  0.742 (0.487-1.13) 0.165 0.383  1.226 (0.725-2.073) 0.448 0.837  1.036 (0.752-1.426) 0.829 0.974 

Apo-A2 0.909 (0.486-1.701) 0.766 0.994  0.993 (0.658-1.5) 0.975 0.983  1.178 (0.697-1.991) 0.54 0.862  0.988 (0.717-1.361) 0.941 0.983 

Apo-B100 1.165 (0.62-2.188) 0.635 0.994  1.691 (1.109-2.576) 0.015 0.138  1.142 (0.672-1.941) 0.624 0.868  0.882 (0.656-1.185) 0.405 0.66 

LDL-HDL-Chol 1.066 (0.52-2.186) 0.862 0.994  1.655 (1.124-2.436) 0.011 0.122  1.176 (0.687-2.013) 0.553 0.862  0.974 (0.729-1.301) 0.859 0.974 

Apo-B100-Apo-A1 1.323 (0.777-2.253) 0.302 0.994  1.869 (1.204-2.902) 0.005 0.067  0.933 (0.585-1.486) 0.769 0.934  0.894 (0.667-1.198) 0.453 0.695 

TPN 1.165 (0.62-2.188) 0.635 0.994  1.691 (1.109-2.576) 0.015 0.138  1.142 (0.671-1.941) 0.625 0.868  0.882 (0.656-1.185) 0.405 0.66 

VLDL_PN 1.246 (0.617-2.513) 0.539 0.994  1.231 (0.804-1.884) 0.339 0.533  1.833 (0.95-3.536) 0.071 0.316  1.262 (0.926-1.719) 0.14 0.637 

IDL_PN 1.084 (0.606-1.938) 0.786 0.994  1.467 (0.973-2.21) 0.067 0.225  1.345 (0.78-2.319) 0.287 0.666  1.018 (0.762-1.36) 0.905 0.974 

LDL_PN 1.16 (0.627-2.147) 0.636 0.994  1.606 (1.059-2.433) 0.026 0.194  0.976 (0.58-1.642) 0.926 0.99  0.835 (0.62-1.123) 0.232 0.637 

LDL1_PN 0.99 (0.551-1.779) 0.973 0.994  1.131 (0.753-1.701) 0.553 0.67  0.846 (0.511-1.401) 0.516 0.853  0.846 (0.617-1.162) 0.302 0.637 

LDL2_PN 0.706 (0.349-1.431) 0.335 0.994  1.186 (0.788-1.784) 0.413 0.565  0.661 (0.37-1.181) 0.162 0.474  0.845 (0.614-1.164) 0.303 0.637 

LDL3_PN 0.976 (0.489-1.946) 0.944 0.994  1.515 (1.002-2.292) 0.049 0.225  0.587 (0.326-1.055) 0.075 0.316  0.763 (0.562-1.037) 0.084 0.637 

LDL4_PN 1.197 (0.596-2.405) 0.613 0.994  1.186 (0.803-1.753) 0.391 0.564  0.975 (0.596-1.594) 0.919 0.99  0.961 (0.712-1.296) 0.792 0.974 

LDL5_PN 1.02 (0.519-2.007) 0.953 0.994  1.329 (0.878-2.01) 0.178 0.385  1.295 (0.748-2.239) 0.356 0.725  0.997 (0.733-1.355) 0.983 0.992 

LDL6_PN 1.991 (0.997-3.974) 0.051 0.726  1.925 (1.271-2.914) 0.002 0.052  1.641 (0.858-3.139) 0.134 0.413  0.888 (0.657-1.202) 0.443 0.691 

LMF_Trigl_VLDL 1.701 (0.76-3.81) 0.196 0.994  1.56 (1.012-2.406) 0.044 0.225  3.076 (1.214-7.79) 0.018 0.145  1.182 (0.855-1.634) 0.312 0.637 
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LMF_Trigl_IDL 1.062 (0.445-2.535) 0.892 0.994  1.227 (0.796-1.89) 0.354 0.538  2.515 (1.08-5.854) 0.032 0.205  1.216 (0.88-1.679) 0.235 0.637 

LMF_Trigl_LDL 0.936 (0.563-1.555) 0.798 0.994  1.342 (0.883-2.04) 0.169 0.385  1.009 (0.641-1.588) 0.97 0.99  0.938 (0.706-1.248) 0.662 0.956 

LMF_Trigl_HDL 0.457 (0.223-0.938) 0.033 0.726  0.779 (0.524-1.158) 0.218 0.443  1.534 (0.902-2.608) 0.114 0.394  1.353 (0.983-1.863) 0.064 0.637 

LMF_Chol_VLDL 1.077 (0.52-2.234) 0.841 0.994  1.184 (0.788-1.781) 0.416 0.565  2.641 (1.304-5.349) 0.007 0.119  1.274 (0.936-1.734) 0.124 0.637 

LMF_Chol_IDL 1.077 (0.582-1.994) 0.812 0.994  1.582 (1.052-2.38) 0.028 0.194  1.576 (0.897-2.771) 0.114 0.394  1.021 (0.762-1.37) 0.888 0.974 

LMF_Chol_LDL 1.117 (0.588-2.122) 0.734 0.994  1.536 (1.009-2.34) 0.045 0.225  0.94 (0.55-1.604) 0.82 0.934  0.829 (0.611-1.124) 0.228 0.637 

LMF_Chol_HDL 1.028 (0.552-1.913) 0.931 0.994  0.818 (0.554-1.207) 0.311 0.507  0.919 (0.562-1.504) 0.738 0.924  0.848 (0.626-1.149) 0.287 0.637 

LMF_FreeChol_VLDL 1.442 (0.653-3.184) 0.365 0.994  1.279 (0.837-1.955) 0.254 0.453  2.869 (1.329-6.192) 0.007 0.119  1.255 (0.913-1.725) 0.162 0.637 

LMF_FreeChol_IDL 0.99 (0.527-1.858) 0.974 0.994  1.481 (0.984-2.229) 0.06 0.225  1.545 (0.88-2.713) 0.13 0.413  1.052 (0.783-1.412) 0.738 0.974 

LMF_FreeChol_LDL 1.202 (0.613-2.357) 0.593 0.994  1.618 (1.06-2.471) 0.026 0.194  0.919 (0.533-1.587) 0.763 0.934  0.785 (0.577-1.068) 0.124 0.637 

LMF_FreeChol_HDL 1.204 (0.635-2.284) 0.569 0.994  1.038 (0.699-1.54) 0.854 0.918  1.121 (0.675-1.862) 0.66 0.891  0.838 (0.621-1.132) 0.25 0.637 

LMF_Phosp_VLDL 1.682 (0.745-3.797) 0.211 0.994  1.237 (0.798-1.916) 0.341 0.533  3.15 (1.381-7.188) 0.006 0.119  1.326 (0.955-1.841) 0.092 0.637 

LMF_Phosp_IDL 1.04 (0.514-2.106) 0.912 0.994  1.386 (0.916-2.098) 0.123 0.311  1.704 (0.925-3.138) 0.087 0.332  1.065 (0.787-1.44) 0.683 0.964 

LMF_Phosp_LDL 1.079 (0.573-2.033) 0.814 0.994  1.426 (0.941-2.159) 0.094 0.275  0.888 (0.519-1.519) 0.664 0.891  0.824 (0.607-1.118) 0.213 0.637 

LMF_Phosp_HDL 0.71 (0.372-1.357) 0.301 0.994  0.635 (0.42-0.96) 0.031 0.197  0.887 (0.524-1.504) 0.657 0.891  0.887 (0.645-1.221) 0.463 0.695 

LMF_ApoA1_HDL 0.628 (0.33-1.198) 0.158 0.994  0.692 (0.456-1.05) 0.084 0.258  1.166 (0.696-1.953) 0.56 0.862  1.021 (0.743-1.404) 0.898 0.974 

LMF_ApoA2_HDL 0.937 (0.491-1.789) 0.844 0.994  1.001 (0.661-1.517) 0.996 0.996  1.151 (0.678-1.955) 0.603 0.868  0.983 (0.714-1.353) 0.915 0.975 

LMF_ApoB_VLDL 1.246 (0.618-2.514) 0.539 0.994  1.231 (0.804-1.884) 0.338 0.533  1.833 (0.95-3.536) 0.071 0.316  1.262 (0.926-1.72) 0.14 0.637 

LMF_ApoB_IDL 1.084 (0.606-1.938) 0.786 0.994  1.467 (0.974-2.211) 0.067 0.225  1.345 (0.78-2.32) 0.286 0.666  1.018 (0.762-1.36) 0.906 0.974 

LMF_ApoB_LDL 1.16 (0.627-2.147) 0.636 0.994  1.606 (1.059-2.434) 0.026 0.194  0.976 (0.58-1.642) 0.926 0.99  0.835 (0.62-1.123) 0.232 0.637 

SubTrigl_VLDL-1 1.789 (0.778-4.112) 0.171 0.994  1.603 (1.05-2.447) 0.029 0.194  2.931 (0.999-8.603) 0.05 0.287  1.095 (0.791-1.516) 0.584 0.854 

SubTrigl_VLDL-2 1.673 (0.772-3.625) 0.192 0.994  1.313 (0.854-2.017) 0.215 0.443  3.216 (1.435-7.208) 0.005 0.119  1.259 (0.913-1.736) 0.161 0.637 

SubTrigl_VLDL-3 1.551 (0.731-3.292) 0.253 0.994  1.367 (0.886-2.108) 0.158 0.374  2.601 (1.265-5.349) 0.009 0.119  1.3 (0.947-1.786) 0.105 0.637 

SubTrigl_VLDL-4 1.475 (0.728-2.991) 0.281 0.994  1.281 (0.84-1.954) 0.25 0.452  1.71 (0.934-3.132) 0.082 0.324  1.236 (0.912-1.677) 0.172 0.637 

SubTrigl_VLDL-5 1.387 (0.692-2.777) 0.356 0.994  0.815 (0.553-1.201) 0.302 0.506  1.154 (0.686-1.941) 0.589 0.868  1.135 (0.844-1.526) 0.402 0.66 

SubChol_VLDL-1 1.217 (0.522-2.835) 0.649 0.994  1.405 (0.925-2.137) 0.111 0.297  3.313 (1.232-8.908) 0.018 0.145  1.152 (0.836-1.587) 0.386 0.66 

SubChol_VLDL-2 1.019 (0.486-2.134) 0.96 0.994  1.118 (0.747-1.672) 0.588 0.705  3.178 (1.463-6.906) 0.003 0.119  1.278 (0.942-1.732) 0.115 0.637 
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SubChol_VLDL-3 1.149 (0.575-2.296) 0.693 0.994  1.395 (0.93-2.093) 0.108 0.297  2.46 (1.249-4.847) 0.009 0.119  1.207 (0.893-1.633) 0.221 0.637 

SubChol_VLDL-4 0.996 (0.532-1.866) 0.99 0.994  1.09 (0.736-1.614) 0.667 0.775  1.968 (1.096-3.533) 0.023 0.178  1.237 (0.92-1.663) 0.159 0.637 

SubChol_VLDL-5 0.73 (0.368-1.45) 0.369 0.994  0.459 (0.297-0.711) 0 0.052  0.99 (0.581-1.685) 0.969 0.99  1.248 (0.924-1.685) 0.148 0.637 

SubFreeChol_VLDL-1 1.072 (0.442-2.601) 0.877 0.994  1.338 (0.875-2.047) 0.179 0.385  3.078 (1.14-8.309) 0.027 0.189  1.193 (0.869-1.636) 0.275 0.637 

SubFreeChol_VLDL-2 1.298 (0.616-2.732) 0.493 0.994  1.375 (0.906-2.085) 0.134 0.333  2.642 (1.247-5.599) 0.011 0.128  1.265 (0.928-1.724) 0.138 0.637 

SubFreeChol_VLDL-3 1.327 (0.634-2.779) 0.453 0.994  1.511 (0.995-2.294) 0.053 0.225  2.531 (1.209-5.295) 0.014 0.142  1.203 (0.884-1.636) 0.24 0.637 

SubFreeChol_VLDL-4 1.059 (0.574-1.952) 0.855 0.994  1.235 (0.833-1.833) 0.294 0.5  1.675 (0.962-2.916) 0.068 0.316  1.162 (0.866-1.56) 0.317 0.637 

SubFreeChol_VLDL-5 1.41 (0.655-3.035) 0.38 0.994  0.963 (0.611-1.517) 0.87 0.918  1.538 (0.763-3.102) 0.229 0.579  1.173 (0.848-1.625) 0.335 0.637 

SubPhosp_VLDL-1 1.408 (0.603-3.289) 0.429 0.994  1.517 (0.985-2.336) 0.058 0.225  3.591 (1.279-10.085) 0.015 0.145  1.156 (0.835-1.599) 0.383 0.66 

SubPhosp_VLDL-2 1.376 (0.638-2.969) 0.416 0.994  1.287 (0.847-1.956) 0.237 0.444  3.274 (1.506-7.119) 0.003 0.119  1.306 (0.95-1.794) 0.1 0.637 

SubPhosp_VLDL-3 1.31 (0.635-2.703) 0.465 0.994  1.361 (0.893-2.075) 0.152 0.369  2.549 (1.271-5.113) 0.008 0.119  1.324 (0.969-1.808) 0.078 0.637 

SubPhosp_VLDL-4 1.128 (0.586-2.171) 0.717 0.994  1.106 (0.739-1.655) 0.624 0.734  1.753 (0.985-3.118) 0.056 0.306  1.249 (0.927-1.683) 0.144 0.637 

SubPhosp_VLDL-5 0.812 (0.422-1.562) 0.533 0.994  0.552 (0.365-0.834) 0.005 0.067  1.32 (0.782-2.229) 0.298 0.666  1.356 (1.002-1.836) 0.048 0.637 

SubTrigl_LDL-1 0.914 (0.537-1.555) 0.74 0.994  1.174 (0.778-1.773) 0.445 0.59  0.95 (0.616-1.465) 0.815 0.934  0.973 (0.727-1.304) 0.857 0.974 

SubTrigl_LDL-2 0.998 (0.623-1.6) 0.994 0.994  1.136 (0.757-1.705) 0.538 0.67  0.862 (0.571-1.301) 0.479 0.841  0.948 (0.703-1.278) 0.726 0.973 

SubTrigl_LDL-3 1.058 (0.66-1.696) 0.815 0.994  1.069 (0.734-1.556) 0.729 0.817  0.831 (0.544-1.27) 0.392 0.784  0.872 (0.649-1.173) 0.366 0.66 

SubTrigl_LDL-4 0.986 (0.593-1.64) 0.958 0.994  1.07 (0.726-1.578) 0.731 0.817  0.97 (0.617-1.524) 0.894 0.99  0.994 (0.745-1.326) 0.967 0.992 

SubTrigl_LDL-5 1.023 (0.586-1.786) 0.936 0.994  1.182 (0.807-1.731) 0.391 0.564  1.291 (0.761-2.187) 0.343 0.725  1.029 (0.775-1.367) 0.843 0.974 

SubTrigl_LDL-6 1.972 (1.192-3.262) 0.008 0.726  1.888 (1.248-2.856) 0.003 0.052  1.577 (0.791-3.145) 0.196 0.507  0.759 (0.552-1.042) 0.088 0.637 

SubChol_LDL-1 0.927 (0.485-1.773) 0.818 0.994  1.052 (0.698-1.585) 0.809 0.887  0.851 (0.49-1.478) 0.567 0.862  0.87 (0.632-1.198) 0.394 0.66 

SubChol_LDL-2 0.769 (0.379-1.563) 0.468 0.994  1.19 (0.795-1.783) 0.398 0.565  0.673 (0.381-1.19) 0.173 0.482  0.832 (0.606-1.143) 0.256 0.637 

SubChol_LDL-3 1.056 (0.53-2.102) 0.878 0.994  1.468 (0.975-2.208) 0.066 0.225  0.616 (0.35-1.086) 0.094 0.345  0.787 (0.582-1.065) 0.12 0.637 

SubChol_LDL-4 1.199 (0.598-2.404) 0.61 0.994  1.161 (0.784-1.722) 0.456 0.598  0.942 (0.58-1.532) 0.811 0.934  0.956 (0.706-1.295) 0.774 0.974 

SubChol_LDL-5 1.061 (0.53-2.125) 0.867 0.994  1.293 (0.848-1.972) 0.233 0.444  1.244 (0.712-2.171) 0.443 0.837  1.01 (0.738-1.383) 0.949 0.983 

SubChol_LDL-6 2.004 (1.048-3.834) 0.036 0.726  1.867 (1.241-2.81) 0.003 0.052  1.541 (0.835-2.842) 0.166 0.474  0.877 (0.647-1.188) 0.398 0.66 

SubFreeChol_LDL-1 0.903 (0.478-1.706) 0.754 0.994  1.147 (0.761-1.727) 0.513 0.649  0.933 (0.538-1.618) 0.805 0.934  0.864 (0.628-1.189) 0.37 0.66 

SubFreeChol_LDL-2 0.854 (0.435-1.677) 0.646 0.994  1.288 (0.859-1.93) 0.221 0.443  0.805 (0.473-1.372) 0.426 0.822  0.84 (0.612-1.153) 0.281 0.637 
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SubFreeChol_LDL-3 1.115 (0.558-2.227) 0.758 0.994  1.493 (0.984-2.265) 0.06 0.225  0.572 (0.313-1.047) 0.07 0.316  0.736 (0.54-1.003) 0.052 0.637 

SubFreeChol_LDL-4 1.108 (0.557-2.203) 0.771 0.994  1.384 (0.926-2.069) 0.113 0.297  0.829 (0.498-1.378) 0.469 0.838  0.845 (0.622-1.146) 0.279 0.637 

SubFreeChol_LDL-5 1.073 (0.552-2.086) 0.836 0.994  1.51 (0.987-2.312) 0.058 0.225  1.115 (0.648-1.919) 0.695 0.911  0.901 (0.659-1.232) 0.513 0.76 

SubFreeChol_LDL-6 1.33 (0.716-2.468) 0.367 0.994  1.98 (1.309-2.996) 0.001 0.052  1.352 (0.798-2.289) 0.262 0.636  0.827 (0.612-1.117) 0.216 0.637 

SubPhosp_LDL-1 0.912 (0.488-1.707) 0.774 0.994  1.013 (0.674-1.524) 0.949 0.974  0.84 (0.496-1.421) 0.515 0.853  0.876 (0.636-1.206) 0.417 0.669 

SubPhosp_LDL-2 0.745 (0.359-1.543) 0.427 0.994  1.136 (0.753-1.713) 0.544 0.67  0.63 (0.346-1.146) 0.13 0.413  0.828 (0.599-1.143) 0.251 0.637 

SubPhosp_LDL-3 0.969 (0.481-1.952) 0.929 0.994  1.393 (0.923-2.104) 0.115 0.297  0.59 (0.327-1.067) 0.081 0.324  0.78 (0.575-1.059) 0.111 0.637 

SubPhosp_LDL-4 1.182 (0.594-2.352) 0.633 0.994  1.152 (0.776-1.709) 0.484 0.619  0.916 (0.566-1.482) 0.72 0.924  0.957 (0.707-1.296) 0.777 0.974 

SubPhosp_LDL-5 0.99 (0.497-1.974) 0.978 0.994  1.215 (0.802-1.841) 0.359 0.538  1.226 (0.709-2.121) 0.466 0.838  1.02 (0.747-1.392) 0.902 0.974 

SubPhosp_LDL-6 1.95 (1.016-3.743) 0.045 0.726  1.814 (1.212-2.714) 0.004 0.061  1.484 (0.818-2.691) 0.193 0.507  0.862 (0.637-1.166) 0.335 0.637 

SubApoB_LDL-1 0.99 (0.551-1.78) 0.974 0.994  1.132 (0.753-1.701) 0.552 0.67  0.846 (0.511-1.401) 0.516 0.853  0.846 (0.617-1.162) 0.302 0.637 

SubApoB_LDL-2 0.706 (0.349-1.431) 0.334 0.994  1.186 (0.788-1.784) 0.414 0.565  0.661 (0.37-1.181) 0.162 0.474  0.846 (0.614-1.164) 0.304 0.637 

SubApoB_LDL-3 0.976 (0.489-1.946) 0.944 0.994  1.515 (1.001-2.292) 0.049 0.225  0.587 (0.326-1.055) 0.075 0.316  0.763 (0.562-1.037) 0.084 0.637 

SubApoB_LDL-4 1.197 (0.596-2.405) 0.613 0.994  1.186 (0.803-1.753) 0.391 0.564  0.975 (0.596-1.595) 0.919 0.99  0.96 (0.712-1.296) 0.792 0.974 

SubApoB_LDL-5 1.021 (0.519-2.008) 0.952 0.994  1.329 (0.878-2.01) 0.178 0.385  1.294 (0.748-2.238) 0.356 0.725  0.997 (0.733-1.355) 0.983 0.992 

SubApoB_LDL-5 1.991 (0.997-3.975) 0.051 0.726  1.925 (1.271-2.914) 0.002 0.052  1.641 (0.858-3.138) 0.134 0.413  0.888 (0.657-1.202) 0.443 0.691 

SubTrigl_HDL-1 0.622 (0.304-1.272) 0.194 0.994  0.942 (0.625-1.421) 0.777 0.86  1.352 (0.768-2.383) 0.296 0.666  1.179 (0.85-1.635) 0.324 0.637 

SubTrigl_HDL-2 0.527 (0.265-1.046) 0.067 0.851  0.899 (0.609-1.328) 0.594 0.705  1.347 (0.805-2.254) 0.256 0.635  1.215 (0.887-1.664) 0.225 0.637 

SubTrigl_HDL-3 0.467 (0.229-0.951) 0.036 0.726  0.857 (0.58-1.265) 0.437 0.587  1.422 (0.851-2.376) 0.179 0.486  1.362 (0.994-1.868) 0.055 0.637 

SubTrigl_HDL-4 0.465 (0.227-0.951) 0.036 0.726  0.657 (0.423-1.019) 0.06 0.225  1.769 (1.013-3.089) 0.045 0.27  1.623 (1.162-2.266) 0.004 0.509 

SubChol_HDL-1 1.254 (0.647-2.431) 0.502 0.994  1.08 (0.721-1.619) 0.709 0.816  1.003 (0.595-1.694) 0.99 0.99  0.839 (0.615-1.146) 0.27 0.637 

SubChol_HDL-2 0.957 (0.506-1.808) 0.892 0.994  0.784 (0.529-1.16) 0.223 0.443  0.77 (0.462-1.283) 0.315 0.692  0.799 (0.581-1.098) 0.167 0.637 

SubChol_HDL-3 0.902 (0.494-1.648) 0.738 0.994  0.873 (0.599-1.274) 0.482 0.619  0.838 (0.507-1.383) 0.488 0.844  0.853 (0.629-1.159) 0.309 0.637 

SubChol_HDL-4 1.067 (0.554-2.055) 0.846 0.994  0.819 (0.536-1.251) 0.356 0.538  0.991 (0.582-1.687) 0.973 0.99  0.975 (0.707-1.345) 0.877 0.974 

SubFreeChol_HDL-1 1.162 (0.621-2.174) 0.639 0.994  1.277 (0.86-1.898) 0.225 0.443  1.062 (0.634-1.777) 0.82 0.934  0.802 (0.592-1.085) 0.153 0.637 

SubFreeChol_HDL-2 1.081 (0.542-2.154) 0.825 0.994  1.271 (0.855-1.888) 0.235 0.444  0.933 (0.539-1.615) 0.804 0.934  0.721 (0.524-0.993) 0.045 0.637 

SubFreeChol_HDL-3 0.783 (0.406-1.51) 0.464 0.994  1.016 (0.672-1.537) 0.939 0.973  1.181 (0.684-2.038) 0.551 0.862  0.937 (0.684-1.284) 0.687 0.964 



Results | 99 

SubFreeChol_HDL-4 0.988 (0.497-1.967) 0.973 0.994  1.036 (0.684-1.57) 0.867 0.918  1.047 (0.611-1.794) 0.868 0.98  0.943 (0.687-1.294) 0.715 0.97 

SubPhosp_HDL-1 0.976 (0.491-1.94) 0.945 0.994  0.925 (0.608-1.407) 0.716 0.817  0.99 (0.575-1.704) 0.971 0.99  0.872 (0.633-1.201) 0.401 0.66 

SubPhosp_HDL-2 0.757 (0.385-1.488) 0.42 0.994  0.686 (0.456-1.031) 0.07 0.228  0.779 (0.459-1.323) 0.355 0.725  0.852 (0.614-1.181) 0.335 0.637 

SubPhosp_HDL-3 0.649 (0.348-1.208) 0.172 0.994  0.668 (0.448-0.997) 0.048 0.225  0.853 (0.507-1.433) 0.547 0.862  0.942 (0.69-1.286) 0.708 0.97 

SubPhosp_HDL-4 0.812 (0.419-1.574) 0.537 0.994  0.664 (0.429-1.027) 0.066 0.225  1.012 (0.596-1.72) 0.964 0.99  1.047 (0.759-1.443) 0.781 0.974 

SubApoA1_HDL-1 0.676 (0.337-1.358) 0.271 0.994  0.783 (0.51-1.203) 0.264 0.462  1.1 (0.641-1.886) 0.73 0.924  0.973 (0.709-1.336) 0.866 0.974 

SubApoA1_HDL-2 0.712 (0.388-1.309) 0.275 0.994  0.696 (0.463-1.045) 0.081 0.256  0.983 (0.587-1.645) 0.949 0.99  1.001 (0.735-1.364) 0.995 0.995 

SubApoA1_HDL-3 0.784 (0.404-1.521) 0.472 0.994  0.79 (0.532-1.174) 0.243 0.447  0.997 (0.591-1.681) 0.99 0.99  0.963 (0.705-1.316) 0.812 0.974 

SubApoA1_HDL-4 0.881 (0.452-1.716) 0.709 0.994  0.789 (0.508-1.226) 0.292 0.5  1.223 (0.708-2.111) 0.47 0.838  1.069 (0.768-1.487) 0.693 0.964 

SubApoA2_HDL-1 0.868 (0.434-1.736) 0.69 0.994  0.989 (0.656-1.49) 0.957 0.974  1.152 (0.662-2.005) 0.617 0.868  0.976 (0.717-1.327) 0.875 0.974 

SubApoA2_HDL-2 0.986 (0.49-1.983) 0.969 0.994  1.183 (0.794-1.765) 0.409 0.565  1.128 (0.645-1.973) 0.672 0.891  0.987 (0.726-1.342) 0.932 0.983 

SubApoA2_HDL-3 0.778 (0.405-1.494) 0.45 0.994  1.031 (0.689-1.544) 0.881 0.921  1.148 (0.665-1.98) 0.621 0.868  1.05 (0.769-1.433) 0.758 0.974 

SubApoA2_HDL-4 1.073 (0.553-2.078) 0.836 0.994  0.96 (0.627-1.47) 0.85 0.918  1.15 (0.672-1.969) 0.61 0.868  1.033 (0.742-1.437) 0.849 0.974 

*Logistic regression analyses adjustment for age, sex, time onset-to-treatment, 24h post rt-PA blood glucose level, baseline NIHSS, history of atrial fibrillation, congestive heart failure, 

recent infections or inflammations, hypertension, diabetes, hyperlipidaemia, smoke and blood collection center. False Discovery Rate correction was applied to P-values (P) using the 

Benjamini & Hochberg method (FDR).  

Main abbreviations: CI: confidence interval; NIHSS: National Institutes of Health Stroke Scale; OR: odds ratio; trigl: triglycerides; chol: cholesterol; phosp: phospholipids; Apo: 

apolipoprotein; LMF: lipoprotein main fraction; PN: particle number; 3-HB: 3-hydroxybutyrate. Amino acids are reported with the three letters code.  

 

Table S3. Effect of pre-post-rtPA variations of metabolites and lipids levels on three-months mortality, impairments, symptomatic 

intracerebral haemorrhage (sICHRCT12) and on the response to i.v. thrombolysis intervention, adjusting *for major determinants for 

unfavourable outcomes. 

 
 Three-month mortality  Three-month impairments  SICHRCT12  Responder trombolysis 

 OR (95% CI) P FDR  OR (95% CI) P FDR  OR (95% CI) P FDR  OR (95% CI) P FDR 

Creatinine 0.64 (0.353-1.161) 0.142 0.726  1.201 (0.827-1.744) 0.337 0.689  0.755 (0.487-1.169) 0.207 0.734  0.754 (0.566-1.004) 0.053 0.261 

Ala 1.028 (0.615-1.72) 0.916 0.93  0.838 (0.583-1.205) 0.34 0.689  1.104 (0.675-1.808) 0.693 0.818  1.348 (1.011-1.797) 0.042 0.261 

Glu 1.035 (0.597-1.794) 0.903 0.93  1.564 (1.054-2.321) 0.026 0.436  1.096 (0.656-1.831) 0.727 0.818  0.855 (0.634-1.153) 0.304 0.497 
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Gln 1.09 (0.719-1.653) 0.685 0.93  0.919 (0.652-1.296) 0.631 0.811  1.11 (0.677-1.821) 0.68 0.818  1.373 (0.979-1.926) 0.066 0.261 

Gly 0.727 (0.406-1.301) 0.282 0.726  0.875 (0.603-1.27) 0.482 0.811  0.78 (0.474-1.284) 0.329 0.734  1.065 (0.805-1.407) 0.661 0.793 

His 1.21 (0.747-1.96) 0.44 0.879  1.121 (0.78-1.611) 0.536 0.811  1.005 (0.626-1.613) 0.984 0.984  0.906 (0.688-1.192) 0.48 0.72 

Ile 0.627 (0.383-1.028) 0.064 0.726  0.905 (0.634-1.29) 0.58 0.811  1.275 (0.822-1.977) 0.278 0.734  0.999 (0.76-1.312) 0.994 0.994 

Leu 0.786 (0.478-1.291) 0.341 0.767  0.84 (0.585-1.206) 0.345 0.689  0.822 (0.516-1.308) 0.408 0.734  0.971 (0.742-1.271) 0.831 0.935 

Phe 1.123 (0.67-1.883) 0.66 0.93  0.996 (0.693-1.43) 0.981 0.981  0.546 (0.34-0.877) 0.012 0.213  0.841 (0.633-1.117) 0.231 0.48 

Tyr 0.901 (0.558-1.453) 0.668 0.93  0.956 (0.675-1.354) 0.801 0.848  0.882 (0.551-1.413) 0.601 0.818  1.002 (0.759-1.321) 0.991 0.994 

Val 0.953 (0.58-1.567) 0.849 0.93  0.913 (0.65-1.284) 0.602 0.811  0.874 (0.548-1.393) 0.572 0.818  0.934 (0.712-1.226) 0.624 0.793 

Aceticacid 0.973 (0.524-1.806) 0.93 0.93  1.558 (1.003-2.419) 0.048 0.436  0.993 (0.558-1.77) 0.982 0.984  0.932 (0.693-1.254) 0.642 0.793 

Citricacid 1.333 (0.806-2.204) 0.263 0.726  1.425 (0.95-2.139) 0.087 0.498  0.795 (0.482-1.31) 0.367 0.734  0.805 (0.592-1.095) 0.167 0.458 

Lacticacid 1.512 (0.825-2.769) 0.181 0.726  1.281 (0.881-1.861) 0.195 0.585  0.621 (0.358-1.078) 0.091 0.408  0.849 (0.636-1.133) 0.267 0.48 

3-HB 1.479 (0.781-2.802) 0.23 0.726  1.364 (0.931-1.997) 0.111 0.498  0.797 (0.477-1.329) 0.384 0.734  0.768 (0.576-1.024) 0.072 0.261 

Acetone 1.09 (0.621-1.914) 0.763 0.93  1.282 (0.882-1.862) 0.193 0.585  0.839 (0.505-1.392) 0.496 0.812  0.707 (0.533-0.938) 0.016 0.261 

Pyruvicacid 1.627 (0.929-2.848) 0.089 0.726  0.934 (0.641-1.362) 0.724 0.848  0.546 (0.316-0.944) 0.03 0.213  0.845 (0.636-1.121) 0.243 0.48 

Glucose 1.027 (0.567-1.861) 0.93 0.93  1.052 (0.721-1.535) 0.792 0.848  0.542 (0.306-0.959) 0.035 0.213  0.813 (0.601-1.099) 0.178 0.458 

Trigl 1.233 (0.714-2.128) 0.452 0.961  1.144 (0.776-1.686) 0.497 0.954  1.63 (1.015-2.619) 0.043 0.266  0.996 (0.745-1.332) 0.98 0.998 

Chol 1.168 (0.717-1.9) 0.533 0.961  1.185 (0.819-1.713) 0.367 0.951  1.121 (0.688-1.827) 0.646 0.945  0.921 (0.697-1.216) 0.561 0.948 

LDL-Chol 0.953 (0.599-1.516) 0.838 0.965  0.905 (0.624-1.314) 0.601 0.954  1.169 (0.734-1.861) 0.511 0.945  0.908 (0.685-1.203) 0.502 0.948 

HDL-Chol 1.29 (0.734-2.27) 0.376 0.961  1.268 (0.867-1.852) 0.22 0.897  0.873 (0.538-1.416) 0.583 0.945  0.935 (0.703-1.242) 0.641 0.948 

Apo-A1 1.006 (0.616-1.643) 0.981 0.989  1.286 (0.877-1.887) 0.198 0.89  1.172 (0.725-1.895) 0.518 0.945  0.967 (0.734-1.274) 0.813 0.968 

Apo-A2 0.917 (0.564-1.491) 0.727 0.961  1.269 (0.879-1.832) 0.203 0.89  0.948 (0.589-1.528) 0.827 0.962  0.977 (0.743-1.284) 0.866 0.968 

Apo-B100 1.088 (0.67-1.766) 0.734 0.961  1.117 (0.769-1.622) 0.562 0.954  1.117 (0.697-1.79) 0.646 0.945  0.744 (0.558-0.993) 0.044 0.876 

LDL-HDL-Chol 0.833 (0.5-1.389) 0.484 0.961  0.773 (0.529-1.13) 0.184 0.89  1.299 (0.8-2.109) 0.29 0.827  0.942 (0.711-1.249) 0.677 0.948 

Apo-B100-Apo-A1 1.105 (0.646-1.889) 0.716 0.961  0.909 (0.62-1.332) 0.624 0.954  0.977 (0.578-1.651) 0.931 0.983  0.747 (0.555-1.006) 0.055 0.876 

TPN 1.088 (0.67-1.766) 0.734 0.961  1.117 (0.769-1.622) 0.562 0.954  1.117 (0.697-1.79) 0.646 0.945  0.744 (0.558-0.993) 0.044 0.876 

VLDL_PN 1.124 (0.649-1.947) 0.676 0.961  1.003 (0.686-1.468) 0.987 0.987  1.813 (1.11-2.961) 0.017 0.221  1 (0.746-1.339) 0.998 0.998 

IDL_PN 0.911 (0.559-1.486) 0.709 0.961  1.295 (0.895-1.872) 0.17 0.89  1.168 (0.748-1.822) 0.494 0.945  0.864 (0.656-1.139) 0.299 0.933 
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LDL_PN 0.896 (0.545-1.472) 0.664 0.961  1.033 (0.705-1.515) 0.868 0.97  0.943 (0.598-1.488) 0.801 0.945  0.768 (0.575-1.025) 0.073 0.876 

LDL1_PN 0.845 (0.462-1.546) 0.585 0.961  1.206 (0.829-1.753) 0.328 0.924  0.9 (0.558-1.452) 0.667 0.945  0.924 (0.702-1.217) 0.574 0.948 

LDL2_PN 0.72 (0.394-1.314) 0.284 0.961  0.916 (0.64-1.312) 0.633 0.954  0.97 (0.61-1.543) 0.898 0.983  0.809 (0.594-1.102) 0.179 0.933 

LDL3_PN 0.675 (0.388-1.174) 0.164 0.961  1.038 (0.693-1.555) 0.857 0.97  0.783 (0.464-1.321) 0.359 0.892  0.691 (0.507-0.941) 0.019 0.876 

LDL4_PN 1.219 (0.7-2.126) 0.484 0.961  1.125 (0.767-1.649) 0.547 0.954  1.361 (0.834-2.22) 0.217 0.723  0.943 (0.713-1.247) 0.682 0.948 

LDL5_PN 0.71 (0.45-1.122) 0.142 0.961  0.872 (0.62-1.226) 0.431 0.954  1.243 (0.797-1.94) 0.338 0.892  0.905 (0.683-1.2) 0.488 0.948 

LDL6_PN 1.404 (0.805-2.449) 0.232 0.961  1.237 (0.846-1.809) 0.274 0.919  1.025 (0.653-1.608) 0.916 0.983  0.838 (0.621-1.13) 0.246 0.933 

LMF_Trigl_VLDL 1.265 (0.738-2.168) 0.392 0.961  1.179 (0.797-1.745) 0.409 0.954  1.678 (1.027-2.741) 0.039 0.266  0.998 (0.745-1.339) 0.992 0.998 

LMF_Trigl_IDL 0.946 (0.568-1.577) 0.832 0.965  1.242 (0.853-1.808) 0.259 0.919  1.781 (1.033-3.068) 0.038 0.266  1.012 (0.758-1.351) 0.937 0.98 

LMF_Trigl_LDL 0.563 (0.35-0.905) 0.018 0.764  1.07 (0.727-1.575) 0.733 0.97  1.048 (0.675-1.626) 0.836 0.962  0.79 (0.592-1.055) 0.11 0.876 

LMF_Trigl_HDL 0.542 (0.327-0.9) 0.018 0.764  0.888 (0.647-1.218) 0.46 0.954  1.276 (0.858-1.896) 0.228 0.723  0.978 (0.745-1.284) 0.874 0.968 

LMF_Chol_VLDL 1.092 (0.653-1.827) 0.738 0.961  1.088 (0.744-1.589) 0.664 0.958  1.753 (1.094-2.808) 0.02 0.223  1.083 (0.813-1.441) 0.586 0.948 

LMF_Chol_IDL 1.068 (0.668-1.706) 0.784 0.961  1.383 (0.963-1.985) 0.079 0.89  1.133 (0.725-1.771) 0.584 0.945  0.89 (0.675-1.173) 0.408 0.948 

LMF_Chol_LDL 0.953 (0.599-1.516) 0.838 0.965  0.905 (0.624-1.314) 0.601 0.954  1.169 (0.734-1.861) 0.511 0.945  0.908 (0.685-1.203) 0.502 0.948 

LMF_Chol_HDL 1.29 (0.734-2.27) 0.376 0.961  1.268 (0.867-1.852) 0.22 0.897  0.873 (0.538-1.416) 0.583 0.945  0.935 (0.703-1.242) 0.641 0.948 

LMF_FreeChol_VLDL 1.283 (0.76-2.165) 0.351 0.961  1.107 (0.752-1.63) 0.605 0.954  1.797 (1.117-2.89) 0.016 0.221  1.057 (0.79-1.413) 0.71 0.948 

LMF_FreeChol_IDL 0.984 (0.622-1.557) 0.945 0.984  1.308 (0.916-1.87) 0.14 0.89  1.157 (0.745-1.796) 0.517 0.945  0.918 (0.696-1.21) 0.544 0.948 

LMF_FreeChol_LDL 0.979 (0.593-1.618) 0.935 0.984  1.116 (0.762-1.635) 0.572 0.954  0.751 (0.457-1.233) 0.258 0.783  0.792 (0.593-1.058) 0.114 0.876 

LMF_FreeChol_HDL 1.739 (0.952-3.176) 0.072 0.961  1.407 (0.944-2.097) 0.094 0.89  0.705 (0.417-1.19) 0.191 0.712  0.898 (0.674-1.195) 0.46 0.948 

LMF_Phosp_VLDL 1.206 (0.708-2.055) 0.491 0.961  1.078 (0.73-1.592) 0.707 0.97  2.112 (1.268-3.518) 0.004 0.221  1.151 (0.854-1.551) 0.356 0.933 

LMF_Phosp_IDL 0.879 (0.525-1.471) 0.624 0.961  1.02 (0.711-1.465) 0.913 0.987  1.285 (0.795-2.077) 0.306 0.852  1.041 (0.791-1.371) 0.772 0.968 

LMF_Phosp_LDL 0.881 (0.54-1.437) 0.612 0.961  0.964 (0.662-1.405) 0.851 0.97  0.93 (0.584-1.48) 0.758 0.945  0.854 (0.644-1.131) 0.271 0.933 

LMF_Phosp_HDL 0.914 (0.518-1.612) 0.755 0.961  1.313 (0.897-1.923) 0.162 0.89  0.975 (0.584-1.627) 0.923 0.983  0.945 (0.709-1.259) 0.698 0.948 

LMF_ApoA1_HDL 1.041 (0.647-1.676) 0.868 0.977  1.238 (0.863-1.775) 0.246 0.919  1.204 (0.762-1.903) 0.427 0.945  0.88 (0.667-1.16) 0.364 0.933 

LMF_ApoA2_HDL 0.932 (0.568-1.53) 0.78 0.961  1.28 (0.882-1.859) 0.194 0.89  0.935 (0.58-1.508) 0.783 0.945  0.972 (0.737-1.28) 0.837 0.968 

LMF_ApoB_VLDL 1.124 (0.649-1.948) 0.676 0.961  1.003 (0.686-1.468) 0.986 0.987  1.813 (1.11-2.96) 0.017 0.221  1 (0.746-1.339) 0.998 0.998 

LMF_ApoB_IDL 0.911 (0.558-1.485) 0.708 0.961  1.295 (0.895-1.873) 0.17 0.89  1.168 (0.749-1.823) 0.493 0.945  0.864 (0.656-1.138) 0.299 0.933 
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LMF_ApoB_LDL 0.896 (0.545-1.472) 0.664 0.961  1.033 (0.705-1.515) 0.868 0.97  0.943 (0.598-1.488) 0.801 0.945  0.768 (0.575-1.025) 0.073 0.876 

SubTrigl_VLDL-1 1.133 (0.677-1.896) 0.633 0.961  1.038 (0.712-1.514) 0.846 0.97  1.443 (0.865-2.408) 0.16 0.652  1.021 (0.766-1.361) 0.886 0.968 

SubTrigl_VLDL-2 1.085 (0.612-1.923) 0.781 0.961  0.945 (0.631-1.414) 0.782 0.97  1.768 (1.048-2.983) 0.033 0.266  1.25 (0.935-1.672) 0.132 0.876 

SubTrigl_VLDL-3 1.138 (0.625-2.07) 0.673 0.961  0.991 (0.667-1.473) 0.965 0.987  1.656 (0.963-2.848) 0.068 0.353  1.213 (0.913-1.611) 0.183 0.933 

SubTrigl_VLDL-4 1.177 (0.68-2.038) 0.561 0.961  1.018 (0.708-1.463) 0.925 0.987  1.815 (1.031-3.193) 0.039 0.266  0.98 (0.732-1.311) 0.892 0.968 

SubTrigl_VLDL-5 1.423 (0.882-2.293) 0.148 0.961  0.943 (0.668-1.331) 0.738 0.97  1.45 (0.874-2.406) 0.15 0.633  0.987 (0.746-1.305) 0.926 0.978 

SubChol_VLDL-1 1.126 (0.679-1.867) 0.646 0.961  1.197 (0.817-1.756) 0.356 0.944  1.491 (0.924-2.406) 0.102 0.482  1.03 (0.774-1.372) 0.839 0.968 

SubChol_VLDL-2 1.038 (0.583-1.847) 0.899 0.977  1.042 (0.707-1.537) 0.835 0.97  1.957 (1.207-3.172) 0.006 0.221  1.141 (0.862-1.509) 0.357 0.933 

SubChol_VLDL-3 1.148 (0.671-1.962) 0.615 0.961  1.201 (0.824-1.75) 0.341 0.927  1.694 (1.013-2.833) 0.044 0.266  1.063 (0.804-1.407) 0.668 0.948 

SubChol_VLDL-4 0.971 (0.609-1.548) 0.903 0.977  1.052 (0.733-1.511) 0.784 0.97  1.593 (1.016-2.497) 0.042 0.266  1.059 (0.8-1.4) 0.689 0.948 

SubChol_VLDL-5 0.73 (0.414-1.288) 0.278 0.961  0.846 (0.575-1.244) 0.395 0.954  1.208 (0.746-1.958) 0.442 0.945  1.035 (0.78-1.373) 0.814 0.968 

SubFreeChol_VLDL-1 1.029 (0.601-1.762) 0.917 0.977  1.037 (0.718-1.497) 0.848 0.97  1.917 (1.129-3.254) 0.016 0.221  1.04 (0.776-1.394) 0.792 0.968 

SubFreeChol_VLDL-2 1.093 (0.638-1.873) 0.746 0.961  1.066 (0.733-1.551) 0.737 0.97  1.562 (0.961-2.54) 0.072 0.357  1.102 (0.834-1.456) 0.494 0.948 

SubFreeChol_VLDL-3 1.195 (0.681-2.096) 0.535 0.961  1.253 (0.848-1.852) 0.257 0.919  1.606 (0.966-2.67) 0.068 0.353  1.015 (0.763-1.35) 0.919 0.978 

SubFreeChol_VLDL-4 1.081 (0.682-1.714) 0.739 0.961  1.244 (0.869-1.782) 0.232 0.914  1.329 (0.866-2.04) 0.194 0.712  0.936 (0.707-1.24) 0.646 0.948 

SubFreeChol_VLDL-5 1.385 (0.829-2.314) 0.213 0.961  0.88 (0.617-1.257) 0.483 0.954  1.471 (0.894-2.42) 0.128 0.586  1.069 (0.81-1.41) 0.637 0.948 

SubPhosp_VLDL-1 1.158 (0.664-2.018) 0.605 0.961  1.133 (0.766-1.676) 0.533 0.954  1.692 (1.001-2.863) 0.05 0.284  1.043 (0.777-1.399) 0.78 0.968 

SubPhosp_VLDL-2 1.17 (0.622-2.203) 0.627 0.961  1.037 (0.693-1.55) 0.86 0.97  2.199 (1.316-3.675) 0.003 0.221  1.18 (0.878-1.585) 0.273 0.933 

SubPhosp_VLDL-3 1.068 (0.595-1.914) 0.826 0.965  1.102 (0.747-1.625) 0.626 0.954  2.042 (1.176-3.546) 0.011 0.221  1.079 (0.81-1.436) 0.604 0.948 

SubPhosp_VLDL-4 0.964 (0.581-1.602) 0.889 0.977  0.985 (0.68-1.426) 0.935 0.987  1.719 (1.055-2.803) 0.03 0.266  1.029 (0.771-1.373) 0.846 0.968 

SubPhosp_VLDL-5 0.952 (0.57-1.592) 0.852 0.971  0.822 (0.571-1.185) 0.294 0.924  1.401 (0.886-2.216) 0.149 0.633  1.156 (0.871-1.534) 0.316 0.933 

SubTrigl_LDL-1 0.531 (0.298-0.948) 0.032 0.764  1.046 (0.718-1.524) 0.814 0.97  1.076 (0.678-1.708) 0.755 0.945  0.861 (0.649-1.142) 0.299 0.933 

SubTrigl_LDL-2 0.523 (0.293-0.933) 0.028 0.764  1.056 (0.711-1.569) 0.788 0.97  0.992 (0.61-1.612) 0.974 0.983  0.853 (0.642-1.133) 0.272 0.933 

SubTrigl_LDL-3 0.832 (0.473-1.461) 0.521 0.961  1.113 (0.759-1.634) 0.583 0.954  1.01 (0.61-1.673) 0.969 0.983  0.8 (0.595-1.075) 0.138 0.876 

SubTrigl_LDL-4 0.72 (0.368-1.41) 0.338 0.961  0.988 (0.663-1.472) 0.953 0.987  1.309 (0.756-2.266) 0.337 0.892  0.945 (0.712-1.254) 0.693 0.948 

SubTrigl_LDL-5 0.691 (0.4-1.194) 0.186 0.961  1.109 (0.773-1.592) 0.574 0.954  1.324 (0.843-2.077) 0.223 0.723  0.907 (0.689-1.194) 0.485 0.948 

SubTrigl_LDL-6 1.563 (0.869-2.811) 0.136 0.961  1.101 (0.752-1.611) 0.62 0.954  1.008 (0.612-1.662) 0.974 0.983  0.846 (0.63-1.135) 0.265 0.933 
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SubChol_LDL-1 0.8 (0.442-1.447) 0.461 0.961  1.09 (0.749-1.587) 0.652 0.954  0.89 (0.547-1.448) 0.639 0.945  1.033 (0.785-1.36) 0.816 0.968 

SubChol_LDL-2 0.928 (0.552-1.561) 0.779 0.961  0.948 (0.663-1.355) 0.769 0.97  0.911 (0.575-1.444) 0.693 0.945  0.884 (0.656-1.191) 0.417 0.948 

SubChol_LDL-3 0.816 (0.466-1.429) 0.476 0.961  0.934 (0.62-1.406) 0.743 0.97  0.918 (0.544-1.549) 0.748 0.945  0.908 (0.679-1.213) 0.512 0.948 

SubChol_LDL-4 0.968 (0.585-1.601) 0.898 0.977  0.909 (0.627-1.316) 0.612 0.954  1.294 (0.81-2.066) 0.281 0.821  1.136 (0.863-1.495) 0.364 0.933 

SubChol_LDL-5 0.785 (0.5-1.234) 0.294 0.961  0.781 (0.552-1.104) 0.162 0.89  1.203 (0.77-1.879) 0.417 0.945  0.933 (0.706-1.233) 0.626 0.948 

SubChol_LDL-6 1.276 (0.756-2.152) 0.362 0.961  1.147 (0.791-1.664) 0.469 0.954  1.001 (0.642-1.562) 0.996 0.996  0.873 (0.652-1.17) 0.365 0.933 

SubFreeChol_LDL-1 0.794 (0.448-1.407) 0.43 0.961  1.14 (0.794-1.637) 0.478 0.954  0.837 (0.521-1.344) 0.461 0.945  0.949 (0.723-1.247) 0.709 0.948 

SubFreeChol_LDL-2 1.085 (0.646-1.825) 0.757 0.961  1.008 (0.707-1.435) 0.966 0.987  0.899 (0.59-1.368) 0.619 0.945  0.871 (0.643-1.181) 0.375 0.933 

SubFreeChol_LDL-3 0.91 (0.521-1.589) 0.739 0.961  1.007 (0.676-1.499) 0.973 0.987  0.693 (0.394-1.22) 0.204 0.723  0.844 (0.632-1.126) 0.248 0.933 

SubFreeChol_LDL-4 0.923 (0.556-1.534) 0.758 0.961  0.907 (0.62-1.326) 0.614 0.954  1.088 (0.649-1.824) 0.749 0.945  0.902 (0.677-1.202) 0.482 0.948 

SubFreeChol_LDL-5 0.828 (0.537-1.278) 0.394 0.961  0.9 (0.643-1.26) 0.54 0.954  1.096 (0.692-1.735) 0.696 0.945  0.885 (0.674-1.161) 0.376 0.933 

SubFreeChol_LDL-6 0.879 (0.542-1.425) 0.6 0.961  0.924 (0.639-1.336) 0.674 0.961  0.908 (0.557-1.479) 0.698 0.945  0.934 (0.704-1.239) 0.635 0.948 

SubPhosp_LDL-1 0.764 (0.42-1.391) 0.378 0.961  1.095 (0.753-1.593) 0.633 0.954  0.904 (0.555-1.474) 0.686 0.945  1.007 (0.765-1.326) 0.958 0.993 

SubPhosp_LDL-2 0.695 (0.383-1.26) 0.23 0.961  0.963 (0.67-1.382) 0.836 0.97  0.916 (0.566-1.48) 0.719 0.945  0.786 (0.575-1.076) 0.132 0.876 

SubPhosp_LDL-3 0.759 (0.439-1.312) 0.323 0.961  1.021 (0.677-1.541) 0.919 0.987  0.759 (0.429-1.345) 0.345 0.892  0.768 (0.571-1.033) 0.081 0.876 

SubPhosp_LDL-4 1.033 (0.592-1.803) 0.909 0.977  1.077 (0.72-1.611) 0.718 0.97  1.175 (0.712-1.939) 0.528 0.945  1.077 (0.809-1.432) 0.612 0.948 

SubPhosp_LDL-5 0.77 (0.482-1.232) 0.276 0.961  0.836 (0.589-1.186) 0.315 0.924  1.162 (0.732-1.843) 0.525 0.945  0.888 (0.667-1.183) 0.417 0.948 

SubPhosp_LDL-6 1.356 (0.786-2.337) 0.273 0.961  1.169 (0.8-1.708) 0.42 0.954  1.019 (0.641-1.619) 0.937 0.983  0.878 (0.654-1.179) 0.388 0.94 

SubApoB_LDL-1 0.845 (0.461-1.546) 0.584 0.961  1.206 (0.829-1.753) 0.328 0.924  0.901 (0.558-1.453) 0.668 0.945  0.924 (0.701-1.217) 0.573 0.948 

SubApoB_LDL-2 0.72 (0.395-1.314) 0.285 0.961  0.917 (0.64-1.312) 0.635 0.954  0.97 (0.609-1.544) 0.897 0.983  0.809 (0.594-1.101) 0.178 0.933 

SubApoB_LDL-3 0.675 (0.388-1.174) 0.164 0.961  1.037 (0.692-1.555) 0.859 0.97  0.783 (0.464-1.321) 0.36 0.892  0.691 (0.507-0.941) 0.019 0.876 

SubApoB_LDL-4 1.219 (0.699-2.125) 0.485 0.961  1.125 (0.767-1.648) 0.547 0.954  1.361 (0.835-2.221) 0.217 0.723  0.943 (0.713-1.247) 0.682 0.948 

SubApoB_LDL-5 0.724 (0.46-1.138) 0.161 0.961  0.841 (0.593-1.193) 0.332 0.924  1.224 (0.785-1.907) 0.373 0.904  0.93 (0.701-1.234) 0.614 0.948 

SubApoB_LDL-5 1.404 (0.805-2.449) 0.232 0.961  1.236 (0.845-1.808) 0.274 0.919  1.024 (0.653-1.608) 0.916 0.983  0.838 (0.621-1.13) 0.246 0.933 

SubTrigl_HDL-1 0.887 (0.482-1.633) 0.7 0.961  1.264 (0.882-1.813) 0.202 0.89  1.15 (0.727-1.818) 0.551 0.945  0.902 (0.682-1.191) 0.466 0.948 

SubTrigl_HDL-2 0.796 (0.469-1.35) 0.398 0.961  1.08 (0.774-1.508) 0.651 0.954  1.336 (0.87-2.053) 0.186 0.712  0.905 (0.681-1.204) 0.493 0.948 

SubTrigl_HDL-3 0.703 (0.414-1.192) 0.191 0.961  1.041 (0.745-1.455) 0.812 0.97  1.721 (1.103-2.683) 0.017 0.221  0.976 (0.736-1.294) 0.867 0.968 
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SubTrigl_HDL-4 0.598 (0.373-0.961) 0.034 0.764  0.776 (0.54-1.113) 0.168 0.89  1.63 (1.039-2.557) 0.033 0.266  1.42 (1.038-1.943) 0.028 0.876 

SubChol_HDL-1 1.599 (0.854-2.993) 0.143 0.961  1.414 (0.979-2.044) 0.065 0.89  1.013 (0.631-1.627) 0.956 0.983  0.926 (0.701-1.222) 0.586 0.948 

SubChol_HDL-2 1.201 (0.652-2.213) 0.557 0.961  1.35 (0.949-1.92) 0.095 0.89  0.909 (0.596-1.385) 0.657 0.945  0.758 (0.552-1.043) 0.089 0.876 

SubChol_HDL-3 0.982 (0.556-1.734) 0.95 0.984  1.354 (0.918-1.998) 0.126 0.89  0.85 (0.51-1.418) 0.534 0.945  0.972 (0.731-1.292) 0.844 0.968 

SubChol_HDL-4 1.164 (0.718-1.888) 0.538 0.961  1.152 (0.786-1.687) 0.468 0.954  0.887 (0.556-1.414) 0.614 0.945  1.168 (0.883-1.546) 0.276 0.933 

SubFreeChol_HDL-1 1.307 (0.736-2.319) 0.36 0.961  1.368 (0.915-2.045) 0.126 0.89  0.842 (0.498-1.422) 0.519 0.945  0.857 (0.642-1.146) 0.298 0.933 

SubFreeChol_HDL-2 0.991 (0.576-1.705) 0.973 0.989  1.518 (1.033-2.229) 0.033 0.89  0.757 (0.466-1.23) 0.261 0.783  0.8 (0.601-1.064) 0.125 0.876 

SubFreeChol_HDL-3 0.854 (0.503-1.448) 0.557 0.961  1.213 (0.837-1.758) 0.307 0.924  0.852 (0.485-1.497) 0.577 0.945  0.971 (0.74-1.275) 0.834 0.968 

SubFreeChol_HDL-4 1.121 (0.714-1.76) 0.621 0.961  1.11 (0.784-1.572) 0.557 0.954  0.92 (0.557-1.52) 0.746 0.945  1.061 (0.806-1.397) 0.671 0.948 

SubPhosp_HDL-1 1.471 (0.756-2.861) 0.256 0.961  1.495 (1.037-2.155) 0.031 0.89  1.008 (0.62-1.638) 0.975 0.983  0.867 (0.654-1.151) 0.324 0.933 

SubPhosp_HDL-2 1.013 (0.54-1.899) 0.968 0.989  1.387 (0.983-1.957) 0.062 0.89  0.923 (0.584-1.461) 0.733 0.945  0.792 (0.589-1.066) 0.124 0.876 

SubPhosp_HDL-3 0.699 (0.374-1.308) 0.263 0.961  1.331 (0.891-1.987) 0.162 0.89  1.038 (0.617-1.746) 0.889 0.983  0.985 (0.738-1.315) 0.917 0.978 

SubPhosp_HDL-4 0.911 (0.513-1.617) 0.751 0.961  1.024 (0.676-1.551) 0.91 0.987  1.089 (0.654-1.812) 0.744 0.945  1.242 (0.934-1.652) 0.136 0.876 

SubApoA1_HDL-1 1.086 (0.661-1.783) 0.745 0.961  1.19 (0.85-1.664) 0.311 0.924  1.051 (0.707-1.564) 0.804 0.945  0.951 (0.728-1.244) 0.715 0.948 

SubApoA1_HDL-2 1.001 (0.599-1.673) 0.998 0.998  1.303 (0.892-1.903) 0.171 0.89  1.079 (0.647-1.8) 0.77 0.945  0.972 (0.73-1.295) 0.849 0.968 

SubApoA1_HDL-3 1.117 (0.653-1.91) 0.686 0.961  1.377 (0.94-2.017) 0.101 0.89  1.075 (0.651-1.775) 0.778 0.945  0.977 (0.734-1.301) 0.875 0.968 

SubApoA1_HDL-4 1.114 (0.699-1.774) 0.65 0.961  0.995 (0.673-1.47) 0.978 0.987  1.117 (0.698-1.789) 0.645 0.945  1.208 (0.91-1.602) 0.19 0.933 

SubApoA2_HDL-1 1.185 (0.656-2.138) 0.574 0.961  1.517 (1.045-2.202) 0.028 0.89  1.074 (0.633-1.823) 0.792 0.945  0.845 (0.636-1.123) 0.246 0.933 

SubApoA2_HDL-2 1.071 (0.614-1.869) 0.809 0.965  1.543 (1.057-2.253) 0.025 0.89  1.049 (0.632-1.741) 0.853 0.973  0.871 (0.653-1.161) 0.346 0.933 

SubApoA2_HDL-3 0.743 (0.431-1.281) 0.285 0.961  1.344 (0.918-1.968) 0.128 0.89  1.101 (0.675-1.795) 0.701 0.945  0.974 (0.736-1.289) 0.855 0.968 

SubApoA2_HDL-4 1.053 (0.667-1.661) 0.826 0.965  1.089 (0.754-1.571) 0.65 0.954  0.866 (0.538-1.395) 0.555 0.945  1.16 (0.88-1.531) 0.292 0.933 

*Logistic regression analyses adjustment for age, sex, time onset-to-treatment, pre rt-PA blood glucose level, baseline NIHSS, history of atrial fibrillation, congestive heart failure, recent 

infections or inflammations, hypertension, diabetes, hyperlipidaemia, smoke and blood collection center. False Discovery Rate correction was applied to P-values (P) using the Benjamini 

& Hochberg method (FDR). Main abbreviations: CI: confidence interval; NIHSS: National Institutes of Health Stroke Scale; OR: odds ratio; trigl: triglycerides; chol: cholesterol; phosp: 

phospholipids; Apo: apolipoprotein; LMF: lipoprotein main fraction; PN: particle number; 3-HB: 3-hydroxybutyrate. Amino acids are reported with the three letters code. 
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Table S4. Mean values of metabolites and lipids concentrations at each time-point of 

blood collection: t1, before rt-PA therapy; t2, 24h after and t3, three months after rt-PA 

administration. Metabolites and lipids concentrations are reported using the measure 

unit as reported in the original Bruker IVDr Lipoprotein subclass analysis reports.  

 
 t1 t2 t3 

Creatinine 0.09 0.09 0.09 

Ala 0.51 0.48 0.52 

Glu 0.22 0.19 0.19 

Gln 0.62 0.61 0.68 

Gly 0.36 0.34 0.39 

His 0.12 0.13 0.12 

Ile 0.07 0.07 0.07 

Leu 0.14 0.14 0.13 

Phe 0.08 0.08 0.07 

Tyr 0.07 0.06 0.06 

Val 0.26 0.27 0.27 

Acetic acid 0.11 0.07 0.08 

Citric acid 0.2 0.16 0.17 

Lactic acid 3.27 2.62 2.76 

3-HB 0.25 0.25 0.07 

Acetone 0.12 0.21 0.06 

Pyruvic acid 0.07 0.07 0.06 

Glucose 7.38 7.56 6.52 

Trigl 132.8 119.89 111.31 

Chol 196.59 192.39 168.42 

LDL-Chol 92.81 95.26 73.42 

HDL-Chol 53.22 52.59 52.17 

Apo-A1 141.09 135.34 136.79 

Apo-A2 32.06 30.37 31.87 

Apo-B100 86.42 86.48 69.57 

LDL-HDL-Chol 1.81 1.86 1.43 

Apo-B100-Apo-A1 0.62 0.65 0.51 

Total PN ApoB 1571.26 1572.51 1264.93 

VLDLPN 161.82 163.64 144.68 

IDL PN 139.74 127.16 119.32 

LDL PN 1162.46 1177.08 917.76 

LDL-1 PN 265.92 256.09 222.84 

LDL-2 PN 169.32 186.46 141.87 

LDL-3 PN 127.97 128.86 87.31 

LDL-4 PN 89.65 85.57 54.88 

LDL-5 PN 173.01 180.62 142.38 

LDL-6 PN 391.74 380.96 340.71 

LMF Trigl VLDL 75.11 66.89 63.22 
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LMF Trigl IDL 8.79 7.67 6.51 

LMF Trigl LDL 23.24 22.7 19.71 

LMF Trigl HDL 12.36 11.06 11.7 

LMF Chol VLDL 26.56 25.1 23.46 

LMF Chol IDL 19.98 17.92 16.48 

LMF Chol LDL 92.81 95.26 73.42 

LMF Chol HDL 53.22 52.59 52.17 

LMF FreeChol VLDL 10.68 10.09 9.09 

LMF FreeChol IDL 5.48 4.96 4.56 

LMF FreeChol LDL 29.27 29.32 23.32 

LMF FreeChol HDL 13.24 12.48 11.72 

LMF Phosp VLDL 19.26 17.92 17.36 

LMF Phosp IDL 6.55 6.05 5.42 

LMF Phosp LDL 53.76 54.77 43.91 

LMF Phosp HDL 72.65 68.97 71.01 

LMF ApoA1 HDL 140.37 135.97 136.79 

LMF ApoA2 HDL 32.82 31.19 32.4 

LMF ApoB VLDL 8.9 9 7.96 

LMF ApoB IDL 7.68 6.99 6.56 

LMF ApoB LDL 63.93 64.74 50.47 

SubTrigl VLDL-1 44.73 34.49 34.29 

SubTrigl VLDL-2 5.92 6.82 5.82 

SubTrigl VLDL-3 8.16 8.96 7.93 

SubTrigl VLDL-4 8.24 9.24 7.94 

SubTrigl VLDL-5 2.95 3.18 2.6 

SubChol VLDL-1 11.05 8.51 8.63 

SubChol VLDL-2 3.26 3.12 3 

SubChol VLDL-3 4.73 4.38 4.32 

SubChol VLDL-4 6.9 7.08 6.56 

SubChol VLDL-5 1.15 1.54 1.03 

SubFreeChol VLDL-1 2.28 1.75 1.85 

SubFreeChol VLDL-2 1.58 1.46 1.37 

SubFreeChol VLDL-3 1.97 1.8 1.74 

SubFreeChol VLDL-4 3.18 3.11 2.83 

SubFreeChol VLDL-5 1.37 1.14 1.05 

SubPhosp VLDL-1 6.61 5.25 5.42 

SubPhosp VLDL-2 2.04 2.1 2.09 

SubPhosp VLDL-3 3.3 3.29 3.33 

SubPhosp VLDL-4 5.26 5.62 5.03 

SubPhosp VLDL-5 1.52 1.79 1.35 

SubTrigl LDL-1 7.99 7.79 6.59 

SubTrigl LDL-2 2.52 2.5 2.19 

SubTrigl LDL-3 2.75 2.76 2.25 

SubTrigl LDL-4 1.9 1.96 1.52 

SubTrigl LDL-5 2.48 2.45 2.17 
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SubTrigl LDL-6 4.99 4.85 4.41 

SubChol LDL-1 25.99 25.07 21.73 

SubChol LDL-2 16.12 17.83 13.49 

SubChol LDL-3 10.47 10.79 6.9 

SubChol LDL-4 6.35 6.41 3.74 

SubChol LDL-5 11.97 12.7 9.51 

SubChol LDL-6 24.13 23.91 21.42 

SubFreeChol LDL-1 8.09 7.86 6.85 

SubFreeChol LDL-2 6.08 6.43 5.21 

SubFreeChol LDL-3 4.05 4.13 2.91 

SubFreeChol LDL-4 2.81 2.81 1.74 

SubFreeChol LDL-5 3.77 3.89 3.02 

SubFreeChol LDL-6 5.52 5.73 5.11 

SubPhosp LDL-1 15.13 14.65 12.95 

SubPhosp LDL-2 9.23 10.13 7.87 

SubPhosp LDL-3 6.42 6.57 4.53 

SubPhosp LDL-4 3.88 3.91 2.44 

SubPhosp LDL-5 6.57 6.99 5.43 

SubPhosp LDL-6 13.49 13.24 12.1 

SubApoB LDL-1 14.62 14.08 12.26 

SubApoB LDL-2 9.31 10.25 7.8 

SubApoB LDL-3 7.04 7.09 4.8 

SubApoB LDL-4 4.93 4.71 3.02 

SubApoB LDL-5 9.52 9.93 7.83 

SubApoB LDL-5 21.55 20.95 18.74 

SubTrigl HDL-1 4.72 3.93 4.36 

SubTrigl HDL-2 2.2 2 2.12 

SubTrigl HDL-3 2.29 2.07 2.24 

SubTrigl HDL-4 3.45 3.31 3.38 

SubChol HDL-1 18.25 16.26 17.52 

SubChol HDL-2 7.92 7.66 7.67 

SubChol HDL-3 9.06 8.59 8.77 

SubChol HDL-4 16.73 17.99 16.64 

SubFreeChol HDL-1 4.83 4.13 4.48 

SubFreeChol HDL-2 2.1 1.85 2.02 

SubFreeChol HDL-3 1.7 1.61 1.65 

SubFreeChol HDL-4 2.96 3.1 2.78 

SubPhosp HDL-1 22.76 19.6 22.12 

SubPhosp HDL-2 12.55 11.64 12.1 

SubPhosp HDL-3 13.78 12.9 13.55 

SubPhosp HDL-4 22.23 23.11 22.23 

SubApoA1 HDL-1 29.07 25.56 28.97 

SubApoA1 HDL-2 19.03 17.01 18.36 

SubApoA1 HDL-3 25.5 23.44 23.76 

SubApoA1 HDL-4 67.71 69.62 65.77 
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SubApoA2 HDL-1 3.06 2.35 2.99 

SubApoA2 HDL-2 3.48 2.78 3.4 

SubApoA2 HDL-3 5.82 5.15 5.8 

SubApoA2 HDL-4 18.27 18.44 18.16 

* Main abbreviations: trigl: triglycerides; chol: cholesterol; phosp: phospholipids; Apo: apolipoprotein; LMF: 

lipoprotein main fraction; Sub: subfraction; PN: particle number; 3-HB: 3-hydroxybutyrate. Amino acids are 

reported with the three letters code. 
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4.1.3. Differential Network Analysis reveals metabolite and lipid components 

associated with three-month death and impairment in patients with acute 

ischemic stroke after thrombolytic treatment with recombinant tissue 

plasminogen activator 
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Abstract 

 

Here, we present the standard multivariate, univariate, network reconstruction 

and differential analysis of metabolite-metabolite and metabolite-lipid association 

networks built from an array of 18 serum metabolites and 110 lipids identified and 

quantified through Nuclear Magnetic Resonance (NMR) spectroscopy in a cohort of 

248 patients, of which, 22 died and 82 developed impairments within three-months 

from acute ischemic stroke (AIS) treated with intravenous recombinant tissue 

plasminogen activator (rt-PA). We deeply explored differences in metabolite and lipid 

connectivity of patients who did not develop impairments and who survived the 

transient cerebral ischemia from the related opposite conditions. We report statistically 

significant differences in the connectivity patterns of both low- and high-molecular 

weight metabolites, implying underlying variations in the metabolic pathways 

involving leucine, glycine, glutamine, tyrosine, phenylalanine, citric, lactic and acetic 

acids, ketone bodies and different lipids, thus characterizing patients ‘outcomes.  Our 

results evidence the promising and powerful role of the metabolite-metabolite and 

metabolite-lipid association networks in investigating molecular mechanisms in AIS 

patients according to their outcomes.  

 

Introduction 

 

Ischemic stroke (IS) is a leading cause of death and disability continuously 

increasing,1 and contributing significantly to health costs. There is an urgent need of 

effective biomarkers useful for the clinical practice and of a better understanding of 

the dysregulation in the pathophysiological mechanisms of the disease. 

Metabolic perturbations are believed to be fundamental events that contribute to the 

ischemic stroke, to its progression and subsequent unfavourable outcomes2–9 and 

comprehensive analytical techniques provide a great chance to identify key metabolic 

features involved in the onset and progression of this disease. 

Nuclear Magnetic Resonance (NMR)-based metabolomics allows a high-throughput 

analysis of various types of samples, providing information on hundreds of different 

metabolites and lipid features present in biological matrices.10,11 Multivariate and 

univariate analyses proved to be efficient in characterizing the metabolic signature of 

diseases12–14 and in the context of molecular epidemiology,15,16 but integrative systems 

biology techniques offer a comprehensive representation of the structural and 

functional characteristics of a certain living organism, helping in the understanding of 

the inter-relationships among metabolic features at the basis of the system behaviour.17 

Association networks can provide interesting information to describe the status of the 

biological system under study or to compare the same across different conditions, and 

correlation among metabolites and lipids levels measured in blood can be used to 

model and infer, at least partially, the structure of the underlying biological network.18  

In this light, network analysis has proven to be an impressive and powerful tool to 

deepen the knowledge and interpret the complexity of metabolomic data.19–23 In 
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particular, for metabolomic studies, the exploration of association networks revealed 

to be more efficient when different conditions are compared in the context of a 

differential network analysis.19,22,24  

In this work, we aimed at providing mechanistic insights underlying  susceptibility to  

three-month post-acute ischemic stroke mortality and impairment developed after 

intravenous (i.v.) thrombolytic treatment with recombinant tissue plasminogen 

activator (rt-PA), applying a more systematic approach using metabolite-lipid 

association differential network analysis in combination with standard univariate, 

exploratory and multivariate analyses. The patients included in this study are a subset 

of the MAGIC study cohort.25  

We investigated, the differences between the serum metabolic and lipid profiles of 

patients who after three-months from the ischemic event did not develop impairment 

or had survived and those who developed impairment or died. The analysis was 

performed in relation to thrombolytic treatment, considering samples collected 24 

hours after rt-PA which were retrospectively divided into four groups (not-impaired 

(3M-nI) /impaired (3M-I) and survivor (3M-nD) /deceased patients (3M-D)) and 

applying univariate, multivariate and differential network analysis as illustrated in 

Figure 1. Our results showed that dysregulations in the connectivity of triglycerides, 

HDL, LDL, VLDL fractions and related subfractions, leucine, glycine, glutamine, 

tyrosine, phenylalanine, citrate, acetate, lactate, acetone and 3-hydroxybutyrate are 

pivotal for the characterization of post-acute ischemic stroke outcomes.  

 

Material and Methods 

 

Study Population 

The study population consists of 248 patients who had an acute ischemic stroke 

and were admitted for thrombolysis treatment with recombinant tissue plasminogen 

activator (rt-PA) in 14 different Italian centres, registered in the Safe Implementation 

of thrombolysis in Stroke-International Stroke Thrombolysis Register (SITS-ISTR, 

www.sitsinternational.org), according to SITS-Monitoring Study criteria,26 in the 

frame of the national, observational and multicentric MAGIC study.25,27  

The study focuses on the analysis of serum samples collected 24 hours after rt-PA (t1) 

and outcomes were defined at evaluation as follows: i) mortality at three months after 

AIS (t0 + 3 months) and ii) disability (impairment) at three months after AIS (t0 + 3 

months). Impairment was defined according to the modified Rankin disability 

score28,29 and dichotomized into good (modified Rankin scale, 0–2) or poor (modified 

Rankin scale, 3–6) outcome. An overview of the demographic characteristics and risk 

factors of analysed patients is reported in Table 1. 

In detail, we analysed 226 serum samples for survivors, 22 for deceased, 166 for not-

impaired and 82 for impaired patients.  

 

Ethical Issues 
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The study protocol was approved by the local Ethical Committee of the Careggi 

University Hospital (Florence) and it complies with the Declaration of Helsinki. All 

patients gave informed consent.  

 

NMR serum sample collection and preparation 

Blood samples were collected in tubes with anticoagulants (0.109M sodium 

citrate at ratio 9:1 or 1.8 mg/ml EDTA). Serum samples were obtained after 

centrifuging at room temperature at 1500 × g for 15 min; The supernatant was collected 

in 1.5 ml aliquots and stored at -80°C, until NMR measurements. 

 

NMR experiments 

Serum samples were analysed using a Bruker 600 MHz spectrometer working 

at 600.13 MHz proton Larmor frequency equipped with a 5 mm PATXI 1H-13C-15N 

and 2H decoupling probe. This includes a z axis gradient coil, an automatic tuning-

matching (ATM) and an automatic and refrigerate sample changer (SampleJet). To 

stabilize approximately, at the level of ± 0.1 K, the sample temperature (310 K), a BTO 

2000 thermocouple was employed and each NMR tube was kept for at least 5 min 

inside the NMR probe head to equilibrate the acquisition temperature of 310 K.  

The analytical preparation of serum samples and their NMR spectra acquisition 

followed the procedures detailed elsewhere.10 For each serum specimen, the 1D 

NOESY, 1D CPMG and 1D DIFFUSION-EDITED pulse sequences were applied to 

acquire 1H-NMR spectra. Raw NMR data were multiplied by an exponential function 

of 0.3 Hz line-broadening factor, before the application of Fourier transform. Phase 

and baseline distortions were automatically corrected and transformed spectra were 

calibrated to the glucose doublet at 5.24 ppm using TopSpin 3.2 (BrukerBioSpin).  

 

Metabolite and Lipid identification and quantification 

18 metabolites and lipoprotein fractions were unambiguously identified and 

quantified using the AVANCE Bruker IVDr (Clinical Screening and In Vitro 

Diagnostics research, Bruker BioSpin) software.30 In all serum 1D NOESY NMR 

spectra and VLDL, LDL, IDL, HDL,  15 different subclasses, (VLDL-1 to VLDL-5, 

LDL-1 to LDL-6 and HDL-1 to HDL-4) were quantified. For each main class and 

subclass, reported data consist of concentrations of lipids (total cholesterol, free 

cholesterol, phospholipids and triglycerides) contained in each fraction. 

Concentrations of apolipoproteins Apo-A1 and ApoA2 were estimated for HDL class 

and each relative subclass, while Apo-B concentrations are calculated for VLDL, IDL 

classes and all LDL subclasses.  

 

Statistical analysis 

 

Univariate analysis 

Univariate Wilcoxon test31 was used to compare metabolite and lipid 

concentrations between patient groups (3M-I vs. 3M-nI, 3M-nD vs. 3M-D) treated with 
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the thrombolytic therapy. Benjamini- Hochberg method32 was used to correct for 

multiple testing; adjusted P-values for FDR <0.05 were deemed statistically 

significant. Log2 fold change (FC) ratios of the median intensities were also calculated 

(Table S1).  

 

Multivariate analysis: PCA and Random Forest  

Principal Component Analysis (PCA) was applied on all quantified analytes, 

to investigate, in an unsupervised manner, the data structure and highlighting the 

possible presence of metabolite and lipid signatures differentiating 3M-nI from 3M-I 

and 3M-nD from 3M-D AIS patients at t1 (24h post rt-PA). PCA analysis was 

performed on data scaled to unit variance.  

Random Forest algorithm was employed for sample classification;33 four classification 

models were built to discriminate 3M-nI/3M-I and 3M-nD/3M-D patients using 

sample collected at t1. Considering the unbalanced number of subjects in each group 

to be compared, Random Forest models were built by first making the different groups 

of the same size by random sampling, from the largest “survivors” or “not-impaired” 

group, of a comparable number of subjects (20 samples in the “survivor vs. deceased” 

model and 80 samples in the “not-impaired vs. impaired” model). The procedure was 

repeated 100 times and results are averaged over the 100 models. 

All models mean accuracy, sensitivity, specificity and related 95% CI were calculated.  

 

Network analysis 

 

Networks building 

Metabolite-lipid correlation networks were constructed using the PCLRC 

(Probabilistic Context Likelihood Relatedness on Correlation) algorithm.19 This 

algorithm estimates correlation taking into account the background distribution of 

correlation and using resampling to get solid estimations. The algorithm output a J × J 

probability matrix P that is used to filter out spurious and chance correlations. In 

particular, for the correlation rij between two metabolites i and j: 

 

𝑟𝑖𝑗 = {
𝑟𝑖𝑗             𝑖𝑓 𝑝𝑖𝑗 > 0.95

0          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒            
 

 

Determining the significance of metabolite and lipid differential connectivity 

Differences in terms of connectivity among metabolic features in each couple 

of networks (3M-I vs. 3M-nI and 3M-nD vs. 3M-D patients) were analysed 24h after 

rt-PA administration (t1).  

 The connectivity of the i metabolite or i lipid is given by: 

𝜒𝑖 = (∑|𝑟𝑖𝑗 |

𝐽

𝑗=1

) − 1     

and differential connectivity is defined as: 
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Δ𝜒𝑖 = |𝜒𝑖
1 − 𝜒𝑖

2| 

where 𝜒𝑖
1 and 𝜒𝑖

2 are the connectivity of metabolite or lipid i estimated from 

metabolite-lipid association networks calculated from data from condition 1 and 2, 

respectively (i.e. 3M-nI and 3M-I, 3M-nD and 3M-D, at t1). 

The statistical significance of the metabolite and lipid differential connectivity was 

established using a permutation test (n=1000) as described in previous publication.22 

Metabolic and lipidic variables that resulted to be statistically significant connected 

(P-value < 0.05 after FDR correction) were considered to be related to the specific 

condition under study (post-stroke three-months impairment/death). 

 

Software 

All calculation was performed using R (version 3.6.2). Random Forest was 

performed using the R “randomForest” package,33 using the default settings. The R 

code for the PCLRC algorithm and the code to perform differential connectivity 

analysis are available at the link: semantics.systemsbiology.nl under the SOFTWARE 

tab. 

 

Results and Discussion 

  

Exploratory analysis 

Principal component analysis (PCA) was applied, as an unsupervised 

multivariate approach, on all quantified metabolic features of all available samples, to 

obtain an overview of the variation in the data and to check for the presence of 

metabolic signatures among the compared groups. Figure 2 shows the PCA 3D score 

plots of patient samples measured on metabolites and lipids concentrations, colour-

coded by patient status: there is no separation among the samples belonging to 

survivors, deceased and for patients who developed or not developed impairment at 

24h post rt-PA.  

  

Random Forest analysis 

Since PCA analysis was not able to highlight observable differences in serum 

profiles of survivor, deceased, impaired and not-impaired patients, we used a 

supervised method such as the Random Forest algorithm to investigate whether the 

metabolite and lipid profiles could be employed to discriminate in a predictive manner 

3M-nI from 3M-I and 3M-nD from 3M-D, after thrombolysis intervention (t1).  

All models built on serum metabolic and lipidic concentrations resulted to be 

ineffective to discriminate 3M-I from 3M-nI and 3M-nD from 3M-D AIS patients (see 

Table 2).  

Altogether, the common multivariate analysis of serum profiles of AIS patients proved 

to be unsuccessful to identify multiple spectral characteristics that are different 

between 3M-I or 3M-nI or between 3M-nD and 3M-D.  
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Differential Network Analysis 

 

We built serum metabolite-lipid association networks specific for 3M-I/3M-nI 

and 3M-nD/3M-D patients at t1 (24h post rt-PA) with the scope of investigating 

possible perturbations in patients’ metabolic status that could be captured by 

differential network analysis. Metabolic changes were discussed considering that 

metabolites participating in different metabolic pathways tend to have higher levels of 

correlations and connectivity,34 while a decreased connectivity of metabolites involved 

in the association networks in a statistically significant manner, may indicate a reduced 

role of certain pathways where those metabolites participate.  

  

Differential analysis of not-impaired and impaired specific metabolite and lipid 

network after thrombolysis treatment 

The metabolite and lipid association networks specific to 3M-nI and 3M-I 

patients are given in Figure 3A and B, respectively, while differential connectivity 

plots are reported in Figure 4. Statistically significant differences in connectivity are 

reported for glutamine, tyrosine, leucine, lactate, acetone, acetate and glycine.  

The alteration of lactic acid connections observed in patients with impairment could 

suggest its decreased role in providing substitute energy fuel and in the metabolic 

pathways of neuroprotection where lactic acid is normally largely involved; in fact, 

the transition from aerobic to anaerobic glycolysis is enhanced to support the 

increasing demand of energy. As a result, the production of pyruvate and lactate 

increases, and this last one can be shuttled to neurons to guarantee neuron protection 

and survival.35 This is substantiated also by the observation that 3-hydroxybutyrate (P 

value = 3×10-5, FDR = 4×10-3) and glucose (P value = 1×10-2, FDR = 7×10-2) median 

values appeared to be significantly increased for disabled patients. Acetone and acetate 

were also significantly increased (FDR < 0.05) (Table S1) in patients who developed 

impairment at three months after thrombolysis. 

Changes in the connectivity of leucine, citric acid, acetate and acetone, specific to 

patients who developed neurological impairments treated with thrombolysis after the 

transient ischemia indicate unbalances in the energy metabolism and oxidative stress-

related pathways: alterations in brain energy metabolism are linked to energy deficits 

associated with ischemia and reperfusion injury,  and downregulation of citric acid has 

been associated to post-stroke cognitive impairment,8 while the metabolism of ketone 

bodies is upregulated to provide alternative energy sources and to maintain free radical 

homeostasis during ischemia-reperfusion injury.36,37  

Increased glutamine connectivity and increased glutamine concentration for patients 

with impairment suggest alterations in glutamine/glutamate metabolism: glutamine is 

a main precursor of glutamate and both of them are inter-converted among astrocytes 

and neurons, guaranteeing glutamine homeostasis and glutamate generation and 

recycling. However, if glutamate generation and recycling are impaired, glutamate can 

be an excitatory and possibly toxic neurotransmitter which can lead to glutamate-
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induced neurotoxicity. Alterations in glutamine/glutamate metabolism have been 

observed in patient with ischemic stroke, and increasing levels of serum glutamine 

were associated to compensatory adaptative mechanisms to counteract glutamate-

induced neurotoxicity.38 

Moreover, we observed increased levels of phenylalanine (FDR = 0.01) in impaired 

AIS patients, and differential connectivity of tyrosine. This suggests that 

phenylalanine and its metabolite tyrosine might be associated with glutamate-induced 

neurotoxicity, since phenylalanine can suppress the excitatory glutamatergic synaptic 

transmission.39 

Summarizing, the metabolic profiles of 3M-I patients are consistent with the 

hypothesis of deregulated glutamate metabolism and subsequent glutamate induced 

neurotoxicity that seems responsible for the worsening of post-stroke quality of life.  

We observed increased glycine connectivity for 3M-I patients, indicating a possible 

role of glycine in impairment. The role of glycine for acute ischemic stroke is quite 

controversial. Recent studies demonstrated that lower levels of glycine are deleterious 

for ischemic neuronal injury, while higher level of the same metabolite seem to be 

neuroprotective.40,41  

We also observed altered patterns of connectivity among metabolites and lipid 

features, indicating that alteration of lipid metabolism may be involved in post-stroke 

impairments and neurological disabilities. Several studies have explored the 

relationships between lipidic features and ischemic stroke,3,6,42,43 demonstrating how 

these molecules play dual roles in the aetiology and progression of the disease. Serum 

cholesterol have been found to be an independent predictor for long-term functional 

outcomes and higher serum total cholesterol levels have been associated with better 

prognosis.44 Triacylglycerols have been significantly associated with ischemic 

stroke.45 

We observed that in the metabolite-lipid association network specific to 3M-I AIS 

patients, triglycerides show a decreased connectivity. Since triglycerides are 

hydrolysed to fatty acids to provide alternative energy sources, we associated decrease 

connectivity to alterations in the triglycerides metabolism leading to a decreased role 

of triacylglycerols in supporting alternative energy fuel in patients who developed 

post-stroke impairments. This is line with previous observations regarding the general 

condition of energy failure that characterizes the topology of the association network 

of 3M-I patients. All metabolites and lipids highlighted by the differential network 

analysis are involved in the mechanisms to guarantee energy homeostasis and they 

show decreased connectivity in the specific network of patients who developed 

impairment three-months after the transient cerebral ischemia.  

  

Differential analysis of survivor and deceased specific metabolite and lipid network 

after thrombolysis treatment 

The metabolite-lipid association networks specific for 3M-nD and 3M-D AIS 

patients are shown in Figure 5. 
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There is a statically significant reduction in the connectivity of blood circulating citric 

acid and acetone and several lipid fractions in the correlation networks of patients who, 

after three months, did not survive the acute cerebral ischemia (Figure 6A). In 

particular, we observed a loss of structural connections between metabolites and LDL 

related fractions. Citric acid showed also higher concentrations (P-value = 0.01, FDR 

= 0.2, Table S1) in deceased patients. 

As previously discussed, citric acid and ketone bodies are involved in energy 

metabolism and their levels can change during and after the cerebral ischemia to 

restore energy homeostasis. Our results suggest that dysregulations in energy 

metabolism may be associated also with underlying causes related to an increased risk 

of death at three months from the AIS.   

We observed a statistically significant decrease of low-density lipoproteins 

connectivity (especially VLDL and LDL-5 and LDL-6 sub-particles), in the network 

specific to deceased patients.  Lipoproteins and lipids have been associated with IS,46 

small dense LDL (sdLDL) and small-sized HDL particles are established risk factors 

for this disease. It has been shown that AIS is associated with adverse distributions of 

LDL and HDL subclasses, and short-term mortality is linked to increased levels of 

small dense LDL particles.47 Since sdLDL are more susceptible to oxidation than 

larger LDLs, we suggest that sdLDL particles may provide an optimal substrate for rt-

PA-induced oxidative action and that alterations in the connectivity patterns of lipid 

sub-fractions reflects an increase in the rt-PA-mediated oxidative damage associated 

with post-stroke mortality.  

We reported that changes in the metabolism of ketone bodies occur during stress 

conditions and reperfusion oxidative stress, but to date, the exact role and mechanisms 

of serum acetone in determining the mortality in AIS patients treated with i.v. 

thrombolysis remain not completely elucidated. Our results indicate strong 

perturbation in the processes involving serum acetone and VLDL related subfractions, 

3-hydroxybutyrate and free cholesterol linked to VLDL-1 subfractions. In particular, 

disruption of the connectivity of acetone and VLDL again suggests re-modulation of 

energy metabolisms. 

Overall, the reduction of metabolites-lipid connectivity for 3M-D patients may suggest 

alterations in lipid metabolism during cerebral ischemia which can strongly affect 

post-stroke mortality, as well as the development of post-stroke impairments.  

  

Conclusions 

 

We have outlined standard multivariate, univariate, network reconstruction and 

investigation of experimentally identified relationships between metabolites and 

lipids, and we applied a differential network analysis (paired with a standard univariate 

and multivariate analysis) to analyse the pattern of correlations of serum circulating 

metabolites and lipids in AIS patients who did not develop impairment and who 

survived at three-months from the transient cerebral ischemia, treated with intravenous 

rt-PA.  
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While standard multivariate and univariate analysis failed to discriminate between the 

patient groups, network analysis revealed marked metabolic differences that could be 

related to development of post-acute ischemic stroke impairment and mortality.  

We showed that lipid (triglycerides, HDL, LDL, VLDL fractions and related 

subfractions), amino acid (leucine, glycine, glutamine, tyrosine, phenylalanine), 

organic acids (citric, lactic and acetic acids) and ketone bodies (acetone, 3-

hydroxybutyrate) metabolisms and their inter-connections, are decisive for 

characterizing post-stroke functional and neurological outcomes, differentiating serum 

profiles of 3M-I, 3M-D, 3M-nI and 3M-nD patients. 

Our results indicate that dysregulations of the above-mentioned metabolites and lipids 

connectivity are involved mainly in mechanisms that show how energy failure, 

glutamate-induced neurotoxicity, oxidative stress and neuroprotection play important 

roles in the progression of the pathology after the thrombolytic treatment, affecting 

survivor’s outcomes. 

Furthermore, acetone emerged as largely involved in the determination of both three-

month outcomes (impairment development and mortality) in ischemic stroke treated 

with thrombolysis.  

In conclusion, this study affords important information on how metabolite-metabolite 

and metabolite-lipid association networks of AIS patients differ according to the 

patient’s outcomes.  
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Tables 

 

Table 1. Demographic characteristics and risk factors for 3M-nD, 3M-D, 3M-nI and 

3M-I AIS patients. 

 

Parameters 
3M-nD 

(n=226) 

3M-D 

(n=22) 

3M-nI 

(n=166) 

3M-I 

(n=82) 

Demographic characteristics 

Age, years, mean and SD 68 ± 11.8 76.4 ± 9.9 67 ± 12.5 72.2 ± 9.8 

Sex (male), n (%) 
133/226 

(58.8%) 
6/22 (27.3%) 102/166 (61.4%) 37/82 (45.1%) 

Risk factors 

Hypertension, n (%) 
132/226 

(58.4%) 
12/22 (54.5%) 96/166 (57.8%) 48/82 (58.5%) 

Diabetes, n (%) 
31/226 

(13.7%) 
6/22 (27.3%) 24/166 (14.4%) 13/82 (15.8%) 

Hyperlipidaemia, n (%) 
55/226 

(24.3%) 
2/22 (9%) 35/166 (21.1%) 22/82 (26.8%) 

Current smoking, n (%) 
35/226 

(15.5%) 
0/22 (0%) 27/166 (16.3%) 8/82 (9.8%) 

Atrial Fibrillation, n (%) 49/226 (23%) 8/22 (36.4%) 37/166 (22.3%) 20/82 (24.4%) 

Congestive Heart Failure, n (%) 20/226 (8.8%) 6/22 (27.3%) 11/166 (6.6%) 15/82 (18.3%) 

 

Table 2. Mean values of accuracy, specificity, sensitivity of metabolites and lipids 

models estimated for 3M-nD/3M-D and 3M-nI/3M-I AIS patients, at 24h post rt-PA 

(t1). 

 
 24h post rt-PA (t1) 

 3M-nD vs. 3M-D 3M-I vs. 3M-nI 

Mean accuracy % (95% CI) 53.8 (55.6 -51.9) 59.8 (60.4 – 59.1) 

Mean specificity % 

(95% CI) 
57.5 (59.5 – 55.6) 60.5 (61.4 – 59.7) 

Mean sensitivity % 

(95% CI) 
50.0 (52.2 – 47.8) 59.1 (59.9 – 58.2) 
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Figures 

 

Figure 1. Graphical representation of the analysis followed to explore differences in 

serum profiles of AIS patients, using univariate analysis, an unsupervised exploratory 

approach (PCA analysis), a Random Forest analysis and metabolite-lipid association 

networks for patients who survived (3M-nD) or not (3M-D) the acute brain ischemia 

and for those who developed (3M-I) or not (3M-nI) functional and neurological 

impairments at three-months from the transient event. The AIS is recorded at time t0, 

while serum samples were collected at t1, i.e. 24 hours the thrombolytic intervention 

(post rt-PA samples). Survival and absence of impairment were evaluated after three-

months, thus retrospectively dividing samples, according to the outcome (survivor vs. 

deceased and not-impaired vs. impaired), for the analyses. Differences in metabolite-

lipid association networks were estimated using the PCLRC algorithm.48 

 

 
 

Figure 2. PCA 3D score plots. Each dot represents the serum metabolic profile of AIS 

patients at 24h post rt-PA (A and B). Colours coded the group of subjects: green dots, 

3M-nD (n=226); blue dots, 3M-D (n=22); orange dots, 3M-nI (n=166) and purple dots, 

3M-I (n=82) patients.  
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Figure 3. Metabolite-metabolite and metabolite-lipid association specific to 3M-I and 

3M-nI AIS patients. A) Network specific for 3M-nI. B) Network specific for 3M-I. 

Networks are reconstructed using the PCLRC algorithm from serum metabolites and 

lipid fractions from sample collected 24h post rt-PA (t1).  

Only the connections of statistically significant differentially connected metabolites 

(FDR < 0.05) are displayed. Nodes are arranged and coloured according to the 

increasing metabolite-metabolite or metabolite-lipid degree of connectivity (from pink 

to purple). Edges represent correlations (black edges display correlation with |R| > 0.6). 

Abbreviations are reported as follows: analytes: 3-HB: 3-hydroxybutyrate, Apo: 

Apolipoproteins, Chol: cholesterol, LMF: lipoproteins main fractions, Phosp: 

phospholipids, PN: particle number, Sub: subfractions, Trigl: triglycerides. Amino 

acids are reported with three letter code.  

  

 
 

Figure 4. Difference in terms of connectivity in association networks of 3M-nI and 

3M-I patients at 24h post rt-PA, t1, against each metabolite’s (A) and lipid’s (B) P-

value. The thresholds for significance at 0.05 after FDR correction are reported (grey 

dashed lines). Colours (from red to blue-violet) code for the increasing difference. 

Circles represent metabolites, while squares are used for lipids. Differential 

connectivity of metabolites and lipids, significantly different in terms of 

concentrations (FDR < 0.05), is also reported both for 3M-nI vs. 3M-I at t1 (C). 
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Figure 5. Metabolite-metabolite and metabolite-lipid association networks specific to 

3M-nD and 3M-D patients. A) Network specific for 3M-nD. B) Network specific for 

3M-D. Networks are reconstructed using the PCLRC algorithm from serum 

metabolites and lipid fractions from sample collected 24h post rt-PA (t1). 

Only the connections of statistically significant, differentially connected metabolites 

(FDR < 0.05) are displayed. Nodes are arranged and coloured according to the 

increasing metabolite-metabolite or metabolite-lipid degree of connectivity (from pink 

to purple). Edges represent correlations (black edges display correlation with |R| > 0.6). 

Abbreviations are reported as follows: analytes: 3-HB: 3-hydroxybutyrate, Apo: 

Apolipoproteins, Chol: cholesterol, LMF: lipoproteins main fractions, Phosp: 

phospholipids, PN: particle number, Sub: subfractions, Trigl: triglycerides. Amino 

acids are reported with three letter code. 
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Figure 6. Difference in terms of connectivity in association networks of survivors and 

deceased patients 24h post rt-PA (t1), against each metabolite’s (A) and lipid’s (B) P-

value. The thresholds for significance at 0.05 after FDR correction are reported (grey 

dashed lines). Colours (from red to blue-violet) code for the increasing difference. 

Circles represent metabolites, while squares are used for lipids. Differential 

connectivity of metabolites and lipids, significantly different in terms of 

concentrations (P-value < 0.05), is also reported both for survivor vs. deceased at t1 

(C). 
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Supplementary Material 

Table S1. Metabolite and Lipid Univariate Analysis at 24h post rt-PA (t1). Metabolic features were assigned and quantified in 1D NOESY 

NMR spectra and their absolute concentrations are reported as median ± median absolute deviation. P-value and related adjusted values with 

the Benjamini-Hochberg correction (P-value < 0.05 and FDR < 0.05) are both deemed significant. Upper (↑) and downward (↓) arrows 

respectively indicate higher and lower levels in the case group (3M-D or 3M-I patients), while equal symbol (=) means no trend variation. 

 3M-nD vs. 3M-D 3M-nI vs. 3M-I 

 3M-nD 3M-D P FDR Log2(FC) trend 3M-nI 3M-I P FDR Log2(FC) trend 

3-Hydroxybutyrate 0.1 ± 0.2 0.3 ± 0.2 0.01 0.3 0.9 ↑ 0.1 ± 0.1 0.2 ± 0.2 3E-05 4E-03 1.3 ↑ 

Acetic acid 0.05 ± 0.03 0.06 ± 0.04 0.5 0.8 0.1 ↑ 0.05 ± 0.03 0.1 ± 0.04 2E-02 9E-02 0.3 ↑ 

Acetone 0.1 ± 0.1 0.2 ± 0.1 0.05 0.3 0.4 ↑ 0.1 ± 0.1 0.2 ± 0.1 7E-04 1E-02 0.8 ↑ 

Alanine 0.5 ± 0.1 0.5 ± 0.2 0.5 0.8 0.00 = 0.5 ± 0.1 0.5 ± 0.1 9E-01 1E+00 -0.08 ↓ 

Apo-A1 133.6 ± 22.7 124.6 ± 19.3 0.06 0.3 -0.1 ↓ 134.5 ± 24.4 127.4 ± 21.3 1E-01 3E-01 -0.08 ↓ 

Apo-A2 30.1 ± 5.1 27.9 ± 6.1 0.04 0.3 -0.1 ↓ 30.1 ± 4.9 29.5 ± 5.1 3E-01 6E-01 -0.03 ↓ 

Apo-B100 83.3 ± 24.0 83.5 ± 21.8 0.9 0.9 0.00 = 81.6 ± 23.1 87.3 ± 23.5 5E-02 2E-01 0.1 ↑ 

Apo-B100-Apo-A1 0.6 ± 0.2 0.6 ± 0.1 0.3 0.7 0.06 ↑ 0.61 ± 0.15 0.7 ± 0.1 2E-03 2E-02 0.1 ↑ 

Chol 188.2 ± 47.0 195.8 ± 33.3 0.9 0.9 0.06 ↑ 183.8 ± 46.0 195.9 ± 43.4 1E-01 3E-01 0.09 ↑ 

Citric acid 0.1 ± 0.05 0.2 ± 0.1 0.01 0.2 0.4 ↑ 0.1 ± 0.04 0.2 ± 0.1 7E-03 6E-02 0.2 ↑ 

Creatinine 0.08 ± 0.03 0.09 ± 0.04 0.4 0.8 0.2 ↑ 0.1 ± 0.03 0.1 ± 0.03 5E-01 7E-01 0.0 = 

Glutamine 0.6 ± 0.2 0.6 ± 0.2 0.8 0.9 -0.03 ↓ 0.6 ± 0.2 0.7 ± 0.2 3E-02 1E-01 -0.1 ↑ 

Glutamate 0.2 ± 0.1 0.2 ± 0.1 0.3 0.7 0.09 ↑ 0.1 ± 0.1 0.2 ± 0.1 6E-01 8E-01 0.2 ↑ 

Glucose 7.0 ± 1.7 7.5 ± 2.3 0.3 0.7 0.1 ↑ 6.7 ± 1.8 7.4 ± 1.8 1E-02 7E-02 0.1 ↑ 

Glycine 0.3 ± 0.09 0.4 ± 0.1 0.1 0.45 0.2 ↑ 0.3 ± 0.1 0.3 ± 0.1 8E-01 9E-01 0.02 ↑ 

HDL-Chol 51.5 ± 12.3 50.9 ± 14.7 0.9 0.9 -0.02 ↓ 51.5 ± 12.4 51.2 ± 12.6 7E-01 9E-01 -0.01 ↓ 

Histidine 0.1 ± 0.06 0.1 ± 0.04 0.2 0.5 -0.3 ↓ 0.1 ± 0.1 0.1 ± 0.1 2E-01 4E-01 -0.1 ↓ 

IDL_PN 118.4 ± 46.5 126.5 ± 30.0 0.8 0.9 0.1 ↑ 115.8 ± 43.7 127.0 ± 42.6 4E-01 6E-01 0.1 ↑ 

Isoleucine 0.07 ± 0.03 0.07 ± 0.02 0.4 0.8 0.0 = 0.1 ± 0.03 0.1 ± 0.03 1E+00 1E+00 0.0 = 
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Lactic acid 2.3 ± 1.0 3.1 ± 0.9 0.01 0.2 0.4 ↑ 2.3 ± 1.0 2.6 ± 0.9 6E-02 2E-01 0.2 ↑ 

LDL_PN 1137.3 ± 381.2 1182.7 ± 355.9 0.9 0.9 0.06 ↑ 1094.5 ± 367.1 1218.6 ± 391.8 1E-02 8E-02 0.1 ↑ 

LDL1_PN 249.5 ± 67.6 263.8 ± 78.2 0.5 0.8 0.08 ↑ 243.1 ± 62.9 262.7 ± 76.0 1E-01 2E-01 0.1 ↑ 

LDL2_PN 189.5 ± 65.7 202.5 ± 68.0 0.6 0.9 0.1 ↑ 183.3 ± 63.1 207.1 ± 70.0 3E-02 1E-01 0.2 ↑ 

LDL3_PN 128.8 ± 66.0 169.4 ± 56.7 0.1 0.4 0.4 ↑ 121.8 ± 62.4 158.4 ± 59.3 1E-04 4E-03 0.4 ↑ 

LDL5_PN 160.5 ± 95.2 121.7 ± 94.3 0.1 0.4 -0.4 ↓ 153.7 ± 89.2 180.2 ± 124.4 8E-01 9E-01 0.2 ↑ 

LDL6_PN 360.3 ± 101.4 362.01 ± 70.2 0.9 0.9 0.01 ↑ 350.9 ± 92.0 367.9 ± 90.61 6E-01 8E-01 0.07 ↑ 

LDL-Chol 91.8 ± 31.9 96.03 ± 26.0 0.8 0.9 0.06 ↑ 89.9 ± 29.6 98.2 ± 30.3 2E-02 9E-02 0.1 ↑ 

LDL-HDL-Chol 1.8 ± 0.6 1.8 ± 0.6 0.9 0.9 0.03 ↑ 1.7 ± 0.6 1.9 ± 0.6 2E-02 1E-01 0.2 ↑ 

Leucine 0.1 ± 0.04 0.1 ± 0.05 0.8 0.9 0.2 ↑ 0.1 ± 0.04 0.1 ± 0.04 1E+00 1E+00 0.0 = 

LMF_ApoA1_HDL 132.3 ± 24.0 122.0 ± 19.1 0.04 0.3 -0.1 ↓ 134.6 ± 25.6 126.3 ± 18.9 6E-02 2E-01 -0.09 ↓ 

LMF_ApoA2_HDL 30.8 ± 5.1 28.4 ± 5.5 0.04 0.3 -0.1 ↓ 30.7 ± 5.0 30.2 ± 4.9 3E-01 5E-01 -0.02 ↓ 

LMF_ApoB_IDL 6.5 ± 2.6 7.0 ± 1.6 0.8 0.9 0.09 ↑ 6.37 ± 2.4 7.0 ± 2.3 3E-01 6E-01 0.1 ↑ 

LMF_ApoB_LDL 62.5 ± 21.0 65.0 ± 19.6 0.9 0.9 0.06 ↑ 60.2 ± 20.2 67.0 ± 21.5 1E-02 8E-02 0.1 ↑ 

LMF_ApoB_VLDL 8.2 ± 3.0 7.6 ± 2.3 0.4 0.8 -0.1 ↓ 8.3 ± 2.9 8.0 ± 3.4 4E-01 6E-01 -0.05 ↓ 

LMF_Chol_HDL 51.5 ± 12.3 50.9 ± 14.7 0.9 0.9 -0.02 ↓ 51.5 ± 12.4 51.2 ± 12.6 7E-01 9E-01 -0.01 ↓ 

LMF_Chol_IDL 17.0 ± 8.0 18.7 ± 3.9 0.7 0.9 0.1 ↑ 16.7 ± 8.2 18.1 ± 6.3 3E-01 5E-01 0.1 ↑ 

LMF_Chol_LDL 91.8 ± 31.9 96.0 ± 26.0 0.8 0.9 0.06 ↑ 89.9 ± 29.6 98.2 ± 30.3 2E-02 9E-02 0.1 ↑ 

LMF_Chol_VLDL 24.0 ± 10.5 21.5 ± 4.8 0.3 0.7 -0.2 ↓ 24.1 ± 10.5 23.5 ± 8.4 3E-01 5E-01 -0.03 ↓ 

LMF_FreeChol_HDL 12.4 ± 3.4 12.5 ± 3.4 0.8 0.9 0.01 ↑ 12.2 ± 3.5 12.6 ± 2.9 5E-01 7E-01 0.05 ↑ 

LMF_FreeChol_IDL 4.7 ± 2.3 5.0 ± 1.2 0.9 0.9 0.09 ↑ 4.6 ± 2.4 4.9 ± 1.8 5E-01 7E-01 0.09 ↑ 

LMF_FreeChol_LDL 28.5 ± 8.6 31.5 ± 7.6 0.3 0.7 0.1 ↑ 27.3 ± 8.9 31.4 ± 8.2 2E-03 2E-02 0.2 ↑ 

LMF_FreeChol_VLDL 9.4 ± 3.9 8.3 ± 2.7 0.3 0.7 -0.2 ↓ 9.5 ± 4.1 8.8 ± 3.6 2E-01 4E-01 -0.1 ↓ 

LMF_Phosp_HDL 66.1 ± 12.5 69.8 ± 15.0 1.0 1.0 0.08 ↑ 66.3 ± 13.1 67.1 ± 11.2 9E-01 1E+00 0.02 ↑ 

LMF_Phosp_IDL 5.5 ± 2.9 5.9 ± 1.9 0.5 0.9 0.1 ↑ 5.2 ± 2.8 5.8 ± 3.4 7E-01 9E-01 0.2 ↑ 

LMF_Phosp_LDL 53.6 ± 15.6 55.4 ± 15.3 0.7 0.9 0.05 ↑ 51.7 ± 15.5 57.3 ± 16.1 1E-02 8E-02 0.1 ↑ 

LMF_Phosp_VLDL 16.0 ± 7.4 13.1 ± 5.8 0.2 0.6 -0.3 ↓ 16.7 ± 7.8 14.4 ± 7.5 7E-02 2E-01 -0.2 ↓ 
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LMF_Trigl_HDL 10.8 ± 3.1 9.6 ± 3.4 0.3 0.7 -0.2 ↓ 10.8 ± 3.4 10.6 ± 2.8 5E-01 8E-01 -0.03 ↓ 

LMF_Trigl_IDL 6.1 ± 5.7 3.3 ± 3.2 0.09 0.4 -0.9 ↓ 6.3 ± 5.6 5.2 ± 5.1 2E-01 4E-01 -0.3 ↓ 

LMF_Trigl_LDL 21.1 ± 6.2 21.8 ± 5.2 0.8 0.9 0.05 ↑ 20.5 ± 5.9 23.8 ± 6.0 6E-03 5E-02 0.22 ↑ 

LMF_Trigl_VLDL 57.9 ± 28.5 46.7 ± 22.5 0.3 0.7 -0.3 ↓ 59.0 ± 28.3 52.3 ± 25.9 2E-01 4E-01 -0.2 ↓ 

Phenylalanine 0.08 ± 0.03 0.1 ± 0.04 0.01 0.2 0.3 ↑ 0.1 ± 0.03 0.1 ± 0.03 8E-04 1E-02 0.2 ↑ 

Pyruvicacid 0.07 ± 0.04 0.08 ± 0.1 0.1 0.4 0.3 ↑ 0.1 ± 0.04 0.1 ± 0.05 1E+00 1E+00 0.0 = 

SubApoA1_HDL-1 24.6 ± 11.9 25.45± 12.7 0.5 0.8 0.05 ↑ 24.7 ± 11.8 24.6 ± 11.7 1E+00 1E+00 0.0 ↓ 

SubApoA1_HDL-2 16.4 ± 4.0 16.1 ± 3.1 0.4 0.8 -0.02 ↓ 16.7 ± 4.2 16.2 ± 3.0 4E-01 7E-01 -0.04 ↓ 

SubApoA1_HDL-3 23.0 ± 4.9 21.8 ± 4.8 0.1 0.4 -0.08 ↓ 23.3 ± 5.2 22.6 ± 4.0 2E-01 4E-01 -0.05 ↓ 

SubApoA1_HDL-4 69.2 ± 15.7 57.1 ± 17.0 0.01 0.2 -0.3 ↓ 70.0 ± 15.0 64.9 ± 16.5 6E-02 2E-01 -0.1 ↓ 

SubApoA2_HDL-1 2.2 ± 1.3 2.7 ± 1.1 0.1 0.4 0.2 ↑ 2.2 ± 1.3 2.5 ± 1.1 2E-01 4E-01 0.2 ↑ 

SubApoA2_HDL-2 2.7 ± 0.9 3.0 ± 0.7 0.4 0.8 0.1 ↑ 2.6 ± 0.9 2.8 ± 0.9 3E-01 5E-01 0.09 ↑ 

SubApoA2_HDL-3 5.1 ± 1.2 4.7 ± 0.9 0.2 0.6 -0.1 ↓ 5.1 ± 1.1 4.9 ± 1.2 9E-01 1E+00 -0.06 ↓ 

SubApoA2_HDL-4 18.4 ± 4.6 14.6 ± 5.4 0.03 0.3 -0.3 ↓ 18.4 ± 4.3 17.4 ± 5.4 2E-01 4E-01 -0.08 ↓ 

SubApoB_LDL-1 13.7 ± 3.7 14.5 ± 4.3 0.5 0.8 0.08 ↑ 13.4 ± 3.5 14.4 ± 4.2 1E-01 2E-01 0.2 ↑ 

SubApoB_LDL-2 10.4 ± 3.6 11.1 ± 3.7 0.6 0.9 0.1 ↑ 10.1 ± 3.5 11.4 ± 3.8 3E-02 1E-01 0.2 ↑ 

SubApoB_LDL-3 7.1 ± 3.6 9.3 ± 3.1 0.1 0.4 0.4 ↑ 6.7 ± 3.4 8.7 ± 3.3 1E-04 4E-03 0.4 ↑ 

SubApoB_LDL-5 8.8 ± 5.2 6.7 ± 5.2 0.1 0.4 -0.4 ↓ 8.5 ± 4.9 9.9 ± 6.8 8E-01 9E-01 0.2 ↑ 

SubApoB_LDL-5.1 19.8 ± 5.6 19.9 ± 3.9 0.9 0.9 0.01 ↑ 19.3 ± 5.1 20.2 ± 5.0 6E-01 8E-01 0.07 ↑ 

SubChol_HDL-1 15.4 ± 7.1 18.0 ± 8.5 0.03 0.3 0.2 ↑ 15.7 ± 7.6 16.0 ± 6.4 2E-01 3E-01 0.03 ↑ 

SubChol_HDL-2 7.3 ± 2.2 7.8 ± 2.0 0.5 0.9 0.09 ↑ 7.3 ± 2.3 7.3 ± 2.2 7E-01 9E-01 0.0 = 

SubChol_HDL-3 8.4 ± 2.2 8.3 ± 2.0 0.4 0.8 -0.01 ↓ 8.3 ± 2.3 8.4 ± 1.9 8E-01 9E-01 0.01 ↑ 

SubChol_HDL-4 18.4 ± 5.1 14.4 ± 7.8 0.05 0.3 -0.3 ↓ 18.5 ± 5.04 17.0 ± 6.3 2E-01 3E-01 -0.1 ↓ 

SubChol_LDL-1 24.6 ± 7.9 26.6 ± 9.9 0.6 0.9 0.1 ↑ 24.5 ± 7.5 26.6 ± 9.0 2E-01 4E-01 0.1 ↑ 

SubChol_LDL-2 17.78 ± 7.27 19.8 ± 6.6 0.5 0.9 0.2 ↑ 17.2 ± 7.0 20.2 ± 7.6 5E-02 2E-01 0.2 ↑ 

SubChol_LDL-3 10.5 ± 6.9 13.8 ± 6.1 0.2 0.6 0.4 ↑ 10.0 ± 6.2 13.5 ± 6.1 6E-04 1E-02 0.4 ↑ 

SubChol_LDL-5 11.1 ± 7.9 6.7 ± 6.4 0.05 0.3 -0.7 ↓ 10.0 ± 7.4 11.6 ± 9.8 1E+00 1E+00 0.2 ↑ 



| 132 

SubChol_LDL-6 22.9 ± 6.9 22.3 ± 5.6 0.7 0.9 -0.04 ↓ 22.5 ± 6.4 23.4 ± 6.8 5E-01 7E-01 0.06 ↑ 

SubChol_VLDL-1 7.3 ± 4.0 5.5 ± 2.8 0.1 0.5 -0.4 ↓ 7.7 ± 4.1 6.5 ± 2.9 6E-02 2E-01 -0.2 ↓ 

SubChol_VLDL-2 3.0 ± 1.7 2.7 ± 1.02 0.6 0.9 -0.2 ↓ 3.0 ± 1.7 3.0 ± 1.4 8E-01 9E-01 0.03 ↑ 

SubChol_VLDL-3 4.2 ± 2.4 4.3 ± 1.0 0.8 0.9 0.02 ↑ 4.1 ± 2.4 4.3 ± 1.9 8E-01 9E-01 0.08 ↑ 

SubChol_VLDL-4 6.78 ± 3.02 6.6 ± 1.4 0.6 0.9 -0.03 ↓ 6.8 ± 2.9 6.7 ± 2.8 7E-01 9E-01 -0.02 ↓ 

SubChol_VLDL-5 1.5 ± 0.7 1.3 ± 0.6 0.03 0.3 -0.2 ↓ 1.6 ± 0.8 1.4 ± 0.7 5E-03 5E-02 -0.2 ↓ 

SubFreeChol_HDL-1 3.9 ± 1.7 4.3 ± 1.8 0.1 0.4 0.1 ↑ 3.8 ± 1.8 4.1 ± 1.6 4E-02 1E-01 0.1 ↑ 

SubFreeChol_HDL-2 1.8 ± 0.5 2.2 ± 0.6 0.04 0.3 0.3 ↑ 1.7 ± 0.5 2.0 ± 0.7 2E-02 9E-02 0.2 ↑ 

SubFreeChol_HDL-3 1.6 ± 0.7 1.6 ± 0.6 0.6 0.9 -0.02 ↓ 1.6 ± 0.7 1.6 ± 0.7 6E-01 9E-01 0.02 ↑ 

SubFreeChol_HDL-4 3.2 ± 1.3 2.8 ± 1.4 0.2 0.7 -0.2 ↓ 3.1 ± 1.3 3.1 ± 1.6 9E-01 1E+00 -0.01 ↓ 

SubFreeChol_LDL-1 7.5 ± 2.4 8.2 ± 3.0 0.6 0.9 0.1 ↑ 7.4 ± 2.2 8.2 ± 2.8 2E-01 3E-01 0.1 ↑ 

SubFreeChol_LDL-2 6.4 ± 2.3 7.05 ± 2.1 0.4 0.8 0.1 ↑ 6.2 ± 1.9 6.9 ± 2.6 5E-02 2E-01 0.1 ↑ 

SubFreeChol_LDL-3 4.0 ± 1.8 4.6 ± 1.2 0.1 0.5 0.2 ↑ 3.8 ± 1.9 4.8 ± 1.6 4E-04 1E-02 0.3 ↑ 

SubFreeChol_LDL-4 2.5 ± 1.9 2.8 ± 1.9 0.8 0.9 0.1 ↑ 2.2 ± 1.8 3.0 ± 2.2 1E-02 7E-02 0.4 ↑ 

SubFreeChol_LDL-5 3.4 ± 2.0 3.01 ± 1.6 0.2 0.6 -0.2 ↓ 3.3 ± 1.8 4.0 ± 2.2 3E-01 6E-01 0.3 ↑ 

SubFreeChol_LDL-6 5.6 ± 1.7 5.04 ± 2.05 0.7 0.9 -0.1 ↓ 5.3 ± 1.5 6.0 ± 1.9 7E-02 2E-01 0.2 ↑ 

SubFreeChol_VLDL-1 1.2 ± 1.2 0.8 ± 1.07 0.1 0.4 -0.7 ↓ 1.3 ± 1.3 1.0 ± 1.0 6E-02 2E-01 -0.5 ↓ 

SubFreeChol_VLDL-2 1.3 ± 0.8 1.4 ± 0.5 0.9 0.9 0.02 ↑ 1.3 ± 0.7 1.4 ± 0.7 1E+00 1E+00 0.02 ↑ 

SubFreeChol_VLDL-3 1.6 ± 1.0 1.7 ± 0.5 0.9 0.9 0.04 ↑ 1.6 ± 1.0 1.6 ± 0.7 9E-01 1E+00 -0.01 ↓ 

SubFreeChol_VLDL-4 3.0 ± 1.6 3.05 ± 0.8 0.8 0.9 0.01 ↑ 3.0 ± 1.6 3.1 ± 1.3 9E-01 1E+00 0.04 ↑ 

SubFreeChol_VLDL-5 1.0 ± 0.5 0.8 ± 0.4 0.07 0.4 -0.4 ↓ 1.1 ± 0.5 0.9 ± 0.4 2E-03 2E-02 -0.4 ↓ 

SubPhosp_HDL-1 18.8 ± 8.3 22.3 ± 9.0 0.05 0.3 0.2 ↑ 18.7 ± 8.6 19.1 ± 8.1 2E-01 4E-01 0.03 ↑ 

SubPhosp_HDL-2 11.2 ± 3.1 12.1 ± 3.7 0.6 0.9 0.1 ↑ 11.1 ± 3.3 11.6 ± 3.2 7E-01 9E-01 0.06 ↑ 

SubPhosp_HDL-3 12.3 ± 2.8 12.5 ± 2.5 0.4 0.8 0.01 ↑ 12.5 ± 2.9 12.3 ± 2.7 5E-01 7E-01 -0.03 ↓ 

SubPhosp_HDL-4 23.3 ± 6.4 18.5 ± 7.6 0.02 0.3 -0.3 ↓ 23.5 ± 6.0 21.7 ± 7.4 9E-02 2E-01 -0.1 ↓ 

SubPhosp_LDL-1 14.3 ± 4.0 15.1 ± 4.8 0.6 0.9 0.08 ↑ 14.3 ± 3.8 15.2 ± 4.4 2E-01 4E-01 0.09 ↑ 

SubPhosp_LDL-2 10.1 ± 3.7 11.3 ± 3.1 0.4 0.8 0.2 ↑ 9.9 ± 3.5 11.4 ± 3.6 3E-02 1E-01 0.2 ↑ 
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SubPhosp_LDL-3 6.6 ± 3.2 8.1 ± 3.4 0.2 0.6 0.3 ↑ 6.2 ± 3.0 8.0 ± 3.2 5E-04 1E-02 0.4 ↑ 

SubPhosp_LDL-5 6.2 ± 4.0 3.9 ± 4.1 0.06 0.3 -0.7 ↓ 5.9 ± 3.8 6.7 ± 5.1 9E-01 1E+00 0.2 ↑ 

SubPhosp_LDL-6 12.8 ± 3.6 12.2 ± 3.1 0.7 0.9 -0.07 ↓ 12.3 ± 3.5 13.0 ± 3.6 5E-01 7E-01 0.08 ↑ 

SubPhosp_VLDL-1 4.2 ± 2.4 3.4 ± 2.6 0.1 0.4 -0.3 ↓ 4.4 ± 2.6 3.7 ± 2.1 8E-02 2E-01 -0.2 ↓ 

SubPhosp_VLDL-2 2.0 ± 1.2 1.9 ± 0.7 0.7 0.9 -0.09 ↓ 2.0 ± 1.2 2.0 ± 1.0 7E-01 9E-01 0.01 ↑ 

SubPhosp_VLDL-3 3.2 ± 1.7 2.7 ± 0.9 0.5 0.9 -0.3 ↓ 3.2 ± 1.7 3.0 ± 1.5 8E-01 9E-01 -0.1 ↓ 

SubPhosp_VLDL-4 5.3 ± 2.2 5.1 ± 1.4 0.5 0.9 -0.05 ↓ 5.3 ± 2.1 5.3 ± 2.2 7E-01 9E-01 0.02 ↑ 

SubPhosp_VLDL-5 1.8 ± 0.7 1.5 ± 0.4 0.03 0.3 -0.2 ↓ 1.9 ± 0.7 1.6 ± 0.5 4E-03 4E-02 -0.2 ↓ 

SubTrigl_HDL-1 3.8 ± 1.5 3.8 ± 2.6 0.8 0.9 0.00 = 3.9 ± 1.6 3.8 ± 1.4 9E-01 1E+00 -0.03 ↓ 

SubTrigl_HDL-2 2.0 ± 0.6 1.9 ± 1.1 0.8 0.9 -0.01 ↓ 2.0 ± 0.7 2.0 ± 0.7 9E-01 1E+00 0.02 ↑ 

SubTrigl_HDL-3 2.1 ± 0.7 1.9 ± 1.0 0.1 0.4 -0.1 ↓ 2.1 ± 0.7 2.0 ± 0.6 2E-01 4E-01 -0.08 ↓ 

SubTrigl_HDL-4 3.2 ± 1.0 2.4 ± 1.1 0.001 0.1 -0.4 ↓ 3.3 ± 1.0 2.9 ± 0.8 2E-03 2E-02 -0.2 ↓ 

SubTrigl_LDL-1 7.5 ± 2.2 6.9 ± 3.3 0.8 0.9 -0.1 ↓ 7.5 ± 2.4 7.5 ± 2.3 2E-01 4E-01 0.01 ↑ 

SubTrigl_LDL-2 2.4 ± 0.8 2.7 ± 0.8 0.2 0.6 0.2 ↑ 2.3 ± 0.8 2.6 ± 0.8 1E-02 7E-02 0.2 ↑ 

SubTrigl_LDL-3 2.7 ± 0.7 2.7 ± 0.4 0.8 0.9 0.00 = 2.6 ± 0.7 2.9 ± 0.5 2E-02 9E-02 0.1 ↑ 

SubTrigl_LDL-4 1.9 ± 1.3 1.8 ± 1.2 0.9 0.9 -0.08 ↓ 1.7 ± 1.2 2.3 ± 1.3 2E-02 9E-02 0.4 ↑ 

SubTrigl_LDL-5 2.3 ± 1.2 2.2 ± 0.8 0.8 0.9 -0.08 ↓ 2.2 ± 1.0 2.5 ± 1.3 9E-02 2E-01 0.2 ↑ 

SubTrigl_LDL-6 4.7 ± 1.3 5.1 ± 1.3 0.1 0.4 0.1 ↑ 4.5 ± 1.2 5.0 ± 1.4 7E-03 6E-02 0.1 ↑ 

SubTrigl_VLDL-1 26.2 ± 15.8 20.0 ± 18.8 0.1 0.5 -0.4 ↓ 27.6 ± 16.1 22.8 ± 15.1 7E-02 2E-01 -0.3 ↓ 

SubTrigl_VLDL-2 6.09 ± 4.5 6.0 ± 3.8 1.0 1.0 -0.02 ↓ 5.8 ± 4.4 6.2 ± 4.2 4E-01 6E-01 0.09 ↑ 

SubTrigl_VLDL-3 8.1 ± 4.9 7.1 ± 3.9 0.7 0.9 -0.2 ↓ 7.9 ± 4.5 8.1 ± 5.4 7E-01 9E-01 0.04 ↑ 

SubTrigl_VLDL-4 8.4 ± 3.8 8.4 ± 3.2 0.6 0.9 -0.01 ↓ 8.5 ± 3.4 8.3 ± 4.2 7E-01 9E-01 -0.03 ↓ 

SubTrigl_VLDL-5 3.2 ± 0.9 3.0 ± 0.5 0.4 0.8 -0.06 ↓ 3.2 ± 0.9 3.0 ± 0.8 2E-01 4E-01 -0.09 ↓ 

TPN 1514.8 ± 436.9 1518.6 ± 397.4 0.9 0.9 0.001 ↑ 1483.4 ± 419.5 1586.8 ± 426.8 5E-02 2E-01 0.1 ↑ 

Trigl 107.4 ± 42.3 100.9 ± 29.07 0.4 0.8 -0.09 ↓ 107.8 ± 42.8 104.8 ± 37.9 4E-01 6E-01 -0.04 ↓ 

Tyrosine 0.06 ± 0.02 0.07 ± 0.01 0.3 0.7 0.1 ↑ 0.1 ± 0.01 0.1 ± 0.01 5E-02 2E-01 0.2 ↑ 

Valine 0.3 ± 0.06 0.3 ± 0.1 0.2 0.7 0.1 ↑ 0.3 ± 0.1 0.3 ± 0.1 9E-01 1E+00 -0.05 ↓ 
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VLDL_PN 149.8 ± 55.4 137.9 ± 42.5 0.4 0.8 -0.1 ↓ 150.5 ± 53.0 145.7 ± 61.4 4E-01 6E-01 -0.05 ↓ 

*Abbreviations: a) calculated parameters: P: P-value, FDR: adjusted P value with Benjamini-Hochberg correction; b) analytes: Apo: Apolipoproteins, Chol: cholesterol, LMF: lipoproteins 

main fractions, Phosp: phospholipids, PN: particle number, Sub: subfractions, Trigl: triglycerides. 
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Abstract  

 

Men with African ancestry are more likely to develop aggressive prostate 

cancer (PCa) and to die from this disease. A distinct genomic landscape associated 

with specific ethnic groups may lead to different metabolic adaptations and 

inflammatory responses that permit tumor cells to proliferate and to grow. We 

hypothesize that a higher risk of lethal PCa in men with African ancestry may be 

associated with high level of systemic inflammation. In this study, we profile the 

plasma samples from a cohort of South African men with PCa using Nuclear Magnetic 

Resonance (NMR) spectroscopy. We found that the plasma of patients with very high 

risk, aggressive PCa have a peculiar metabolic phenotype (metabotype) characterized 

by extremely high levels of the inflammatory NMR markers, GlycA and GlycB. The 

inflammatory processes linked to the higher level of GlycA and GlycB are 

characterized by a deep change of the plasma metabolome that leads the stratification 

of patients with PCa. 

Systemic inflammation plays a role in the metabolic profile of cancer. This study 

advances our understanding of the relationship between metabolome and systemic 

inflammation in the context of PCa and opens the door to a totally innovative approach 

for biomarker discovery and to the development of new therapies aiming to reduce the 

systemic inflammation in these patients.  

 

Significance: The first metabolomic study for high-risk prostate cancer in African men 

identifies inflammation as a driving phenotype in the most aggressive form and 

simultaneously allows the characterization of their metabolic and lipoprotein profiles. 

 

Introduction 

 

Prostate cancer (PCa) is the second most frequent cancer diagnosis made in 

men and the fifth leading cause of death worldwide (1). Advancing age, family history 

of PCa and African ancestry are among established risk factors (2,3). PCa in men of 

African descent tends to have more aggressive phenotypes compared with other 

ethnicities (4). Studies investigating the possible role of genetic susceptibility in 

affecting PCa disparities are limited to the African-American population (5-11). 

Comparing to European-American men, African-American men have two-thirds 

higher incidence and two-fold greater risk of dying of PCa (4). Although patterns of 

genetic similarity among inferred African segments of African-American genomes are 

mostly similar to non-Bantu Niger-Kordofanian-speaking populations of West Africa 

(12), the hypothesis that ethnic disparity may be related to biological differences in 

PCa phenotype is supported by recent studies conducted in Southern Africa. Men from 

Southern Bantu populations have a 2.1-fold and 4.9-fold greater risk than African 

Americans for presenting at diagnosis a PCa with Gleason score ≥ 8 and prostate-

specific antigen (PSA) ≥ 20 ng/mL (13). Recently, a pilot Whole-Genome Sequencing 

study conducted on only six African prostate tumors indicated a doubling of the 
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mutational burden in African men compared to men of European ancestry (14). 

Disparities in PCa risk and aggressiveness across different ethnicities are poorly 

understood and likely influenced by genetic factors as well as difficulties to access 

medical resources in Africa (15). 

The South African population is a unique blend of African and non-African ancestry 

(16). Its ethnic diversity represents both a challenge and an opportunity for biomedical 

research (17). Currently, the major ethnolinguistic groups in South Africa are Black 

southeastern Bantu-speakers, an admixed population (including European, Southeast 

Asian, South Asian, Bantu-speaking African, and hunter-gatherer ancestries) referred 

to as Coloured (18), Whites of European origin (8.9%), and an Indian population 

originating from the Indian sub-continent (2.5%) (16). 

Lately, more effort has been put on exploring the genetic factors contributing to PCa 

in men of African ancestry (2,5,19,20). Several genes have been identified as 

differentially methylated or expressed in PCa between men of European or African 

ancestry (21). The number of studies linking the association of one or multiple single 

nucleotide polymorphisms in inflammation-related pathways to PCa risk has greatly 

increased (22,23). Since inflammation may contribute to PCa development and 

progression to advanced metastatic disease (24), polymorphisms in immune-related 

genes could at least partially explain the different incidence and mortality of PCa in 

African men (25). For example, polymorphisms of cyclooxygenase-2 gene present in 

the South African population with mixed ancestry were found to be associated with a 

higher risk of PCa (26). African American men, compared to European American men, 

show an increased incidence of inflammation in biopsy specimens (27) and increased 

expression of immune-related genes in tumor tissues (28). A distinct genomic 

landscape of PCa and immune-related genes associated with specific ethnic groups 

may lead to different metabolic adaptations that permit tumor cells to proliferate. 

While metabolic reprogramming is known to play a significant role in both PCa 

initiation and progression, inflammation seems to be ignored in most biomarker 

studies (29), including metabolomic studies. 

Chronic inflammation has a strong impact on the human metabolome (30-33). 

Metabolic analysis may illuminate systemic metabolic consequences of inflammation 

and provide novel targets for intervention. Nuclear magnetic resonance (NMR) 

spectroscopy is a particularly powerful technique when applied to the high-throughput 

analysis of biofluids such as blood (34-36), urine (37,38), and saliva (39) which can 

be collected with minimal impact on the participant. NMR-based metabolomics is a 

straightforward and useful method for the qualitative and quantitative analysis of a 

wide range of components in blood samples, including low-molecular-weight 

metabolites and lipoproteins (different for size and composition) (40,41). Moreover, 

NMR spectroscopy allows the detection in plasma of signals arising from the 

glycosylation of circulating acute-phase proteins (APPs), such as fibrinogen, α1-

antichymotrypsin, haptoglobin-1, α1-antitrypsin, complement C3 and α1-acid 

glycoprotein (42-44).  
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The carbohydrate portions of glycoproteins containing N-acetylglucosamine and N-

acetylgalactosamine (hereinafter referred to as GlycA) and N-acetylneuraminic acid 

(a.k.a., sialic acid; hereinafter referred to as GlycB) moieties are visible as two distinct 

NMR signals. GlycA and GlycB levels have been associated with common markers of 

inflammation such as C-reactive protein (CRP, hsCRP as assessed by high-sensitivity 

assay), fibrinogen, interleukin-6, tumor necrosis factor-alpha, lipoprotein-associated 

phospholipase A2 and serum amyloid A (42,45-47). Similar to hsCRP, GlycA is a 

marker of chronic inflammation (46); despite the similarity, GlycA and hsCRP likely 

capture different aspects of the inflammatory response (48). CRP is an “early” APP 

and the proteins that contribute the most to the GlycA and GlycB signal (i.e., alpha1-

acid glycoprotein, haptoglobin, and alpha1-antitrypsin) rise later in the acute phase 

response (49). In response to acute and chronic inflammatory stimuli both the 

concentrations of APPs (49,50) and their glycan structures are modified (51,52). 

This study, to our knowledge, is the first to metabolic profile PCa in men from Africa. 

Here, we used NMR spectroscopy to quantify a panel of 41 signals, including 

metabolites, lipid groups, proteins, and the inflammatory markers GlycA and GlycB. 

Moreover, we used an advanced lipoprotein test based on NMR spectroscopy to 

characterize the lipoprotein subclasses in each sample. For the first time, we reported 

the relationship between these inflammatory biomarkers (i.e., GlycA and GlycB) and 

the most aggressive PCa cases. We provide a clear snapshot of the metabolic 

alterations during the inflammatory process in PCa paving the way to a better 

understanding of the metabolic changes occurring in PCa.  

 

Materials and Methods 

 

Patients  

Participants were recruited from the Urological clinics of Groote Schuur, 

Eerste Rivier and New Somerset Hospitals in Cape Town, South Africa. Patients 

scheduled to undergo transurethral resection of the prostate or prostatectomy were 

enrolled. The diagnosis of PCa was confirmed by histopathologic examinations. The 

protocol (*HREC454/2012*) was approved by the Human Research Ethics Committee 

of the Faculty of Health Science, University of Cape Town, South Africa. Written 

consent was obtained from all the participants before 5 mL of blood was collected in 

Vacuette® EDTA tube by medical staff. Blood plasma was separated by centrifugation 

(1000 g for 10 min at 4°C) and stored at -80°C. This procedure is compatible with the 

standard operating procedures for metabolomic-grade samples recently defined (53). 

 

NMR sample preparation 

Plasma samples were thawed at room temperature. An aliquot of 350 µL of a 

phosphate sodium buffer (70 mM Na2HPO4; 20% (v/v) 2H2O; 6.1 mM NaN3; 4.6 mM 

sodium 3-trimethylsilyl [2,2,3,3-2H4]-propionate (TMSP); pH 7.4) was added to 

350 µL of each sample. The mixture was homogenized by vortexing for 30 s, before 

600 µL of this mixture was transferred into a 5 mm NMR tube for analysis (41).  
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NMR analysis and spectral processing 

One-dimensional 1H-NMR spectra were acquired using a Bruker 600 MHz 

spectrometer (Bruker BioSpin) operating at 600.13 MHz proton Larmor frequency and 

equipped with a 5 mm PATXI 1H-13C-15N and 2H-decoupling probe including a z-

axis gradient coil, an automatic tuning-matching and an automatic and refrigerated 

sample changer (SampleJet). A BTO 2000 thermocouple was used at the level of 

approximately 0.1 K on the sample to stabilize the temperature. Before starting 

measurements, samples were kept inside the NMR probe head for at least 5 minutes to 

equilibrate temperature at 310 K.  

For each plasma sample, one-dimensional 1H-NMR spectrum was acquired using a 

standard Nuclear Overhauser Effect Spectroscopy (NOESY) presat pulse sequence 

(noesygppr1d.comp; Bruker BioSpin) to detect both signals of small metabolites and 

high molecular weight macromolecules. Parameters of the experiment were: 32 scans, 

98304 data points, a spectral width of 18028.846 Hz, an acquisition time of 2.73 s, a 

relaxation delay of 4 s and a mixing time of 0.01 s.  

Before applying Fourier transform, free induction decays were multiplied by an 

exponential function of 0.3 Hz line-broadening factor. Transformed spectra were 

automatically corrected for phase and baseline distortions using Topspin 3.2 (Bruker 

BioSpin). Transformed spectra were automatically calibrated to the anomeric proton 

signal of α-glucose at 5.24 ppm. 

 

Molecular profiling and lipoprotein quantification 

Lipoprotein parameters were estimated on NOESY spectra according to 

Bruker’s B.I.-LISA protocols (Bruker IVDr Lipoprotein subclass analysis) (54). 

Information related to the main very-low-density lipoprotein (VLDL), low-density 

lipoprotein (LDL), intermediate-density lipoprotein (IDL), and high-density 

lipoprotein (HDL) classes and to their subclasses were extrapolated. In detail, 

information was extracted of five VLDL subclasses (from VLDL-1 to VLDL-5), six 

LDL sub-classes (from LDL-1 to LDL-6), and four HDL-subclasses (HDL-1 to HDL-

4) sorted according to increasing density and decreasing size. 

For each class and subclass, calculated data consist of concentrations of lipids, i.e., 

cholesterol, free cholesterol, phospholipids, and triglycerides. Instead, concentrations 

of apolipoproteins Apo-A1 and Apo-A2 were estimated for HDL class and each 

relative subclass, while Apo-B concentrations are calculated for VLDL, IDL classes 

and all LDL subclasses.  

Identification of signals was undertaken using the SBASE database in Amix (v3.9.11; 

Bruker BioSpin, Germany) or available assignments in the literature (55). The peaks 

of the identified metabolites were fitted by a combination of a local baseline and Voigt 

functions based on the multiplicity of the NMR signal (56). GlycA and GlycB signals 

were quantified by integrating, respectively, the areas between 2.005 and 2.054 ppm 

and between 2.086 and 2.054 ppm above a local baseline aimed to remove the signal 

of the lipoproteins. Fitting methods to quantify GlycA and GlycB signals were not 

used due to their heterogeneity and due to the impossibility to completely distinguish 
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them from the lipoprotein signal. The amide protein signals belong to plasma proteins 

were quantified integrating the area between 6.000 and 10.000 ppm.   

 

Statistical and data analysis 

Statistical analysis and graphical illustrations of the data were generated in the 

R (version 3.6.1) (57) and R studio (version 1.1.456) software using scripts developed 

in-house.  

Wilcoxon Rank Sum test (58) was used to compare differences in numerical covariates 

(e.g., age and metabolite concentration). Fisher's exact test (59) was used to assess 

differences between categorical variables (e.g., ethnicity). Spearman’s test was used 

to calculate the correlation coefficient (rho) between variables. The KODAMA 

algorithm was used to facilitate the identification of patterns representing underlying 

metabolic phenotypes (metabotype) on all samples in the data set. Dendrograms were 

performed using the KODAMA output and Ward linkage. Silhouette median value 

being used to evaluate the optimal number of clusters with the number of possible 

clusters varying from 2 to 10 (60). P-values less than 0.05 were considered to be 

significant. To account for multiple testing, a false discovery rate (FDR) of <10% was 

applied (61). 

Regression of metabolic profiles against questionnaire responses and clinical features 

was performed using partial least-squares (PLS) analysis. To assess the predictive 

ability of the PLS regression model, a 10-fold cross-validation was conducted as 

previously described (62). This involved iteratively removing 10% of samples prior to 

any step of the statistical analysis (including PLS component selection, mean-

centering, and univariate scaling) and back-predicting them into the model obtained 

from the remainder of the data. Parameter selection (i.e., best number of components 

for PLS) was carried out by means of an inner 10-fold cross-validation on the 

remaining 90% of the data. The overall procedure was repeated 10 times. The 

goodness of fit parameter (R2) and the predictive ability parameter (Q2) were 

calculated using standard definitions (63).  

 

Results 

 

South African patient cohort 

Although few studies have been performed to investigate the metabolic 

alterations in the blood of patients with PCa, high-risk populations are 

underrepresented and limited to African Americans. In this study, we recruited 41 

South African patients with PCa in order to generate a better understanding of the 

metabolic changes in the unique South African setting. The majority of patients were 

characterized by a unique mixed ancestry (61%) referred to as Coloured; the rest were 

self-classified as Black (22%) and Whites (17%). We classified the aggressiveness of 

cancer according to the NCCN classification (version 2.2020): i) very low, low, and 

intermediate risk; ii) high risk; and iii) very high risk. The clinical and demographic 

features of the patients with PCa are reported in Table 1. Patients with regional or 
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distant metastasis were classified as a separate group. Patients that received ADT, i.e., 

bilateral orchidectomy (BO), were considered as two distinct groups based on the 

evidence of castration-resistant PCa (CRPC). In our cohort, we did not observe 

statistically significant difference among ethnicity in term of NCCN classification in 

untreated patients, although, we reported an advanced clinical stage in Black men with 

71% of them classified as stage T3 or T4 compared to 19% of Coloured and 33% of 

White men. This disparity was highlighted even by the PSA level. We reported 

extremely high values of PSA (>100 ng/mL) in 57% of Black compared to 9% of 

Coloured and 33% of White. As expected, we observed a higher prevalence of diabetes 

and hypertension in the post-BO group.  

 

GlycA and GlycB inflammatory biomarkers 

Growing evidence implicates chronic inflammation as a contributor to PCa 

development and progression to advanced metastatic disease (24), and as a driver of  

CRPC development in ADT (64,65). Recently, GlycA and GlycB have been identified 

as markers of systemic and chronic inflammation but their association with PCa has 

not been described yet (66). Here, we used the NMR spectroscopy to quantify the 

signal associated with GlycA and GlycB and, for the first time, we investigated their 

association with the aggressiveness of PCa. We noted that the values of both markers 

are higher in patients with very highly aggressive PCa and metastatic PCa (Figures 

1A, 1D). Indeed, all patients whose GlycA and GlycB was higher than the 80th 

percentile were diagnosed with poorly differentiated PCa (i.e., Gleason score higher 

than or equal to 8). Although the limited number of patients who had BO did not allow 

for enough statistical power, we observed an increased value of both GlycA and GlycB 

in patients with CRPC, (Figures 1B, 1E).  

Several studies have reported the association of GlycA and GlycB with key markers 

of cancer stratification, such as CRP (67). Here, we report for the first time a 

statistically significant correlation with PSA (Figures 1C, 1F). The correlation with 

PSA implies that a disparity in the GlycA and GlycB related to ethnicity should be 

expected in patients with PCa. Noteworthy, the three highest values of GlycA and 

GlycB were found in patients that identified themselves as Black.  

Moreover, we quantified the amides of proteins from the NMR spectra. Albumin is the 

most concentrated protein in the plasma and consequently, the protein amides 

concentration is highly related to the albumin level. We reported a negative correlation 

between the NMR inflammatory marker GlycA (rho=-0.41; P=0.00747) and GlycB 

(rho=-0.31; P=0.0462) with protein amides. Albumin is known to be a negative APP 

that decreases in concentration during inflammation. This further supports our finding 

that the higher values of GlycA and GlycB could be associated with inflammatory 

process in patients with PCa.  

 

Metabolic stratification of PCa 

Reprogramming of metabolism is a widely accepted hallmark of cancer 

development (29), however the metabolic changes induced by inflammation in cancer 
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patients have not been fully characterized. Metabolomics represents an essential tool 

for the stratification of cancer patients into groups of patients with similar metabolic 

profiles that could share the same clinicopathologic condition (e.g., systemic 

inflammation). Here, we quantified the metabolites from each plasma sample using 

the data collected by the NMR experiments. In order to identify potential underlying 

metabolic phenotypes (a.k.a., metabotype) in patients with treatment-naïve PCa, we 

applied the KODAMA method to the quantified metabolite concentrations (GlycA, 

GlycB, and protein amides were not considered in this analysis). We identified four 

different metabotypes in the KODAMA score plot (Figure 2A, 2B) using the 

hierarchical clustering (68) on the KODAMA scores. 

We clearly observed an association between the PCa aggressiveness (based on the 

NCCN classification) and the metabotypes that we rank from I to IV in order of 

aggressiveness. When evaluating GlycB and GlycA in the 4 metabotypes, we noted 

different levels of GlycB in each metabotypes with the highest levels of both GlycA 

and GlycB in the metabotype IV. Clinical and demographic features of the 

metabotypes are shown in Table 2. 

The metabolic profile of the Metabotype IV is the most peculiar. Samples of the 

metabotype IV showed an unprecedently well-defined fingerprint that may reflect a 

common biologic process that drives the metabolic changes in the blood of patients 

with high GlycA and GlycB levels. The metabotype IV is formed almost exclusively 

by patients categorized as very high risk and also includes a patient with metastatic 

PCa (Table 2). 

Noteworthy, a patient classified as low risk PCa based on the NCCN classification 

showed a metabolic profile typical of Metabotype IV but with lower level of GlycA 

and GlycB. This patient died only 50 days after sample collection due to pancreatic 

cancer. On the other hand, patients classified as very high aggressiveness but that do 

not belong to the Metabotype IV showed a survival time longer than 3 years and a 

lower Gleason Score compared with patients belong to the Metabotype IV. We were 

unable to record the date of death for 4 out of 7 patients belong to the Metabotype IV. 

These patients were lost to follow-up at the hospital cancer center where they were 

recruited nor did they have any type of diagnostic test at a South African clinic or 

hospital. Considering the severe condition of these patients and the absence of 

registered diagnostic tests following the last visit, we assume the latter as a rough 

estimation of the time of survival. Almost all patients of the Metabotype IV seem to 

have died within one year after the sample collection (Table 3). 

Noteworthy, we reported a few clues of possible differences of the prostate tissue 

inflammation among the metabotype. Of 14 patients in the Metabotype III, 3 patients 

had mild chronic inflammation and 2 patients had chronic inflammation reported on 

the histological exam of their prostate tissue. Of the 10 patients of the Metabotype II, 

2 patients had mild chronic inflammation, 3 patients had acute-on-chronic 

inflammation, and 1 had acute prostatitis on the histological exam. 

 

Metabolic profiling of PCa metabotypes 
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The metabolic differences discriminating between among the four metabotypes 

appear to be clear (Figure 2C). Although we were aware of the low number of patients 

in this cohort, we built a supervised PLS model to evaluate the accuracy of the 

identification of the most aggressive metabotype (i.e., Metabotype IV) using the 

metabolic profile. Using a double cross-validation approach, we calculated an 

accuracy value of 91.2%, with a 95% coefficient interval of 86.0%-94.1%. Next, we 

used the Wilcoxon rank-sum test to characterize this metabotype compared to the 

others (Table S1). As previously mentioned, the Metabotype IV is characterized by 

higher values of the inflammatory markers GlycA (P=7.06x10-6; FDR=7.24x10-5) and 

GlycB (P=2.60x10-6; FDR=3.56x10-5) and lower protein level (P=9.15x10-5; 

FDR=5.36x10-4). In addition, we detected a higher level of mannose (P=4.45x10-3; 

FDR=1.40x10-2), an important constituent of N-glycans of glycoproteins (69). 

Mannose residues in N-glycans can be derived from either glycogen/glucose or 

mannose in the blood (69). Moreover, we detected a reduced level of amino acids and 

their derivates in the Metabotype IV. Among them, the reduction of histidine is the 

most significant (P =3.72x10-7; FDR=1.52x10-5). We noted an interesting clue of the 

possible role of microbiota in the inflammatory status of patients with PCa. We found 

desaminotyrosine, a metabolite produced by human enteric bacteria and able to induce 

type I interferon (IFN) response (70), prevalent in patients with very high aggressive 

PCa (Figure 3). 

Similar to the previous analysis, we also investigated the rearrangement of the 

lipoprotein profile using the data from the application of the Bruker’s B.I.-LISA 

protocols (Table S2). The Bruker’s B.I.-LISA protocols were used to characterize 114 

parameters related to the lipoproteins, such as HDL, LDL and VLDL, and their relative 

subclasses. We observed an association between the metabotype IV and lower level of 

Apolipoprotein Apo-A1 (P =2.67x10-3; FDR=6.10x10-2) and Apo-A2 (P =4.04x10-3; 

FDR=5.32x10-2), attributable to a reduced HDL particle number (P =1.28x10-2; 

FDR=2.68x10-1), and higher level of triglycerides in LDL of smaller size, including 

LDL-1 (P =4.45x10-3; FDR=8.45x10-2) and LDL-2 (P =1.40x10-3; FDR=5.32x10-2). 

This finding completes the snapshot of the metabotype IV as a large regulator of the 

blood constituents, including metabolites, proteins, and lipoproteins with several 

implications for the role of inflammation as a confounding factor of PCa. 

The levels of inflammatory NMR markers GlycA and GlycB have been shown to be 

highly correlated, as previously reported in the literature (67). In our study, we reported 

a Spearman's rank correlation rho of 0.59 (P=7.16x10-5). However, the biological 

meaning of the differences between GlycA and GlycB has not yet been fully explored. 

In our cohort, we observed that two distinct metabotypes, Metabotype II and 

Metabotype III, had a similar level of GlycA but different levels of GlycB (P =1.42x10-

4; FDR=6.46x10-4), with the latter showing the higher level (Table S3). Moreover, 

Metabotype III seems to be associated with extremely reduced levels of lipids (Figure 

3). We discovered a deep difference in the lipoprotein profile between Metabotype III 

and Metabotype II using the B.I.-LISA protocols (Table S4). Figure 4 shows a 

graphical representation of the lipoprotein profile changes among metabotypes. 
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Besides the evident reduction of VLDL, we also noted the lower values of 

Apolipoprotein Apo-A1 and Apo-A2 that could help to characterize the differences 

between GlycA and GlycB. Finally, we summarize in a graphical overview the most 

discriminative features among the four metabotypes (Figure 5).  

 

Discussion 

 

PCa is the most common visceral malignancy in men older than 50 years and 

shows significant ethnic disparity among men with African ancestry representing a 

well-established risk factor. In a recent study, all patients who underwent a prostate 

biopsy from July 2008 to July 2014  in one of the hospitals included in our cohort 

(Groote Schuur Hospital, Cape Town) were recorded (71). Among all patients 

diagnosed with PCa, 41% and 21% were classified as high and very high risk PCa 

(NCCN classification), respectively. Although the percentage of clinically advanced 

cases is already impressive if compared to American or European studies, the relative 

percentage of cases with very high aggressive PCa is even higher (33%) if we consider 

only the Black population. Additional research is necessary to understand how a 

different genomic landscape and inadequate cancer surveillance could contribute to 

these disparities.  

In this first metabolomic study of PCa conducted on an African population, we profiled 

the plasma samples of men of different ancestry. We observed in men with very high 

aggressive PCa higher levels of the NMR inflammatory markers GlycA and GlycB, 

probably due to the increased concentration of positive APPs and the complexity of 

their glycan structures. Moreover, we noted a simultaneous reduction of the signal 

from protein source likely attributable to a reduction of the albumin level, a negative 

APP.  

Interestingly, in our cohort we discovered four distinct metabotypes associated with 

the aggressiveness of PCa, each one characterized by a unique metabolic fingerprint. 

A metabotype identified as a subgroup of patients with very high aggressive PCa (that 

we named Metabotype IV) was characterized by the highest values of GlycA and 

GlycB and by deep changes of the plasma metabolome. We observed a lower level of 

histidine that could reinforce our hypothesis of inflammatory processes underlying the 

Metabotype IV. Indeed, histidine has been already associated with inflammatory 

processes and in particular, it has been negatively correlated with other inflammatory 

markers, such as IL-6 and CRP (72). In addition, it has been reported that inflammation 

may alter the lipoprotein profile as well, for example modulating the HDL functions 

(73-75) as we observed. Recently, it has been shown that high levels of triglycerides 

and glucose and low levels of HDL cholesterol and Apo-A1 are related to increased 

PCa risk and its severity (76). Moreover, low HDL was reported to be a risk and 

prognostic factor for PCa in several epidemiologic studies (77). Elevated serum 

triglycerides were associated with an increased risk of PCa recurrence (78). Lower 

levels of Apo-A1 and Apo-A2, and a higher level of triglycerides in LDL, reported in 
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this study, are consistent with these processes and we suggest that inflammation could 

be a driving factor of the lipoprotein profile changes observed in Metabotype IV.  

Recently, there has been an increase in the efforts to understand the contribution of the 

microbiome on disease development and inflammation. Desaminotyrosine, a product 

of human enteric bacteria, enhances the clearance of respiratory virus by inducing type 

I IFN responses (70). In our study, we found elevated levels of desaminotyrosine in 

most very high aggressive PCa cases with Metabotype IV. This, therefore, may 

indicate that there are differences in the microbiome among PCa patients that may 

contribute to cancer progression since this signal was found elevated in the most 

aggressive PCa cases. Further studies are needed to elucidate the role of 

desaminotyrosine and the gut microbiome in men with PCa. 

Furthermore, we highlighted two others distinct metabotypes characterized by large 

differences in the lipoprotein profile. We noted a higher concentration of GlycB in the 

Metabotype III, which is characterized by a higher number of patients with very high 

aggressive PCa compared to the Metabotype II. No differences in the concentration of 

GlycA and higher levels of GlycB could be due to an elevated sialylation post-

translational modification on glycosylated proteins. Complex biantennary glycoforms 

with 2,3-sialic acid have been associated with aggressive PCa (79-81). Here, for the 

first time, we reported the association of lower level of the inflammatory NMR 

biomarker GlycB with a higher concentration of VLDL. Since the concentration of 

dietary intake can modulate the VLDL, this finding will further enrich the long-

standing debate over the role of dietary fat in promoting PCa (82,83). 

In men diagnosed with PCa, the selection of the treatment, including the type of 

therapy and its aggressiveness, is often based on patient age and life expectancy. In an 

era of precision medicine, an estimate of the threat of disease and the benefit and the 

costs of intervention within the context of the patient’s characteristics and desires 

should be taken into consideration regarding the decision of the treatment. Life 

expectancy is a key factor when weighing the potential beneficial effects of various 

treatment options, but for life expectancy estimates to be accurate, chronological age 

must not be the sole or primary factor considered (84).  

Local definitive therapy by external beam radiation combined with androgen 

deprivation is supported by several randomized clinical trials whereas the role of 

surgery in the very high-risk setting combined with adjuvant radiation / ADT is 

emerging (85). Growing evidence suggests neoadjuvant taxane-based chemotherapy 

in the context of a multimodal approach may be beneficial (85). Treatment of high-

risk prostate cancer has evolved considerably over the past two decades, yet patients 

with very high-risk features may still experience poor outcomes despite aggressive 

therapy. 

In this study, we identified a set of patients with very high aggressive PCa with 

extremely reduced survival time. These patients, belonging to the Metabotype IV, are 

characterized by a similar metabolic profile predictable with high accuracy. Our results 

postulate that this subgroup may be most likely to benefit from combination therapy 
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that associates the androgen deprivation in conjunction with drugs aiming to reduce 

the level of systemic inflammation. 

Corticosteroids, such as prednisone, have been used in the treatment of metastatic 

CRPC (mCRPC) for more than three decades, particularly, to treat inflammation and 

pain related to bone metastasis (86). Significant improvement in overall survival in 

patients has been associated with abiraterone acetate plus low-dose prednisone 

treatment in both chemotherapy-naïve and chemotherapy-treated patients with 

mCRPC (87,88). Recently, significant benefits of adding abiraterone acetate plus 

prednisone to ADT has been proven in high risk metastatic castration-sensitive PCa 

(mCSPC), by further prolonging the overall survival (89). In non-metastatic PCa, a 

major reason for the limitation of daily corticosteroids was concerns regarding the high 

cumulative toxicities associated with long-term use (90). In localized high risk PCa, a 

notable lowering of prostate tissue androgens has been associated with the addition of 

abiraterone acetate plus prednisone to neoadjuvant luteinizing hormone-releasing 

hormone (LHRH) agonists when compared with LHRH agonists alone (91). However, 

the only clinical settings of corticosteroids treatment with proved clinical utility in PCa 

treatment is in combination with abiraterone. 

In this context, metabolomics could represent an invaluable tool for the stratification 

of patients with very high aggressive PCa. The life expectancy difference highlights 

the need to consider an appropriate medical treatment for patients within Metabotype 

IV. We hypothesize that these patients could largely benefit from daily treatment with 

corticosteroids to reduce the systemic inflammation improving the overall survival, 

along with the need for subsequent therapy. We consider the lack of clinical 

investigation for almost all patients of the presence of distant metastasis as a limitation 

of this study. Considering the clinical and histopathological features, we are aware that 

PCa could have spread to distant organs in the patients with very high risk PCa 

belonging to the Metabotype IV. 

Integrating a metabolomic analysis as a tool for patient stratification could be 

important to identify those patients with very high risk PCa and short life expectancy, 

as they may benefit from therapeutic interventions, targeting the lowering of systemic 

inflammation. Thus, further studies are necessary to better characterize this group of 

patients and determine the costs and benefits of corticosteroid treatment in terms of 

survival time and quality of life.  

In conclusion, this study answers the urgent need for new insights into the molecular 

mechanisms underlying the remarkably increased rate of aggressive and lethal PCa in 

men of African ancestry. New non-invasive metabolite biomarkers are necessary to 

improve the treatment decision, which will improve therapeutic outcomes in African 

patients. 
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Tables 

 

Table 1. Clinical demographics of PCa patients  

 
 Treatment-naïve post-BO 

Feature 

intermediat

e,  

low and 

very low 

(n=14) 

high 

(n=7) 

very high 

(n=12) 

metastat

ic 

(n=1) 

Total 

n=34) 

non-

CRPC 

(n=4) 

CRPC 

(n=3) 

Total 

(n=7) 

Age (year),  

median [95%CI] 
65 [56 77] 

70 [52 

90] 
64 [57 86] 

75 [75 

75] 

68 [63 

74] 
72 [63 73] 66 [64 70] 

70 [65 

72] 

Ancestry, n (%)         

Black 1 (7.1) 1 (14.3) 4 (33.3) 1 (100.0) 7 (20.6) 1 (25.0) 1 (33.3) 2 (28.6) 

Coloured 10 (71.4) 5 (71.4) 6 (50.0) 0 (0.0) 21 (61.8) 2 (50.0) 1 (33.3) 3 (42.8) 
Coloured/Black 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 1 (25.0) 0 (0.0) 1 (14.3) 

White 3 (21.4) 1 (14.3) 2 (16.7) 0 (0.0) 6 (17.6) 0 (0.0) 1 (33.3) 1 (14.3) 

PSA (ng/mL), 

 median [95%CI] 
9 [3 19] 

23 [17 

31] 

138 [29 

3919] 
>5000 

21 [12 

84] 
4 [2 40] 

332 [49 

1128] 

34 [4 

188] 

Diabetes, n (%)         

      no 10 (71.4) 5 (71.4) 12 (100.0) 1 (100.0) 28 (82.4) 3 (75.0) 2 (66.7) 5 (71.4) 

      yes 4 (28.6) 2 (28.6) 0 (0.0) 0 (0.0) 6 (17.6) 1 (25.0) 1 (33.3) 2 (28.6) 
Hypertension, n 

(%) 
        

      no 7 (50.0) 5 (71.4) 10 (83.3) 1 (100.0) 23 (67.6) 3 (75.0) 1 (33.3) 4 (57.1) 

      yes 7 (50.0) 2 (28.6) 2 (16.7) 0 (0.0) 11 (32.4) 1 (25.0) 2 (66.7) 3 (42.9) 

Smoker, n (%)         

       no 10 (71.4) 6 (85.7) 9 (75.0) 1 (100.0) 26 (76.5) 4 (100.0) 1 (33.3) 5 (71.4) 

       yes 4 (28.6) 1 (14.3) 3 (25.0) 0 (0.0) 8 (23.5) 0 (0.0) 2 (66.7) 2 (28.6) 

 

 

Table 2. Clinical and demographic features of the metabotypes identified thought 

KODAMA analysis. 

 
Feature Metabotype I Metabotype II Metabotype III Metabotype IV 

NCCN classification, n (%)     
   very low 1 (33.3) 0 (0.0) 1 (7.1) 0 (0.0) 

   low 0 (0.0) 1 (10.0) 1 (7.1) 1 (14.3) 

   intermediate 2 (66.7) 4 (40.0) 3 (21.4) 0 (0.0) 
   high 0 (0.0) 3 (30.0) 4 (28.5) 0 (0.0) 

   very high 0 (0.0) 2 (20.0) 5 (35.7) 5 (71.4) 

   metastatic 0 (0.0) 0 (0.0) 0 (0.0) 1 (14.3) 
Gleason Score, n (%)     
   3+3 1 (33.3) 1 (10.0) 5 (35.7) 1 (14.3) 

   3+4 1 (33.3) 4 (40.0) 6 (42.9) 0 (0.0) 
   4+3 1 (33.3) 1 (10.0) 0 (0.0) 0 (0.0) 

   3+5 0 (0.0) 0 (0.0) 0 (0.0) 1 (14.3) 

   4+5 0 (0.0) 4 (40.0) 3 (21.4) 0 (0.0) 
   5+4 0 (0.0) 0 (0.0) 0 (0.0) 2 (28.6) 

   5+5 0 (0.0) 0 (0.0) 0 (0.0) 3 (42.9) 

Age, median [95%CI] 71 [64 74] 68 [56 90] 65 [51 85] 74 [59 78] 
Ancestry, n(%)     
   Black 1 (33.3) 1 (10.0) 2 (14.3) 3 (42.9) 

   Mixed ancestry 1 (33.3) 7 (70.0) 11 (78.6) 2 (28.6) 
   White 1 (33.3) 2 (20.0) 1 (7.1) 2 (28.6) 

PSA, median [95%CI] 9 [3 9] 18 [5 233] 25 [5 126] 738 [26 5000] 

Diabetes, n (%)     
   no 1 (33.3) 7 (70.0) 13 (92.9) 7 (100.0) 

   yes 2 (66.7) 3 (30.0) 1 (7.1) 0 (0.0) 

Hypertension, n (%)     
   no 0 (0.0) 8 (80.0) 9 (64.3) 6 (85.7) 

   yes 3 (100.0) 2 (20.0) 5 (35.7) 1 (14.3) 

Smoker, n (%)     
   no 2 (66.7) 8 (80.0) 9 (64.3) 7 (100.0) 

   yes 1 (33.3) 2 (20.0) 5 (35.7) 0 (0.0) 
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Table 3. Demographics and clinical features of patients belonging to the Metabotype IV and patients classified as very high aggressiveness 

that do not belong to the Metabotype IV. 
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SAPC0159 Black 2017/03/01 2017/03/23  22 75.2 >5000 5+5 T3/T4 metastatic 3 IV  

SAPC0090 Coloured 2015/05/08  2015/06/27 50 78.2 6.3 3+3 T1c low 8 IV a 
SAPC0192 Coloured 2017/07/31  2017/12/19 141 80.9 41.68 4+5 T2a very high 7 III b 

SAPC0080 Black 2014/10/31 2015/04/21  172 77.8 738 3+5 T4 very high 2 IV  

SAPC0180 Black 2017/06/23 2017/12/12  172 58.1 >5000 5+5 T3/T4 very high 1 IV  

SAPC0249 Coloured 2018/03/25 2019/01/07  288 63 1070 5+4 T3 very high 4 IV  

SAPC0078 White 2014/11/07  2015/10/31 358 74.3 135.79 5+5 T4 very high 5 IV  

SAPC0193 Coloured 2017/08/11 2019/04/26  623 63.5 48.85 3+4 T3 very high 9 III  

SAPC0070 Coloured 2014/01/08  2015/12/11 702 65.4 34.8 4+5 T2b very high 13 II  

SAPC0191 White 2017/07/28  2019/08/03 736 61.8 576 5+4 T3 very high 6 IV  

SAPC0195 Black 2017/08/13 2020/01/30  900 87.2 26.53 4+5 T3 very high 11 III  

SAPC0120 Black 2016/10/03 2019/09/30  1092 82.3 289.9 4+5 T3 very high 14 II  

SAPC0108 Coloured 2016/06/27  2020/04/17 1390 56.6 96.3 3+4 T4 very high 12 III  

SAPC0076 Coloured 2014/09/26 2020/06/04  2078 63.5 140.42 3+4 T3/T4 very high 10 III  
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Figures 

 

Figure 1. GlycA concentration in (A) treatment-naïve and (B) post-treatment. (C) 

Correlation between GlycA and PSA. GlycB concentration in (D) treatment-naïve and 

(E) post-treatment. (F) Correlation between GlycB and PSA. 
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Figure 2. KODAMA score plot of plasma PCa samples colored according to NCCN 

classification. The size is proportional to (A) the GlycA intensity and (B) the GlycB 

intensity. (C) Heatmap of the metabolic profiles. 
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Figure 3. NMR profiles of the plasma of three different spectral regions. 
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Figure 4. Box-whiskers plots of the intensity of (A) GlycA and (B) GlycB, the 

concentration of (C) histidine and the number of (D) VLDL particles across the four 

metabotypes. 
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Figure 5. Graphics illustration of the changes of the lipoprotein profile. 
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Supplementary Material 

 

Table S1. Statistical comparison between the metabolic profiles of Metabotype IV 

versus the others. 

 
Feature Metabotype IV, median [IQR] Others, median [IQR] log change P-value FDR 

Histidine 0.647 [0.566 0.732] 1.067 [0.981 1.163] -0.74 3.72x10-7 1.52x10-5 
Lipid (beta-CH2) 0.743 [0.6 0.785] 1.12 [0.989 1.239] -0.69 7.44x10-7 1.52x10-5 

GlycB 1.706 [1.524 1.89] 0.959 [0.782 1.126] 0.89 2.60x10-6 3.56x10-5 

GlycA 1.455 [1.425 1.568] 0.981 [0.892 1.075] 0.61 7.06x10-6 7.24x10-5 

Valine 0.62 [0.528 0.668] 1.002 [0.915 1.244] -0.77 6.73x10-5 4.60x10-4 

Leucine 0.624 [0.487 0.764] 1.065 [0.878 1.282] -0.81 6.73x10-5 4.60x10-4 

Protein 0.9 [0.87 0.939] 1.021 [0.979 1.071] -0.19 9.15x10-5 5.36x10-4 

Alanine 0.706 [0.578 0.774] 1.075 [0.89 1.234] -0.69 2.10x10-4 1.07x10-3 

Isoleucine 0.616 [0.548 0.811] 1.076 [0.896 1.224] -0.78 3.45x10-4 1.57x10-3 
Glutamine 0.842 [0.747 0.976] 1.098 [1.007 1.203] -0.4 1.54x10-3 6.33x10-3 

Lipid (-CH3-) 0.868 [0.826 0.946] 1.062 [0.948 1.189] -0.28 2.67x10-3 9.97x10-3 

Mannose 1.368 [1.212 1.497] 1.011 [0.754 1.173] 0.46 4.45x10-3 1.40x10-2 

Threonine 0.663 [0.54 0.829] 1.042 [0.783 1.49] -0.78 4.45x10-3 1.40x10-2 

2-Hydroxyvalerate 0.867 [0.853 0.938] 1.053 [0.961 1.222] -0.3 5.22x10-3 1.53x10-2 

3-Hydroxybutyrate 0.875 [0.812 0.899] 1.029 [0.965 1.196] -0.42 6.11x10-3 1.67x10-2 

Unsaturated lipid 
(-CH=CH-) 

0.769 [0.723 0.922] 1.05 [0.904 1.332] -0.46 8.27x10-3 1.99x10-2 

Glycorol phospholipid 0.475 [0.276 0.577] 1.24 [0.552 1.922] -1.39 8.27x10-3 1.99x10-2 

Creatine 0.493 [0.362 0.765] 1.103 [0.637 1.575] -1.08 1.10x10-2 2.51x10-2 

Pyroglutamate 0.879 [0.864 0.951] 1.023 [0.96 1.239] -0.25 1.45x10-2 2.98x10-2 

Phospholipid 1.184 [1.1 1.311] 1.014 [0.926 1.118] 0.23 1.45x10-2 2.98x10-2 

Desaminotyrosine 13.361 [6.036 19.946] 1 [1 1] 0.79 2.11x10-2 4.12x10-2 

Isobutyrate 0.643 [0.588 0.868] 0.959 [0.848 1.202] -0.35 3.89x10-2 7.25x10-2 

Glutamate 0.702 [0.467 0.938] 1.146 [0.664 1.378] -0.87 4.85x10-2 8.64x10-2 
Pyruvate 1.781 [1.131 2.386] 1 [0.643 1.507] 0.74 8.87x10-2 1.52x10-1 

Lipid (-(-CH2-)n-) 0.825 [0.773 0.992] 1.051 [0.892 1.512] -0.43 9.74x10-2 1.60x10-1 

Lipid (alpha-CH2) 0.518 [0.491 0.974] 0.943 [0.671 1.98] -0.86 1.17x10-1 1.84x10-1 

Methanol 0.919 [0.682 1.255] 1.244 [0.924 1.534] -0.32 1.39x10-1 2.10x10-1 

Acetoacetate 0.833 [0.643 0.94] 0.958 [0.734 1.286] -0.52 1.77x10-1 2.59x10-1 

Formate 1.119 [0.951 1.352] 1.023 [0.767 1.158] 0.24 2.57x10-1 3.63x10-1 

2-Hydroxybutyrate 0.989 [0.854 1.332] 0.933 [0.759 1.196] 0.21 2.75x10-1 3.76x10-1 

3-Hydroxyisovalerate 0.484 [0.392 2.729] 0.663 [0.489 3.622] -0.03 3.35x10-1 4.29x10-1 
Lipid  

(=CH-CH2-CH=) 
0.95 [0.819 1.004] 1.05 [0.86 1.102] -0.1 3.35x10-1 4.29x10-1 

Glycine 1.003 [0.886 1.145] 1.109 [0.979 1.193] -0.14 4.27x10-1 5.30x10-1 

Cholesterol backbone 1.047 [0.912 1.146] 1.131 [0.93 1.324] -0.11 5.04x10-1 6.08x10-1 

Glucose 1.015 [0.865 1.093] 1 [0.898 1.247] -0.13 5.59x10-1 6.51x10-1 

Lactate 1.388 [0.738 1.634] 0.869 [0.698 1.334] 0.27 5.88x10-1 6.51x10-1 

Citrate 0.969 [0.8 1.195] 1.042 [0.805 1.285] -0.1 5.88x10-1 6.51x10-1 
Creatinine 0.974 [0.873 1.149] 1.004 [0.807 1.14] -0.03 7.39x10-1 7.97x10-1 

Phenylalanine 0.958 [0.821 1.113] 0.95 [0.799 1.111] 0.03 8.03x10-1 8.44x10-1 

Acetate 1.053 [0.873 1.247] 1.004 [0.902 1.255] -0.05 9.01x10-1 9.23x10-1 

Tyrosine 1.077 [0.87 1.186] 1.043 [0.865 1.148] 0.01 1.00 1.00 
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Table S2. Statistical comparison between the lipoprotein profiles of Metabotype IV 

versus the others. 

 

Feature 
Metabotype IV,  

median [IQR] 

Others,  

median [IQR] 

log 

change 
P-value FDR 

MP Apo.A2 25.01 [22.865 26.685] 30.93 [27.97 33.845] -0.32 1.04x10-3 5.32x10-2 

Apo.A2 HDL.4 12.15 [11.055 13.345] 18.24 [14.905 21.8] -0.6 1.04x10-3 5.32x10-2 

Trigl LDL.2 3.59 [3.33 3.905] 2.08 [1.825 2.755] 0.63 1.40x10-3 5.32x10-2 

MF Apo.A2 HDL 26.37 [24.41 28.245] 31.88 [29.105 34.71] -0.31 1.87x10-3 5.34x10-2 

Apo.A1 HDL.4 54.24 [48.105 57.045] 64.89 [60.085 76.18] -0.35 2.67x10-3 6.10x10-2 
Trigl LDL.1 8.15 [7.56 9.31] 5.15 [3.7 7.2] 0.57 4.45x10-3 8.45x10-2 

Phosp HDL.4 18.97 [18.37 19.995] 22.74 [20.58 27.65] -0.33 5.22x10-3 8.50x10-2 

MF Trigl LDL 25.6 [23.305 28.935] 20.07 [16.775 23.18] 0.38 8.27x10-3 1.18x10-1 

MF Phosp IDL 2.88 [2.1 5.535] 7.1 [4.77 11.555] -1.13 9.37x10-3 1.19x10-1 

Chol HDL.4 13.87 [11.825 14.56] 18.07 [14.09 22.105] -0.44 1.06x10-2 1.21x10-1 

Chol VLDL.1 2.71 [1.69 4.625] 7.76 [4.5 17.16] -1.52 1.43x10-2 1.48x10-1 

MP Chol 151.07 [139.25 184.675] 209.08 [183.615 223.545] -0.32 1.89x10-2 1.78x10-1 

Free Chol 
VLDL.1 

0.5 [0.355 1.135] 2.84 [1.345 6.68] -2.05 2.02x10-2 1.78x10-1 

LDL.5 PN 122.22 [44.215 173.705] 235.58 [150.9 303.1] -0.82 2.75x10-2 2.08x10-1 

Apo.B LDL.5 6.72 [2.43 9.555] 12.96 [8.3 16.67] -0.82 2.75x10-2 2.08x10-1 

Phosp VLDL.1 2.89 [2.05 3.805] 7.51 [3.32 14.185] -1.4 3.09x10-2 2.08x10-1 

Chol VLDL.2 2.38 [1.82 2.735] 3.91 [2.935 5.69] -0.73 3.32x10-2 2.08x10-1 

Chol LDL.5 7.27 [1.465 11.7] 18.74 [10.945 22.83] -1.01 3.32x10-2 2.08x10-1 

Phosp LDL.5 4.84 [1.515 6.935] 9.85 [6.405 11.875] -0.87 3.47x10-2 2.08x10-1 
Trigl VLDL.1 11.87 [9.42 26.39] 39.89 [19.25 92.63] -1.53 4.35x10-2 2.36x10-1 

Trigl HDL.1 4.34 [3.785 5.4] 3.33 [2.37 3.97] 0.4 4.35x10-2 2.36x10-1 

MF Apo.A1 HDL 126.51 [118.6 131.56] 138.97 [133.715 147.975] -0.14 4.85x10-2 2.51x10-1 

MP Apo.A1 128.49 [120.11 132.985] 137.99 [131.55 147.33] -0.13 5.98x10-2 2.97x10-1 

Free Chol LDL.5 2.63 [1.05 3.635] 4.45 [2.98 5.795] -0.66 7.36x10-2 3.50x10-1 

Trigl HDL.2 2.14 [1.96 2.345] 1.7 [1.365 2.22] 0.32 8.07x10-2 3.68x10-1 

Trigl LDL.3 2.9 [2.51 3.37] 2.4 [1.705 2.765] 0.36 8.45x10-2 3.68x10-1 

Chol LDL.4 1.51 [0 4.95] 8.94 [2.735 13.525] -1.03 8.71x10-2 3.68x10-1 
MF Trigl IDL 4.43 [2.895 7.345] 9.89 [5.215 25.96] -1.39 9.25x10-2 3.70x10-1 

MP LDL.Chol 70.08 [51.52 95.205] 104.2 [82.98 116.18] -0.38 9.74x10-2 3.70x10-1 

MF Chol LDL 70.08 [51.52 95.205] 104.2 [82.98 116.18] -0.38 9.74x10-2 3.70x10-1 

Trigl LDL.4 2.58 [2.16 2.75] 1.55 [1.11 2.14] 0.56 1.06x10-1 3.88x10-1 

MF Phosp VLDL 14.07 [11.885 23.41] 23.72 [16.435 39.41] -0.56 1.17x10-1 3.95x10-1 

LDL.4 PN 34.66 [0 72.185] 119.2 [41.125 153.81] -0.85 1.24x10-1 3.95x10-1 

Phosp LDL.4 2.14 [0 3.865] 5.41 [1.77 7.75] -0.82 1.24x10-1 3.95x10-1 

Apo.B LDL.4 1.91 [0 3.97] 6.56 [2.265 8.46] -0.85 1.24x10-1 3.95x10-1 
MF Free Chol 

VLDL 
6.27 [5.155 10.92] 11.05 [7.74 17.9] -0.58 1.25x10-1 3.95x10-1 

LDL.Chol 

HDL.Chol 
1.48 [0.985 1.8] 1.82 [1.61 2.12] -0.23 1.47x10-1 3.95x10-1 

MF Chol VLDL 13.65 [11.82 24.19] 26.46 [17.545 40.495] -0.57 1.51x10-1 3.95x10-1 

Phosp LDL.6 12.38 [9.875 17.385] 16.01 [13.97 19.735] -0.31 1.51x10-1 3.95x10-1 

Phosp HDL.1 25.88 [23.355 28.415] 20.69 [14.64 27.49] 0.29 1.51x10-1 3.95x10-1 
MF Free Chol 

LDL 
22.25 [19.255 27.525] 28.41 [24.245 32.88] -0.21 1.60x10-1 3.95x10-1 

MP Apo.B100 69.62 [62.005 86.355] 91.46 [76.055 99.625] -0.21 1.63x10-1 3.95x10-1 

Total PN 
1265.89 [1127.435 

1570.115] 

1663.05 [1382.915 

1811.48] 
-0.21 1.63x10-1 3.95x10-1 

MF Trigl VLDL 60.34 [40.14 72.935] 74.42 [49.29 161.715] -0.77 1.63x10-1 3.95x10-1 

Chol LDL.6 21.31 [16.14 31.8] 29.34 [24.955 37.035] -0.38 1.63x10-1 3.95x10-1 

Apo.B LDL.1 13.34 [12.155 13.715] 11.37 [8.335 13.33] 0.18 1.73x10-1 3.95x10-1 

LDL PN 1006.8 [780.95 1357.535] 
1329.88 [1132.015 

1424.785] 
-0.23 1.77x10-1 3.95x10-1 

LDL.1 PN 242.55 [220.995 249.37] 206.72 [151.57 242.355] 0.18 1.77x10-1 3.95x10-1 

MF  Phosp LDL 46.19 [37.155 58.085] 59.18 [47.095 66.04] -0.2 1.77x10-1 3.95x10-1 

MF Apo.B LDL 55.37 [42.95 74.66] 73.14 [62.255 78.36] -0.23 1.77x10-1 3.95x10-1 

Chol HDL.1 22.1 [19.685 24.495] 18.78 [13.855 23.415] 0.24 1.77x10-1 3.95x10-1 

Free Chol 
VLDL.2 

1.17 [1.04 1.43] 1.91 [1.16 2.945] -0.58 1.87x10-1 4.09x10-1 

MF Free Chol 

IDL 
2.34 [1.975 4.385] 4.03 [2.78 5.695] -0.46 2.01x10-1 4.28x10-1 

LDL.6 PN 325.77 [240.52 484.46] 450.55 [346.56 564.44] -0.39 2.06x10-1 4.28x10-1 

Apo.B LDL.6 17.92 [13.23 26.645] 24.78 [19.06 31.045] -0.39 2.06x10-1 4.28x10-1 

 Phosp VLDL.2 2.64 [2.47 3.195] 3.8 [2.465 5.65] -0.47 2.17x10-1 4.41x10-1 

MP Trigl 96.35 [80.635 122.505] 114.96 [91.02 219.825] -0.57 2.39x10-1 4.78x10-1 

MF Trigl HDL 10.91 [9.755 11.665] 8.54 [7.13 12.12] 0.14 2.57x10-1 4.92x10-1 
Free Chol LDL.4 1.95 [0.545 2.795] 2.95 [1.57 4.345] -0.5 2.59x10-1 4.92x10-1 

Apo.A2 HDL.3 5.51 [5.165 5.945] 6.01 [5.535 6.885] -0.19 2.59x10-1 4.92x10-1 

MF Chol IDL 9.21 [7.735 15.675] 14.04 [9.71 18.84] -0.35 2.75x10-1 5.14x10-1 

Free Chol LDL.1 6.71 [5.86 7.34] 5.47 [4.495 7.21] 0.11 2.87x10-1 5.28x10-1 
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*Abbreviations are reported as follows: MF: Main Fractions, MP: Main Parameters, PN: Particle Number, Chol: 

Cholesterol, Phosp: Phospholipids, Trigl: Triglycerides.  

 

 

  

Free Chol 

VLDL.5 
0.39 [0.35 1.16] 0.93 [0.575 1.565] -0.59 2.94x10-1 5.32x10-1 

Phosp LDL.1 13.28 [11.57 13.34] 11.24 [8.925 13.96] 0.1 3.07x10-1 5.46x10-1 

MP HDL.Chol 52.7 [48.33 54.175] 55.73 [51.2 62.19] -0.1 3.35x10-1 5.79x10-1 
MF Chol HDL 52.7 [48.33 54.175] 55.73 [51.2 62.19] -0.1 3.35x10-1 5.79x10-1 

Free Chol LDL.6 5.21 [3.14 7.33] 6.48 [5.045 7.83] -0.27 3.49x10-1 5.90x10-1 

Free Chol LDL.2 5.75 [5.19 6.645] 5.35 [4.185 6.4] 0.18 3.57x10-1 5.90x10-1 

Trigl HDL.3 2.21 [2.09 2.45] 1.71 [1.585 2.645] 0.17 3.57x10-1 5.90x10-1 

Free Chol HDL.3 1.4 [1.325 1.605] 1.67 [1.375 1.95] -0.1 3.71x10-1 6.04x10-1 

Trigl VLDL.2 9.48 [9.145 12.295] 12.3 [7.77 20.28] -0.35 4.03x10-1 6.26x10-1 

Trigl VLDL.4 11.24 [8.685 16.995] 10.15 [7.525 13.39] 0.26 4.03x10-1 6.26x10-1 

Trigl HDL.4 2.8 [2.31 3.11] 2.86 [2.515 3.98] -0.23 4.03x10-1 6.26x10-1 
Free Chol 

VLDL.3 
1.11 [1.075 2.275] 2.12 [1.16 3.395] -0.42 4.06x10-1 6.26x10-1 

Apo.B100 

Apo.A1 
0.57 [0.475 0.68] 0.66 [0.56 0.745] -0.06 4.18x10-1 6.35x10-1 

Chol VLDL.3 2.67 [2.43 5.15] 4.67 [2.66 6.615] -0.32 4.56x10-1 6.84x10-1 

Trigl VLDL.5 3.31 [2.555 3.66] 3.01 [2.105 3.655] 0.19 4.69x10-1 6.94x10-1 

Free Chol HDL.2 1.75 [1.495 1.82] 1.57 [1.03 1.81] 0.1 5.23x10-1 7.55x10-1 
Apo.A2 HDL.1 2.93 [2.72 3.645] 2.86 [2.115 3.64] 0.12 5.23x10-1 7.55x10-1 

Chol HDL.3 8.81 [8.215 9.26] 9 [8.4 10.165] -0.05 5.31x10-1 7.55x10-1 

Trigl LDL.6 5.11 [4.85 7.015] 5.12 [4.355 6.655] 0.11 5.37x10-1 7.55x10-1 

Free Chol HDL.4 2.4 [2.05 2.655] 2.42 [1.69 3.47] -0.22 5.59x10-1 7.76x10-1 

Phosp VLDL.3 3.31 [2.965 5.41] 4.97 [3.11 6.755] -0.22 5.65x10-1 7.76x10-1 

LDL.2 PN 166.03 [151.33 208.055] 164.37 [139.665 205.405] 0.11 5.88x10-1 7.84x10-1 

Apo.B LDL.2 9.13 [8.32 11.44] 9.04 [7.68 11.295] 0.11 5.88x10-1 7.84x10-1 

Free Chol 
VLDL.4 

1.52 [1.075 3.665] 2.14 [1.405 3.315] -0.14 6.09x10-1 7.84x10-1 

Trigl LDL.5 2.56 [2.1 3.05] 2.94 [2.205 3.695] -0.07 6.09x10-1 7.84x10-1 

Apo.A1 HDL.1 27.97 [26.28 30.92] 26.72 [18.345 36.18] 0.15 6.17x10-1 7.84x10-1 

Chol VLDL.4 4.74 [3.605 8.725] 5.18 [4.165 7.74] 0 6.39x10-1 7.84x10-1 

Chol VLDL.5 1.21 [0.59 1.64] 1.51 [0.84 1.88] -0.06 6.39x10-1 7.84x10-1 

VLDL PN 146.61 [124.635 216.05] 174.76 [125.635 260.425] -0.19 6.47x10-1 7.84x10-1 

IDL PN 85.1 [82.795 107.41] 93.81 [66.715 125.515] -0.12 6.47x10-1 7.84x10-1 
MF Apo.B VLDL 8.06 [6.855 11.885] 9.61 [6.91 14.32] -0.19 6.47x10-1 7.84x10-1 

MF Apo.B IDL 4.68 [4.555 5.905] 5.16 [3.67 6.9] -0.12 6.47x10-1 7.84x10-1 

 Chol LDL.3 9.6 [6.69 12.495] 13.12 [7.465 15.125] -0.13 6.70x10-1 8.04x10-1 

MF Free Chol 

HDL 
10.57 [10.04 12.075] 9.66 [9.24 12.95] 0.06 7.01x10-1 8.24x10-1 

Free Chol HDL.1 3.98 [3.115 4.53] 3.75 [2.475 4.825] 0.02 7.01x10-1 8.24x10-1 

Phosp LDL.2 8.86 [8.125 10.94] 8.8 [7.225 11.315] 0.09 7.39x10-1 8.60x10-1 

Apo.B LDL.3 6.96 [5.93 8.795] 7.25 [5.035 9.525] 0.11 7.66x10-1 8.79x10-1 
LDL.3 PN 126.58 [107.8 159.865] 131.79 [91.545 173.235] 0.11 7.71x10-1 8.79x10-1 

Free Chol LDL.3 3.79 [3.595 4.735] 4.21 [2.53 5.035] 0.15 7.98x10-1 8.97x10-1 

Chol LDL.2 14.59 [13.305 19.375] 16.89 [13.345 20.83] -0.01 8.03x10-1 8.97x10-1 

Apo.A1 HDL.3 24.55 [22.595 25.55] 23.88 [22.23 27.09] -0.05 8.15x10-1 9.02x10-1 

Phosp HDL.2 13.27 [12.895 14.535] 14.26 [10.64 15.715] 0.07 8.35x10-1 9.15x10-1 

Phosp VLDL.5 1.36 [1 2.415] 1.97 [1.055 2.29] -0.06 8.48x10-1 9.21x10-1 

Apo.A1 HDL.2 19.84 [15.235 20.365] 17.65 [15.25 20.59] 0.02 8.98x10-1 9.66x10-1 

Phosp VLDL.4 4.86 [3.69 7.7] 4.87 [3.93 6.625] 0.1 9.15x10-1 9.75x10-1 
Phosp LDL.3 6.36 [5.4 7.79] 7.63 [4.78 8.565] 0.05 9.32x10-1 9.76x10-1 

Chol HDL.2 8.36 [7.58 8.71] 8.56 [6.67 10.025] -0.01 9.34x10-1 9.76x10-1 

Trigl VLDL.3 9.86 [9.56 16.12] 11.94 [9.045 19.305] -0.03 9.66x10-1 9.84x10-1 

MF Phosp HDL 73.02 [67.19 75.64] 72.67 [65.82 80.31] -0.01 9.67x10-1 9.84x10-1 

Chol LDL.1 20.18 [17.485 21.32] 18.55 [14.815 24.82] -0.07 9.67x10-1 9.84x10-1 

Phosp HDL.3 14.39 [13.985 15.93] 14.33 [13.63 16.59] 0 9.83x10-1 9.92x10-1 

Apo.A2 HDL.2 3.83 [3.415 4.015] 3.61 [3.125 4.435] -0.06 1.00 1.00 
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Table S3. Statistical comparison between the metabolic profiles of Metabotype II 

versus Metabotype III. 

 

Feature 
Metabotype II, 

median [IQR] 

Metabotype III, 

median [IQR] 
log change P-value FDR 

Pyroglutamate 1.28 [1.226 1.343] 0.974 [0.943 1.011] 0.45 1.02x10-6 1.05x10-5 

2-Hydroxyvalerate 1.263 [1.21 1.325] 0.961 [0.93 0.997] 0.45 1.02x10-6 1.05x10-5 
Unsaturated lipid  

(-CH=CH-) 
1.388 [1.331 1.469] 0.917 [0.838 0.998] 0.64 1.02x10-6 1.05x10-5 

Lipid  

(-(-CH2-)n-) 
1.569 [1.51 1.742] 0.892 [0.776 1.003] 0.91 1.02x10-6 1.05x10-5 

Lipid (-CH3-) 1.226 [1.183 1.272] 0.948 [0.938 1.034] 0.33 2.04x10-6 1.67x10-5 

Lipid (alpha-CH2) 2.144 [1.957 2.631] 0.671 [0.494 0.863] 1.76 7.14x10-6 4.18x10-5 

Glycorol phospholipid 2.084 [1.919 2.643] 0.552 [0.401 0.809] 1.73 7.14x10-6 4.18x10-5 

Threonine 1.596 [1.341 1.786] 0.783 [0.741 0.96] 0.96 4.59x10-5 2.35x10-4 
GlycB 0.72 [0.661 0.783] 0.978 [0.903 1.167] -0.5 1.42x10-4 6.46x10-4 

Lipid (beta-CH2) 1.288 [1.193 1.36] 1.032 [0.9 1.121] 0.36 1.98x10-4 8.11x10-4 

3-Hydroxybutyrate 1.28 [1.183 1.351] 0.979 [0.949 1.017] 0.4 3.73x10-4 1.39x10-3 

Lipid  

(=CH-CH2-CH=) 
1.111 [1.08 1.156] 0.957 [0.818 1.046] 0.28 1.49x10-3 5.10x10-3 

Cholesterol backbone 1.324 [1.228 1.43] 1.021 [0.851 1.149] 0.37 1.91x10-3 6.03x10-3 

Methanol 0.978 [0.826 1.148] 1.41 [1.091 1.572] -0.46 2.20x10-2 6.45x10-2 
Pyruvate 1.362 [0.789 1.844] 0.918 [0.581 1.09] 0.75 4.17x10-2 1.14x10-1 

Phenylalanine 1.003 [0.942 1.072] 0.834 [0.669 1.01] 0.28 4.84x10-2 1.24x10-1 

Isoleucine 1.146 [1.062 1.254] 0.911 [0.777 1.182] 0.28 8.41x10-2 2.03x10-1 

GlycA 1.019 [0.96 1.073] 0.913 [0.827 0.979] 0.13 9.56x10-2 2.18x10-1 

Creatine 1.401 [0.958 1.613] 0.931 [0.45 1.289] 0.33 1.08x10-1 2.34x10-1 

Mannose 1.11 [0.949 1.27] 0.977 [0.714 1.076] 0.25 1.22x10-1 2.51x10-1 

Valine 1.01 [0.936 1.284] 0.956 [0.806 1.069] 0.19 1.38x10-1 2.68x10-1 

3-Hydroxyisovalerate 0.568 [0.479 0.635] 1.799 [0.498 4.786] -1.53 1.72x10-1 3.21x10-1 
Glucose 1.011 [0.925 1.471] 0.911 [0.889 1.124] 0.28 1.92x10-1 3.41x10-1 

Glutamine 1.157 [1.108 1.204] 1.07 [0.999 1.213] 0.07 2.35x10-1 4.01x10-1 

Acetate 0.956 [0.895 1.125] 1.149 [0.959 1.291] -0.15 3.41x10-1 5.59x10-1 

Formate 0.979 [0.758 1.077] 1.051 [0.716 1.253] -0.18 3.71x10-1 5.85x10-1 

Glutamate 0.802 [0.46 1.302] 1.175 [0.814 1.223] -0.23 4.03x10-1 6.12x10-1 

Glycine 1.083 [0.933 1.158] 1.151 [0.99 1.195] -0.1 4.37x10-1 6.39x10-1 

Histidine 1.101 [1.029 1.16] 1.053 [0.967 1.151] 0.04 4.72x10-1 6.67x10-1 
Creatinine 1.023 [0.906 1.071] 0.922 [0.754 1.126] 0.09 5.08x10-1 6.72x10-1 

Leucine 1.069 [0.941 1.199] 0.94 [0.842 1.145] 0.1 5.08x10-1 6.72x10-1 

Tyrosine 1.044 [0.928 1.109] 0.918 [0.784 1.1] 0.11 5.46x10-1 6.99x10-1 

Alanine 1.019 [0.856 1.274] 0.95 [0.879 1.126] 0.16 5.85x10-1 7.27x10-1 

2-Hydroxybutyrate 1.024 [0.746 1.18] 0.865 [0.806 1.063] 0.04 7.96x10-1 9.31x10-1 

Protein 1.013 [0.962 1.072] 1.028 [0.993 1.064] 0 7.96x10-1 9.31x10-1 

Desaminotyrosine 1 [1 1] 1 [1 1] -1.32 8.37x10-1 9.31x10-1 

Citrate.left 1.003 [0.778 1.279] 1.035 [0.819 1.249] -0.01 8.41x10-1 9.31x10-1 
Lactate 0.79 [0.689 1.483] 0.82 [0.709 1.035] 0.21 8.86x10-1 9.31x10-1 

Acetoacetate 0.943 [0.724 1.231] 0.904 [0.659 1.244] -0.18 8.86x10-1 9.31x10-1 

Phospholipid 1.006 [0.925 1.143] 1.035 [0.934 1.099] -0.02 9.31x10-1 9.55x10-1 

Isobutyrate 0.972 [0.895 1.035] 0.918 [0.817 1.3] -0.15 9.77x10-1 9.77x10-1 
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Table S4. Statistical comparison between the lipoprotein profiles of Metabotype II 

versus Metabotype III. 

 

Feature 
Metabotype II,  

median [IQR] 
Metabotype III, median [IQR] log change P-value FDR 

MP Trigl 240.36 [214.002 299.433] 91.02 [71.323 111.78] 1.52 2.04x10-6 8.14x10-5 

MF Trigl VLDL 170.69 [159.183 210.132] 49.29 [38.688 69.142] 1.79 4.08x10-6 8.14x10-5 
MF Trigl IDL 26.57 [25.95 36.155] 5.215 [2.48 8.28] 2.47 4.08x10-6 8.14x10-5 

Trigl VLDL.1 107.94 [80.3 134.335] 19.25 [11.785 27.652] 2.45 4.08x10-6 8.14x10-5 

Phosp VLDL.1 15.77 [13.717 19.802] 3.32 [2.45 4.475] -2.2 4.08x10-6 8.14x10-5 

VLDL PN 278.955 [243.442 330.25] 125.635 [95.94 150.235] 1.26 7.14x10-6 8.14x10-5 

MF Chol VLDL 43.075 [37.285 54.905] 17.545 [11.707 21.458] 1.42 7.14x10-6 8.14x10-5 

MF Chol IDL 18.84 [15.553 28.68] 9.94 [6.973 12.57] 1.22 7.14x10-6 8.14x10-5 

MF Apo.B VLDL 15.34 [13.39 18.163] 6.91 [5.275 8.262] 1.26 7.14x10-6 8.14x10-5 

Chol VLDL.1 20.4 [16.017 25.052] 4.5 [2.473 6.945] 2.2 7.14x10-6 8.14x10-5 
MP Apo.B100 105.6 [96.73 118.345] 80.055 [67.373 86.227] 0.45 3.06x10-5 2.49x10-4 

Total PN 1920.06 [1758.775 2151.845] 1455.6 [1224.988 1567.833] 0.45 3.06x10-5 2.49x10-4 

MF Phosp VLDL 43.66 [36.663 48.425] 16.435 [12.775 21.26] 1.35 3.06x10-5 2.49x10-4 

Trigl VLDL.2 23.955 [18.545 28.067] 7.77 [6.612 12.015] 1.31 3.06x10-5 2.49x10-4 

FreeChol VLDL.3 3.745 [3.165 4.645] 1.16 [0.662 1.658] 1.65 4.59x10-5 3.27x10-4 

Phosp VLDL.2 6.555 [5.123 7.707] 2.465 [1.86 3.462] 1.22 4.59x10-5 3.27x10-4 

MF Phosp IDL 13.195 [11.277 13.99] 4.77 [3.405 5.865] 1.44 6.03x10-5 4.04x10-4 
FreeChol VLDL.1 6.905 [6.43 8.595] 1.345 [0.48 1.855] 2.52 7.68x10-5 4.87x10-4 

MF FreeChol VLDL 19.25 [17.398 23.538] 7.74 [5.652 9.453] 1.43 9.83x10-5 5.90x10-4 

MF FreeChol IDL 5.695 [4.505 8.465] 2.78 [1.777 3.518] 1.32 1.40x10-4 6.73x10-4 

FreeChol VLDL.2 3.625 [2.663 3.978] 1.16 [0.845 1.642] 1.55 1.41x10-4 6.73x10-4 

MP Chol 242.43 [216.257 251.153] 186.395 [170.765 211.16] 0.33 1.42x10-4 6.73x10-4 

Chol VLDL.3 7.59 [6.305 9.242] 2.66 [1.96 4.388] 1.34 1.42x10-4 6.73x10-4 

FreeChol VLDL.4 3.19 [2.522 5.088] 1.405 [1.087 1.878] 1.38 1.42x10-4 6.73x10-4 

Trigl VLDL.4 14.33 [12.16 18.005] 7.765 [5.54 9.773] 0.96 1.98x10-4 9.02x10-4 
Phosp VLDL.4 6.795 [5.648 8.938] 3.99 [2.865 4.717] 0.88 2.74x10-4 1.20x10-3 

IDL PN 123.81 [97.71 174.377] 72.05 [59.055 92.15] 0.93 3.73x10-4 1.32x10-3 

LDL.6 PN 627.52 [479.947 741.995] 346.56 [249.407 458.607] 0.82 3.73x10-4 1.32x10-3 

MF Apo.B IDL 6.805 [5.375 9.592] 3.965 [3.25 5.067] 0.93 3.73x10-4 1.32x10-3 

Phosp LDL.6 20.9 [18.147 23.673] 14.04 [11.262 17.135] 0.59 3.73x10-4 1.32x10-3 

Apo.B LDL.6 34.515 [26.395 40.81] 19.06 [13.715 25.225] 0.82 3.73x10-4 1.32x10-3 

Trigl HDL.4 4.755 [3.945 4.992] 2.58 [2.433 2.852] 0.77 3.73x10-4 1.32x10-3 
Chol VLDL.2 7.385 [5.69 7.815] 2.935 [2.002 3.798] 1.24 3.95x10-4 1.32x10-3 

Phosp VLDL.3 7.77 [6.45 8.297] 3.11 [2.045 3.857] 1.21 3.95x10-4 1.32x10-3 

Trigl VLDL.3 21.9 [18.928 23.95] 9.045 [5.5 11.13] 1.15 4.41x10-4 1.44x10-3 

Chol LDL.6 39.615 [33.542 44.188] 24.98 [18.985 31.68] 0.68 5.04x10-4 1.60x10-3 

Phosp VLDL.5 2.29 [2.138 2.743] 1.16 [0.915 1.9] 0.87 6.12x10-4 1.89x10-3 

FreeChol VLDL.5 1.66 [1.202 2.345] 0.575 [0.302 0.908] 1.49 6.70x10-4 2.01x10-3 

Chol VLDL.4 7.425 [5.768 11.15] 4.54 [3.668 5.143] 0.9 8.84x10-4 2.58x10-3 

Trigl VLDL.5 3.69 [3.298 3.907] 2.235 [1.852 2.918] 0.6 1.15x10-3 3.28x10-3 
Trigl HDL.3 2.645 [2.518 2.85] 1.61 [1.395 1.738] 0.71 3.84x10-3 1.07x10-2 

Apo.B100 Apo.A1 0.755 [0.705 0.815] 0.59 [0.442 0.62] 0.4 4.46x10-3 1.21x10-2 

MF Trigl HDL 12.12 [10.488 13.635] 7.795 [6.595 9.035] 0.63 5.91x10-3 1.57x10-2 

Apo.A2 HDL.3 6.88 [6.22 7.827] 5.75 [5.462 6.303] 0.3 9.97x10-3 2.58x10-2 

Trigl LDL.6 6 [5.397 7.277] 4.94 [4.215 5.12] 0.34 1.08x10-2 2.74x10-2 

FreeChol LDL.6 8.035 [6.635 8.848] 5.59 [4.115 7.095] 0.54 1.18x10-2 2.92x10-2 

Chol VLDL.5 1.88 [1.268 1.94] 0.935 [0.682 1.532] 0.73 1.28x10-2 3.10x10-2 

MF Apo.A2 HDL 34.53 [34.012 39.838] 31.145 [28.988 33.998] 0.21 1.51x10-2 3.58x10-2 
FreeChol HDL.2 1.365 [1.005 1.562] 1.705 [1.578 2.295] -0.48 1.77x10-2 4.12x10-2 

LDL.Chol HDL.Chol 2.05 [1.872 2.608] 1.66 [1.365 1.948] 0.35 2.20x10-2 4.92x10-2 

Chol HDL.2 7.945 [6.66 8.887] 10.025 [8.425 11.535] -0.32 2.20x10-2 4.92x10-2 

MP Apo.A2 33.51 [31.752 39.38] 30.085 [28.275 32.907] 0.19 3.06x10-2 6.46x10-2 

Trigl LDL.4 1.215 [1.105 1.64] 2.055 [1.572 2.675] -0.75 3.06x10-2 6.46x10-2 

FreeChol LDL.3 3.41 [1.525 3.945] 4.775 [4.383 5.195] -0.61 3.06x10-2 6.46x10-2 

MP HDL.Chol 52.805 [51.48 56.24] 60.32 [55.983 66.567] -0.19 3.58x10-2 7.16x10-2 
MF Chol HDL 52.805 [51.48 56.24] 60.32 [55.983 66.567] -0.19 3.58x10-2 7.16x10-2 

Apo.A1 HDL.3 25.605 [24.717 30.588] 23 [22.125 27.023] 0.17 3.58x10-2 7.16x10-2 

LDL.5 PN 300.27 [247.382 321.38] 166.685 [140.99 271.045] 0.53 4.17x10-2 7.93x10-2 

Apo.B LDL.5 16.515 [13.608 17.677] 9.165 [7.755 14.91] 0.53 4.17x10-2 7.93x10-2 

Apo.A2 HDL.4 21.8 [19.265 23.615] 16.905 [14.2 20.055] 0.27 4.17x10-2 7.93x10-2 

MF FreeChol HDL 9.35 [9.21 10.613] 11.74 [9.867 13.873] -0.26 4.33x10-2 8.10x10-2 

LDL PN 1413.735 [1368.12 1703.253] 1290.365 [1040.328 1393.905] 0.27 4.84x10-2 8.76x10-2 

MF Apo.B LDL 77.755 [75.245 93.675] 70.965 [57.218 76.665] 0.27 4.84x10-2 8.76x10-2 
Chol LDL.5 22.305 [19.075 26.078] 11.495 [8.82 21.198] 0.57 6.43x10-2 1.11x10-1 

FreeChol LDL.2 4.665 [3.745 5.432] 6.255 [4.715 6.837] -0.34 6.43x10-2 1.11x10-1 

FreeChol HDL.1 3.275 [2.427 4.258] 4.425 [3.698 5.373] -0.43 6.43x10-2 1.11x10-1 

Trigl LDL.1 6.215 [4.98 7.638] 4.66 [3.415 6.215] 0.41 8.41x10-2 1.39x10-1 

Phosp LDL.2 8.03 [5.698 9.823] 10.935 [8.47 11.943] -0.36 8.41x10-2 1.39x10-1 

Apo.A1 HDL.1 21.315 [17.885 26.622] 33.085 [21.492 38.812] -0.39 8.41x10-2 1.39x10-1 

Apo.A2 HDL.2 4.045 [3.553 4.988] 3.53 [2.595 4.11] 0.37 9.50x10-2 1.54x10-1 
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Phosp LDL.5 11.475 [10.037 13.707] 6.905 [5.468 11.435] 0.45 9.56x10-2 1.54x10-1 

MF Phosp HDL 71.915 [67.455 74.508] 78.99 [71.608 86.375] -0.14 1.22x10-1 1.94x10-1 

MF Trigl LDL 21.375 [19.322 24.075] 19.655 [15.92 20.8] 0.16 1.38x10-1 2.15x10-1 

Trigl LDL.2 1.91 [1.802 2.067] 2.6 [1.895 3.11] -0.41 1.43x10-1 2.18x10-1 
Trigl HDL.2 2.015 [1.69 2.253] 1.62 [1.118 1.89] 0.37 1.43x10-1 2.18x10-1 

Chol LDL.2 15.645 [10.517 18.652] 20.02 [14.985 21.427] -0.28 1.54x10-1 2.25x10-1 

Phosp HDL.1 18.775 [15.248 20.535] 24.395 [19.26 30.763] -0.3 1.54x10-1 2.25x10-1 

Phosp HDL.2 13.235 [10.63 14.83] 15.465 [12.505 17.177] -0.17 1.54x10-1 2.25x10-1 

Trigl LDL.5 3.56 [2.708 3.827] 2.725 [2.22 3.428] 0.25 1.69x10-1 2.43x10-1 

FreeChol LDL.5 5.4 [4.493 6.308] 3.31 [2.975 5.9] 0.28 1.88x10-1 2.66x10-1 

Phosp LDL.3 6.72 [1.825 8.13] 7.88 [5.605 8.828] -0.45 1.92x10-1 2.66x10-1 

Chol HDL.1 16.89 [13.783 19.642] 20.415 [15.768 26.862] -0.28 1.92x10-1 2.66x10-1 
Apo.A1 HDL.4 73.3 [63.96 83.575] 66.545 [59.858 75.243] 0.13 2.35x10-1 3.23x10-1 

MP LDL.Chol 109.14 [99.135 134.655] 103.665 [83.118 113.803] 0.19 2.59x10-1 3.39x10-1 

LDL.2 PN 152.755 [114.168 179.565] 187.735 [143.328 209.08] -0.25 2.59x10-1 3.39x10-1 

MF Chol LDL 109.14 [99.135 134.655] 103.665 [83.118 113.803] 0.19 2.59x10-1 3.39x10-1 

Apo.B LDL.2 8.4 [6.28 9.872] 10.325 [7.88 11.495] -0.25 2.59x10-1 3.39x10-1 

MP Apo.A1 143.235 [136.41 150.05] 138.3 [133.245 148.077] 0.07 3.12x10-1 4.04x10-1 

Trigl HDL.1 3.54 [2.73 3.958] 2.96 [1.878 3.848] 0.49 3.41x10-1 4.36x10-1 
FreeChol HDL.3 1.68 [1.388 1.87] 1.76 [1.452 2.138] -0.16 3.96x10-1 5.00x10-1 

LDL.3 PN 131.705 [37.047 171.588] 146.74 [108.203 174.567] -0.36 4.03x10-1 5.00x10-1 

Apo.B LDL.3 7.245 [2.04 9.44] 8.07 [5.95 9.598] -0.36 4.03x10-1 5.00x10-1 

Chol LDL.3 11.685 [2.105 15.377] 13.41 [8.697 15.675] -0.35 4.29x10-1 5.26x10-1 

Chol HDL.3 8.86 [8.398 10.175] 9.345 [8.625 10.555] -0.05 4.72x10-1 5.72x10-1 

Trigl LDL.3 2.395 [1.852 2.637] 2.475 [1.735 2.86] -0.11 5.78x10-1 6.94x10-1 

MF Phosp LDL 59.635 [54.36 74.132] 59.185 [49.73 65.748] 0.09 5.85x10-1 6.95x10-1 

Phosp HDL.3 15.095 [14.135 16.82] 14.365 [13.732 17.263] 0.01 6.25x10-1 7.35x10-1 
FreeChol LDL.4 3.065 [1.095 4.562] 3.54 [2.478 4.383] -0.14 6.82x10-1 7.93x10-1 

Chol LDL.1 18.885 [15.72 25.035] 20.14 [13.995 26.125] -0.03 7.52x10-1 8.66x10-1 

Apo.A1 HDL.2 17.805 [15.957 21.42] 18.075 [15.985 20.025] 0.06 8.38x10-1 9.43x10-1 

Phosp HDL.4 26.26 [20.55 29.66] 23.26 [21.895 27.84] 0.06 8.41x10-1 9.43x10-1 

LDL.4 PN 132.31 [49.392 180.19] 126.205 [59.178 156.785] 0.11 8.61x10-1 9.43x10-1 

Phosp LDL.4 5.705 [1.485 8.697] 6.23 [3.59 7.855] -0.08 8.61x10-1 9.43x10-1 

Apo.B LDL.4 7.275 [2.72 9.91] 6.945 [3.255 8.625] 0.11 8.61x10-1 9.43x10-1 
LDL.1 PN 202.365 [170.42 230.515] 209.91 [145.275 253.295] -0.05 8.86x10-1 9.53x10-1 

Apo.B LDL.1 11.13 [9.37 12.68] 11.545 [7.992 13.93] -0.05 8.86x10-1 9.53x10-1 

MF FreeChol LDL 28.15 [25.31 36.675] 29.46 [25.735 33.145] 0 9.07x10-1 9.57x10-1 

Apo.A2 HDL.1 2.71 [2.225 3.487] 2.98 [2.49 3.685] 0.13 9.07x10-1 9.57x10-1 

MF Apo.A1 HDL 140.92 [136.89 147.097] 142.275 [135.855 148.532] 0.01 9.31x10-1 9.65x10-1 

FreeChol HDL.4 3.055 [1.69 3.705] 2.53 [2.2 3.5] -0.01 9.31x10-1 9.65x10-1 

Chol LDL.4 10.105 [2.053 16.44] 10.1 [5.402 13.578] 0.04 9.53x10-1 9.70x10-1 

Phosp LDL.1 10.87 [9.21 13.52] 11.94 [8.565 14.76] -0.09 9.53x10-1 9.70x10-1 
FreeChol LDL.1 5.19 [4.58 7.225] 6.675 [4.457 7.775] -0.09 9.77x10-1 9.77x10-1 

Chol HDL.4 19.02 [14.853 22.042] 18.695 [16.23 22.68] 0.01 9.77x10-1 9.77x10-1 

*Abbreviations are reported as follows: MF: Main Fractions, MP: Main Parameters, PN: Particle Number, Chol: 

Cholesterol, Phosp: Phospholipids, Trigl: Triglycerides.  
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4.1.5. Untargeted NMR-based metabolomics to investigate the effect of 

Bioactive Foods enriched with combination of DHA and anthocyanins or 

oat β-glucan on serum metabolome and lipidome of subjects at risk for 

metabolic syndrome: Large Intervention Study from the EC FP7 

Pathway-27 project.  
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Introduction 

 

 Genetic factors and aging have important roles in determining the overall risk 

of many chronic diseases. A considerable proportion of these diseases, mostly 

cardiovascular disorders, occurs also with various modifiable risk factors which 

depend on lifestyle habits, including physical exercises and diet.1,2 

In the last years, this awareness increased the global interest on improving eating habits 

and maintaining a healthy lifestyle. In a renewed Hyppocratic perception of “food as 

a medicament”, pharmaceutical and food companies pay increasing attention to 

bioactives and to the preparation of bioactive enriched foods with the overall aim of 

improving human health.  

Bioactives, or nutraceuticals, are any substances that are foods or part of a food, able 

to provide health benefits, also in the frame of disease treatment and prevention.3 

Commonly, bioactives are present in foods at low concentrations, far from the effective 

dose. To obtain the desired effect, bioactives must be delivered in more concentrated 

amount, as in bioactive-enriched foods (BEF),4 therefore representing a promising 

approach to prevent and to manage metabolic disorders, including the metabolic 

syndrome (MetS).5–7  

However, the optimal formulation of an effective BEF depends on a better 

understanding of the complex inter-relationship between the bioactive and the food 

matrix and between food structure and performance. In this light, there is an increasing 

need of better understanding whether the single bioactive or related combination with 

other nutraceuticals can exert beneficial and synergic roles on human health when 

administered as ingredients of specific BEFs. It cannot be assumed a priori that the 

food matrix by which bioactives are conveyed does not influence the final efficacy of 

the compound.  

Docosahexaenoic acid (C22:6, n-3, DHA), anthocyanins (AC) and β-glucans (BG) are 

well-known bioactives able to have a positive impact on MetS,8–10 acting on cell 

regulation of lipid metabolism, mitigating inflammation, and being effective in 

modulating risks of metabolic syndrome. There are evidences of synergies between 

the above-mentioned bioactives,7,11,12 but the effects of the food matrices on bioactives 

combinations (e.g. DHA + AC or DHA + O-BG) need to be investigated more deeply.  

It has been previously evidenced that NMR-based metabolomics, applied to the 

analysis of human biofluids, is efficient and highly reproducible in assessing novel 

biomarkers of dietary intake,13–15 and in determining the existence of human metabolic 

phenotypes,16–19 where nutrition factors and dietary habits can contribute to the 

movements of an individual in the metabolic space,17 thus offering a broader 

understanding of the complex variations due to the diet in a foodomic vision.20 

The present large intervention study was included in the frame of the EC FP7 

PATHWAY-27 project (ID: 311876) with the aim to confirm or to better investigate 

the observations obtained in the pilot studies,6,7 where the best enrichments (DHA, AC 

and oat BG (O-BG)) within the optimal food matrices (dairy-, egg- and bakery- based 

foods) were selected.  
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In particular, we applied untargeted NMR-based metabolomics to investigate, on the 

human serum metabolome of subjects at risk for MetS: i) the effect of dairy-based food 

enriched with DHA and O-BG; ii) the effect of egg-based food enriched with DHA 

and AC; iii) the effect of bakery-based food enriched with DHA and AC; iv) the effect 

of food matrices in determining the bioavailability of bioactives, administering a 

combination of dairy-, egg- and bakery-based foods without bioactives (placebo). To 

this end, we analysed serum samples collected before (t0) and 12 weeks after (t1) the 

dietary interventions.  

  

Material and Methods 

 

Bioactive Enriched Food 

Three different foods (milkshake, pancake and biscuits), related to different 

food matrices (dairy, egg and bakery), were enriched with DHA + O-BG, DHA + AC 

and DHA + AC respectively. 

DHA, O-BG and AC were obtained and BEFs were formulated as detailed in the pilot 

study.7 Placebo dairy, egg and bakery-based foods were also produced.  

 

Study population 

 The population under study includes a total of 232 healthy male and female 

subjects aged 18 years and above, and presenting 2, 3 or 4 of the criteria for MetS 

diagnosis, i.e. elevated waist circumference ≥ 102 cm (men) or ≥ 88 cm (women); 

fasting triglycerides ≥150 mg/dL; fasting HDL-cholesterol ≤ 40 mg/dL (men) or ≤ 50 

mg/dL (women); systolic blood pressure ≥ 130 mmHg and/or diastolic blood pressure 

≥ 85 mmHg or hypotensive treatment; fasting glucose ≥ 100 mg/dL]).6,7 

Enrolled subjects are from 4 different recruitment centres: i) Italy, University of 

Bologna (UNIBO), ii) France, Centre de Recherche en Nutrition Humaine Auvergne, 

Clemont-Ferrand (CRNH); iii) Germany, Max Rubner-Institut, Karlsruhe (MRI) and 

iv) UK, School of Food Science and Nutrition, University of Leeds (ULE).  

The three most effective BEFs (one for each food matrix) from the pilot studies6,7 were 

used in the present randomized, double-blind, placebo-controlled dietary large 

intervention study (LIS).  

Volunteers were randomly divided into 4 treatment-groups from 50 to 70 subjects, 

each receiving daily, for 12 weeks, one of the following dietary intervention: a) all 

bakery, egg, dairy-based foods without bioactives (placebo); b) dairy-based BEF + 

placebo bakery and placebo egg-based foods; c) egg-based BEF + placebo bakery and 

placebo dairy-based foods; d) bakery-based BEF + placebo dairy and egg-based foods. 

During the course of the dietary intervention, volunteers were on a free diet, they had 

only to limit the consumption of foods naturally containing high quantities of the 

bioactives under study (DHA, AC ad O-BG) to one portion per day, and they were 

required to maintain their usual lifestyle. Prior to the beginning of the study, 

volunteers’ lifestyle and dietary habits were recorded and the volunteers underwent 

physical examination after 6 and 12 weeks (middle point and endpoint of the study), 
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and routine blood lab tests (e.g. HDL-C, LDL-C, TG, CRP, creatinine etc.). Serum 

samples for metabolomics were collected before (t0) and at the end of the study (t1). 

An overview of the study design is reported in Figure 1, while the number of 

participants receiving each treatment (a-d) and having suitable samples for the NMR-

metabolomics analysis at t0 and t1 is reported in Table 1.  

 

Ethical Issues 

 All subjects gave their informed consent for inclusion before they participated 

in the study, that was conducted in accordance with the Declaration of Helsinki. The 

study was approved by the local Ethics Committees. 

 

NMR sample preparation and analysis 

 Both t0 and t1 serum samples were collected and prepared according to common 

standard operating procedures for metabolomic studies.21–23 The analytical preparation 

of serum samples and their NMR spectra acquisition followed the protocols detailed 

elsewhere.22 

Briefly, for each serum specimen, three one-dimensional proton NMR spectra were 

acquired with different pulse sequences (i.e. 1D NOESY, 1D CPMG and 1D 

DIFFUSION-EDITED)24–26, allowing the selective detection of different molecular 

components. All 1H-NMR spectra were collected using a Bruker 600 MHz 

spectrometer, with a proton Larmor frequency of 600.13 MHz and equipped with a 5 

mm PATXI 1H-13C-15N and 2H decoupling probe. This includes a z axis gradient 

coil, an automatic tuning-matching (ATM) and an automatic and refrigerate sample 

changer (SampleJet). To stabilize approximately, at the level of ± 0.1 K, the sample 

temperature, a BTO 2000 thermocouple was employed and each NMR tube was kept 

for about 5 min inside the NMR probe head to equilibrate the acquisition temperature 

of 310 K.  

 

NMR Spectral Processing 

 Before applying Fourier transform, raw data were multiplied by an exponential 

function of 0.3 Hz line-broadening factor. Transformed spectra were automatically 

corrected for phase and baseline distortions and 1D-NOESY and 1D-CPMG spectra 

were calibrated to a reference (anomeric glucose proton signal at 5.24 ppm), using 

Topspin 3.2 software (Bruker BioSpin). 

 

Statistical analysis 

 All data analyses were performed using R (version 3.6.1), an open source 

software for the statistical management of data.27 Multivariate data analysis was 

conducted, without prior normalization, on 1D-NOESY NMR spectra, bucketed into 

0.02 ppm chemical shift segments in the range of 0.2 – 10.0 ppm, using AMIX (version 

3.8.4) software (Bruker BioSpin). Regions containing residual water signal (between 

4.4 and 5.0 ppm) were removed.  

 



Results | 171 

Exploratory Analysis 

 Principal Component Analysis (PCA) was used as a first exploratory 

approach28 to investigate, in an unsupervised manner, the data structure and 

highlighting the effect of DHA in combination with O-BG or AC in inducing 

metabolic changes in subjects at risk for MetS. PCA analysis was performed on data 

scaled to unit variance. 

 

Predictive modelling: Unpaired and Paired Analysis 

 Firstly, canonical (CA) analysis was used in combination with PCA to perform 

supervised discrimination among treatments at t0 at t1.  

Secondly, Multilevel Partial Least Squares (M-PLS)29 analysis was employed to 

obtained a paired data reduction and classification in order to consider the effect of the 

treatments within each subject variation, thus excluding the inter-individual 

variability.  

For each model, global accuracy for classification was estimated by using a Monte 

Carlo validation scheme. Briefly, 90% of data from each NMR dataset were randomly 

chosen at each iteration as a training set to build the model. Then, the remaining 10% 

was tested. The full procedure was repeated 100 times to derive an average 

discrimination accuracy.  

  

Serum and lipoprotein identification and quantification 

 24 metabolites (Table 2) and 114 lipids were unambiguously identified and 

quantified (in terms of absolute concentrations) from 1D 1H-NOESY NMR spectra, 

using the AVANCE Bruker IVDr (Clinical Screening and In Vitro Diagnostics 

research, Bruker BioSpin)30 software. For all serum samples, different parameters (i.e. 

triglycerides, cholesterol, phospholipids etc.) related to main lipoproteins (HDL, IDL, 

LDL and VLDL) and to lipoprotein subclasses (classified according to density and 

size, for a total of 15 subclasses: VLDL-1 to VLDL-5, LDL-1 to LDL-6 and HDL-1 

to HDL-4), were detected. In detail, for each main class and subclass, reported data 

consist of concentrations of lipids (total cholesterol, free cholesterol, phospholipids, 

and triglycerides) contained in each fraction. Concentrations of apolipoproteins Apo-

A1 and ApoA2 are estimated for HDL class and each relative subclass, while Apo-B 

concentrations are calculated for VLDL, IDL classes and all LDL subclasses.  

 

Univariate Analysis 

 Paired univariate Wilcoxon test31 was employed to compare metabolite and 

lipid concentrations between t0 and t1 for each treatment group, i.e. a) all foods as 

placebo, b) dairy-based BEF + placebo bakery and placebo egg-based foods, c) egg-

based BEF + placebo bakery and d) placebo dairy-based foods, bakery-based BEF + 

placebo dairy and egg-based foods). 

Benjamini & Hochberg method32 was applied to correct for multiple testing and 

adjusted P-values (FDR) < 0.05 were considered statistically significant. Log2 fold 
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change (FC) ratios of the median intensities were calculated for all comparisons we 

considered.  

 

Results 

 

Exploratory analysis 

 Untargeted NMR-based metabolomic analysis on 1D-NOESY spectra was 

used to detect the metabolic effect of the above-described dietary interventions on the 

serum metabolome of subjects at risk for MetS. Principal Component Analysis (PCA) 

was firstly used to assess the quality of the overall spectral dataset. The resulting 3D 

score plot (Figure 2C) evidences that all samples, although collected in different 

recruitment centres, were homogenous to each other, and no evident outliers were 

detected. The uniform distribution of samples can be easily visualized by colouring 

the scores also according to time-points of blood collections, i.e. t0, t1 (Figure 2A) and 

according to the different dietary interventions (Figure 2B). 

 

Predictive modelling: unpaired analysis 

 Applying a supervised multivariate analysis to explore possible differences 

among each dietary treatment, no meaningful source of variation, in the serum 

metabolome of recruited subjects, was highlighted at t0. Indeed, the PCA-CA 

discrimination model showed a discrimination accuracy, among each dietary 

treatment, at most 20% (Supplementary files, Table S1). Instead, at t1, the overall 

discrimination among groups raised up to 34% (Supplementary files, Table S2), 

demonstrating the presence of changes in the serum metabolomic profiles of subjects 

due to the dietary interventions.  

 

Predictive modelling: paired analysis 

 A paired (before vs. after treatment) M-PLS analysis was applied to explore the 

existence of a strong individual variability as a response to each single dietary 

treatment.  

Considering the whole dataset, we obtained a good classification accuracy of 80% 

between t0 and t1. An illustration of the M-PLS classification accuracy between t0 and 

t1 for each recruited subject is reported in Figure 3. We observed that almost all of the 

subjects are well classified: this means that a common pattern of biomarkers recorded 

in the serum spectra of most of the individuals is selected by the predictive model, 

reflecting a recurrent change in the metabolome profiles when passing from the 

baseline to the end of the study.  

To assess whether the observed metabolic changes are merely unspecific phenomena 

related to the administration of treatments, or if there are bioactive-enriched foods 

more active than others, M-PLS analysis was applied considering each recruitment 

center separately. The resulting classification performances are reported in Table 3. 

The combination between DHA and AC embedded in bakery-based BEF appeared as 

the most effective for the French and English cohorts, while for German and Italian 
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cohorts, the highest discrimination accuracy between t0 and t1 was obtained for the 

combination DHA + AC in egg-based BEFs. These last results suggest that these 

differences, related to the effect of food matrices by which bio-actives are conveyed, 

depends on the typical everyday diet of each different country from where subjects are 

from.  

Subsequently, to identify the signals in the NMR spectra mainly related to the DHA + 

AC effects on the serum metabolome of the individuals, we deeply explored the above-

mentioned M-PLS classifications, as illustrated in the loading plot of the first 

component in Figure 4 for DHA + AC embedded in bakery-based BEF for French 

(Figure 4A) and English (Figure 4B) cohorts and in Figure 5 for egg-based food 

matrix enriched with the same combination of bioactives for Italian (Figure 5A) and 

German (Figure 5B) cohorts. We observed that, independently of the cohort, the most 

significant spectral buckets belong to the broad signals of methyl (-CH3) and 

methylene (-CH2-) groups of serum lipoproteins, respectively centred at almost 0.86 

and 1.29 ppm. These results evidence that DHA + AC embedded in bakery and egg-

based food matrices significantly induces changes in the lipoprotein profiles of the 

subjects.  

 

Univariate analysis 

 To deeply investigate the observed variations, metabolites and lipids were 

compared between t0 and t1, considering firstly, all recruitment centres and treatments 

together, and secondly separating by the specific treatment.  

Considering the whole dataset, the paired analysis of serum profiles of each individual 

revealed glycine, N,N-dimethylglycine, glutamine, IDL particles and apolipoprotein 

B related to IDL as the most statistically significant decrease (FDR < 0.05) analytes at 

t1. Subsequently, for each treatment-subgroup, we did not obtain any significant 

changes between the two time-points in the case of placebo and dairy-based BEFs 

consumptions. Comparing at t0 and t1, the serum profiles of subjects undergoing egg- 

and bakery-based BEFs assumptions, we noted a statistically significant decrease of 

IDL related parameters, i.e. IDL cholesterol, free cholesterol, apolipoproteins B and 

also triglycerides associated to LDL-4 sub-particles. 

Instead, N, N-dimethylglycine and phospholipids related to HDL-1 were deemed to be 

statistically significantly increased (FDR < 0.05) at t1 when individuals assumed the 

bakery-based BEFs treatment. 

All of these results confirm that DHA + AC administration induces significant 

variations mostly in lipoproteins profiles (Table 4), while only slight changes in the 

metabolome between the beginning and the end of the study were detected (Table S3).  

 

Discussion 

 

 In this multicentric study, we characterized, by untargeted NMR-based 

metabolomics, the metabolic effects of DHA supplementation in combination with O-
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BG and AC, in three different BEFs (milkshake, pancake and biscuits), one for each 

food matrix (dairy, egg and bakery).  

Among potentially useful bioactives, DHA is well known to lower triglycerides levels, 

one of the main components of the lipoproteins, especially VLDL33; to increase HDL-

cholesterol34; to modulate insulin resistance35 and to counteract oxidative stress.36 

Moreover, evidences of DHA effects on the lipidome and metabolome of human serum 

and hepatocytes have been recently reported.7,37 

Extensive data from clinical trials and epidemiological studies suggest that n-3 PUFA 

favourably modulate multiple biological processes, but the interpretation on the 

relevance of DHA-enriched foods is complicated by the interaction of DHA with the 

food matrix and other bioactives and its effective dose. Synergies among bioactives 

were demonstrated11 and Toufekstian et al.12 showed that anthocyanin 

supplementation increased DHA plasma levels, suggesting that AC co-administered 

with DHA could have beneficial roles via increasing DHA effects.  

Our results support a more pronounced synergic effect in the case of co-administration 

of DHA + AC. The combination between the two bioactives resulted to induce more 

variations on serum metabolome and lipoprotein profiles of subjects at risk for MetS, 

differently from what previously observed in the pilot study,7 where the addition of O-

BG to DHA supplementation in BEFs resulted as the most promising in determining 

rearrangement of lipoprotein profiles (Table 4). Past studies have reported evidences 

on the actions of AC on cell metabolism, especially concerning the regulation of lipid 

metabolism and inflammation,38,39 highlighting AC as a good candidate for the 

prevention of metabolic syndrome. 

Furthermore, the randomized and double-blinded administration of foods without 

bioactives (placebo) permitted to explore the effect of different food matrices fully, 

letting us to hypothesize that the food matrix by which bioactives are conveyed has a 

role in determining the variation of subjects’ serum metabolome between the 

beginning and the end of the study. This can be justified considering firstly, that the 

food matrix can exert a modification of bioavailability of DHA, AC, O-BG and their 

co-presence. For example, it was demonstrated that the presence of DHA in the 

formulation of bakery products significantly decrease the bioavailability of AC.40 

Secondly, it cannot be excluded an effect related to the usual everyday diet of subjects 

enrolled from different country with different dietary habits.  

 

Conclusions 

 

 To date, very few intervention studies comparing the effect of bioactives 

embedded into different food matrices are reported in the literature, and 

demonstrations of synergies among bioactives are scarce. Here, our results evidenced 

the potentiality of untargeted NMR-based metabolomics in characterizing variations 

in the serum metabolome and lipoprotein profiles of enrolled subjects, consequently 

to the administration of selected bioactives combinations in three different BEFs, i.e. 

milkshake, pancake and biscuits.  
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Applying multivariate and univariate analyses, we demonstrated a synergism of DHA 

and AC in inducing changes mainly in the lipid profiles, independently of the egg- or 

bakery-based food matrix.  

Modifications observed in serum profiles were consistent with known clinical effects 

of DHA and AC, but they did not fully confirm what previously discussed in the pilot 

study, where a strong and cooperative synergic effect was monitored in the case of co-

administration of DHA and O-BG.  

In conclusion, this study deepened the current scientific understanding of the impact 

of different bioactives embedded in various food matrices on the serum metabolome, 

evidencing their synergies and proposing actual use of bakery- and egg-based foods 

enriched with DHA and AC on subjects at risk for metabolic syndrome.  
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Tables 

 

Table 1. Number of study participants from each recruitment center (RC) analyzed by 

NMR-metabolomics according to dietary treatment: a) all bakery, egg, dairy-based 

foods without bioactives (placebo); b) dairy-based BEF + placebo bakery and placebo 

egg-based foods; c) egg-based BEF + placebo bakery and placebo dairy-based foods; 

d) bakery-based BEF + placebo dairy and egg-based foods. 

 

RC a b c d Tot 

All RC 70 55 53 54 232 

France 

(CRNH) 
16 12 19 14 61 

Germany 

(MRI) 
15 13 8 8 44 

Italy 

(UNIBO) 
23 18 15 17 73 

UK (ULE) 16 12 11 15 54 

 

Table 2. List of identified metabolites assigned in serum samples. The MSI levels of 

identification and the compound IDs are provided from the Human Metabolome 

Database (HMDB). 

 

Number Metabolite 
MSI level of 

identification 
Database Compound ID 

1 Acetate 1 HMDB HMDB00042 

2 Acetoacetate 1 HMDB HMDB00060 

3 Acetone 1 HMDB HMDB01659 

4 Alanine 1 HMDB HMDB00161 

5 Citrate 1 HMDB HMDB00094 

6 Creatine 1 HMDB HMDB00064 

7 Creatinine 1 HMDB HMDB00562 

8 Dimethyl sulfone 1 HMDB HMDB04983 

9 Formate 1 HMDB HMDB00142 

10 Glucose 1 HMDB HMDB00122 

11 Glutamine 1 HMDB HMDB00641 

12 Glycine 1 HMDB HMDB00123 

13 Histidine 1 HMDB HMDB00177 

14 Isoleucine 1 HMDB HMDB00172 

15 Lactate 1 HMDB HMDB00190 

16 Leucine 1 HMDB HMDB00687 
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17 Methionine 1 HMDB HMDB00696 

18 
N,N-

dimethylglycine 
1 HMDB HMDB00092 

19 Phenylalanine 1 HMDB HMDB00159 

20 Pyruvate 1 HMDB HMDB00243 

21 Succinate 1 HMDB HMDB00254 

22 
Trimethylamine-

N-oxide 
1 HMDB HMDB00925 

23 Tyrosine 1 HMDB HMDB00158 

24 Valine 1 HMDB HMDB00883 

 

Table 3. Serum M-PLS classification accuracy values for the discrimination between 

t0 and t1 considering each dietary treatment-subgroup: a) all bakery, egg, dairy-based 

foods without bioactives (placebo); b) dairy-based BEF + placebo bakery and placebo 

egg-based foods; c) egg-based BEF + placebo bakery and placebo dairy-based foods; 

d) bakery-based BEF + placebo dairy and egg-based foods. 

 

RC a b c d 

France (CRNH) 69% (16 subj) 83% (12 subj) 67% (19 subj) 84% (14 subj) 

Germany (MRI) 77% (15 subj) 70% (13 subj) 100% (8 subj) 37% (8 subj) 

Italy (UNIBO) 55% (23 subj) 74% (18 subj) 100% (16 subj) 82% (17 subj) 

UK (ULE) 47% (16 subj) 52% (12 subj) 47% (10 subj) 89% (15 subj) 

*Abbreviation: subj: subjects. 

 



Results | 181 

Table 4. Bruker IVDr lipoprotein analysis at t0 and t1 for enrolled subjects (n=232). Lipidic features were assigned and quantified in 1D 

NOESY NMR spectra and their absolute concentrations are reported as median ± median absolute deviation. * is used to indicate parameters 

resulted to be statistically significant, with P-value < 0.05, in the comparison t0 vs. t1 for each of the administered treatment: a) all bakery, 

egg, dairy-based foods without bioactives (placebo); b) dairy-based BEF + placebo bakery and placebo egg-based foods; c) egg-based BEF 

+ placebo bakery and placebo dairy-based foods; d) bakery-based BEF + placebo dairy and egg-based foods). ** is used for parameters 

reporting both P-value < 0.05 and FDR < 0.05.  
 a b c d 

 t0 t1 t0 t1 t0 t1 t0 t1 

TG 180.4 ± 61.3 193.5 ± 71.1 195.2 ± 67.2 190.7 ± 66 200.7 ± 60.5 202.9 ± 58.1 183.3 ± 67.6 197.7 ± 65.6 

Chol 244.5 ± 36.4 238.4 ± 42.6 253.4 ± 47.3 246.7 ± 31.2 251.4 ± 45.1 239.7 ± 39.8 * 248.4 ± 36.1 255 ± 41.7 

LDL-Chol 129.1 ± 27.4 123.4 ± 34.6 133.1 ± 35.2 133.7 ± 26.6 134.5 ± 42.5 135.5 ± 30.9 142.3 ± 35 140.5 ± 31.7 

HDL-Chol 50.6 ± 8.6 49.3 ± 8.4 51.7 ± 8.9 51.6 ± 8.9 48.2 ± 10.8 49.2 ± 9.2 52.7 ± 9.6 52.6 ± 9.5 

Apo-A1 145.4 ± 18.8 143.9 ± 20.4 152.1 ± 15.3 152.4 ± 18.3 147.6 ± 21.3 147.9 ± 17.2 148 ± 23.8 152.4 ± 22.3 

Apo-A2 33.9 ± 3.9 33.3 ± 4.8 36.3 ± 4.1 34.8 ± 4 34.9 ± 5.9 34 ± 5.8 * 34.8 ± 4.8 33 ± 4.9 

Apo-B100 114.8 ± 17.8 111.6 ± 21.2 113.5 ± 25.4 115.3 ± 17.4 121.9 ± 23.5 113.2 ± 17.5 118.2 ± 17.3 121.7 ± 16.7 

LDL-Chol/HDL-Chol 2.6 ± 0.5 2.5 ± 0.6 * 2.5 ± 0.7 2.5 ± 0.6 2.7 ± 0.8 2.6 ± 0.7 2.8 ± 0.7 2.8 ± 0.6 

Apo-B100/Apo-A1 0.7 ± 0.1 0.8 ± 0.1 0.8 ± 0.2 0.8 ± 0.2 0.8 ± 0.2 0.8 ± 0.2 0.8 ± 0.2 0.8 ± 0.1 

Total ApoB Particle Number 2086.5 ± 323.9 2029.9 ± 384.9 2063.2 ± 462.5 2096.8 ± 316.3 2216.5 ± 428 2058 ± 318.9 2149.9 ± 315.3 2212.5 ± 303.4 

VLDL Particle Number 211.8 ± 71.6 218.5 ± 83.3 231.1 ± 54.1 257.1 ± 77.8 247.7 ± 59.4 244.3 ± 82.2 227 ± 71.8 238.5 ± 73.7 

IDL Particle Number 111.6 ± 39 108.1 ± 36.9 129.9 ± 36.6 121.6 ± 39.2 134.8 ± 49 120.8 ± 49.1 ** 124.7 ± 28.9 120.5 ± 39 

LDL Particle Number 1646.2 ± 333 1608.1 ± 378 1659.3 ± 409 1703.9 ± 306.6 1800.2 ± 408.3 1674.6 ± 336.4 1752.4 ± 316.2 1814.5 ± 293.7 

LDL 1 Particle Number 206.2 ± 58.4 201.3 ± 56.7 235.1 ± 67 230.7 ± 52.7 * 223.8 ± 85.4 200.6 ± 70.7 240.4 ± 70.3 221.4 ± 63.3 

LDL 2 Particle Number 119.9 ± 46.4 115.2 ± 58.4 133.4 ± 59.1 136.6 ± 58.5 129.3 ± 59.3 124.8 ± 62.3 142.2 ± 62.2 135.7 ± 79.1 

LDL 3 Particle Number 158 ± 77 143.6 ± 66.7 * 171.7 ± 71.9 144.5 ± 77.3 165 ± 116.6 148.6 ± 92.2 160.1 ± 98.1 162.6 ± 74.1 

LDL 4 Particle Number 211 ± 100.2 195.4 ± 75.2 * 247.6 ± 98.6 210.3 ± 119.4 251 ± 157.8 220.9 ± 118.2 246.2 ± 103.9 244.1 ± 95 
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LDL 5 Particle Number 343.9 ± 102.8 354.2 ± 87 363.4 ± 100.8 357.2 ± 114.9 380.7 ± 105 366.7 ± 128.7 370.9 ± 110.7 392 ± 101.8 

LDL 6 Particle Number 562.1 ± 203.8 578 ± 179.5 589.8 ± 205.9 578.8 ± 166.9 631.4 ± 178.3 591.4 ± 168.9 589.2 ± 244.3 588.1 ± 171.6 

TG VLDL 125.4 ± 48.9 136.9 ± 54.9 140.8 ± 53.5 134.2 ± 49.8 141.7 ± 51.8 141.7 ± 54.9 119.9 ± 47.2 134.4 ± 49.7 

TG IDL 21.6 ± 11.7 23.7 ± 12.4 24.8 ± 11.5 21.7 ± 10.2 24.1 ± 10 25.5 ± 11.8 20.5 ± 10.5 23.5 ± 11.1 

TG LDL 22.5 ± 6 22.5 ± 6 24.5 ± 6.6 25.2 ± 8.3 24.4 ± 7.3 23 ± 5.1 * 23.9 ± 4.8 24.4 ± 5.6 

TG HDL 10.3 ± 3.3 10.5 ± 3.9 10.5 ± 3.6 10.9 ± 3.1 10.8 ± 3.1 10.5 ± 3.8 10.6 ± 2.8 11.2 ± 3.3 

Chol VLDL 31.3 ± 11.7 32 ± 14.3 34.6 ± 12.1 34.1 ± 14.1 34.9 ± 11.8 34.4 ± 11.2 31.9 ± 13.1 35.1 ± 12.2 

Chol IDL 17.2 ± 6.5 16.1 ± 6.6 19.2 ± 6.6 17.9 ± 6.4 19.6 ± 7.4 16 ± 6.7 ** 18.1 ± 4.9 18.2 ± 5.2 

Chol LDL 129.1 ± 27.4 123.4 ± 34.6 133.1 ± 35.2 133.7 ± 26.6 134.5 ± 42.5 135.5 ± 30.9 142.3 ± 35 140.5 ± 31.7 

Chol HLDL 50.6 ± 8.6 49.3 ± 8.4 51.7 ± 8.9 51.6 ± 8.9 48.2 ± 10.8 49.2 ± 9.2 52.7 ± 9.6 52.6 ± 9.5 

Free Chol VLDL 14.1 ± 5 14.8 ± 5.7 15.4 ± 4.3 16.1 ± 5.7 15.8 ± 4.1 15.5 ± 5.4 14 ± 4.7 15.6 ± 5 

Free Chol IDL 4.8 ± 1.8 4.6 ± 1.9 5.5 ± 1.8 5.2 ± 1.9 5.8 ± 1.9 4.7 ± 1.9 ** 5.3 ± 1.3 5.3 ± 1.5 

Free Chol LDL 37.2 ± 8.2 36.2 ± 9.4 37.9 ± 10.4 38.2 ± 8.9 38.7 ± 11.9 38.1 ± 10.1 40.3 ± 9.3 38.7 ± 7.9 

Free Chol HDL 11.6 ± 3.2 11.3 ± 3.3 11.8 ± 3.5 11.9 ± 2.5 10.9 ± 2.8 12.1 ± 2.1 11.8 ± 3 12.6 ± 3.1 * 

Phospholipids VLDL 31.8 ± 10.1 32.9 ± 12.7 34.2 ± 10.7 36.3 ± 12.3 35.1 ± 9.2 35.4 ± 11 31.9 ± 11.2 34.8 ± 11 

Phospholipids IDL 11.7 ± 4 11.8 ± 4.3 12 ± 3.4 11.8 ± 3.5 13 ± 3.7 12.4 ± 3.2 * 11.5 ± 3.3 12 ± 3.6 

Phospholipids LDL 71.7 ± 15.5 68.1 ± 17.7 72.3 ± 17.7 74.2 ± 13.8 * 75.3 ± 21 72.8 ± 16.5 77.6 ± 15.6 77.3 ± 14.9 

Phospholipids HDL 67.4 ± 14.3 66.5 ± 12.6 73 ± 11 68.2 ± 10.1 69 ± 13.7 65.4 ± 12.7 71.6 ± 13 72 ± 15.6 

Apo A1 HDL 140.1 ± 20.9 138.8 ± 22.4 148.8 ± 18.6 145.3 ± 18.5 143.3 ± 22.3 140.9 ± 19.2 145.8 ± 22.4 148.5 ± 20.8 

Apo A2 HDL 34.9 ± 3.9 34.5 ± 4.4 37.5 ± 3.9 35.8 ± 3.8 36.1 ± 6.4 35.1 ± 5.5 * 35.8 ± 4.6 34.3 ± 5.8 

Apo B VLDL 11.6 ± 3.9 12 ± 4.6 12.7 ± 3 14.1 ± 4.3 13.6 ± 3.3 13.4 ± 4.5 12.5 ± 3.9 13.1 ± 4.1 

Apo B IDL 6.1 ± 2.2 6 ± 2 7.1 ± 2 6.7 ± 2.2 7.4 ± 2.7 6.6 ± 2.7 ** 6.9 ± 1.6 6.6 ± 2.1 

Apo B LDL 90.5 ± 18.3 88.4 ± 20.8 91.3 ± 22.5 93.7 ± 16.9 99 ± 22.5 92.1 ± 18.5 96.4 ± 17.4 99.8 ± 16.2 

TG VLDL 1 68.8 ± 32.2 67.9 ± 36.6 68.8 ± 31.2 63.3 ± 29.2 68.2 ± 26.1 70.4 ± 31.1 60 ± 28.5 64.8 ± 28.5 

TG VLDL 2 22.5 ± 10.5 23.7 ± 11.4 24 ± 9.8 25.5 ± 9.5 26.2 ± 9.6 25.2 ± 11 22.5 ± 12.1 25 ± 10.7 
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TG VLDL 3 18.1 ± 8.1 18.6 ± 9.7 19.4 ± 7.8 21.7 ± 10.3 20.2 ± 7.6 18.9 ± 9.2 18.1 ± 8.5 18.4 ± 8.5 

TG VLDL 4 11.8 ± 4.6 11.8 ± 4.4 13.2 ± 2.4 15 ± 5.9 13.5 ± 4.6 12.2 ± 4.8 * 12.8 ± 2.9 12.9 ± 3.9 

TG VLDL 5 3.1 ± 0.9 3.2 ± 0.7 3.6 ± 0.9 3.5 ± 1 3.3 ± 1.1 3.1 ± 1.2 3.5 ± 1 3.7 ± 1.1 

Chol VLDL 1 11 ± 5.6 12.5 ± 5.8 12.4 ± 5.1 11.4 ± 4 13.4 ± 5.3 12.9 ± 5.2 10.4 ± 5.6 12.4 ± 5.1 

Chol VLDL 2 5.2 ± 2.7 5.5 ± 3.1 5.9 ± 2.9 6.2 ± 3.4 6.1 ± 2.9 5.8 ± 3 5.4 ± 3.4 5.9 ± 2.6 

Chol VLDL 3 5.4 ± 2.6 5.4 ± 3.1 6.1 ± 2.8 6.3 ± 3.6 6.4 ± 2.6 6 ± 2.9 5.4 ± 2.9 5.8 ± 2.7 

Chol VLDL 4 6.1 ± 2.7 6.3 ± 3.1 8 ± 2.8 8.1 ± 3 7.7 ± 3.1 6.8 ± 2.9 * 7.3 ± 2.4 7.5 ± 2.8 

Chol VLDL 5 1.5 ± 0.8 1.6 ± 0.8 1.9 ± 0.6 1.9 ± 0.7 1.7 ± 0.8 1.7 ± 0.8 1.8 ± 0.7 1.9 ± 0.9 

Free Chol VLDL 1 4.8 ± 2.6 4.8 ± 2.3 4.9 ± 2.1 4.4 ± 1.9 5.2 ± 2 5.1 ± 2.1 4.2 ± 2.1 4.7 ± 2.2 

Free Chol VLDL 2 2.3 ± 1 2.3 ± 1.4 2.4 ± 1.1 2.5 ± 1.3 2.7 ± 1.3 2.3 ± 1.3 2.2 ± 1.3 2.4 ± 1.2 

Free Chol VLDL 3 2.5 ± 1.2 2.7 ± 1.5 2.7 ± 1.1 2.9 ± 1.6 3 ± 1.3 2.8 ± 1.3 2.4 ± 1.3 2.6 ± 1.2 

Free Chol VLDL 4 2.5 ± 1.2 2.5 ± 1.3 3.1 ± 0.9 3.2 ± 1.1 3.1 ± 1.4 2.9 ± 1.5 * 3 ± 1 3.1 ± 1.1 

Free Chol VLDL 5 0.7 ± 0.4 0.7 ± 0.5 1 ± 0.4 0.9 ± 0.6 0.8 ± 0.5 0.7 ± 0.4 0.9 ± 0.5 0.9 ± 0.4 

Phospholipids VLDL 1 11.3 ± 5.7 11.5 ± 5.4 11.7 ± 4.9 10.6 ± 4.1 11.9 ± 4.3 11.3 ± 4.8 10 ± 4.9 10.8 ± 5 

Phospholipids VLDL 2 5.8 ± 2.6 5.9 ± 2.7 6.1 ± 2.5 6.2 ± 2.7 6.6 ± 2.5 6.3 ± 2.7 5.8 ± 3.1 6.1 ± 2.6 

Phospholipids VLDL 3 5.6 ± 2.2 5.7 ± 2.8 6.3 ± 2.2 6.9 ± 3.3 6.6 ± 2.3 6.2 ± 2.4 * 5.8 ± 2.8 6 ± 2.3 

Phospholipids VLDL 4 5.6 ± 2.1 5.8 ± 2.3 6.8 ± 1.6 6.9 ± 2.4 6.9 ± 2.4 6.3 ± 2.4 * 6.5 ± 1.6 6.3 ± 2 

Phospholipids VLDL 5 1.9 ± 0.7 2 ± 0.7 2.3 ± 0.6 2.3 ± 0.7 2.1 ± 0.9 2.1 ± 0.8 2.3 ± 0.7 2.4 ± 0.9 

TG LDL 1 6.3 ± 2.3 6.5 ± 2.2 6.8 ± 2.2 6.8 ± 2.3 7 ± 2.4 6.6 ± 2.3 6.5 ± 2.1 6.9 ± 2.1 

TG LDL 2 1.9 ± 0.8 1.8 ± 0.8 2.2 ± 0.8 2.2 ± 0.8 2.1 ± 0.9 2.2 ± 0.9 2.2 ± 0.8 2.3 ± 0.9 

TG LDL 3 2.4 ± 0.9 2.3 ± 0.9 2.8 ± 0.8 2.7 ± 0.9 * 2.8 ± 1.1 2.6 ± 0.9 2.8 ± 1 2.9 ± 1 

TG LDL 4 2.4 ± 1.3 2.4 ± 1.2 2.8 ± 1.1 2.7 ± 1.2 3.1 ± 1.7 2.7 ± 1.2 ** 3 ± 1.1 3.1 ± 1.1 

TG LDL 5 3.9 ± 1.3 4 ± 1.5 4.2 ± 1.7 4.7 ± 1.3 4.8 ± 1.5 4.3 ± 1.6 * 4.4 ± 1.8 4.5 ± 1.6 

TG LDL 6 5.6 ± 1.9 5.9 ± 1.6 5.8 ± 1.7 5.7 ± 2 6.5 ± 2.2 6.2 ± 2.3 5.6 ± 2.3 6 ± 1.8 

Chol LDL 1 21.2 ± 6.3 20.4 ± 5.9 24.7 ± 7.3 23.2 ± 6.7 * 22.3 ± 9.7 21.2 ± 8.1 24.2 ± 6.5 23.3 ± 7.9 
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Chol LDL 2 10.5 ± 4.8 10.7 ± 6.6 12.8 ± 6.7 12.1 ± 6.2 10.7 ± 4.9 11.1 ± 7.7 13.3 ± 6.2 12.1 ± 7.6 

Chol LDL 3 14.1 ± 8.4 12.7 ± 6.6 14.5 ± 7.5 12.6 ± 8 14.1 ± 12.1 13.2 ± 9.8 14.4 ± 10.1 14 ± 7.5 

Chol LDL 4 18.8 ± 9.7 15.9 ± 7.1 * 21 ± 8 17.2 ± 11.2 20.3 ± 13.8 18.3 ± 10.7 20.5 ± 10 19.8 ± 8.9 

Chol LDL 5 26.4 ± 6.7 27.1 ± 6.7 27.4 ± 7.9 27.4 ± 8.6 29.5 ± 8.4 28.1 ± 8.9 29 ± 8.6 31.3 ± 6.7 

Chol LDL 6 38.6 ± 12.6 37.8 ± 12.2 39.2 ± 11.2 38.2 ± 9.9 42 ± 11.6 40 ± 11.5 40.1 ± 15.7 39.1 ± 12.8 

Free Chol LDL 1 6.8 ± 1.9 6.8 ± 2 7.8 ± 2.3 7.4 ± 1.8 7 ± 2.7 6.9 ± 2.5 7.8 ± 1.7 7.5 ± 2.2 

Free Chol LDL 2 3.7 ± 1.6 3.6 ± 2.1 4.2 ± 1.6 4.4 ± 1.9 3.8 ± 1.5 3.8 ± 1.7 4.3 ± 1.7 4.2 ± 2.1 

Free Chol LDL 3 5 ± 2 4.7 ± 2 5.1 ± 1.7 4.6 ± 2.1 4.5 ± 3.2 4.6 ± 2.6 5.2 ± 2.6 4.8 ± 2 

Free Chol LDL 4 5.6 ± 2.3 5 ± 1.9 * 6 ± 1.9 5.3 ± 2.7 6.1 ± 3.8 5.4 ± 2.7 5.8 ± 2.3 6 ± 2.2 

Free Chol LDL 5 7.2 ± 1.8 6.8 ± 1.6 7.2 ± 2 7.3 ± 2.2 7.3 ± 2.4 7.3 ± 2 7.6 ± 2.1 7.9 ± 1.7 

Free Chol LDL 6 9.5 ± 2.7 9.4 ± 3.1 9.2 ± 2.5 9.1 ± 2.6 9.7 ± 2.4 9.6 ± 2.8 9.2 ± 3.4 9.4 ± 2.2 

Phospholipids LDL 1 11.9 ± 3.2 11.6 ± 3.1 13.8 ± 4.1 13.1 ± 3.2 * 12.6 ± 4.6 11.8 ± 4.4 13.5 ± 3.6 13.1 ± 4.1 

Phospholipids LDL 2 6.5 ± 2.8 6.1 ± 3.3 7.1 ± 3.1 6.9 ± 3 6.6 ± 2.7 6.3 ± 3.6 7.8 ± 3.2 7.1 ± 4.3 

Phospholipids LDL 3 8.1 ± 4.3 7 ± 3.2 8.4 ± 3.7 7.2 ± 4.3 8.3 ± 6.2 7.3 ± 4.9 8.1 ± 5.1 7.8 ± 3.9 

Phospholipids LDL 4 10.3 ± 4.9 8.9 ± 3.4 * 11.6 ± 4.1 9.7 ± 5.7 * 11.5 ± 7 10 ± 5.9 11.4 ± 5.4 11 ± 4.4 

Phospholipids LDL 5 13.8 ± 3.5 14.5 ± 3.8 14.5 ± 4.2 14.7 ± 4.3 15.5 ± 4.5 14.8 ± 4.4 15 ± 4.1 16.4 ± 3.6 

Phospholipids LDL 6 20.1 ± 6 20.1 ± 5.5 20.5 ± 5.8 19.8 ± 5 21.7 ± 6.4 21 ± 5.4 20.9 ± 8 20.6 ± 5.7 

Apo B LDL 1 11.3 ± 3.2 11.1 ± 3.1 12.9 ± 3.7 12.7 ± 2.9 * 12.3 ± 4.7 11 ± 3.9 13.2 ± 3.9 12.2 ± 3.5 

Apo B LDL 2 6.6 ± 2.6 6.3 ± 3.2 7.3 ± 3.3 7.5 ± 3.2 7.1 ± 3.3 6.9 ± 3.4 7.8 ± 3.4 7.5 ± 4.3 

Apo B LDL 3 8.7 ± 4.2 7.9 ± 3.7 * 9.5 ± 4 8 ± 4.3 9.1 ± 6.4 8.2 ± 5.1 8.8 ± 5.4 9 ± 4.1 

Apo B LDL 4 11.6 ± 5.5 10.8 ± 4.1 * 13.6 ± 5.4 11.6 ± 6.6 13.8 ± 8.7 12.1 ± 6.5 13.5 ± 5.7 13.4 ± 5.2 

Apo B LDL 5 18.9 ± 5.7 19.5 ± 4.8 20 ± 5.5 19.7 ± 6.3 20.9 ± 5.8 20.2 ± 7.1 20.4 ± 6.1 21.6 ± 5.6 

Apo B LDL 6 30.9 ± 11.2 31.8 ± 9.9 32.4 ± 11.3 31.8 ± 9.2 34.7 ± 9.8 32.5 ± 9.3 32.4 ± 13.4 32.3 ± 9.4 

TG HDL 1 2.3 ± 1.2 2.4 ± 1.4 2.6 ± 1.4 2.7 ± 1.6 2.5 ± 1.5 2.4 ± 1.7 2.4 ± 1.3 2.7 ± 1.7 * 

TG HDL 2 1.5 ± 0.6 1.5 ± 0.7 1.6 ± 0.7 1.6 ± 0.6 1.5 ± 0.6 1.5 ± 0.7 1.5 ± 0.5 1.7 ± 0.7 * 
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TG HDL 3 2.3 ± 0.7 2.2 ± 0.8 2.4 ± 0.8 2.5 ± 0.6 2.5 ± 0.6 2.3 ± 0.7 2.5 ± 0.7 2.6 ± 0.7 

TG HDL 4 4.4 ± 1 4.4 ± 1 4.7 ± 0.9 4.7 ± 1 4.7 ± 0.8 4.6 ± 1 4.6 ± 0.8 4.6 ± 1 

Chol HDL 1 12.5 ± 4.6 13.1 ± 4.6 12.4 ± 4.7 13.6 ± 5.1 11.8 ± 4.2 12.4 ± 4.1 12.5 ± 4 14.5 ± 5.3 * 

Chol HDL 2 5.7 ± 2 5.8 ± 2.3 6.4 ± 1.8 6.3 ± 2.1 5.8 ± 2.4 6 ± 1.6 6.7 ± 1.9 6.6 ± 1.9 

Chol HDL 3 9.5 ± 2.1 9 ± 1.8 10.6 ± 1.9 9.9 ± 2.2 9.5 ± 2.2 9.3 ± 2 10.1 ± 2.4 10 ± 2.2 

Chol HDL 4 23 ± 3.8 22.6 ± 2.8 24 ± 4.1 22.7 ± 4.9 22.5 ± 5 21.9 ± 5.1 23.1 ± 2.5 21.8 ± 3.3 * 

Free Chol HDL 1 3.2 ± 1.1 3 ± 1.1 3.1 ± 1.2 3.1 ± 0.9 3.1 ± 1.1 3.4 ± 0.8 3.4 ± 1.1 3.6 ± 1 * 

Free Chol HDL 2 1.4 ± 0.6 1.4 ± 0.6 1.8 ± 0.6 1.5 ± 0.6 1.6 ± 0.8 1.5 ± 0.5 1.6 ± 0.7 1.7 ± 0.6 

Free Chol HDL 3 2.4 ± 0.5 2.3 ± 0.7 2.7 ± 0.5 2.5 ± 0.6 2.5 ± 0.9 2.3 ± 0.6 2.4 ± 0.8 2.5 ± 0.7 

Free Chol HDL 4 4.6 ± 0.8 4.7 ± 0.9 5 ± 1 4.6 ± 1.2 4.5 ± 1.2 4.5 ± 1.2 4.7 ± 1 4.5 ± 1.1 

Phospholipids HDL 1 12.4 ± 4.8 12.6 ± 5.4 13.7 ± 5.1 13.7 ± 5.2 11.8 ± 4.2 13.1 ± 5.1 13.1 ± 4.5 14.7 ± 5.5 ** 

Phospholipids HDL 2 9 ± 3.5 9.2 ± 3.8 10.4 ± 3.1 10 ± 3.8 9.7 ± 3.7 9.3 ± 3.1 10.2 ± 3.3 10.5 ± 3.7 

Phospholipids HDL 3 15.4 ± 3.4 15.1 ± 2.7 17 ± 3.4 15.6 ± 3 15.3 ± 4.3 14.9 ± 3.8 16.3 ± 4 16 ± 4.2 

Phospholipids HDL 4 30.6 ± 3.8 30.7 ± 3.7 32.5 ± 3.9 31 ± 4.3 30.9 ± 4.9 30.4 ± 5.9 32 ± 4.5 30.7 ± 3.9 

Apo A1 HDL 1 13.2 ± 9 12.5 ± 6.6 13.3 ± 6 14.2 ± 8.3 12.5 ± 6.4 14.1 ± 7.1 * 14.2 ± 7.1 16.6 ± 8.1 * 

Apo A1 HDL 2 15.8 ± 3.9 15.7 ± 4 17 ± 3.7 15.6 ± 3.9 15.6 ± 4.5 14.9 ± 3.4 * 16.9 ± 4.6 17 ± 4.9 

Apo A1 HDL 3 24.6 ± 5.2 24.5 ± 5.1 27.5 ± 5.3 26.5 ± 5 25.4 ± 6.8 25.2 ± 5.5 * 26.4 ± 6.3 26.5 ± 5.2 

Apo A1 HDL 4 86.5 ± 10.2 85 ± 9.7 89.1 ± 9.9 86.8 ± 11 85.4 ± 13.3 84.3 ± 11.8 87.2 ± 8.4 84.7 ± 10.8 

Apo A2 HDL 1 1.4 ± 1 1.3 ± 1 1.9 ± 0.8 1.8 ± 0.9 1.7 ± 0.8 1.5 ± 0.7 1.7 ± 0.7 1.8 ± 1 

Apo A2 HDL 2 2.8 ± 1.1 2.7 ± 1.1 3.5 ± 1 3.2 ± 1.2 3.5 ± 1.3 2.8 ± 1.2 3.2 ± 0.7 3.2 ± 1.3 

Apo A2 HDL 3 6.5 ± 1.4 6.3 ± 1.5 7.3 ± 1.4 6.8 ± 1.3 6.9 ± 2 6.4 ± 1.7 6.9 ± 1.4 6.7 ± 1.9 

Apo A2 HDL 4 23 ± 3.7 23 ± 3.4 24.9 ± 3 23.4 ± 4.4 23.2 ± 4.3 22.2 ± 4.5 23.6 ± 2.7 22.2 ± 3.1 * 

§Abbreviations are reported as follows: TG: triglycerides, Chol: cholesterol, Apo: Apolipoproteins 
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Figures  

 

Figure 1. Graphical representation of the procedure followed to explore differences in 

serum profiles of subjects at risk for MetS, before (t0) and 12-weeks after (t1) the 

dietary interventions (treatments a, b, c and d), using untargeted NMR-based 

metabolomics in the frame of the EC FP7 PATHWAY-27 project. Enrolled subjects 

are from 4 different recruitment centers: Italy, France, Germany and UK and they had 

to consume one of the following treatment: a) bakery, egg, dairy-based foods without 

bioactives (placebo); b) dairy-based BEF + placebo bakery and placebo egg-based 

foods; c) egg-based BEF + placebo bakery and placebo dairy-based foods; d) bakery-

based BEF + placebo dairy and egg-based foods. 
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Figure 2. PCA 3D score plot of the whole dataset. Each dot represents a 0.02 ppm 

bucketed 1D-NOESY 1H-NMR spectrum color-coded by A) time-points of blood 

collections: t0 (red dots, n=232) and t1 (blue dots, n=232); B) dietary intervention: a) 

all bakery, egg, dairy-based foods without bioactives (pink dots, n=70); b) dairy-based 

BEF + placebo bakery and placebo egg-based foods (yellow dots, n=55); c) egg-based 

BEF + placebo bakery and placebo dairy-based foods (green dots, n=55); d) bakery-

based BEF + placebo dairy and egg-based foods (cyan dots, n=54); C) recruitment 

center: Italy (gray dots, n=73); France (yellow dots, n=61); Germany (green dots, 

n=44); UK (red dots, n=54).  

 

 
 

Figure 3. M-PLS discrimination accuracy between t0 and t1 for each recruited subject. 

Each dot represents a different subject, color-coded by the received treatment: black 

dots = treatment a (Placebo); red dots = treatment b (dairy-based BEF + placebo 

bakery and placebo egg-based foods); green dots = treatment c (egg-based BEF + 

placebo bakery and placebo dairy-based foods); blue dots = treatment d (bakery-based 

BEF + placebo dairy and egg-based foods).  

 

 
 

Figure 4. M-PLS loading plot of treatment d (Bakery-based BEF + other foods as 

placebo) related to the first component, considering A) only French cohort and B) only 
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English cohort; the threshold (green lines) to select effective signals was estimated 

considering bins with values beyond two standard deviations of their averages; 1: 1.29 

ppm ((-CH2-)n VLDL-LDL); 2: 0.86 ppm (CH3 VLDL-LDL).  

 

 
 

Figure 5. M-PLS loading plot of treatment c (egg-based BEF + other foods as placebo) 

related to the first component, considering A) only Italian cohort and B) only German 

cohort; the threshold (green lines) to select effective signals was estimated considering 

bins with values beyond two standard deviations of their averages; 1: 1.29 ppm ((-

CH2-)n VLDL-LDL); 2: 0.86 ppm (CH3 VLDL-LDL); 3: 3.20 ppm.  
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Supplementary Material 

 

Table S1. Confusion matrix of PCA-CA model discriminating treatment-groups at t0: 

a) all bakery, egg, dairy-based foods without bioactives (placebo); b) dairy-based BEF 

+ placebo bakery and placebo egg-based foods; c) egg-based BEF + placebo bakery 

and placebo dairy-based foods; d) bakery-based BEF + placebo dairy and egg-based 

foods. Values and accuracy % are reported.  

 

 a b c d 

a 30.4 25.3 21.6 22.7 

b 35.3 24.0 22.7 18.0 

c 29.0 19.5 17.2 34.3 

d 27.2 21.8 25.7 25.3 

*Overall discrimination accuracy: 24.6% 

 

Table S2. Confusion matrix of PCA-CA model discriminating treatment-groups at t1: 

a) all bakery, egg, dairy-based foods without bioactives (placebo); b) dairy-based BEF 

+ placebo bakery and placebo egg-based foods; c) egg-based BEF + placebo bakery 

and placebo dairy-based foods; d) bakery-based BEF + placebo dairy and egg-based 

foods. Values and accuracy % are reported.  

 

 a b c d 

a 48.2 21.6 15.5 14.7 

b 28.6 20.2 28.0 23.2 

c 22.5 23.3 27.6 26.6 

d 18.7 18.2 24.8 38.3 

*Overall discrimination accuracy: 34.5% 

 

 

Table S3. Bruker IVDr metabolites analysis at t0 and t1 for enrolled subjects (n=232). 

Metabolic features were assigned and quantified in 1D NOESY NMR spectra and their 

absolute concentrations are reported as median ± median absolute deviation. * is used 

to indicate parameters resulted to be statistically significant, with P-value < 0.05, in 

the comparison t0 vs. t1 for each of the administered treatment. a) all bakery, egg, dairy-

based foods without bioactives (placebo); b) dairy-based BEF + placebo bakery and 

placebo egg-based foods; c) egg-based BEF + placebo bakery and placebo dairy-based 

foods; d) bakery-based BEF + placebo dairy and egg-based foods). ** is used for 

parameters reporting both P-value < 0.05 and FDR < 0.05.  
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 a b c d 

 t0 t1 t0 t1 t0 t1 t0 t1 

Trimethilamin

e-N-oxide 

0.01 ± 

0.01 

0.01 ± 

0.01 

0.005 ± 

0.01 

0.005 ± 

0.01 

0.01 ± 

0.01 

0.01 ± 

0.01 

0.01 ± 

0.01 

0 .01 ± 

0.01 * 

Alanine 
0.48 ± 

0.1 

0.46 ± 

0.11 

0.48 ± 

0.08 

0.47 ± 

0.08 

0.5 ± 

0.09 

0.49 ± 

0.07 

0.48 ± 

0.11 

0.5 ± 

0.07 

Creatine 
0.02 ± 

0.01 

0 .02 ± 

0.01 

0.02 ± 

0.01 

0.02 ± 

0.01 

0.01 ± 

0.01 

0.02 ± 

0.01 

0.02 ± 

0.01 

0.02 ± 

0.01 

Creatinine 
0.09 ± 

0.02 

0.09 ± 

0.02 

0.09 ± 

0.02 

0.09 ± 

0.02 
0.1± 0 

0.09 ± 

0.03 

0.09 ± 

0.02 

0.1 ± 

0.02 

Glutamine 
0.79 ± 

0.09 

0.76 ± 

0.13 * 

0.76 ± 

0.12 

0.76 ± 

0.14 

0.81 ± 

0.15 

0.81 ± 

0.13 

0.81 ± 

0.13 

0.8 ± 

0.11 

Glycine 
0.23 ± 

0.04 

0.22 ± 

0.05 * 

0.23 ± 

0.04 

0.23 ± 

0.05 

0.24 ± 

0.05 

0.23 ± 

0.06 

0.25 ± 

0.05 

0.24 ± 

0.04 

Histidine 
0.09 ± 

0.02 

0.08 ± 

0.02 

0.08 ± 

0.01 

0.08 ± 

0.02 

0.09 ± 

0.02 

0.08 ± 

0.01 * 

0.08 ± 

0.01 

0.09 ± 

0.02 

Isoleucine 
0.06 ± 

0.01 

0.06 ± 

0.02 

0.06 ± 

0.01 

0.06 ± 

0.02 

0.06 ± 

0.02 

0.06 ± 

0.02 

0.06 ± 

0.01 

0.06 ± 

0.02 

Leucine 
0.1 ± 

0.02 

0.11 ± 

0.02 

0.1 ± 

0.04 

0.11 ± 

0.03 

0.12 ± 

0.03 

0.11 ± 

0.02 

0.11 ± 

0.02 

0.11 ± 

0.02 

Methionine 
0.06 ± 

0.03 

0.05 ± 

0.02 

0.05 ± 

0.04 

0.05 ± 

0.03 

0.06 ± 

0.03 

0.06 ± 

0.02 

0.06 ± 

0.03 

0.06 ± 

0.02 

N,N-

Dimethylglyci

ne 

0.005 ± 

0.03 

0.01 ± 

0.003 

0.01 ± 

0.003 

0.01 ± 

0.001 

0.01 ± 

0.003 

0.01 ± 

0.01 

0.01 ± 

0.002 

0.01 ± 

0.003 ** 

Phenylalanine 
0.05 ± 

0.02 

0.05 ± 

0.01 

0.05 ± 

0.02 

0.05 ± 

0.01 

0.06 ± 

0.01 

0.07 ± 

0.01 

0.06 ± 

0.01 

0.06 ± 

0.01 

Tyrosine 
0.07 ± 

0.01 

0.07 ± 

0.01 

0.07 ± 

0.01 

0.07 ± 

0.01 

0.07 ± 

0.01 

0.07 ± 

0.01 

0.07 ± 

0.01 

0.07 ± 

0.02 

Valine 
0.26 ± 

0.04 

0.26 ± 

0.06 

0.26 ± 

0.05 

0.26 ± 

0.06 

0.29 ± 

0.04 

0.28 ± 

0.05 

0.28 ± 

0.05 

0.26 ± 

0.04 

Acetic acid 
0.01 ± 

0.01 

0.01 ± 

0.01 

0.01 ± 

0.01 

0.01 ± 

0.01 

0.01 ± 

0.01 

0.01 ± 

0.01 

0.01 ± 

0.01 

0.01 ± 

0.01 

Citric acid 
0.15 ± 

0.05 

0.15 ± 

0.04 

0.15 ± 

0.04 

0.14 ± 

0.04 

0.16 ± 

0.04 

0.15 ± 

0.03 

0.16 ± 

0.04 

0.16 ± 

0.03 

Formic acid 
0.02 ± 

0.01 

0.02 ± 

0.01 

0.02 ± 

0.01 

0.02 ± 

0.01 

0.02 ± 

0.01 

0.02 ± 

0.01 

0.02 ± 

0.01 

0.02 ± 

0.01 

Lactic acid 
2.01 ± 

0.6 

2.13 ± 

0.66 

2.11 ± 

0.75 

2.06 ± 

0.78 

2.2 ± 

0.5 

2.06 ± 

0.49 

2.12 ± 

0.54 

2.19 ± 

0.75 

Succinic acid 
0.003 ± 

0.001 

0.003 ± 

0.001 

0.002 ± 

0.001 

0.003 ± 

0.001 

0.002 ± 

0.001 

0.002 ± 

0.001 

0.002 ± 

0.001 

0.002 ± 

0.001 
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Acetoacetic 

acid 

0.01 ± 

0.01 

0.01 ± 

0.01 

0.01 ± 

0.004 

0.01 ± 

0.003 

0.01 ± 

0.01 

0.01 ± 

0.004 

0.01 ± 

0.003 

0.01 ± 

0.004 

Acetone 
0.02 ± 

0.01 

0.02 ± 

0.01 

0.02 ± 

0.01 

0.01 ± 

0.01 

0.01 ± 

0.01 

0.02 ± 

0.01 

0.02 ± 

0.01 

0.01 ± 

0.01 

Pyruvic acid 
0.08 ± 

0.04 

0.08 ± 

0.03 

0.1 ± 

0.03 

0.09 ± 

0.04 

0.09 ± 

0.03 

0.09 ± 

0.03 

0.08 ± 

0.03 

0.07 ± 

0.03 

Glucose 
5.48 ± 

0.76 

5.33 ± 

0.63 

5.61 ± 

0.75 

5.39 ± 

0.67 

5.58 ± 

0.68 

5.38 ± 

0.62 * 

5.58 ± 

0.68 

5.48 ± 

0.58 

Dimethyl 

sulfone 

0.01 ± 

0.

00

4 

0.01 ± 

0.03 * 

0.01 ± 

0.04 

0.01 ± 

0.003 * 

0.01 ± 

0.004 

0.01 ± 

0.004 

0.01 ± 

0.004 

0.01 ± 

0.003 

§Abbreviations are reported as follows: TMAO: Trimethylamine N-oxide 
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4.2. NMR-based metabolomics for veterinary research 
 

Although metabolomics mainly deals with human medicine, several potential 

applications for NMR-based metabolomics in the veterinary field are possible, 

especially for what concerns the investigation of disease or infection mechanisms, 

disease diagnosis and monitoring, the characterization of health status, the monitoring 

of pharmacological treatments and drug discovery, nutrition and food production. 

In this PhD thesis, three different NMR-based metabolomic veterinary studies are 

described, demonstrating the potentiality and the usefulness of this technique in this 

framework.  

In the first proposed study, NMR spectroscopy has been applied to metabolically 

characterize left and right abomasal displacements of dairy cows (§ 4.2.1). Displaced 

abomasum (DA) is a disease condition of dairy cows that severely impacts animal 

wellbeing and it causes huge economic losses for food industry. Using serum, urine 

and liver organic/aqueous extracts, collected from 50 Holstein multiparous cows with 

DA (42 left and 8 right) and 20 clinically healthy cows, we explored the disease from 

a metabolic point of view. OPLS-DA models, built on bucketed NMR spectra, 

revealed metabolic differences between healthy and diseased animals, especially when 

NMR data related to aqueous extracts have been used. Applying univariate analysis on 

selected metabolic features, fatty acid fractions and cholesterol were found to be 

increased in liver samples of cows affected by DA, serum hippuric acid level was 

significantly higher in healthy animals compared to cows affected by left DA (LDA), 

whereas serum glycine was reported to be higher in healthy when compared to cows 

affected by right DA (RDA). Globally, metabolomic profiles combined to clinical 

analysis revealed that cows with DA (especially LDA) are at higher risk for ketosis 

and fatty liver. Moreover, a biochemical pathway mapping revealed “valine, leucine 

and isoleucine biosynthesis” and “phenylalanine, tyrosine and tryptophan 

biosynthesis” as the most probable altered metabolic pathways in DA condition. In 

conclusion, our results can find actual applications for clinical practices and they 

evidenced serum as the optimal and most promising biological matrix for future 

clinical and 1H-NMR investigations. 

In the second study, NMR-based metabolomics was applied to investigate serum 

samples collected at set intervals (24h, 48h and 75h) from 25 premature calves (§ 

4.2.2). Calves born previous to 270 days’ pregnancy are at risk for death and increasing 

morbidities; therefore, the characterization of the premature birth from a metabolic 

point of view could pave the way to prevent diseases and also to improve food 

production. Here, within-animal differences were investigated applying M-PLS 

analysis to bucketed NMR spectra obtained from aqueous and organic serum extracts. 

For all statistical models built on the bucketed NMR profile of serum aqueous 

fractions, premature calves can be discriminated at the three different time-points with 

predictive accuracies higher than 70%. Lower prediction accuracies than 70% have 
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been obtained when M-PLS models were built on bucketed 1D 1H NOESY spectra 

from serum organic fractions. From the univariate approach on quantified metabolites 

and lipid fractions, we described: i) increases in 3-hydroxybutyrate, citrate, leucine 

and isoleucine levels at 48th and 72h; ii) increases in choline, formic acid, fatty acids 

and polyunsaturated fatty acids levels at 72h and valine concentration at 48h; iii) 

decreases in myo-inositol level at 48h and 72h. Myo-inositol concentration proved to 

be meaningful for monitoring the recovery, at a molecular level, in premature calves. 

Overall, these results suggest that NMR-based metabolomics put the basis to deepen 

future researches in premature calves ’clinical pathology and for the monitoring of 

their therapeutic frame.  

In the last study presented in this section, NMR-based metabolomics was used to 

explore, for the first time, metabolic changes in the serum lipidome and metabolome 

of dogs affected by Canine Ehrlichiosis (§ 4.2.3). Generally, Ehrlichiosis is an 

infection caused by intracellular organisms that affect cells of the immune system in 

dogs, cats and also people. Here, we tried to identify the metabolic fingerprint of the 

disease and potentially useful metabolic markers, using NMR spectroscopy for the 

analysis of serum aqueous and organic extracts from 92 infected and 17 healthy dogs. 

Univariate results did not show significant changes in the metabolome: the detected 

metabolites seem to be ineffective in the characterization of the infection, but entire 

NMR profiles of healthy dogs are discriminated from those of diseased animals with 

a predictive accuracy around 70% in aqueous extracts, thus showing the existence of 

an underlying metabolic signature of the infection considering the whole 1H-NMR 

profile. However, a more pronounced signature of the pathology was found in the 

lipidome (predictive accuracy of 76% between healthy and diseased animals) and 

applying univariate analysis, lipid fractions showed considerable differences between 

diseased and healthy dogs, thus reflecting a systemic condition of energy deficit during 

the infection. 

To our knowledge, this is the first NMR study dealing with the characterization of 

Canine Ehrlichiosis and our findings may deepen the knowledge on the biological 

processes of the disease and they could find actual use in the veterinary clinical 

practice. 
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4.2.1. Nuclear magnetic resonance (NMR)-based metabolome profile 

evaluation in dairy cows with and without displaced abomasum 
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Supplementary Material 

 

 
Supplemental Fig. S1. Biochemical network mapping and related pathway analysis 

for serum water-soluble metabolites from the comparison between healthy and left 

displaced abomasum cows. The global network graph of metabolites (on the right-side 

of panel A of the figure) was obtained using the MetaMapp online tool107 where green 

nodes represent metabolites whose concentration is significantly different (adjusted108 

P-value < 0.05) in the comparison, while red nodes represent metabolites whose 

concentrations are not statistically relevant. Nodes size reflects Fold-Change values. 

Biochemical and chemical relationships among metabolites are represented by KRP 

(KEGG Reaction Pairs) and TMSIM (Tanimoto similarity) bold blues edges and black 

dashed links respectively. In panel B, the MetaboAnalyst109 pathway mapping is 

reported only for statistically significant metabolites (adjusted P values < 0.05). In 
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detail, each dot represents a specific metabolic pathway which is plotted depending on 

the “pathway impact” and related “-log(P-values)”. The plot highlights as the most 

significant metabolic pathways for impact and -log(P-values) the “valine, leucine and 

isoleucine biosynthesis” and the “phenylalanine, tyrosine and tryptophan 

biosynthesis” (reported on the right side of the plot) whose respective biochemical 

networks are enlarged in the magenta and orange boxes depicted on the left-side of 

panel A of the figure.  

 

 
Supplemental Fig. S2. Biochemical network mapping and related pathway analysis 

for serum water-soluble metabolites from the comparison between healthy and right 

displaced abomasum cows. The global network graph of metabolites (on the left-side 
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of panel A of the figure) was obtained using the MetaMapp online tool107 where green 

nodes represent metabolites whose concentration is significantly different (adjusted108 

P-value < 0.05) in the comparison, while red nodes represent metabolites whose 

concentrations are not statistically relevant. Nodes size reflects Fold-Change values. 

Biochemical and chemical relationships among metabolites are represented by KRP 

(KEGG Reaction Pairs) and TMSIM (Tanimoto similarity) bold blues edges and black 

dashed links respectively. In panel B, the MetaboAnalyst109 pathway mapping is 

reported only for statistically significant metabolites (adjusted P-values < 0.05). In 

detail, each dot represents a specific metabolic pathway which is plotted depending on 

the “pathway impact” and related “-log(P-values)”. The plot highlights as the most 

significant metabolic pathways for impact and -log(P-values) the “valine, leucine and 

isoleucine biosynthesis” and the “phenylalanine, tyrosine and tryptophan 

biosynthesis” (reported on the right side of the plot) whose respective biochemical 

networks are enlarged in the magenta and orange boxes depicted on the right-side of 

panel A of the figure.  
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4.2.2. NMR-based serum metabolomics for monitoring newborn preterm 

calves’ health 

 

 

 

Abdullah Basoglu1, Nuri Baspinar2, Cristina Licari3, Leonardo Tenori4, Amir Naseri1 

 

 

 

 
1Department of Internal Medicine, Faculty of Veterinary Medicine, Selcuk University, 

Selcuklu, Konya, Turkey; 
2Department of Biochemistry, Faculty of Veterinary Medicine, Selcuk University, 

Selcuklu, Konya, Turkey;  
3Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino 

(Florence), Italy; 
4Interuniversitary Consortium for Magnetic Resonance of Metalloproteins 

(C.I.R.M.M.P.), Sesto Fiorentino (Florence), Italy. 

 

 

 

 

Published 

Japanese Journal of Veterinary Research 68(2): 105-116, 2020 

 

 

 

Candidate’s contributions: acquisition of NMR data, statistical analysis, interpretation 

of data, writing and review of the manuscript. 

 

 

  



| 216 

 
 

 

 

 

 



Results | 217 

 
 

 

 

 

 



| 218 

 
 

 

 

 

 



Results | 219 

 
 

 

 

 

 



| 220 

 
 

 

 

 

 



Results | 221 

 
 

 

 

 

 



| 222 

 
 

 

 

 

 



Results | 223 

 
 

 

 

 

 



| 224 

 
 

 

 

 

 



Results | 225 

 
 

 

 

 

 



| 226 

 
 

 

 

 

 

 



Results | 227 

4.2.3. NMR-based serum extracts metabolomics to evaluate Canine 

Ehrlichiosis 
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Abstract 

 

Ehrlichiosis is an infection caused by obligate, intracellular organisms that 

primarily affect cells of the immune system in dogs, cats and people. The aim of this 

study was to determine the changes in the serum lipidome profiling of dogs with 

Canine Ehrlichiosis (E. Canis) and try to identify potentially useful metabolic markers. 

Our study animals included infected (92) and healthy (17) dogs. Indirect fluorescent-

antibody assay (IFA) was used for the diagnosis of Ehrlichiosis. Anorexia, depression, 

hemorrhagic tendencies, enlarge lymph nodes are variable clinical signs of Ehrlichia. 

The hemogram reflected anemia and thrombocytopenia. There were no significant 

changes in other biochemical parameters. The individually identified metabolites 

seemed to be not effective in the characterization of the Canine Ehrlichiosis. However, 

results from the analysis of lipid fractions lead to the hypothesis that considerable 

differences among diseased and healthy animals could be found in their lipidome 

instead of the metabolome. This reflects a great systemic energy deficit during the 

infection. 

 

Introduction 

 

Ehrlichiosis is a tick-borne infection caused by obligate, intracellular 

organisms that primarily affect cells of the immune system in dogs, cats and humans. 

In Europe published reports on this infection have increased in recent years. The 

prevalence of Ehrlichia infection in dogs is high and different among European 

countries.1 In humans, Ehrlichia may cause hematologic malignancies, such as acute 

leukemia.2 The disease can evolve into a severe multisystem disease such as sepsis, 

meningoencephalitis or acute respiratory distress syndrome.3 An acute phase of 

disease, which develop during the subacute phase, starts in 2–4 weeks after exposure 

to Erlichia canis. The chronic phase of the disease can develop in a few dogs. The 

main clinical symptoms of the disease are weakness, weight loss, and a tendency to 

bleed. If effective treatment is not applied, infected dogs are most likely to die.4,5 

Diagnosis of Canine Ehrlichiosis can be difficult to determine through blood smears, 

serology and even PCR tests; this because of their limitations to deal with the 

interpretation of test results according to the state of disease. IFA assay is still the 

diagnostic gold standard protocol for this disease.6 A better understanding of the 

dynamics of Canine Ehrlichiosis is necessary to reach the therapeutic targets. 

Metabolomics offers an objective approach to determine and to understand the global 

metabolic pathways of infections. Variations in the metabolome reflect changes in the 

regulation of biochemical reactions, due to internal/external stimuli. Metabolite 

profiling can identify changes in host metabolism in response to infections. This will 

be the first NMR-based metabolomic study for Canine Ehrlichiosis. The goal of this 

proposal is to obtain a deeper understanding of Canine Ehrlichiosis from a 

metabolomic point of view.  
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Materials and Methods 

 

The experimental design was approved by the Committee on Use of Animals 

in Research of the Near East University. 

 

Animals 

The study animals included 92 infected and 17 healthy dogs. The diseased dogs 

presented some clinical signs, such as a loss of appetite, depression, loss of stamina, 

stiffness and reluctance to walk, swelling of the limbs or scrotum and coughing or 

difficulty in breathing. 

 

Laboratory Analysis 

Complete blood counts (leukocytes (WBC), erythrocytes (RBC), platelets 

(PLT), mean cell volume (MCV), mean corpuscular haemoglobin concentration 

(MCHC), haematocrit (Ht), haemoglobin (Hb)), and biochemical profiles including 

total protein (TP), albumin (Alb), globulin, cholesterol, triglyceride, alanine amino 

transaminase (ALT), aspartate amino transaminase (AST), alkaline phosphatase 

(ALP), lactate dehydrogenase (LDH), blood urea nitrogen (BUN), creatinine and 

phosphorus were performed by routine automated cell counter and spectrometric 

methods, respectively. The infection in the animals was diagnosed by indirect 

fluorescent-antibody assay. 

 

Samples preparation for 1H-NMR spectroscopy 

Serum samples were thawed on ice and extracted for protein precipitation and 

separation of hydrophilic and lipophilic fractions with a dual methanol-chloroform 

extraction as described by Stringer et al.7 As a result of this, macromolecules (e.g. 

proteins) were eliminated and a fused metabolic profile for water-soluble and lipid 

metabolites was established.  

A Bruker 600 MHz spectrometer (with a proton Larmor frequency of 600.13 MHz) 

was employed to acquire 1D NMR spectra for all analysed samples. The instrument 

was assembled with a 2H-decoupling probe including a-z axis gradient coil, a 5 mm 

PATXI 1H-13C-15N, an automatic and refrigerated sample changer and an automatic 

unit for tuning and matching (ATM). To avoid temperature variations (limited to 

±0.1K at sample), a BTO 2000 thermocouple was used. Before initiating 

measurements, NMR tubes were maintained at 310K inside the NMR probe head for 

at least 5 minutes to equilibrate temperature. A standard Nuclear Overhauser Effect 

Spectroscopy pulse sequence (noesygppr1d.com; Bruker BioSpin; NOESY 1D) was 

employed for both aqueous and organic serum extracts, as described in detail in 

Basoglu et al.8 For the aqueous fractions, a standard spin echo Carr-Purcell-Meiboom-

Gill pulse sequence (cpmgpr1d.comp; Bruker BioSpin; CPMG) was also applied to 

acquire a second one dimensional experiment using the same parameters described 

earlier.8 
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Spectral Processing 

Before carrying out Fourier transform, free induction decays were multiplied 

by an exponential function equivalent to 0.3 Hz line-broadening factor. Obtained 

spectra were automatically corrected for phase and baseline distortions and calibrated 

using the software TopSpin 3.2 (Bruker BioSpin), considering as references, the 

anomeric glucose doublet signal at 5.24 ppm for serum aqueous extracts and the 

chloroform singlet at 7.24 ppm for the organic fractions. One-dimensional spectra 

from aqueous extracts, in the range of 0.2-10.0 ppm, were divided into 0.02 ppm 

chemical shifts buckets and their corresponding spectral areas were integrated using 

AMIX software (version 3.8.4, Bruker BioSpin). Using the bucketing techniques, the 

global number of variables is decreased and small shifts in the signals can be 

compensated allowing more reproducible and more robust statistical analysis.9 Both 

regions between 4.62 and 4.75 ppm containing residual H2O signal and bins related to 

signals present only for a restricted number of samples were excluded for the 

multivariate statistical analyses. Instead for organic fractions, only bins between 0.2 

and 6.70 ppm were considered for the analysis, due to the presence of various shifts in 

the aromatic NMR signals of lipid molecules. On remaining bins, Probabilistic 

Quotient Normalization10 (PQN) was applied before performing the pattern 

recognition both for aqueous and organic extracts. 

 

Statistical Analysis 

In order to determine the normality for clinical and haematological parameters, 

the Kolmogorov-Smirnov test was used, while for comparison between groups, the 

Mann-Whitney-U test was performed for non-parametric cases and the Independent-

T test was used for parametric ones. 

All metabolomic analysis were done using R (version 3.5), an open source software 

for statistical manipulation of data.11 Multivariate analysis was applied on processed 

NMR data and to preliminarily explore the dataset, Principal Component Analysis 

(PCA) technique was employed.12 When unsupervised approach was not able to 

discriminate between the conditions of interest, Orthogonal Projection to Latest 

Structures (OPLS) analysis is applied in combination with Discriminant Analysis 

(DA) as a supervised method. In general, this algorithm uses information in the 

categorical response Y matrix to separate, in the X matrix of data, the predictive from 

non-predictive (Y-orthogonal) variation, providing a better model interpretation with 

respect to PCA or to the PLS techniques.13 All the accuracies and confusion matrices 

reported for the various classifications were assessed by means of 100 cycles of Monte 

Carlo cross-validation scheme (MCCV, R script in-house written). Further 

explanations are reported elsewhere.8 

Univariate statistical analysis was performed on 1H-NMR spectra. In particular, well 

defined and resolved spectral regions associated to the different metabolites/lipid 

fractions were assigned by using matching routines of Assure NMR (Bruker BioSpin) 

and published literature data. The same regions were integrated to obtain 

concentrations of metabolites and lipidic fractions in arbitrary units. Resulting values 
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were analysed to find discriminating metabolites between the diseased and healthy 

dogs using a non-parametric Wilcoxon-Mann-Whitney test14 on the biological 

assumption that metabolites and lipids concentrations are not normally distributed. 

When several metabolites/lipids are tested together, to avoid random false positives, 

multiple testing corrections need to be adopted; here, the Benjamini-Hochberg method 

(FDR)15 was applied. Then, changes in metabolites/lipids levels between the two 

compared groups are calculated as the log2 fold change (FC) ratio of the normalized 

median intensities of the corresponding signals in the spectra. 

Commonly, to express correlation among different metabolites expression levels and 

clinical and/or other biological data, correlation coefficients must be calculated. 

Spearman’s test was used to express the correlation coefficients (rho) among the 

metabolite concentrations of diseased animals and the clinical features. Values 

between +1 and -1 are reported, where +1 indicates a total positive correlation, 0 means 

no correlation, and −1 is related to a total negative correlation. All correlation 

coefficients were calculated using the “cor.test” function of R software. Graphical 

representations of correlation matrices of metabolites and lipid fractions were 

displayed using the R “corrplot” package. 

 

Results 

Anorexia, depression, haemorrhagic tendencies, large lymph nodes were 

variable clinical symptoms of Ehrlichia. The hemogram reflected anaemia and 

thrombocytopenia. There were no significant changes in biochemical parameters 

(Table 1). Serum indirect fluorescent antibody titers were positive in all the diseased 

animals. 

One-dimensional 1H-NMR spectra of serum samples were acquired. Eleven diseased 

animals were not considered for the statistical analysis of serum aqueous extracts 

because of the inadequate quality of the related NMR spectra, while a total of thirty-

two dogs were removed from the analysis of organic fractions for same reasons. 

Diseased animals were compared with healthy ones using firstly, an unsupervised 

approach, i.e. the PCA analysis. No apparent differences or clusters were highlighted 

among the groups, but from the analysis of 1D NOESY and 1D CPMG spectra of 

aqueous extracts, one and three subjects were respectively identified as evident outliers 

and therefore eliminated for the subsequent analyses. PCA score plots on 1D NOESY 

and 1D CPMG of serum aqueous fractions and on 1D NOESY of serum organic 

extracts are reported in Figure 1 (a-c). 

To explore differences in the metabolic profile of diseased and healthy animals, a 

Monte Carlo cross-validated OPLS-DA model was built for both aqueous and organic 

extracts, randomly sampling among diseased group a comparable number of samples 

to the healthy group. Models built on bucketed 1D NOESY and 1D CPMG spectra of 

aqueous fractions provides average accuracies of 68% and 72% respectively, 

suggesting the presence of slight metabolic differences between healthy and diseased 

animals. Instead, an average discrimination accuracy of 76% between the two groups 

of subjects was defined considering the bucketed 1D NOESY spectra of organic 
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fractions, leading to the hypothesis that this disease affects more the lipidome of the 

dogs. 

In order to identify the presence of discriminating metabolites among the two groups 

of interest, 1H-NMR spectra were also examined. The complete list of identified and 

quantified metabolites from each type of samples (lipophilic and hydrophilic fractions) 

is presented in Table 2, where adjusted P-values are reported only for variables that 

differ significantly (adjusted P-value < 0.05) after performing the comparison using 

the Wilcoxon-Mann-Whitney test. Among the eighteen identified metabolites, none of 

them resulted in being statistically different between diseased and healthy dogs (all 

adjusted P-values > 0.05). From the univariate analysis of serum lipids, results showed 

that signals of alkyl chains of fatty acids arising from unsaturated fatty acid protons -

CH=CH and -CH2-CO, -CH=CH-CH2-CH-CH protons, were higher and statistically 

different (adjusted P-values < 0.05) for healthy animals, while glycerol resulted in 

being significantly higher for the diseased dogs (adjusted P-value < 0.05). These last 

results are in line with the fact that OPLS-DA model built on bucketed 1D NOESY of 

organic fractions showed a higher predictive accuracy than that reported for statistical 

models of aqueous extracts. 

In summary, the obtained results demonstrate that we can define a likely fingerprint of 

the disease considering the whole metabolic profile of animals (NMR spectra in their 

entirety), since the individually identified metabolites seem to be not effective in the 

characterization of the Canine Ehrlichiosis. However, the existence of four statistically 

significant lipid fractions leads to the hypothesis that considerable differences among 

diseased and healthy animals could be found in their lipidome instead of the 

metabolome (Table 2). 

Subsequently, correlations among identified metabolites/lipid fractions and clinical 

data were expressed for the diseased animals. Spearman’s test was used to calculate 

the correlation coefficients (rho) between metabolomic data and blood parameters. In 

particular, it was found that albumin positively correlate with proton signals of alkyl 

chains from fatty acids arising from =CH-CH2-CH2, UF=CH-CH groups and from 

PUFA (rho > 0.60), while tyrosine positively correlates with ALT values (rho = 0.60). 

Instead, globulins negatively correlate with all the identified lipid fractions except for 

glycerol and cholesteryl ester fractions (rho < -0.60). Negative correlations were also 

identified for total proteins values with phospholipids-N(CH3)3 and unsaturated -

CH=CH- protons. All calculated correlation coefficients (rho) are reported in Table 3. 

Graphical representations of correlation matrices of metabolites and lipid fractions are 

reported in Figure 2 (a-b) where only statistically significant correlations (P-values < 

0.05) are highlighted and represented through glyphs that are coloured according to 

the calculated rho coefficients and whose respective values (from -1 to +1) are shown 

on the gradient coloured bar located in the right-side of the figures. 
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Discussion 

 

This is the pioneer metabolomic and lipidomic study carried out on dogs 

suffering from Ehrlichiosis. Identified lipidic profile in this study will give an 

opportunity for further mechanistic studies to better understand the host responses in 

Ehrlichia infection. Ehrlichiosis is a bacterial illness that affects humans and animals 

causing flu-like symptoms. Many subjects have mild symptoms and never seek 

medical attention. However, life-threatening cases of ehrlichiosis manifest as 

meningoencephalitis or acute respiratory distress syndrome together with sepsis.3 

Ehrlichia can also lead to hematologic malignancies.2 Most often, a diagnosis is 

performed by a combination of clinical signs, positive serum IFA titer and response to 

treatment.16 In the current study, either clinical signs or haematological parameters of 

seropositive dogs were in accordance with most references (Table 1). Metabolites with 

extraordinary array of physicochemical properties, produced by microbial and host 

cells, may be found in any body tissue or fluid at various concentrations. Analytical 

determination from the host-response to bacterial infection, by -omic sciences, could 

provide new insights for the comprehension of this pathology. Metabolomics have a 

great potential to determine new biomarkers of diseases, useful to identify for example, 

early stage diseases, therefore potentially addressing an important clinical need. 

Performing new studies on metabolomics, low-cost biomarkers from body fluids that 

indicate infection, therapeutic efficacy, or drug resistance might be identified. In 

particular, with advantages of minimal sample preparation, high throughput, high 

reproducibility and high accuracy, metabolomic analyses provide great potentialities 

for diseases diagnosis and treatment with respect to classical clinic tests. Moreover, 

with respect to traditional techniques used to explore biomarker profiles, 

metabolomics offers complete information on low- and high-molecular-weight 

metabolites present in biofluids. Therefore, metabolomics gives the possibility to 

generate innovative and non-invasive diagnostic tests providing a unique insight into 

already known and novel metabolic pathways, which are simple and cost-effective yet 

retaining high sensitivity and specificity properties.17 Despite the impact of 

metabolomics on infectious diseases,18,19 no study has been done in regards to 

Ehrlichiosis infection. 

Lipids have important roles in various cellular processes. Changes in the lipidome, in 

addition of nucleic acid and proteins, can be evaluated as biomarkers. The role of 

lipids, especially for bacterial infections, is well recognized by the human innate 

immune response, such as lipopolysaccharide in Gram-negative bacteria, lipoteichoic 

acid in Gram-positive bacteria, and lipoglycans in mycobacteria. When we compared 

nucleic acids and protein analysis, a complete analysis of the lipidome is usually very 

difficult due to the heterogeneity of lipid classes and their intrinsic physical properties 

caused by variations in the constituents of each class. Therefore, their biological 

relevance and their use as potential biomarkers for non-infectious and infectious 

diseases is crucial. Sepsis and tuberculosis are the two primary diseases in which lipids 

can be diagnosed using biomarkers.20 In septic patients, lipid profiles may be a 
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predictor of survival. In metabolomic studies, most of the changes from baseline in 

septic patients are related to lipid metabolism.21 

NMR-based metabolomics has been evaluated in diarrheic and presumed septic calves, 

where significant decreases in the whole lipid soluble metabolites such as 

sphingomyeline and fatty acids including PUFA were found. Other characteristic 

metabolites, such as increases in niacinamide, choline and phosphocholine, 2-

methylglutarate and isopropanol, and decreases in formate, lysine, arginine, acetate, 

creatine also reflected the systemic inflammatory response syndrome, organ 

dysfunction and organ failure.22 Moreover, NMR metabolomics provided an optimal 

tool for faster identification of sepsis in new-born calves.23  

In conclusion, in the present study, among the eighteen metabolites which were 

identified, none of them resulted to be statistically different between diseased and 

healthy dogs (Table 2), but from our results, it seems that Ehrlichiosis affected more 

the lipidome of the dogs. Alkyl chains of fatty acids arising from UFA-CH=CH, -CH2-

CO, -CH=CH-CH2-CH-CH protons were higher and statistically different for healthy 

animals, while glycerol resulted in being significantly higher in the diseased ones. A 

decrease in the whole lipid fraction may indicate a great systemic energy deficit 

occurring in Canine Ehrlichiosis. The correlations of lipid metabolites with blood 

proteins may be meaningful in this regard (Table 3). 
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Tables 

 

Table 1. Hematological and biochemical parameters between the animal groups. 

 

  Diseased (n=92) Healthy (n=17) P value<0.05 

WBCs (x103/L) 9.9 (0.2/5390) 12.9 (7.70/38.2) 0,165 

RBCs (x106/L) 4.976±1.583 6.669±8.819 0,03 

Platelets (x103/L) 93 (0/1102) 277 (107/441) 0,001 

Hgb (g/dL) 11 (2.2/18.6) 15.8 (6.2/18.2) 0,01 

PCV (%) 33.436±11.643 48.318±10.087 0,01 

Total protein (g/dL) 7.014±1.926 5.792±0.952 0,09 

Albumin (g/dL) 2.058±0.575 2.8±0.372 0 

BUN (mg/dL) 25.332±22.538 15.071±3.536 0,386 

Urea (mg/dL) 22.69±1.590 47.525±9.326 0,159 

Phosphorus (mg/dL) 4.06 (2.25/15.64) 4.4 (3.49/513) 0,781 

Creatinine (mg/dL) 0.640 (0.18/3.86) 1.15 (0.44/1.15) 0,043 

Triglyceride (mg/dL) 87.943 (41/115.940 70.481 (8/21.405) 0,905 

Cholesterol (mg/dL) 198.050±76.350 223.663±72.923 0,388 

ALP (U/L) 115.35 (13.10/2461.65) 46.198 (12/277.04) 0,153 

ALT (U/L) 61.385 (15/1472.24) 65.495 (39/100.17) 0,929 

LDH (U/L) 212.791±151.811 142.828±100.768 0,124 

WBC, PLT, ALP, ALT, BUN, phosphorus, creatinin, triglyceride = nonparametric (median (min/max); 

RBC, Hgb, PCV, albumin, globulin, LDH, total protein, urea, cholesterol = parametric (mean±std). 

 

 

Table 2. Concentrations in arbitrary units (median ± Median Absolute Deviation 

(MAD)) of metabolites and lipid fractions assigned in serum samples (both aqueous 

and organic extracts). Statistically significant adjusted P-value < 0.05 are also 

reported. 

Metabolites 
Diseased (n=92) 

(arbitrary units) 

Healthy (n=17) 

(arbitrary units) 

Adjusted P 

value 

Serum 

aqueous 

fraction 

 

(SWS) 

3-hydroxybutyrate 0.02 ± 0.01 0.02 ± 0.00  

3-hydroxyisobutyrate 0.01 ± 0.002 0.01 ± 0.002  

Acetate 0.385 ± 0.065 0.37 ± 0.08  

Alanine 0.1 ± 0.03 0.12 ± 0.03  

Citrate 0.07 ± 0.02 0.08 ± 0.02  

Choline 0.01 ± 0.00 0.02 ± 0.01  

Creatine 0.01 ± 0.005 0.007 ± 0.002  

Creatinine 0.03 ± 0.01 0.04 ± 0.01  

formate 0.07 ± 0.01 0.06 ± 0.01  

Glycine 0.04 ± 0.01 0.06 ± 0.015  

D-Glucose 0.18 ± 0.06 0.17 ± 0.065  

Isoleucine 0.02 ± 0.01 0.02 ± 0.005  

Lactate 1.015 ± 0.22 1.08 ± 0.255  

Leucine 0.05 ± 0.02 0.05 ± 0.01  

Phenylalanine 0.03 ± 0.02 0.04 ± 0.015  

Pyruvate 0.06 ± 0.01 0.08 ± 0.02  
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Tyrosine 0.02 ± 0.01 0.02 ± 0.01  

Valine 0.06 ± 0.02 0.07 ± 0.02  

 

Serum 

organic 

fraction 

 

(SLS) 

Cholesterol C(18)H3 0.011 ± 0.0033 0.0135 ± 0.002  

Cholesteryl ester 0.0016 ± 0.0005 0.048 ± 0.008  

Fatty acid -CH=CH-

CH2-CH=CH- 
0.0065 ± 0.002 0.011 ± 0.0032 

<0.05 (diseased 

versus healthy) 

Fatty acid -(CH2)n- 0.19 ± 0.05 0.245 ± 0.02  

Fatty acid -CH3 0.017 ± 0.005 0.022 ± 0.005  

Fatty acid -CH2-CO 0.0052 ± 0.0015 0.00735 ± 0.0012 
<0.05 (diseased 

versus healthy) 

Fatty acid =CH-CH2-

CH2 
0.016 ± 0.005 0.02 ± 0.002  

Glycerol backbone 
0.00051 ± 

0.00017 

0.00027 ± 

0.000225 

<0.05 (diseased 

versus healthy) 

Polyunsaturated fatty 

acids (18:2, bis allylic 

protons) 

0.0066 ± 0.0018 0.008 ± 0.0016  

Unsaturated fatty acid 

-CH=CH- 
0.034 ± 0.009 0.048 ± 0.008 

<0.05 (diseased 

versus healthy) 
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Table 3. Spearman’s rho correlation coefficients between metabolites/lipids concentrations and measured blood parameters of diseased 

animals. Positive correlation coefficient values higher than 0.60 are colored in light gray, while negative rho coefficients smaller than 0.60 are 

colored in dark gray.  

 

 WBC RBC HGB HCT PLT Albumin Globulin ALP ALT BUN P Creatinine LDH T. P Trigl Chol 

Alanine 0.06 0.14 0.18 0.18 0.07 0.04 -0.17 0.19 0.28 0.10 0.04 -0.01 0.38 -0.15 0.29 -0.07 

Valine 0.01 0.01 0.03 0.04 0.14 0.02 -0.10 0.03 0.14 0.33 0.21 0.03 0.25 0.00 0.22 -0.05 

Leucine 0.02 0.09 0.08 0.09 0.09 0.12 -0.25 0.05 0.19 0.15 0.12 -0.07 0.22 -0.10 0.16 0.00 

L-Isoleucine 0.02 -0.07 -0.06 -0.05 -0.03 0.11 -0.18 0.15 0.08 0.16 0.11 -0.10 0.22 -0.10 0.11 0.08 

Lactate 0.26 -0.08 -0.05 -0.05 -0.07 -0.23 0.14 0.30 0.19 0.14 0.07 0.02 0.30 0.08 0.29 0.06 

Acetate 0.17 0.05 0.05 0.02 0.14 -0.02 -0.25 0.17 0.53 -0.10 0.11 -0.03 0.29 -0.24 0.04 0.12 

Citrate 0.09 0.09 0.18 0.12 0.48 -0.07 0.09 -0.09 0.18 0.11 0.18 0.17 -0.07 0.11 -0.03 0.06 

Creatinine 0.31 0.11 0.18 0.16 0.14 -0.07 -0.06 -0.34 -0.03 0.20 0.23 0.58 0.03 -0.08 0.13 0.28 

Creatine 0.30 0.09 0.09 0.08 0.03 0.12 -0.42 -0.03 -0.17 0.25 0.06 0.20 0.16 -0.35 0.20 0.34 

L-Pyroglutamate -0.06 0.03 0.08 0.07 0.07 0.19 -0.14 -0.17 0.16 -0.29 -0.07 -0.15 0.07 -0.11 -0.14 -0.17 

D-Glucose 0.12 -0.25 -0.34 -0.32 -0.13 -0.35 0.04 0.05 0.07 -0.18 0.06 -0.28 0.21 -0.12 -0.08 -0.10 

3-Hydroxybutyrate -0.10 -0.24 -0.17 -0.20 0.27 -0.12 0.04 -0.10 0.18 0.20 0.27 0.01 -0.12 0.06 0.10 0.02 

Choline 0.18 0.06 0.03 0.05 0.17 0.09 -0.33 -0.06 -0.02 0.24 0.15 0.15 0.28 -0.31 0.21 0.13 

Glycine 0.12 -0.05 -0.05 -0.07 -0.19 0.07 -0.19 0.26 0.05 -0.11 -0.12 0.02 0.24 -0.25 0.31 0.24 

Tyrosine -0.05 0.28 0.30 0.27 0.01 0.05 -0.12 0.34 0.60 0.05 -0.09 0.03 0.25 -0.12 -0.01 0.15 

Phenyalanine 0.11 0.03 0.01 0.00 -0.11 -0.02 -0.22 0.24 0.39 0.02 -0.03 0.06 0.35 -0.24 0.28 0.42 

Xanthine -0.11 -0.36 -0.37 -0.39 -0.27 -0.23 -0.08 0.12 0.32 0.07 0.24 0.07 0.26 -0.24 0.17 -0.05 

Formate 0.11 -0.01 -0.02 -0.06 0.15 -0.08 -0.11 0.14 0.26 0.03 0.07 -0.19 0.27 -0.10 0.08 -0.03 

Pyruvate 0.06 0.30 0.31 0.31 0.19 0.35 -0.23 -0.07 0.01 -0.45 -0.18 -0.35 0.13 -0.17 -0.13 -0.04 

3-Hydroxyisobutyrate 0.13 -0.45 -0.42 -0.45 0.02 -0.34 0.19 0.12 0.17 0.44 0.31 0.20 0.12 0.28 0.25 -0.10 

Isobutyrate -0.06 0.07 0.10 0.07 -0.08 0.06 -0.11 0.03 0.19 -0.12 -0.05 -0.18 -0.01 -0.04 0.06 -0.17 

FAs-CH3 0.25 0.17 0.15 0.18 0.12 0.53 -0.61 -0.14 -0.22 0.16 -0.02 0.18 0.04 -0.56 0.16 0.70 
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FAs-(CH2)n- 0.20 0.14 0.10 0.14 0.07 0.58 -0.66 -0.13 -0.27 0.15 -0.05 0.06 0.13 -0.59 0.24 0.59 

FAs=CH-CH2-CH2 0.22 0.22 0.19 0.22 0.13 0.66 -0.71 -0.14 -0.23 0.14 -0.10 0.06 0.11 -0.59 0.21 0.60 

FAs-CH2-CO 0.22 0.26 0.23 0.25 0.21 0.58 -0.64 -0.15 -0.22 0.08 -0.03 0.12 0.05 -0.59 0.18 0.71 

PUFA 0.26 0.18 0.16 0.18 0.14 0.65 -0.69 -0.15 -0.22 0.15 -0.10 0.07 0.14 -0.57 0.24 0.61 

FAs-CH=CH-CH2-

CH=CH 
0.04 0.39 0.35 0.39 0.08 0.46 -0.69 -0.04 -0.06 0.19 0.05 0.12 0.08 -0.59 0.04 0.55 

Phosp-N(CH3)3- 0.17 0.24 0.21 0.25 0.08 0.58 -0.70 -0.13 -0.16 0.12 -0.01 0.11 0.14 -0.62 0.13 0.62 

Glycerol 0.11 -0.11 -0.17 -0.13 0.01 0.31 -0.48 -0.03 -0.02 0.43 0.13 0.01 0.22 -0.39 0.68 0.25 

Cholesteryl ester 0.25 0.22 0.22 0.24 0.16 0.54 -0.57 -0.14 -0.22 0.13 -0.06 0.16 0.01 -0.52 0.14 0.69 

UFA-CH=CH 0.18 0.28 0.24 0.27 0.11 0.62 -0.72 -0.08 -0.18 0.12 -0.08 0.07 0.13 -0.61 0.20 0.64 

Chol (C18)H3 0.27 0.15 0.13 0.16 0.11 0.49 -0.61 -0.16 -0.17 0.19 0.01 0.22 0.07 -0.57 0.18 0.70 

*Abbreviations: Trigl: Triglycerides; Chol: Cholesterol; T. P: Total Protein; FAs: Fatty Acids; PUFA: Polyunsaturated fatty acids; UFA: unsaturated fatty acids; Phosp: Phospholipids 
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Figures 

 
Figure 1 (a – c). Principal component analysis (PCA) score plots. Each dot represents 

a single 1H-NMR spectrum. Diseased animals (n=92) are represented in orange, while 

the healthy (n=17) in blue. The variance related to the first principal component (PC1) 

is reported in the X-axis, while the variance related to the second principal component 

is reported in the Y-axis. a) PCA on bucketed 1D NOESY spectra of serum aqueous 

fractions; b) PCA on bucketed 1D NOESY spectra of serum organic fractions; c) PCA 

on bucketed 1D CPMG spectra of serum aqueous extracts.  



| 242 

 
Figure 2 (a – b). Graphical representations of correlation matrices between 

metabolites (a), lipid fractions (b) (reported in the rows) and blood parameters 

(reported in columns). Only glyphs that are representatives for a statistically significant 

correlation (P-values < 0.05) are reported and coloured following a gradient that 

ranges from dark red to dark blue according to Spearman’s rho correlation coefficients 

from -1 to +1. 
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4.3. NMR data pre-processing for metabolomic fingerprinting 
 

Most NMR-based metabolomic studies, especially in the clinical setting, are 

performed with large number of samples. Some differences between samples groups 

may be due to biology, to experimental measurements or to their combined effects 

which are not of interest or which might interfere with the subsequent statistical 

analysis. Data pre-processing methods allow the reduction of this variability, but 

depending on the biological problems at issue, not all data pre-processing techniques 

(e.g. spectral bucketing, alignment etc.) are equally able to keep all the necessary 

biological information to classify samples, i.e. to perform sample fingerprinting, or to 

identify new biomarkers when a profiling approach is chosen.  

During past years, different mathematical approaches were developed to pre-treat 

NMR data, after their acquisition as raw data. Among them, the equidistant bucketing 

represents an efficient pre-processing method to reduce the total number of variables 

by dividing NMR spectra into small buckets, typically spanning 0.02 – 0.04 ppm, also 

in the light of the availability of more computational power to analyse full spectra. 

Recently, since most medical and food analyses require quantifiable properties, 

bucketing became less important, while the interest in the profiling approach continued 

to grow. Maybe, a bit confusion arose between the specific aim of the two distinct 

approaches of untargeted analyses (i.e. fingerprinting and profiling) and relative tools 

to achieve them. Indeed, criticisms on the main drawbacks of bucketing for profiling 

analyses have been implicitly extended to the fingerprinting ones.  

In the study proposed in this PhD thesis, we demonstrated that equidistant bucketing 

does represent the most appropriate and recommended pre-processing procedure for 

the performance of NMR-based metabolomics fingerprinting (§ 4.3.1). This was 

possible through the evaluation of how different ways to perform the equidistant 

bucketing of 1D 1H-NMR spectra could affect the results of NMR-based metabolomic 

fingerprinting analysis and how the subsequent pattern recognition performance (using 

the Random Forest algorithm)80 could be impacted. These key-points were addressed 

using large datasets of serum 1D NOESY/1D CPMG NMR spectra; urine 1D NOESY 

spectra, and estimating the effects, on the final accuracy of sample classification, of i) 

shifting the buckets boundaries, as many times as the number of spectral points in a 

0.02 ppm segment, with the consequent shift of all adjacent data points, and ii) 

changing the bucket widths. The sensitivity of PCA score and loadings plot on binning 

details (i.e. change of bucket size and boundaries) was also reported for both sample 

datasets. Non uniform binning is also compared. 

Globally, our results showed that, in the case of both serum 1D NOESY and 1D CPMG 

experiments, the location of bucket boundaries does not influence the classification of 

samples to the right category. By modifying the size of equidistant bucket widths, it 

seems that converting 1D NMR spectra into matrices of buckets with size increasingly 

smaller or bigger that the usual 0.02 ppm size, down to using full resolution spectra, 

provides only marginally better accuracy values. On the other hand, we can clearly 

demonstrate that final resolutions of multivariate statistical analyses can be strongly 
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affected by the use of bucketed spectra into segments larger than 0.4 ppm. Instead, 

challenging the large urine dataset (a total of 1167 samples), we found that changes in 

the position of segments boundaries do not significantly affect the pattern recognition, 

as already demonstrated for the serum dataset. After varying the buckets widths, 

discrimination accuracies between the subjects remain similarly high, with the 0.01, 

0.02 and 0.04 ppm bucketing actually providing the best results. This means that, 

despite urines present a larger shift variability, for their fingerprinting, equidistant 

bucketing is able to keep all the necessary information, including the one encoded in 

the chemical shifts data.  

With respect to the classical equidistant bucketing procedure, results obtained after 

applying an optimized bucketing are comparable. Moreover, PCA analysis, carried out 

on selected bucket matrices obtained after shifting bucket boundaries, changing the 

bucket width or using optimized bucket matrices, showed that the global shape of the 

respective score and loadings plots resulted to be almost the same, with only minor 

differences, finally corroborating the hypothesis that although binning parameters are 

changed, the clustering of sample cohorts remains unaffected.  

As suggested by a reviewer of the presented manuscript, we also evaluated how the 

bucketing procedure behaves when, in an extreme case, only one single NMR signal 

serves as discriminating feature. To discuss this point, we created a very simple 

artificial dataset of one-hundred simulated 600 MHz 1H NMR spectra, hypothesizing 

the existence of two distinct groups (A and B) discriminated by the different area of a 

singlet resonating in the interval 7.19-7.16 ppm. While for group B (low area, let’s say 

“healthy”) the singlet shift in the interval 7.19-7.175 ppm, for group A (high area, let’s 

say “diseased”) the singlet shifts follow two uniform distributions, one spanning the 

interval 7.19-7.175 ppm (group A1) and the other spanning the interval 7.18-7.16 ppm 

(group A2). Thus, while the “biomarker” amount clearly differentiates between 

“healthy” and “diseased”, the latter are also characterized by a more pronounced shift 

of the signal, that, in our metaphor, could represent different “manifestations” of the 

disease. If we want to accurately integrate the peak to quantify the “biomarker”, we 

undoubtedly need to chase it along the ppm axis. However, in doing so, we lost the A1 

and A2 separation, neglecting other (maybe “clinically” relevant) information. The 

same is true if we forcefully align the spectra before multivariate statistics. 

The application of a fingerprinting approach, based on an unsupervised analysis (PCA) 

and a supervised one (Random Forest algorithm), on the equidistantly bucketed 

simulated spectra, confirmed our hypothesis, that was further validated, by repeating 

the multivariate analysis on the same dataset, but after applying the non-uniform 

bucketing algorithm.  

To recap, the proposed study shows that, although small perturbations in NMR 

chemical shifts can complicate the recovery of biomarker data, they could be pivotal 

in characterizing the whole fingerprint, especially in complex biological matrices, like 

urine samples. In other words, if some spectra are characterized by systematic shifts 

of some peaks, this is an information that constitutes an integral part of the fingerprint 

of that spectra. Because it could be due to biological reasons, it cannot be a priori 
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neglected. To this perspective, we advocate that to perform NMR fingerprinting, the 

equidistant bucketing represents the optimal procedure to follow, avoiding alternative 

procedures, such as for example, the segmental alignment. 

Translating these results for future perspectives, we can also advocate a hypothetical 

role of NMR-based metabolomics fingerprinting performance using low-resolution, 

low-field NMR spectroscopy, because a bucketed high-field NMR spectrum is, to a 

certain extent, a simulation for an NMR spectrum acquired at low-field, since 

bucketing is a procedure that intrinsically degrades the spectral resolution, but 

apparently still provides relevant results for fingerprinting.  
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4.3.1. Simple equidistant bucketing as robust and recommended procedure for 

NMR-based metabolomic fingerprinting 
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Abstract 

 

Equidistant bucketing of NMR spectra represents a common procedure used 

for metabolomic fingerprinting. However, since most medical and food analyses 

require quantifiable properties, bucketing has been progressively abandoned, while the 

interest in profiling increased. Perhaps, a bit of confusion arose between the specific 

aim of a fingerprinting and a profiling approach and relative tools to reach them. 

Indeed, criticisms on the main drawbacks of bucketing for profiling analyses have been 

implicitly extended to the fingerprinting approach, also in the light of the availability 

of more computational power to analyse full datapoints in the spectra. Here, we show 

that equidistant bucketing does represent the most appropriate and recommended pre-

processing procedure for NMR-based metabolomics fingerprinting. To do so, we 

evaluated how different ways to perform the equidistant bucketing of the spectra could 

affect the results of NMR-based metabolomic fingerprinting analysis and how the 

subsequent pattern recognition performance could be impacted. We address these key-

points using large datasets of serum and urine NMR spectra and estimating the effects, 

on the final accuracy of sample classification, of i) shifting the buckets boundaries 

with the consequent shift of all adjacent data points, and ii) changing the bucket widths. 

Non uniform binning is also compared. Obtained results confirm the robustness and 

the efficiency of the equidistant bucketing procedure, and support its use, especially in 

the case of urine, whose shifts are significantly variable, as the most adequate pre-

processing method to preserve all the necessary information to perform NMR 

fingerprinting and sample classification. 

 

Introduction 

 

 NMR spectroscopy represents a powerful, versatile and reproducible technique 

for the analysis of complex biological matrices because any biological molecule 

containing one or more atoms with a non-zero magnetic moment is theoretically 

detectable by NMR.1 Therefore, virtually all biologically relevant molecules are 

characterized by at least one NMR signal with a specific intensity, frequency (or 

chemical shift) and magnetic relaxation properties, all reflecting the chemical 

environment surrounding the detected nucleus.2  

In a high-throughput vision of metabolomic analysis, the very high reproducibility, the 

minimal sample preparation required, and the possibility to simultaneously detect all 

metabolites presenting NMR active nuclei3, make NMR spectroscopy one of the most 

suitable techniques for the analysis of any type of biological matrix, enabling the rapid 

and global evaluation of an NMR spectrum in its entirety (sample fingerprinting) or 

the determination of the concentrations of all metabolic features that are above the 

detection limit (sample profiling)1 (Figure 1). 

When NMR is applied to profiling, the intrinsic µM detection limit of 1H-NMR turns 

into the possibility to ideally measure concentrations of many metabolites, according 

to the biological matrix under study. However, the number of molecules quantifiable 
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via profiling is significantly lower than that contributing to the fingerprint (typically 

<50% in the case of urine)4 of the sample, and the spectral processing, necessary to 

deconvolute 1D NMR spectra to obtain concentrations, may not be completely 

automated and straightforward.3  

As the matrix of biofluids, especially urine, is variable, the local environment of 

protons also differs and many parameters, e.g. changes of pH, salt concentration, 

overall dilution of sample, relative concentration of metabolites, can affect the results 

of profiling.5 Since all these parameters can influence the shift of many NMR signals, 

different mathematical approaches were developed over the years with the main aim 

to overcome these problems, to align the peaks, to integrate and to quantify them. 

On the other hand, NMR fingerprinting of samples can be obtained by manipulating 

NMR spectra after their transformation into data matrices. The procedures most 

commonly used to convert spectra into data matrices are the so-called “bucketing” or 

“binning” methods, which allow the integration of NMR spectra within small spectral 

regions, called “buckets” or “bins”. Many sophisticated algorithms exist to bin 1D 

NMR spectra. The most commonly and simply used is the equidistant binning of 0.02-

0.04 ppm5,6, which allows the division of the spectrum into evenly spaced integral 

regions with a fixed spectral width. 

However, some practitioners argue about the presence of significant difficulties in the 

analysis of NMR spectral data after their transformation into bucketed matrices, i.e. 

the susceptibility to inter-sample chemical shift variations occurring even when ionic 

strength and pH are well-controlled, especially in the case of urine,7 while other 

authors believe that strong shifts may lead to non-corresponding peaks incorrectly 

ending up in the same bin.8 Then, there are also experts that reinforce the idea that loss 

of spectral resolution, intrinsic to the bucketing procedure, can introduce strong 

artefacts on the border of buckets boundaries.4,5 Moreover, despite the simplicity of 

performing equidistant bucketing, criticisms were made on the main drawback of this 

method: the absence of adaptability of the bin boundaries. Indeed, some authors retain 

that if a peak is divided between two bins, small differences in peak frequency among 

different samples may significantly affect the subsequent data analysis.5,6,8 To deal 

with these problems, alternative methods, based on non-equidistance arrangement, e.g. 

adaptive-intelligent binning,9 Gaussian-binning,10 adaptive-binning through wavelet 

transform11 and dynamic adaptive binning,12 have been proposed, while some 

practitioners prefer to work using full resolution spectra, totally excluding the use of 

binning methods, but proposing algorithms able to rapidly align NMR peaks, thus 

assuring the comparability of NMR peaks across multiple spectra.8,13 

Although these last methods have been developed for NMR profiling, for which they 

are valid and highly recommendable, they have been progressively considered to be 

superior to the simple equidistant bucketing even in the framework of fingerprinting 

analyses. Perhaps a bit of confusion is born between the aim (and the tools employed 

to reach it) of a fingerprinting and a profiling approach.  

Indeed, spectral alignment procedures greatly simplify the identification, 

quantification, and comparison of the same peak, from the same compound, across 
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multiple NMR spectra. The application of these algorithms fits well when the 

untargeted NMR-based metabolomic analysis is planned via a “profiling” strategy to 

research biomarker information related to all quantifiable metabolites in a biological 

sample. Conversely, for fingerprinting purposes, the whole NMR spectrum constitutes 

the “fingerprint” of the sample and alignment processes can hide important 

information encoded in chemical shift data, regarding for example, pH, ionic strength 

and metal ion complement that can be characteristics for the sample under study 

(especially in the case of urine). Therefore, although small perturbations in NMR 

chemical shifts can complicate the recovery of biomarker data, they could be pivotal 

in characterizing the whole fingerprint, especially in complex biological matrices. In 

other word, if some spectra are characterized by systematic shifts of some peaks, this 

is an information that constitutes an integral part of the fingerprint of that spectra. 

Because it could be due to biological reasons, it cannot be a priori neglected. To this 

perspective, we advocate that to perform NMR fingerprinting, the equidistant 

bucketing represents the optimal procedure to follow. 

Thus, this paper aims to demonstrate that to perform NMR-based metabolomic 

fingerprinting, it is not necessary to use pre-processing techniques other than simple 

equidistant bucketing. Indeed, here we prove the robustness, the efficiency and the 

uniqueness of the equidistant bucketing procedure for NMR-based “fingerprinting” of 

biological samples by evaluating how sample classification is largely unaffected when 

using different ways of performing the bucketing of 1D NMR spectra. We trust that 

the present work will avoid future misunderstandings or non-specific criticisms on the 

use of this technique to process NMR data for metabolomic fingerprinting purposes. 

 

Material and Methods 

 

In this study, we used 1D 1H NOESY and 1D 1H CPMG NMR spectra of serum 

samples from the AMI-Florence II cohort (for a total of 126 samples) and 1D 1H 

NOESY spectra from the first and the second MetRef urine collection (for a total of 

1167 samples). Detailed procedures on how samples were collected and prepared are 

reported in the respective original publications,14–17 while a brief summary of the 

acquisition and processing parameters of related NMR experiments are listed in the 

Supporting Information (Table S1).  

For both datasets, buckets matrices were obtained as described below. 

Through an R18 in-house developed script, 131 equidistant bucket tables, using 0.02 

ppm bucket width, were respectively generated for serum 1D CPMG and urine 1D 

NOESY experiments, by subsequently starting the bucketing procedure one point 

rightmost (first one starting at 10 ppm, final one starting at 9.98 ppm), and ending 9.78 

ppm afterwards (first one ending at 0.22 ppm, final one ending at 0.2 ppm. See Figure 

2 for an overview of the procedure. Using the same approach, 87 equidistant bucket 

tables were generated for serum 1D NOESY experiments. More specifically, for serum 

1D NOESY spectra, a shift of one point corresponds to 0.14 Hz, while for serum 1D 

CPMG and urine 1D NOESY spectra, one point-shift corresponds to 0.092 Hz.  



Results | 251 

Further, for the experiments using different bucket size, each 1D spectrum, in the range 

of 0.2-10.0 ppm, was segmented into equidistant buckets of different widths (i.e. 

0.001, 0.002, 0.004, 0.01, 0.02, 0.04, 0.1, 0.2, 0.4, 1 ppm) and the corresponding 

spectral areas were integrated through AMIX software (version 3.8.4, Bruker 

BioSpin); obtaining a total of ten data matrices that were used for feeding statistical 

algorithms. Full resolution spectra were also used (131072 data points for both serum 

1D-NOESY/CPMG spectra and urine 1D-NOESY spectra). 

All serum and urine 1D 1H-NMR spectra were also bucketed applying an optimized 

bucketing method proposed by Sousa et al.19 Briefly, this method optimizes buckets 

sizes by setting their boundaries at the local minima determined by the average NMR 

spectrum. 

In all cases, the residual H2O signal was removed for serum 1D NMR spectra (region 

between 4.5 to 5.1 ppm), while regions between 4.5 and 6.2 ppm, containing residual 

H2O and urea signals, were excluded for urine spectra. 

Serum bucket matrices and full resolution spectra have been used without 

normalization, while total area and PQN20 normalizations were applied in the case of 

urines.  

All generated data matrices and full resolution spectra of serum and urine samples 

were employed for multivariate analysis. Firstly, unsupervised Principal Component 

Analysis (PCA) was applied on full resolution spectra and on both equidistant and 

optimized bucket matrices to explore the sensitivity of score and loadings plots on 

binning details (i.e. bucket boundaries and different width). Secondly, samples 

classification was performed using the Random Forest algorithm21–23 (R package 

“RandomForest”)24 on all available data. In particular, for the serum dataset, 

discrimination accuracies were established using the settings reported in the original 

publication of Vignoli et al.17 Instead, for urine samples, predictive accuracies for the 

individual discrimination of the 31 healthy donors were estimated after building a 

forest with 5000 trees, applying the default settings of the “Random Forest” function. 

 

Results and Discussion 

 

 To demonstrate the robustness of the equidistant bucketing procedure to 

perform NMR-based metabolomic fingerprinting, a study on two large datasets of 600 

MHz 1H-NMR spectra of serum and urine samples was carried out. 

In detail, we planned to test the hypothesis that transforming NMR spectra in data 

matrices through simple equidistant bucketing represents a highly recommendable 

way to obtain an efficient sample classification in relation to different biological 

conditions,3,4 when the fingerprinting approach is chosen as the analytical strategy; we 

want to show that bucketing retains all the necessary information, also including the 

one encoded in chemical shifts data, to highlight the presence of clusters among 

samples under study, despite an intrinsic resolution loss.  

To this aim, we used two different schemes to challenge the simple equidistant 

bucketing procedure. The first strategy is based on evaluating the impact of shifting 
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the boundaries of each equidistant bucket by point-to-point horizontal translations. The 

reason of this test is to explore how the position of bucket boundaries may influence 

multivariate statistical discrimination models. In practice, we want to understand to 

which extent the subdivision of peaks or multiplets across different buckets may affect 

the classification performance of the final model.  For this purpose, buckets have been 

shifted one point at a time across the usual bucket width of 0.02 ppm. In other words, 

for each dataset, we obtained as many NMR data matrices as the number of data points 

in a 0.02 ppm bucket. Then, each data matrix was employed to perform PCA analysis 

and pattern recognition using the Random Forest algorithm.  

As a second approach, we evaluated the effect of varying the commonly used 

equidistant bucket width of 0.02 ppm on PCA score and loadings plots and on final 

sample classification, starting from using full resolution spectra to NMR spectra 

segmented into buckets of increasing size, up to 1 ppm buckets.  

Our hypotheses were demonstrated starting from considering a set of one-hundred and 

twenty-six 600.04 MHz 1D-NOESY and 1D-CPMG spectra of serum samples from 

the AMI-Florence II cohort,17 where patients who died within two years after acute 

myocardial infarction are discriminated from survivors with a predictive accuracy 

higher than 70%.17 

Since 1D NOESY and 1D CPMG spectra reflect different information related to the 

biological components of samples, we generally expected that statistical models built 

on bucketed CPMG or NOESY spectra perform differently in terms of discrimination 

accuracies. However, for both types of experiments, the shift of buckets boundaries 

and consequently of all adjacent data points, as many times as the number of spectral 

points in a 0.02 ppm segment, leads to the achievement of different Random Forest 

based classification models all having very similar accuracy values (Figure 3 and 

Figure 4). Therefore, regardless of the use of the 1D-NOESY or 1D-CPMG 

experiments, the location of bucket boundaries does not influence the classification of 

samples to the right category (in this specific case, survivors and deceased patients).  

On the other hand, observing the results obtained after modifying the size of 

equidistant bucket widths (Figure 5 and Figure 6), it seems that converting NMR 

spectra into matrices made of increasing number of buckets with size increasingly 

smaller than the usual 0.02 ppm size, down to using buckets made of single datapoints, 

i.e. using the full resolution spectra, provides only marginally better accuracy values. 

These results can be considered reasonable taking into account random errors. 

Conversely, we can clearly demonstrate that final resolutions of multivariate statistical 

analyses can be strongly affected by the use of bucketed spectra into segments of 0.4-

1.0 ppm (Figure 5 and Figure 6). 

The strength and the robustness of equidistant bucketing for NMR metabolomic 

fingerprinting is even better demonstrated in the case of urine. To this aim, the analysis 

was carried out using a large cohort of samples from the first and the second MetRef 

collection,14,15 selecting a total of one-thousand one-hundred sixty-seven urine 1D-

NOESY spectra, collected from thirty-one healthy donors. The individuals are 

recognised from their urine samples with over 95% accuracy, using the Random Forest 
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algorithm. In previous works,14–16 the spectra were converted into 0.02 ppm equidistant 

buckets to obtain a matrix containing intensity-based descriptors of the original 

spectrum, and this strategy proved to be effective in discriminating individuals. 

However, the robustness of this data processing step was not previously assessed.  

Interestingly, in this new study, when using data matrices obtained by shifting all the 

buckets one point at time, the thirty-one healthy donors can be always discriminated 

with accuracies higher than 95% (Figure 7). Despite each final classification model 

has a different predictive accuracy value, a slightly oscillation of the global predictive 

accuracies around a same average value is observed (Figure 7).  

These small variations of final results can be explained since each used data matrix 

differs by the position of buckets boundaries, thus giving rise to a slightly different 

final discrimination accuracy of the related predictive statistical model. However, what 

emerges is that, despite these small changes in the final performances of classification 

models, all calculated discrimination accuracies are comparable, demonstrating, first 

of all, the efficiency and robustness of the bucketing technique itself in carrying out 

NMR fingerprinting of urine samples. Moreover, these results highlight that 

modifications in the positions of segments boundaries do not significantly affect final 

classification and pattern recognition in the case of urine, as already demonstrated for 

the serum dataset.  

Crucial interesting information were obtained after evaluating the effect of varying the 

buckets widths. In detail, using the Random Forest algorithm, different multivariate 

statistical models were built to discriminate healthy donors considering full resolution 

spectra and bucketed spectra that were equidistantly segmented into different bucket 

widths of 0.001, 0.002, 0.004, 0.01, 0.02, 0.04, 0.1, 0.2, 0.4 and 1 ppm, respectively 

(Figure 8). 

What is worth of noting in our results is that, through the equidistant bucketing of 

NMR spectra into narrower segments (from 0.04 ppm bucket size down to full 

resolution spectra), discrimination accuracies remain similarly high, with the 0.01, 

0.02 and 0.04 ppm bucketing actually providing the best results (Figure 8). This means 

that, despite urines present a larger shift variability, for their fingerprinting, equidistant 

bucketing is able to keep all the necessary information, including the one related to the 

position of NMR peaks. 

Actually, urine peak shifts are an important source of chemical information to be 

considered for sample fingerprinting, but they can complicate the assignment and the 

quantification of urine metabolites signals. In this last perspective, in past years, urine 

peak shifts have been also successfully exploited, by our group, to derive 

interrelationships between concentrations and chemical shifts in urine.25  

The robustness of equidistant bucketing was further assessed by comparing 

discrimination accuracies obtained after equidistantly bucketing all serum and urine 

NMR spectra into 0.02 ppm buckets with bucket matrices obtained after applying an 

optimized bucketing approach.19 The latter was possible starting from considering, for 

both sample datasets, bucket widths of 0.02 ppm and then determining, through the 

definition of the “slackness”, how far the bin boundaries can move by adjusting them 
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to local minima determined through the average NMR spectrum, in order to provide 

optimized bucket matrices of different sizes.  

Using the above-described method, three different optimized bucket matrices with 

slackness of 25%, 50% and 75% have been generated for both serum 1D NOESY and 

1D CPMG spectra. Applying the Random Forest algorithm on optimized bucketed 

NOESY spectra, serum samples were classified with predictive accuracies of 68%, 

68.2% and 67.2% when a slackness of 25%, 50% and 75% has been respectively used. 

Instead, 1D-CPMG predictive models, built with the same optimized data matrices, 

reported accuracies of 73.3%, 74.1% and 74.30%. With respect to the predictive 

accuracies of 67.7% and 73.8%, obtained respectively for 1D-NOESY and 1D-CPMG 

statistical models when a classical equidistant bucketing of 0.02 was performed; results 

obtained after applying an optimized bucketing are comparable.  

We derived the same observations in the case of the urine dataset; indeed, using the 

three optimized buckets matrices with slackness of 25%, 50% and 75%, healthy donors 

were correctly recognised with predictive accuracies of 97.1%, 96.9% and 96.6%, with 

respect to the overall predictive accuracy of 96.6%, obtained after feeding the 

statistical algorithm with an equidistant bucket matrix of 0.02 ppm segments.   

PCA analysis, carried out on selected bucket matrices obtained after shifting bucket 

boundaries, changing the bucket width or using optimized bucket matrices, showed 

that the global shape of the respective score and loadings plots resulted to be almost 

the same, with only minor differences, finally corroborating the hypothesis that 

although binning parameters are changed, the clustering of sample cohorts remains 

unaffected. Selected PCA score and loadings plot are reported in the Supporting 

Information (Figure S1-S6).  

In the light of the out-turn, we recommend users to check the effect of varying the 

binning parameters on their own analysis to better enhance the peculiarities of the used 

dataset. However, as demonstrated by our results, binning spectra into 0.02 or 0.01 

ppm segments appears as a reasonable choice for the performance of NMR 

fingerprinting analysis.  

Before concluding, as suggested by a reviewer of this manuscript, we evaluated how 

the equidistant bucketing procedure impacts the clustering of samples, when, in an 

extreme case, only one single NMR signal characterizes the fingerprint of the samples, 

i.e. it serves as a discriminating feature. To discuss this point, we created a very simple 

simulated dataset of one-hundred 600 MHz 1H NMR spectra (see Supplementary 

Figure S7 and its caption), hypothesizing the existence of two groups (A and B) 

discriminated by the different area of a singlet resonating in the interval 7.19-7.16 ppm. 

While for group B (low area, let’s say “healthy”) the singlet shift in the interval 7.19-

7.175 ppm, for group A (high area, let’s say “dis-eased”) the singlet’s shift follows 

two uniform distributions, one spanning the interval 7.19-7.175 ppm (group A1) and 

the other spanning the interval 7.18-7.16 ppm (group A2). Thus, while the “biomarker” 

amount clearly differentiates between “healthy” and “diseased”, the latter are also 

characterized by a more pronounced shift of the signal, that, in our metaphor, could 

represent different “manifestations” of the disease. If we want to accurately integrate 
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the peak to quantify the “biomarker”, we undoubtedly need to chase it along the ppm 

axis. However, in doing so, we lost the A1 and A2 separation, neglecting other (maybe 

“clinically” relevant) information. The same is true if we forcefully align the spectra 

before multivariate statistics.   

Using a fingerprinting approach based on an equidistant bucketing into 0.02 ppm 

segments, PCA analysis clearly evidenced the presence of three different clusters, with 

“diseases” well separated from “healthy”, but also showing the presence of two 

subgroups corresponding to A1 and A2 samples (Figure S7 B). Further, a supervised 

Random Forest analysis performed on the same bucket matrix is able to discriminate 

the three groups with an accuracy of about 90%. 

To further stress this point we applied the optimized bucketing algorithm (0.02 ppm) 

with slackness of 50% and 75% to the same artificial dataset (Figure S7 C and D). As 

expected, the information about sub-groups A1 and A2 is masked by the bucket’s 

variable size that is increased as much as possible to include the signal in only one 

bucket.  

In conclusion, all these results show that peak shifts are characteristics for sample 

classification and the equidistant bucketing succeed in maintaining the information 

encoded in the chemical shifts data; conversely, having aligned spectra, this peculiar 

information would have been completely lost. 

 

Conclusions 

 

  In summary, we can state that, independently of the type of biofluid under 

analysis and with respect to an optimized procedure of the spectral bucketing, the 

equidistant bucketing processing is as simple as robust to perform the NMR finger-

printing of biological samples. Relevant differences are not highlighted between PCA 

score/loadings plots and classification accuracies obtained using full resolution spectra 

or segmented NMR spectra into narrower buckets in the case of serum; while the 

transformation of NMR data spectra into a smaller set of variables is actually optimal 

for urine fingerprinting. The results achieved in this paper also highlight the main 

drawback related to the application of the bucketing procedure: the consistent loss of 

spectral resolution using buckets larger than 0.4 ppm, but at the same time, they can 

be interpreted as new perspective. 

Indeed, it is known that the reduction of spectral resolution can substantially affect 

final performances in NMR sample profiling (where the aim is to assign and integrate 

individual signals), but our results suggest that the same statement is not valid for 

NMR fingerprinting. Thus, translating the results in terms of future perspectives, we 

can advocate a hypothetical role of NMR-based metabolomic fingerprinting 

performance using low-resolution, low-field NMR spectroscopy, because a bucketed 

high-field NMR spectrum is, to a certain extent, a mock for an NMR spectrum acquired 

at low-field. As an example, using bucket widths of 0.1 or 0.2 ppm for both serum and 

urine sample classification, we obtained predictive models where the information 

retrieved from the fingerprint is still (sub-optimally) maintained. 
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In other words, since bucketing is a procedure that intrinsically degrades the spectral 

resolution, but apparently still provides relevant results for fingerprinting, it may not 

be always mandatory to perform metabolic fingerprinting using high resolution 

spectra. Thus, since some authors suggest the possible role for small benchtop low-

field NMR instruments in biofluid analysis for point-of-care applications,26 our 

findings confirm the possibility of performing fast and cheap low-field fingerprinting 

of diseases, especially in areas where availability, accessibility and affordability of 

common and more expensive analytical techniques are not granted. Of course, these 

considerations are not valid for metabolic profiling: to accurately assign and quantify 

as many metabolites as possible, the high resolution and the high sensitivity typically 

obtained at high field are indeed needed.   
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Figure 1. Different untargeted metabolomic approaches using NMR spectroscopy. 

Fingerprinting is used to globally evaluate all of the features of a bucketed spectrum, 

without identifying single metabolites, but the whole fingerprint of the sample. Instead, 

profiling deals with the quantification of concentrations of all metabolites above the 

µM detection limit. Figure adapted from ref3. 
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Figure 2. Graphical representation of the procedure followed to obtain as many shifted NMR bucket tables as the number of data points in a 

0.02 ppm bucket. 131 shifted NMR data matrices were respectively generated for urine 1D NOESY spectra and serum 1D CPMG spectra, 

by subsequently starting the bucketing procedure one point rightmost: first one starting at 10 ppm, final one starting at 9.98 ppm (bold 

numbers in black), and ending 9.78 ppm afterwards: first one ending at 0.22 ppm and the final one ending at 0.2 ppm (bold numbers in black). 

On the right side of the figure, an enlargement better represents the procedure followed. The same procedure was then applied to obtain 87 

shifted NMR data matrices in the case of serum 1D NOESY experiments. 
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Figure 3. Trend of predictive accuracies (y axis) of classification models calculated 

for each data matrix shifted point by point (x axis), in the case of the 1D CPMG NMR 

spectra of the serum dataset. Classification models and relative accuracies have been 

estimated using the Random Forest classifier. 

 

 
 

Figure 4. Trend of predictive accuracies (y axis) of classification models calculated 

for each data matrix shifted point by point (x axis), in the case of the 1D NOESY NMR 

spectra of the serum dataset. Classification models and relative accuracies have been 

estimated using the Random Forest classifier. 
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Figure 5. Histogram indicating the trend of the predictive accuracies calculated for 

serum samples classification using full resolution NMR spectra and spectra bucketed 

into different equidistant bucket widths (reported on the x axis). All data refer to 1D-

CPMG experiments. 

 

 
 

Figure 6. Histogram indicating the trend of the predictive accuracies calculated for 

serum samples classification using full resolution NMR spectra and spectra bucketed 

into different equidistant bucket widths (reported on the x axis). All data refer to 1D-

NOESY experiments. 
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Figure 7.  Trend of predictive accuracies (y axis) of classification models calculated 

for each data matrix shifted point by point (x axis), in the case of the urine dataset. 

Classification models and relative accuracies have been estimated using the Random 

Forest algorithm (number of forest tree = 5000). 

 

 
 

Figure 8. Histogram indicating the trend of the predictive accuracies calculated for 

urine samples classification using full resolution NMR spectra and spectra bucketed 

into different equidistant bucket widths (reported on the x axis). 
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Supplementary Material 

 

Table S1. Summary of acquisition and processing parameters of urine 1D-NOESY 

experiments, serum 1D-NOESY and 1D-CPMG experiments. 

 

URINE - 1D NOESY 

Acquisition parameters Processing parameters 

Size of fid 65536 Size of real spectrum 131072 

Number of dummy scans 4 Spectrometer frequency (MHz) 600.13 

Number of scans 64 Apodization window function Exponential multiplication (em) 

Spectral width (ppm) 20.0276 Line broadening for em (Hz) 1.00 

Acquisition time (sec) 2.73 
  

Mixing time (sec) 0.1 
  

relaxation delay (sec) 4 
  

Fid resolution (Hz) 0.37 
  

Dwell time (µsec) 41.6 
  

SERUM - 1D NOESY 

Acquisition parameters Processing parameters 

Size of fid 98304 Size of real spectrum 131072 

Number of dummy scans 4 Spectrometer frequency (MHz) 600.04 

Number of scans 64 Apodization window function Exponential multiplication (em) 

Spectral width (ppm) 30.0459 Line broadening for em (Hz) 1.00 

Acquisition time (sec) 2.73 
  

Mixing time (sec) 0.01 
  

relaxation delay (sec) 4 
  

Fid resolution (Hz) 0.37 
  

Dwell time (µsec) 27.73 
  

SERUM - 1D CPMG 

Acquisition parameters Processing parameters 

Size of fid 73728 Size of real spectrum 131072 

Number of dummy scans 4 Spectrometer frequency (MHz) 600.04 

Number of scans 64 Apodization window function Exponential multiplication (em) 

Spectral width (ppm) 20.0306 Line broadening for em (Hz) 1.00 

Acquisition time (sec) 3.07 
  

Mixing time (sec) 0.01 
  

relaxation delay (sec) 4 
  

Fid resolution (Hz) 0.37 
  

Dwell time (µsec) 27.73 
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Figure S1. PCA 3D score and loading plots obtained after shifting the bucket 

boundaries of one (A-A1), sixty-five (B-B1) and one-hundred thirty-one (C-C1) points 

with respect to the first starting point at 10.0 ppm, for serum 1D-CPMG spectra. In the 

score plots (A, B, C), each dot represents the serum 1D-CPMG bucketed spectrum, 

colour-coded by the group of subjects (red = dead; blue = survived). In the loadings 

plot (A1, B1, C1), loadings of the first component (PC1) are plotted against each 

related ppm.   
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Figure S2. PCA 3D score and loading plots obtained for serum 1D-CPMG spectra, 

after using full resolution spectra (A, A1), bucketed spectra into 0.002 ppm segments 

(B, B1) and 0.2 ppm segments (C, C1). In the score plots (A, B, C), each dot represents 

the serum 1D-CPMG bucketed spectrum, colour-coded by the group of subjects (red 

= dead; blue = survived). In the loadings plot (A1, B1, C1), loadings of the first 

component (PC1) are plotted against each related ppm.   
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Figure S3. PCA 3D score and loading plots obtained after equidistantly bucketing 1D-

CPMG serum spectra into 0.02 ppm segments (A, A1), and after applying an optimized 

bucketing procedure, starting from a bucket width of 0.02 ppm and using a slackness 

of 50% (B, B1). In the score plots (A, B), each dot represents the serum 1D-CPMG 

bucketed spectrum, colour-coded by the group of subjects (red = dead; blue = 

survived). In the loadings plot (A1, B1), loadings of the first component (PC1) are 

plotted against each related ppm.  
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Figure S4. PCA 3D score and loading plots obtained after shifting the bucket 

boundaries of one (A-A1), sixty-five (B-B1) and one-hundred thirty-one (C-C1) points 

with respect to the first starting point at 10.0 ppm, for urine 1D-NOESY spectra. In 

the score plots (A, B, C), each dot represents the urine 1D-NOESY bucketed spectrum, 

colour-coded by the different 31 healthy donors (for a total of 1167 NMR spectra). In 
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the loadings plot (A1, B1, C1), loadings of the first component (PC1) are plotted 

against each related ppm. 

 

 
 

Figure S5. PCA 3D score and loading plots obtained for urine 1D-NOESY spectra, 

after using full resolution spectra (A, A1), bucketed spectra into 0.002 ppm segments 

(B, B1) and 0.2 ppm segments (C, C1). In the score plots (A, B, C), each dot represents 
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the urine 1D-NOESY bucketed spectrum, colour-coded by the different 31 healthy 

donors (for a total of 1167 NMR spectra). In the loadings plot (A1, B1, C1), loadings 

of the first component (PC1) are plotted against each related ppm.  

 

 
 

Figure S6. PCA 3D score and loading plots obtained after equidistantly bucketing 1D-

NOESY urine spectra into 0.02 ppm segments (A, A1), and after applying an 

optimized bucketing procedure, starting from a bucket width of 0.02 ppm and using a 

slackness of 50% (B, B1). In the score plots (A, B), each dot represents the urine 1D-

NOESY bucketed spectrum, colour-coded by the different 31 healthy donors (for a 

total of 1167 spectra). In the loadings plot (A1, B1), loadings of the first component 

(PC1) are plotted against each related ppm.  
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Figure S7. One-hundred 600 MHz simulated 1H NMR spectra (21 points/Hz; 123,480 

points for each spectrum), composed by a singlet, a doublet, a quartet and a triplet 

(from left to right) with a J-coupling of 0, 14, 14, 14 Hz, a peak width of 10, 2, 2, 2 Hz 

and resonating in the interval 7.19-7.16 and at 3.9, 3.75, 1.3 ppm, respectively. All 

spectra have been generated using the R function “plotNMRspec” (“SpecHelpers” R 

package, https://cran.r-project.org/web/packages/SpecHelpers/index.html). 

https://cran.r-project.org/web/packages/SpecHelpers/index.html
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We assumed that the single NMR peak, resonating in the interval 7.19-7.16 ppm, 

serves as a characteristic discriminating “biomarker” with intensities markedly lower 

in a group of 50 spectra (green, B). Further, the position of the singlet shifts in the 

interval 7.19-7.16 ppm, following two uniform distributions: one spanning the interval 

7.19-7.175 ppm (red (A1) and green) and the other spanning the interval 7.18-7.16 

ppm (black, A2). Thus, the spectra with the higher peak area of the singlet are clustered 

in two sub-groups depending on the shift. B) PCA score plot of equidistantly bucketed 

simulated 1H NMR spectra; C) PCA score plot of simulated 1H NMR spectra bucketed 

with the optimized algorithm and using a slackness of 50%; D) PCA score plot of 

simulated 1H NMR spectra bucketed with the optimized algorithm and using a 

slackness of 75%. All spectra have been bucketed into 0.02 ppm segments. Each dot 

represents a bucketed spectrum, colour-coded by the different shifts distribution of the 

singlet resonance. 
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Chapter 5 

Conclusions 
 

Biomedical research continuously relies on advances in -omics sciences thanks 

to the progressive understanding of the biology, aetiology of diseases and the 

possibility of developing novel diagnostic test and/or therapeutic treatments. In this 

framework, metabolomics is featured prominently, due to its important role in 

connecting the genotype with the phenotype. The results illustrated in this three-years 

PhD thesis mainly exalted the potentiality of untargeted NMR-based metabolomics for 

different biomedical applications, covering both human and veterinary sciences, also 

highlighting the fundamental synergy between chemistry, biochemistry and 

bioinformatic tools for a better understanding of the biomedical goals.  

Results obtained in each presented study answered important questions and opened 

interesting perspectives, either based on the whole molecular fingerprint of the 

condition of interest or based on selected metabolic features. 

First of all, results here reported, bring metabolomics by NMR closer to its adoption 

in the clinical field, although some limitations should be mentioned. 

Overall, presented results showed how identified NMR-based signatures could 

potentially find future clinical applications. For example, we can envisage applications 

to early diagnosis of a disease condition, or to the monitoring of the health status of a 

subject in the frame of a more personalized healthcare. Indeed, a variegate ensemble 

of both low-molecular-weight metabolites and high-molecular-weight molecules can 

indicate biological changes in the host due to perturbations in different metabolic 

pathways. However, to become a clinically approved test, a potential biomarker, both 

considered as a specific single NMR feature or as the whole metabolic profile, should 

be confirmed and validated using hundreds of specimens and it should be reproducible, 

robust, specific and sensitive. In this perspective, some of the presented studies showed 

limitations, due to the small number of available samples or the lack of optimal control 

groups and external validation cohorts. Moreover, even if body fluids such as plasma, 

serum and urine are considered to be ideal for biomarker discovery and monitoring, a 

number of potential metabolomics pitfalls lurk in these fluids. Indeed, some factors, 

like the patients’ lifestyle or the nutritional status might be reflected in the metabolite 

composition of the chosen body fluid, potentially masking the molecular changes 

caused by the disease; but at the same time, the disease itself will influence the 

patients’ habits and food intake, thus representing for many disease signatures the 

classical “chicken and eggs” paradox, like for example in the case of Parkinson’s’ 

disease.  

More in detail, from the results reported in § 4.1.1., it clearly appeared that NMR 

fingerprinting succeeded in characterizing different signatures of Parkinson’s disease, 

describing, from a molecular point of view, the early and the advanced stage of the 

same pathology. In particular, serum signature differentiating de novo untreated 
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Parkinson’s disease patients from healthy matched controls has been shown to be 

strong, since our results have been validated by the use of an external validation cohort. 

This has represented the major strength of this study, highlighting the potential 

concrete use of serum NMR fingerprints of Parkinson’s disease for further clinical 

applications, especially for early diagnosis of the disease before motor symptoms 

occur.  

To our knowledge, this study also represented the first large-scale study in this field, 

therefore representing a step further towards the increasing request of analytical 

validation for metabolomic studies. Indeed, despite metabolomics is on-going in terms 

of technology and computational improvements, the literature features relatively high 

numbers of small-scale or preliminary-type studies, with many of them suffering from 

a lack of statistical robustness and validity. 

Results reported in § 4.1.2 and § 4.1.3 highlighted the importance of undertaking large 

multi-centre cohort studies to enhance the discovery of metabolic features that have 

good prospects to be translated into point of care and rapid diagnostics. Indeed, in these 

studies serum samples collected from more than ten different hospitals have been 

analysed. By applying both standard statistical techniques and a more systematic 

networking approach, we reported various analytes able to statistically increase the 

predictive ability of already known clinical factors, for instance regarding the 

prediction of poor outcomes after acute ischemic stroke. Moreover, our results pointed 

out some dysregulated mechanisms, potentially involved in the progression of the 

pathology after the thrombolytic treatment, affecting survivors’ outcomes and their 

quality of life. Again, the studies presented in the above-mentioned sections also suffer 

from limitations due to the obvious lack of a control group of “not-treated” subjects. 

Despite this, the reported results do support the usefulness of NMR-based 

metabolomics in identifying a more-detailed risk profile in stroke patients.  

Personalised medicine is relatively new to the field of healthcare research, and for 

decades it has been practiced within a so-called “evidence-based framework”, where 

the individual is treated for the condition of interest, mostly on the basis of popular 

medicine. More recently, personalized medicine, also called precision medicine, 

involves assessing the genotype and the phenotype of the patient, before they undergo 

any treatment. Metabolomics plays a key role in this field, as a potential approach to 

provide pivotal biomarkers, to test their detectability within large and diverse cohorts 

and then translating results into cheap, fast and reliable methods. Data reported in § 

4.1.4 are an example of how metabolomics fits well with precision medicine goals. In 

particular, results here reported, have exalted the role of NMR-based metabolomics in 

phenotyping aggressive prostate cancer in South African men, evidencing 

inflammation as a key-driving factor and paving the way to new tailored therapeutic 

strategies. A further limitation of this study rests upon the small number of subjects 

enrolled, but it preliminarily answers the urgent need for new insights into the 

molecular mechanisms underlying the remarkably increased rate of aggressive and 

lethal prostate cancer (PCa) in men of African ancestry that are more likely to develop 

aggressive PCa and to die from this disease. 
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However, the focus of metabolic signatures or specific biomarker discovery should not 

only be for pathological cures, but also for preventive screening of healthy individuals 

who may be susceptible to a certain disease. The study reported in § 4.1.5 is in line 

with this aim; indeed, the achieved results evidenced the potentiality of untargeted 

NMR-based metabolomics in characterizing serum metabolic variations of healthy 

volunteers at risk for Metabolic Syndrome (MetS), subsequent to the administration of 

selected nutraceuticals combinations, embedded in different bioactive-enriched foods. 

The randomized and double-blinded administration of placebo foods represented a 

major strength point of this study, permitting to fully explore the effect of different 

food matrices. Ideally, our findings should be integrated with clinical information to 

better assess how the usual dietary habits of the volunteers or any other lifestyle factor 

might influence the discovered serum signatures.  

Beyond human medicine applications, this thesis proved the great potentiality of 

untargeted NMR-based metabolomics also for veterinary research; indeed results 

reported in section 4.2 have evidenced the role of the untargeted approach by NMR in: 

i) characterizing, from a metabolic point of view, the left and right abomasal 

displacement of dairy cows; ii) monitoring the health status of preterm calves, to 

prevent early death and incoming pathologies; and iii) discovering metabolic 

signatures able to discriminate healthy dogs from dogs affected by Ehrlichia Canis.  

In the light of the outcomes of the different studies, this thesis has demonstrated the 

crucial role of NMR-based metabolomics to determine new metabolic features of 

diseases or the whole metabolic fingerprints that, taking the definition to the extreme, 

it would be “the best biomarker”, both simple and robust, to be used in the medical 

field. In particular, with advantages of minimal sample preparation, high throughput, 

high reproducibility and high accuracy, NMR-based metabolomics analyses provide 

great potentialities for early disease diagnosis with respect to classical clinic tests. Also 

considering that NMR instruments are long-lived and procedures are generally cost-

effective, the overall cost per sample (when all operations are optimized) is affordable. 

Therefore, a metabolomic NMR analysis on, for example, a serum sample would add 

only a modest amount to the cost of a routine blood test, but a significant amount of 

new information. 

Given the high potentialities of the untargeted metabolomics and the huge breath of its 

applications, ranging from medical to food and environmental researches, two 

different approaches, i.e. fingerprinting and profiling, have been developed to satisfy 

different aims over past years. However, the increasing interest in quantifiable 

properties, especially from the medical community, probably created a bit of confusion 

between the specific aim of the two distinct approaches and the related tools to achieve 

them. As an example, criticisms on the main drawbacks of the bucketing of NMR 

spectra for profiling analyses have been implicitly extended to the fingerprinting goals. 

Therefore, we reasoned that there might be a place in the literature for an update in 

this field, demonstrating how the equidistant bucketing procedure is simple and robust 

to perform NMR-based fingerprinting analyses. 
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Results presented in § 4.3.1 reached this point. Translating them into future 

perspectives, we advocate a possibility of performing fast and cheap low-field 

fingerprinting of diseases, especially in those areas where the availability and the 

affordability of more expensive analytical techniques are not granted.  

However, it should not be forgotten that one of the most important challenges of 

metabolomic research is its integration with classical clinical tools and, in this 

perspective, the on-going studies presented here have the potential to be fruitfully 

integrated with specific clinical information.  

In conclusion, even if a significant fraction of the presented material is still in 

preparation and touches on variegate research areas, this thesis may contribute to the 

demonstration that untargeted NMR-based metabolomics, coupled with bioinformatic 

tools and statistical analyses, can be considered as a comprehensive analytical 

technique with reasonable and actual prospects of being implemented in biomedical 

research.  
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Appendix A 

Candidate’s contribution 
 

PhD publications 
 

PUBLISHED 

1. Basoglu A, Baspinar N, Tenori L, Licari C, Gulersoy E. “Nuclear magnetic 

resonance (NMR)-based metabolome profile evaluation in dairy cows with and 

without displaced abomasum”. Vet Q. 2020, 40(1), 1-15 (J.I.F. 2.34) 

2. Basoglu A, Baspinar N, Licari C, Tenori L, Naseri A. “NMR-based serum 

metabolomics for monitoring newborn preterm calves’health”. JJVR. 2020, 

68(2),105-116 (J.I.F. 0.32) 

3. Basoglu A, Turgut K, Baspinar N, Tenori L, Licari C, Ege Ince M, Ertan M, 

Suleymanoglu H. “NMR-based serum extracts’metabolomics for evaluation 

of Canine Ehrlichiosis”. Accepted for publication in JJVR (J.I.F. 0.32).  

4. Vignoli A, Ghini V, Meoni G, Licari C, Takis P.G, Tenori L, Turano P, 

Luchinat C. “High-Throughput metabolomics by 1D NMR”. Angew. Chem. 

Int. Ed Engl. 2019, 58(4), 968-994 (J.I.F. 12.26) 

SUBMITTED 

1. Cacciatore S.*, Wium M.*, Licari C.*, Masieri L., Anderson C., Salukazana 

A. S., Kaestner L., Carini M., Carbone G. M., Catapano C. V., Loda M., 

Libermann T. A., Zerbini L. F. “Inflammatory metabolic profile of South 

African patients with prostate cancer”. 

2. Licari C, Tenori L, Luchinat C. “Simple equidistant bucketing as robust and 

recommended procedure for NMR-based metabolomic fingerprinting”.  

IN PREPARATION 

1. Licari C*, Meoni G, Tenori L, Turano P, Luchinat C. et al. “Nuclear Magnetic 

Resonance-based metabolomics to characterize serum sex-related metabolic 

profiles of drug-naïve Parkinson’s disease patients with respect to healthy 

controls and patients with advanced disease and under dopaminergic 

treatment”. 

2. Licari C*, Tenori L, Luchinat C. et al. “NMR-based metabolomics for the 

prediction of three-month outcomes in ischemic stroke treated with 

thrombolysis”.  

3. Licari C*, Tenori L, Luchinat C, Saccenti E. et al. “Differential Network 

Analysis reveals metabolite and lipid components associated with three-month 
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death and impairment in patients with acute ischemic stroke after thrombolytic 

treatment with recombinant tissue plasminogen activator”.  

4. Licari C*, Ghini V, Tenori L, Luchinat C. et al. “Untargeted NMR-based 

metabolomics to investigate the effect of Bioactive Foods enriched with 

combination of DHA and anthocyanins or oat β-glucan on serum metabolome 

and lipidome of subjects at risk for metabolic syndrome: Large Intervention 

Study from European Union H2020 Pathway-27 project”.  

*First author or first co-author. 
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Appendix B 

Candidate’s activities 
 

 

TOTAL CREDITS from attended seminars, courses and other training activities: 

53.24 CFU 

 

ATTENDED CONFERENCES AND CONTRIBUTIONS 

 

Keynote Lecture: 1st Conference on Innovative Researches in Pharmaceutical and 

Environmental Sciences – 27th November 2019, Pisa, Italy. “NMR-based 

metabolomics: applications and challenges for clinical and pharmaceutical research”. 

 

Oral communication: PhD day 10th edition, 23rd May 2019, Sesto Fiorentino, Italy. 

“Nuclear Magnetic Resonance-based Metabolomic approach to study acute ischemic 

stroke”.  

 

Poster: GIDRM-IMASS Advances in NMR and MS-based Metabolomics 2019, 20th- 

22th November 2019, Lucca, Italy. “The importance of bucketing procedure for NMR-

based metabolomic fingerprinting”. 

 

Poster: GIDRM XLVIII National Congress on Magnetic Resonance, 11th-13th 

September 2019, L’Aquila, Italy. “The importance of bucketing procedure for NMR-

based metabolomic fingerprinting”. 

 

Poster: EMBO workshop: Challenge for Magnetic Resonance in Life Sciences, 27th-

31th May 2018, Grosseto, Italy. “Application of the NMR technique for the analysis of 

sera of subjects with diet enriched in DHA”. 

 

Poster: GIDRM XLVII National Congress on Magnetic Resonance, 19th-21th 

September 2018, Torino, Italy. “Application of the NMR technique for the analysis of 

sera of subjects with diet enriched in DHA”. 

 

Workshop: GIDRM “Metabolomics in cancer”, 28th November 2018, Firenze, Italy.  

 

Meeting: CERM “Fingerprinting in Metabolomics by NMR”, 12th-13th June 2019, 

Firenze, Italy.  

Meeting: “The Use of NMR in biobanking, from standardization to Quality Control, 

generation of high value meta information and support of epidemiological studies and 

clinical trials”, 23rd September 2019, Firenze, Italy. 
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GRANTS AND AWARDS 

 

Sept. 2018: GIDRM Young Fellowship grant to participate in the XLVII GIDRM 

National Congress on Magnetic Resonance. Participation with a poster. 

 

Sept. 2019: GIDRM Young Fellowship grant to participate in the XLVIII GIDRM 

National Congress on Magnetic Resonance. Participation with a poster. 

 

Nov. 2019. First awards for the best keynote lecture in the memory of Prof. Cinzia 

Chiappe at the conference “NMR-based metabolomics: applications and challenges 

for clinical and pharmaceutical research”. 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

"Just as a flower blooms after enduring the harsh winter cold, a dream can only 

come true if you are prepared to endure the torments that accompany its realization 

and to make all the necessary efforts!” 

[from D.Ikeda] 

 

 

Whatever flower you are, the time will come when you will blossom. 

 

 

 

 

 

 

 

 

The end 

                                                   _________________ 

 

 

 

 

 

 

 

 

 

 

 

 


