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THE HESSIAN MAP

CIRO CILIBERTO AND GIORGIO OTTAVIANI

Abstract. In this paper we study the Hessian map hd,r which associates to any
hypersurface of degree d in P

r its Hessian hypersurface. We study general properties
of this map and we prove that: hd,1 is birational onto its image if d > 5; we study
in detail the maps h3,1, h4,1 and h3,2; we study the restriction of the Hessian map to
the locus of hypersurfaces of degree d with Waring rank r + 2 in P

r, proving that this
restriction is injective as soon as r > 2 and d > 3, which implies that h3,3 is birational
onto its image; we prove that the differential of the Hessian map is of maximal rank
on the generic hypersurfaces of degree d with Waring rank r +2 in P

r, as soon as r > 2
and d > 3.
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1. Introduction

Let Σ(d, r) be the projective space of dimension N(d, r) :=
(d+r

d

)
− 1, which parame-

terizes the hypersurfaces of degree d in P
r. If Pr = P(V ∨), with V a C vector space of

dimension r + 1, then Σ(d, r) = P(Symd(V ))).
If d > 3, consider the rational map

hd,r : Σ(d, r) 99K Σ((r + 1)(d − 2), r),

called the Hessian map, which maps a hypersurface F to its Hessian hypersurface
Hess(F ).

If one introduces in P
r a system of homogeneous coordinates [x0, . . . , xr], and if F in

these coordinates is defined by an equation f = 0, where f is a homogeneous polynomial
of degree d in x0, . . . , xr, then Hess(F ) is defined by the equation

det
( ∂2f

∂xi∂xj

)
06i6j6r

= 0.

The polynomial on the left side is called the Hessian polynomial of f , and denoted by
hess(f). We will often denote the derivatives with respect to the variables x0, . . . , xr

with a subscript, e.g.,
hess(f) = (fij)06i6j6r.
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2 C. CILIBERTO AND G. OTTAVIANI

From the equation of the hessian polynomial, it follows that hd,r is defined by a linear
system Hd,r of hypersurfaces of degree r + 1 in Σ(d, r).

The indeterminacy points of hd,r, which are the base points for Hd,r, are the hyper-
surfaces F with equation f = 0 such that hess(f) ≡ 0. These are called hypersurfaces
with vanishing Hessian. The indeterminacy locus of hd,r has a natural scheme structure,
it is denoted by GNd,r and it is called the (d, r)–Gordan-Noether locus.

Among the hypersurfaces with vanishing Hessian there are the cones, which fill up an
irreducible closed subset Cd,r of Σ(d, r) called the cone locus. A hypersurface F of degree
d with equation f = 0 is a cone if and only if the derivatives fi are linearly dependent
for i = 0, . . . , r, i.e., if and only if the polar map f∗ : V ∨ → Symd−1(V ) determined by
f has rank smaller than r + 1. This condition determines a scheme structure on Cd,r

called the cone scheme structure on Cd,r. Another scheme structure on Cd,r is induced
by it being contained in GNd,r.

The characterization of the hypersurfaces with vanishing Hessian which are not cones
is in general a highly non–trivial problem. We recall that:

Theorem 1.1 (Hesse’s Theorem). If r 6 3, then a hypersurface has vanishing hessian
if and only if it is a cone.

This is no longer true for r > 4. There is a long history concerning hypersurfaces
with vanishing Hessian, too long to be recalled here, for some information see [7]. We
will only recall that, due to results of Gordan–Noether [16], Franchetta [12] and others
(see [8], [15], [18]), there is a full classification of hypersurfaces in P

4, not cones, with
vanishing Hessian. For instance, in degree 3 these are the hypersurfaces that are in the
PGL(5,C)–orbit of the Perazzo cubic threefold with equation x0x2

3 + x1x3x4 + x2x2
4 = 0.

There are various question concerning the Hessian map which are worth to be con-
sidered. Here we list some of them:
(i) determine the scheme structure of the Gordan–Noether locus. This is probably too
ambitious, but, as particular cases, determine this scheme structure for the cone locus
and for the Gordan–Noether locus in P

4, at least for hypersurfaces of low degree;
(ii) study the image and the fibres of the Hessian map. In particular, when d <
(r + 1)(d − 2), i.e., when d > 2 + 2

r
, is the hessian map generically injective? In other

words, is the general hypersurface of degree d uniquely determined by its Hessian when
d > 2 + 2

r
?

(iii) study the (closure of the) image of the Hessian map hd,r, which may be called the
Hessian variety of type (d, r), and denoted by Hd,r.

The present paper is devoted to give some partial answers to some of these questions.
Specifically, in §2 we present some general considerations and prove several results about
hd,1, in particular we prove in Theorem 2.8 that hd,1 is birational onto its image Hd,1 for
d > 5. This is the best possible result in this direction, because hd,1 is not birational onto
its image if d 6 4. In §§3, 4 and 5 we study in detail the maps h3,1, h4,1 and h3,2. The
results here are often classical and some of them well known in the current literature,
however we put them in our general perspective. In §6 we study the restriction of the
Hessian map to the locus of hypersurfaces of degree d with Waring rank r + 2 in P

r.
In Theorem 6.5 we prove that this restriction is injective as soon as r > 2 and d > 3.
As a consequence of this and of the famous Sylvester Pentahedral Theorem, we prove
in Theorem 6.6 that the map h3,3 is birational onto its image. In §7 we prove that the
differential of the Hessian map is of maximal rank on the generic hypersurfaces of degree
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d with Waring rank r + 2 in P
r, as soon as r > 2 and d > 3 (see Theorem 7.1). As a

consequence, we have that hd,r is generically finite onto its image as soon as r > 2 and
d > 3 (see Corollary 7.3).

We conjecture that hd,r should be birational onto its image as soon as r > 2 and
d > 3, except for h3,2, but so far we have not been able to prove it.

In this paper we work over an algebraically closed field of characteristic zero.

Acknowledgements: Both authors are members of GNSAGA of INdAM. The first
author acknowledges the MIUR Excellence Department Project awarded to the Depart-
ment of Mathematics, University of Rome Tor Vergata, CUP E83C18000100006. The
second author acknowledges the H2020-MSCA-ITN-2018 project POEMA.

2. Some general remarks on hd,1

We start by focusing on

hd,1 : Σ(d, 1) ≃ P
d99KΣ(2d − 4, 1) ≃ P

2d−4.

Note that Σ(d, 1) parameterizes all effective divisors of degree d on P
1. The indetermi-

nacy locus of hd,1 is the cone locus Cd,1, which coincides with the rational normal curve
Γ := Γd of degree d parameterizing all divisors of type dx in Σ(d, 1), with x ∈ P

1.

Remark 2.1. The cone scheme structure on the rational normal curve Γ is the reduced
scheme structure. In fact, let

(1) f(x0, x1) =
d∑

i=0

ai

(
d

i

)
xd−i

0 xi
1

be a generic homogeneous polynomial of degree d. It defines a cone if and only if the
derivatives

f0 = d
d∑

i=0

ai

(
d − 1

i

)
xd−1−i

0 xi
1

f1 = d
d∑

i=0

ai+1

(
d − 1

i

)
xd−1−i

0 xi
1

are linearly dependent. Hence the cone scheme structure is defined by the equations

rank

(
a0 a1 · · · ad−1

a1 a2 · · · ad

)
< 2,

which define the reduced rational normal curve with affine parametric equations

ai = ti, for i = 0, . . . , d, and t ∈ C.

Proposition 2.2. The scheme structure determined by GNd,1 on Γ is the reduced scheme
structure, i.e., the quadrics in the linear system Hd,1 defining hd,1 cut out Γ schemati-
cally.

Proof. We need to prove that at any point of Γ the tangent hyperplanes to the quadrics
in the linear system Hd,1 intersect only along the tangent line to Γ at that point. Since
SL(2,C) acts transitively on Γ, it suffices to prove the assertion at a specific point of Γ,
e.g., at the point p of Γ corresponding to the polynomial f as in (1) with a0 = 1 and
ai = 0 for i > 0, i.e., the polynomial f = xd

0.
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The linear polynomials in the variables a0, . . . , ad defining the tangent spaces in ques-

tion are the coefficients in the variables x0, x1 of the polynomial
∑d

i=0 ai
∂hess(f)

∂ai
(p). We

have

d∑

i=0

ai
∂hess(f)

∂ai
(p) =

=
d∑

i=0

ai
∂f00

∂ai
(p)f11(p) + f00(p)

d∑

i=0

ai
∂f11

∂ai
(p) − 2

d∑

i=0

ai
∂f01

∂ai
(p)f01(p) =

= d(d − 1)xd−2
0

d∑

i=2

aii(i − 1)xd−i
0 xi−2

1

because f11(p) = f01(p) = 0. From the above relations, we see that the vanishing of
the equations defining the tangent hyperplanes to the quadrics in the linear system Hd,1

give the solution ai = 0 for i = 2, . . . , d, which are just the equations of the tangent line
to Γ at p. �

Since the linear system Hd,1 defining hd,1 consists of quadrics containing Γ, then all
chords (and tangents) of Γ are contracted to points by hd,1. More precisely we have:

Proposition 2.3. The image via hd,1 of Sec(Γ) − Γ is the (d − 2)–Veronese image of
P

2.

Proof. Let x = [u0, v0], y = [u1, v1] be two distinct points of P
1. The corresponding

points on Γ are the divisors dx and dy, which have equations

αd = 0 and βd = 0, where α = v0x0 − u0x1 and β = v1x0 − u1x1

The chord of Γ joining dx and dy, is the pencil of divisors with equations

λαd + µβd = 0, with [λ, µ] ∈ P
1.

A straightforward computation shows that the image of all divisors in this chord is the
divisor (d − 2)(x + y), with equation (αβ)d−2.

We have the isomorphism φ : Σ(2, 1) → P
2, which sends the divisor of degree 2

of P
1 defined by an equation of the form ax2

0 + bx0x1 + cx2
1 = 0 to the point of P

2

with homogeneous coordinates [a, b, c]. Let us interpret P
2 as Σ(1, 2), i.e., as a dual

plane. So φ can be interpreted as the map sending the degree 2 divisor with equation
ax2

0 + bx0x1 + cx2
1 = 0 to the line ax0 + bx1 + cx2 = 0.

We have also an obvious morphism γ : Sec(Γ) → Σ(2, 1), which send all the points
on the chord joining two points x, y of Γ to the degree 2 divisor x + y of P1 ≃ Γ. By
the above considerations, the restriction of hd,1 to Sec(Γ) − Γ, can be interpreted as the
composition of the morphism γ, restricted to Sec(Γ) − Γ, followed by φ, followed by the
(d − 2)–Veronese map of P2. The assertion follows. �

Corollary 2.4. The image via hd,1 of Tan(Γ) − Γ is a rational normal curve of degree
2(d − 2).

Proof. Following the argument in the proof of Proposition 2.3, we see that the image
of Tan(Γ) − Γ coincides with the image under the (d − 2)–Veronese map of P

2 of the
2–Veronese image of P1 in P

2. The assertion follows. �



THE HESSIAN MAP 5

By Proposition 2.2, the map hd,1 factors through the blow–up Σ̃(d, 1) of Σ(d, 1) ≃ P
d

along Γ and a morphism h̃d,1 : Σ̃(d, 1) → Σ(2d − 4, 1). Let E be the exceptional divisor
of this blow–up. For the normal bundle NΓ|Pd we have

NΓ|Pd ≃ OP1(d + 2)⊕d−1,

hence

E = P(N∨
Γ|Pd) = P(OP1(−d − 2)⊕d−1) ≃ P(O⊕d−1

P1 ) = P
1 × P

d−2.

Proposition 2.5. For each point in Γ, corresponding to a divisor dx, with x ∈ P
1, the

image via h̃d,1 of the P
d−2 fibre of E over dx ∈ Γ, consists of all divisors of the form

(d − 2)x + D, with D any divisor in Σ(d − 2, 1).

Proof. To understand the image of E via the Hessian map, we consider a point of Γ,
corresponding to the divisor of equation

αd = 0, with α = u0x0 + u1x1,

i.e., the point corresponding to the divisor dx, with x = [u1, −u0]. Take f(x0, x1) a
general homogeneous polynomial of degree d, and consider the pencil of divisors with
equations

αd + tf = 0, with t ∈ C.

A straightforward calculation shows that the limit of the Hessian of the polynomial in
this pencil when t tends to 0, is the divisor with equation

αd−2
(
u2

0

∂2f

∂x2
1

+ u2
1

∂2f

∂x2
0

− 2u0u1
∂2f

∂x0∂x1

)
= 0.

The polynomial in parenthesis is the second polar of f with respect to the point x =
[u1, −u0], and since f is a general polynomial of degree d, it is a general polynomial of
degree d − 2. The assertion follows. �

Proposition 2.6. The Hessian map hd,1 is generically finite onto its image, unless
d = 3, in which case it has general fibres of dimension 1, i.e., the chords of Γ.

Proof. In the case d = 3, the domain of h3,1 is Σ(3, 1) ≃ P
3 and the range is Σ(2, 1) ≃ P

2.
So the map cannot be generically finite. Actually by Proposition 2.5, the image of E is
all of Σ(2, 1) and it has general fibres of dimension 1. Since Sec(Γ) = P

3, also Proposition
2.3 tells us that the image is all of Σ(2, 1). The fibres are the chords of Γ.

Assume now d > 3. In order to prove the proposition it suffices to exhibit a homo-
geneous polynomial of degree d in x0, x1, such that the differential of hd,1 there is of
maximal rank d.

Let f be a general polynomial of degree d like in (1). Then, up to a factor, hess(f) is

det

( ∑d−2
i=0

(d−2
i

)
aix

d−2−i
0 xi

1

∑d−2
i=0

(d−2
i

)
ai+1xd−2−i

0 xi
1∑d−2

i=0

(d−2
i

)
ai+1xd−2−i

0 xi
1

∑d−2
i=0

(d−2
i

)
ai+2xd−2−i

0 xi
1

)
.

Computing the determinant we get that the coefficient of x2d−4−p
0 xp

1 is

Qp =
p∑

i=0

(
d − 2

i

)(
d − 2

p − i

)
aiap−i+2 −

p∑

i=0

(
d − 2

i

)(
d − 2

p − i

)
ai+1ap−i+1.
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Computing the derivative with respect to aq we get the enter of place (p, q) of the
Jacobian matrix of hd,1 which is

[(
d − 2

q

)(
d − 2

p − q

)
+

(
d − 2

q − 2

)(
d − 2

p − q + 2

)
− 2

(
d − 2

q − 1

)(
d − 2

p − q + 1

)]
ap−q+2

We claim that when p = q the coefficients in square brackets are all nonzero for d > 4
and d 6= 8. This is equivalent to say that the rank of the Jacobian at xd−2

0 x2
1 is maximal,

as wanted.
First of all, one verifies directly that the assertion holds for p = q = 0 and p = q = d.

For 0 < p = q < d the coefficients are
[(

d − 2

q

)
+

(
d − 2

q − 2

)(
d − 2

2

)
− 2

(
d − 2

q − 1

)(
d − 2

1

)]
=

=

(
d − 2

q − 1

)[
(d − 1)(dq2 − 5dq + 2d + 4q)

2q(d − q)

]
.

Thus we are reduced to show that (dq2 − 5dq + 2d+ 4q) = dq(q − 5)+ 2d+ 4q is nonzero.
This is immediate when q ≥ 5. It remains to check the cases:
• q = 1, here we get −2d + 4 which is nonzero when d > 4;
• q = 2, here we get −4d + 8 which is nonzero when d > 4;
• q = 3, here we get −4d + 12 which is nonzero when d > 4;
• q = 4, here we get −2d + 16 which is nonzero when d > 4 except for d = 8.

In the case d = 8, with similar arguments one sees that the differential of h8,1 has
maximal rank at x3

0x5
1. We leave the details to the reader. �

We can be even more precise, and prove the following:

Proposition 2.7. One has:
• the fiber h−1

d,1(hd,1(x2
0xd−2

1 )) consists schematically of the single point {x2
0xd−2

1 } for
d ≥ 5, d 6= 8;
• the fiber h−1

8,1(h8,1(x3
0x5

1)) consists schematically of the single point {x3
0x5

1} .

Proof. We prove the assertion for d 6= 8. The case d = 8 can be worked similarly and
we leave the details to the reader, we just note here that h−1

8,1(h8,1(x2
0x6

1)) consists of

the point {x2
0x6

1} with multiplicity 4. As in the proof of Proposition 2.6, we see that

the differential of hd,1 is of maximal rank at f = x2
0xd−2

1 . The goal is to show that the

fiber of hd,1 at f = x2
0xd−2

1 consists of f alone. This form has ai = 0 for i 6= d − 2 and

hess(f) = x2
0x2d−6

1 up to a scalar. Recall the notation Qp for the coefficients of x2d−4−p
0 xp

1

in the Hessian (see the proof of Proposition 2.6). Then the fiber of f = x2
0xd−2

1 is cut
out by the equations Qp = 0 for all p = 0, . . . , 2d − 4 except p = 2d − 6.

We consider a form f as in (1) in such a fiber. Suppose first that a0 6= 0, so that
we may assume a0 = 1. Then we show that there exists a t ∈ C such that ai = ti,
namely f = (x + ty)d, corresponding to a point on the rational normal curve Γ, which
is not possible. Indeed set a1 = t. The equation Q0 = 0 is a0a2 − a2

1 = 0, which implies
a2 = t2. However it is important for us to record that there is a unique possible a2 given
a0 = 1 and a1. The equation Q1 = 0 is (d − 2)a0a3 + · · · = 0 where the other monomials
involve ai with i 6 2. Hence there is a unique a3 given a0 = 0 and a1, a2. Continuing
in this way, at step p the equation Qp = 0 is

(d−2
p

)
a0ap+2 + · · · = 0 where the other
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monomials involve ai with i 6 p + 1. Hence there is a unique ap+2 given a0 = 1 and
a1, . . . , ap+1.

This argument may be continued until we get to the equation Qd−2 = 0, since d−2 <
2d − 6 for d > 5. We conclude that given a0 = 1 the ai are uniquely determined, and
this forces ai = ti since this is a solution.

The second step is to show that if a0 = 0 then ai = 0 for i 6= d−2, which will prove the
theorem. The equation Q0 = 0 is a0a2 −a2

1 and forces now a1 = 0. The equation Q2 = 0

has the form
[(d−2

2

)
− (d − 2)2

]
a2

2 + · · · = 0 where the other monomials contain a0 or a1.

Hence we get a2 = 0. The equation Q4 = 0 has the form
[(d−2

3

)(d−2
1

)
−
(d−2

2

)2]
a2

3+· · · = 0

where the other monomials contain at least one among a0, . . . , a2. Hence we get a3 = 0.
Continuing in this way we consider for k = 0, . . . d − 4 the equation Q2k = 0 which has

the form
[(d−2

k+1

)(d−2
k−1

)
−
(d−2

k

)2]
a2

k+1 + · · · = 0 where the other monomials contain at least

one among a0, . . . ak. Hence we get ak+1 = 0.
Summing up, we get ai = 0 for i 6 d−3. Recall we cannot use the equation Q2d−6 = 0.

We concentrate now on the last two equations

Q2d−5 = −ad−2ad−1 + ad−3ad = 0, Q2d−4 = −a2
d−1 + ad−2ad = 0.

From Q2d−5 = 0 we get ad−2ad−1 = 0, then one of the two factors vanishes. If
ad−2 = 0 then from Q2d−4 = 0 we get ad−1 = 0, hence f = xd

1 that correspond to a
point on the rational normal curve, which may be excluded as before. If ad−2 6= 0 and

ad−1 = 0 then from Q2d−4 = 0 we get ad = 0, so that f = x2
0xd−2

1 , as we wanted. �

The previous Proposition is the basis for the next fundamental Theorem.

Theorem 2.8. The Hessian map hd,1 is birational onto its image for d ≥ 5.

Proof. We first show that the degree of hd,1 is one or two.

We recall the resolution of indeterminacies h̃d,1 : Σ̃(d, 1) → Σ(2d − 4, 1) described

before Proposition 2.5, where E = P(N∨
Γ|Pd) ⊂ Σ̃(d, 1) is the exceptional divisor of the

blow–up of Σ(d, 1) along Γ. Rephrasing Proposition 2.5, the fiber Ep of E over the point

p ∈ Γ corresponding to xd
1, maps isomorphically via h̃d,1 to the linear space consisting of

all divisors with equation xd−2
1 g(x0, x1) = 0 where g is any binary form of degree d − 2.

As we saw, if f is a general binary form of degree d, the map h̃d,1 takes the intersection

with E of the proper transform of the pencil 〈xd
1, f〉 on Σ̃(d, 1) to limt→0 hd,1(xd

1 + tf) =

xd−2
1 f00. Note that f00 ≡ 0 if and only if f belongs to the pencil 〈xd

1, xd−1
1 x0〉, which can

be identified with the tangent line TΓ,p. Indeed, the fiber of NΓ|Pd at p is the quotient
of the space of lines through p modulo TΓ,p. It follows that, scheme theoretically, there

is a unique point v ∈ Ep which maps via h̃d,1 to hd,1(x2
0xd−2

1 ) = x2
0x2d−6

1 , and one can

easily check that v is the intersection of E with the proper transform on Σ̃(d, 1) of the

pencil 〈xd
1, x4

0xd−4
1 〉, i.e., x2

0x2d−6
1 = limt→0 hd,1(xd

1 + tx4
0xd−4

1 ) = h̃d,1(v). It follows that

the fiber h̃−1
d,1(h̃d,1(w)), with w = x2

0xd−2
1 , consists schematically of two points, i.e., the

points v and w. This implies that, as claimed, the degree of hd,1 is one or two.
Next we prove that hd,1 is birational onto its image. Assume by contradiction that

its degree is two. Hence for a generic binary form f of degree d there is a unique binary
form f ′ such that hd,1(f) = hd,1(f ′). Consider the (quadratic) map hd,1 restricted to the
pencil 〈f, f ′〉. Its image is not a conic, because the two points f and f ′ are glued by hd,1,
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so hd,1 maps the line 〈f, f ′〉 to a line with degree 2. Now we degenerate f to x2
0xd−2

1 .

Correspondingly the form f ′ degenerates to xd
1 and the pencil 〈f, f ′〉 degenerates to the

pencil 〈xd
1, x2

0xd−2
1 〉. This is a contradiction because, as it is easily seen, hd,1 is bijective

and not of degree 2 when restricted to this pencil. �

Corollary 2.9. The Hessian variety Hd,1 for d > 5, is rational of degree 2d −d(d−1)−2

and dimension d in P
2d−4. For d = 5 it is a hypersurface of degree 10 in P

6.

Proof. Rationality and dimension follow from Theorem 2.8. The degree is computed
cutting Hd,1 with d general hyperplanes P

2d−4. They correspond to d general quadrics

in P
d cutting schematically the rational normal curve of degree d plus finitely many

points, whose number is the degree of Hd,1. The equivalence of the rational normal
curve in the intersection of d quadrics is d(d − 1) + 2 by [13, Example 9.1.1]. This
concludes the proof. �

Another interesting information is given by the following:

Proposition 2.10. If F ∈ Σ(d, 1) is general, then Hess(F ) ∈ Σ(2d − 4, 1) is a reduced
divisor.

Proof. Let f(x0, x1) = 0 be the equation of F . Assume that Hess(F ) is not reduced.
This means that hess(f) has some multiple root. We will prove this is not the case.
To start with, we may assume that hess(f) does not have the root x0 = 0: indeed the
Hessian is a projective covariant, hence, by acting with projective transformations we
may assume hess(f) does not vanish on any given point of P1.

Next we compute again the differential of the Hessian map in a slightly different way
than before. Let g be any homogeneous polynomial of degree d in the variables x0, x1.
Consider the polynomial f + εg, with ǫ2 = 0, which can be interpreted as a tangent
vector to Σ(d, 1) at F . Then

hess(f + εg) = hess(f) + ε hess(f, g)

where

hess(f, g) := det

(
g00 g01

f10 f11

)
+ det

(
f00 f01

g10 g11

)

will be called the simultaneous Hessian of f and g, and can be interpreted as the
differential of hd,1 at F . If F is non–reduced, then hess(f) and hess(f, g) must have a

common root, whatever g is. We prove this is not the case. Indeed, we can take g = xd
0.

Then

hess(f, g) = d(d − 1)xd−2
0 f11

If this has a common root with hess(f), since, as we assumed, hess(f) does not have the
root x0 = 0, then there is a common root of hess(f) and of f11. But then this is also a
root of the system f01 = f11 = 0 which means that the polynomial f1 has some double
root. Since f is general, this is a contradiction. �

Finally we are interested in identifying the linear system of quadrics Hd,1. Since
P

1 = P(V ∨), then V is the vector space of linear forms in x0, x1, on which we have the
obvious SL(2,C) action. The linear system Hd,1, of dimension 2d − 4, corresponds to a

subvector space of dimension at most 2d−3 of Sym2(Symd(V )) which is invariant by the
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SL(2,C) action. It is well known that the representation Sym2(Symd(V )) of SL(2,C)
splits as a sum of irreducible invariant subspaces as follows

Sym2(Symd(V )) =
⊕

i>0

Sym2d−4i(V )

(see [14, Ex. 11.31]). We can interpret P(Sym2(Symd(V ))) as the linear system of all
quadrics in the projective space P(Symd(V )) ≃ Σ(d, 1) ≃ P

d. In this projective space
we have the cone locus Γ = Cd,1. Then

S1 :=
⊕

i>1

Sym2d−4i(V )

identifies as the vector space of quadrics vanishing on Γ and

S2 :=
⊕

i>2

Sym2d−4i(V )

is the vector space of quadrics vanishing on Tan(Γ) (see [14, Ex. 11.32]). Then we have

(2) dim(S1/S2) = dim(Sym2d−4(V )) = 2d − 3

and more precisely we have an SL(2,C) invariant subspace W of quadrics of dimension
2d − 3 such that S1 = S2 ⊕ W . The linear systems associated to W is exactly Hd,1.

Remark 2.11. We can give a geometric interpretation of (2).
Let Σ → Tan(Γ) be the minimal desingularization of Tan(Γ), the tangential surface

of Γ. Then Σ is a scroll over P
1. By abuse of notation we still denote by Γ its strict

transform on Σ, we denote by R a ruling of Σ and by H the pull–back of a hyperplane
section of Tan(Γ). By Riemann–Hurwitz formula, we have deg(Tan(Γ)) = 2d − 2. On
the other hand Γ is a unisecant of the ruling on Σ, hence H ∼ Γ+(d−2)R. The quadrics
through Γ cut out on Tan(Γ) divisors which are in the linear system

|2H − 2Γ| = |2(d − 2)R|

because Γ is singular for Tan(Γ). So we have a linear map

r : S1 → H0(Σ, OΣ(2(d − 2)R)) ≃ C
2d−3

whose kernel is S2. By Corollary 2.4 the map r is surjective, which explains (2).

3. The case r = 1, d = 3

This is an easy case. We have h3,1 : Σ(3, 1) ≃ P
3 → Σ(2, 1) ≃ P

2, and the map
is surjective. The chords of the cone locus C3,1 = Γ are contracted to points. The
tangents to Γ are contracted to the points of the diagonal conic ∆ of Σ(2, 1), with
∆ = {2x : x ∈ P

1}. The exceptional divisor E of the blow–up of P3 along Γ is a scroll
over Γ, whose rulings go to the tangents lines to ∆. The 2–dimensional linear system
H3,1 is the complete linear system of quadrics through Γ.
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4. The case r = 1, d = 4

In this section we examine in details the behaviour of the map h4,1 : Σ(4, 1) ≃ P
4 →

Σ(4, 1) ≃ P
4.

Recall that V is the vector space of linear forms in x0, x1, on which we have the
natural SL(2,C) action. Recall also formula (2) from §2. In the present case we have

Sym2(Sym4(V )) = Sym8(V ) ⊕ Sym4(V ) ⊕ Sym0(V )

where Sym0(V ) = C is the space we called S1 in §2, which is generated by the (unique
up to a constant) non–zero quadratic polynomial vanishing on Tan(Γ), where Γ is the
cone locus C4,1, a rational normal quartic curve. Again in the notation of §2, we have

S1 = Sym4(V ) ⊕ Sym0(V ) ≃ C
6, which identifies with the vector space H0(IΓ|P4(2))

of quadratic polynomials vanishing on Γ. The 4–dimensional linear system of quadrics
H4,1 defining h4,1 is associated to the 5–dimensional SL(2,C)–invariant vector space

W ≃ Sym4(V ), which we will soon identify.
To be very explicit, let

(3) f(x0, x1) = a0x4
0 + 4a1x3

0x1 + 6a2x2
0x2

1 + 4a3x0x3
1 + a4x4

1

be a general homogeneous polynomial of degree 4 in (x0, x1), which gives us a class
[f ] ∈ Σ(4, 1) ≃ P

4, and we may attribute to [f ] the homogeneous coordinates [a0, . . . , a4].
The cone locus Γ = C4,1 is described by the classes of the non–zero polynomials of

the form

(α0x0 + α1x1)4

with the corresponding homogeneous coordinates

[α4
0, α3

0α1, α2
0α2

1, α0α3
1, α4

1]

so that the ideal of the polynomials vanishing on Γ is generated by the minors of order
2 of the matrix

A =

(
a0 a1 a2 a3

a1 a2 a3 a4

)
.

We denote by Qij the minor of A determined by the columns of order i and j, with
1 6 i < j 6 4. Let also [xij ]16i<j64 be the (lexicographically ordered) homogeneous
coordinates in P

5. The 5–dimensional linear system |H0(IΓ|P4(2))| determines a rational

map µ : P4 99K P
5, which can be written as

xij = Qij for 1 6 i < j 6 4.

It is well know that the image of µ is a smooth quadric in P
5 (see [20, Chapt. X, §3.2]),

precisely the quadric Q with equation

(4) x12x34 − x13x24 + x14x23 = 0.

Let us now write down the Hessian map h4,1. The Hessian of a polynomial as in (3)
is

hess(f) = (a0a2 − a2
1)x4

0 + 2(a0a3 − a1a2)x3
0x1 + (a0a4 + 2a1a3 − 3a2

2)x2
0x2

1+

+ 2(a1a4 − a2a3)x0x3
1 + (a2a4 − a2

3)x4
1.
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Note that

a0a2 − a2
1 = Q12, a0a3 − a1a2 = Q13,

a0a4 + 2a1a3 − 3a2
2 = Q14 + 3Q23,

a1a4 − a2a3 = Q24, a2a4 − a2
3 = Q34

so that

hess(f) = Q12x4
0 + 2Q13x3

0x1 + (Q14 + 3Q23)x2
0x2

1 + 2Q24x0x3
1 + Q34x4

1.

Hence the Hessian map is so defined

h4,1 : [a0, . . . , a4] ∈ P
4 → [Q12,

1

2
Q13,

1

6
(Q14 + 3Q23),

1

2
Q24, Q34] ∈ P

4.

Consider the polynomial

(5) j = det




a0 a1 a2

a1 a2 a3

a2 a3 a4


 .

One has
∂j

∂a0
= Q34,

∂j

∂a1
= −2Q24,

∂j

∂a2
= Q14 + 3Q23,

∂j

∂a3
= −2Q13,

∂j

∂a4
= Q12

hence the Hessian map h4,1 is nothing but the polar map of the polynomial j and H4,1

is the linear system of polar quadrics of the hypersurface j = 0. Moreover, since all
derivatives of j vanish on Γ, then Γ is in the singular locus of the hypersurface j = 0.
This implies that this hypersurface, of degree 3, coincides with Sec(Γ).

Consider now the projective transformation ω of P5 with equations

y12 = x34, y34 = x12, y13 = −2x24, y24 = −2x13,

y14 = x14 + 3x23, y23 = x14 − 3x23.

The Hessian map h4,1 is nothing but the composition of the map µ : P4 99K P
5 with ω

with the projection from the point p = [0, 0, 0, 1, 0, 0] on the hyperplane y23 = 0. Notice
that the image of the quadric Q with equation (4) via ω ◦ µ is the quadric Q′ with
equation

12y12y34 − 3y13y24 + y2
14 − y2

23 = 0

which does not pass through the point p. Hence we conclude with the:

Theorem 4.1. The Hessian map h4,1 has degree 2.

A form
g(x0, x1) = b0x4

0 + 4b1x3
0x1 + 6b2x2

0x2
1 + 4b3x0x3

1 + b4x4
1

sits in the branch locus of h4,1 if and only if

b0b4 − 4b1b3 + 3b2
2 = 0.

This is the SL(2,C)–invariant quadric, that we call Q. Hence it must vanish on Tan(Γ),
and in fact this is the case, as one checks by a direct computation.

The ramification locus of h4,1 is contained in the Hessian hypersurface of j. This is
defined by a polynomial of degree 5, which does not vanish identically. The hypersurface
Sec(Γ), with equation j = 0 has, by Terracini’s Lemma, parabolic points, namely, it is
described by a family of lines along which the tangent hyperplane is fixed. This implies
that j divides hess(j) (see [5]). The quotient is a polynomial of degree 2, which defines a
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quadric coinciding with the ramification locus of h4,1. This quadric is SL(2,C)–invariant,
hence it must be the unique quadric Q containing Tan(Γ). This can be checked with a
direct computation which can be left to the reader. In conclusion:

Proposition 4.2. The quadric Q containing Tan(Γ) is such that:
• its general point is the Hessian of a unique polynomial in Σ(4, 1);
• its general point is uniquely determined by its Hessian, which also lies in Q.

In particular the Hessian map h4,1 induces a birational transformation of the quadric
Q into itself.

Remark 4.3. Given the polynomial (3), let α1, . . . , α4 be its roots, and we assume at
least three of them are distinct. We can form the cross ratio α = (α1α2α3α4). There
is an expression of α which remains unchanged when α is changed in one of the six
different values assumed by the cross ratio by permuting α1, . . . , α4, namely

J =
4(1 − α + α2)3

(α + 1)2(1 − 2α)2(2 − α)2
,

which is called the J–invariant of the degree 4 divisor of P1 determined by the points
α1, . . . , α4 (see [10, pp. 27–29]). It is well known that two divisors of degree 4 are
projectively equivalent if and only if they have the same J–invariant.

The function J can then be expressed in terms of the coefficients of the polynomial
(3). Precisely one has

J =
1

36 · 43

i3

j2

where

i := a0a4 − 4a1a3 + 3a2
2

and j is the polynomial defined in (5). Then J = 0 is equivalent to i = 0, which is the
quadric containing Tan(Γ). When J = 0, the degree 4 divisor defined by the vanishing
of (3) is called anharmonic, whereas it is called harmonic when j = 0, i.e., J = ∞.

If we take a general g1
4 on P

1, defined by an equation of type (3) with the coefficients
ai depending linearly by [λ, µ] ∈ P

1, for i = 0, . . . , 4, then J varies for the divisors of the
g1

4 and for a general value of J there are exactly 6 divisors of the g1
4 for which that value

of J is attained. This is no longer the case for the values J = 0 and J = ∞. Indeed,
the expression of J tells us that there are only 2 anharmonic divisors in the g1

4 (each
counted with multiplicity 3) and 3 harmonic divisors (each counted with multiplicity 2).

On the other hand there are special g1
4s in which the J–invariant is constant. The

typical example is the g1
4 defined by the equation λx4

0 + µx4
1 = 0, the general divisor of

which is harmonic.

Remark 4.4. Consider the equation

(6) µx4
0 + 6λx2

0x2
1 + µx4

1 = 0, with [λ, µ] ∈ P
1.

This defines a g1
4 on P

1, which is called a syzygetic g1
4 , as well as any series which is

transformed of it via a projective transformation of P1.
The main property of this series is that it contains the Hessian divisor of every of its

divisors. In fact the Hessian of the divisors defined by (6) is easily seen to have equation

λµx4
0 + (µ2 − 3λ2)x2

0x2
1 + λµx4

1 = 0
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which clearly sits in the above g1
4 on which we have the map

(7) [λ, µ] 7→ [µ2 − 3λ2, 6λµ]

sending the divisor with equation (6) corresponding to [λ, µ] ∈ P
1 to its Hessian, i.e.,

the divisor corresponding to [µ2 − 3λ2, 6λµ]. This correspondence is a 2 : 1 map. In
geometric terms, the line in Σ(4, 1) ≃ P

4 corresponding to the above g1
4 is mapped 2 : 1

by h4,1 to another line, rather than to a conic.
Let us compute the J–invariant for the divisors in the syzygetic g1

4 . One has

J =
(3λ2 + µ2)3

36 · 43λ2(µ2 − λ2)2
.

So we see that the J–invariant varies inside the syzygetic g1
4 . As a consequence, any

syzygetic g1
4 is generated by any divisor of degree 4, not in the cone locus, and by its

Hessian.
Let us see what are the coincidences of the map (7). We expect three of them, i.e.,

the intersection of the graph of the 2 : 1 map, which is a curve of type (1, 2) on P
1 ×P

1,
with the diagonal, which is a curve of type (1, 1). In fact the coincidences are defined
by the degree 3 equation

det

(
µ2 − 3λ2 6λµ

λ µ

)
= 0,

which has the solutions µ = 0 and µ = ±3λ. The corresponding divisors are defined
by the equations x2

0x2
1 = 0 and (x2

0 ± x2
1)2 = 0, i.e., they consist of two points both

with multiplicity 2. We call such a divisor a bi–double point: they coincide with their
Hessian.

Each of the bi–double points in the syzygetic g1
4 is also the Hessian of another divisor

in the same series. For instance, the one given by µ = 0 also comes form the divisor
corresponding to λ = 0, i.e., from the harmonic divisor with equation x4

0 +x4
1. Similarly,

the divisors given by µ = ±3λ come from the divisors corresponding to [λ, µ] such that

6λµ

µ2 − 3λ2
= ±3

that, besides the obvious solution µ = ±3λ has also the solution µ = ±λ, which corre-
sponds to the harmonic divisors with equations x4

0 ± 6x2
0x2

1 + x4
1 = 0. In conclusion we

have that: the harmonic degree 4 divisors are characterized by the fact of being the only
reduced divisors having a bi–double point as Hessian.

Next let us consider an anharmonic divisor, with equation 3x4
0 + 6x2

0x2
1 − x4

1 = 0.
An easy computation shows that it coincides with the Hessian of its Hessian. Then we
consider the composition of the 2 : 1 map defined by (7) with itself. It is a 4 : 1 map,
which has 5 coincidences. Three of them are given by the three bi–double points in the
syzygetic g1

4 . Two more are given by the two anharmonic divisors in the syzygetic g1
4 ,

which are given by the equation (6), with µ2 + 3λ2 = 0. This can be checked with a
direct computation that can be left to the reader.

In conclusion we have that: the anharmonic degree 4 divisors are characterized by the
fact of being the only reduced divisors which are Hessian of their Hessian.

Remark 4.5. In the paper [1], the authors introduce a map

Φd,r : Σ(d, r) 99K Σ((r + 1)(d − 2), r)
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which is different from the Hessian map, though it has the same source and target. The
map Φ4,1 is again of degree 2. So, as the Hessian map, it determines a birational involu-
tion of Σ(4, 1). According to [1, Theorem 3.2], this involution is uniquely determined by
the property of being equivariant under the natural SL(2,C) action. Therefore, though
Φ4,1 and h4,1 are different, they determine the same birational involution on Σ(4, 1). This
means that there is a non–trivial birational map φ of Σ(4, 1) such that Φ4,1 = φ ◦ h4,1.

5. The case r = 2, d = 3

In this section we examine the map h3,2 : Σ(3, 2) ≃ P
9 → Σ(3, 2) ≃ P

9. This is the
only other case, besides h4,1, in which the domain and the target of the Hessian map
coincide. Most of the results of this section are based on [9] and on [10, Vol. 2, Chapt.
III] and are essentially known in the current literature, although we put them here in
our general perspective.

Let us consider the Veronese surface V3,2 in Σ(3, 2) ≃ P
9, which is the locus of curves

of the type 3L, with L a line of the plane.

Lemma 5.1. The cone locus C3,2 coincides with Sec(V3,2).

Proof. It is immediate that Sec(V3,2) is contained in C3,2. Moreover they are both
irreducible, of dimension 5 (because V3,2 is not defective). This proves the assertion. �

Recall that h3,2 is defined by a linear system H3,2 of cubics containing C3,2.

Proposition 5.2. H3,2 is a linear system of cubics singular along V3,2.

Proof. All cubics in H3,2 contain C3,2 = Sec(V3,2). On the other hand Sec(V3,2) is singular
along V3,2. Moreover, if x is a point of V3,2, the tangent cone to Sec(V3,2) at x is the
cone over V3,2 with vertex the tangent plane to V3,2 at x (see [6, Thm. 3.1]), and this
cone is non–degenerate in P

9. This implies that a cubic containing Sec(V3,2) is singular
at any point of V3,2. �

Proposition 5.3. The Gordan–Noether scheme structure on the cone locus C3,2 is non–
reduced.

Proof. A computation (which can be left to the reader) of the tangent space to GN3,2

at the point corresponding to x3
0 + x3

1, analogous to the proof of Proposition 2.2, shows
it has codimension 3, smaller than 4, which is the codimension of the cone locus C3,2 in
Σ(3, 2) ≃ P

9. �

Remark 5.4. The orbit of x3
0 +x3

1 via the SL(3,C) action is dense in C3,2, thus GN3,2 is
non–reduced all along C3,2. Actually, a Macaulay2 [17] computation shows that GN3,2

has degree 30, which is the double of the degree of the cone locus. This tells us that
GN3,2 is a double structure on C3,2.

Remark 5.5. We have checked in a similar way that GN3,3 is non–reduced at a general
point of C3,3, and GN3,4 is non–reduced at a general point of C3,4. On the contrary,
GN3,4 is reduced at the point corresponding to the Perazzo cubic threefold recalled in
the Introduction, so that its SL(5)-orbit makes a 18-dimensional reduced component of
GN3,4.

Consider now Sec2(V3,2) the variety of 3–secant planes to V3,2, which is a hypersurface
in Σ(3, 2) ≃ P

9, called the Aronhold hypersurface. Any trisecant plane to V3,2 is cut out
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by H3,2 in a fixed cubic, namely the union of the three lines pairwise joining the three
points of intersection of the plane with V3,2. Thus this plane is contracted to a point by
h3,2. Precisely, up to a projective transformation, we may assume that the three points
of V3,2 are the triple lines x3

0 = 0, x3
1 = 0, x3

2 = 0. Hence the plane spanned by them
parameterizes all cubics of the form ax3

0 + bx3
1 + cx3

2 = 0. The Hessian of the general
such cubic has equation x0x1x2 = 0, i.e., it is the trilateral union of the three original
(independent) lines. In conclusion the hypersurface Sec2(V3,2) is contracted by h3,2 to
the 6–dimensional variety, isomorphic to the triple symmetric product of Σ(1, 2), the
dual of P2, whose general point is a trilateral.

Remark 5.6. Taking into account Proposition 5.3, we understand that the resolution
of the indeterminacies of h3,2 is complicated. However it is possible to see what happens
in some specific cases.

Consider a general point of Sec(V3,2), the cone locus. Up to a change of coordinates,
we may assume that this point coincides with the triple of lines with equation α =
x0x1(x0 + x1) = 0. Let f(x0, x1, x2) be a general homogeneous polynomial of degree
3. Consider the pencil of cubics with equation α + tf = 0, with t ∈ C. The limit of
hess(α + tf), when t → 0, is easily seen to be −4f22(x2

0 − x0x1 − x2
1), namely a suitable

trilateral.
However one has to be careful. Indeed, if α = x3

0 and f = x3
1 + x3

2 + 36x0x1x2, the
limit of hess(α + tf), when t → 0, is x0(x1x2 − 36x2

0), which splits as a smooth conic
plus a secant line.

Theorem 5.7. The Hessian map h3,2 is dominant and generically 3 : 1.

Proof. It is well known that every smooth plane cubic is SL(3)-equivalent to a member
of the pencil

(8) x3
0 + x3

1 + x3
2 − 3tx0x1x2 = 0, for some t ∈ C.

For a modern reference see [2, Lemma 1], this pencil is classically called the syzygetic
pencil or Hesse pencil, see next Proposition 5.10. A direct computation shows that the
Hessian of the cubic with equation (8) is the cubic with equation

x3
0 + x3

1 + x3
2 − 3sx0x1x2 = 0, with s =

4 − t3

3t2
.

Since the Hessian map is SL(3)-equivariant, the result follows. �

Next a few words about the J–invariant of a cubic. Consider a smooth cubic F ⊂ P
2

with equation

f(x0, x1, x2) =
∑

i+j+k=3

aijkxi
0xj

1xk
2 = 0.

We will denote by a the vector of the coefficients of the polynomial f , lexicographically
ordered. The classical Salmon’s theorem (see [11, p. 189]) says that given a general
point p ∈ F , the J–invariant of the four tangents to F through p (different from the
tangent at p), does not depend on p. It is called the J–invariant, or modulus, of the
cubic F and two cubics are projectively equivalent if and only if they have the same
modulus. A cubic is called harmonic [resp. anharmonic] if J = ∞ [resp. if J = 0]. The
concept of J–invariant can be extended to nodal cubics in which case J = 1.

We record the following theorem (see [11, p. 199]):
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Theorem 5.8 (Aronhold’s Theorem). A cubic is anharmonic if and only if it is pro-
jectively equivalent to the Fermat cubic with equation

x3
0 + x3

1 + x3
2 = 0.

The J–invariant is a homogeneous rational function of a and it is well known (see
[11, Chapt. III, §25]), that there are two homogeneous polynomials S(a) and T (a), the
former of degree 4 called the Aronhold invariant (see [19] for a Pfaffian presentation),
the latter of degree 6, such that

J =
S3

T 2
.

This implies the well known fact that in a general pencil of cubics there are 12 curves
with a fixed value of J (in particular there are 12 singular cubic, to be counted with
the appropriate multiplicity), except for the anharmonic curves, of which there are 4
each counted with multiplicity 3, and for the harmonic ones, of which there are 6 each
to be counted twice. For special pencils of cubics the modulus can be constant: these
pencils are classified in [4] and it turns out that the singular curves in these pencils are
not nodal.

Going back to the syzygetic pencil, it may be defined as the the pencil generated by
a smooth cubic curve F and by its Hessian, as well as any pencil which is projectively
equivalent to it. It is well known that the intersection of F and Hess(F ) consists of 9
distinct points, which are the flexes of F . We note that, by the configuration of flexes of
a cubic there are four trilaterals with the property that each of them contains all flexes
of F (see [10, Vol. 2, p. 214]). Each of these trilaterals sits in the syzygetic pencil, and
the four of them account for the 12 singular cubics in the syzygetic pencil.

Since the flexes of a plane curve are characterized by the property of being the smooth
points of the curve which are the intersections of the curve with its Hessian, if a cubic
contains a line L, then the Hessian also contains L, because all the points of L are flexes
of the cubic. In particular, the Hessian of a trilateral is the same trilateral, what can
be proved also with a direct computation, assuming, as we can, that the trilateral has
equation x0x1x2 = 0.

Theorem 5.9 (Hesse’s Theorem, [10], p. 214). All curves of the syzygetic pencil are
smooth at the nine base points of the pencil which are flexes for all of them.

We note that the curves in the syzygetic pencil do not have constant modulus, because
the singular curves in the pencil are all nodal. Hence we can find some anharmonic cubic
in the syzygetic pencil. By Theorem 5.8, up to projective transformation we may assume
that such an anharmonic cubic is the Fermat cubic, hence we conclude with the:

Proposition 5.10. The syzygetic pencils are all projectively equivalent to the pencil
with equation

(9) x3
0 + x3

1 + x3
2 − 3tx0x1x2 = 0, with t ∈ C ∪ {∞}.

We saw in the proof of Theorem 5.7 that the Hessian map behaves on the pencil (9)
as the map

(10) t ∈ C ∪ {∞} → s =
4 − t3

3t2
∈ C ∪ {∞},

the extension to t = ∞ being immediate.
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There are here 4 coincidences. Since these are cubics which coincide with their Hes-
sian, all of their (smooth) points are flexes, hence they are the 4 trilaterals contained in
the pencil. One cleary corresponds to the value t = ∞, i.e., it is the trilateral x0x1x2 = 0.
The other three are obtained solving the equation

t =
4 − t3

3t2

hence they correspond to the three roots of unity t = 1, ǫ = exp 2πi
3 , ǫ2. These trilaterals

are also Hessian of some other cubic in the pencil, which we now compute. First, for
s = ∞, we find the equation t2 = 0, hence we find the anharmonic cubic x3

0 +x3
1 +x3

2 = 0
with multiplicity 2. For s = 1, we find the equation t3 + 3t2 − 4 = 0, which has the
obvious solution t = 1. Dividing by t − 1 we get t2 + 4t + 4 = 0, hence again a double
root t = −2. Similarly, for t = ǫ, ǫ2, we find double roots t = −2ǫ, t = −2ǫ2. It is easy
to see that these four values are exactly the ones where the map (10) ramifies. Hence
we have:

Proposition 5.11. One has:
(i) the four trilaterals in the syzygetic pencil are self Hessian and are also Hessian of
only one other cubic of the pencil, each to be counted with multiplicity 2;
(ii) these are the four anharmonic cubics of the pencil;
(iii) the anharmonic cubics are characterized by the fact that their Hessian is a trilateral;
(iv) the Hessian of a smooth plane cubic which is not anharmonic is a smooth curve.

Proof. The assertion (i) is clear. The assertion (ii) is also clear for the curve x3
0+x3

1+x3
2 =

0 corresponding to t = 0. Then it follows in the other three cases because the anharmonic
cubics are all projective, so the Hessian of any anharmonic cubic is a trilateral. Assertion
(iii) is an immediate consequence of the above arguments. As for assertion (iv), it
follows from the fact that the only singular curves in the syzygetic pencil are the four
trilaterals. �

Next we prove the:

Lemma 5.12. An harmonic cubic is the Hessian of its Hessian.

Proof. The harmonic cubics are all projectively equivalent. Hence we can consider the
cubic with equation

f(x0, x1, x2) = x3
1 − x2

2x0 − px1x2
0 = 0, with p 6= 0.

The reader will check that this curve is harmonic and that hess(hess(f)) = 83 · 63 · p2 · f ,
proving the assertion. �

Next we consider the composition of the map (10) with itself, which is a (9 : 1) map.
Then it has 10 coincidences. Four of them are again the four trilaterals in the syzygetic
pencil. The remaining six are the six harmonic cubics in the pencil which, by Lemma
5.12 are Hessian of their Hessian. This proves that:

Proposition 5.13. The harmonic cubics are characterized by the fact of being the Hes-
sian of their Hessian.
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The six harmonic cubics in the syzygetic pencil can be explicitely computed. Indeed,
one is led to solve the equation

t =
4 −

(
4−t3

3t2

)3

3
(

4−t3

3t2

)2

which has degree 9. Dividing by t3 − 1 (corresponding to the three trilaterals different
from x0x1x2 = 0 which corresponds to t = ∞), we find the degree 6 equation

t6 − 20t3 − 8 = 0

whose solutions correspond to the harmonic cubics in the pencil.
Finally we have the following Lemma (compare with the rough classification in [3,

Table 2]):

Lemma 5.14. One has:
(i) the Hessian of a smooth cubic is a smooth cubic, except in the anharmonic case in
which it is a trilateral;
(ii) the Hessian of a cubic with a node is a cubic with the same node and the same
tangent lines at the node;
(iii) the Hessian of a cubic with a cusp is the cuspidal tangent counted with multiplicity
2 plus the line joining the cusp with the only flex of the curve;
(iv) the Hessian of a cubic reducible in a conic Γ plus a line L which is not tangent to
Γ, consists of L plus a conic which is tangent to Γ at the points where L intersects Γ;
(v) the Hessian of a cubic reducible in a conic Γ plus a line L which is tangent to Γ,
consists of L counted with multiplicity 3;
(vi) the Hessian of a trilateral is the same trilateral;
(vii) the Hessian is undetermined for the cones (i.e., triple of lines concurrent at a
point).

Proof. Part (i) is Proposition 5.11. The rest of the assertion can be proved with explicit
computations which can be left to the reader (take into account that nodal cubics and
cuspidal cubics are all projectively equivalent). �

In conclusion, we have the:

Proposition 5.15. The following cubics are the only ones which do not appear as
Hessian of some other cubic:
(i) cubics with a cusp;
(ii) cubics reducible in a conic plus a line tangent to the conic;
(iii) cubics reducible in three distinct lines passing through a point.

On the other hand, the cubics listed in Proposition 5.15 do appear in the image of
the resolution of the indeterminacies of h3,2. It would be nice to understand in details
how this works.

Remark 5.16. The equation S = 0, S being the Aronhold invariant, defines in Σ(2, 3)
a hypersurface which is the Aronhold hypersurface Sec2(V3,2). This is singular along
Sec(V3,2). Hence, the polar map of the Aronhold hypersurface

ar : Σ(2, 3) 99K Σ(2, 3)
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is also defined by a 9–dimensional SL(3)-invariant linear system of cubics containing
Sec(V3,2), like the Hessian map. We call it the Aronhold map. It is remarkable that
this has also degree 3 but it is different from the Hessian map. The action of it on
the syzygetic pencil (9), sends the curve corresponding to the parameter t to the curve

corresponding to the parameter 2+t3

3t
. We verified this using Macaulay2. The composi-

tion ar2 has exactly the same fixed points found in Proposition 5.13, namely the four
trilaterals and the six harmonic cubics.

In conclusion, we want to remark that H0(P9, ISec(V3,2),P9(3)) is a 20–dimensional rep-

resentation of SL(3,C), which splits in the sum of two 10–dimensional representations,
one, isomorphic to Sym3(V ), is the vector space of cubics corresponding to the linear
system H3,2, the other is the 10–dimensional vector space of polars of the Aronhold
invariant S. It is interesting to notice that:

Proposition 5.17. The polars of the Aronhold invariant cut out the cone locus schemat-
ically.

Proof. The jacobian of the polar map of the Aronhold invariant coincides with the 10×10
Hessian matrix of the Aronhold invariant. Evaluating at x3

0 + x3
1, one finds




0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 −216
0 0 0 0 0 0 0 0 144 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 144 0 0 0 0
0 0 0 0 −216 0 0 0 0 0




which has rank 4, equal to the codimension of the cone locus. �

6. Hypersurfaces of rank r + 2

Recall that the Waring rank, or simply the rank, of a polynomial f ∈ Symd(V ), or
of the polynomial class [f ] ∈ Σ(d, r), is the minimum integer h such that [f ] sits on a
linear space of dimension h − 1 which is h–secant to the Veronese variety Vd,r ⊂ Σ(d, r).
This is the same as saying that h is the minimum such that f can be written as

f = ld1 + · · · + ldh,

with l1, . . . , lh non–proportional linear forms.
In this section we study the Hessian of polynomials f of rank r +2, with [f ] ∈ Σ(d, r).

First we compute the Hessian of a polynomial of rank r + 2.

Proposition 6.1. Let f =
∑r+1

i=0 cil
d
i , where l0, . . . , lr+1 are linear forms. Then, up to

a scalar, one has

hess(f) =
r+1∑

i=0

∏

j 6=i

cj ld−2
j .
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Proof. We have to prove a polynomial identity. So it is sufficient to assume that the forms
l0, . . . , lr+1 are general under the condition

∑r+1
i=0 li = 0 and ci 6= 0 for i = 0, . . . , r + 1.

We consider in P
r+1, with homogeneous coordinates [l0, . . . , lr+1], the hypersurface Φ

defined by the equation
∑r+1

i=0 cil
d
i = 0 and the hyperplane H with equation

∑r+1
i=0 li = 0.

The Hessian of the intersection hypersurface of H with Φ is the locus of points p =
[p0, . . . , pr+1] ∈ H such that the polar quadric

∑r+1
i=0 cip

d−2
i l2i = 0 to Φ with respect

to p is tangent to H. That is the dual quadric
∑r+1

i=0
1

cip
d−2

i

l2i = 0 contains the point

[1, . . . , 1], namely
∑r+1

i=0
1

cip
d−2

i

= 0. Getting rid of the denominators, we find the desired

equation. �

As a consequence we have that a polynomial of rank r + 2 can be recovered from its
Hessian. This is an immediate consequence of the following:

Proposition 6.2. Let f =
∑r+1

i=0 cil
d
i , g =

∑r+1
i=0 bil

d
i , where l0, . . . , lr+1 are linear forms

such that any r + 1 of them are linearly independent and such that
∏r+1

i=0 ci and
∏r+1

i=0 bi

are both nonzero. Suppose that hess(f) and hess(g) are proportional. Then (c0, . . . cr+1)
is proportional to (b0, . . . br+1).

Proof. We may assume li = xi, for i = 0, . . . , r, and lr+1 = x0 + . . . + xr.
The Hessian of f , up to a factor, is

(11)
r∑

i=0

Gi(c)

∏r
j=0 xd−2

j

xd−2
i

(x0 + . . . + xr)d−2 + Gr+1(c)(
r∏

j=0

xd−2
j )

where Gi(c) = 1
ci

∏r+1
j=0 cj for i = 0, . . . , r + 1. Similarly, the Hessian of g is

(12)
r∑

i=0

Gi(b)

∏r
j=0 xd−2

j

xd−2
i

(x0 + . . . + xr)d−2 + Gr+1(b)(
r∏

j=0

xd−2
j ).

Multiplying (11) by G0(b), (12) by G0(c) and subtracting we get

xd−2
0




r∑

i=1

Ai(b, c)

∏r
j=0 xd−2

j

xd−2
i

(x0 + . . . + xr)d−2 + Ar+1(b, c)(
r∏

j=1

xd−2
j )




where Ai(b, c) = G0(b)Gi(c) − G0(c)Gi(b) for i = 0, . . . , r + 1. Since we assumed hess(f)
and hess(g) proportional, the last equation either equals again hess(f) (or hess(g)) up
to a constant, or it is identically zero. Since the Hessian is not divisible by x0 we get
that the polynomial

(13)
r∑

i=1

Ai(b, c)

∏r
j=0 xd−2

j

xd−2
i

(x0 + . . . + xr)d−2 + Ar+1(b, c)(
r∏

j=1

xd−2
j )

vanishes identically. There is no term in (13) in which xh
1 appears with h > 2(d − 2).

The term in which x
2(d−2)
1 appears has coefficient

∑r
i=2 Ai(b, c)

∏r

j=0
xd−2

j

(x1xi)d−2 and this yields

Ai(b, c) = 0 for i = 2, . . . , r. In the same way A1(b, c) = 0, which in turn implies
Ar+1(b, c) = 0. We get

rk

(
G0(b) G1(b) . . . Gr+1(b)
G0(c) G1(c) . . . Gr+1(c)

)
= 1,
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which is easily seen to imply

rk

(
b0 b1 . . . br+1

c0 c1 . . . cr+1

)
= 1.

�

Remark 6.3. The Hessian of
∑r

i=0 cix
d
i (where cr+1 = 0) is

∏r
i=0 xd−2

i and does not

depend on ci. This shows that the assumption in Proposition 6.2 that
∏r+1

i=0 ci is nonzero
cannot be removed.

If f =
∑r+1

i=0 cil
d
i is, as above, a polynomial of rank r + 2, and F is the hypersurface

f = 0, then the combinatorics of Sing(Hess(F )) is interesting and rich, as shown by the
following:

Proposition 6.4. Let f =
∑r+1

i=0 ldi be general a polynomial of rank r + 2, and F the
hypersurface f = 0. Then Hess(F ) has:

• multiplicity d − 2 at the general point of each of the
(r+2

2

)
codimension two linear

subspaces Lij with equations li = lj = 0, with 0 6 i < j 6 r + 1;

• multiplicity 2(d − 2) at the general point of each of the
(r+2

3

)
codimension three linear

subspaces Lijk with equations li = lj = lk = 0, with 0 6 i < j < k 6 r + 1.
Moreover, if d > 4 these are the only singularities of Hess(F ) in codimension 1 and

if d = 3 these are the only singularities in codimension c 6 2.
In particular, from the configuration of the singularities of Hess(F ) one can uniquely

recover the linear forms l0, . . . , lr+1 up to a factor.

Proof. We recall Proposition 6.1, which shows that Hess(F ) has equation

(14)
r+1∑

i=0

∏

j 6=i

ld−2
j = 0.

Each summand in (14) has multiplicity at least d − 2 along the subspaces Lij , with
0 6 i < j 6 r +1, and it has multiplicity at least 2(d−2) along the subspaces Lijk, with
0 6 i < j < k 6 r + 1. To see that these are the exact multiplicities, intersect Hess(F )
with a hyperplane li = 0, with i = 0, . . . , r + 1. The intersection Li has equations

li = 0,
∏

j 6=i

ld−2
j = 0

and this shows that the multiplicities are as in the statement.
Next, let us prove the assertion about the dimension of the singular locus. Assume

first d > 4 and suppose there are other singularities in codimension 1. This would force
the intersections Li to have multiplicity worse than d − 2 at some point of a space Lij,
with j 6= i, off the spaces Lijk, with i 6= k 6= j, or to have multiplicity worse than
2(d − 2) along some of the spaces Lijk, with i, j, k distinct. Since this is not the case,
the assertion is proved.

Finally, consider the case d = 3. Suppose first that there are no singularities in
codimension 1. Since the hypersurface in P

r defined by the vanishing of a general
symmetric determinant of order r + 1 of linear forms has a singular locus of multiplicity
2, pure codimension 2 and degree

(r+2
3

)
(see [21, §4]), this implies that there are no other

singularities besides the
(r+2

3

)
subspaces Lijk, with 0 6 i < j < k 6 r + 1.



22 C. CILIBERTO AND G. OTTAVIANI

In conclusion we have to prove that there are no singularities in codimension 1. Sup-
pose by contradiction this is not the case and let Σ be the codimension one singular
locus of Hess(F ). By looking at the equation of the sections Li we considered above, we
see that the only possibility is that Σ intersects Li along some of the spaces Lijk, with
i, j, k distinct. Since we are dealing with a general polynomial f of rank r + 2, we may
assume that there is a monodromy action on the polynomials li, which acts as the full
symmetric group Sr+2. This implies that Σ should equally cut Li along all the spaces
Lijk, with i, j, k distinct, which are in number of

(r+1
2

)
. Hence deg(Σ) =

(r+1
2

)
. On the

other hand Hess(F ) has degree r + 1, hence its general plane curve section would be a

curve of degree r + 1 with
(r+1

2

)
singularities, hence it would be the union of r + 1 lines.

This would imply that Hess(F ) splits as the sum of r + 1 hyperplanes which contradicts
(14). �

As an immediate consequence we have:

Theorem 6.5. Let r > 2 and d > 3. If f and g are general polynomials of degree d and
rank r + 2 in P

r such that hess(f) and hess(g) are proportional, then f and g also differ
by a scalar multiple.

In other words, the restriction of the hessian map hd,r to the locus of hypersurfaces
of rank r + 2 in Σ(d, r) is birational onto its image.

Proof. Let f =
∑r+1

i=0 cil
d
i and let F be the hypersurface f = 0. By Proposition 6.4, we

have that from Sing(Hess(F )) we can uniquely recover the linear forms li, i = 0, . . . , r+1,
up to a factor. Hence we have g =

∑r
i=0 bil

d
i . Then Proposition 6.2 shows that f and g

differ by a scalar. �

As a further consequence we have the:

Theorem 6.6. The Hessian map

h3,3 : Σ(3, 3) 99K Σ(4, 3)

is birational onto its image. Hence the general cubic surface F is uniquely determined
by its Hessian Hess(F ).

This follows right away from Theorem 6.5 and from the famous:

Theorem 6.7 (Sylvester Pentahedral Theorem, see [22]). There is a dense Zariski
subset U of Σ(3, 3) such that every [f ] ∈ U can be written as

(15) f = l30 + l31 + l32 + l33 + l34

with l0, . . . , l4 linear forms, which are uniquely determined up to permutation and nu-
merical factors which are cubic roots of the unity.

In other terms the general [f ] ∈ Σ(3, 3) has rank 5.

7. Generic finiteness of the Hessian map

In this section we study the infinitesimal behaviour of the Hessian map at a general
rank r + 2 hypersurface. In doing this we will prove that hd,r is generically finite onto
its image for r > 2 and d > 3.

Theorem 7.1. Let li = xi for i = 0, . . . , r, lr+1 =
∑r

i=0 xi. Let f =
∑r+1

i=0 ldi , which is a
general polynomial of rank r + 2. Let d > 3, r > 2. The differential of the hessian map
hd,r at [f ] is injective.
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Remember that Pr = P(V ∨), where we introduced homogeneous coordinates [x0, . . . , xr].
We consider the Hessian map

hessd,r : f ∈ Symd(V ) → hess(f) ∈ Sym(r+1)(d−2)(V )

at the polynomial level, and set H := hessd,r. Theorem 7.1 follows from the following
Lemma.

Lemma 7.2. With notation and assumptions as in Theorem 7.1, we have:
(i) the differential of H at f is

dHf (g) =
r∑

i=0

ld−2
0 . . . l̂d−2

i . . . ld−2
r ∂2

i g +
∑

0≤i<j≤r

ld−2
0 . . . l̂d−2

i . . . l̂d−2
j . . . ld−2

r+1(∂i − ∂j)
2g

for any g ∈ Tf (Symd(V )), where ∂i stays for the derivative with respect to xi and
(∂i − ∂j)2 is the symbolic power;
(ii) dHf is injective.

Proof. The Hessian H(f) is, up to a constant factor, the determinant of the matrix



ld−2
0 + ld−2

r+1 ld−2
r+1 . . . ld−2

r+1

ld−2
r+1 ld−2

1 + ld−2
r+1 . . . ld−2

r+1
...

. . .
...

ld−2
r+1 ld−2

r+1 . . . ld−2
r + ld−2

r+1




.

Then dHf (g) equals
∣∣∣∣∣∣∣∣∣∣

g00 g01 . . . g0r

ld−2
r+1 ld−2

1 + ld−2
r+1 . . . ld−2

r+1
...

. . .
...

ld−2
r+1 ld−2

r+1 . . . ld−2
r + ld−2

r+1

∣∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∣∣

ld−2
0 + ld−2

r+1 ld−2
r+1 . . . ld−2

r+1
g01 g11 . . . g1r

...
. . .

...

ld−2
r+1 ld−2

r+1 . . . ld−2
r + ld−2

r+1

∣∣∣∣∣∣∣∣∣∣

+ . . .

+

∣∣∣∣∣∣∣∣∣∣

ld−2
0 + ld−2

r+1 ld−2
r+1 . . . ld−2

r+1

ld−2
r+1 ld−2

1 + ld−2
r+1 . . . ld−2

r+1
...

. . .
...

g0r g1r . . . grr

∣∣∣∣∣∣∣∣∣∣

Expand this sum collecting the monomials in li. The monomial ld−2
0 . . . l̂d−2

i . . . ld−2
r

appears with coefficient gii: here only the diagonal term in the i-th summand is involved.

The monomial ld−2
0 . . . l̂d−2

i . . . l̂d−2
j . . . ld−2

r+1 appears with coefficient involving both the i-
th and the j-th summand, where we have respectively the two minors

(
gii gij

ld−2
r+1 ld−2

j + ld−2
r+1

)
and

(
ld−2
i + ld−2

r+1 ld−2
r+1

gij gjj

)
.

The corresponding coefficients are respectively ld−2
r+1(gii − gij) and ld−2

r+1(gjj − gij), the

resulting sum is ld−2
r+1 (∂i − ∂j)2 g. This proves (i).

In order to prove (ii), let (I1, . . . IN ), with N =
(r+2

r

)
, be the set of subsets of cardi-

nality r of {0, . . . , r + 1}, lexicographically ordered. We consider the syzygies of degree

d − 2 of the vector of monomials
(∏

j∈I1
ld−2
j , . . . ,

∏
j∈IN

ld−2
j

)
. We claim that any of
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these syzygies contains, at the entry corresponding to ld−2
0 . . . l̂d−2

i . . . l̂d−2
j . . . ld−2

r+1 , only

the variables xi and xj . In order to prove this, we set for simplicity (i, j) = (0, 1). We
have the identity

(16)
N∑

p=1

sp

∏

j∈Ip

ld−2
j = 0,

where (sp)N
p=1 is a syzygy. Note all the terms in the left hand side of (16) have degree

(d − 2)(r + 1). Consider the last summand sN ld−2
2 . . . ld−2

r+1 . The only terms in the left
hand side of (16) containing x2, . . . , xr with total degree larger than (d−2)r must appear

in this summand, since all the terms of the other summands contain either xd−2
0 or xd−2

1 .
It follows from (16) that each term of this summand containing x2, . . . , xr with total
degree larger than (d − 2)r must vanish. Hence sN is a homogeneous polynomial of
degree d − 2 depending only on x0, x1, which proves our claim.

Let now g be such that dHf (g) = 0. Note that by (i) we get a syzygy of degree

d − 2 of
(∏

j∈I1
ld−2
j , . . . ,

∏
j∈IN

ld−2
j

)
as above. It follows that (∂i − ∂j)

2 g depends only

on xi, xj, hence all terms in g containing one among x2
i , xixj , x2

j must contain only the

variables xi, xj . We claim that only the powers xd
i appear in g. In fact, assume a term M

with two different variables xi and xj appears in g. The two variables xi and xj cannot
appear in M both at degree one, since we have d > 3 and the remaining variables in M
can be only xi and xj . So we may suppose that x2

i xj appears in M . Then take another

variable xk (here we need r > 2). Applying (∂i − ∂k)2 to M , we see that xj appears in
the result, which is a contradiction because only xi and xk should appear there.

So we get g =
∑r

i=0 cix
d
i for certain scalars ci, with i = 0, . . . , r. Then

dHf (g) =
r∑

i=0

(
∑

j 6=i

cj)ld−2
0 . . . l̂d−2

i . . . ld−2
r ld−2

r+1 .

When this expression vanishes it implies
∑

j 6=i cj = 0 for any i = 0, . . . , r, that is

(17)




0 1 . . . 1
1 0 . . . 1
...

. . .
...

1 1 . . . 0


 ·




c0

c1
...

cr


 = 0.

The matrix appearing in (17) has the eigenvalue −1 with multiplicity r. Since it is
traceless the remaining eigenvalue is r with multiplicity one, hence the matrix is non
singular. It follows ci = 0 for all i = 0, . . . , r, hence g = 0, so proving (ii). �

As an immediate consequence, we have:

Corollary 7.3. The Hessian map hd,r is generically finite onto its image for d > 3,
r > 2. In other words, the Hessian variety Hd,r = im(hd.r) has dimension N(d, r) =
dim(Σ(d, r)).

Remark 7.4. We conjecture that the Hessian map hd,r is birational onto its image for
d > 3, r > 2, except for h3,2, but so far we have not been able to prove it.

For instance we focused on the case d = 3, r = 4, trying to prove birationality for it.
We are able to exhibit a form f of degree 3 in x0, . . . , x4 such that:
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(i) the differential of hess3,4 is injective at f ;
(ii) if g is any cubic form in x0, . . . , x4 such that hess(g) is proportional to hess(f) then
g is proportional to f .

This strongly suggests that birationality may hold, but it is not sufficient to prove it.
Indeed it could be the case that for forms h close to f the fibre of hess3,4 consists of
more than one point, but when h tends to f all the elements in the fibre, but f , tend
to points in the indeterminacy locus.
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[21] C. Segre, Gli ordini delle varietà che annullano i determinanti dei diversi gradi estratti da una data

matrice, Atti Accad. Lincei, Rend.: Classe di scienze fisiche, matematiche e naturali Serie V, 9
(1900), 253–260.

[22] N. Shepherd-Barron, The rationality of certain spaces associated to trigonal curves, Algebraic Ge-
ometry (Providence) (Amer. Math. Soc., ed.), Proc. Symp. Pure Math., vol. 46, Part I, 1987.



26 C. CILIBERTO AND G. OTTAVIANI

Ciro Ciliberto, Dipartimento di Matematica, Università di Roma Tor Vergata, Via della
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