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1.1 The main cells of the central nervous system  

The main cells in the central nervous system are essentially of two types: neurons and 

glial cells. Neurons are excitable cells with the function of producing, transmitting and 

receiving nerve impulses (Rutecki, 1992), while glial cells mainly, but not only, are 

cells with function of structural support, nutrition, replacement and immune functions. 

Glial cells are a highly heterogeneous cell population that consist of astrocytes, 

microglia and oligodendrocytes, and contribute to regulation and control functions; 

recently it has also been re-evaluated their role in nerve impulse conduction. 

1.1.1 Neurons 

A neuron is an electrically excitable cell that processes and transmits information 

through electrical and chemical signals. These signals between neurons occur 

via synapses, which are specialized connections with other cells. Neurons can connect 

each other to form neural networks. Neurons are the main components of 

the brain and spinal cord of the central nervous system (CNS), and of the ganglia of 

the peripheral nervous system (PNS). There are several types of specialized neurons. 

Sensorial neurons respond to stimuli such as touch, sound or light and all other stimuli 

affecting the cells of the sensorial organs and then send signals to the spinal cord and 

brain. Motor neurons receive signals from the brain and spinal cord to cause muscle 

contractions and affect glandular secretions. Interneurons connect the neurons each 

other within the same region of the brain, or spinal cord in neural networks. A typical 

neuron consists of a cell body (soma), dendrites, and an axon. The term neurite is used 

to describe either a dendrite or an axon, particularly in its undifferentiated stage. 

Dendrites are thin structures that arise from the cell body, often extending for hundreds 

of micrometres and branching multiple times, giving rise to a complex "dendritic tree". 

An axon (also called nerve fibre when it is myelinated) is a special cellular extension 

(process) that arises from the cell body at a site called the axon hillock and travels for a 

distance, as far as one meter in humans or even more in other species. The axon 

terminal contains synapses, specialized structures where chemicals neurotransmitter are 

released to communicate with target neurons (Koester & Siegelbaum, 2000). Nerve 

fibres are often bundled into fascicles, and in the peripheral nervous system, bundles of 

fascicles make up nerves. The cell body of a neuron frequently gives rise to multiple 

dendrites, but never more than one axon, although the axon may branch hundreds of 

times before it terminates. In much of synapses, signals are sent from the axon of one 
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neuron to a dendrite of another. There are, however, many exceptions to these rules: for 

example, neurons can lack of dendrites, or haven’t got an axon, and synapses can 

connect an axon to another axon or a dendrite to another dendrite. All neurons are 

electrically excitable, maintaining voltage gradients across their membranes by 

metabolically driven ion pumps, which combine with ion channels embedded in the 

membrane to generate intracellular-versus-extracellular concentration differences of 

ions such as Na+, K+, Cl-, Ca2+. Changes in membrane voltage can alter the function 

of voltage-dependent ion channels. If the voltage changes enough, an all-or-noneaction 

potential is generated, which travels rapidly along the cell axon, and activates synaptic 

connections with other cells when it arrives. 

1.1.2 Astrocytes 

Astrocytes (Astro from Greek astron = star and cyte from Greek "kyttaron" = cell), also 

known collectively as astroglia, are characteristic star-shaped glial cells of the brain and 

spinal cord. Astrocytes represent 40-50% of all glial cells. From the embryological 

point of view, they derive from the ectoderm of the neural tube. These cells consist of a 

cell body from which originate numerous processes. Immunohistochemical techniques 

based on the specific marker GFAP (Glial Fibrillary Acidic Protein) has allowed to 

define the morphology of these cells. Astrocytes are multifunctional cells that are 

indispensable for neuronal survival and function. They contribute to the formation and 

preservation of a secure blood-brain barrier (BBB), and their tight organization around 

the microvasculature provides anatomical evidence for the necessity of glucose to enter 

astrocytes on its way to neurons and other glial cells (Figure 1). Astrocytes are a 

reservoir of glycogen, which, depending on the degree of neuronal activity, is degraded 

to lactate that is delivered to neurons and oligodendrocytes as energy source 

(Tsacopoulos & Magistretti, 1996; Sanchez-Abarca et al., 2001; Brown et al., 2004).  

Astrocytes have an orderly arrangement in the brain parenchyma with minimal overlap; 

each astrocyte covers a specific territory that interfaces with the blood vessels and 

includes hundreds of synapses (Bushong et al., 2004). The entire cell surface is covered 

by lamellar extensions and protrusions (Chao et al., 2002), processes with the same 

structural composition, endowed with motility, which confer to astrocytes the ability to 

have dynamic interactions with the surrounding synapses. Much of astrocytes also 

present "end feet", processes through which they contact the blood vessels and 

participate in the formation of the blood-brain barrier (Simard et al., 2003).  
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Figure 1. Astrocytes numerous functions that help maintaining CNS homeostasis (Seifert et al., 

2006).  

Until a few years ago it was thought that astrocytes had similar characteristics in 

different areas of the brain; however, recent studies have shown that it is a highly 

heterogeneous cell group (Grass et al., 2004; Matthias et al., 2003). Indeed, we can 

distinguish three types of astrocytes: 

1- fibrous astrocytes, located in the white matter, characterized by the presence of thick 

fibrillar structures within the cell body, the gliofibrils, formed by the aggregation of 

thinner gliofilaments; 

2- protoplasmic astrocytes, present in the grey matter, with less gliofilaments and bigger 

cell body than the previous one. Protoplasmic astrocytes, such as microglial cells, are 

capable of phagocytosis; 

3- radial astrocytes, with an elongated shape, arranged perpendicularly to the axis of the 

ventricles; during the development of the nervous system they promote the migration of 

neural tube’s cells toward their final location. 

Functional studies on the hippocampus have also evidenced the presence of astrocyte 

populations with different types of voltage-gated channels (Steinhauser et al., 1992) and 
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different types of responses to the AMPA glutamate receptors (Zohu & Kimelberg, 

2001). 

Astrocytes are coupled via gap junctions, which are mainly formed by connexins 30 and 

43 (Farahani et al., 2005). Gap junctions consist of clusters of closely packed 

hemichannels, which align between neighboring cells head-to-head to form channels. 

They provide direct cytoplasmic passage of ions and small molecules such as glucose 

metabolites, second messengers and neurotransmitters. Ca2+-mediated intercellular 

signaling is a mechanism by which astrocytes communicate with each other and 

modulate the activity of adjacent cells, including neurons, oligodendrocytes and 

microglia (Scemes, 2006; Nedergaard, 1994; Nedergaard, 1995). The propagation of 

intercellular Ca2+ waves might work by enhanced release of ATP, which activates 

purinergic receptors on neighboring astrocytes (Cotrina, 1998; Nedergaard, 2003). 

Astrocytes also interact with the blood vessels and with the synaptic terminals. The idea 

that astrocytes could connect blood vessels and neurons is due to Camillo Golgi back to 

the late XIXth century (Golgi, 1871). However, only recently we have highlighted the 

dynamic processes that complement these structural interactions, as the active dialogue 

between astrocytes and other brain elements. According to the new perspective, 

astrocytes are multipurpose cells involved in almost every process of the central 

nervous system, acting as local integration units and bridges between synaptic and non-

synaptic communication (Volterra & Mendolesi, 2005). 

It has become clear that astrocytes provide structural, metabolic and trophic support to 

nerve cells. More particularly, astrocytes: 

- Ensure the maintenance of physiological concentrations of K+, even during the intense 

firing activity of neurons, preventing depolarization and hyperexcitability (Karwoski, et 

al. 1989); 

- Through specific transporters present on their membranes regulate and control the 

extracellular concentration of the neurotransmitters released into the synaptic cleft, such 

as GABA and glutamate (Coco et al., 1997; Dehnes et al., 1998); 

- Have the capacity to synthetize glutamate and GABA precursors (Ransom et al., 

2003); 

- Provide lactate and other energy substrates to neurons (Tsacopoulos & Magistretti, 

1996). 

Over the last 20 years new experimental evidence has revolutionized the classical view 

of astrocytes as a simple passive support of neuronal cell function, demonstrating their 
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crucial role in synaptogenesis processes (Hama et al., 2004; Mauch et al., 2001) and 

neurogenesis (Garcia et al., 2004; Sanai et al., 2004). Recent studies have also 

demonstrated the role of astrocytes in the coupling of neuronal activity with cerebral 

blood flow (Gordon et al., 2008; Hirase, 2005). Studies conducted both in vivo and in 

vitro in the cortical region indicate that the synaptic release of glutamate activates 

metabotropic glutamate receptors on astrocytes. Stimulation of these receptors causes an 

increase in the levels of Ca2+ by astrocytic "end-feet" with the release of arachidonic 

acid and its metabolites, eventually leading to dilation of the arterioles (Takano et al., 

2006). The discovery, which occurred in the '80s, that astrocytes express a wide range 

of neurotransmitter receptors, often similar to those in the surrounding synapses, signed 

a new era in the research on glial cells. It has been pointed out that these receptors can 

be activated by the release of neurotransmitters during synaptic activity and lead to 

increased Ca2+ in the cytoplasm of astrocytes. This event causes the release of chemical 

transmitters, the "gliotransmitters", such as glutamate, ATP, and D-serine, responsible 

for the intercellular communication between astrocytes and neurons (Araque et al., 

1999). The released gliotransmitters can activate the neuronal receptors and modifying 

neuronal excitability and synaptic transmission (Fellin et al., 2004; Jourdain et al., 2007; 

Santello & Volterra, 2008; Schipke & Kettenmann, 2004). All these observations have 

led to formulate the new concept of "tripartite synapses", according to which astrocytes 

must be regarded as the third element of the signal integration unit (Araque et al., 1999; 

Volterra et al., 2014). Astrocytes can be excited, to take action in response to the 

neurotransmitter released at pre-synaptic neuron level and then to modify the neuron 

response at pre-synaptic and post-synaptic level. Furthermore, astrocytes are able to 

propagate this state of excitation to other astrocytes, at distance from the starting 

synapses. 

1.1.3 Microglia 

Microglia is composed by small cells located in both the white and grey matter and 

represents about 20% of glial cells. Microglia cell body is ovoid, with thin extensions 

and rich in lysosomes. The origin of microglia has been widely debated. It was thought 

that they descend from neuroectoderm or that they are myeloid mixed population. On 

the other hand, recent studies have shown that they are specialized cells, with capacity 

of self-renewal (Ajami et al., 2007; Ginhoux et al., 2013), which originate from bone 

marrow precursors in the mesoderm; and from here they migrate to the CNS, becoming 
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brain cells. For a long time, the central nervous system was considered isolated and 

inert from an immune point of view; given the low expression of MHC II molecules and 

the lack of lymphatic system it was thought that the blood-brain barrier isolated the 

brain from the peripheral immune system. The presence and activity of immune-

competent cells, and the recent studies, aimed to understand the physiological role of 

microglia in the nervous tissue (Hanisch, 2013; Kettenmann et al., 2013; Tremblay et 

al., 2011), have allowed us to re-evaluate this hypothesis. It was also noted that lesions 

of the CNS cannot compromise the integrity of the barrier (Gay et al., 2007). Pio del 

Rio-Hortega conducted various research to qualify the microglia as the main immune 

intrinsic effector of the brain (Del Rio-Hortega, 1922). These cells can express on their 

surface a series of immune-molecules able to expose antigens to T lymphocytes; 

moreover, they are able to release mediators. The role of microglia is critical in the early 

stages of embryonic development in which excess neurons are produced; later, these 

neurons face programmed cell death and break up into small apoptotic bodies, removed 

by microglia (Pont-Lezica et al., 2011). Microglia change their morphology in relation 

to the development of the CNS and in particular pathological conditions.  

We can identify four types of microglia: 

1- amoeboid microglia: immature form that removes dying cells in the remodelling 

process of the foetal brain; 

2- branched microglia at rest (or quiescent microglia): CNS adult form, characterized by 

long and branched apophyses and a small cell body; 

3- non-phagocytic activated microglia: intermediate stage between the branching and 

the phagocytic form; 

4- phagocytic microglia: mainly of amoeboid shape and large dimensions. It is situated 

in brain areas affected by necrosis or inflammation; it phagocytes foreign materials and 

exposes immune-molecules for the activation of T lymphocytes. Interacts also with 

astrocytes and neurons to re-establish quickly tissue homeostasis (Figure 2). 

 

Figure 2. Representation of the different stages of microglia activation, marked with the anti 
IBA1 antibody (Cerbai et al., 2012). 



Introduction___________________________________________________________________________ 

8 
 

Microglia is thus able to respond rapidly to physiological and pathological changes of 

the brain microenvironment, by processes of activation and modification of cell 

morphology, and through rapid monitoring movements of degeneration of neuronal 

cells. Actually, microglia cells in quiescence are in a status of alertness and patrolling to 

the extracellular environment variations (Kreutzberg, 1996). Activation of microglia is 

quick and leads to morphological, immunophenotypic and functional changes, a process 

which stimulates the migration of microglia to the part of the brain affected by tissue 

damage, as recently demonstrated by Morsch and collaborators in the spinal cord of 

zebrafish (Morsch et al., 2015), where it can phagocyte damaged cells or debris. The 

activated microglia, after having fulfilled its function of phagocytosis, is also able to 

regress rapidly to the quiescent form (Morsch et al., 2015). Several studies have shown 

that microglia can be activated more quickly compared to astrocytes. A 2007 study, 

conducted by induction of electrical stress in the hippocampus of rats, showed a rapid 

increase in the number of activated microglia, correlated with reduced expression of the 

neuronal glycoprotein CD200 (Frank et al., 2007). This glycoprotein is expressed on the 

neuronal surface and binds CD200 receptors expressed on the membrane of neutrophils, 

macrophages, monocytes, lymphocytes and microglia. It is supposed that the 

glycoprotein CD200 mediates an interplay between microglia and neurons. The 

glycoprotein-receptor interaction maintains microglia in a quiescent state; therefore, 

reduced expression of glycoprotein CD200 on the neuronal membrane (due, for 

example, to electric hippocampal stress) would promote the activation of microglia. The 

reduced expression of CD200 was evidenced also in animal models of inflammation 

and in the hippocampus of aged rats (Matsumoto et al., 2007; Lyons et al., 2007). It was 

highlighted also that there exists an astrocyte-microglia dialogue. Astrocytes release 

substances useful for the activation and proliferation of microglia, such as M-CSF 

(Macrophage Colony Stimulating Factors), and GM19 CSF (Granulocyte-Macrophage 

Colony Stimulating Factors) (Watkins et al., 2007). On the other hand, microglia 

communicate with astrocytes through the release of growth factors and cytokines, 

including IL-1, which regulates the proliferation of astrocytes (Streit et al., 1999). The 

rapid activation of microglia after damage has been associated with the rapid activation 

of NF-kB (Nuclear transcription Factor). This factor does not require “de novo” protein 

expression, but its active form must translocate from the cytoplasm to the nucleus, 

justifying the fast response of microglial cells to damage.  
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Inflammatory cytokines, such as IL-1 and IL-6, also act as activators of NF-kB and in 

this way, they recruit microglia (Gehrmann et al., 1995). The stimulation or inactivation 

process of microglia may be mediated by other factors produced by neurons, by 

pathogens or by immune cells. The interferon-γ and IL-4 are released by T cells and 

stimulate the expression of MHC II on microglia, accelerating the processes of 

proliferation. The mitogenic factors GM-CSF and M-CSF stimulate the proliferation 

and recruitment of microglia. LPS, expressed on the wall of Gram-negative bacteria, is 

an endotoxin, which behaves as an immunostimulant. Matrix metalproteinases (MMPs), 

membrane-zinc proteins, are released from apoptotic cells and stimulate microglial 

activation. On the contrary, TGF-β1 and IL-10 negatively modulate microglia, reducing 

the expression of MHC II. When microglia are activated, it rapidly expresses high levels 

of MHC II and several types of immunoglobulins family receptors, complement 

receptors, cytokines, chemokines (IFN-γ, IFN-β, IFN-α, IL-1, IL6, IL -10, IL-12) and 

receptors for mannose. Therefore, the cells acquire the ability to recognize and bind 

various antigens and present them to T lymphocytes (Rock et al., 2004). Microglia is 

involved in the repair of brain damage by removing the cause. The action of these cells 

is dichotomous. At first microglia intervenes in tissue repair, removal of apoptotic 

cellular debris and restore tissue homeostasis, playing the same role of macrophages in 

the peripheral organs. Later it acquires phagocytic activity and releases substances with 

potential cytotoxic action, such as reactive oxygen intermediates, NO, proteases, 

derivatives of arachidonic acid, excitatory amino acids, quinolinic acid and cytokines 

such as IL-1 and TNFα. These substances inhibit the proliferation of oligodendrocytes 

and the deposition of myelin (Merrill, 1991). This cytotoxic effect causes the expansion 

of inflammatory processes and appears to be responsible for the involvement of 

microglia in many neurodegenerative diseases such as Alzheimer's disease, Parkinson's 

disease, multiple sclerosis and dementia associated with HIV (Kim & Tong, 2006). 

Microglia then appears as a ''double-edged sword" in the brain’s defence, and studies on 

the modulation of its activity may represent a future therapeutic target for the treatment 

of many diseases. 

1.2 The hippocampus 
The hippocampus is a major component of the brain of humans and other vertebrates 

(Amaral & Lavenex, 2007). Humans and other mammals have two hippocampi, one in 

each side of the brain (Anderson et al., 2007). The hippocampus, a structure located in 
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the temporal lobe, is a part of the limbic system, which consists of many different 

cerebral areas destined to spatial learning, emotion, correlated vegetative expressions 

and memory. It is located under the cerebral cortex (allocortical) and in primates in the 

medial temporal lobe. The functional significance of the limbic system, one of the most 

fascinating and mysterious encephalic areas, is not completely clear. Its anatomic 

location, halfway between the hypothalamus and cortical frontal lobe, allows the 

mediation between vegetative functions elaborated in the hypothalamus and the 

information derived from associative cortex, to produce and integrate emotions. It 

contains two main intercommunicating parts: the hippocampus proper (also called 

Ammon's horn, Cornu Ammonis) and the dentate gyrus. The hippocampus shows a 

typical structure that allows us to identify certain cell types such as the neurons of 

Stratum Pyramidalis, which are among the most sensitive to ischemia and display the 

characteristic neuropathological damages of Alzheimer’s disease. Therefore, the rat or 

mouse hippocampus is a cerebral region that often is utilized in studies of 

neurodegenerative pathologies. Hippocampus neuroanatomy is an interesting trait: it is a 

subject of many studies due to its apparently simplified organization of its cellular 

layers, a well-defined structural organization, and its complex laminar distribution of 

afferent fibres (input). The hippocampus, including the dentate gyrus, shows a 

characteristic “C”-like elongated form, which makes it very similar to a sea horse, from 

which the name "hippocampus" derives (from the Greek "hippo" horse and "kampos" 

monster of the sea). One of the most important areas of the hippocampus resembles a 

ram's horn or Cornu Ammonis (CA) subdivided in the areas CA1, CA2, CA3, and CA4 

(Amaral & Lavenex, 2007). Its main axis extends from the rostral region of septal 

nucleus, upper and dorsal segments of diencephalon, and reaches the temporal lobe in 

its ventral and caudal region. The hippocampus can be seen as a ridge of grey matter 

tissue, elevating from the floor of each lateral ventricle in the region of the inferior or 

temporal horn. This ridge can be seen also as an inward faged of the archicortex into 

the medial temporal lobe. The hippocampus can only be seen in dissections as it is 

concealed by the parahippocampal gyrus.  

The term hippocampal formation is used to refer to the hippocampus proper and its 

related parts. However, there is no consensus on which parts are included. Sometimes 

the hippocampus is said to include the dentate gyrus and the subiculum (Amaral & 

Lavenex, 2007; Martin, 2003). Some references include the dentate gyrus and 

the subiculum in the hippocampal formation, and others include the 

https://en.wikipedia.org/wiki/Hippocampus_proper
https://en.wikipedia.org/wiki/Hippocampus_proper
https://en.wikipedia.org/wiki/Hippocampus_proper
https://en.wikipedia.org/wiki/Hippocampus_proper
https://en.wikipedia.org/wiki/Grey_matter
https://en.wikipedia.org/wiki/Grey_matter
https://en.wikipedia.org/wiki/Lateral_ventricle
https://en.wikipedia.org/wiki/Allocortex
https://en.wikipedia.org/wiki/Temporal_lobe#Medial_temporal_lobe
https://en.wikipedia.org/wiki/Dissection
https://en.wikipedia.org/wiki/Parahippocampal_gyrus
https://en.wikipedia.org/wiki/Hippocampal_formation
https://en.wikipedia.org/wiki/Hippocampus_proper
https://en.wikipedia.org/wiki/Dentate_gyrus
https://en.wikipedia.org/wiki/Subiculum
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presubiculum, parasubiculum, and entorhinal cortex (EC). The neural layout and 

pathways within the hippocampal formation are very similar in all mammals.  

In rodents, the hippocampus can be divided into two fundamental regions: a wide region 

that is populated by cells, which adjoin to dentate gyrus and a smaller one that follows 

it. Santiago Ramòn y Cajal named these two regions “lower” and “upper”, respectively. 

However, at present it is utilized the nomenclature introduced by Lorent de Nò, with 

CA2 and CA3 regions corresponding to lower region and CA1 corresponding to upper 

region. The other regions of hippocampal formation are dentate gyrus, subiculum, 

presubiculum and entorhinal cortex, which in rodents is divided in medial and lateral. 

Due to the presence of pyramidal neurons in large projections and interneurons of 

different and smaller dimensions, at organizational level the hippocampus resembles 

different cortical regions. Nevertheless, the mainly unidirectional transfer of 

information through intra-hippocampal circuits and the widespread three-dimensional 

organization of interconnections (intrinsic associational connections, IAC), make the 

hippocampal neuroanatomy unique (Figure 3).  

 
 

 

Figure 3: A. Hippocampal structure with its projections: note the unidirectional nature of the 
fiber pattern. B. The different regions of the hippocampus, with the input of the afferent fibers 
in the toothed wheel and the exit from the CA1 (Amaral & Lavenex, 2007). 

The EC is considered the first entry passage into hippocampal structure: from its 

exterior layers cells originate axonical projections which reach the dentate gyrus (DG), 

forming the afferent paths of the structure called perforating fibres. This path is 

unidirectional because the dentate gyrus never projects towards EC. The granular cells 

of the dentate gyrus give rise to axonic projections, the musk fibres, which connect with 

https://en.wikipedia.org/wiki/Parasubiculum
https://en.wikipedia.org/wiki/Entorhinal_cortex
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the pyramidal cells of CA3 region. Axons of CA3 cells form the Schaffer’s collateral 

fibres, which represent the primary source of information to CA1, where subiculum 

excitation cells are present. From CA1 onwards the unidirectional and simple fibres 

organization becomes much more complex: indeed, the CA1 region project also towards 

EC, where arrive the cortical projections from the subiculum, connected to 

parasubiculum and presubiculum.  

1.2.1 Principal subtypes of neurons of hippocampus 

The principal neuronal cell type of the hippocampus is the pyramidal cell, which makes 

up most of the neurons in the pyramidal cell layer of CA1, CA2 and CA3. Pyramidal 

cells have basal dendrites that extend into the stratum oriens and an apical dendritic tree 

that extends into the Stratum Radiatum to the hippocampal fissure.  

Pyramidal Cells of CA1 

In contrast to the substantial heterogeneity of dendritic organization characteristic of 

CA3 pyramidal cells, investigators such as Norio Ishizuka and Dennis Turner and 

colleagues (Pyapali et al., 1998) demonstrated that the CA1 pyramidal cells show 

remarkable homogeneity of their dendritic trees. As well as being more homogeneous, 

they are also, on average, smaller than CA3 cells. The total dendritic length averages 

approximately 13.5 mm, and the average size of CA1 cell somata is about 193 µm2 or 

15 µm in diameter. Regardless of where a pyramidal cell is located in CA1, it has about 

the same total dendritic length and the same dendritic configuration. Some pyramidal 

cells have one apical dendrite, and others have two. Cells with two apical dendrites tend 

to have slightly greater total dendritic length in the apical direction. Neurons with a 

single apical dendrite, however, tend to have slightly larger basal dendritic trees; thus, 

overall, the dendritic tree in all CA1 neurons have about the same total length. This 

anatomical homogeneity, however, cannot reflect functional homogeneity because, as 

we shall see shortly, there are differences in the entorhinal cortex inputs received at 

different locations along the transverse axis of CA1. 

Pyramidal Cells of CA3 and CA2 

Ishizuka and colleagues (Ishizuka et al., 1995) demonstrated that the dendritic length 

and organization of CA3 pyramidal cells are quite variable. The smallest cells (with a 

soma size of about 300 µm2 or 20 µm in diameter) are located in the limbs of the 

dentate gyrus and have a total dendritic length of 8 to 10 mm. The largest cells (with a 
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soma size of about 700 µm2 or 30 µm in diameter), which are located distally in the 

field, have total dendritic lengths of 16 to 18 mm. The distribution of the dendritic trees 

of CA3 pyramidal cells also varies depending on where the cell body is located. Cells 

located in the limbs of the dentate gyrus, for example, have few or none of their 

dendrites extending into the stratum lacunosum-moleculare, and thus these cells receive 

little or no direct input from the entorhinal cortex. The cells, however, receive a larger 

number of mossy fiber terminals on their apical and basal dendritic trees and are thus 

under greater influence of the granule cells than distally located CA3 cells, which 

receive only apical mossy fiber input. 

Dentate Granule Cell 

The granule cell is the principal cell type of the dentate gyrus. This cell has an elliptical 

cell body with a width of approximately 10 µm and a height of 18 µm (Claiborne et al., 

1990). Each cell is closely apposed to other granule cells, and in most cases, there is no 

glial sheath intervening between the cells. The granule cell has a characteristic cone-

shaped tree of spiny dendrites with all the branches directed toward the superficial 

portion of the molecular layer; most of the distal tips of the dendritic tree end just at the 

hippocampal fissure or at the ventricular surface. The dendritic trees of granule cells 

located in the suprapyramidal blade tend, on average, to be larger than those of cells 

located in the infrapyramidal blade (3500 µm vs. 2800 µm). Desmond and colleagues 

(Desmond & Levy, 1985) provided estimates for the number of dendritic spines on the 

granule cell dendrites. They found that cells in the suprapyramidal blade have 1.6 

spines/µm, whereas cells in the infrapyramidal blade have 1.3 spines/µm. With these 

numbers and the mean dendritic lengths given above, an estimate of the number of 

spines on the average suprapyramidal granule cell would be 5600 and for an 

infrapyramidal cell 3640. The total number of granule cells in one dentate gyrus of the 

rat is about 1.2*106 (West et al., 1991; Rapp & Gallagher, 1996). The packing density 

and thickness of the granule cell layers varies somewhat along the septotemporal axis of 

the dentate gyrus (Gaarskjaer, 1978). The packing density of terminate exclusively on 

the initial segments of other axons. Interneurons have been distinguished also based on 

their inputs. Interneurons can be differentiated also from principal cells based on their 

electrophysiological characteristics. At least some interneurons have high rates of 

spontaneous activity and fire in relation to the theta rhythm. For this reason, 

interneurons are called often theta cells. A major challenge is to determine if different 
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classes of interneurons demonstrate distinct electrophysiological response profiles. 

Within the same subgranular region occupied by the cell bodies of the pyramidal basket 

cells are several other cell types with distinctly different soma shapes, as well as 

different dendritic and axonal configurations (Amaral, 1978). Some of these cells are 

multipolar with several a spiny dendrite entering the molecular and polymorphic layers, 

whereas others tend to be more fusiform shaped with a similar dendritic distribution. As 

Ribak and colleagues pointed out, many of these cells share fine structural 

characteristics such as infageded nuclei, extensive perikaryal cytoplasm with large Nissl 

bodies, and intranuclear rods. Moreover, it appears that all these cells give rise to axons 

that contribute to the basket plexus in the granule cell layer. Many of these neurons are 

immunoreactive for GABA. They form symmetrical synaptic contacts with the cell 

bodies, proximal dendrites, and occasionally axon initial segments of granule cells and 

therefore function as inhibitory interneurons. These cells are not neurochemically 

homogeneous, however, as subsets appear to colocalize distinct categories of other 

neuroactive substances. 

Pyramidal Basket Cell 

The most intensively studied interneuron is the pyramidal basket cell. These cells are 

generally located along the deep surface of the granule cell layer, have pyramidal 

shaped cell bodies (25 to 35 µm in diameter), and are wedged slightly into the granule 

cell layer. The basket portion of the name refers to the fact that the axon of these cells 

forms pericellular plexuses that surround and form synapses with the cell bodies of 

granule cells. Ramon y Cajal first described the pyramidal basket cells as having a 

single, principal aspiny apical dendrite directed into the molecular layer (where it 

divides into several aspiny branches) and several principal basal dendrites that ramify 

and extend into the polymorphic cell layer. Most of these cells contain biochemical 

markers for the inhibitory transmitter γ-aminobutyric acid (GABA) and are thus 

presumably inhibitory (Ribak et al., 1978; Ribak & Seress, 1983). The number of basket 

cells is not constant throughout the transverse or septotemporal extents of the dentate 

gyrus (Seress & Pokorny, 1981). At septal levels, the ratio of basket cells to granule 

cells is 1:100 in the supra-pyramidal blade and 1:180 in the infra-pyramidal blade. At 

temporal levels, the number is 1:150 for the supra pyramidal blade and 1:300 for the 

infrapyramidal blade. Despite the apparent cytoarchitectonic homogeneity of the 
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hippocampal fields, there are several differences (especially regarding neurochemical 

innervation) at different septotemporal levels of the hippocampal formation. 

Mossy cell 

The polymorphic layer harbors a variety of neuron types, but little is known about many 

of them (Amaral, 1978). The most common type, and certainly the most impressive, is 

the mossy cell. This cell type is probably what Ramon y Cajal referred to as the “stellate 

or triangular” cells located in his subzone of fusiform cells; and it is undoubtedly what 

Lorente de Nó referred to as “modified pyramids.” The cell bodies of the mossy cells 

are large (25–35 µm) and are often triangular or multipolar in shape. Three or more 

thick dendrites originate from the cell body and extend for long distances in the 

polymorphic layer. Each principal dendrite bifurcates once or twice and generally gives 

rise to a few side branches. Although most of the daughter dendritic branches remain 

within the polymorphic layer, an occasional dendrite pierces the granule cell layer and 

enters the molecular layer. The mossy cell dendrites virtually never enter the adjacent 

CA3 field. The most distinctive feature of the mossy cell is that all its proximal 

dendrites are covered by large, complex spines evocatively called thorny excrescences. 

These spines are the distinctive sites of termination of the mossy fiber axons (i.e., axons 

of the dentate granule cells). Although thorny excrescences are also observed on the 

proximal dendrites of pyramidal cells in CA3, they are never as dense as the ones on the 

mossy cells. The distal dendrites of the mossy cell have typical pedunculate spines that 

appear to be less densely distributed than those on the distal dendrites of the pyramidal 

cells in the hippocampus. The mossy cells are immunoreactive for glutamate and give 

rise to axons that project to the inner third of the molecular layer of the ipsilateral and 

contralateral dentate gyrus, making asymmetrical terminations on the dendrites of 

granule cells. The mossy cells thus appear to be the major source of the excitatory 

associational/commissural projection to the dentate gyrus.  

1.2.2 Morphology and role in cognitive and behavioural functions of CA1 and CA3 

areas of hippocampus 

A common organizational feature of connections between regions of the neocortex is 

that they are largely reciprocal (Felleman & Van Essen, 1991). If cortical region A 

projects to cortical region B, region B often sends a return projection back to region A. 

As first described by Ramón y Cajal (1893), this is clearly not the case for the 

connections that link the various parts of the hippocampal formation. The EC can, for 
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convenience, be considered the first step in the intrinsic hippocampal circuit, because 

much of the neocortical input reaching the hippocampal formation does so through the 

EC. Cells in the superficial layers of the EC give rise to axons that project, among other 

destinations, to the dentate gyrus. The projections from the EC to the dentate gyrus form 

part of the major hippocampal input pathway called the perforant path. Although the EC 

provides the major input to the dentate gyrus, the dentate gyrus does not project back to 

the EC. This pathway is therefore nonreciprocated, or unidirectional (Andersen et al., 

2007). 

The critical importance of CA1 neurons in learning and memory is seen in the profound 

memory loss exhibited by patients with lesions in this region, which has been 

complemented by numerous studies in animal models. Information from the EC reaches 

CA1 neurons along two excitatory pathways, one direct and one indirect. Together these 

inputs are termed the perforant pathways (Figure 4). The direct pathway has its origins 

in neurons of layer III of the EC. The axons of these neurons form synapses on the very 

distal apical dendrites of CA1 neurons (such perforant projections are also called the 

temporoammonic pathway). In the indirect pathway information from neurons of layer 

II of the EC reaches CA1 neurons through the trisynaptic pathway. In the initial leg of 

this pathway the axons of layer II neurons project through the performant pathway to 

the granule cells of the dentate gyrus. The granule cell axons project in the mossy fiber 

pathway to excite the pyramidal cells in the CA3 region of the hippocampus. Finally, 

the CA3 axons project through the Schaffer collateral pathway to make excitatory 

synapses on more proximal regions of CA1 pyramidal cell dendrites. The fact that CA1 

pyramidal neurons receive cortical information through two pathways has led to the 

view that CA1 neurons compare information in the indirect circuit with sensory input 

from the direct pathway. Lesion studies indicate that both direct and indirect inputs to 

CA1 may be necessary for normal learning and memory. Lesions of the indirect 

Schaffer collateral pathway limit the ability of mice to perform a complex spatial 

learning and memory task, although some form of spatial learning remains intact. 

Lesions of the direct pathway to CA1 do not appear to alter initial formation of memory 

but inhibit the ability of an animal to store those initial memories as long-term memory, 

a process termed consolidation. Genetic inactivation of the direct path also interferes 

with episodic memory, in which an animal must learn about the temporal relation 

between two or more events (Kandel, 2001). The most important feature of the 

hippocampal CA3 is the presence of extensive interconnections between the main paths 
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of the side-fiber system (Amaral & Witter, 1989). Area CA3 receives inputs from many 

different converging pathways such as those derived from the performant path fibers 

from the medial and lateral EC, or the inputs of mossy fibers of dentate gyrus, returning 

an output in the form of new inputs through the side-recurring way (Amaral & Witter, 

1989). Many researchers have reported that area CA3 projects to the nuclei of the 

medial and lateral septum and vertical limb of the diagonal band of Broca (Gaykema et 

al., 1991; Amaral & Witter, 1989; Risaged & Swanson, 1997).  

The medial septum and vertical limb of the diagonal band of Broca, alternately, send 

cholinergic and GABAergic inputs to the hippocampus (Amaral & Witter, 1989; 

Giovannini et al., 1994). It has been demonstrated that the CA3 region is divided into 

three areas called CA3 a, CA3 b and CA3 c, as schematically shown in Figure 5 

(Lorente de Nó, 1934; Li et al., 1994).  

 
Figure 4: The neural circuitry in the rodent hippocampus. A. An illustration of the hippocampal 
circuitry. B. Diagram of the hippocampal neural network. The traditional excitatory trisynaptic 
pathway (entorhinal cortex (EC)–dentate gyrus–CA3–CA1–EC) is shown by solid arrows. The 
axons of layer II neurons in the entorhinal cortex project to the dentate gyrus through the 
perforant pathway (PP), including the lateral perforant pathway (LPP) and medial perforant 
pathway (MPP). The dentate gyrus sends projections to the pyramidal cells in CA3 through 
mossy fibres. CA3 pyramidal neurons relay the information to CA1 pyramidal neurons through 
Schaffer collaterals. CA1 pyramidal neurons send back-projections into deep-layer neurons of 
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the EC. CA3 also receives direct projections from EC layer II neurons through the PP. CA1 
receives direct input from EC layer III neurons through the temporoammonic pathway (TA). 
The dentate granule cells also project to the mossy cells in the hilus and hilar interneurons, 
which send excitatory and inhibitory projections, respectively, back to the granule cells. (Deng 
et al., 2010). 

Based on previous research (Li et al., 1994; Buckmaster & Schwartzkroin, 1994), it has 

been proposed that the mossy cells receive excitatory input from both granule cells of 

the dentate gyrus and from the pyramid cells of the CA3c area, which, alternately, 

through the axonal projections of the recurrent excitatory pathway activate many distal 

granule cells. Thus, the CA3c area might have a retrograde projection that can influence 

the granule cells of the dentate gyrus (Scharfman, 2007). Most of the integrated synaptic 

connections in all these different routes in area CA3 are modulated in their intensity 

(Marr, 1971; Treves & Rolls, 1994). These anatomical and physiological characteristics 

have inspired many theoretical models with the purpose of assign specific cognitive 

processes to the CA3 (Kesner et al., 2004; Rolls & Kesner, 2006).  

From the behavioral point of view, the CA3a and CA3b areas of hippocampus play a 

fundamental role in both the encoding of new spatial information and in the formation 

of short-term memory with a duration from a few seconds to a few minutes. This can be 

observed easily in different behavioral tests: recognition of new objects, or test for the 

acquisition of short-term or working memory, or test focused on acquisition of spatial 

memory through audible and visual signals-clues. These tests have been developed to 

explore the processes that involve episodic memory and the interactions between the 

CA3a, CA3b and the dentate gyrus, through inputs arriving to CA3a,b from the mossy 

fibers. The CA3a,b area is also important for encoding spatial information which 

require multiple trials that also include the acquisition of arbitrary and relational 

associations. These tests tend to be non-episodic and can be mediated by arbitrary and 

joint operations. All these tests are designed to operate with an autoassociative function 

of the CA3 region. 

The CA3 a,b area also plays a role in the sequential information processing in 

cooperation with the CA1 area, based on the output of Schaffer fibers that leave from 

CA3 and arrive to CA1 (Lorente de Nò, 1934). The CA3 a, b areas also support the 

recall of information arising from short-term memory based on the spatial patterns. 

Finally, the CA3a,b in cooperation with the dentate gyrus, plays an important role in the 

processing of environmental geometry. 
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Figure 5. Representation of CA1, CA3 and DG areas of rat hippocampus with NeuN staining at 
the epi-fluorescent microscope. Evidence of the three regions a, b and c of the area CA3. 
 

1.2.3 The hippocampus in neurodegenerative disease 

The hippocampus is involved in many different disease processes, but only in rare 

instances is the hippocampus the only site of pathological damage. It is subject to the 

same pathologies that can affect other cortical areas, such as tumors, vascular 

malformations, and cortical dysgenesis; but in addition, the hippocampus is also notable 

for its vulnerability to damage as a consequence of ischemia/hypoxia, trauma, and 

hypoglycemia. There are also instances in which involvement of the hippocampal 

formation is critical to the manifestation of the disease; foremost among them are 

Alzheimer’s disease and temporal lobe epilepsy, representing approximately 60% of all 

partial epilepsies. Damage to the hippocampus is also the central component of a variety 

of rare conditions, such as limbic encephalitis and dementia with isolated hippocampal 

sclerosis. In addition, involvement of the hippocampus is being increasingly recognized 

in schizophrenia, another common neuropsychiatric disorder. Acute encephalitis due to 

herpes simplex virus shows a predilection for limbic structures, and infection can result 

in selective damage to the hippocampus, amygdala, and associated structures, resulting 

in acute limbic encephalitis. Subacute limbic encephalitis has also been described in 

which the pathology more specifically affects the limbic system (Corsellis et al., 1968). 

The clinical presentation is characterized by behavioral and psychiatric problems 

(usually aggression and depression), disorientation, short-term memory deficits, 

hallucinations, seizures, and sleep disturbances (Corsellis et al., 1968; Gultekin et al., 

2000). The pathological finding is aggregation of lymphocytes around blood vessels, 
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neuronal cell loss, and gliosis particularly affecting the hippocampus, dentate gyrus, 

amygdala, cingulate, and para-hippocampal structures. Limbic encephalitis can occur in 

response to certain cancers such as small-cell lung carcinomas, lymphomas, thymomas, 

and testicular tumors, as an immune-mediated syndrome. A similar syndrome has, 

however, been described in association with Wernicke’s encephalopathy, systemic 

lupus erythematosus, and herpes simplex encephalitis. In these cases, there is a strong 

association with anti-neuronal antibodies directed against intracellular antigens, but the 

pathological role of these antibodies remains uncertain. Treatment of the underlying 

malignancy can alleviate the symptoms. Hippocampal sclerosis has been observed in a 

proportion of elderly patients presenting with cognitive impairment. In one study 

(Dickson et al., 1994), hippocampal sclerosis was observed in 26% of demented patients 

over the age of 80 years and in 16% of all patients aged over 80. In all cases there was 

neuronal loss and gliosis affecting CA1, the subiculum, and dentate granule cells, with 

additional neuronal loss in the entorhinal cortex in a proportion of cases. However, 

concomitant pathology, such as ischemic vascular damage or Alzheimer pathology, was 

noted in most of the cases in this study; “pure” hippocampal sclerosis is much rarer, 

affecting only 0.4% of patients with dementia (Ala et al., 2000). These rare instances of 

pure hippocampal sclerosis are not associated with any increase in risk factors for 

cerebrovascular disease, and in none of the cases was there a history of a hypoxic 

episode preceding the onset of cognitive impairment. The relation between hippocampal 

sclerosis, as a rare cause of dementia in the elderly, and mesial temporal sclerosis, as a 

substrate for epilepsy affecting a younger age group, remains undetermined. It is 

possible that the two diseases arise as a consequence of differing etiologies, with pure 

hippocampal sclerosis occurring as a consequence of a primary degenerative process 

rather than secondary to a systemic insult such as hypoxia or fever. Schizophrenia is 

thought to involve primarily the prefrontal cortex (Grossberg, 2000), but there is 

accumulating evidence for involvement of mesial temporal lobe structures in its 

pathophysiology. Neuropathological studies indicate that the loss of hippocampal 

volume correlates with a reduction in the size of hippocampal neurons rather than 

neuronal loss (Arnold et al., 1995). A reduction in neuronal density in certain 

hippocampal regions, with the CA2 interneurons particularly affected, is also observed 

in schizophrenia, as well as in manic depression (Benes et al., 1998). Loss of synaptic 

proteins in the hippocampus (Eastwood and Harrison, 1995) and abnormal MAP2 
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expression in subicular neuron dendrites also indicate abnormalities of connectivity in 

patients with schizophrenia (Cotter et al., 2000).  

1.3 Astrocytes and microglia functional alterations in neurodegenerative 

processes 

Until recently, neurons were considered the basic functional units of the central nervous 

system, while glia cells were believed to serve as only supportive elements. This 

concept is rapidly changing; it is becoming more and more evident that proper 

functioning of the neuron-microglia-astrocyte “triad” is fundamental for the functional 

organization of the brain (Barres, 2008; Allen & Barres, 2009) (Figure 6). Impaired 

interplay among neurons and glia may be responsible for derangements from normal 

brain aging to neurodegenerative processes (De Keyser et al., 2008; Sofroniew, 2009).  

Recruitment and activation of glial cells in a complex temporal pattern require well 

organized reciprocal communication between neurons and glia as well as among glial 

cells. Therefore, it is critical to better understand the interactions among neurons, 

astrocytes and microglia, the so-called triad, in physiological and during pathological 

processes.  

Because of the plethora of roles in maintaining CNS functions and the many 

mechanisms controlling these functions, it is not surprising that alterations in astrocyte 

functionality is becoming recognised in an increasing number of diseases. Dysfunction 

of astrocytes is suspected to play a primary role in the pathogenesis of many brain 

disorders. Astrocyte swelling is a dramatic and very harmful component of any acute 

neurological injury, including stroke and brain trauma. Yet, it is not well understood 

why astrocytes are more likely to swell than neurons and how their swelling can be 

decreased. Neurological diseases, including dysmyelinating diseases and epilepsy, can 

result from mutations of astrocyte genes. Reactive gliosis (astrocytosis) also 

accompanies many neurological diseases. Although reactive astrocytosis clearly is 

beneficial in that it can encapsulate infections or traumatic tissue and help seal a 

damaged blood-brain barrier, there are many ways in which it has been found to be 

harmful. Glial scarring contributes substantially to the glial cues that inhibit severed 

CNS axons from regenerating (Silver, 2004).  
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Figure 6. Glia–neuron interactions. Different types of glia interact with neurons and the 
surrounding blood vessels. Oligodendrocytes wrap myelin around axons to speed up neuronal 
transmission. Astrocytes extend processes that ensheath blood vessels and synapses. Microglia 
keep the brain under surveillance for damage or infection (Allen & Barres, 2009). 

 
Reactive astrocytes upregulate synapse-inducing genes such as thrombospondins, which 

have the potential to help repair the brain (Liauw et al., 2008) but may also induce 

unwanted synapses that can cause epilepsy or neuropathic pain (Boroujerdi et al., 2008). 

In addition, recent studies have found that unhealthy astrocytes can release neurotoxic 

signals. For instance, mutant astrocytes carrying the SOD1 (G93A) allele release a toxic 

signal that rapidly kills wild-type motoneurons (Di Giorgio et al., 2007; Nagai et al., 

2007; Lobsiger & Cleveland, 2007). 

Emerging evidences provide a picture of growing complexity on the relationships 

between astrocytes, neurons, microglial cells and their function in the maintenance of 

the CNS in both physiological and non-physiological conditions. It has been 

demonstrated that in different neurodegenerative conditions astrocytes exhibit the 

morphological traits of clasmatodendrosis (Tomimoto et al., 1997). Clasmatodendrosis 

was described first by Alzheimer (quoted by Penfield, 1928) and named by Cajal 

(quoted by Duchen, 1992). It consists of modifications of astrocyte morphology such as 
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cytoplasmic vacuolization and swelling, beading and disintegration of distal cell 

projections (astrocyte projections, APJs), as well as modification of their functions with 

phagocytic removal of cytoplasmic debris (Tomimoto et al., 1997). Clasmatodendrosis 

has been described in the white matter of ischemic brains, in AD (Tomimoto et al., 

1997) and in mixed Binswanger’s/AD disease (Sahlas et al., 2002). Of note, 

clasmatodendrosis in astrocytes cultured in vitro has been demonstrated to be induced 

by mild acidosis, a microenvironmental condition commonly associated to aging (Ross 

et al., 2010), ischemia (Hulse et al., 2001) and amyloid fibrils deposition (Brewer, 1997; 

Hulse et al., 2001). The role of glia in neurological diseases is now the matter of much 

debate. Microgliosis and reactive astrocytosis generally occur at the same time, but it is 

not known whether there is a causal connection between the two and, should this be the 

case, in which direction. Astrocytes release signals such as CSF-1 and ATP that can 

signal to microglia, whereas microglia release signals such as TNFα that can signal to 

astrocytes. Nor is there agreement on whether lessening either type of gliosis might be 

helpful or harmful. The answer may depend on the type and stage of each disease 

process.  

This is an emerging, understudied area of research that will undoubtedly remain fruitful 

for a long time, and it is likely to teach us much about normal and abnormal brain 

function. 

1.4 Brain aging 
Brain aging is characterized by decline of cognitive functions along with a variety of 

neurobiological changes. As the lifespan expectancy of Western population increases, 

age-related cognitive decline represents a major challenge for the scientific community. 

Franceschi and coworkers (Franceschi et al., 2007; Deleidi et al., 2015) introduced the 

term "inflammaging" which describes the progressive changes occurring in the aging 

brain, characterized by a low-grade chronic up-regulation of certain pro-inflammatory 

responses and neuroinflammation. Indeed, aging is considered a primary risk factor for 

Alzheimer’s disease (AD), and the onset of low-grade pro-inflammatory conditions 

observed in senescence is regarded as a prodrome of AD (Giunta et al., 2008; Salminen 

et al., 2012; Baylis et al., 2013; Salvioli, et al., 2013). The association between 

inflammation, aging and neurodegeneration is based upon complex molecular and 

cellular changes that we are only just beginning to understand. For instance, it has been 

demonstrated that increase of pro-inflammatory molecules induces amyloid β (Aβ)-
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deposition on neuron soma (Giunta et al., 2008; Blasko et al., 1999; Sastre et al., 2003; 

Mercatelli et al., 2015).  

Emerging evidence indicates that inflammaging can modify the neuron-astrocyte-

microglia interactions (Cerbai et al., 2012; Lana et al., 2014), and this mechanism may 

be involved not only in brain aging, but also in AD (Mercatelli et al., 2015). Astrocytes 

are known regulators of brain homeostasis (Wang and Bordey, 2008) and microglial 

phagocytosis (DeWitt et al., 1998; Yamanaka et al., 2007; Saijo and Glass, 2011; Cerbai 

et al., 2012; Lana et al., 2014). Both these cell types can recognize "danger signals", 

which include cellular debris produced from apoptotic or necrotic cells (Milligan & 

Watkins, 2009), and can clear damaged cells or cellular debris by phagocytosis (Cerbai 

et al., 2012; Lana et al., 2014). Functional alterations in senescent astrocytes are 

accompanied by remarkable morphological modifications: we recently demonstrated 

that senescent astrocytes in the CA1 hippocampal region exhibit morphological traits of 

clasmatodendrosis (Cerbai et al., 2012; Lana et al., 2014; Mercatelli et al., 2015). 

1.5 Alzheimer’s disease 

In 1907, Alois Alzheimer (Alzheimer, 1907) described the case of a 51 year aged 

woman with dementia and prominent behavioural disturbances and gave a remarkable 

lecture (Alzheimer, 1907), in which he described for the first time a form of dementia 

that subsequently, at the suggestion of Emil Kraepelin, became known as Alzheimer’s 

disease (AD). In his lecture, Alzheimer described the patient called Auguste D., who 

had shown progressive cognitive impairment, focal symptoms, hallucinations, 

delusions, and psychosocial incompetence.  

Auguste Deter: the case 
‘’She sits on the bed with a helpless expression.  
What is your name? 
Auguste.  
Last name?  
Auguste. 
What is your husband’s name? 
Auguste, I think. 
Your husband?  
Ah, my husband. She looks as if she didn’t understand the question.  
Are you married? 
To Auguste. 
Mrs D?  
Yes, yes, Auguste D.  
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How long have you been here? She seems to be trying to remember.  
Three weeks.  
What is this? I show her a pencil.  
A pen.  
A purse and key, diary, cigar are identified correctly.  
At lunch she eats cauliflower and pork. 
Asked what she is eating she answers spinach.’’ 
Dr. Alois Alzheimer’s notes: Nov 26, 1901.  

At autopsy, the brain was found to be atrophic and microscopic examination with silver 

staining revealed widespread senile plaques and neurofibrillary tangles. Senile plaques 

were seen as dystrophic neuritic processes around a central core and neurofibrillary 

tangles as intensely staining intraneuronal perikaryal inclusions. It was only in 1910 that 

Emil Kraepelin, a famous German psychiatrist, gave a name to the dementia discovered 

by Alzheimer, naming it after him (Kraepelin & Ross Diefendorf, 1910). Alzheimer’s 

disease (AD) is a cerebral degenerative disorder with gradual loss of memory, 

reasoning, orientation and judgment. The diagnosis of AD remains clinical unless 

histological confirmation is available at autopsy. Diagnostic criteria have been 

developed that allow a diagnosis of probable AD. Many classifications have been 

proposed based on age of onset, presence of a family history, presence of 

extrapyramidal features and focal cortical disease. One of the most widely considered 

distinctions is based on age of onset. Patients with an onset below the age of 65 are 

considered to have presenile dementia, in contrast to later onset cases of senile dementia 

of the Alzheimer type. Clinically, it has been suggested that early onset cases have a 

more severe disease with rapid progression, together with a predominance of language 

disturbances. A family history is also more readily apparent in young onset cases. A 

related group are patients with Trisomy 21 or Down’s syndrome who develop 

Alzheimer histopathology and, in many instances, superimposed dementia in their third 

and fourth decade of life.  

The clinical features of AD can be divided in two groups: cognitive and behavioural 

deficits. Cognitive deficits: the most prominent cognitive deficit in AD is memory 

impairment, and this is often the presenting feature. At the beginning of the disease, 

there appears a failure of STM but with the ongoing of the disease, LTM is also 

affected, and particularly the explicit, episodic or autobiographical memory, while the 

implicit memory is well conserved until the late stage of the disease. Language deficits 

and visuospatial deficits appear as the disease progresses. Early language preservation 
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may allow the patient to maintain a social façade that can mask the cognitive 

impairment. It is usually clear, however, that although speech may be fluent, it is rather 

empty of meaning or the patient may present with some difficulties finding words 

(anomia). Behavioural deficits: non-cognitive symptoms are common and about 40% 

have depression features, usually early in the disease. Delusion, hallucinations, and 

aggression are encountered commonly and can present considerable management 

problems for relatives and caretakers. AD patients also show anxiety and insomnia. The 

above features and the characteristic progression have been incorporated into clinical 

criteria (the NINCDS/ADRDA criteria), which provide levels of probability of 

diagnosis. It goes from Possible to Definite AD.  

Possible AD: a dementia syndrome with atypical onset, presentation or progression and 

of an unknown etiology is present. No co-morbid diseases capable of producing 

dementia are believed to be at its origin.  

Probable AD: dementia has been established by clinical and neuropsychological 

examination. In addition, cognitive impairments must be progressive and must be 

present in two or more areas of cognition. The onset of the deficits is between the age of 

40 and 90 years and, finally, there must be an absence of other diseases capable of 

producing a dementia syndrome.  

Definite AD: the patient meets the criteria for probable Alzheimer's disease and has 

histopathologic evidence of AD, demonstrated via biopsy or autopsy.  

There are several risk factors for AD: age, family history, and lifestyle. Only 10% of 

AD cases are familial (FAD), start before 60 years of age, and are caused by autosomic 

dominant mutation on genes that codify for the protein precursor of amyloid (APP), and 

for the presenilin 1 and presenilin 2. These genes are localized in chromosomes 21, 14 

and 1, respectively.  

1.5.1 Neuropathology of Alzheimer’s disease 

Alzheimer’s disease is characterized by atrophy in the cerebral cortex with loss of 

synapses and neurons, gliosis, and presence of intraneuronal accumulation of paired 

helical filaments in the form of neurofibrillary tangles (NFT), and senile plaques (Figure 

7). NFT consist of aberrantly phosphorylated microtubule-associated protein (MAP) 

tau. Tau proteins represent a developmentally regulated family of proteins which in vivo 

are known to stabilize the microtubule network (Cleveland et al., 1977; Drubin & 

Kirschner, 1986). The hyperphosphorylation of MAP tau renders the protein insoluble, 

http://en.wikipedia.org/wiki/Histopathologic
http://en.wikipedia.org/wiki/Biopsy
http://en.wikipedia.org/wiki/Autopsy
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which thus aggregates in filaments that precipitate (Hanger et al., 1991). Their presence 

signifies the failure of the neuron to maintain properly its cytoskeleton. Senile plaques 

are more complex; they consist of extracellular deposits of amyloid material and are 

associates with swollen, distorted neuronal processes called dystrophic neurites. The 

specificity of cerebral amyloid is provided by its major peptide component, β-amyloid 

(Aβ), a short 40-42 amino-acid fragment of the transmembrane protein, amyloid 

precursor protein (APP) (Figure 8). Plaques start as innocuous deposit of non-

aggregated, putative non-neurotoxic Aβ (diffuse plaques). With time, they undergo an 

orderly sequential transformation into the mature senile neuritic plaques that are 

associated with the development of AD.  The neuritic plaques are more diffuse in the 

cerebral cognitive areas like cortex, hippocampus and amygdala.  

The amyloid is predominantly in the core of senile plaques, surrounded by abnormal 

neurites from degenerated neuronal cells and by glial cells: microglial cells in the centre 

of the plaque and astrocytes in the periphery (Selkoe, 1999). It is believed that 

activation of glial cells and production of cytokines, nitric oxygen (NO) and Reactive 

Oxygen Species (ROS) leads to plaque maturation (Sheng et al., 2000; Ramirez et al., 

2008). Amyloid deposits are not homogeneous. They are made up of more than 90% of 

Aβ but they also contain α-1-antichimotrypsin (ACT), apolipoprotein E2 and E4 (apoE2 

and apoE4), heparin sulphate proteoglycane (HSPG) and proteins of the complement 

(Selkoe, 1999).  

1.5.2 Role of amyloid-β peptide in Alzheimer’s disease 

APP is a 105-130 kDa secretory protein and is involved in cell-cell or cell-matrix 

interaction. It may also be a component of the acute phase response and accumulates in 

astroglial cells in response to injury and is influenced by cytokines (Kushner, 

1991;Trejo et al., 1994). In 1991 the gene for APP was localized in chromosome 21 by 

John Hardy, at St. Mary’s Medical School, within the region that, when trisomic, is 

responsible for Down’s syndrome (Hardy & Allsop, 1991). And indeed, there is a 

known association between Down’s syndrome and AD (Patterson et al., 1988). The 

level of APP mRNA in the fetal brain with trisomy 21 is 50% higher than normal. By 

the fourth decade, all patients with Down’s syndrome have pre-amyloid plaques 

containing APP-derived material. The APP gene is made of 19 exons and, after 

alternative splicing, different isoforms are obtained. The principal isoforms known are 

APP 695, APP 751 and APP 770. The APP 695 is the predominant isoform expressed in 
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the Central Nervous System, the other isoforms are expressed also in other tissues 

(Selkoe, 1994). Aβ is the product of an abnormal cleavage of APP operated by specific 

enzymes. It is delimitated by aa 672 and 712-715 of APP and part of it is localized in 

the transmembrane tract and the other part in the extracellular tract of APP. Two 

different processing pathways of the APP have been described: non amyloidogenic and 

amyloidogenic. Under physiological conditions, APP is converted to soluble β-amyloid 

precursor protein via the non-amyloidogenic pathway, since the hydrolysis is operated 

by α-secretases at the aa Lys687-Leu688, at the level of the transmembrane tract of β-

amyloid. Currently, three different enzymes with α-secretase activity have been 

described: ADAM 9, ADAM 10 and ADAM 17. After cleavage, two different 

fragments are generated. One originates from the N-terminal tract of APP (sAPPβ) that 

is secreted in the extracellular space, and the other one, a fragment of 83 aa (C83), 

contains the C-terminal of APP (CTF, C-terminal fragment), that remains in the plasma 

membrane, and is hydrolyzed by γ-secretases to give a smaller fragment (p3) (Haass et 

al., 1993; Haass & Selkoe, 1993). The amyloidogenic pathway leads to the formation of 

Aβ. In this case the cleavage is operated by β-secretase at aa Met671-Asp672 with the 

release of sAPPβ in the extracellular space and the formation of a transmembrane 

fragment of 99 aa (C99), where the N-terminus correspond to the first aa of Aβ peptide. 

The enzyme responsible for the cleavage is BACE1 (β-site APP cleaving enzyme) that 

is a membrane protein (Vassar et al., 1999; Sinha & Lieberburg, 1999). The γ-secretase 

produces the other extremity of the Aβ by the hydrolysis of the aa near residue 712, 

producing the amyloid peptide and the short intracellular fragment AICD (APP 

intracellular domain) (Steiner, 2004; Comery et al., 2005). If the cleavage by γ-secretase 

is at the link 712-713 or 713-714, there is the formation of short Aβ (39-40 aa). The 

cleavage after the residue 714 leads to the formation of a longer Aβ peptide (42-43 aa) 

that is the major component of the neuritic plaques since it is more amyloidogenic than 

the shortest peptide, with a greater propensity to form amyloid fibrils. 

The genetic bases of AD have been studied in patients with a family history. Four 

different mutated genes that are able to cause FAD have been identified and localized 

on chromosomes 21, 14, 1 and 19. There are different forms of FAD based on the age 

onset: 

-Early onset (EOFAD) when pathology starts before age 65. 

-Late onset (LOFAD) when the pathology starts after age 65. 
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This classification is important since different genes are involved in the EOFAD as 

compared to the LOFAD. Studying different families with EOFAD, researchers have 

found that a “missense” mutation at the exon 17 of the APP gene is the cause of the 

disease. The most common mutation is the substitution of an adenine with a guanine 

with the consequent conversion of the Valine 717 to Isoleucine. In other FAD forms, 

there is a mutation of Val to Gly or Phe. This kind of substitution makes the 

transmembrane domain of Aβ more hydrophobic, stabilizing the deposited form of the 

peptide.  

Two Swedish families show a different double mutation (Mullan et al., 1992) with the 

substitution at the N-terminal of the Aβ of a Lys and a Met with an Asn and a Leu, 

respectively. This substitution facilitates the hydrolysis of APP operated by β-secretase. 

The cleavage of APP can be operated also by a different family of proteases associated 

to apoptosis, the caspases. This cleavage leads to the formation of Aβ and correlates the 

cellular death with Aβ deposition. Gervais et al. (1999) have demonstrated that the 

cytoplasmatic domain of APP can be cleaved by caspase 3 with the consequent 

formation of Aβ (Gervais et al., 1999). 

Studies have demonstrated that mutations at the genes for presenilin 1 and 2, localized 

on chromosome 14 and 1, respectively, enhance the probability of apoptosis of different 

types of cells. 

In 1992 three different groups demonstrated independently that there is a linkage 

between the central region of the long arm of chromosome 14 and AD (Van 

Broeckhoven et al., 1992; St. George-Hyslop et al., 1992; Mullan et al., 1992). In 1995 

the gene on this chromosome was cloned (PS-1). This gene seems to be responsible for 

70% of the EOFAD. Families with PS-1 show the disease at early age (around 45 years 

of age).  

In the same year, another gene similar to PS-1 was found on chromosome 1, and it was 

called PS-2. Seven families from Volga region and one family from North of Italy have 

mutations on this gene.  

In 1994, Potter coined the term “pathological chaperones” (Potter et al., 1994), referring 

to apolipoprotein E (ApoE) and α1-antichymotrypsin (αACT). In vitro ApoE and αACT 

act as catalysts, increasing amyloid filament formation by 10-20 faged (Ma et al., 1994). 

In an oxidant-dependent process, ApoE binds to Aβ in the region delimited by amino 

acids 12-18, the same region responsible for fibril formation.  
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Figure 7. The canonical pathology of Alzheimer’s disease. (A) senile plaques and 
neurofibrillary tangles in a hippocampal section stained with the Naoumenko-Feigen silver 
impregnation method and counterstained with periodic acid-Shiff (PAS). Two classical senile 
plaques are indicated by blue arrows, they consist of an extracellular core of amyloid (stained 
pink by PAS) encircled by black, distended neuronal processes (neurites). Note also the 
intracellular NFT (two are marked by red arrows); a pale normal appearing neuron is designed 
by a green arrowhead. Scale bar=100µm. (B) A neocortical senile plaque stained with Congo 
Red, the definitive stain for classically defined “amyloid” (regardless of the identity of the 
protein component); the photograph was taken with crossed polarizing filters, which produce a 
Maltese-cruciform pattern of green orange birefringence in compact, fibrillar amyloid deposits 
(the plaque core, center); Nissl counterstained. (C) A cortical senile plaque immunostained with 
antibody 10D5 to amino acids 3-7 of Aβ. Note the central core of β-amyloid, surrounded by a 
halo, and then an outer ring of Aβ, which is typical of many dense-cored plaques in AD; Nissl 
counterstained. (D) A cortical plaque stained with Thioflavin-T, a fluorescent dye that binds to 
generic amyloid. The core is intensely fluorescent, and the peripheral, more diffuse deposits 
also bind Thioflavin. Bar in B=50µm for B, C, D.  
 
ApoE is a 34 kDa glycosylated protein, and is one of the major risk factors other than 

age for the development of AD. It is involved in synaptic repair, particularly in response 
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to tissue injury and it has an important role in the maintenance of neuronal structure and 

cholinergic function. In the brain, it is produced by microglial cells and astrocytes, but 

not by neurons. ApoE is a major component of lipoprotein and lipid complexes in the 

cerebrospinal fluid. In peripheral nerve regeneration, ApoE redistributes lipids to axons 

during neurite extension and Swann cells during remyelinization (Yankner et al., 1990). 

The ApoE gene is localized on chromosome 19 and exists in 3 allelic forms: ε2, ε3 and 

ε4 with frequencies of 8%, 78% and 14%, respectively. The ε4 allele increases the risk 

of developing late and sporadic AD by 5-15 faged. The prevalence of ApoE ε4 appears 

to vary by population according to the prevalence of AD; it is increased in the Finnish, 

Sudanese, Aborigines and decreased in the Chinese and Japanese (Harrington et al., 

1994).  

 
Figure 8. Schematic diagrams of the β-amyloid precursor protein (APP) and its principal 
metabolic derivatives (Pająk B et al., 2016). 

In vitro ApoE ε4 binds more rapidly to Aβ than does ApoE ε3, forming a denser matrix 

of monofibrils. On the other hand, ApoE ε3 seems to bind to the protein tau. In contrast 

the ApoE ε2 allele has been associated with a reduced risk of AD and longevity 

(Rebeck et al., 1994). In vitro ApoE ε2 inhibits fibrillar aggregation. The familial forms 

of AD are correlated to mutations of the APP gene and other genes that alter the 

metabolism of this precursor, including the increased production of the Aβ (1-42) 

peptide that is the predominant form in the senile plaques. The crucial event for the 

pathogenesis of the disease is the amyloid-β peptide deposition. Studies on transgenic 

mice that present some of the AD alterations, have shown that the immunization with 

Aβ (1-42) interferes with the accumulation and deposition of Aβ and with the activation 
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of glial cells, leading to cognitive improvement (Schenk et al., 1999). The immunization 

of transgenic mice with Aβ before the onset of AD, prevents the formation of plaques 

and the activation of microglial cells and astrocytes. The in vivo injection of Aβ (1-40) 

in the cortex of a rat produces necrosis around the site of the injection, neuritic 

degeneration and neuronal loss (Scali et al., 1999). 

Aβ binds also to metals like Cu 2+, Zn2+ and Fe2+. In this case, the Aβ toxicity is induced 

by the production of H2O2 that induces the aggregation of the peptide.  

1.5.3 Inflammation in Alzheimer’s disease 

The inflammatory response is primarily a host defence reaction. It serves to degrade and 

eliminate the foreign invader. Components of the inflammatory response play essential 

roles when phagocytic cells remove microorganisms, necrotic host tissue and undesired 

deposits of abnormal substances. However, prolonged inflammation often destroys the 

surrounding host tissue. Such a damage is particularly serious if it occurs in the brain, 

where regeneration and recovery take place only at a very limited degree. In 

neurodegenerative diseases, inflammation could be caused by several events: protein 

aggregates deposition, molecules associated to synapses or degenerated neurones. In 

AD, senile plaques and tangles could be the site of sustained inflammatory response. 

Several studies have demonstrated that Aβ deposits in the plaques are associated to 

numerous immune system proteins, complement proteins, cytokines, protease inhibitor, 

binding proteins (McGeer & McGeer, 1995; McGeer & McGeer, 1998). Activated 

microglia cells are associated to the neuritic plaques, producing cytokines and other 

neurotoxic components. The presence of molecules of immune system and of activated 

microglia associated to Aβ confirm the hypothesis that inflammation is the cause of 

neuronal degeneration in AD (Rogers et al., 2002). The activation of microglia 

associated with Aβ plaques in the AD brain is paralleled by similar processes in cells in 

culture. Exposure of microglia cultures from elderly AD and non-AD patients to Aβ (1-

42) results in their activation. As in the AD brain, microglia cells increase their cell 

surface expression of MHCII (Rogers & Lue, 2001), a classic marker for the activation 

of scavenger cells. In addition microglia show a dose-dependent increase in thei 

secretion of the pro-inflammatory cytokines interleukin-1β (IL-1β), interleukin-6 (IL-6) 

and tumour necrosis factor-α (TNFα), the chemokines interleukin-8 (IL-8), macrophage 

inflammatory protein-1α (MIP-1α), and monocyte chemoattractant peptide-1 (MCP-1) 

(Lue et al., 2001). The mRNAs for all these proteins have been observed in AD 
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microglia. IL-1β is also increased after Aβ exposure to cultured AD microglia (Walker 

et al., 1995).  

There are likely multiple mediators of microglia activation, chemotactic and phagocytic 

responses to Aβ. Evidence for complement mechanisms in microglia responses to Aβ 

has been reported. It seems that the peptide directly interacts with C1 complement 

factor that activates microglial cells (Eikelenboom et al., 1998). Activated microglia 

releases cytokines, proinflammatory proteins, complement proteins, reactive oxygen 

intermediates (Banati et al., 1993).  

Inflammatory cytokines are a family of glycoproteins that amplify and sustain 

inflammatory and immune responses. They are not only released by activated microglia 

but also by astrocytes. Cytokines may interact directly or indirectly with neurons, 

influencing their survival. Cytokines, especially IL-1, enhance the production of 

prostaglandin E2 (PGE2) in human fibroblasts (Salvemini et al., 1993), stimulating 

cyclooxygenases enzyme (COX) activation. Recent studies have shown the importance 

of microglial IL-1 secretion in AD pathogenesis since IL-1 not only can promote 

neuronal injury, but can also perpetuate cycles of inflammation (Mrak & Griffinbc, 

2001). IL-1 has been shown to increase APP production and subsequently increase Aβ, 

contributing to neuronal damage, and, simultaneously, to neuronal dystrophy (Buxbaum 

et al., 1992). Injection of aggregated Aβ into the NB of rats causes upregulation of IL-

1β, COX-2, iNOS and phospho p38MAPK in the surrounding tissue, with microglial 

activation and cholinergic dysfunction (Giovannini et al., 2002).  

Several epidemiologic studies suggested a beneficial effect of treatment with chronic 

nonsteroidal anti-inflammatory drugs (NSAIDs) (McGeer et al., 1996). NSAIDs are 

believed to act by inhibiting COX. Two distinct isoforms of COX have now been 

characterized, a constitutive form, COX-1, and an inducible form, COX-2. Studies have 

demonstrated that COX-2 may play a role in neurodegenerative mechanisms (Pasinetti 

& Aisen, 1998). A number of cross-sectional and longitudinal epidemiologic surveys 

also indicate that reported use of NSAID is associated with delayed onset and/or slowed 

cognitive decline in AD (Stewart et al., 1997; Halliday et al., 2000). However, these 

studies are not conclusive, and the results are controversial. Further examinations of 

traditional NSAIDs for the treatment of AD has been tempered by two considerations. 

First, NSAIDs are not the ideal class of anti-inflammatory agents to inhibit acute-phase 

response and complement activation, two mechanisms that contribute to 
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neurodegeneration in AD. Second, daily use of traditional NSAIDs is associated with 

adverse effects, particularly on the gastrointestinal (GI) tract of elderly subjects.  

Some findings suggested that selective COX-2 inhibitors may have an advantage over 

nonselective NSAIDs as potential therapeutic agents in AD. Studies have shown that 

COX-2 isoform may have a central role in neurodegeneration, supporting clinical 

evaluation of selective COX-2 inhibitors as neuroprotective agents in AD (Pasinetti & 

Aisen, 1998; Tocco et al., 1997; Ho et al., 2001). Studies have demonstrated that COX-

2 is up-regulated in response to excitotoxic lesions in animals and cell culture systems 

(Yamagata et al., 1993) Systemic administraion of kainic acid (KA) to rats induces 

excitotoxic neurodegeneration, which may be a model of AD. It has been demonstrated 

that excitotoxic lesions cause up-regulation of COX-2 expression coincident with the 

onset of apoptotic neuronal death. COX-2 expression has been shown to be up-regulated 

in AD brain compared with controls (Pasinetti & Aisen, 1998). Induction of COX-2 in 

AD may be stimulated by amyloid peptide, and may involve nuclear factor kappa b 

(NFkB) signalling (Pasinetti & Aisen, 1998). Evidence that COX-2 is involved in AD 

neurodegeneration may explain the apparent protective effect of NSAIDs. It has been 

demonstrated that COX-2 inhibitors protect neuronal cells from amyloid toxicity in 

vitro and promote neuronal survival in animal models of ischemic and excitotoxic 

neurodegeneration (Fagarasan & Efthimiopoulos, 1996; Graham et al., 1996). 

Epidemiologic evidence suggests a neuroprotective effect of non-selective NSAIDs 

from either COX-1 or COX-2 inhibition, or inhibition of both enzymes. Because COX-

1 is constitutively expressed in the brain, it is plausible that COX-1 catalytic activity 

may also contribute to neurodegenerative mechanisms (Pasinetti & Aisen, 1998). 

Recent studies have demonstrated that ibuprofen therapy reduces inflammatory activity 

and amyloid deposition in transgenic mice (Lim et al., 2000). 

Some trials (Lim et al., 2000) have been done using two different drugs: Naproxene, a 

non-selective NSAIDs, at low doses (220 mg) to minimize the risk of serious GI 

toxicity, to one group of patients, and Rofecoxib, a selective COX-2 inhibitor at 

standard doses, to a second group. A third group of patients was treated with placebo. It 

was a one year study and the results did not show any positive effect on memory, 

attention, speech and orientation of treated patients as compared to controls. An 

explanation for the negative results obtained could be the not sufficient doses of both 

drugs, or the short period of therapy. It has been demonstrated that a two year treatment 

with anti-inflammatory drugs is necessary to reduce AD risk (Ruitenberg et al., 2001).  
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A thorough review of the literature suggests conflicting opinions for the use of NSAIDs 

in AD. While observational and epidemiological studies have stressed on a beneficial 

role of NSAIDs in reducing the risk of AD or its progression, randomized clinical trials 

(RCTs) and meta-analyses thereof have failed to corroborate this significantly. No 

RCTs have been conducted to date in populations with APOE E4 genotype. For people 

with existing cognitive decline, as well as diagnosed AD, NSAIDs should not be 

administered, as no clinical evidence has been demonstrated regarding their benefit. The 

authors also recommend that further RCTs should be conducted over longer durations 

with larger samples to clarify the role of NSAIDs in the treatment of AD in selected 

population (Ali et al., 2019). 

It has been shown that in AD brains there is a colocalization of hyperphosphorylated tau 

and phosphorylated p38MAPK in dystrophic neurons and neurites that are associated to 

activated microglia that over express IL-1 (Sheng et al., 2001).  

Recent studies have demonstrated that there are different molecules involved in neuron-

glia intercommunication, such as CD200 and HMGB1. CD200 is a membrane 

glycoprotein expressed by neurons that binds to a structurally similar receptor that is 

expressed by microglia. Their intercommunication hageds microglia in a quiescent state 

(Hoek et al., 2000; Lyons et al., 2007; Frank et al., 2007). HMGB1 is a non-histone 

DNA-binding protein that has a pro-inflammatory cytokine-like function that may 

influence the activation of microglia following injury or insult (Kim et al., 2006). 

HMGB1 levels are low in resting glia but are increased in the brains of patients with 

Alzheimer’s disease (Takata et al., 2004). Extracellular HMGB1 has also been 

described as a mediator of lipopolysaccharide (LPS) toxicity (Ulloa & Messmer, 2006). 

1.5.4 Animal models of Alzheimer’s disease 

Given the availability of methods for introducing genetic modifications, modeling in 

transgenic mice has been pursued vigorously, based on the amyloid hypothesis (Codita 

et al., 2006; McGowan et al., 2006). Transgenic mice overexpressing Aβ offer a 

powerful in vivo model to study the pathogenetic mechanisms related to Aβ 

neurodegeneration and allow to test possible therapeutic interventions. Among the many 

transgenic mouse strains developed (Hsiao et al., 1996), transgenic TgCRND8 mice 

(Chishti et al., 2001), expressing a double mutant form of human APP (K670/M671L 

and V717F), have been produced. Hemizygous TgCRND8 mice exhibit extensive 

cerebral amyloid deposition, cortical and hippocampal atrophy and memory impairment 
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by 3 months of age (Chishti et al., 2001). In 7-month aged TgCRND8 mice, extensive 

Aβ deposition in the cortex, hippocampus, thalamus and basal forebrain is accompanied 

by significant microglia and astrocyte activation, and by cholinergic dysfunction and 

cognitive impairment (Bellucci et al., 2006). This transgenic line is a good model of Aβ 

deposition, neurodegeneration and memory deficits, and can be useful to clarify the 

involvement of MAPK dysregulation in AD and in developing new therapeutic 

treatments.  

Initially, before the discovery of FAD mutations, attempts were made to overexpress 

wildtype APP in transgenic mice by pronuclear injection. Although a variety of 

promoters was tried, none of these efforts produced anything that resembled an amyloid 

plaque or any other recognizable AD-type pathology.  After the discovery of FAD 

mutations in APP, several groups turned their attention to making AD models based on 

the overexpression of transgenes containing FAD mutations (Elder et al., 2010). Games 

et al. (1995) reported the first successful application of this approach using a platelet 

derived growth factor-β (PDGF) promoter to drive a human APP transgene that 

contained a FAD associated mutation (V717F). The PDGF promoter was chosen 

because, despite its name, it was known to be highly expressed in the central nervous 

system and to drive strong expression of exogenous transgenes in neurons. In the line 

that was generated (termed PDAPP because of the PDGF promoter plus APP), 40 

copies of the transgene integrated, and this resulted in approximately 18-faged elevation 

of APP RNA and approximately 10-faged elevation of human APP protein in 

comparison with endogenous mouse APP levels. Proportionate increases in human Aβ 

were found. 

PDAPP mice exhibited age-dependent amyloid deposition in the brain along with 

thioflavin-S positive plaques, including compact plaques with dense cores that were 

highly reminiscent of those seen in human AD. Dystrophic neurites, reactive astrocytes, 

and activated microglia were all found near the plaques (Elder et al., 2010). The process 

was age-related, in that plaque deposition was minimal at 6 months of age but readily 

apparent by 9 months, increasing dramatically by 12 to 15 months (Reilly et al., 2003). 

PDAPP mice were subsequently shown to develop age related learning deficits (Chen et 

al., 2000) and synapse loss (Dodart et al., 2000). 

Independently, Hsiao et al. (1996), taking a relatively similar approach, overexpressed a 

human APP transgene containing the Swedish FAD mutation (K670N/M671L). 

Expression was driven by a hamster prion [prion protein (PrP)] promoter that drives 
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expression widely in the nervous system. These mice, termed Tg2576 mice, expressed 

human APP at levels more than 5-faged above the levels of the endogenous mouse APP, 

and Aβ40 and Aβ42 levels increased with age. Like PDAPP mice, Tg2576 mice 

exhibited age-dependent amyloid deposition, which resulted in thioflavin-S–positive 

plaques similar to those found in AD, along with gliosis and dystrophic neurites. Plaque 

amyloid was first clearly seen by 11 to 13 months, eventually becoming widespread in 

cortical and limbic structures. Water maze learning, a test of spatial memory in mice, 

was normal in 3-month-aged animals but impaired in 9- to 10-month-aged mice. The 

Tg2576 mouse line is widely available and is the most widely studied transgenic AD 

model (Elder et al., 2010). 

Subsequently, many other transgenic lines were developed with approaches similar to 

those used to develop PDAPP and Tg2576 mice (Codita et al., 2006; McGowan et al. 

2006) typically relying on strong promoters to drive expression of APP transgenes 

containing single or multiple FAD mutations. Common features of the models have 

been the production of elevated levels of Aβ, amyloid plaques, dystrophic neurites, and 

gliosis. Behavioral deficits have been common (Games et al. 2006). Many additional 

neuropathological, electrophysiological, and neurochemical changes that model aspects 

of AD in humans have also been observed (Games et al. 2006). 

Presenilin 1 (PS1) was found as part of a search for an early-onset FAD gene associated 

with a locus on chromosome 14 (Ertekin-Taner, 2007). Mutations in PS1 are the most 

commonly recognized causes of early onset FAD, and to date, more than 160 mutations 

in PS1 linked to FAD have been discovered. Mutations in a related gene on 

chromosome 1, now called presenilin 2 (PS2), were soon linked to FAD as well 

(Ertekin-Taner, 2007). 

PS1 FAD mutant transgenic lines have been generated with many of the same 

promoters used to create APP mice, including PDGF (Duff et al., 1996) and PrP 

(Borchelt et al., 1996; Citron et al., 1997). A few PS2 FAD mutant lines also exist. In 

addition, several gene-targeted lines exist in which PS1 FAD mutations have been 

targeted to the endogenous mouse PS1 (Guo et al., 1999; Nakano et al., 1999). 

Presenilin FAD mutant mice consistently show elevations of Aβ42 with little, if any, 

effect on Aβ40. However, singly transgenic PS1 or PS2 mice do not develop plaques, 

although when crossed with plaque-forming APP lines, the presenilin FAD mutations 

cause earlier and more extensive plaque formation (Holcomb et al., 1998). Why singly 

transgenic PS1 and PS2 mice fail to develop plaque pathology is not entirely clear but 
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may be related to the generally lower levels of Aβ42 found in single presenilin 

transgenics versus APP-overexpressing lines as well as the lack of elevation of Aβ40 in 

presenilin transgenics. It may also be related to the differing aggregation properties of 

mouse Aβ versus human Aβ (Jankowsky et al., 2007). Although PS1/APP bigenic mice 

have been studied frequently, the parental presenilin lines have been less studied, likely 

because of their lack of a robust AD-like pathology. However, PS1 and PS2 FAD 

mutant lines show exaggerated hippocampal damage after kainite induced 

excitotoxicity, PS1 (Guo et al., 1999; Grilli et al. 2000; Schneider et al., 2001) and PS1 

FAD mutants render animals more sensitive to trimethyltin-induced hippocampal 

damage (Kassed et al., 2003). Excessive neuronal loss in the EC cortex also occurs in 

mice harboring the delta E9 PS1 FAD mutation after lesioning of the perforant path 

(Lazarov et al., 2006). Increased protein oxidation and lipid peroxidation have also been 

reported in PS1 FAD mutant brain (Mohmmad Abdul et al., 2004; Schuessel et al., 

2006). Several studies have documented impaired hippocampal neurogenesis in adult 

PS1 FAD mutant mice, (Chevallier et al., 2005; Wen et al., 2004) and, recently, an age-

dependent impairment of spine morphology and synaptic plasticity in hippocampal CA1 

neurons of a PS1 transgenic mouse model has been described (Auffret et al., 2009). 

Age-related neurodegenerative changes with neuronal loss have been reported in one 

PS1 FAD mutant line, (Chui et al., 1999) and age-related NFT-like inclusions have been 

described in a PS1 knock-in line (Tanemura et al., 2006). 

Recently, a microvascular pathology that is highly reminiscent of the microvascular 

pathology found in AD has also been described (Gama Sosa et al., 2010). Thus, 

presenilin FAD mutant mice exhibit a phenotype. What is less clear is why they fail to 

exhibit the full range of AD related pathologies, given the potency of the mutations in 

humans (Elder et al., 2010). 

1.6 Cerebral ischemia 

The word ischemia derives from the Greek “ισχαιμία” (“Reduction of blood”) and 

means the total lack of blood flow in an organ. Cerebral ischemic stroke represents a 

life-threatening neurological disorder, one of the main causes of death and long-term 

disability in surviving patients in Western Countries, with only very limited therapeutic 

options (Dirnagl, 2012). 

Important risk factors for ischemic stroke include hypertension, high blood cholesterol, 

and diabetes. In addition, modifiable unhealthy lifestyle, such as tobacco smoke, high 
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alcohol consumption or lack of physical activity, considerably alter the predisposition to 

this pathological condition. Furthermore, age, gender, and other vascular risk factors are 

significant predictors of outcome of stroke severity, aetiology and efficacy of 

thrombolysis (Gibson et al., 2013). Furthermore, there are ischemic events defined 

cryptogenic (with no apparent cause) but normally at the bases of this condition, there 

are many diseases, such as obesity, solid and blood tumours but also myocardial 

infarction, anaemia and granuloma. 

There are two main types of stroke:  

1) Ischaemic stroke is caused by complete obstruction/occlusion of a cerebral vessel, 

which cuts off the blood supply to downstream brain parenkyma. Blocks can be caused 

by a blood clot or by fatty deposits and can occur in a brain artery or a small blood 

vessel deep inside the brain. Early after the obstruction, brain cells begin to die and the 

damage can have different effects, depending on the brain area affected. 

 

 

Figure 9. Etiopathological schematic picture of both types of ischemia: on the left, ischemic 
stroke, representing the obstruction of a blood vessel. On the right haemorrhagic stroke, 
commonly known as cerebral haemorrhage, here shown after the breakdown of a blood vessel 
(Dirnagl et al., 1999). 

2) Haemorrhagic stroke is caused by a blood vessel that bursts within or on the surface 

of the brain. Haemorrhagic strokes are generally more severe and are associated with 

considerably higher risk of death within the first three months and after, when compared 

to ischaemic strokes. These are also referred to as subarachnoid haemorrhage (bleeding 

on the surface of the brain) or intracerebral haemorrhage (bleeding within the brain) 

(Figure 9). 
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Approximately 80% of strokes are ischemic in nature and result from thromboembolic 

occlusion of a major cerebral artery or its branches, which leads to loss of cerebral 

blood flow, a condition of hypoxia and glucose deprivation (oxygen-glucose 

deprivation: OGD) and subsequently tissue damage in the affected region (Gibson, 

2013). 

In 1970, cerebral ischemia was defined by WHO as “Neurological focal or global 

cerebrovascular injury syndrome persisting beyond 24 hours or leading to death within 

24 hours” (24 hours were chosen arbitrarily to distinguish it from transient ischemic 

attack).  

Thanks to this definition, we can presume that the nervous tissue subjected to ischemic 

damage, if reached in appropriate time, can recover neuronal activity. For this, 

therefore, rapidity of intervention is indispensable and, given the high risk of death and 

disability which ischemia implicates, this disease is considered a medical emergency for 

which immediate diagnosis is essential to formulate appropriate therapeutic 

interventions. 

Ischemia could involve both large or small vessels but the symptomatology is almost 

always the same and consists of feeling oppression, asphyxiation, spasm, formication 

(paresthesia), dysarthria, hemiparesis, hemianopsia, migraine and aphasia (complex 

disorder of language and communication caused by damage to the language centres of 

the brain; people with aphasia may have difficulty speaking, reading, writing or 

understanding language). 

The extent and location of the damage determines the severity of the stroke, which can 

range from minimal to catastrophic. Two major approaches have been developed to 

treat ischemic stroke: neuroprotection and reperfusion. The latter therapeutic strategy 

uses thrombolytic drugs or mechanical devices to recanalize occluded vessels. The only 

approved medical treatment for acute ischemic stroke is intravenous thrombolysis with 

recombinant tissue plasminogen activator (Adams et al., 2007). However, the 

therapeutic window of rtPA treatment is up to 4.5 hours after stroke, and consequently, 

rtPA is applicable as treatment in only up to 5% of all patients (Fonarow et al., 2011). 

Thus, there is an urgent need for other, more widely applicable, treatment options.  

1.6.1 Epidemiology 

Stroke is ranked as the second leading cause of death worldwide with an annual 

mortality rate of about 5.5 million. Stroke represents a huge public health burden, which 
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is set to rise over future decades because of demographic transitions of populations, 

particularly in the developing countries (Adogu et al., 2015).  

According to data of the World Stroke Organization, 1 in 6 people worldwide will have 

a stroke in their lifetime, 15 million people worldwide suffer a stroke each year and 5.8 

million people die from it. Current trends suggest that, without appropriate action, the 

number of annual deaths will climb to 6.7 million by 2015. 

Stroke claims a life every 6 seconds. It is the second leading cause of death for people 

above the age of 60, the fifth leading cause in people aged 15 to 59, both males and 

females, and it affects children as well. Stroke is responsible for more deaths annually 

than AIDS, tuberculosis and malaria combined. In the United States, stroke is the third 

most common cause of death, exceeded only by cancer and coronary heart disease, and 

it claims a life every three minutes. Furthermore, stroke is also one of the leading causes 

of long-term disability worldwide.  

1.6.2 Public health burden of stroke in the 21st Century 

In both the developed and developing world, ischaemic stroke is currently the 

predominant stroke subtype. According to the current global burden of disease data on 

stroke, in 2013 there were almost 25.7 million stroke survivors, 6.5 million deaths, 113 

million DALYs (disability-adjusted life years) due to stroke, and 10.3 million new 

strokes (Moran et al., 2013).  

Thus, stroke is a disease of immense public health importance with serious economic 

and social consequences. In the past, stroke was considered a disease of the developed 

world. However, through the application of evidence-based control measures, the 

burden of stroke reduced drastically in many developed countries. In most western 

European countries, death from stroke declined by 30-50% from 1975 to around 2005 

and this was most noticeable in countries like Iceland, Italy, Austria, and Germany 

(Lopez et al., 2006). The burden of stroke seems to be shifting to the developing world 

where, currently, there are 4.85 million stroke deaths and 91.4 million DALYs annually 

compared with 1.6 million deaths and 21.5 million DALYs in high-income countries 

(Moran et al., 2013). As shown in Figure 10, the burden of stroke is much higher in 

Eastern Europe, North Asia, Central Africa, and the South Pacific (Figure 10) (Johnston 

et al., 2009). In the next few decades, the burden of stroke in the developing world is 

likely to increase substantially, partly due to ongoing demographic changes, including 
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ageing of the population and health transitions in these countries (Moran et al., 2013; 

Amuna & Zotor, 2008). 

 

 
Figure 10. (a) Global distribution of stroke mortality rates. (b) Global distribution of DALY 
loss due to stroke. 
 

1.6.3 Types of stroke 

As already mentioned, generally cerebral stroke can be classified into two major 

categories, namely, ischaemic stroke and haemorrhagic stroke. Ischaemic stroke is 

caused by interruption of the blood supply to a part of the brain resulting in sudden loss 

of function, while haemorrhagic stroke is attributed to rupture of a blood vessel or an 

abnormal vascular structure. Approximately, ischaemic strokes account for about 80% 
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of stroke cases while haemorrhagic stroke accounts for 20% but the actual proportion of 

stroke type depends on the population (Bamford et al., 1991). 

There are several subclassification schemes for ischaemic stroke and the Trial of ORG 

10172 in Acute Stroke Treatment (TOAST) criteria is the most widely used.  

Based on the TOAST criteria, ischaemic stroke can be grouped into five main 

pathological or etiological types (Table 1).  

Table 1. Subclassification scheme of the ischaemic stroke (adapted from Adams et al.,1993). 

Stroke type Causes Percent 

Large artery thrombotic strokes Atherosclerotic plaques in the large blood 

vessels of the brain lead to ischemia and 

infarction 

20% 

Small penetrating artery 

thrombotic stroke (Lacunar 

stroke) 

One or more vessels in the brain are affected 

(microatheromatosis) 

25% 

Cardiogenic embolic stroke Associated with cardiac dysrhythmias, valvular 

heart disease, and thrombi in the left ventricles 

15% 

Cryptogenic strokes Cause is unknown 5-10% 

Strokes associated with other 

causes 

Such as illicit drug use 20-25% 

 

There are two types of haemorrhagic stroke, including intracerebral haemorrhage and 

subarachnoid haemorrhage. Intracerebral haemorrhage is the most common type of non-

traumatic intracranial haemorrhage; it accounts for 80% of haemorrhagic stroke and 10-

15% of all strokes (Bradley et al., 1991). Intracerebral haemorrhage is mostly caused by 

uncontrolled hypertension leading to rupture of small vessels. The rupture leads to an 

avalanche type effect with breakage of nearby vessels resulting in haematoma 

expansion in up to 40% of cases. Subarachnoid haemorrhage is mainly due to saccular 

aneurysms though it is also associated with arteriovenous malformation, intracranial 

neoplasm, and some medications such as anticoagulants. About 65% of subarachnoid 

haemorrhage patients survive, but half remain disabled primarily due to severe 

cognitive deficit (Caplan et al., 2000; Bradley et al., 1991). 

1.6.4 Traditional risk factors 

The traditional risk factors of stroke can be classified into modifiable and unmodifiable 

risk factors.  
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The modifiable risk factors include hypertension, diabetes mellitus, high blood 

cholesterol, cardiovascular diseases, sedentary lifestyle, atrial fibrillation, smoking, and 

alcohol consumption.  

The unmodifiable risk factors are relatively few and include factors such as age and 

gender (O'Donnell et al., 2010; Lopez et al., 2006). 

The total incidence of stroke is projected to rise substantially over the next 20 years, 

because of the rising age of the population. Age is the strongest determinant of stroke 

and the risk of stroke doubles every decade above age 55 (Caplan et al., 2000; Johnston 

et al., 2009). 

1.6.5 Physiopathology 

Cerebral ischemia triggers a series of haemodynamic, biochemical and behavioural 

disorders. Initially, due to the decrease in blood flow, neurological functions are 

affected. Subsequently, as a result of ischemia progress, the metabolic activity is 

suppressed in order to maintain the structural integrity of the cells (Hossmann, 1998).  

The extension of the ischemic core is a time-dependent phenomenon. Cells die in the 

hours or days following a series of events named the ischemic cascade (Dirnagl et al., 

1999) (Figure 11). 

 

 
Figure 11. Spatiotemporal evolution of mechanism involved in cerebral ischemia (Velly, L., 
Boumaza, D., and Simeone, P. (2012). “Cerebral Ischemia: Pathophysiology, Diagnosis, and 
Management”, in Metabolic Disorders and Critically III Patients, ed. C. Ichai (Verlage France, 
Paris: Springer) 301-325). 
 
The ischemic process results from a sequence of physiopathologic effects which 

progress drastically through time and space, leading to cell death and consequently to 

the subsequent decline of brain damage. In sequence, these are excitotoxicity, peripheral 

depolarization, inflammation and cell death due to necrosis and apoptosis (Dirnagl et 

https://media.springernature.com/original/springer-static/image/chp:10.1007/978-3-319-64010-5_13/MediaObjects/319122_1_En_13_Fig2_HTML.gif
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al., 1999). Each of these physiopathological process occur at a define time in the 

ischemic phenomenon, some occurring after a few minutes and others after several 

hours or days (Doyle et al., 2008) (Figure 11).  

The longer the cerebral blood flow (CBF) is disrupted, the more important is the 

extension of the ischemic core to the detriment of the penumbra zone, which requires to 

be reperfused as quickly as possible. In the ischemic core, where CBF is more severely 

limited, excitotoxicity and cellular death occur after a few minutes. On the periphery of 

the ischemic core, in the penumbra zone, when parallel blood flow can limit the effects 

of stroke, the degree of ischemia and the delay before reperfusion determine the 

individual outcome of each cell. In this zone, cellular death through apoptosis or 

inflammation occurs less quickly (Doyle et al., 2008). Shortly after the occlusion of the 

middle cerebral artery (MCA), penumbra is approximately the same size as the ischemic 

core. After 3 h, penumbra only represents 50% of the ischemic core and 6–8 h later 

almost all the penumbra zone disappears and is part of the irreversible damages in the 

ischemic core (Hata et al., 2000). Although the duration of ischemic period is a 

determinant element in the intensity of damages, reperfusion plays also an important 

role in damage distribution. During reperfusion, a consequent amount of oxygen reaches 

the brain, which is responsible for formation of free radicals (oxygen-activated species, 

ROS) and leads to additional oxidative stress. 

Cells consume a substantial amount of oxygen and glucose, throughout catabolic 

processes to obtain the energy necessity for survival in the form of ATP. When the 

physiological concentration of oxygen and glucose decrease, such as during an ischemic 

insult, the cell necessarily looks for stock of energy since it cannot produce energy by 

itself and finds it in ATP. Given the disequilibrium between energy consumption and 

production, the cell is forced to initiate the anaerobic metabolism that causes ATP 

depletion, transformation to AMP and the consecutive extracellular accumulation of 

adenosine. 

At intracellular level, ATP has essential functions, of which the operation of ATP-

dependent pumps, such as the Na+/K+ pump, which allows the active transport of Na+ 

and K+ through the plasma membrane, is fundamental. The increase of ATP causes a 

block of the pump and consecutively a block of ions transport: thus, Na+ accumulates in 

the intracellular side. This ionic distribution, strongly unbalanced, causes profound 

depolarization of the cell membrane, making the electrochemical potential more 

positive and causing the opening of other ion channels, such as the Ca2+ channel. Ca2+, 



Introduction___________________________________________________________________________ 

46 
 

once inside the cell, contributes to the release of the neurotransmitters through the 

process of vesicle fusion, mediated by the protein of SNARE complex (Figure 12).  

Thus, acute brain injury after stroke is caused primarily by the lack of oxygen and 

glucose. In such conditions, mammalian neurons rapidly depolarize, and excessive 

release of glutamate occurs, an amino acid and excitatory neurotransmitter, causing 

excitotoxic cell death, largely due to over-activation of glutamatergic N-methyl-d-

aspartate (NMDA) receptors. NMDA receptors are highly permeable to Ca2+ and are 

responsible for intracellular Ca2+ increase that reaches neurotoxic levels which, by 

activating cell lipases, endonucleases, proteases and phosphatases, ultimately bring to 

acute excitotoxic cell death (Choi, 1992).  Glutamate activates also AMPA, and Kainate 

postsynaptic receptors which further increase the intracellular concentrations of Na+, K+ 

and Ca2+ further depolarizing the cell membrane (Figure 13). 

In addition, the intracellular messenger activates a cascade of events (such as the 

synthesis of NO, characteristic of inflammation) which conduce to the onset of tissue 

damage (Beckman & Koppenol, 1996; Iadecola, 1997) and to the subsequent necrosis 

of the tissue (Dirnagl et al., 1999). 

In addition, one of the early events occurring by an ischemic episode in vivo and during 

oxygen-glucose deprivation (OGD) in vitro, is the release of substantial amounts of 

adenosine (Latini et al., 1998; Melani et al., 1999).  

Among the most remarkable events of ischemia are the activation of enzymes which 

break down the cytoskeleton protein (Furukawa et al., 1997), lipases, such as activation 

and consequently activation of cyclooxygenase (COX2, involved in inflammation) and 

phospholipase A2 (PLA2). Activated PLA2 by excess in Ca2+ during ischemic process 

leads to a disrupted phospholipidic metabolism with degraded glycerophospholipids and 

massive formation of free fatty acids (Zhang et al., 1995). Arachidonic acid is the 

principal free fatty acid produced during ischemia. It is then metabolized by 

cyclooxygenase (COX) to prostaglandin (PG), by the lipooxygenase to leukotriene 

(both pro-inflammatory lipidic mediators) but also to lysophospholipids (precursor of 

the platelet activating factor) and to superoxide anions responsible for free radical 

formation (Sapirstein & Bonventre, 2000). Oxidative stress is represented by the whole 

reactions using ROS, which are characterized by the presence of a very reactive 

unpaired electron (free radical). 
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Figure 12. Schematic representation of a synapse. In the pre-synaptic and post-synaptic 
terminals are represented the main cell targets involved in the release and action of the 
neurotransmitter (Beckman & Koppenol, 1996; Iadecola, 1997; Dirnagl et al., 1999; Furukawa 
et al., 1997). 
 

Cerebral ischemia and reperfusion are responsible for oxidative stress leading to free 

radicals production and to deleterious effects during pathogenesis. Free radicals 

produced during reperfusion are principally activated species of oxygen. The main ROS 

generated are: superoxide anion O2−∙, hydroxyle radical (OH∙ the most reactive 

oxygen-free radicals), hydrogen peroxide (H2O2), nitric oxide, and peroxynitrite 

(ONOO∙). These reactive species are controlled normally by protective reduction 

enzymes such as superoxide dismutase (SOD) or glutathiase peroxidase (GPx). 

However, in case of ischemia and reperfusion, excess in cytosolic Ca2+ and in 

mitochondria leads to accumulation of free radicals (Andreyev et al., 2005). Free 

radicals storaged in mitochondria will be able to react with oxygen when reperfusion 

occurs in order to produce superoxide ions (O2−∙). Free radicals thus produced inhibit 

electron transport in mitochondria and intensify the free radicals formation by 

mitochondria. Metallic ions are also an important factor of free radicals formation 

(Iadecola, 1997). Fe2+ released during ischemia by transport proteins can convert 

hydrogen peroxide (H2O2) in hydroxyl radical (OH∙). They can also induce a lipid 

peroxidation during reperfusion. 
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Figure 13.  Involvement of excitotoxicity in neuronal death. In case of cerebral ischemia, 
increased glutamate concentration by exocytosis and/or decrease or inversion of its transport 
leads to an activation by AMPA and NDMA receptors, osmotic swelling, and a massive entry of 
calcium ions in neurons. (Velly et al. 2013).  
 
In addition, Zn2+ stored in presynaptic vesicles of glutamatergic neurons and released in 

glutamate exocytosis induces a cellular death during ischemic phenomenon by 

producing free radicals via the activation of COX and PKC (Suh et al., 2000). 

The resulting cerebral oedema is caused by the increase of intracellular ionic 

concentration, which hence recalls H2O from outside. Furthermore, the energy-

dependent glutamate transporters are blocked, and this contribute to the permanence of 

glutamate within inter-synaptic fissure and results in continuous receptors stimulation.  

1.6.6 Ischemic core and penumbra 

It is possible to identify two ischemic areas (Figure 14): the focal area which undergoes 

severe reduction of cerebral blood flow (CBF) and where neurons are continuously 

exposed to depolarization is defined the “ischemic core” (Hossmann, 1994). This causes 

rapid necrosis due to cytoskeleton destruction or to proteolysis.  

 

https://media.springernature.com/original/springer-static/image/chp:10.1007/978-3-319-64010-5_13/MediaObjects/319122_1_En_13_Fig3_HTML.gif
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Figure 14.  Ischemic core and penumbra: the red area on the figure marks the infarcted core, a 
brain region of low perfusion in which cells have lost their membrane potential. It is surrounded 
by a penumbra area, marked by the remaining colors, in which intermediate perfusion prevails 
and identified as the salvageble brain area. Figure modified from (Dirnagl et al., 1999). 

The perifocal area, named ischemic penumbra or “penumbra”, can maintain, in the first 

period after the ischemic attack, the physiologic metabolism of the tissue thanks to the 

perfusion of collateral anastomotic vessels (Astrup, 1981; Hossmann, 1994; 

Obrenovitch, 1995). Lacking a properly pharmacologic treatment or reperfusion, the 

ischemic penumbra may advance toward an infarcted condition caused by ischemia and 

apoptosis. 

1.6.7 Perinfarctual depolarization 

Penumbra is considered the portion of the tissue in which the ischemic damage causes 

cellular suffering which is potentially or partially reversible (Hossmann, 1994; 

Ginsberg, 2003). At this level repolarization, that occurs after the depolarization caused 

by high extracellular K+, is possible. Therefore, a repetitive system of depolarization-

repolarization is established which is observed until 6-8 hours since the onset of 

ischemic insult (Hossmann, 1996). 

1.6.8 Anoxic depolarization 

Neurons situated in the core are exposed constantly to anoxic depolarization (AD, a 

typical feature of ischemic insults) and gradually lose the ability of repolarization. AD 

is a spontaneous depolarization of the nervous tissue in response to the ischemic state, 

which propagates with a speed of 1-3 mm/sec. AD recalls another phenomenon, 

discovered in the ‘40s by Leão (1947), named spreading depression (SD). SD occurs 
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during normoxic conditions within the grey matter of the cerebral tissue after an 

excitatory stimulation, such as an epileptic condition. 

Both AD and SD have similar features and occur as a quick and self-regenerating 

depolarization, of the all-or-none type, which originates from a focal area of the brain, 

the core, and then extends, gradually, to the surrounding space (Somjen, 2001). 

Leão’s discovery opened the way to many studies, both in vivo and in vitro, which have 

demonstrated with accuracy and reproducibility the occurrence of SD and AD in almost 

all the encephalic regions, with higher regularity within specific cerebral areas. The 

CA1 hippocampal area is considered the most susceptible area to this event (Somjen, 

2001). 

Positioning a stimulation electrode within the SR of CA1 and a recording electrode 

close to the dendrites of CA1 pyramidal neurons, it has been demonstrated that the high 

amplitude, long lasting depolarization, begins at the dendritic level before any other 

neural area: from the dendrites the depolarization then moves to the cell bodies 

(Herreras & Somjen, 1993). 

This hyperexcitability, confirmed by studies conducted in vivo (Rosenblueth & Garcia, 

1966), has been related to glutamate-induced excitotoxicity. Indeed, using antagonists 

of the NMDA receptors, voltage changes during the AD and SD phases are strongly 

reduced (Herreras & Somjen, 1993). The glutamatergic antagonists are known to be 

neuroprotective in experimental models (Calabresi et al., 2000; Lee et al., 1999). 

Changes in ionic equilibrium during either AD or SD are reflected in morphological 

changes in the cell: evident cell swelling due to the elevated osmolarity and to the 

relative reduction of interstitial spaces occurs (Harreveld & Mendelson, 1959; Kow & 

Harreveld, 1972). 

1.6.9 Inflammation process 

The increase of intracellular Ca2+ concentration, the consequent mobilisation of second 

messengers, the production of free radicals and the state of hypoxia itself, trigger the 

activation of transcriptional factors, which increase gene expressions encoding for the 

inflammation factors involved in the activation of immune responses. Among these, we 

find PAF (platelet activating factor), TNFβ (tumour necrosis factor-β) and IL-1β 

(interleukin 1-β). At the same time, molecules of cells adhesion, such as P-selectin, D-

selectin and ICAM-1 are expressed in high quantity on the vessel endothelium 

(Lindsberg et al., 1996; Zhang et al., 1998). The adhesion together with chemotactic 
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molecules lead to the invasion of the cerebral parenchyma by immune cells such as 

neutrophils, monocytes and macrophages.  

 
Figure 15. Schematic representation of the inflammation process in a blood vessel during 
cerebral stroke (Iadecola, 1997). 

 
Figure 16. Representation of inflammation during a state of persistent hypoxia. Note the 
leukocyte infiltration during the inflammatory process (Iadecola, 1997). 
 

The latter ones are the most represented cell type one week after the insult (Iadecola, 

1997). Many studies demonstrate that post-ischemic inflammation plays a prevalent role 

in cellular damage (Feuerstein et al., 1998): indeed, the conspicuous presence of 
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neutrophils can cause over time microvascular blockade, which worsens the progression 

of the pathology (Del Zoppo et al., 1991).  

Furthermore, the leukocyte abundance can recall inflammation mediators such as NO 

which causes toxicity, both directly, damaging neurons, and indirectly, recruiting other 

inflammation cells within the damage area (Figures 15, 16). 

1.6.10 Necrosis and apoptosis  

All these damaging effects cause loss of function and morphological modifications in 

neurons and over time become irreversible since, at mitochondrial and nuclear level, 

necrotic or apoptotic cellular processes initiate. Apart from the mechanism of cellular 

necrosis, which occurs early, the increase in intracellular Ca2+, NO, free radicals, and 

inflammation mediators production are likely to induce the process of programmed 

cellular death called apoptosis (Nakka et al., 2008). A relevant difference between these 

two events is that necrosis reflects a real pathological state, recruiting inflammation 

mediators and causing expulsion of cytosolic material into the extracellular side. 

Apoptosis does not lead to inflammation but causes cellular phagocytosis without the 

start of inflammatory process. This makes it a protective and physiological cellular 

event. Necrotic processes are situated within areas where the damage is strong, such as 

the ischemic core, while apoptosis develops mostly where the damage is less intense 

such as in the penumbra area.  

During ischemic conditions, genes encoding caspases become activated and their 

expression is highly increased (Dirnagl et al., 1999). Caspases are enzymes that belong 

to the family of proteases, more specifically of the aspartate-specific cysteine proteases 

(ASCPs) family, which in the absence of cellular alterations are situated within the 

cytosol in the form of zymogens. Among the twelve Caspases, only Caspase9 and 

Caspase3 seem to have a relevant role in apoptosis. At mitochondrial level, as cellular 

death initiates, the intrinsic apoptotic pathway is activated. The intrinsic pathway is 

distinguished from the extrinsic one that initiates from signals coming from the external 

environment (Figure 17).  

CytochromeC (CytC) is released from mitochondria due to the activation of the 

mitochondrial intrinsic pathway, and once within the cytosol, CytC enters in contact 

with Caspase9 which, after its activation, in turn activates Caspase3. The release of 

CytC from mitochondria can also be actuated by a cytosolic protein, Bid, upon its 

proteolytic activation by Caspase8. Therefore, the activation of these Caspases can be 
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considered the link between the two pathways, intrinsic and extrinsic. Once Caspases 

are activated, they trigger a proteolytic cascade toward the nuclear lamina A and B, 

ICAD (Inhibitor of caspase-activated DNase), cytoskeleton actin and various other 

target proteins which, either directly or indirectly, lead to cellular death.  

 

 
Figure 17. The activation of apoptotic, intrinsic and extrinsic pathways, with their caspases, 
respectively, 8 for the extrinsic pathway and 9 and 3 for the intrinsic (Dirnagl et al., 1999). 
 
1.6.11 Cerebral oedema 

Cerebral ischemia leads to dysfunction of membrane ionic pump that triggers complex 

mechanisms leading to cell swelling and cellular-related cerebral oedema: cytotoxic 

oedema. Ionic disruption triggers a passive osmotic flow of H2O toward the cells. The 

rise in H2O into cerebral tissue affects both grey and white matter, which leads 

macroscopically to an increase in volume. There exists also specific system of H2O 

transport playing a role in the occurrence of cerebral oedema, aquaporines (AQP), and 

particularly AQP4 mostly found in central nervous system. The density of these 

channels is particularly high at the interface between brain and liquid spaces (blood, 

subarachnoid space, ventricles). AQP4 is expressed in astrocytes, endothelial cells, and 

ependymal cells. Neurons are free from AQP4. The role of cerebral AQP in pathology 

is yet not fully understood but these channels ease H2O flow. In rodents, AQP4 

expression varies following a cerebral ischemic damage or traumatic injury (Badaut et 

al., 2002); the level of AQP4 expression decreases the first moments after an ischemic 
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or traumatic damage and increases them (Unterberg et al., 2004). These results suggest 

that AQP4 contributes to oedematous process but the positive or negative role of AQP4 

in oedema formation is not completely delucidated.  

 

 
Figure 18. Alteration of the blood–brain barrier during cerebral ischemia (Velly et al. 2013). 

In parallel, ischemia-reperfusion alters vessels and the blood–brain barrier, which leads 

to the formation of an oedema, whose origin is a capillary leak: the vasogenic oedema 

(Payen et al., 2003). When blood–brain barrier is disrupted, liquid, plasmatic proteins, 

and inflammatory cells enter in brain tissue. Most of the biological pathways leading to 

oedema are observed during ischemia: excessive release in glutamate, oxidative stress, 

and inflammatory cascade. Moreover, an increase in cerebral volume generates 

increased intracranial pressure and decreased cerebral perfusion pressure, which 

enhance the ischemic phenomenon.  

Oedema grows to its maximal development the fourth day and declines during the 

second week. The “mass effect” is proportional to the volume of the infarction. 

Finally, cytotoxic oedema, as vasogenic oedema can be worsened by reperfusion due to 

the intensification of oxidative stress and inflammatory response but also due to the 

brain–blood barrier disruption (Wang et al., 2014) (Figure 18).  

1.6.12 Adenosine and its receptors 

Adenosine is a purine nucleoside indispensable for DNA synthesis: it is formed by an 

adenine and ribose molecule joined through an N9-glicosidic bond, which, in the 

https://media.springernature.com/original/springer-static/image/chp:10.1007/978-3-319-64010-5_13/MediaObjects/319122_1_En_13_Fig5_HTML.gif
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nervous system, is continually formed both at intracellular and extracellular levels 

(Figure 19).  

 
Figure 19. Adenosine structure. Its molecular formula is C10H13N5O4 (Ceruti et al., 2004). 

Adenosine assumes an essential role also in biochemical processes and signal 

transduction, being correlated with molecules such as ATP, ADP and AMP. At central 

level, it carries out numerous actions: it acts as an endogenous anticonvulsant, 

influences control of motility, pain, learning and memory (Pedata et al., 2007). 

Moreover, adenosine has a crucial role in the modulation of emotional states, 

conditioning social interactions and aggressive behaviours. In physiologic conditions, 

extracellular adenosine inhibits synaptic transmission, and this makes adenosine a 

highly protective neuromodulator.  

At the extracellular side, adenosine is produced from AMP (Adenosine monophosphate) 

which is dephosphorylated by the enzyme 5'-nucleotidase (5’-NT). Adenosine can also 

be formed through the breakdown of nucleotides, which are released into the 

extracellular space. The 5’-NT is inhibited by ATP and it has an elevated affinity for 

AMP: for this reason, when the cell is exposed to an intense metabolic activity with 

increased ATP consumption and consequent elevated production of AMP, the enzyme 

has very high enzymatic activity. Therefore, during low energetic support conditions as 

in epileptic attacks, hypoxia or ischemia, production of adenosine is significantly 

increased (Latini & Pedata, 2001). 

Adenosine is a paramount chemical mediator, which can activate determined biologic 

responses and its action mainly occurs through purinergic receptors activation.  
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These receptors belong to the seven-transmembrane domain superfamily (Figure 20), 

structurally composed by 7 amphipathic α-helices (TM 1-7), which consist of a 

sequence of 20-25 hydrophobic amino acids.  

The N-terminal portion is located at the extracellular level whereas the C-terminal 

exposes toward the intracellular side; all the 7 domains are strictly interconnected via 3 

intracellular (IL 1-3) and 3 extracellular loops (EL 1-3) (Cristalli et al., 2008).  

The seven transmembrane domain receptors are always associated, at the intracellular 

side, with specific transduction heterotrimeric protein, defined G protein, which are 

activated after the interaction between the receptor and substrate. 

 
Figure 20. Adenosine seven transmembrane domain receptor (TM) coupled with a G-protein. 
The Gα, binding GTP, release itself and activates a biologic response (Cristalli et al., 2008).  

The purine receptors have been classified in two classes by Burnstock in 1978, P1 and 

P2 (X, Y) receptors, the latter ones activated by ATP (Burnstock, 1978).  

The P1 receptors, activated by adenosine, are present in different cell populations, 

starting from the nervous system to endothelial cells, the immune system, cardiac tissue 

and smooth muscle.  

The P1 receptors family comprehends only two subtypes, A1 and A2, the latter 

subdivided by Daly and colleagues (Daly, 2001), in two subtypes, A and B, depending 

on their affinity for adenosine. Four P1 purine receptor subtypes (A1, A2A, A2B and A3) 

have been found so far, and each interacts with a specific G protein (Fredholm et al., 

2001) (Table 2). The A1 and A3 receptors are coupled with an inhibitory G protein 

(Gi/Go) which inhibits both the activation of adenylyl cyclase and PIP2 hydrolyses. A2 

receptors, subdivided in A2A and A2B subtypes, couple to stimulatory G proteins (Gs/Gq) 
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which activate adenylyl cyclase, thus increasing cAMP production, by AMP cyclization 

(Daly et al., 1983) (Figure 21). 

Table 2. Representation of functions and distribution of purinergic receptors P1 (Fredholm et 
al., 2001). 
Receptors 

subtypes 

G-protein G-protein coupling 

effect  

Adenosine 

affinity 

Distribution 

A1 Gi 1/2/3 

 

 

 

Go 

Gs 

↓cAMP 

↑PLC, IP3/DAG  

↑Arachidonico/PLA2 

↑PLD 

 

↑cAMP 

~100 nM High levels in cortex, 

hippocampus, 

cerebellum. 

Intermediate levels in 

striatum and 

thalamus 

A2A Golf 

G15/16 

↑cAMP 

↑IP3 

 

~20-300 nM High levels in 

striatum, nucleus 

accumbens and 

olfactory tubercle. 

Low levels in cortex 

and hippocampus 

A2B Gs 

Gq/11 

↑ cAMP 

↑ PLC, IP3/DAG 

↑PLD 

~5-20 µM Low level 

A3 Gi 2/3 

Gq/11 

↓ cAMP 

↑ PLC, IP3/DAG 

↑ PLD 

 

~25-290 nM Widespread 

distribution. Higher 

levels in rat 

hippocampus and 

cerebellum 

As is often the case for metabotropic receptors, the purine receptors are also pleiotropic, 

namely they can interact with more than one G protein class and consecutively can 

activate an ample array of signalling pathways (Cunha, 2005). 

Furthermore, apart from the A3 receptor, which shows intraspecies variations, the other 

receptor subtypes maintain high homology through molecular evolution (80-85%) 

(Sachdeva & Gupta, 2013; Haskó et al., 2007). 
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Figure 21. Adenosine receptors and signal transduction mechanisms. Adenosine receptors are G 
protein-coupled receptors. The A1 and A3 subtypes inhibit adenylate cyclase via Gi protein, 
while the A2A and A2B receptors mediate stimulation of the enzyme via Gs protein. In addition, 
A1, A3 and A2B receptors can modulate, by Go protein or Gq, phospholipase activity, inducing 
the production of diacylglycerol (DAG) and inositol-triphosphate (IP3) and an increase in Ca2+ 
release from intracellular deposits (Gessi & Borea, 2011). 

A1 receptors 

The A1 receptor is a monomeric glycoprotein of 35-36 kDa formed by 326 amino acids. 

It is highly conserved with an 87%-92% homology between different species (including 

humans), despite differences have been evidenced in the coupling with G proteins and 

specie-dependent tissue distribution. This receptor subtype is widely expressed in the 

central nervous system, with a comparable distribution in the pre- and post- synaptic 

neuronal membranes (Sachdeva & Gupta, 2013; Daly & Padgett, 1992).  

An elevated level of expression can be found in the cerebral cortex, hippocampus, 

thalamus, spinal cord and in the adipose tissue, while lower receptor expression in 

lungs, ventricles and pancreas.  

The A1 receptors have an elevated affinity for adenosine (EC50 3-30 nM) and they are 

metabotropic receptors coupled with a Gi/Go protein, which inhibits the adenylyl 

cyclase activity, with consequent reduction of cAMP and inactivation of PKA. 

On the contrary, the trigger of Go protein leads to increase conductance of K+ and Cl- 

channels, which re-establish a rest electrochemical potential within the cells in which 

they are activated. 

Many studies indicate that the A1 receptors play a prominent inhibitory tone on synaptic 

transmission and that selective adenosine antagonists, acting on this receptor subtype, 
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have a protective role in ischemia (Pedata et al., 2016). Unfortunately, the development 

of A1 receptor selective agonists as possible anti-ischemic drugs has been stalled by 

their sedative and cardiovascular side effects, including bradycardia and hypotension. 

Therefore, in order to identify putative targets for therapeutic intervention, the research 

on possible anti-ischemic drugs has focussed on the contribution of the other adenosine 

receptors. 

A2A receptors 

A2A receptors have high affinity for adenosine (EC50 1-30 nM) (Sachdeva & Gupta, 

2013). The A2A receptor is a glycoprotein of approximately 45 kDa with an amino acid 

sequence highly conserved with a homology of 90% between different species (around 

82.9% between human and rat).  

A2A receptors are coupled with stimulatory G protein (mainly Gs) and subsequently 

increase cAMP levels and PKA activation (Mulakayala et al., 2013; Chen et al., 2013). 

This subtype is highly expressed at central level, even though its distribution is not 

uniform: it can be found primarily close to dopamine D2 receptors, namely within 

striatum, in nucleus accumbens, in the olfactory tubercle and in the cerebellar cells of 

Purkinje (Lopes et al., 2004; Svenningsson et al., 1999). It can also be present at 

peripheral level on immune cells, on smooth muscle endothelial cells (Coney & 

Marshall, 1998; Ngai et al., 2001), in the heart, in the bladder and lungs. In accordance 

to what already observed for A1, also A2A receptors are expressed on the membrane of 

astrocytes (Li et al., 2001; Nishizaki et al., 2002), microglia (Fiebich et al., 1996) and 

oligodendrocytes (Melani et al., 2009).  

Techniques such as in situ hybridization (Cunha et al., 1994; Dixon et al., 1996), 

receptor binding (Lopes et al., 2004), immunohistochemistry, and functional studies 

(Rebola et al., 2002; Rebola et al., 2003; Rosin et al., 1998) have evidenced that the 

receptor is present also on nerve endings of both hippocampus and cortex (Wan et al., 

1990; Cunha et al., 1994; Johansson and Fredholm, 1995), at pre- and post- synaptical 

level (Rebola et al., 2005).  

In the last few years, the antagonists of A2A receptors have been shown to be efficacious 

neuroprotective agents, particularly for Parkinson’s disease and Huntington’s disease, 

representing a non-dopaminergic alternative to current therapies (Jacobson & Gao, 

2006; Xu et al., 2005). 
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Moreover, the role of the adenosine A2A receptor under ischemia has been largely 

investigated (Chen et al., 2007; Pedata et al., 2014). A2A antagonists can be utilised as 

neuroprotective drugs in ischemia-induced cell death (Pedata et al., 2005; Melani et al., 

2006) and can be used as anti-allergic agents, analgesic, positive ionotropic (Ledent et 

al., 1997) and for the treatment of alcoholism (Thorsell et al., 2007). A2A receptors play 

a further important role in modulation of peripheral tissue inflammation (Carlsson et al., 

2010). In 2003, Sitkovsky (Sitkovsky et al., 2003) demonstrated their anti-inflammatory 

effect in mice due to inhibition of tissue damage caused by the inflammatory phase.  

Our research group highlighted that the activity of A2A receptors blocks the Ik type of 

K+ currents within the precursors of cultured oligodendrocytes, blocking their 

differentiation, without influences their proliferation (Coppi et al., 2013).  

A2B receptors 

The A2B receptor is a glycoprotein of approximately 36-37 kDa, coupled to Gs protein, 

that stimulates adenylate cyclase, intracellular Ca2+ mobilization (Mirabet et al., 1997) 

and activates PKC and PLC (Abbracchio et al., 1995; Feoktistov et al., 2011). 

The A2B receptors were identified and cloned for the first time by Rivkees and Reppert 

in rat hippocampus (Rivkees & Reppert., 1992) and by Pierce in human hippocampus 

(Pierce et al., 1992). 

Among adenosine receptors, the A2B receptor subtype is the least studied and still 

remains the most enigmatic, because of the relatively low potency of adenosine for this 

receptor (EC50 of 5-20 µM) (Beukers et al., 2000; Sachdeva & Gupta, 2013; Fredholm 

et al., 2011) and the very few selective ligands that have been described so far. Most of 

the present knowledge on A2B receptors originates from their peripheral role on the 

control of cardiac myocyte contractility, intestinal tone, asthma, inflammation, cancer 

and diabetes (Feoktistov et al., 1999, 2002, 2004; Kolachala et al., 2008; Chandrasekera 

et al., 2010; Merighi et al., 2015; Allard et al., 2017). A2B receptors play 

proinflammatory roles in human asthma, in chronic obstructive pulmonary disease 

(Yaar et al., 2005; Wang & Huxley, 2006; Yang et al., 2006) and murine colitis 

(Feoktistov et al., 1998; Kolachala et al., 2008; Csόka et al., 2007). In the central 

nervous system (CNS), adenosine A2B receptors, although scarcely, are uniformly 

expressed (Dixon et al., 1996) including in the hippocampus (Perez-Buira et al., 2007), 

but their role or function, especially in ischemic/hypoxic conditions, is still to be 

clarified. The low affinity for adenosine makes them good therapeutic targets, 
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considering that their activation could be triggered mainly during pathologic conditions 

when adenosine levels exceeds µM concentrations.  

A2B receptors are coupled to stimulatory G protein, activating the cAMP signalling 

pathway (Murakami et al., 2000; Sitaraman et al., 2001; Lynge et al., 2003; Fang et al., 

2007; Darashchonak et al., 2014); they have a molecular mass which is around 36 kDa 

(Feoktistov et al., 1999).  The major signalling pathway of the A2B receptor is cAMP, 

but also, by interaction with Gq, other important intracellular pathways, such as PLC 

(Gao et al., 1998; Linden et al., 1999; Panjehpour et al., 2005), and even MAPK and 

arachidonic acid (AA), probably through the action of the βγ dimer (Feoktistov et al., 

1999; Jiménez et al., 1999; Schulte & Fredholm, 2003; Donoso et al., 2005).  

Importantly, because of its low affinity for adenosine, we know that the A2B receptor 

appears inactive during physiologic conditions. Indeed, its activation occurs during 

pathologic conditions influenced by environmental stimuli, such as inflammation, 

hypoxia, traumatic events and cellular damage (Xaus et al., 1999; Fredholm et al., 2001; 

Kolachala et al., 2005; Kong et al., 2006; Hart et al., 2009; Haskó et al., 2009). 

Furthermore, recent studies have evidenced a possible role of the A2B receptor, probably 

through a receptor interaction, not known yet, with A1 receptors (Gonçalves et al, 2015).  

A3 receptors                                                             

The A3 receptor is a protein of approximately 39 kDa. The expression of A3 adenosine 

receptor in the brain is generally lower than that of the other subtypes (Ji et al., 1994) 

and is highly species-dependent (Fredholm et al., 2000). The A3 receptors are the last 

adenosine receptor category belonging to the P1 receptor family. Primarily they are 

expressed in the kidney, heart, lung, cerebral cortex and on immune cells (Livingston et 

al., 2004). These receptors show substantial pharmacological, functional and 

distribution differences among species.  

Also, they have affinity for adenosine (with an EC50 of 300 nM) and, as the A1 

receptors, they are coupled to inhibitory G proteins (Gi), which inhibit adenylyl cyclase 

activation: when stimulated they cause, in certain cellular tissue, the activation of 

phospholipase C and B and the consequent release of intracellular Ca2+ (Sachdeva & 

Gupta, 2013).  

In neuroprotection, the role of the A3 receptors is contradictory, depending on the tissue 

in which they are expressed (Cheong et al., 2013): following cellular damage, 
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neuroprotection is induced by their sub-stimulation whereas cellular toxicity is induced 

by their stimulation (Yao et al., 1997).  

A3 receptors activation leads to the production of ROS and to mitochondrial 

depolarization, two events that are known to cause mitochondria destruction and the 

release of apoptotic proteins, which are soluble within the cytosol (Brady et al., 2004; 

Cao et al., 2011). Particularly, adenosine triggers the intrinsic apoptotic pathway, with 

involvement of the mitochondrion/caspase-9 pathway, whereas the extrinsic apoptotic 

pathway, with caspase-8 activation, is only triggered in case of low concentration of 

adenosine (Gonzàlez-Fernàndez et al., 2014). 

1.6.13 Role of adenosine in cerebral ischemia 

The increase of extracellular adenosine concentration during in vivo ischemia (Dux et 

al., 1990; Hagberg et al., 1987; Matsumoto et al., 1992; Melani et al., 1999; Phillis et 

al., 1994; 1996; Sciotti et al., 1992) is attributable to different reasons. Early after 

ischemia, the increase of adenosine is mainly due to extracellular released ATP (Melani 

et al., 2012) that is hydrolysed by ectonucleotidases (NTPDases 1, 2 and 3 that convert 

ATP o ADP and AMP) and ecto-5’-nucleotidase that converts AMP to adenosine 

(Zimmermann, 2000; Fausther et al., 2012). Thereafter adenosine per se is released 

mainly from cells likely through the action of ENT2 (Melani et al., 2012). Inhibition of 

adenosine-uptake processes due to down-regulation of CNT2 and 3 and of the ENT1 

also contributes to the extracellular adenosine increase after stroke (Medina-Pulido et 

al., 2013).  

Many authors have described the protective role of adenosine during cerebral ischemia. 

Indeed, it is largely known that agents that increase endogeneus adenosine, either 

inhibiting its metabolism (Wu et al., 1992) or preventing its reuptake (Dux et al., 1990), 

give protection against neuronal damage induced by hypoxic-ischemic insults in 

different experimental models both in vivo and in vitro.  

At hippocampal level during a simil ischemic state obtained through oxygen and 

glucose deprivation, adenosine can reach a concentration of 30 µM, significantly higher 

than that recorded in normoxic conditions (50-200 nM) (Rudolphi et al., 1992; 

Dunwiddie and Diao, 1994; Latini & Pedata, 2001).  

The extracellular adenosine concentrations reached after ischemia allow the stimulation 

of all adenosine receptor subtypes (A1, A2A, A2B and A3). Their broad distribution on 

neuronal, glial and inflammatory cells (Fiebich et al., 1996; Brodie et al., 1998; 
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Svenningsson et al., 1999; Hettinger et al., 2001; Yu et al., 2004), suggests that the role 

of adenosine in ischemia is the consequence of interplay among activation of different 

receptors, that changes depending on the time-related development of the pathological 

condition (Pedata et al., 2014). 

During ischemia, adenosine has long been identified as a neuroprotectant endogenous 

agent (Cunha, 2001; Pedata et al., 2007; Fredholm et al., 2003; Ongini et al., 1997; 

Ribeiro et al., 2002; Schwarzschild et al., 2002). It was demonstrated that adenosine 

infusion into the ischemic striatum significantly ameliorates neurological outcome and 

reduces infarct volume after transient focal cerebral ischemia (Kitagawa et al., 2002). 

Protective effects are greatly attributed to A1 receptor activation that reduces Ca2+ 

influx, lowering presynaptic release of excitatory neurotransmitters (Andiné, 1993; 

Corradetti et al., 1984; Dunwiddie &  Diao, 1984; Zetterström & Fillenz, 1990; Pedata 

et al., 1993; Kitagawa et al., 2002; Zetterstrom & Fillenz, 1990), such as glutamate 

which exerts its excitotoxic effect mainly overstimulating NMDA receptors (Choi, 

1990). In addition, by increasing the K+ and Cl- ion conductances (Takigawa & 

Alzheimer, 1999; 2002), adenosine stabilises the neuronal membrane potentials, thus 

reducing neuronal excitability (Choi, 1990). Nevertheless, the use of selective A1 

agonists is hampered by undesirable effects such as sedation, bradycardia, hypotension 

(White et al., 1996; Fredholm et al., 2005).  

This is confirmed by the use of selective agonists of A1 receptors both in vivo and in 

vitro. Their administration decreases both ischemic and excitotoxity neuronal damage. 

Indeed, in vitro it has been determined that either adenosine or A1 receptors agonists can 

reduce the damage caused by an ischemic insult in both hippocampal and cortical cell 

cultures  (Daval & Nicolas, 1994; Logan & Sweeney, 1997), as well as in cerebral slices 

(Dux et al., 1992; Mori et al., 1992; Newman et al., 1998). Local administration of an 

adenosine analogous, 2-chlorine-adenosine, or of a non-selective agonist of A1 receptor, 

(-)-N6-(2-isopropyl-phenyl)-adenosine, attenuates the neuronal loss within the CA1 

region of mouse hippocampus (Domenici et al., 1996). 

Reduction of reactive oxygen species (ROS) production occurs in presence of A1 

receptors agonists, whereas when they are blocked an increase of ROS and cell death 

occurs in neuronal primary cultures (Milton et al., 2007). In in vivo animal models of 

cerebral ischemia, both systemic and intracerebroventricular administration of the A1 

receptors agonists, N6-cicloesyl adenosine (CHA) and N6-R-phenylisopropyl adenosine 

(R-PIA), improves the neurologic deficit and protects the CA1 hippocampal region 
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(Daval et al., 1989). Furthermore, systemic administration of an adenosine derivate 

substituted in N6-phenyl, ADAC, after cerebral ischemia, increases neuronal survival, 

preserves its morphology, maintains spatial memory and the learning ability in gerbils 

(Phillis & Goshgarian, 2001; Ling et al., 1999).  

Through the stimulation of A1 receptors, adenosine inhibits the release of all classic 

neurotransmitters: glutamate, acetylcholine, dopamine, norepinephrine and serotonin 

(Fredholm & Lindgren, 1988). Particularly, strong decrease of glutamate release from 

presynaptic ends has been detected in the hippocampus (Burke & Nadler, 1988; 

Corradetti et al., 1984), where the activation of A1 receptors reduces neurotransmitters 

quanta released from the Schaffer’s collateral commissural pathway (Lupica et al., 

2001).  Instead, the post-synaptic effect depends on direct hyperpolarization of the 

neurons through the K+ channels activation (GIRK channels) on post-synaptic end 

(Takigawa & Alzheimer, 1999; 2002). 

Although many data prove a neuroprotective effect of adenosine during ischemia 

through A1 receptors, the clinical utility of A1 selective agonists is hindered by their side 

effects both at central and peripheral level, such as sedation, bradycardia and 

hypotension (White et al., 1996).  

On the contrary, the adenosine A1 receptors antagonists increase synaptic transmission, 

impeding the synaptic potential recovery and shorten the appearance of the anoxic 

depolarization induced within the CA1 region of the hippocampus.  

Theophylline, a non-specific A1 receptor antagonist, increases cellular damage and 

mortality after ischemia in gerbil (Rudolphi et al., 1987). Similar deleterious effects are 

also observed after the acute administration of selective A1antagonists, DPCPX (8-

ciclo-pentyl-1,3-dipropyl xanthine) and 8-CPT (8-ciclopentyl theophylline) (Boissard et 

al., 1992). 

Opposed effects against A1-mediated synaptic inhibition are induced by the activation 

of A2A receptors, which has been shown to mediate excitatory actions in the nervous 

system (Latini et al., 1996; Pedata et al., 1984; Sebastiao & Ribeiro, 1996; Spignoli et 

al., 1984). In physiological conditions, electrophysiological studies of synaptic 

functions on A2A receptors have shown that they increase synaptic transmission. For 

instance, in hippocampal slices the stimulation of this receptor subtype results in 

acetylcholine release (Cunha et al., 1995; Spignoli et al., 1984). More recently, 

adenosine A2A receptors emerged as an interesting target in ischemia. The application of 
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a selective A2A agonist, CGS-21680, decreases the ability of A1 receptor agonists to 

inhibit excitatory neurotransmission (Cunha et al., 1994; O'Kane & Stone, 1998). 

The main problem of A2A adenosine agonists lies in their cardiovascular effects, as the 

receptors present on smooth muscle cells and endothelial cells give rise to vasodilatory 

effect. 

The less selective antagonists, CGS-15943 and CP-66713, both administered pre-

ischemia, protect against ischemia-induced damage in the hippocampus and neocortex 

of gerbil (Phillis, 1995). Gao and Phillis (1994) were the first to demonstrate the 

reduction of ischemic damage in the gerbil following the administration of CGS-15943, 

a selective antagonist for this receptor subtype. 

Subsequently, many studies confirmed this neuroprotective role in various animal 

models of ischemia: the selective A2A receptor antagonist, SCH-58261, is efficacious in 

reducing brain damage in adult rats (Pugliese et al., 2009). This theory is also supported 

by experiments on genetically modified mice: KO mice for the A2A receptor, subjected 

to cerebral ischemia, showed attenuation of brain damage and neurologic deficits 

(Pedata et al., 2016). The antagonist SCH-58261, acutely administered after 

hypoxia/ischemia to newborn mice, significantly reduces brain damage. SCH-58261, 

administered acutely 5 min after ischemia to adult mice, was found to be protective 

against brain damage up to 24 hours after the insult (Melani et al., 2003). 

An additional mechanism through which A2A receptor antagonism is protective may be 

the ability to increase extracellular GABA concentration during ischemia. The 

enhancement of GABA synaptic transmission induces neuroprotective effects in various 

experimental models of cerebral ischemia (Schwartz-Bloom & Sah, 2001). 

In addition, CGS-21680 administered at the dose of 0.5 mg/Kg in awake mice decreases 

blood pressure and increases heart rate. The dose of 0.01 mg/Kg of CGS-21680 does 

not alter either mean blood pressure or heart rate (Melani et al., 2014). Adenosine acting 

on A2A receptors at endothelial blood vessel levels acts as a vasodilating agent by 

regulating cerebral blood pressure. Consequently, A2A receptor agonists may favour 

post-ischemic brain reperfusion. Many studies indicate that A2A receptors located on 

blood cells are responsible for the protective effects of A2A adenosine agonists 

following ischemia: these are expressed on both innate immune cells (microglia, 

macrophages, monocytes, mast cells, dendritic cells, neutrophils) and adaptive immune 

cells (lymphocytes) (Antonioli et al., 2014). In addition, the selective activation of A2A 

receptors directly in blood cells inhibits pro-inflammatory response, reduces the 
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production of cell adhesion factors and reduces the activation of neutrophils, thus 

exerting anti-inflammatory and antioxidant effects (Sitkovsky et al., 2003). 

Knowledge on A2B receptors is very recent: given the scarcity of selective A2B 

adenosine receptors ligands, there is little evidence on the role of these receptors in 

cerebral ischemia. 

With an increase in the supply of KO mice for A2B receptors, and the availability of 

selective ligands, the research is starting to shed light on their role in neurotransmission, 

both in rat (Dixon et al., 1996; Zhou et al., 2004) and human hippocampus (Perez-Buira 

et al., 2007). 

In vitro studies have highlighted the increase in number and density of A2B receptors on 

cells, which distinctly show astrocytes morphological characteristics, following 

ischemic preconditioning (Pedata et al., 2016). 

Few studies have investigated A2B receptors role in in vivo cerebral ischemia. In a recent 

paper, the selective antagonist MRS 1754 decreased ceramide production in astrocytes 

attenuating the inflammatory responses and neuronal damage after cerebral ischemia 

(Gu et al., 2013). 

Some studies demonstrate that, after ischemia, the A2B receptors present on cerebral 

cells are harmful for neurons, while those located on endothelial and blood immune 

cells hinder vascular adhesion signals and inflammation, induced by hypoxia (Koeppen 

et al., 2011). Indeed, pharmacological studies reveal that A2B receptors, on neutrophils, 

contribute to decrease of their capability to adhere at endothelial cells and then 

transmigrate within the tissues parenchyma.  

A further role of A2B receptors in hypoxia/ischemia could be the developing of 

angiogenic response, since the activation of this receptors by adenosine allows 

endothelial cells proliferation, chemotaxis and the assembly of new blood vessels 

(Adair, 2005). 

The role of A3 receptors in ischemia is still poorly understood. Data in the literature are 

frequently conflicting, showing they sometimes carry out opposite actions in this 

pathology.  

Intracerebroventicular pretreatment with the selective agonist CI-IB-MECA decreases 

the magnitude of infarctual area induced by an ischemic insult in wild-type but not in 

KO mice for A3 receptors, revealing that protection induced by CI-IB-MECA is 

mediated by the activation of such receptors.   
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These data suggest that A3 agonists can protect against neuronal damage induced by 

hypoxia/ischemia (Chen et al., 2013). More recent published data indicate an inhibitory 

role of A3 receptors on synaptic transmission during short periods of OGD and suggest 

that, in those conditions, A3 receptors, in synergy with A1 receptors, have a role in 

decreasing synaptic transmission, confirming the neuroprotective effect mediated by A1 

receptors (Pedata et al., 2016). 

Contrary to information just provided, it has been demonstrated that administration of 

A3 selective antagonists such as MRS 1523 or LJ-1252 causes either increase or delay 

of anoxic depolarization appearance and prevention on synaptic damage caused by 

ischemia in rat hippocampal CA1 region due to (Pugliese et al., 2007; 2009). 

Thus, A3 activation results either protective or harmful following hypoxic/ischemic 

conditions. This appears to depend on various causes: OGD length which, if prolonged 

switches the protective A3 receptors action in harmful (Pugliese et al., 2007); the sub or 

prolonged stimulation of A3 receptors; the type and duration of administration of 

selective or non-selective drugs; the timing of administration with regard to the 

ischemic event. The contrasting information on A3 receptors could be caused also by 

different experimental conditions utilized in different studies. 

The effects of A3 receptors can be mediated not only by neuronal receptors, but also by 

those located on glial cells. Some studies prove that A3 receptors on astrocytes mediate 

neuroprotection, depending on the pharmacological concentration to which they are 

exposed (Di Iorio et al., 2002).  

The results of all these studies raise the issue of A3 receptors agonists/antagonists utility 

in the therapy of ischemia, especially concerning the administration timing. It can be 

supposed that, after ischemia, a prolonged treatment with A3 agonists protects firstly 

through decrease of excitotoxicity mediated by glutamate and hereafter through the A3 

receptors desensitization, avoiding the prolonged harmful activation of A3 receptors 

(Pedata et al., 2016). 

1.6.14 Adenosine A2B receptors in brain ischemia 

Adenosine A2B receptor is expressed at low levels uniformly throughout the CNS 

(Puffinbarger et al., 1995; Dixon et al., 1996; Fredholm et al., 2000) and has low 

affinity for adenosine. Their mRNA and protein expression levels increase on 

endothelial cells, neurons, and astrocytes to a greater extent than do those of the other 

three adenosine receptors (A1, A2A, and A3) 24 hours after tMCAo in the rat (Li et al., 



Introduction___________________________________________________________________________ 

68 
 

2017). Thus, during conditions of hypoxia or ischemia when the extracellular adenosine 

levels rise, A2B receptors might be extensively activated. Because of paucity of A2B 

selective agonists and antagonists (Müller & Jacobson, 2011) few studies are published 

so far on the role of A2B receptors in brain ischemia. 

Few studies have investigated the role of A2B receptors in brain ischemia in vivo. It was 

reported that the selective A2B receptor antagonist, MRS 1754, reduced the ceramide 

production in astrocytes and attenuated inflammatory responses and neuronal damage 

after global cerebral ischemia induced by four-vessel occlusion in the rat (Gu et al., 

2013). This effect was related to an early reduction of p38 MAPK activation. A2B 

receptor plays a key role in the rapid activation of p38 MAPK and in the subsequent 

inflammatory process (Koscsó et al., 2012; Wei et al., 2013). Altogether, these 

experiments indicate that antagonism of A2B receptors located on brain cells may be 

protective from the ischemic brain damage. 

Besides brain cells, A2B receptors are present on blood immune cells i.e. neutrophils, 

lymphocytes (Gessi et al., 2005; Eckle et al., 2008) where, in most cases, they are co-

expressed with A2A receptors. They are also expressed at low levels on platelets, where 

they are upregulated following injury and systemic inflammation in vivo, inducing an 

inhibition of platelet aggregation (Yang et al., 2010). Moreover, A2B receptors are 

expressed on the surface of endothelial cells (Feoktistov et al., 2004) where they are up 

regulated by the hypoxia inducible factor (HIF-1α) (Eltzschig et al., 2004). In 

accordance, vascular permeability is increased significantly in organs of A2B receptor 

KO mice subjected to ambient hypoxia. By contrast, hypoxia-induced vascular leak is 

not accentuated in A1, A2A or A3 receptor KO mice, suggesting a specific role of A2B 

receptor in endothelial cells (Eckle et al., 2007). Moreover, A2B receptor KO mice 

exposed to hypoxia exhibit increased neutrophil infiltration into hypoxic tissues, 

revealing an inhibitory role for A2B receptors in neutrophil transmigration in vivo (Eckle 

et al., 2007; 2008). Attenuation of hypoxia-associated increases in tissue neutrophil 

numbers appeared to depend largely on hematopoietic cell A2B receptor signaling (Yang 

et al., 2006; Eckle et al., 2007). In agreement, A2B receptor KO mice showed increased 

basal levels of TNFα and expression of adhesion molecules such as ICAM-1, P-selectin 

and E-selectin in lymphoid cells, resulting in increased leucocyte rolling and adhesion 

(Yang et al., 2006). Pharmacological studies indicate that A2B receptors on neutrophils 

contribute to their decreased adhesion to endothelial cells and transmigration in tissue 

parenchyma (Eckle et al., 2007; Eltzschig et al., 2004). 
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Recent introduction of new pharmacological tools (Hinz et al., 2014) led to understand a 

role of A2B receptors in ischemia. Intravenous treatment with the selective A2B receptor 

agonist BAY 60-6583 (1 mg/kg), at the start of reperfusion after brain ischemia induced 

by transient Middle carotid Artery occlusion (tMCAo), reduced lesion volume, 

attenuated brain swelling and Blood Brain Barrier (BBB) disruption. In the presence of 

the thrombolythic drug tPA (administered after the ischemic stroke), BAY 60-6583 also 

mitigated sensorimotor deficits and reduced tPA-induced hemorrhages at 24 hours after 

ischemia (Li et al., 2017). The neurovascular protection afforded by BAY 60-6583 

appears to derive from stimulation of the tissue inhibitor of matrix metalloproteinase-1 

(TIMP-1) production, inhibition of tPA-induced matrix metalloprotease (MMP) 

activation, and prevention of tight junction protein degradation. In fact, overactivation 

of MMP leads to increased cerebrovascular permeability after ischemia-reperfusion 

injury (Mishiro et al., 2012). Thus, this study proposes that A2B receptor agonists might 

be adjuvant to tPA and could be a promising strategy for decreasing the risk of 

hemorrhages during treatment for ischemic stroke (Li et al., 2017).  

Altogether, these studies point toward a role of central A2B receptors, in synergy with 

A2A receptors, in promoting brain excitotoxicity, while A2B receptors located on 

vascular endothelial cells would play a pivotal role in attenuating hypoxia-induced 

increases in vascular leak. Blood immune cells would be implicated in dampening 

vascular adhesion signals and hypoxia-induced inflammation (Koeppen et al., 2011). 

To date there are no evidences in literature on the protective effects of A2B receptor 

agonists at more distant times from ischemia when defined neuroinflammation 

develops. In our studies, object of the present thesis, we explored the protective effect of 

A2B receptor agonist, BAY 60-6583, in a rat model of transient (1h) ischemia induced 

by MCAo, with a chronic treatment for 7 days, when a clear inflammatory response 

developed. Recent introduction of new pharmacological and genetic tools led to 

understand a role of A2B receptors in the regulation of inflammation, immunity and 

tissue repair (Crespo et al., 2013; Feoktistov & Biaggioni, 2011; Hinz et al., 2014; 

Ortore & Martinelli, 2010). Besides brain cells, A2B receptors are present on endothelial 

and blood immune cells and in most cases are coexpressed with A2A receptors. A2B 

receptor transcripts are found in neutrophils (Fredholm et al., 1996), lymphocytes 

(Gessi et al., 2005) and platelets (Amisten et al., 2008). Moreover, A2B receptor are 

expressed on the surface of endothelial cells (Feoktistov et al., 2002) and regulate every 

aspect of endothelial inflammatory processes. 
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A further possible role of A2B receptors in hypoxia|ischemia might be secondary to 

promotion of an angiogenic response because activation of A2B receptors by adenosine 

increases endothelial cell proliferation, chemotaxis and capillary tube formation (Grant 

et al., 2001; Adair, 2005). Exposure of human umbilical vein endothelial cells to 

hypoxia increases expression of A2B receptor which upon stimulation promotes the 

release of vascular endothelial growth factor (VEGF) (Feoktistov et al., 2004). 
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The aim of my research was to study the alterations of the interactions among neurons, 

astrocytes and microglia in different models of neurodegeneration and 

neuroinflammation in the hippocampus, a crucial cerebral region involved in short-term 

and long-term memory formation. In particular, I evaluated the morphological and 

functional changes induced by aging, neuroinflammation, Alzheimer’s disease, and 

cerebral ischemia and characterized the molecular and cellular modifications of the 

interplay between neuron and glial cells, fundamental for the correct organization of the 

central nervous system. 

My research project can be subdivided into different parts. 

In the first part, I studied normal brain aging and LPS-induced neuroinflammation in the 

dentate gyrus, an important subregion of the hippocampus that represents the first link 

of the canonical trisynaptic pathway that conveys electrophysiological inputs from the 

enthorinal cortex to the hippocampus proper. The aim of this part of my research was to 

unravel whether similar or different pathophysiological mechanisms are at the basis of 

neurodegeneration caused by normal brain aging and acute inflammation. To this aim I 

investigated the qualitative, quantitative and functional alteration of neurons, astrocytes 

and microglia and the modification in their intermutual interaction in aged rats and adult 

rats with an acute cerebral inflammation induced by infusion of lipopolysaccharide 

(LPS) into the 4th ventricle.  

Franceschi and coworkers in 2007 had introduced the term "inflammaging" which 

describes the progressive changes that occur in the aging brain, characterized by a low-

grade chronic up-regulation of certain pro-inflammatory responses. Slowly evolving 

and regions specific series of changes induced by aging may differ from those caused 

by infusion of LPS and represent a complex interplay of glial and neuronal interactions. 

Thus, I studied not only the qualitative and quantitative alteration in neurons and glia 

but also the modifications of neuroinflammatory markers in the hippocampus of aged 

and LPS treated rats, a more aggressive form of brain inflammation.  

In the second part of my thesis I focused my research on an animal model of 

Alzheimer’s disease (AD). AD is a chronic neurodegenerative disease; the main clinical 

features of AD are cognitive and behavioural deficits. The most common early 

symptom is short-term memory loss, the difficulty to remember recent events, followed 

by problems of language, disorientation, mood swings, loss of motivation, not managing 

self-care, depression, hallucinations and aggression. At present, no therapy for AD is 
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available, except for cholinesterase inhibitors and memantine that act only on symptoms 

but not the etiopathology. Therefore, it is increasingly important to understand the 

pathogenetic mechanisms of AD to design drugs able to ensure a proper treatment.  

In this part of my work, I investigated the new integrated view of neurodegenerative 

diseases as derangements of the interplay between neurons and glia. I analyzed 

quantitatively and qualitatively Aβ-plaques, neurons, astrocytes, total microglia and 

activated microglia, with particular insight on the interplay between neurons, astrocytes 

and microglia in the formation of triads. The modifications and alterations of neurons 

and glial cells within the Stratum Pyramidale (SP) and Stratum Radiatum (SR) of CA1 

and CA3 of the hippocampus in TgCRND8 mice, an animal model of Aβ-deposition 

was also aimed at elucidating whether different pathophysiologic mechanisms 

neurodegeneration may exist in the different hippocampal structures of TgCRND8 

mice. This research will help to understand the pathophysiological mechanisms of the 

disease and, possibly, to design and develop new drugs acting not only on neurons but 

also on glial cells to slow or counteract the progression of AD. 

In the third part of the study, I focused on neurodegeneration induced by cerebral 

ischemia, exploiting an in vivo model of brain chronic hypoperfusion and an in vitro 

simil ischemic condition.  

Cerebral hypoxia caused by chronic hypoperfusion is a condition in which there is 

insufficient blood flow to the brain to meet metabolic demands, leading to poor oxygen 

supply and thus to degeneration of brain tissue.  

Brain chronic hypoperfusion was induced in the rat using the common carotid arteries 

occlusion method and immunohistochemical staining and analysis of neurons, 

astrocytes and microglia was performed on hippocampal slices from animal sacrified 3 

months after bCCAo. In particular, I investigated the morphological and functional 

alterations of the neuron-astrocyte-microglia triad as a possible pathophysiological 

mechanism responsible for the neurodegeneration and inflammation that characterize 

these animal models of brain chronic hypoperfusion and the protective role of 

dipyridamole as an anti-inflammatory drug.  

Finally, in the last part of my thesis I investigated the mechanisms of cerebral ischemia 

using the in vitro model of acute hippocampal slices under oxygen glucose deprivation 

(OGD). Ischemic damage results from a cascade of cellular and molecular events 

triggered by the lack of blood flow and subsequent reperfusion of the ischemic territory. 
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Neurons are more vulnerable than glia and vascular cells and, when exposed to 

hypoxia-ischemia, quickly become dysfunctional and die.  

During ischemia, the extracellular concentration of adenosine significantly increases, as 

shown in both in vivo and in vitro cerebral ischemia models. In such conditions, 

adenosine reaches µmolar concentrations, which are sufficient to activate all its receptor 

subtypes: A1, A2A, A2B e A3. The neuroprotective role carried out by the activation of 

A1 receptors during ischemia is already well-know, whereas so far, the roles of the 

others receptor subtypes remain rather controversial.  

Among the various adenosine receptor subtypes, the A2B receptors is the most enigmatic 

due both to the limited number of selective ligands and to its low affinity for 

endogenous adenosine. Some studies have proved that during pathologic conditions 

such receptors are activated in brain and in glial cells. In the literature, there are no data 

concerning their involvement during cerebral ischemia. 

I studied the role of A2B receptors in hippocampal CA1 during ischemic-like condition 

obtained through OGD, an experimental condition that, although with some limits due 

to in vitro methodology, mimics the most frequent causes of cerebral ischemia such as 

vessel occlusion. For this aim, two selective antagonists for this receptor subtype were 

used in slices subjected to OGD and collected at various time after the end of OGD.  

Extracellular registration of field Excitatory Post-Synaptic Potential (fEPSP), evoked by 

the electric stimulation of the CA1 region of rat hippocampus were combined with 

immunohistochemical analyses to evaluate the OGD-induced neuronal damage and glia 

alterations. In order to verify and quantify the time-course of the damage caused by 

OGD on neurons, astrocytes and microglial cells, double and triple labelling technique 

was performed, evaluating the results from both a qualitative and a quantitative point of 

view. Neurons, astrocytes, microglial cells and the possible reciprocal interactions 

among them were analysed in the CA1 region of the hippocampus on control slices and 

slices exposed to OGD in the absence and presence of A2B receptor antagonists to 

evaluate their potential neuroprotective during the ischemic insult. Furthermore, using 

the immunohistochemical marker for CytochromeC, a typical marker of apoptosis late 

phases, I evaluated whether an increase of apoptosis occurred after OGD. Finally, we 

tested whether the activation of a cytoplasmic metabolic regulatory protein such as 

mTOR might be affected by OGD. Due to its involvement in the metabolism of cells 

and especially for its changes in expression patterns during ischemic conditions, mTOR 

merits a deep analysis.  
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MODELS OF BRAIN AGING, NEUROINFLAMMATION 
AND ALZHEIMER’S DISEASE 

Part I – Brain Aging and Inflammation 

3.1 Animals  
Male adult Wistar rats were used (3 and 22 months old Harlan, Milano, Italy). Rats 

were housed in cages with food and water ad libitum, in a temperature-controlled room 

(23±1°C, 12 h light–12 h dark cycle). Experiments were authorized by the IACUC of 

the University of Florence and by the Italian Ministry of Health (Italian Law on Animal 

Welfare, DL 116/92). According to the law, we did all efforts to fulfill the 3Rs 

requirements. The total number of rats used was: Adult rats, n=6; Aged rats, n=6; LPS-

treated rats: n=7. 

3.2 LPS treatment 
Experiments on LPS-treated rats were performed in the Department of Psychology, The 

Ohio State University, Columbus, OH 43210, USA, (Hauss-Wegrzyniak et al., 1998; 

Cerbai et al., 2012; Lana et al., 2016) in accordance with the National Institute of Health 

Guide for the Care and Use of Laboratory Animals (NIH Publications No. 80-23) 

revised 1996; formal approval to conduct the experiments was obtained from the 

Institutional Animal Care and Use Committee (approval number 2008A0028). Male rats 

(3 months) aged were used. Briefly, LPS or artificial cerebrospinal fluid (aCSF, in mM: 

140 NaCl; 3.0 KCl; 2.5 CaCl2; 1.0 MgCl2; 1.2 Na2HPO4, pH 7.4) was administered for 

4 weeks to adult rats using an Alzet osmotic minipump containing 1.6 µg/ml LPS 

(Sigma; E. coli, serotype 055:B5, TCA extraction). The minipump was attached to a 

chronic indwelling cannula (Model 3280P, osmotic pump connect, 28 gauge, Plastics 

One, Inc., Roanoke, VA) that was positioned stereotaxically into the 4th ventricle 

(coordinates on the midline: -2.5 mm posterior to Lambda, 7 mm ventral to the dura). 

The animal was deeply anesthetized with isofurane for the duration of surgery. Post-

operative care included a local antibiotic applied to the exposed skull and scalp (1% 

chloramphenicol), a long-acting topical anesthetic applied locally to the scalp 

(Bupivacaine), and 4 ml of sterile isotonic saline injected s.c. to prevent dehydration. 

During recovery, body weight and general behavior were monitored and at the end of 

the 4 weeks of LPS administration, rats were anestethized and perfused with 

paraformaldehyde (see below) to collect the brain for immunohistochemical analyses. 
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3.3 Fluorescent immunohistochemistry 

Rats, deeply anesthetized with Zoletil, were perfused transcardially with ice-caged 

paraformaldehyde (500 ml of 4% solution in phosphate-buffered saline, PBS, pH 7.4). 

The brains were collected, postfixed for 4 h in 4% paraformaldehyde and then 

cryoprotected for 48-72 h in 18% sucrose/PBS solution. Coronal sections (40 µm) were 

cut with a cryostat, placed in 1 ml of anti-freeze solution and stored at -20 °C until use 

(Cerbai et al. 2012, Lana et al., 2016). Immunostaining was performed on coronal 

sections with the free-floating method (Giovannini, 2002; Lana et al., 2016).  

The primary and secondary antibodies used for the immunohistochemical and Western 

Blot analyses are shown in Table 3. 

Table 3: Antibodies used for immunohistochemistry and Western Blot. 

Target Antigen Supplier Catalog # Antibody Host Usage Conc 
IMMNOHISTOCHEMISTRY           
Neurons NeuN Millipore MAB377 Monoclonal Ms Primary 1:200 
Neurons NeuN Millipore MAB377X Monoclonal 

conj  
Ms Primary 1:200 

Neurons MAP2 Chemicon AB5622 Polyclonal Rb Primary 1:300 
Astrocytes GFAP Dako Z0334 Policlonal Rb Primary 1:500 
Astrocytes 
(triple 
labelling 
IHC) 

GFAP Millipore MAB3402X Monoclonal Ms Primary 1:500 

Astrocytes S100 
beta 

Abcam 14849 Monoclonal Ms Primary 1:300 

Total 
microglia 

IBA1 Wako 016-20001 Policlonal Rb Primary 1:300 

Activated 
microglia 

OX6 BD 554926 Monoclonal Ms Primary 1:200 

Cytocrome 
C 

CytC BD 556432 Monoclonal Ms Primary 1:200 

CX3CL1 CX3CL1 Abcam AB-25088 Polyclonal Rb Primary 1:400 
Rabbit FC Rabbit 

FC 
Life 
Technologies 

A21206 Polyclonal Dn Secondary 
Alexa 
Fluor 488 

1:400 

Mouse FC 
(triple 
labelling 
IHC) 

Mouse 
FC 

Life 
Technologies 

A31570 Polyclonal Dn Secondary 
Alexa 
Fluor 555 

1:400 

Rabbit FC Rabbit 
FC 

Life 
Technologies 

A31577 Polyclonal Gt Secondary 
Alexa 
Fluor 635 

1:400 

WESTERN BLOT      
CX3CL1  CX3CL1 Abcam AB25088 Polyclonal Rb Primary 1:300 

Actin Actin Sigma A-2066 Polyclonal Rb Primary 1:10000 
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Day 1: primary antibodies 

Selected brain sections containing the dorsal hippocampi were placed in multiwells with 

1 ml of  PBS-TX. Sections were rinsed 3 times for 5 min with 500 µl PBS-TX under 

slight agitation at room temperature (RT), blocked with 500 µl BB (10% Normal Goat 

Serum, 10% Normal Horse Serum, 0.05% NaN3 in PBS-TX) for 1 h under agitation at 

RT, and washed 3 times as above. For single immunostaining, sections were incubated 

overnight (O/N) at 4°C under slight agitation with the primary antibody, dissolved in 

250 µl of BB at the appropriate dilution (see Table 1). For double or triple 

immunostaining, sections were incubated O/N with a solution containing two or three 

primary antibodies, respectively, diluted in 250 µl of BB at the appropriate 

concentrations.  

Day 2: secondary antibodies  

Sections were washed 3 times as above and incubated for 2 h in the dark at RT under 

slight agitation with the appropriate secondary antibody diluted in 250 µl of BB. For 

double immunostaining, sections were incubated for 2 h in the dark at RT under slight 

agitation with a solution containing the appropriate fluorescent secondary antibodies 

diluted in 250 µl of BB. Sections were then washed as above. For triple immunostaining 

the sections were incubated for 2 h in the dark at RT under agitation with a fluorophore-

conjugated primary antibody, diluted in 250 µl of  BB (Table 1). Sections were 

thoroughly washed with PBS-TX and then with 1 ml of distilled H2O in the dark, 

mounted on gelatinized microscopy slides, left to dry and covered in the dark with 

coverslips with a mounting medium (Vectashield, Hard set mounting medium with 

DAPI, Vector Laboratories, Burlingame, CA, USA) containing DAPI to counterstain 

nuclei. Slides were kept in the fridge until microscopy analysis.  

Qualitative and quantitative analyses  

Confocal scans were taken at 0.3 μm z-step, keeping constant all the parameters 

(pinhole, contrast and brightness), using a LEICA TCS SP8 confocal laser scanning 

microscope (Leica Microsystems CMS GmbH, Mannheim, Germany). Voxel size was 

6.75x10-3 µm3. Images were converted to green, red or blue using Image J (National 

Institute of Health). Qualitative analyses were performed on 3D renderings obtained 

using Image J 3D viewer from the stacks of confocal scans. All quantitative analyses, 

measures and image analysis were performed blind by two researchers with the ImageJ 
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program (freeware provided by National Institute of Health, http://rsb.info.nih.gov/ij) 

and the results were averaged. 

For quantitative analysis images were acquired at 20x magnification with an Olympus  

BX63 microscope equipped with an Olympus DP 50 digital camera (Olympus, Milan, 

Italy). Analyses were carried out blind in the Dentate Gyrus of the hippocampus DG 

(see Figure 22 Region of Interest, ROI) (Lorente de No, 1934; Li et al., 1994) using 

Image J. Quantitative analyses were carried out separately in the following subregions 

Granular Layer (GL) and Polymorphic Layer (PL). Three coronal sections (spaced by 

150 µm, starting at about -2.8 mm from bregma) containing the DG were analyzed. 

 

Figure 22. Representative image of the region of interest (ROI) for the analyses of DG. 
Fluorescent immunostaining of neurons with anti-NeuN antibody showing the DG subregions: 
Granular Layer (GL) and Polymorphic Layer (PL). Scale bar: 100 μm. 

Quantitative analyses of NeuN+ neurons, GFAP+ astrocytes, IBA1+ total microglia, 

OX6+ activated microglia, CytC+ apoptotic neurons, neuron-astrocyte-microglia triads, 

were performed separately in GL and PL of the DG. Digitized images, acquired keeping 

all the parameters (contrast and brightness) constant using a 10x objective, were 

transformed into TIFF files and threshageded using ImageJ. Care was taken to maintain 

the same threshaged in all sections from the same experiment. The area above the set 

threshaged was calculated in pixels. Areas of GL and PL were calculated in mm2 and 

the counts of immunopositive cells, or triads were expressed as number/mm2. 

Quantitation of DG granular neurons was obtained counting the number of NeuN or 

MAP2 positive cells in GL. The length of principal astrocyte branches was measured 
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choosing randomly 4 principal branches (Figure 23) of three GFAP+ astrocytes per ROI 

and results were averaged. A “triad” was defined as a neuron in direct contact with 

astrocyte branches of surrounding astrocyte(s) and with a microglia cell (Cerbai et al., 

2012; Lana et al., 2016). The reciprocal interplay of the neurons, astrocytes and 

microglia in the triads was highlighted digitally sub-slicing the triad as previously 

reported (Cerbai et al., 2012). 

 

Figure 23. Schematic diagram showing the method used to measure the length of principal 
GFAP+ astrocytes branches. Scale bar: 10 μm. 

A 3D rendering of the sub-slice was obtained using ImageJ 3D viewer. Control 
immunostaining was performed omitting the primary or secondary antibodies to verify 
the specificity of the immunostaining.  

3.4 Western Blot 
Western blot analysis of CX3CL1 was performed as previously described (Cerbai et al., 

2012). Hippocampal slices (400 µm-thick), cut using a tissue chopper, were placed in an 

Eppendorff tube with 100 µl of ice-caged lysis buffer, and were homogenized on ice 

using a homogenizer directly in the Eppendorf tube (15 strokes, 1 stroke per second, on 

ice). Composition of the lysis buffer (in mM, unless otherwise indicated): 50 Tris-HCl, 

pH 7.5, 50 NaCl, 10 EGTA, 5 EDTA, 2 sodium pyrophosphate, 4 para-

nitrophenylphosphate, 1 sodium orthovanadate, 1 phenylmethylsulfonyl fluoride 

(PMSF), 25 sodium fluoride, 2 DTT, 1 μM okadaic acid, 1 μM microcystin L-R, 20 

μg/ml leupeptin, and 4 μg/ml aprotinin. After homogenization an additional 2.5 μl of 

PMSF was added to each tube, and protein determination was performed using Bio-Rad 

Protein Assay reagent (Bio-Rad, Hercules, CA). An appropriate volume of 6X Loading 

Buffer was added to the homogenates, samples were boiled for 5 min, immediately put 

on ice, loaded on a 10% SDS-PAGE gel (30 μg of proteins/well) and run using standard 

electrophoresis. The gels were transferred electrophoretically by the iBlot dry blotting 

system (Invitrogen) onto 0.2 mm nitrocellulose membrane, and incubated overnight at 
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4°C under slight agitation with the primary antibody against CX3CL1 (Table 1) 

dissolved in blocking solution. The day after, the blots were incubated for 1 hour with 

HRP-conjugated secondary antibody (1:4000 in blocking solution, Thermo Scientific, 

Waltham, MA, USA), were visualized with enhanced chemiluminescence (Immobilon 

Western, Millipore, Billerica, MA, USA), and resolved with ImageQuant 350 system 

(GE Healthcare, Buckinghamshire, UK). Densitometric band analysis was performed 

using the Image Quant TL software version 7.0 (GE Healthcare). For quantitative 

analysis, band density was normalized against βactin, run in the same gel. 

Statistical analysis 

Statistical analyses were performed using Graph Pad Prism (Graph Pad Software Inc., 

La Jolla, CA, USA).  Unless otherwise stated, all statistical analyses were performed 

using ANOVA, followed by Newman-Keuls Multiple Comparison Test. Significativity 

was set at P<0.05. 

3.5 Statistical analysis  

Statistical comparisons were performed using Graph Pad Prism (Graph Pad Software 

Inc., La Jolla, CA, USA) by one way ANOVA followed by Newman-Keuls multiple 

comparison test (if more than two groups were compared) significance was set at 

P<0.05. 

Part II - Brain Aging and Inflammation 

3.6  Animals  
Male Wistar rats (3 and 22 months old, Harlan, Milano, Italy) were used. Rats were 

housed in cages with food and water ad libitum, in a temperature-controlled room 

(23±1°C, 12 h light–12 h dark cycle). Experiments were authorized by the IACUC of 

the University of Florence and by the Italian Ministry of Health (Italian Law on Animal 

Welfare, DL 116/92). According to the law, we did all efforts to fulfill the 3Rs 

requirements. The total number of rats used was: Adult rats, n=6; Aged rats, n=6; LPS-

treated rats: n=7. 

3.7  LPS treatment 
Experiments on LPS-treated rats were performed in the Department of Psychology, The 

Ohio State University, Columbus, OH 43210, USA, (38, 47, 48) in accordance with the 

National Institute of Health Guide for the Care and Use of Laboratory Animals (NIH 
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Publications No. 80-23) revised 1996; formal approval to conduct the experiments was 

obtained from the Institutional Animal Care and Use Committee (approval number 

2008A0028). Male rats (3 months aged) were used. Briefly, LPS or artificial 

cerebrospinal fluid (aCSF, in mM: 140 NaCl; 3.0 KCl; 2.5 CaCl2; 1.0 MgCl2; 1.2 

Na2HPO4, pH 7.4) was administered for 4 weeks to adult rats using an Alzet osmotic 

minipump containing 1.6 µg/ml LPS (Sigma; E. coli, serotype 055:B5, TCA extraction). 

The minipump was attached to a chronic indwelling cannula (Model 3280P, osmotic 

pump connect, 28 gauge, Plastics One, Inc., Roanoke, VA) that was positioned 

stereotaxically into the 4th ventricle (coordinates on the midline: -2.5 mm posterior to 

Lambda, 7 mm ventral to the dura). The animal was deeply anesthetized with isoflurane 

for the duration of surgery. Post-operative care included a local antibiotic applied to the 

exposed skull and scalp (1% chloramphenicol), a long-acting topical anesthetic applied 

locally to the scalp (Bupivacaine), and 4 ml of sterile isotonic saline injected s.c. to 

prevent dehydration. During recovery, body weight and general behavior were 

monitored till the end of the 4 weeks of LPS administration. 

Rats of the three animal groups were deeply anesthetized with Zoletil and were perfused 

transcardially with 200 ml of ice-caged paraformaldehyde solution (4% 

paraformaldehyde in phosphate-buffered saline, PBS, pH 7.4); subsequently brains were 

collected for immunohistochemical analyses. After overnight post fixation and 

cryoprotection (18% sucrose/PBS), 40 μm-thick coronal sections were cut with a 

cryostat and stored at −20 °C in anti-freeze solution. 

3.8  Fluorescent immunohistochemistry 
Immunostaining was performed with the free-floating method (Giovannini, 2002; Lana 

et al., 2014), for details see Part I. The antibodies used are listed in Table 4. 

3.9 Confocal imaging 

3D confocal stacks (246x246 or 153x153 pixels, pixel size = 153 nm, z-step = 250 nm) 

were acquired with a 63x (NA 1.40) oil immersion objective on a LEICA TCS SP5 

confocal laser scanning microscope (Leica Microsystems CMS GmbH, Mannheim, 

Germany). Background subtract, and brightness/contrast filtering were applied equally 

to all parts of each figure by using Fiji software (https://fiji.sc). Three dimensional 

renderings of fluorescence volumes were obtained by using OsiriX software 

(www.osirix-viewer.com/). Immunofluorescence signals in each image were visualized 
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by case specifically assigned color look-up tables (LUTs) in order to emphasize 

different structures and interactions. 

Integrin-β1 is known to be expressed by both microglia and astrocytes (Chen et al., 

2017; Barcia et al., 2012). Immunofluorescence of microglial integrin-β1 was isolated 

by subtracting inverted binary masks of microglia from the integrin-β1 confocal stack. 

Table 4: Antibodies used for immunohistochemistry. 

Target Antigen Supplier Catalog # Antibody Host Usage Conc 
IMMNOHISTOCHEMISTRY           
Neurons NeuN Millipore MAB377 Monoclonal Ms Primary 1:200 
Astrocytes GFAP Dako Z0334 Policlonal Rb Primary 1:500 
Astrocytes  
(triple 
labelling 
IHC) 

GFAP Millipore MAB3402
X 

Monoclonal Ms Primary 1:500 

Total 
microglia 

IBA1 Wako 016-20001 Policlonal Rb Primary 1:300 

β1-integrin β1-
integrin 

Millipore Mab2079z Monoclonal Ms Primary 1:100 

Rabbit FC Rabbit 
FC 

Life 
Technologies 

A21206 Polyclonal Dn Secondary 
Alexa Fluor 
488 

1:400 

Mouse FC 
(triple 
labelling 
IHC) 

Mouse 
FC 

Life 
Technologies 

A31570 Polyclonal Dn Secondary 
Alexa Fluor 
555 

1:400 

Rabbit FC Rabbit 
FC 

Life 
Technologies 

A31577 Polyclonal Gt Secondary 
Alexa Fluor 
635 

1:400 

3.10 Quantitative Analyses 
Quantitative analyses on immunofluorescence density, and all 3D-particle analyses 

were performed by using Fiji software. All immunofluorescence analyses were 

performed in  the CA1 region of six coronal hippocampus sections per animal. Ten 

randomly selected Optical Volumes (153x153x40µm) containing 5-7 microglia cells 

were analyzed in each section.  The parameter “n” reported in all statistical analyses 

indicates the number of animals analyzed in each animal group. All values are reported 

as average ± SE. 

3.11 Statistical analysis  
Statistical comparisons were performed using Graph Pad Prism (Graph Pad Software 

Inc., La Jolla, CA, USA) by one way ANOVA followed by Newman-Keuls multiple 

comparison test (if more than two groups were compared) significance was set at 

P<0.05. 
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Part III – Alzheimer’s disease 

3.12  TgCRND8 mice  
The TgCRND8 (Tg) mice express two mutated human APP genes implicated in AD 

(Swedish, KM670/672NL and Indiana, V717F) under the regulation of Syrian hamster 

prion promoter gene (Chishti et al., 2001). The mice were maintained on a hybrid 

(C57)/(C57/CH3) background by crossing transgenic heterozygous TgCRND8 males 

with wild-type (WT) female mice. 

The main feature of this model is the very rapid development of amyloid deposition in 

the brain. Mice display amyloid plaques in the cortex and hippocampus already at three 

months of age (Chishti et al., 2001) since the two mutations involve both the β and γ 

secretase APP cleavage sites. These neuropathologic manifestations are accompanied 

by impaired acquisition and learning deficits (Chishti et al., 2001; Bellucci et al., 2006). 

The transgenic mice were generated and supplied by Dr. P. St George Hyslop (Center 

for Research in Neurodegenerative Diseases, Toronto, Canada), and the colony was 

bred in our animal house facility (Ce.S.A.L., Centro Stabulazione Animali da 

Laboratorio), University of Florence. All animal experiments were performed according 

to the Italian Law on Animal Welfare (DL 26/2014), approved by the Institutional 

Animal Care and Use Committee of the University of Florence and by the Italian 

Ministry of Health. All efforts were made to minimize animal sufferings and to use only 

the number of animals necessary to produce reliable scientific data. Two groups of 

transgenic mice were used: 3 months (n=6, equally divided for sex) and 6 months aged 

(n=6, equally divided for sex). WT mice of 3 and 6 months of age (n = 6, equally 

divided for sex and age were used); since no significant differences were ever observed 

in any of the parameters investigated, the data from the two groups were averaged and 

used as controls. 

At the appropriate ages (3 and 6 months), mice were deeply anesthetized with Zoletil 

(80 mg/kg i.p.) and were perfused transcardially with 200 ml of ice-caged 

paraformaldehyde solution (4% paraformaldehyde in phosphate-buffered saline, PBS, 

pH 7.4). After overnight post fixation and cryoprotection (18% sucrose/PBS), 40 μm-

thick coronal sections were cut with a cryostat and stored at −20 °C in anti-freeze 

solution until immunohistochemistry. 
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3.13  Fluorescent immunohistochemistry 
Immunostaining was performed with the free-floating method (Giovannini, 2002; Lana 

et al., 2014), for details see Part I. The following antibodies were used: 

Table 5: Antibodies used for immunohistochemistry. 

Target Antigen Supplier Catalog # Antibody Host Usage Conc 
IMMNOHISTOCHEMISTRY           
β amyloid 1-42 Aβ 1-42 Cell Signaling 8243P Polyclonal Rb Primary 1:150 

β amyloid 1-16 Aβ 1-16 Covance SIG-39320 Monoclonal Ms Primary 1:400 

Neurons NeuN Millipore MAB377 Monoclonal Ms Primary 1:200 

Neurons NeuN Millipore MAB377X Monoclonal 
conj  

Ms Primary 1:200 

Astrocytes GFAP Dako Z0334 Policlonal Rb Primary 1:500 

Astrocytes  (triple 
labelling IHC) 

GFAP Millipore MAB3402X Monoclonal Ms Primary 1:500 

Total microglia IBA1 Wako 016-20001 Policlonal Rb Primary 1:300 

Reactive 
microglia 

CD68 Abcam AB-955 Monoclonal Ms Primary 1:100 

Cytocrome C CytC BD 556432 Monoclonal Ms Primary 1:200 

TNFα TNFα Thermo-Fisher PA-19810 Polyclonal Rb Primary 1:500 

Inducible Nitric 
Oxide Sintase 

iNOS Thermo-Fisher PA3-030A Polyclonal Rb Primary 1:150 

Interleukin-1β IL-1β Abcam Ab-9722 Polyclonal Rb Primary 1:100 

Rabbit FC Rabbit FC Life 
Technologies 

A21206 Polyclonal Dn Seconda
ry Alexa 
Fluor 
488 

1:400 

Mouse FC (triple 
labelling IHC) 

Mouse FC Life 
Technologies 

A31570 Polyclonal Dn Seconda
ry Alexa 
Fluor 
555 

1:400 

Rabbit FC Rabbit FC Life 
Technologies 

A31577 Polyclonal Gt Seconda
ry Alexa 
Fluor 
635 

1:400 

3.14  Microscopy techniques and quantitative analysis  
Epifluorescence and confocal microscopy acquisitions were performed in the Regions 

Of Interest (ROIs, SP and SR of CA1 and CA3 dorsal hippocampus, separately) to 

acquire immunofluorescence signals. The ROIs were the proximal region for CA1 as 

defined by Masurkar (2018) and area CA3 as defined by Lorente de Nó (1934), Li et al. 

(1994) and Amaral and Lavenex (2007). 

The epifluorescence microscopy images were obtained with an Olympus BX63 

microscope equipped with a Metal Halide Lamp (Prior Scientific Instruments Ltd, 

Cambridge, UK) and a digital camera Olympus XM 10 (Olympus, Milan, Italy).  
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The confocal microscopy images were obtained with a LEICA TCS SP5 confocal laser 

scanning microscope (Leica Microsystems CMS GmbH, Mannheim, Germany. The 

parameters of acquisition were maintained constant: frame dimension 1240x1240 

points, frequency of acquisition 200Hz. 

Two experimenters performed all quantitative analyses blind, and data were averaged. 

All evaluations of cell density were made on z projections of 10 consecutive confocal 

scans (total thickness 15 µm). Cells were counted, and the area of analysis was 

measured. Cells were expressed as density (number/mm2).  

We performed the following quantitative analyses using ImageJ software (National 

Institute of Health, http://rsb.info.nih.gov/ij) separately in the SP and SR of CA1 and 

CA3. 

Density of cells (neurons, astrocytes, microglial cells, TNFα, iNOS and IL1β positive 

cells) was calculated as cells/mm2 in SP and SR of CA1 and CA3, on confocal z 

projections of 5 scans (total 7.5 µm inside the section). 

Aβ load was calculated as total plaque density in SP or SR of CA1 and CA3 

(plaques/mm2). Plaques were further subdivided by size into Small (S, below 2500 

µm3), Medium (M, between 2500 and 7000 µm3), and large (L, over 7000 µm3) and 

counted in SP or SR of CA1 and CA3.  

For the evaluation of the volume of pyramidal neurons, we considered the neuron as a 

spheroid. We measured the x and y axes of five neurons chosen randomly in three 

different confocal planes equally spaced in the depth of the sections (total 30 

cells/animal in CA1 and CA3, separately). The volumes of the cells were calculated, 

and data were averaged. 

For the evaluation of the thickness of CA1 and CA3 SP layers, the cell layer was 

measured at three fixed, equidistant locations taken in three different confocal planes 

equally spaced in the depth of the sections (total 9 measures in CA1 and CA3, 

separately), and data were averaged. 

For the evaluation of the density of apoptotic neurons in CA1 and CA3 SP, every 

neuron (identified by NeuN immunostaining) with a diffuse and intense CytC 

cytoplasmatic immunostaining was considered “apoptotic” (Suen et al., 2008). 

For the evaluation of the length of astrocytes branches, the length of three principal 

branches of five astrocytes randomly chosen was measured in three different confocal 

planes, equally spaced in the depth of the sections (total 30 cells/animal in CA1 and 

CA3, separately), and data were averaged. 
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For the evaluation of the expression of GFAP and TNFα immunofluorescence, the 

following protocol was used: a z-projection of 10 consecutive confocal z-scansions was 

done (total thickness 15 µm). Selecting an appropriate threshaged of intensity of GFAP 

and TNFα immunofluorescence, z-projection was converted in a black and white image 

using Image J (care was taken to maintain a fixed threshaged value among sections). 

Black and white pixels are points of fluorescence intensity above or under the selected 

threshaged, respectively. The ratio between the number of black pixels and the area of 

analysis (mm2) in each section was calculated, taken as quantitative expression of 

GFAP and TNFα immunofluorescence, and reported on graphs.  

For the evaluation of the volume of reactive microglia, we considered the body of 

CD68+ microglia as a spheroid. We measured the x and y axes of 30 reactive microglia 

cells/animal chosen randomly in a z-projection of 10 consecutive confocal z-scans (total 

thickness 15 µm). The volumes of the cells were calculated, and data were averaged. 

Spatial orientation of IBA1+ microglia towards plaques was calculated counting the 

microglial cells with soma contacting the surface of Large plaque plus those with their 

soma located within 10 µm around Large plaques, as percent of total microglia cells in 

the ROIs.  

For the evaluation of the density of the neuron-astrocyte-microglia triads, we defined 

“triads” any cluster of cells in which a neuron is in direct contact with a microglial cell 

(undergoing phagocytosis) and one (or more than one) astrocytes take contact with the 

neuronal body with their branches, frequently forming a scar around it. The evaluation 

was made on a z projection of 10 consecutive confocal z scans (total thickness 15 µm). 

3.15  Statistical analysis  
Statistical comparisons were performed using Graph Pad Prism (Graph Pad Software 

Inc., La Jolla, CA, USA) by Student’s t test, one way ANOVA followed by Newman-

Keuls multiple comparison test (if more than two groups were compared), two-way 

ANOVA and three-way ANOVA followed by Bonferroni post test, or linear regression 

analysis, as appropriate. Significance was set at P<0.05.  
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IN VIVO AND IN VITRO MODELS OF BRAIN ISCHEMIA 

Part IV – In vivo model of ischemia 

3.16  Animals 
Male adult Wistar rats (3 months old, Harlan, Milano, Italy) were used. The animals 

were housed in cages with ad libitum food and water and were maintained on a 12 h 

light–12 h dark cycle in a temperature-controlled room (23±1°C). Experiments were 

approved by the IACUC of the University of Florence and performed according to the 

Italian Law on Animal Welfare (DL 116/92, Italian Directive on the protection of 

animals used for scientific purposes). All efforts were made to minimize animal 

sufferings and to use only the number of animals necessary to produce reliable scientific 

data. 

3.17 Surgery 
Bilateral common carotid artery occlusion (two-vessel occlusion, 2VO) was carried out 

in rats (Sarti et al., 2002a, b; Farkas et al., 2007) according to the scheme represented in 

Figure 1A, according to the method previously published (Lana et al., 2014). Briefly, 

rats were anesthesed with halothane and the right common carotid artery was occluded, 

(day -7, Figure 1A), as follows. After exposure, the common carotid artery was exposed 

and firmly ligated with a silk suture. After one week (day 0, Figure 24), the left common 

carotid artery was occluded using the same procedure. Diaminocillin (1,200,000 U in 8 

ml saline, 1 ml/day i.m.) was administered after each procedure. Sham rats underwent 

the same surgical procedures, but the arteries were not occluded. Animals were 

randomly allocated in 3 experimental groups: sham-operated rats (sham, n=15), 2VO-

operated rats treated with vehicle (2VO-vehicle, n=15), and 2VO-operated rats treated 

with dipyridamole (2VO-dipyridamole, n=15) from day 0 to day 7. We did not include 

the sham-dipyridamole-treated animals group in the project because we wanted to verify 

the effect of the drug in 2VO treated rats. Ninety days after surgery, anesthetized rats 

were perfused transcardially with 500 ml of ice-caged paraformaldehyde (4% in 

phosphate-buffered saline, PBS, pH 7.4). After overnight postfixation and 

cryoprotection (18% sucrose/PBS) 40 µm thick coronal sections were cut with a 

cryostat and stored at -20 °C in anti-freeze solution until immunohistochemistry. 
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3.18  Drug administration   

Dipyridamole (Persantin, Boehringer Ingelheim, 5 mg/mL) or vehicle were 

administered into the jugular vein (10 µL/h per 7 days) using a miniosmotic pump 

(Model 2001, Alzet, Cupertino, CA, USA) according to Lana et al. (2014). The pumps 

were implanted subcutaneously in the thoraco-lumbar region immediately after the left 

common carotid artery occlusion and removed after 7 days (Figure 24).  

 

 
Figure 24. A: Experimental scheme that shows the time course of brain common carotid artery 
occlusion (two-vessel occlusion, 2VO), dipyridamole infusion and hippocampal samples 
collection. B: Schematic representation of the rat brain blood vessels, and the site of two-vessel 
occlusion. 

Each animal received about 4 mg/kg/day of dipyridamole which gave an estimated 

dipyridamole plasma concentration of 2–2.5 µM plasma concentration over the entire 

week,  close to the therapeutic concentration (1.6 µ g/mL) reached after extended-

release dipyridamole administered to ischemic stroke patients (Serebruany et al., 2009).  

3.19 Fluorescent immunohistochemistry 
Immunostaining was performed with the free-floating method (Giovannini, 2002; Lana 

et al., 2014), for details see Part I. The antibodies used are listed in Table 6. 

Table 6: Antibodies used for immunohistochemistry. 

Target Antigen Supplier Catalog # Antibody Host Usage Conc 
IMMNOHISTOCHEMISTRY           
Neurons NeuN Millipore MAB377 Monoclonal Ms Primary 1:200 

Neurons NeuN Millipore MAB377X Monoclonal 
conj  

Ms Primary 1:200 

CA3 
Interneurons 

Calretinin Millipore AB-5054 Policlonal Rb Primary 1:200 

Dendrites Neurofilament Cell Signaling 
Technology 

2838 Monoclonal Ms Primary 1:100 

Astrocytes GFAP Dako Z0334 Policlonal Rb Primary 1:500 

Astrocytes  
(triple 
labelling IHC) 

GFAP Millipore MAB3402X Monoclonal Ms Primary 1:500 
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Target Antigen Supplier Catalog # Antibody Host Usage Conc 
Total 
microglia 

IBA1 Wako 016-20001 Policlonal Rb Primary 1:300 

Cytocrome C CytC BD 556432 Monoclonal Ms Primary 1:200 

TNFα TNFα Thermo-
Fisher 

PA-19810 Polyclonal Rb Primary 1:500 

Rabbit FC Rabbit FC Life 
Technologies 

A21206 Polyclonal Dn Secondar
y Alexa 
Fluor 
488 

1:400 

Mouse FC 
(triple 
labelling IHC) 

Mouse FC Life 
Technologies 

A31570 Polyclonal Dn Secondar
y Alexa 
Fluor 
555 

1:400 

Rabbit FC Rabbit FC Life 
Technologies 

A31577 Polyclonal Gt Secondar
y Alexa 
Fluor 
635 

1:400 

3.20  Methodological considerations  

All confocal qualitative double or triple immunostaining analyses were performed in 

2VO-vehicle, 2VO-dipyridamole and sham rats. All analyses were performed in Area 

CA3 of the hippocampus  (Lorente de No, 1934; Li et al., 1994), defined Region of 

Interest (ROI, Figure 1B), further subdivided into the subregions stratum pyramidale 

(SP), Stratum Lucidum (SL), and Stratum Radiatum (SR) as shown in Figure 1B1 

(Amaral & Lavenex, 2007; Lana et al., 2016). Quantification analyses were performed 

in SP, SL and SR (Figure 25) by two researchers blind to the experimental conditions 

and results were averaged.  

 
Figure 25. Representative image of CA3 using the immunostaining of neurons with anti-NeuN 
antibody showing the regions of interest (ROIs): Stratum Pyramidale (SP), Stratum Lucidum 
(SL) and Stratum Radiatum (SR). Scale bar: 100 µm. 

Three coronal sections (spaced by 150 µm, starting at about -2.8 mm from bregma) 

containing the ROI were immunostained. Since differences were never found between 

the two hippocampi (Sarti et al., 2002b; Lana et al., 2014) the regions of interest (ROI) 

of both CA3 areas, containing SP, SL and SR were used. Areas of SP, SL and SR were 
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measured in mm2. Astrocytes, microglia, ectopic neurons, neuronal debris and the 

neurons-astrocytes-microglia triads in CA3 SL and SR, and apoptotic neurons in CA3 

SP were consistently counted in the same area in all sections and were expressed as 

cells/mm2. CA3 pyramidal neurons were quantified counting NeuN+ cells in SP. 

Neuronal debris, defined as NeuN+ fragments with dimensions between 2.5 µm and 6.5 

µm, were counted in the central z-scans (15 µm total thickness) of confocal microscopy 

images to make sure that we were not capturing ends of whole cells. The length of 

principal astrocyte branches was measured using Image J. Two independent 

experimenters measured 4 principal branches of three astrocytes chosen randomly in the 

ROIs, and results were averaged. The length of TNFα+ dendrites (3 dendrites chosen 

randomly in 4 quadrants of a 20x image taken in CA3 SR) was measured using Image J 

by two independent experimenters and results were averaged. Since IBA1 labels not 

only microglia, but also monocytes and macrophages, care was taken to avoid the 

quantification of IBA1+ cells located inside blood vessels.  A “triad” was defined as a 

neuron in direct contact with a microglia cell and astrocyte branches deriving from 

surrounding astrocyte(s) (Cerbai et al., 2012; Lana et al., 2016). To visualize the ‘‘top-

down view’’ and the ‘‘bottom-up view’’ of the triad, the 3D rendering was digitally 

rotated by 180°. The reciprocal interaction of the three cells in the triad was visualized 

by stacking few consecutive confocal z-scans acquired in the depth of the neuronal cell 

body and digitally ‘‘sub-slicing’’ the neuron. The 3D rendering image was obtained 

using ImageJ 3D viewer. Control immunostaining, to verify the specificity of the 

antibodies, was performed omitting the primary or secondary antibodies.  

3.21 Statistical analysis 
Statistical comparisons were performed using Graph Pad Prism (Graph Pad Software 

Inc., La Jolla, CA, USA) by one way ANOVA followed by Newman-Keuls Multiple 

Comparison Test, two way ANOVA followed by Bonferroni multiple comparison test, 

or two tailed Student’s t test, as appropriate. Significance was set at P<0.05.
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Part V - In vitro model of ischemia 

3.22 Animals 
All animal experiments were performed according to the Italian Law on Animal 

Welfare (DL 26/2014), approved by the Institutional Animal Care and Use Committee 

of the University of Florence and by the Italian Ministry of Health. All efforts were 

made to minimize animal sufferings and to use only the number of animals necessary to 

produce reliable scientific data. Male Wistar rats (Envigo, Italy, 150–200 g body 

weight) were used. Experiments were carried out on acute rat hippocampal slices, 

prepared as previously described (Pugliese et al., 2006, 2009). 

3.23 Preparation of slices  
Animals were killed with a guillotine under anesthesia with isoflurane (Baxter, Rome, 

Italy) and hippocampi were rapidly removed and placed in ice-caged oxygenated (95% 

O2-5% CO2) artificial cerebrospinal fluid (aCSF) of the following composition (mM): 

NaCl 124, KCl 3.33, KH2PO4 1.25, MgSO4 1.4, CaCl2 2.5, NaHCO3 25 and D-glucose 

10. Slices (400 μm nominal thickness) were cut using a McIlwain tissue chopper 

(Mickle Laboratory Engineering, Co. Ltd., Gomshall, UK) and kept in oxygenated 

aCSF for at least 1 h at room temperature. A single slice was then placed on a nylon 

mesh, completely submerged in a small chamber (0.8 ml) and superfused with 

oxygenated aCSF (31-32°C) at a constant flow rate of 1.5 ml/min. The treated solutions 

reached the preparation in 60 s and this delay was taken into account in our calculations. 

3.24 Extracellular recordings  

Test pulses (80 μs, 0.066 Hz) were delivered through a bipolar nichrome electrode 

positioned in the Stratum Radiatum of the CA1 region of the hippocampus to stimulate 

the Schaffer collateral-commissural pathway (Figure 26). Evoked potentials were 

extracellularly recorded with glass microelectrodes (2-10 MΩ, Harvard Apparatus LTD, 

UK) filled with 150 mM NaCl. The recording electrode was placed at the dendritic level 

of the CA1 region to record field excitatory postsynaptic potentials (fEPSPs) (Figure 

26).  
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Figure 26. Experimental methods. A: Microphotography of a hippocampal slice showing the 
three subregions, the localization of the stimulating and recording electrodes and the region of 
interest in CA1 (ROI, framed area) used for the immunohistochemical analyses. SP: stratum 
pyramidale; SR: stratum radiatum. Scale bar: 200 µm. B: Schematic representation of the 
experimental method for in vitro OGD and collection of the slices. 

Responses were amplified (200×, BM 622, Mangoni, Pisa, Italy), digitized (sample rate, 

33.33 kHz), and stored for later analysis with LTP (version 2.30D) program (Anderson 

and Collingridge, 2001).  The amplitude of fEPSP was measured as the difference 

between the negative peak following the afferent fiber volley and the baseline value 

preceding the stimulus artefact. In some experiments both the amplitude and the initial 

slope of fEPSP were quantified, but since no appreciable difference between these two 

parameters was observed under control conditions, in the presence of drugs or during in 

vitro ischemia, only the measure of the amplitude was expressed in the figures. When a 
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stable baseline of evoked responses was reached, fEPSP amplitudes were routinely 

measured and expressed as the percentage of the mean value recorded 5 min before the 

application of any treatment (in particular pre-OGD). Stimulus-response curves were 

obtained by gradual increase in stimulus strength at the beginning of each experiment. 

The test stimulus strength was then adjusted to produce a response whose amplitude 

was 40% of the maximum and was kept constant throughout the experiment. 

Simultaneously, with fEPSP amplitude, AD was recorded as negative extracellular 

direct current (d.c.) shifts induced by OGD. The d.c. potential is an extracellular 

recording considered to provide an index of the polarization of cells surrounding the tip 

of the glass electrode (Farkas et al., 2008). AD latency, expressed in min, was 

calculated from the beginning of OGD; AD amplitude, expressed in mV, was calculated 

at the maximal negativity peak. In the text and bar graphs, AD amplitude values were 

expressed as positive values. The terms “irreversible synaptic failure” or “irreversible 

loss of synaptic transmission” used in the present work refer to the maximal time 

window of cell viability in our experimental model (acutely isolated hippocampal slice 

preparation) which, according to our previous results is 24 h (Pugliese et al., 2009). 

3.25  Drugs  
Two selective adenosine A2B receptors antagonists, N-(4-Cyanophenyl)-2-[4-(2,3,6,7-

tetrahydro-2,6-dioxo-1,3-dipropyl-1H-purin-8-yl)phenoxy]-acetamide) (MRS1754) and 

8-[4-[4-(4-Chlorophenzyl) piperazide-1-sulfonyl) phenyl]]-1-propylxanthine (PSB603) 

were used. D-2-amino-5-phosphonovalerate, a selective NMDA receptor antagonist was 

used. All these compounds were purchased from Tocris (Bristol, UK). The A1 receptor 

antagonist DPCPX (8-cyclopentyl-1,3-dipropylxanthine) was purchased from SIGMA 

Aldrich (https://www.sigmaaldrich.com). 
All drugs were dissolved in dimethyl sulphoxide (DMSO). Stock solutions, of 1000–

10,000 times the desired final concentration, were stored at -20 C. The final 

concentration of DMSO (0.05% and 0.1% in aCSF) used in our experiments did not 

affect either fEPSP amplitude or the depression of synaptic potentials induced by OGD 

(data not shown).  

3.26 Application of OGD and adenosine A2B receptor antagonists 
The experimental method is shown in Figure 1B. Conditions of OGD were obtained by 

superfusing the slice with aCSF without glucose and gassed with nitroen (95% N2-5% 

CO2) (Pedata et al., 1993). This causes a drop in pO2 in the recording chamber from 
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~500 mmHg (normoxia) to a range of 35-75 mmHg (after 7 min OGD) (Pugliese et al., 

2007, 2009). At the end of the ischemic period, the slice was again superfused with 

normal, glucose-containing, oxygenated aCSF. The terms ‘OGD slices’ or ‘treated OGD 

slices’ refer to hippocampal slices in which OGD was applied in the absence or in the 

presence of A2B receptor antagonists, respectively. Control slices were not subjected to 

OGD or treatment with A2B receptor antagonists but were incubated in oxygenated 

aCSF for identical time intervals. All the selective adenosine A2B receptors antagonists 

were applied 15 min before, during and 5 min after OGD. In a typical experimental day, 

first a control slice was subjected to 7 min of OGD. If the recovery of fEPSP amplitude 

after 60 min of reperfusion with glucose containing and normally oxygenated aCSF was 

≤15% of the pre-OGD value, and AD developed into 7 min OGD, a second slice from 

the same rat was subjected to an OGD insult in the presence of the A2B receptor 

antagonist under investigation. To confirm the result obtained in the treated group, a 

third slice was taken from the same rat and another 7 min OGD was performed under 

control conditions to verify that no difference between slices was caused by the time 

gap between the experiments. In some slices the OGD period was prolonged to 30 min 

and the A2B receptor antagonists were applied 15 min before and during OGD 

application. After the extracellular recordings, slices were maintained in separate 

chambers for 1 or 3 hours from the end of OGD in oxygenated aCSF at room 

temperature (RT). At the end, slices were harvested and fixed overnight at 4°C in 4% 

paraformaldehyde in PBS, cryopreserved in 18% sucrose for 48 h, and resliced as 

written below. 

3.27 Treatment of hippocampal slices with glutamate in vitro 
Experiments were carried out on acute hippocampal slices, prepared from male Wistar 

rats as described above. The A2B receptor antagonists were dissolved in DMSO to 

obtain a stock solution suitable for a 1:2000 dilution. Slices, maintained oxygenated 

throughout the procedure, were incubated according to the following scheme:  

1) Control slices were incubated for 1 h in aCSF and then for 25 min in aCSF with 

DMSO (1:2000; 0.05%);  

2) Glutamate (GLU) treated slices were incubated 1 h in aCSF and then for 10 min with 

100 µM glutamate in aCSF; 
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3) MRS+GLU treated slices were incubated for 1 h in aCSF, then for 15 min with 500 

nM MRS1754 and for further 10 min with 500 nM MRS1754 plus 100 µM glutamate, 

in aCSF; 

4) PSB+GLU treated slices were incubated for 1 h in aCSF, then for 15 min with 50 nM 

PSB603, and for further 15 min with 50 nM PSB603 plus 100 µM glutamate in aCSF; 

After the incubation with glutamate and A2B receptor antagonists, slices were further 

incubated for 3 h in aCSF, and then harvested and fixed overnight at 4°C in 4% 

paraformaldehyde in PBS, cryopreserved in 18% sucrose for 48 h, and resliced as 

written below. 

3.28 Fluorescent immunohistochemistry 
One hour or 3 h after OGD, or after the incubation with glutamate and A2B receptor 

antagonists, the 400 μm thick slices fixed in paraformaldehyde were placed on an agar 

support (6% agar in normal saline), included in an embedding matrix and re-sliced with 

a cryostat to obtain 40 μm thick slices. The more superficial sections were eliminated, 

while those obtained from the inner part of the slice were collected and stored in vials 

with 1 ml of antifreezing solution at -20°C until immunohistochemical analyses. From 

the 400 μm thick slices on average only a maximum of 2-3 complete 40 µm thick slices 

were obtained, which were then randomly allocated to the fluorescent 

immunohistochemical staining groups. Immunostaining was performed with the free-

floating method (Giovannini, 2002; Lana et al., 2014), for details see Part I. The 

following antibodies were used: 

Table 7: Antibodies used for immunohistochemistry 

Target Antigen Supplier Catalog # Antibody Hos
t 

Usage Conc 

IMMNOHISTOCHEMISTRY           
Neurons NeuN Millipore MAB377 Monoclonal Ms Primary 1:200 

Neurons NeuN Millipore MAB377X Monoclonal 
conj  

Ms Primary 1:200 

Astrocytes GFAP Dako Z0334 Policlonal Rb Primary 1:500 

Cytocrome C CytC BD 556432 Monoclonal Ms Primary 1:200 

Activated  
m-TOR 

P-mTOR Abcam AB-51044 Polyclonal Rb Primary 1:100 

Rabbit FC Rabbit FC Life 
Technologies 

A21206 Polyclonal Dn Secondary Alexa 
Fluor 488 

1:400 

Mouse FC 
(triple 
labelling IHC) 

Mouse FC Life 
Technologies 

A31570 Polyclonal Dn Secondary Alexa 
Fluor 555 

1:400 

Rabbit FC Rabbit FC Life 
Technologies 

A31577 Polyclonal Gt Secondary Alexa 
Fluor 635 

1:400 
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Epifluorescence microscopy: sections were observed under an Olympus BX63 

microscope equipped with an Olympus DP 50 digital camera (Olympus, Milan, Italy). 

For quantitative analysis images were acquired at 20x magnification with the digital 

camera. 

Confocal microscopy: scans were taken at 0.3 μm z-step, keeping constant all the 

parameters (pinhole, contrast and brightness), using a LEICA TCS SP5 confocal laser 

scanning microscope (Leica Microsystems CMS GmbH, Mannheim, Germany). Images 

were converted to green, or red using Image J (freeware provided by National Institute 

of Health, (http://rsb.info.nih.gov/ij). The region of interest (ROI) in CA1, containing 

SP and SR was consistently analyzed in all slices, as shown in Figure 1A (Lana et al., 

2014). Quantitative analyses of NeuN+ neurons, HDN neurons, LDN neurons, GFAP+ 

astrocytes, CytC+ apoptotic neurons and phospho-mTOR+ cell bodies and dendrites 

were performed blind by two experimenters and results were averaged. Areas were 

expresses as mm2. Digitized images were transformed into TIFF files and threshageded 

using ImageJ. Care was taken to maintain the same threshaged in all sections within the 

same experiment. In CA1 pyramidal layer, the area labeled above the set threshaged 

with NeuN or phospho-mTOR was calculated in pixels and expressed as NeuN+ 

pixels/mm2 or phospho-mTOR+ pixels/mm2. HDN neurons, LDN neurons, 

CytochromeC-positive (CytC+) apoptotic neurons in CA1 SPand GFAP+ astrocytes in 

CA1 SR were counted and were expressed as number of cells/mm2. In order to evaluate 

mTOR activation in basal dendrites the length of phospho-mTOR+ dendrites was 

measured at 3 fixed locations, equal in all slices and evenly distributed throughout the 

CA1 SR ROI, and results were averaged.  

3.29  Statistical analysis 
Statistical significance was evaluated by Student's paired or unpaired t tests. Analysis of 

variance (one-way ANOVA), followed by Newman-Keuls multiple comparison post 

hoc test was used, as appropriate. P-values from both Student's paired and unpaired t 

tests are two-tailed. Data were analyzed using software package GraphPad Prism 

(version 7.0; GraphPad Software, San Diego, CA, USA). All numerical data are 

expressed as the mean±standard error of the mean (SEM). A value of P<0.05 was 

considered significant.  
.
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MODELS OF BRAIN AGING, NEUROINFLAMMATION 
AND ALZHEIMER’S DISEASE 

Part I – Brain Aging and Inflammation 

4.1 Analysis of neurons in the Dentate Gyrus of Adult, Aged, and LPS-
treated rats  
To evaluate whether aging or acute inflammation induced by LPS might cause loss of 

neurons in the dentate gyrus, neurons were immunostained with anti NeuN or MAP2 

antibody, and counted separately in the granular layer (GL) and polymorphic layer (PL), 

as shown in the representative images in Figure 27A-C and 27G-I.  

Using the anti NeuN antibody (Figure 27), we found a significant decrease of neurons in 

GL and PL of aged rats in comparison to adult rats while no effect was found in LPS 

rats. Statistical analysis showed that in DG of aged rats, neurons decreased by 13% in 

GL (*P<0.05 aged vs adult, F(2;13)=3.874), and by 20% in PL (*P<0.05 aged vs adult, 

F(2;12)=4.212 ) in comparison to adult rats (Figure 27D-E).  

Using anti the anti MAP2 antibody (Figure 27G-I), we confirmed that granular neurons 

significantly decreased in GL of aged rats (-23% in comparison to adult rats; *P<0.05 

aged vs adult, F(2;12)=6.483), but not in GL of LPS-treated rats (n.s., Figure 27F).  

To define whether the decrease of granular neurons in the dentate gyrus of aged rats 

might be caused by apoptosis, DG sections were immunostained for CytC, one of the 

late markers of apoptosis (Suen et al., 2008). CytC is currently being utilized as a 

marker of apoptosis since it has been demonstrated that, following complete release 

from the mitochondria at late stages of apoptosis, CytC becomes diffusely and highly 

visible in the cell cytoplasm (Suen et al., 2008). Figure 27J-L show the 

immunolabelling of CytC in GL of an adult (J), an aged (K) and an LPS-treated rat (L). 

The arrows show neurons with increased cytoplasmic immonostaining for CytC.  

Quantitative analysis of CytC+ neurons in GL is shown in Figure 27M.  Statistical 

analysis demonstrated that CytC+ neurons were significantly more numerous in GL of 

aged (+300%) and of LPS treated rats (+108%) than in adult rats (***P<0.001 aged vs 

adult; *P<0.05 LPS vs adult; F(2;9)=40.04).  
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Figure 27. Analysis of neurons in GL and PL of adult, aged and LPS-treated rats. A-C: 
Representative photomicrographs of NeuN immunostaining of neurons (red) in DG of an adult 
(A), an aged (B) and an LPS-treated rat (C). Scale bar: 200 μm. D-E: Quantitative analysis of 
neurons/mm2 in Dentate Gyrus GL (D) and PL (E) of adult (n=6), aged (n=5) and LPS-treated 
rats (n=6). Neurons were significantly less numerous in GL and PL of aged rats. F: Quantitative 
analysis of MAP2 neurons/mm2 in DG GL of adult (n=6), aged (n=5), and LPS-treated rats 
(n=4). MAP2+ granular neurons were significantly less numerous in GL of aged rats. G-I: 
Representative photomicrographs of MAP2 immunostaining (green) in the GL of an adult (G), 
an aged (H) and an LPS-treated rat (I). Scale bar: 25 μm. J-L: Representative photomicrographs 
of CytC immunostaining (red) in the GL of an adult (J), an aged (K) and an LPS-treated rat (L). 
The arrows in K and L point to apoptotic neurons in GL. Scale bar: 10 μm. M: Quantitative 
analysis of apoptotic neurons/mm2 in GL of adult (n=4), aged (n=4), and LPS-treated rats (n=4). 
Apoptotic granular neurons were significantly more numerous in GL of aged and LPS-treated 
rats. Data reported in all graph bars are expressed as mean±SEM. 
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4.2 Analysis of astrocytes in the Dentate Gyrus of Adult, Aged, and LPS-
treated rats  
As shown in the representative images of Figure 28, astrocytes were immunolabelled 

with anti GFAP antibody (Figure 28A-C1) and anti S100 antibody (Figure 28F-H1), and 

counted separately in GP and PL of adult, aged and LPS-treated rats. Quantitative 

analysis of the density of GFAP+ astrocytes, reported in Figure 28D, showed that 

astrocytes decreased in both GL and PL of aged and LPS-treated rats.  

 

Figure 28. Characterization and quantitative analysis of astrocytes in GL and PL of adult, aged 
and LPS-treated rats. A-C: Representative photomicrographs showing immunoreactivity of 
GFAP (green) in DG of an adult (A), an aged (B) and an LPS-treated rat (C). Scale bar: 150 μm. 
A1-C1: Magnification of GFAP+ astrocytes in the PL of an adult (A1), an aged (B1) and an 
LPS-treated rat (C1). Scale bar: 25 µm. D: quantitative analysis of GFAP+ astrocytes/mm2 in 
hippocampal GL and PL of adult (n=5), aged (n=4) and LPS-treated rats (n=6). GFAP+ 
astrocytes were significantly less numerous in GL and PL of aged and LPS-treated rats. E: 
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Length of principal astrocyte branches in GL and PL of adult (n=5), aged (n=5), and LPS-
treated rats (n=7). GFAP+ astrocytes branches were significantly longer in GL of LPS-treated 
rats. F-H:  Representative photomicrographs showing immunoreactivity of S100 (red) in DG of 
an adult (F), an aged (G) and an LPS-treated rat (H). Nuclei were counterstained with DAPI 
(blue). Scale bar: 100 μm. F1-H1: Magnification of S100+ astrocytes in the PL of an adult (F1), 
an aged (G1) and an LPS-treated rat (H1). Scale bar: 50 µm. I: quantitative analysis of S100-
positive astrocytes/mm2 in hippocampal GL and PL of adult (n=6), aged (n=5) and LPS-treated 
rats (n=5). S100+ astrocytes were significantly less numerous in GL and PL of aged and LPS-
treated rats. Data reported in all graph bars are expressed as mean±SEM. 

Statistical analysis demonstrated that GFAP+ astrocytes were significantly less 

numerous in GL of aged rats (-50%, ***P<0.001 aged vs adult rats, F(2;16)=19.67) and in 

GL of LPS-treated rats  (-33%, **P<0.01 LPS vs adult rats, F(2;16)=10.43) in comparison 

to adult rats, respectively (Figure 28D). Similarly, GFAP+ astrocytes were less 

numerous in PL of aged rats (-31%, **P<0.01 aged vs adult rats, F(2;16)=10.43), and in 

PL of  LPS treated rats (-25%, **P<0.01 LPS vs adult rats, F(2;16)=10.43) in comparison 

to adult rats, respectively (Figure 28D). Similar results were obtained immunostaining 

astrocytes with a different marker, protein S100. The density of S100+ astrocytes was 

significantly lower in GL of aged (-33%) and of LPS-treated (-39%) rats (*P<0.05 aged 

vs adult rats, and **P<0.01 LPs vs adult rats; F(2;13)=10.04). The significant decrease of 

S100+  astrocytes was also evident in PL of aged (-26%) and of LPS treated (-14%) rats 

(***P<0.01 aged vs adult rats, **P<0.01 LPS vs adult rats, F(2;13)=18.28) (Figure 28I). 

Higher magnification GFAP+ astrocytes in PL (Figure 28A1-C1), show that in aged rats 

the principal branches of astrocytes appeared shorter and twisted, as compared to those 

of adult and LPS-treated rats. We measured the length of GFAP+ astrocytes branches 

(see methods, Figure 28C) and the results are shown in Figure 28E. In the GL of LPS-

treated rats, the length of astrocytes principal branches was significantly longer (+21%) 

than in adult rats (**P<0.01 LPS vs adult rats, F(2;16)=6.814, Figure 28E). On the 

contrary, in PL the length of astrocytes branches did not differ significantly among the 

three experimental groups (Figure 28E). Figure 29A-C shows the confocal 3D rendering 

of astrocyte branches extending through the GL of an adult (A), an aged (B) and an 

LPS-treated rat (C). Each image, obtained stacking 17 consecutive confocal z-scans (0.3 

µm each, total thickness 5.1 μm) confirms that in LPS-treated rats astrocyte branches 

were significantly longer than in aged and adult rats.We calculated the ratio between 

NeuN+ neurons and GFAP+ astrocytes both in GL and PL of adult, aged and LPS-

treated rats to verify whether the decrease of GFAP+ astrocytes, paralleled by a 

decrease of neurons, might mask a possible astrocytosis. The results obtained presented 

in Figure 29D-E demonstrate that in GL of aged and LPS-treated rats the ratios NeuN+ 
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neurons/GFAP+ astrocytes were significantly higher than in adult rats (+95% and 

+56%, respectively), and were both statistically significant (*P<0.05 aged vs adult rats, 

and LPS vs adult rats, F(2;13)=4.24). In PL, the ratios NeuN+ neurons/GFAP+ astrocytes 

were not significantly different in the 3 experimental groups (F(2;14)=1.434, n.s.; one-

way ANOVA). These data further demonstrate that no astrocytosis was present in GL 

and PL of aged and LPS-treated rats. 

 

 

Figure 29. Confocal microscopy 3D renderings of double immunostaining of neurons (NeuN, 
red), and astrocytes (GFAP, green) in the GL of an adult (A), an aged (B) and of an LPS-treated 
rat (C). Scale bar:10 µm. D-E: Ratios between NeuN+ neurons and GFAP+ astrocytes in GL 
(D) and PL (E) of adult (n=6), aged (n=5), and LPS-treated (n=6) rats. The ratios NeuN+ 
neurons/GFAP+ astrocytes increased in GL of aged and LPS-treated rats. Data reported in all 
graph bars are expressed as mean±SEM. 

4.3 Quantification of Total and Activated Microglia in the Dentate Gyrus 
of Adult, Aged, and LPS-treated rats  
Total microglia were identified using the fluorescent immunostaining for IBA1, as 

shown by the representative images of Figure 30A-C1 (left panels).  
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Figure 30. Left panels: Analysis of total microglia in GL and PL of adult, aged and LPS-
treated rats. A-C: Representative photomicrographs of IBA1 immunostaining of total microglia 
(green) in DG of an adult (A), an aged (B), and an LPS-treated rat (C). Scale bar: 100 μm. A1-
C1: Magnification of total microglia in the PL of an adult (A1), an aged (B1), and an LPS-
treated rat (C1). Scale bar: 15 µm. D: quantitative analysis of IBA1+ microglia/mm2 in 
hippocampal GL and PL of adult (n=5), aged (n=5) and LPS-treated rats (n=5). Microglia were 
significantly more numerous in GL of LPS-treated rats and in PL of aged and LPS-treated rats. 
Data reported in all graph bars are expressed as mean±SEM.  
Right panels: Analysis of OX6+, activated microglia in GL and PL of adult, aged and LPS-
treated rats. A-C: Representative photomicrographs of OX6 immunostaining of activated 
microglia (red) in DG of an adult (A), an aged (B) and an LPS-treated rat (C). Scale bar: 100 
μm. A1-C1: Magnification of activated microglia in PL of an adult (A1), an aged (B1) and an 
LPS-treated rat (C1). Scale bar: 15 µm. D: quantitative analysis of activated microglia/mm2 in 
hippocampal GL and PL of adult (n=3), aged (n=5) and LPS-treated rats (n=4). Activated 
microglia cells were significantly more numerous in GL and PL of aged and LPS-treated rats. 
Data reported in all graph bars are expressed as mean±SEM. 

Quantitative analysis of IBA1+ cells revealed that the density of total microglia 

significantly increased by 42% in comparison to adult rats in the GL of LPS-treated rats 

(***P<0.001 LPS vs adult rats, F(2;14)=4,22), while the increase found in GL of aged rats 

(+16% vs adult rats) was not statistically significant. Furthermore, total microglia 
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significantly increased both in the PL of aged (+44%, ***P<0.001 aged vs adult rats, 

F(2;14)=56.33) and of LPS-treated rats (+58%, ***P<0.001 LPS vs adult rats, 

F(2;14)=56.33), in comparison to adult rats (Figure 30D, left panels).  

IBA1 immunostained microglia in the DG of aged and LPS-treated rats (Figure 30B1-

C1, left panels) had morphological features typical of activated microglia. Indeed, 

immunostaining with OX-6, a marker of activated microglia, shown in Figure 30A-C1( 

right panels), indicated that numerous OX6+, activated microglia cells were found in 

the GL and PL of aged and LPS-treated rats. Magnifications of OX6+, activated, 

microglia are shown in Figure 30A1-C1 (right panels). Quantitative analysis 

demonstrated that activated microglia significantly increased both in GL and PL of aged 

and LPS-treated rats in comparison to adult rats (Figure 30D, right panels). Activated 

microglia increased by 489% in GL of aged rats (*P<0.05 aged vs adult rats, 

F(2,11)=11.20) and by 2160% in GL of LPS-treated rats (**P<0.01 LPS vs adult rats, 

F(2,11)=11.20). Activated microglia increased by 235% in PL of aged rats (*P<0.05 aged 

vs adult rats, F(2,9)=13.83) and by 829% in PL of LPS-treated rats (**P<0.01 LPS vs 

adult rats, F(2,9)=13.83), in comparison to adult rats (Figure 30D, right panels). 

4.4 Quantification of neuron-astrocyte-microglia triads in the PL of the 
Dentate Gyrus of Adult, Aged, and LPS-treated rats 
Triple immunostaining for neurons, GFAP+ astrocytes and microglia was performed in 

the DG of adult, aged and LPS-treated rats. Representative 3D renderings of triple 

immunostaining of astrocytes, neurons and microglia (Figure 31) with anti NeuN 

antibody (red, Figure 31A1-C1), anti GFAP antibody (green, Figure 31 A2-C2), and 

with anti IBA1 antibody for microglia (blue, Figure 31A3-C3) in the PL of an adult 

(Figure 31 A-A3), an aged (Figure 31B-B3), and of an LPS-treated rat (Figure 31C-C3) 

clearly shows that many neuron-astrocytes-microglia triads were found in the PL of 

aged and of LPS-treated rats (Figure 31B and C, merge). The 3D rendering in Figure 

31A (stack of 53 consecutive confocal z-scans, 0.3 µm each, total thickness 15.9 μm), 

shows that in the PL of an adult rat astrocytes and microglia surrounded a neuron but 

did not form a triad. The microglia cell had morphological characteristics of a resting 

microglia, with a small cell body and long, thin branches (Figure 31A3, open arrow). 

The 3D rendering in Figure 3B (stack of 53 consecutive confocal z-scans, 0.3 µm each, 

total thickness 15.9 μm) shows that in the PL of an aged rat a damaged neuron was 
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surrounded by 2 different GFAP+ astrocytes that sent their branches to form a micro 

scar around the neuron.  

 

Figure 31. Quantification and characterization of the neuron-astrocyte-microglia triads in PL of 
adult, aged and LPS-treated rats. A-A3, B-B3, C-C3: Confocal microscopy 3D renderings of 
triple immunostaining of neurons (NeuN, red), astrocytes (GFAP, green) and microglia (IBA1, 
blue) in the PL of an adult (A-A3), an aged (B-B3), and of an LPS-treated rat (C-C3). A-A3: 
The images show neuron, astrocytes and microglia in the PL of an adult rat, not forming a triad. 
Scale bar: 10 µm. B-B3: The arrows indicates neurons (B1) showing signs of degeneration with 
surrounding GFAP+ astrocytes (B2) and a microglial cell in reactive, phagocytic state (B3), 
forming a triad (A). Scale bar: 5 µm. C-C3: The open arrow in C1 indicates a neuron showing 
signs of degeneration with surrounding GFAP+ astrocytes and microglial cells in reactive, 
phagocytic state (C3) involved in the triad formation (C). Scale bar: 15 µm. D: Representative 
photomicrograph of an activated microglia cell (IBA1, blue) engulfing a neuronal debris (NeuN, 
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red, open arrow) in PL of an aged rat. Scale bar: 2 µm. E: Quantitative analysis of neuron-
astrocyte-microglia triads/mm2 in DG PL of adult (n=6), aged (n=5) and LPS-treated  rats (n=4). 
Triads were significantly more numerous in PL of aged and LPS-treated rats. Data reported in 
all graph bars are expressed as mean±SEM. 
 
A microglial cell (Figure 31B3) with phenotypical characteristics of reactive microglia, 

such as an enlarged cell body and short cellular processes (Miller and Streit, 2007), was 

in close proximity to the damaged neuron and was phagocytosing the cytoplasm, as 

shown by the pink color inside the microglia cytoplasm (Figure 31B, open arrow). The 

3D rendering in Figure 31C (stack of 14 consecutive confocal z-scans, 0.3 µm each, 

total thickness 4.2 μm), shows that two damaged neurons, very close to the GL, formed 

triads with astrocytes and activated microglia cells which were engulfing the damaged 

neurons (Figure 31C, open arrow and white arrow). It is evident that both granular 

neurons were close but slightly detached from the GL. The open arrow indicates a 

neuron that has almost completely been phagocytized by the microglia cell, while the 

white arrow indicates a neuron that is starting to be attacked by the microglia cell. The 

arrowhead in Figure 31C shows an astrocyte forming a microscar around a degenerating 

neuron. Figure 31D, (stack of 6 consecutive confocal z-scans, 0.3 µm each, total 

thickness 1.8 µm), taken in the PL of an aged rat shows the magnification of a digital 

subslice (starting at about 4 µm inside the cell) of an amoeboid-shaped activated 

microglia that is phagocytosing a neuron (pink colour, open arrow). Quantitative 

analysis of neuron-astrocytes-microglia triads in the PL of adult, aged and LPS-treated 

rats showed that the triads increased by 170% in aged rats (***P<0.001 aged vs adult 

rats, F(2,14)=43.37), and by 887% in LPS-treated rats (***P<0.001 LPS vs adult rats, 

F(2,14)=43.37) in comparison to adult rats (Figure 31E). 

4.5 Increased Fractalkin (CX3CL1) Expression in DG of Adult, Aged, 
and LPS-treated rats 
Quantitative WB analysis of CX3CL1 in homogenates of whole hippocampus of adult, 

aged, and LPS treated rats are shown in Figure 32. In accordance with previous data 

(Cerbai et al., 2012), here we demonstrated that levels of CX3CL1 were significantly 

higher in aged (+80%), and in LPS-treated rats (+90%) hippocampus than in adult rat 

hippocampus (F(2,12)=5.365; P<.005; **P<0.05 vs adult rats, Figure 32A). Double 

labelling immunofluorescent analysis of CX3CL1 (Figure 32C2-E2, green) and 

activated microglia (Figure 32B, C1-E1, red) showed that immunostaining of CX3CL1 

colocalized in the cell body (open arrows) and in the branches (arrows) of activated 
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microglia cells in the PL of aged and LPS-treated rats (Figure 32C-8E), but not of adult 

rats (Figure 32B).  

Colocalization of CX3CL1 with neurons or astrocytes was never found in the DG of 

any of the three experimental groups (data not shown). 

 

Figure 32. Analysis of CX3CL1 expression in the hippocampus of adult, aged, and LPS-treated 
rats. A: Quantitative Western Blot analysis of CX3CL1 in whole hippocampus homogenates of 
adult (n =6), aged (n = 4), and LPS-treated (n = 4) rats. Each column in the graph represents the 
level of CX3CL1 normalized to β-actin run in the same gel, expressed as mean±SEM (*P<0.05 
vs adult rats). Typical Western Blots of CX3CL1 and actin run in the same gel are shown 
below. B-D2: Fluorescent immunohistochemistry of CX3CL1 (C2-D2, green), of OX6+ 
microglia (C1-D1, red), and the merge of CX3CL1 and OX6 (B, C, D) in the PL of an adult (B), 
an LPS-treated rat (C) and of an aged rat (D). B, Scale bar: 5 µm; C-C2, D-D2, Scale bar: 10 
µm. These images show that CX3CL1 colocalized with microglia cells (arrows) in aged and 
LPS-treated rats. E-E2: Representative photomicrographs demonstrating that CX3CL1 (E2, 
green) is expressed in the cytoplasm of an activated microglial cell (E1, OX6, red) in the PL of 
an aged rat. E is the merge of the two previous images. Scale bar: 5 mµ. 
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Part II – Brain Aging and Inflammation 

4.6 Analysis of microglia reactivity in the CA1 hippocampal region of 
control, LPS, and aged rats 
In order to define some of the features of microglia dysregulation in aged CNS, 

microglial reactivity was compared by confocal microscopy in the CA1 hippocampus of 

control, LPS and aged rats (Figure 33A-C). Cytoskeleton remodeling was monitored 

using immunostaining for IBA1, a microglial marker of Ca2+ dependent actin 

polymerization. In LPS rats IBA1 expression appeared higher than in controls, as it is 

possible to appreciate qualitatively in the 3D Z-projections of confocal stacks (Figure 

33A, B). This data was confirmed by quantitative analysis of immunofluorescence 

(Figure 33D, whole columns). Conversely, in aged rats IBA1 immunofluorescence was 

significantly lower than in LPS rats and was not differ from control rats (Figure 33C, D 

whole columns). An in-depth evaluation of IBA1 immunofluorescence distribution 

showed that the differences observed among the three experimental groups were 

characterized by a high degree of complexity. In microglial cell bodies, no significant 

difference in IBA1 immunofluorescence was found between aged and LPS rats, 

whereas its value was considerably lower in young rats (Figure 33D, light grey 

columns). These data indicated that a remarkable cytoskeletal rearrangement occurred 

in cell body of aged microglia cells rather than in their branches. It is possible 

appreciate qualitatively that rich branching was present in microglia of control and LPS 

rats (Figure 33A, B). On the other hand, the mean volume of IBA1+ branch tree was 

significantly higher in LPS than in control rats (Figure 33E). In LPS rats, microglia cell 

arborizations showed a more complex branching pattern in comparison to control rats 

(Figure 33A inset a1 and B insets b1, arrowheads). In aged rats (Figure 33C) microglial 

cells were characterized by an extremely poor arborization: qualitative evaluation of cell 

morphology suggested a decrease in the number of microglia cells branches (Figure 

33C, insets c1), confirmed by a significantly lower volume of the branches (Figure 

33E). Accordingly, sprouting of branches was rare (Figure 33C insets c1, arrowheads). 
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Figure 33. A-C: Confocal images of the CA1 hippocampus of control (A), LPS (B) and aged 
(C) rats immunostained for IBA1 (yellow). A1-C1: Magnifications of framed areas in A, B and 
C, small arrowheads indicate sites of branch sprouting. D: Quantitative analysis of IBA1 
immunofluorescence on microglia cells bodies (light grey) and branches (dark gray; one way 
ANOVA F(2-12) = 6.2, * p < 0.05 vs control, ° p < 0.05 vs LPS, n = 5 for each animal group). E: 
Evaluation of the microglia cells projections volume in the different animal groups (one way 
ANOVA F(2-12) = 14.6, * p < 0.05 vs control, ° p < 0.01 vs LPS, n = 5 for each animal group). 

4.7 Characterization of neuronophagia in CA1 hippocampus 
Interactions between microglia cells and neurons were analyzed in order to correlate the 

above data with possible variations of neuron debris clearance in LPS and aged rats. 

Microglia positioned in close contact with neurons (Figures 34A-B, 34A1-B1), showed 

morphological characteristics of phagocytic cells. The percentage of microglia involved 

in phagocytic activity was significantly higher in LPS than in control rats (Figures 34A, 

B; D). These data confirmed the significant role of microglia in the removal of injured 

neurons in neuroinflammation. In aged rats, quantitative analyses revealed that the 

number of neuronophagic microglia was higher in the CA1 hippocampus than in control 

rats, but significantly lower than in LPS-treated rats (Figure 34D). Therefore, microglial 

efficiency in removing damaged neurons from the nervous tissue resulted lower in aged 

rats than in the other two animal groups. These results suggest that age-related chronic 
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processes of neuroinflammation might imply defective microglial targeting and 

phagocytosis of damaged neurons.  

 

Figure 34. A-C: Confocal images of the CA1 hippocampus of control (A), LPS(B) and aged 
(C) rats immunostained for IBA1 (yellow) and NeuN (blue), arrows point to phagocytic event. 
A1-C1) Magnifications of framed areas in A, B and C. Percentage of microglia involved in 
phagocytic activity out of the total number of microglia (one way ANOVA F(2-15) = 23.8, *p < 
0.01 vs control, °p < 0.05 vs LPS, n = 6 for each animal group). 

4.8 Evaluation of astrocyte-microglia interactions 
Astrocyte-microglia interactions were analyzed in the three animal groups by confocal 

analysis on hippocampal sections immunostained to reveal IBA1 and GFAP (Figures 

35A-C). Confocal images showed that astrocytes projections, in control and LPS rats, 

formed a continuous meshwork extending throughout the CA1 hippocampus (Figure 

35A, B). Both in control and LPS rats, microglia appeared in contact with astrocytes 

projections (Figure 35A1-B1). In CA1 hippocampus of aged rats, astrocytes branches 

were often smaller and with distal fragmentation, a typical sign of clasmatodendrosis, 

thus causing disruption of astrocytic meshwork (Figure 35C1-C2). Generally, microglia 
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were localized within the intact astrocytes meshwork and, in those areas, their 

projections were normally branched (Figure 35C1). Conversely, we found fewer 

microglia within the disrupted astrocytes meshwork showing a typical amoeboid 

morphology (Figure 35C2). These data suggested that in aged rat hippocampus the 

branching of microglia was dependent on astrocyte meshwork integrity. 

 

Figure 35. A-C: Confocal images of control (A), LPS (B), and aged (C) rats immunostained to 
reveal GFAP+ astrocyte meshwork (magenta) and IBA1 in microglia (yellow). Areas of 
astrocyte meshwork disruption are detectable in aged rats. A1-C2: Mgnifications of framed 
areas showing representative microglia in control (A1), LPS (B1) and aged rats (C1-C2) within 
the astrocyte meshwork. 

4.9 Evaluation of integrin-β1 role in astrocyte-microglia interaction 
Sections of hippocampus from the three animal groups were triple immunostained to 

reveal GFAP for astrocytes, IBA1 for microglia, and integrin-β1. Immunofluorescence 

of integrin-β1 in microglia is shown by the red dots (Figure 36A-C) scattered mainly on 

the branches and on the cell body (Figure 36A- C). These data suggested the 

involvement of integrin-β1 in microglia-astrocyte contacts. Quantitative analysis of the 

of immunofluorescence revealed that integrin-β1 expression was higher in LPS than in 

control rats (Figure 36D). Microglia of aged rats showed lower integrin-β1 

immunofluorescence than the other groups, as shown qualitatively by the confocal 

images (Figure 36C) and quantitatively (Figure 36D).  Notably, these quantitative data 

appeared mainly related to damaged microglia population. Ramified microglia were 
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contiguous to healthy astrocytes (Figure 36C1, C1I) and showed high levels of integrin-

β1 immunofluorenbscence (Figure 36C1).  

 

Figure 36. A-C: Z-projections of confocal stacks showing IBA1 (green), GFAP (blue) and 
integrin-β1 (red hot) immunofluorescence in the CA1 hippocampus of control (A), LPS (B) and 
aged (C) rats. A1-C2’) Mgnifications of framed areas selected in A, B and C showing integrin-
β1 immunofluorescence in representative microglia cells from control, LPS and aged rats. 
respectively; GFAP immunofluorescence was omitted to emphasize the localization of integrin-
β1 on microglia (A1, B1, C1-C2). D: Integrin-β1 immunofluorescence (one way ANOVA F(2,12)  
= 40.9, * p < 0.05 vs control, °p < 0.01 vs LPS, n = 5 for each animal group).  

Conversely, amoeboid microglia (Figure 36C2) were close to dystrophic astrocytes 

(Figure 36C2, C2I) and exhibited low integrin-β1 immunofluorescence (Figure 36C2). 

These data provided evidence that low expression of integrin-β1 in aged rats microglia, 

could be correlated with the disruption of the astrocytes projections meshwork and a 

defective microglia-astroglia interaction. 
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Part III - Alzheimer’s disease 

4.10 Quantitative analysis of Aβ plaques deposition in CA1 and CA3 
hippocampus of TgCRND8 mice and evaluation of glial response  
We visualized the plaques by immunohistochemistry using an anti Aβ1-42 antibody 

(green) in hippocampal sections of TgCRND8 at 3 (Tg 3M) and 6 months of age (Tg 

6M). No plaques were ever found in CA1 and CA3 hippocampus of WT mice. Images 

of fluorescent immunostaining were taken in CA1 (Figure 37A-B) and CA3 

hippocampal regions (Figure 37E-F) with confocal microscopy and the quantitative 

analysis of the density of Aβ (plaques/mm2) was performed separately in Str. 

Pyramidalis (SP) and Str. Radiatum (SR).  

The panels in Figure 37A-B and Figure 37E-F show the images of plaques (green) in 

CA1 SP and SR and CA3 SP and SR, respectively. Quantitative analysis showed that in 

CA1 SP (65.8 ± 19.2 plaques/mm2) and SR (247.9 ± 101 plaques/mm2) of Tg 6M the 

density of Aβ plaques was significantly higher than in SP (1.0 ± 0.4 plaques/mm2) and 

SR (10.1 ± 7.8 plaques/mm2) of Tg 3M, respectively. The statistical analysis was 

performed by Student’s t test in CA1 SP (P < 0.05, Tg 6M vs Tg 3M; Tg 3M: n=4; Tg 

6M: n=4) and in CA1 SR (P < 0.05. Tg 6M vs Tg 3M; Tg 3M: n=4; Tg 6M: n=4).  

Quantitative analysis showed that in CA3 SP (62.4 ± 28.3 plaques/mm2) and SR (134.5 

± 46.8 plaques/mm2) of Tg 6M the density of Aβ plaques was significantly higher than 

in SP (0.5 ± 0.25 plaques/mm2) and SR (0.5 ± 0.25 plaques/mm2) of Tg 3M. The 

statistical analysis was performed by Student’s t test in CA2 SP (P < 0.05, Tg 6M vs Tg 

3M; Tg 3M: n=4; Tg 6M: n=4) and in CA3 SR (Student’s t test: *P < 0.05. Tg 6M vs 

Tg 3M; Tg 3M: n=4; Tg 6M: n=5).   

The plaques were then further characterized and quantified subdividing them by size 

into small (S, less than 2500 µm3), medium (M, between 2500 and 7000 µm3), and large 

(L, more than 7000 µm3) in SP or SR of CA1 and CA3, as shown in Figure 37C-D, G-

H. Two way ANOVA statistical analysis on Aβ plaques in CA1 SP of Tg 3M and Tg 

6M revealed a significant main effect for experimental group (F(1,18)=7.156, P<0.05), 

no significant effect for plaque size (F(2,18)=1.084, P>0.05), and Interaction 

(F(2,18)=1.084, P>0.05). Bonferroni post test showed that small plaques (S) in CA1 SP 

of Tg 6M were significantly more numerous than in Tg 3M (*P<0.05 Tg 6M S vs Tg 

3M S). Two way ANOVA statistical analysis on Aβ plaques in CA1 SR of Tg 3M and 

Tg 6M revealed a significant main effect for experimental group (F(1,18)=45.69, 
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P<0.001), no significant effect for plaque size (F(2,18)=0.003925, P>0.05), and 

Interaction (F(2,18)=0.1647, P>0.05). Bonferroni post test showed that small (S), 

medium (M) and large plaques (L) in CA1 SR of Tg 6M were significantly more 

numerous than in Tg 3M (**P<0.01 Tg 6M S, M, L vs Tg 3M S, M, L). Two way 

ANOVA statistical analysis on Aβ plaques in CA3 SP of Tg 3M and Tg 6M revealed a 

significant main effect for experimental group (F(1,18)=10.04, P>0.01), plaque size 

(F(2,18)=6.774, P>0.01), and Interaction (F(2,18)=6.774, P>0.01). Bonferroni post test 

showed that small plaques (S) in CA3 SP of Tg 6M were significantly more numerous 

than in Tg 3M (***P<0.01 Tg 6M S vs Tg 3M S). Two way ANOVA statistical analysis 

on Aβ plaques quantification in CA3 SR of Tg 3M and Tg 6M revealed a significant 

main effect for experimental group (F(1,18)=13.36, P<0.01), plaque size 

(F(2,18)=3.965, P<0.05), and Interaction (F(2,18)=3.965, P<0.05). Bonferroni post test 

showed that small plaques (S) in CA3 SR of Tg 6M were significantly more numerous 

than in Tg 3M (**P<0.01 Tg 6M S vs Tg 3M S). 

Statistical analysis with three way ANOVA with Plaque Size, ROI and Age as the three 

variables was performed between CA1 SP and CA3 SP of Tg 3M and Tg 6M. Results 

showed a significant main effect for Age (F(1,47)=18.01, P<0.001), for Size 

(F(2,47)=7.77, P<0.01), and for Interaction AgexSize (F(2,47)=7.77, P<0.01). 

Bonferroni post test showed that Small plaques (S) in CA3 SP of Tg 6M on average 

were significantly more numerous than in CA1 SP of Tg 6M mice (P<0.05), while 

Medium (M) and Large (L) plaques were not significantly different.  

Statistical analysis with three way ANOVA with Plaque Size, ROI and Age as the three 

variables was performed between CA1 SR and CA3 SR of Tg 3M and Tg 6M. Results 

showed a significant main effect for ROI (F(1,47)=13.16, P<0.01), Age (F(1,47)=77.49, 

P<0.001), for Interaction AgexROI (F(1,47)=9.02, P<0.01), and for Interaction 

AgexSize (F(2,47)=3.63, P<0.05). Bonferroni post test showed that Medium plaques 

(M) and Large plaques (L) in CA1 SR of Tg 6M were on average significantly more 

numerous than in CA3 SR of Tg 6M mice (P<0.05), while Small plaques were not 

significantly different.  

We performed triple immunostaining of astrocytes with GFAP (green), of microglia 

with IBA1 (red), and of plaques using an Aβ1-16 antibody (blue) in area CA1 of a 

TgCRND8 mouse at 6 months of age. The confocal image of the triple immunostaining 

in Figure 37I shows that Aβ plaques (Figure 37I3, asterisks) were surrounded and 

infiltrated by many hypertrophic astrocytes (Figure 37I1, arrows) and microglia cells 
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(Figure 37I2, open arrows). Astrocytes and microglia located more distantly from the 

plaques were in a less reactive state. 

  

Figure 37. Analysis of Aβ1-42 plaques in CA1 and CA3 of Tg 3M and Tg 6M mice, and their 
subdivision by size into Small (S), Medium (M) and Large (L). A-B: Representative confocal 
photomicrographs of Aβ1-42 immunostaining in plaques (green) in CA1 of a Tg 3M (A) and a 
Tg 6M (B) mouse. Scale bar: 100µm. C-D: Quantitative analysis of S, M and L plaques CA1 
SP (C) and SR (D) of Tg 3M and Tg 6M. S plaques were significantly more numerous in CA1 
SP of Tg 6M, while in CA1 SR of Tg 6M mice S, M, and L plaques were significantly more 
numerous than in Tg 3M mice. E-F: Representative confocal photomicrographs of Aβ1-42 
immunostaining in plaques (green) in CA3 of a Tg 3M (E) and a Tg 6M (F) mouse. Scale bar: 
100µm. G-H: Quantitative analysis of S, M and L plaques CA3 SP (G) and SR (H) of Tg 3M 
and Tg 6M. S plaques were significantly more numerous in CA3 SP and CA3 SR of Tg 6M than 
in Tg 3M mice. I-I3: Representative confocal photomicrographs of triple immunostaining of 
astrocytes (I1, green), microglia (I2, red) and Aβ plaques (I3, blue) in CA1 of a Tg 6M (B) 
mouse. The merge is shown in Figure 1I. Scale bar: 40µm Data reported in all graph bars are 
expressed as mean±SEM. 
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4.11 Characterization of astrocytes in CA1 and CA3 hippocampus of 
TgCRND8 mice 
For qualitative and quantitative analyses, astrocytes were visualized by 

immunohistochemistry with anti GFAP antibody (green) in hippocampal sections of 

TgCRND8 at 3 (Tg 3M) and 6 months of age (Tg 6M), and of WT control mice. Images 

of fluorescent immunostaining were taken in CA1 (Figure 38A-C) and CA3 

hippocampal regions (Figure 38G-I) with confocal microscopy, separately. Figure 

38A1-C1 show the magnification of the framed areas in the SR of WT (A), Tg 3M (B) 

and Tg 6M (C) mice. We performed separately in CA1 and CA3 SP and SR the 

qualitative and quantitative analyses to characterize the astrocytes.    

The graphs in Figure 38D-F show the results of the quantitative analyses of astrocytes 

in CA1 SP (Figure 38D) and SR (Figure 38E, F). We found that the density of 

astrocytes significantly increased in SP of Tg mice both at 3 (+43%) and 6 months 

(+65%) of age in comparison to WT mice (Figure 38D). (One-way ANOVA: 

F(2,14)=10.69, P=0.0015; Newman-Keuls post-test: **P<0.01 Tg 3M vs WT, Tg 6M vs 

WT; WT: n=5; Tg 3M: n=6; Tg 6M: n=6). Nevertheless, in CA1 SR we found no 

statistically significant difference of astrocytes density among the three experimental 

groups (WT: 873.0±3.74, Tg 3M: 912.9±41.53, Tg 6M: 860.1±36.24; One-way 

ANOVA: F(2,14)=0.615, P=0.5543). 

Qualitative analysis (Figure 38A1-C1) showed that, in CA1 SR of Tg 3M and Tg 6M, 

astrocytes, although not more numerous than in WT mice, had a different morphology 

from those present in the SR of WT mice. We thus performed further analyses on 

immunofluorescence intensity of GFAP and on the length of primary astrocyte branches 

to compare the morphology of astrocytes among the three experimental groups. We 

found that GFAP immunofluorescence significantly increased in CA1 SR of Tg 3M in 

comparison to WT mice, (+33%), reaching a plateau in CA1 SR of Tg 6M (+32%) 

(Figure 38E). (One-way ANOVA: F(2,11)=19.26, P=0.0003; Newman-Keuls post-test: 

***P<0.001 Tg 3M vs WT, Tg 6M vs WT; WT: n=4; Tg 3M: n=6; Tg 6M: n=4). In 

addition, in CA1 SR the primary branches of Tg 6M astrocytes  were significantly 

longer (+24%) than those of WT mice (Figure 38F) (One-way ANOVA: F(2,13)=3.622, 

P=0.0562; Newman-Keuls post-test: *P<0.05 Tg 6M vs WT;  WT: n=4; Tg 3M: n=6; 

Tg 6M: n=4). Also, in CA1 SR the primary branches of Tg 3M  (+17%) and Tg 6M 

(+32%) astrocytes were both significantly longer than those of WT mice (Figure 38F) 
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(One-way ANOVA: F(2,12)=9.819, P=0.003; Newman-Keuls post-test: *P<0.05 Tg 3M 

vs WT;  **P<0.01 Tg 6M vs WT; WT: n=5; Tg 3M: n=6; Tg 6M: n=4). 

On the contrary, no statistically significant differences were detected in the density of 

astrocytes in SP CA3 of transgenic mice at both 3 (+8% vs WT) and 6 months (+ 5% vs 

WT) of age (Figure 38J) (One-way ANOVA: F(2,14)=0.089, P=0.09150, n.s.; WT: n=5; 

Tg 3M: n=6; Tg 6M: n=6). In addition, the expression of GFAP protein increased 

slightly but not significantly in astrocytes of CA3 SR at both 3 (+13% vs WT) and 6 

months (+ 8% vs WT) of age (Figure 38K) (One-way ANOVA: F(2,9)=0.570, 

P=0.5843, n.s.; WT: n=5; Tg 3M: n=4; Tg 6M: n=3).  

In CA3 SR, we found no statistically significant difference of astrocytes density among 

the three experimental groups (WT: 1308.0±68.30, Tg 3M: 901.8±106.2, Tg 6M: 

1023.0±198.8; One-way ANOVA: F(2,15)=1.675, P=0.2205, n.s.). The length of 

astrocyte branches in CA3 SR of transgenic mice was not statistically different from 

WT mice at both 3 (-3%) and 6 months (-5%) of age (Figure 38L) (One-way ANOVA: 

F(2,12)=0.2175, P=0. 8076, n.s..; WT: n=5; Tg 3M: n=6; Tg 6M: n=4).  

We compared the results obtained in CA1 (Cerbai et al., 2012) to those obtained in CA3 

by two-way ANOVA with ROIs and experimental groups as the two variables. The 

statistical analysis on SP astrocytes density revealed that in WT animals there was no 

significant difference between CA1 and CA3 SP while a significant increase was found 

in CA1 SP of Tg 3M and Tg 6M. Indeed, we found a significant main effect for ROIs 

(ROI, F(1,28)=55.69, P<0.001), experimental groups (F(2,28)=6.626, P<0.01), and a 

significant Interaction (F(2,28)=5.077, P<0.05). Bonferroni post test showed that 

astrocytes density in CA1 SP of Tg 3M (P<0.001 vs CA3 SP) and Tg 6M (P<0.001 vs 

CA3 SP) was significantly higher than in CA3 SP.  

The statistical analysis on GFAP immunofluorescence revealed that in WT animals 

there was no significant difference between CA1 and CA3 SR while a significant 

increase was found in CA1 SR of Tg 3M and Tg 6M. Indeed, we found a significant 

main effect for ROIs (ROI, F(1,20)=29.66, P<0.001), experimental groups 

(F(2,20)=7.654, P<0.01), while the Interaction was not significant (F(2,20)=2.437, n.s.). 

Bonferroni post test showed that GFAP immunofluorescence in CA1 SR of Tg 3M 

(P<0.01 vs CA3 SR) and Tg 6M (P<0.01 vs CA3 SR) was significantly higher than in 

CA3 SR.  
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Figure 38. Analysis of total microglia in CA1 and CA3 of WT, Tg 3M and Tg 6M. A-C: 
Representative confocal photomicrographs of IBA1 immunostaining of microglia (green) in 
CA1 of a WT (A), a Tg 3M (B), and a Tg 6M (C). Scale bar: 100 μm. Panels A1, B1 and C1 
shows the magnification of microglial cells framed in Panels A, B and C. Scale bar: 20 μm. D-
E: Quantitative analysis of microglia/mm2 in CA1 SP (D) and SR (E) of WT, Tg 3M and Tg 
6M. Microglia cells are significantly more numerous in CA1 SR of Tg 6M mice vs WT and Tg 
3M. F-H: Representative confocal photomicrographs of IBA1 immunostaining of microglia 
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(green) in CA3 of a WT (F), a Tg 3M (G), and a Tg 6M (H). Scale bar: 100 μm. I-J: 
Quantitative analysis of microglia/mm2 in CA3 SP (I) and SR (J) of WT, Tg 3M and Tg 6M. 
Microglia cells are significantly more numerous in SP and SR of Tg 6M mice vs WT and Tg 
3M. K: Representative confocal image of microglia cells (green) spatially oriented towards a 
Large Aβ1-42 plaque (blue). The dotted line represents the area used for the quantitative 
analysis of spatially oriented microglia. Scale bar: 20 µm. L-M: Quantitative analysis of 
spatially oriented microglia in CA1 SR (L) and CA3 SR (M), represented as microglia located 
on or within 10 µm around Large plaques (area enclosed in the dotted line in Figure 38K) 
expressed as percent of total microglia. In both CA1 and CA3 SR of Tg 6M mice the percent of 
microglia spatially oriented towards Large plaques was significantly higher than in Tg 3M. Data 
reported in all graph bars are expressed as mean±SEM. 

The statistical analysis on the length of primary astrocytes branches revealed that in WT 

and Tg 3M animals there was no significant difference between CA1 and CA3 SR while 

a significant increase was found in CA1 SR of Tg 6M. Indeed, we found a significant 

main effect for Interaction (F(2,24)=6.044, P<0.01). Bonferroni post test showed that 

the length of primary astrocytes branches in CA1 SR of Tg 6M was significantly higher 

than in CA3 SR (P<0.05).  

4.12 Quantitative analysis of total and reactive microglia in CA1 and 
CA3 hippocampus of TgCRND8 mice 
To perform the quantitative analysis of total microglia on hippocampal sections of 

TgCRND8 (Tg 3M, Tg 6M) and control mice (WT), we immunolabelled microglia with 

anti IBA1 antibody. Images of fluorescent immunostaining were taken in CA1 (Figure 

39A-C) and CA3 hippocampal regions (Figure 39F-H) with confocal microscopy. 

Figure 39A1-C1 show the magnification of the framed areas in the SR of WT (A), Tg 

3M (B) and Tg 6M (C) mice. The quantitative analyses of total microglia were 

performed in CA1 and CA3 SP and SR, separately.   

The graphs in Figure 39D-E show the results of the quantitative analyses of the density 

of IBA1+ microglia in CA1 SP and CA1 SR. In CA1 SP of Tg 6M we found a slight 

(+35%), although not statistically significant, increase of the density of IBA1+ 

microglia in comparison to WT mice (Figure 39D) (One-way ANOVA: F(2,14)=1.252, 

P=0.3161, n. s.; WT: n=6; Tg 3M: n=5; Tg 6M: n=6). However, the density of IBA1+ 

microglia in CA1 SR of Tg 6M significantly increased both in comparison to WT and to 

Tg 3M (+72% vs WT; +43% vs Tg 3M; Figure 39E). (One-way ANOVA: 

F(2,13)=11.23, P=0.0015; Newman-Keuls post-test: **P<0.01 Tg 6M vs WT, ##P<0.01 

Tg 6M vs Tg 3M; WT: n=6; Tg 3M: n=5; Tg 6M: n=5).  

In CA3 SP of Tg 6M mice, we found a statistically significant increase of the density of 

IBA1+ microglia in comparison both to WT and Tg 3M mice (+46% vs WT; +43% vs 
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Tg 3M; Figure 39I). (One-way ANOVA: F(2,13)=6.217, P=0.0127; Newman-Keuls 

post-test: *P<0.05 Tg 6M vs WT, #P<0.05 Tg 6M vs Tg 3M; WT: n=6; Tg 3M: n=5; Tg 

6M: n=5). IBA1+ microglia density increased also in CA3 SR of Tg 6M and the effect 

was statistically significant from both WT and Tg 3M mice. (+48% vs WT; +51% vs Tg 

3M; Figure 39J) (One-way ANOVA: F(2,13)=5.570, P=0.0179; Newman-Keuls post-

test: *P<0.05 Tg 6M vs WT, #P<0.05 Tg 6M vs Tg 3M; WT: n=6; Tg 3M: n=5; Tg 6M: 

n=5).  

Two-way ANOVA analysis demonstrated that IBA1+ microglia density was not 

significantly different in CA1 SP and SR in comparison to CA3 SP and SR of all groups 

examined. 

We studied the spatial orientation of IBA1+ microglia towards Large plaques 

calculating the percent microglia cells located on or within 10 µm around Large plaques 

in CA1 and CA3 SR (see dotted line in Figure 39K which shows a Large plaque in blue 

and microglia cells in green). Quantitative analysis showed that in CA1 and CA3 SR of 

TG 6M mice a highly significant percent of microglia was oriented towards Large 

plaques in comparison to TG 3M (**P<0.01, Tg 6M vs Tg 3M, Student’s t test, Figure 

39L-M). Two-way ANOVA analysis demonstrated that the orientation of IBA1+ 

microglia towards Large plaques was not significantly different in CA1 SR in 

comparison to CA3 SR in all groups examined.  

To visualize reactive microglia, we performed the immunolabelling with anti CD68 

antibody, a marker of reactive microglia cells, on hippocampal sections of TgCRND8 

(Tg 3M, Tg 6M) and control mice (WT). Images of fluorescent immunostaining were 

taken in CA1 (Fig 4A-C) and CA3 hippocampal regions (Fig 4G-I) with confocal 

microscopy and the quantitative analysis of the density of reactive microglia was 

performed in CA1 and CA3 SP and SR, separately. Figs. 6A1-C1 show the 

magnification of the framed areas in the SR of WT (A), Tg 3M (B) and Tg 6M (C) 

mice. 

The graphs in Figure 40D-E show the results of the quantitative analyses of reactive 

microglia in CA1 SP and CA1 SR, respectively. In CA1 SP of Tg 3M and Tg 6M the 

density of reactive microglia increased (+82% and + 347% vs WT, respectively) 

although not significantly, in comparison to WT mice (Figure 40D) (One-way ANOVA: 

F(2,14)=1.395, P=0.2802, n. s.; WT: n=6; Tg 3M: n=5; Tg 6M: n=6). On the contrary, 

in CA1 SR of Tg 6M we found a highly significant increase of the density of microglia 
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in comparison both to WT and Tg 3M mice (+902% vs WT; +636 vs Tg 3M; Figure 

40E). 

 
 
Figure 39. Analysis of total microglia in CA1 and CA3 of WT, Tg 3M and Tg 6M. A-C: 
Representative confocal photomicrographs of IBA1 immunostaining of microglia (green) in 
CA1 of a WT (A), a Tg 3M (B), and a Tg 6M (C). Scale bar: 100 μm. Panels A1, B1 and C1 
shows the magnification of microglial cells framed in Panels A, B and C. Scale bar: 20 μm. D-
E: Quantitative analysis of microglia/mm2 in CA1 SP (D) and SR (E) of WT, Tg 3M and Tg 
6M. Microglia cells are significantly more numerous in CA1 SR of Tg 6M mice vs WT and Tg 
3M. F-H: Representative confocal photomicrographs of IBA1 immunostaining of microglia 
(green) in CA3 of a WT (F), a Tg 3M (G), and a Tg 6M (H). Scale bar: 100 μm. I-J: 
Quantitative analysis of microglia/mm2 in CA3 SP (I) and SR (J) of WT, Tg 3M and Tg 6M. 
Microglia cells are significantly more numerous in SP and SR of Tg 6M mice vs WT and Tg 
3M. K: Representative confocal image of microglia cells (green) spatially oriented towards a 
Large Aβ1-42 plaque (blue). The dotted line represents the area used for the quantitative 
analysis of spatially oriented microglia. Scale bar: 20 µm. L-M: Quantitative analysis of 
spatially oriented microglia in CA1 SR (L) and CA3 SR (M), represented as microglia located 
on or within 10 µm around Large plaques (area enclosed in the dotted line in Figure K) 
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expressed as percent of total microglia. In both CA1 and CA3 SR of Tg 6M mice the percent of 
microglia spatially oriented towards Large plaques was significantly higher than in Tg 3M. Data 
reported in all graph bars are expressed as mean±SEM. 

 
 

Figure 40. Analysis of reactive microglia in CA1 and CA3 of WT, Tg 3M and Tg 6M. A-C: 
Representative confocal photomicrographs of CD68 immunostaining of reactive microglia (red) 
in CA1 of a WT (A), a Tg 3M (B), and a Tg 6M (C). Scale bar: 100 μm. Panels A1, B1 and C1 
shows the magnification of reactive microglial cells framed in Panels A, B and C. Scale bar: 20 
μm. D-E: Quantitative analysis of reactive microglia/mm2 in CA1 SP (D) and CA1 SR (E) of 
WT, Tg 3M and Tg 6M. Microglia cells are significantly more numerous in CA1 SR of Tg 6M 
mice vs WT and Tg 3M. F: Measure of reactive microglia cells volume in CA1 SR (F) of WT, 
Tg 3M and Tg 6M. Reactive microglia cells volume was significantly increase in Tg 6M and Tg 
3M vs WT. G-I: Representative confocal photomicrographs of CD68 immunostaining of 
reactive microglia (red) in CA3 of a WT (G), a Tg 3M (H), and a Tg 6M (I). Scale bar: 100 μm. 
J-K: Quantitative analysis of microglia/mm2 in CA3 SP (J) and SR (K) of WT, Tg 3M and Tg 
6M. Microglia cells are significantly more numerous in SP and SR of Tg 6M mice vs WT. L: 
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Measure of reactive microglia cells volume in CA3 SR (L) of WT, Tg 3M and Tg 6M. Reactive 
microglia cells volume was significantly increase in Tg 6M vs WT. Data reported in all graph 
bars are expressed as mean±SEM. 
 
(One-way ANOVA: F(2,13)=10.77, P=0.0017; Newman-Keuls post-test: **P<0.01 Tg 

6M vs WT, ##P<0.01 Tg 6M vs Tg 3M; WT: n=6; Tg 3M: n=5; Tg 6M: n=5). We 

evaluated the volume of reactive microglia in CA1 SR, and we found a statistically 

significant increase of the average volume of CD68+ microglia in CA1 SR both at 3 

(+487% vs WT)  and 6 months (+626% vs WT) of age, in comparison to WT mice 

(Figure 40F). (One-way ANOVA: F(2,14)=13.84, P=0.0005; Newman-Keuls post-test: 

**P<0.01 Tg 3M vs WT, ***P<0.001 Tg 6M vs WT; WT: n=6; Tg 3M: n=5; Tg 6M: 

n=6). 

Results obtained in CA3 (Figure 40J-L) are in accordance with those in CA1. In CA3 

SP we found a statistically significant increase of the density of reactive microglia in Tg 

6M in comparison to WT and Tg 3M mice. (+1448% vs WT; +339% vs Tg 3M; Figure 

40J) (One-way ANOVA: F(2,14)=4.002, P=0.0422; Newman-Keuls post-test: *P<0.05 

Tg 6M vs WT; WT: n=6; Tg 3M: n=5; Tg 6M: n=6). In addition, in CA3 SR of Tg 6M 

mice reactive microglia significantly increased in comparison to WT (+3395%) (Figure 

40K) (One-way ANOVA: F(2,13)=4.244, P=0.0381; Newman-Keuls post-test: *P<0.05 

Tg 6M vs WT; WT: n=6; Tg 3M: n=5; Tg 6M: n=5). The evaluation of the volume of 

reactive microglia in CA3 SR showed that there was a statistically significant increase 

of the average volume of CD68+ microglia in CA3 SR at 6 months (434% vs WT) of 

age, in comparison to WT mice (Figure 40L). (One-way ANOVA: F(2,14)=8.350, 

P=0.0041; Newman-Keuls post-test: **P<0.01 Tg 6M vs WT, #P<0.05 Tg 6M vs Tg 

3M;  WT: n=6; Tg 3M: n=5; Tg 6M: n=6). 

Two-way ANOVA analysis demonstrated that the CD68+ microglia density was not 

significantly different in CA1 SP and SR in comparison to CA3 SP and SR of all groups 

examined. 

4.13 Analysis of inflammatory mediators in CA1 and CA3 hippocampus 
of TgCRND8 mice 
To verify whether different expression of inflammatory mediators might be present in 

CA1 and CA3, we first performed immunofluorescence staining with anti TNFα 

antibody on hippocampal sections of TgCRND8 (Tg 3M, Tg 6M) and control mice 

(WT). Neurons were counterstained with anti NeuN antibody. Images of fluorescent 

immunostaining were taken in CA1 (Figure 41A-C) and CA3 hippocampal regions 
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(Figure 41F-H) with confocal microscopy and the quantitative analysis of the density of 

TNFα+ cells was performed in CA1 and CA3 SR, separately.  

In CA1 of transgenic mice, TNFα immunostaining increased and was localized mainly 

in astrocyte-like cells evenly scattered throughout the SR. To identify unequivocally the 

type of TNFα+ cells, we performed a double staining immunohistochemistry with anti 

TNFα and anti GFAP antibodies. In CA1 SR of transgenic mice, we found a near 

complete colocalization of TNFα in GFAP+ astrocytes. Figure 41D-D2 show a group of 

TNFα+ astrocytes in the CA1 SR of a Tg 6M mouse. It is evident that all GFAP+ 

astrocytes (D1, red) express TNFα (D2, green), as evidenced by the yellow-orange 

colour in Figure 41D. The graph in Figure 41E shows the results of the quantitative 

analysis of TNFα+ cells in CA1 SR. We found a significant increase of density of 

TNFα+ cells in CA1 SR in Tg 6M (+410% vs WT) in comparison to WT (One-way 

ANOVA: F(2,13)=8.712, P=0.0040; Newman-Keuls post-test: **P<0.01 Tg 6M vs WT, 
#P<0.05 Tg 6M vs Tg 3M; WT: n=6; Tg 3M: n=6; Tg 6M: n=5). In Tg 3M we found a 

slight, not significant increase of TNFα+ cells in comparison to WT (+187% vs WT). 

In CA3 SR of transgenic mice, TNFα immunostaining increased. The double staining 

immunohistochemistry with anti TNFα (Figure 41I2, green), and anti GFAP antibodies 

(Figure 41I1, red) revealed that in CA3 SR of transgenic mice all GFAP+ astrocytes 

expressed TNFα, as evidenced by the yellow-orange colour in Figure 41I. TNFα+ 

astrocytes were quantified in CA3. The results showed that the density of TNFα+ 

astrocytes significantly increased in CA3 SR of Tg 6M in comparison to WT and to Tg 

3M (+1646% vs WT; +393% vs Tg 3M) (Figure 41J). (One-way ANOVA: 

F(2,12)=4.454, P=0.0358; Newman-Keuls post-test: *P<0.05 Tg 6M vs WT, #P<0.05 

Tg 6M vs Tg 3M; WT: n=6; Tg 3M: n=6; Tg 6M: n=3).  In CA3 SR, other structures, 

mainly located towards the DG were also positive for TNFα (Figure 41I2). 

We compared the results obtained in CA1 to those obtained in CA3 by two-way 

ANOVA with ROIs and experimental groups as the two variables.  

The statistical analysis on the density of TNFα+ cells revealed that in WT animals there 

was no significant difference between CA1 and CA3 SR while a significant increase 

was found in CA1 SR of Tg 3M and Tg 6M. Indeed, we found a significant main effect 

for ROIs (ROI, F(1,25)=16.04, P<0.001), experimental groups (F(2,25)=13.94, 

P<0.001), but no significant Interaction (F(2,25)=1.326, n.s.). Bonferroni post test 

showed that astrocytes density in CA1 SR of Tg 3M (P<0.05 vs CA3 SR) and Tg 6M 

(P<0.05 vs CA3 SP) was significantly higher than in CA3 SR.  
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Immunofluorescence staining with anti iNOS antibody (Figure 41 K, K2, green) was 

performed on hippocampal sections of TgCRND8 (Tg 3M, Tg 6M) and control mice 

(WT). Astrocytes were counterstained with anti GFAP antibody (Figure 41 K, K1, red) 

and neurons with anti NeuN antibody (not shown). Images of fluorescent 

immunostaining were taken in CA1 (Figure 41K-K2) and CA3 (not shown) 

hippocampal regions with confocal microscopy and the quantitative analysis of the 

density of iNOS+ cells was performed in CA1 and CA3 SR, separately.  

 

Figure 41. Analysis of TNFα cellular expression in CA1 and CA3 of WT, Tg 3M and Tg6M. 
A-C: Representative confocal photomicrographs of TNFα immunostaining (green) and NeuN 
immunostaining of neurons (red) in CA1 of a WT (A), a Tg 3M (B) and a Tg 6M (C). Scale bar: 
100 μm. D-D2: Double staining immunohistochemistry with anti TNFα (green) and anti GFAP 
(red) antibodies. In CA1 SR we obtained a near complete colocalization of TNFα on astrocytes 
(GFAP+ cells). Scale bar: 25 μm. E: Quantitative analysis of TNFα+ cells/mm2 in CA1 SR. 
TNFα+ cells were significantly more numerous in SR of Tg 6M vs WT mice. F-H: 
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Representative confocal photomicrographs of TNFα immunostaining (green) and NeuN 
immunostaining of neurons (red) in CA3 of a WT (H), a Tg 3M (I) and a Tg 6M (J). Scale bar: 
100 μm. I-I2: Double staining immunohistochemistry with anti TNFα (green) and anti GFAP 
(red) antibodies in CA3 SR of Tg 6M mice. We found partial colocalization of TNFα in 
astrocytes. Scale bar: 25 μm. J: Quantitative analysis of TNFα+ cells/mm2 in CA3 SR. TNFα+ 
cells were significantly more numerous in SR of Tg 6M vs WT mice.  K-K2: Double staining 
immunohistochemistry with anti iNOS (green) and anti GFAP (red) antibodies in CA1 SR of Tg 
6M mice. We found colocalization of iNOS in astrocytes. Scale bar: 25 μm. L: Quantitative 
analysis of iNOS+ cells/mm2 in CA1 SR. iNOS+ cells were significantly more numerous in SR 
of Tg 3M and Tg 6M vs WT mice. M: Quantitative analysis of iNOS+ cells/mm2 in CA3 SR. 
iNOS+ cells were significantly more numerous in SR of Tg 3M vs WT mice. N-N2: Double 
staining immunohistochemistry with anti IL1β (green) and anti GFAP (red) antibodies in CA1 
SR of Tg 6M mice. We found colocalization of IL1β in astrocytes. Scale bar: 25 μm. O: 
Quantitative analysis of IL1β+ cells/mm2 in CA1 SR. IL1β+ cells were significantly more 
numerous in SR of Tg 6M vs WT mice. P: Quantitative analysis of IL1β+ cells/mm2 in CA3 
SR. IL1β+ cells were significantly more numerous in SR of Tg 6M vs WT mice. 

Double labelling confocal microscopy with anti iNOS (Figure 41K2) and anti GFAP 

(Figure 41K1) demonstrated that in CA1 SR of Tg 6M iNOS was expressed GFAP-

positive astrocytes, as evidenced by the yellow-orange colour in Figure 41K (arrows). 

Double labelling confocal microscopy with anti iNOS and anti GFAP demonstrated that 

in CA3 SR of Tg 6M iNOS was expressed in GFAP+ astrocytes (not shown).  

We found a significant increase of iNOS expression in cells in CA1 SR of Tg 3M 

(+51%) and of Tg 6M (+66%) in comparison to WT. The statistical analysis was 

performed on the density of iNOS+ cells in CA1 SR (One-way ANOVA: F(2,13)=5.12, 

P=0.0268; Newman-Keuls post-test: *P<0.05 Tg 3M and, *P<0.05 Tg 6M vs WT; WT: 

n=5; Tg 3M: n=4; Tg 6M: n=5; Figure 41L).  

We found a significant increase of iNOS expression in cells of CA3 SR of Tg 3M 

(+58%), while in Tg 6M iNOS expression in cell was not different from control values 

(+1%) in comparison to WT mice. The statistical analysis was performed on the density 

of iNOS+ cells in CA3 SR (One-way ANOVA: F(2,11)=8.762, P=0.0077; Newman-

Keuls post-test: *P<0.05 Tg 3M vs Tg 6M and WT; WT: n=4; Tg 3M: n=4; Tg 6M: 

n=4; Figure 41M). Both in CA1 SR and CA3 SR iNOS was also expressed in neurons, 

but the effect was not different from WT mice (data not shown).  

We compared the results obtained in CA1 to those obtained in CA3 by two-way 

ANOVA with ROIs and experimental groups as the two variables.  

The statistical analysis on the density of iNOS+ cells revealed that in WT and Tg 3M 

animals there was no significant difference between CA1 and CA3 SR while a 

significant increase was found in CA1 SR of Tg 6M. We found a significant main effect 

for ROIs (F(1,20)=25.23, P<0.001), experimental groups (F(2,20)=6.513, P<0.01), and 
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for Interaction (F(2,20)=3.540, P<0.05). Bonferroni post test showed that the density of 

iNOS+ cells in CA1 SR of Tg 6M was significantly higher than in CA3 SR (P<0.001).  

Immunofluorescence staining with anti IL1β antibody (Figure 41N, N2, green) was 

performed on hippocampal sections of TgCRND8 (Tg 3M, Tg 6M) and control mice 

(WT). Astrocytes were counterstained with anti GFAP antibody (Figure 41N, N1, red) 

and microglia with anti CD68 antibody (not shown).  

Images of fluorescent immunostaining were taken in CA1 (Figure 41N-N2) and CA3 

hippocampal regions (not shown) with confocal microscopy and the quantitative 

analysis of the density of + cells were performed in CA1 and CA3 SR, separately. 

Double labelling confocal microscopy with anti IL1β (Figure 41N2) and anti GFAP 

(Figure 41N1) demonstrated that in CA1 SR of Tg 6M, IL1β was expressed in GFAP+ 

astrocytes, as evidenced by the yellow-orange colour in Figure 41N (arrows). Double 

labelling confocal microscopy with anti IL1β and anti GFAP demonstrated that in CA3 

SR of Tg 6M, IL1β was expressed in GFAP+ astrocytes (not shown).  

We found a slight increase of IL1β expression in cells in CA1 SR of Tg 3M (+25%, not 

significant) and a significant increase in CA1 SR of Tg 6M (+83%) in comparison to 

WT mice. The statistical analysis was performed on the density of IL1β+ cells in CA1 

SR (One-way ANOVA: F(2,11)=5.733, P=0.0248; Newman-Keuls post-test: *P<0.05 

Tg 6M vs WT; WT: n=4; Tg 3M: n=3; Tg 6M: n=5; Figure 41O).  

We found a slight significant increase of IL1β expression in cells of CA3 SR of Tg 3M 

(+28%, not significant), while in Tg 6M IL1β expression in cells was significantly 

higher than in WT (+122%). The statistical analysis was performed on the density of 

IL1β+ cells in CA3 SR (One-way ANOVA: F(2,11)=4.730, P=0.0394; Newman-Keuls 

post-test: *P<0.05 Tg 6M vs WT; WT: n=4; Tg 3M: n=3; Tg 6M: n=5; Figure 41P).  

Two-way ANOVA analysis demonstrated that IL1β expression in cells was not 

significantly different in CA1 SR in comparison to CA3 SR of all groups examined. 

Both in CA1 SR and CA3 SR IL1β was also expressed in microglia, but the effect was 

not different from WT mice (data not shown).  

4.14 Characterization of neurons in CA1 and CA3 pyramidal layers in 
TgCRND8 mice  
We evaluated the time-course of the extent of damage of CA1 and CA3 pyramidal 

neurons in Tg mice using the immunohistochemical staining of neurons with anti NeuN 

antibody (red) on hippocampal sections of TgCRND8 mice at 3 (Tg 3M) and 6 months 
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of age (Tg 6M) and of WT control mice. Images of fluorescent immunostaining were 

taken in CA1 (Figure 42A-C) and CA3 hippocampal regions (Figure 42H-J) with 

confocal microscopy and the quantitative analyses of the density (Figure 42D) and the 

volume of pyramidal neurons (Figure 42F), and of thickness of the pyramidal layer 

(Figure 42E) were performed.  

The graphs in Figure 42D-F show the results of the quantitative analyses in CA1. The 

density of neurons was significantly lower in CA1 SP of Tg mice at 3 (-15% vs WT) 

and 6 months (-28% vs WT) of age than in CA1 of WT mice (Figure 42D). (One-way 

ANOVA: F(2,12)=9.552, P=0.0033; Newman-Keuls post-test: **P<0.01 Tg 6M vs WT, 

*P<0.05 Tg 3M vs WT, #P<0.05 Tg 6M vs Tg 3M; WT: n=5; Tg 3M: n=6; Tg 6M: 

n=4). Consistently, we found a reduction of CA1 SP thickness in 3 (-12%) and 6 months 

(-40%) aged Tg mice in comparison to WT mice (Figure 42E). The effect was 

statistically significant at 6 months of age only (One-way ANOVA: F(2,10)=4.658, 

P=0.0372; Newman-Keuls post-test: *P<0.05 Tg 6M vs WT; WT: n=4; Tg 3M: n=5; Tg 

6M: n=4). Also, we found a statistically significant reduction of the average volume of 

CA1 pyramidal neurons both at 3 (-36% vs WT) and 6 months (-42% vs WT) of age in 

comparison to WT mice (Figure 42F). (One-way ANOVA: F(2,12)=23.50, P<0.0001; 

Newman-Keuls post-test: ***P<0.001 Tg 3M vs WT,  Tg 6M vs WT; WT: n=5; Tg 

3M: n=6; Tg 6M: n=4).  

Correlation analysis between the number of CA1 Pyramidal neurons and the thickness 

of CA1 Pyramidal layer is shown in the graph in Figure 42G. We found a highly 

significant correlation between the two parameters (**P=0.01, R2=0.5763; WT: n=5; Tg 

3M: n=6; Tg 6M: n=4). 

We analysed the density of CA3 pyramidal neurons, their volume and the thickness of 

CA3 SP. Surprisingly, the density of CA3 pyramidal neurons in SP of Tg 3M and Tg 

6M (-8% vs WT, Figure 42K) (One-way ANOVA: F(2,12)=2.933, P=0.0918, n.s.; WT: 

n=5; Tg 3M: n=6; Tg 6M: n=4) and the thickness of the pyramidal layer (+19% vs WT, 

Figure 42L) (One-way ANOVA: F(2,12)=1.897, P=0.1923, n.s.; WT: n=5; Tg 3M: n=6; 

Tg 6M: n=4) were not significantly different from WT mice. 
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Figure 42. Analysis of neurons in CA1 and CA3 of WT, Tg 3M and Tg 6M. A-C: 
Representative confocal photomicrographs of NeuN immunostaining of neurons (red) in CA1 of 
a WT (A), a Tg 3M (B) and a Tg 6M (C). Scale bar: 60 μm. D: Quantitative analysis of 
neurons/mm2 in CA1 SP (D) of WT, Tg 3M and Tg 6M. Neurons were significantly less 
numerous in SP of Tg 6M and Tg 3M vs WT mice. E: Measure of thickness of CA1 SP (E) of 
WT, Tg 3M and Tg 6M. Thickness of CA1 SP was significantly reduced in Tg 6M vs WT. F: 
Measure of neurons volume in CA1 SP (F) of WT, Tg 3M and Tg 6M. Neurons volume was 
significantly reduced in Tg 6M and Tg 3M vs WT. G: Correlation analysis between number of 
CA1 SP neurons and CA1 SP thickness. There is a highly significative correlation. H-J: 
Representative confocal photomicrographs of NeuN immunostaining of neurons (red) in CA3 of 
a WT (H), a Tg 3M (I) and a Tg 6M (J). Scale bar: 60 μm. K: Quantitative analysis of 
neurons/mm2 in CA3 SP (K) of WT, Tg 3M and Tg 6M. There are no significant differences in 
SP of Tg 6M and Tg 3M vs WT mice. L: Measure of thickness of CA3 SP (L) of WT, Tg 3M 
and Tg 6M. There are no significant differences in thickness of CA3 SP of Tg 6M and Tg 3M 
vs WT. M: Measure of neurons volume in CA3 SP (M) of WT, Tg 3M and Tg 6M. There are no 
significant differences in neurons volume in CA3 SP of Tg 6M and Tg 3M vs WT. Data 
reported in all graph bars are expressed as mean±SEM. 
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Also, the average volume of CA3 pyramidal neurons of transgenic mice at 3 and 6 

months of age was not significantly different from WT mice (Figure 42M) (One-way 

ANOVA: F(2,12)=1.268, P=0.3165, n.s.; WT: n=5; Tg 3M: n=6; Tg 6M: n=4), as 

shown by the statistical analysis , as shown by the statistical analysis. 

4.15 Quantitative analysis of apoptotic neurons in CA1 and CA3 
hippocampus of TgCRND8 mice 

We performed a double staining immunohistochemistry with anti CytC (red) and anti 

NeuN (green) antibodies on hippocampal sections of TgCRND8 at 3 (Tg 3M) and 6 

months of age (Tg 6M) and of WT control mice. Images of fluorescent immunostaining 

were taken in CA1 (Figure 43A-C, A1-C1) and CA3 hippocampal regions (Figure 43F-

H, F1-H1) with epifluorescence microscopy. Figure 43D-D2 shows a CytC+ neuron 

(arrow) in CA1 SP at a higher magnification, acquired with laser confocal microscopy.  

We performed the quantitative analyses of apoptotic neurons in CA1 and CA3 SP. We 

found a statistically significant increase of density of apoptotic neurons in CA1 of Tg 

mice at 3 (+129%) and 6 months (+82%) of age in comparison to WT mice (Figure 

43E). (One-way ANOVA: F(2,13)=9.956, P=0.0024; Newman-Keuls post-test: 

**P<0.01 Tg 3M vs WT, *P<0.05 Tg 6M vs WT; WT: n=4; Tg 3M: n=6; Tg 6M: n=6).  

The analysis of CytC+ neurons performed in CA3 SP showed a slight, not statistically 

significant increase at 6 months of age (+36%) in comparison to WT mice, as shown by 

qualitative (Figure 43F-H1) and quantitative analyses (Figure 43I) (One-way ANOVA: 

F(2,12)=0.890, P=0.4362, n.s.; WT: n=4; Tg 3M: n=6; Tg 6M: n=5).  

We compared the results obtained in CA1 to those obtained in CA3 by two-way 

ANOVA with ROIs and experimental groups as the two variables.  

Two-way ANOVA analysis demonstrated that apoptotic neurons were not significantly 

different in CA1 SP in comparison to CA3 SP of all groups examined (WT, Tg 3M and 

Tg 6M). Nevertheless, the percent increase of apoptotic neurons in CA1 SP of Tg 3M 

and Tg 6M was significantly higher than in CA3 SP (see Table 8). 
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Figure 43. Analysis of apoptotic neurons in CA1 and CA3 of WT, Tg 3M and Tg 6M. A-C1: 
Representative epifluorescence photomicrographs of Cyt C immunostaining of apoptotic 
neurons (red) and NeuN immunostaining of neurons (green) in CA1 SP of WT (A-A1), a Tg 3M 
(B-B1) and a Tg 6M (C-C1). The arrows in A1, B1 and C1 point to apoptotic neurons in CA1 
SP. Scale bar: 100 μm. D-D2: Confocal magnification of apoptotic neurons in CA1 SP of a Tg 
6M. Scale bar: 30 µm. E: Quantitative analysis of apoptotic neurons/mm2 in CA1 SP of WT, Tg 
3M and Tg 6M. Apoptotic pyramidal neurons were significantly more numerous in SP of Tg 
3M and Tg 6M vs WT mice. F-H1: Representative epifluorescence photomicrographs of Cyt C 
immunostaining of apoptotic neurons (red) and NeuN immunostaining of neurons (green) in 
CA3 SP of WT (F-F1), a Tg 3M (G-G1) and a Tg 6M (H-H1). The arrows in F1, G1 and H1 
point to apoptotic neurons in CA3 SP. Scale bar: 100 μm. I: Quantitative analysis of apoptotic 
neurons/mm2 in CA3 SP of WT, Tg 3M and Tg 6M. There are no significant differences in SP 
of Tg 6M and Tg 3M vs WT mice. Data reported in all graph bars are expressed as mean±SEM 

4.16 Analysis of neuron-astrocytes-microglia triad in CA1 and CA3 
hippocampus of TgCRND8 mice 
To evaluate the presence of neuron-astrocytes-microglia triads in CA1 and CA3 SR, we 

performed triple staining immunohistochemistry with anti NeuN, anti GFAP and anti 

IBA1 antibodies on hippocampal sections of TgCRND8 (Tg 3M, Tg 6M) and control 

mice (WT). Images of fluorescent immunostaining were taken in CA1 (Figure 44A-C) 
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and CA3 (Figure 44D-F) hippocampal regions with confocal microscopy and the 

quantitative analysis of the density of the triads was performed in CA1 and CA3 SR.  

 
 
Figure 44. Characterization and quantification of the neuron-astrocyte-microglia triads in CA1 
and CA3 SR of WT, TG 3M and TG 6M mice. A-C: Representative confocal photomicrographs 
of triple immunostaining of neurons (NeuN, red), astrocytes (GFAP, green) and microglia 
(IBA1, blue) in the CA1 SR of a WT(A), a TG 3M (B), and of a TG 6M mouse (C). Scale bar: 
40 µm. D-F: Representative confocal photomicrographs of triple immunostaining of neurons 
(NeuN, red), astrocytes (GFAP, green) and microglia (IBA1, blue) in the CA3 SR of a WT(D), 
a TG 3M (E), and of a TG 6M mouse (F). Scale bar: 40 µm. Examples of triads in Tg 3M and 
Tg 6M are shown in the framed areas (B-C, E-F). In WT mice (A-D) groups of neuron-
astrocyte-microglia not considered as triads are pointed by arrows. G-H: Quantitative analysis 
of neuron-astrocyte-microglia triads/mm2 in CA1 (G) and CA3 (H) SR. Triads are significantly 
more numerous in CA1 SR of Tg 6M vs WT mice. In CA3 SR, triads are significantly more 
numerous in Tg 3M and Tg 6M than in WT mice. Data reported in all graph bars are expressed 
as mean±SEM. 
 

The presence of triads in CA1 and CA3 SR is shown qualitatively in Fig 8A-C and 8 D-

E, respectively. The Quantitative analysis of triads in CA1 SR is shown in the graph in 

Figure 44G. We found a statistically significant increase of triads density in CA1 SR of 
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Tg 6M (+ 674%) in comparison with WT mice (One-way ANOVA: F(2,8)=12.66, 

P=0.0033; Newman-Keuls post-test: **P<0.01 Tg 6M vs WT, ##P<0.01 Tg 6M vs Tg 

3M; WT: n=3; Tg 3M: n=4; Tg 6M: n=4).  

In CA3 SR, we found a statistically significant increase of triads density both in Tg 3M 

(+111%) and Tg 6M (+170%) in comparison to WT mice (Figure 44H). (One-way 

ANOVA: F(2,9)=11.55, P=0.0033; Newman-Keuls post-test: *P<0.05 Tg 3M vs WT, 

**P<0.01 Tg 6M vs WT; WT: n=4; Tg 3M: n=4; Tg 6M: n=4).  

We compared the results obtained in CA1 to those obtained in CA3 by two-way 

ANOVA with ROIs and experimental groups as the two variables.  

The statistical analysis on the density of triads revealed that in WT and Tg 3M animals 

there was no significant difference between CA1 and CA3 SR while a significant 

increase was found in CA1 SR of Tg 6M. Indeed, we found a significant main effect for 

experimental groups (F(2,17)=21.97, P<0.001), and for Interaction (F(2,17)=5.134, 

P<0.05), but not for ROIs (F(1,17)=3.148; n.s.). Bonferroni post test showed that the 

density of triads in CA1 SR of Tg 6M was significantly higher than in CA3 SR 

(P<0.01).  

4.17 Comparisons between CA1 and CA3  

The most salient differences between CA1 and CA3 are reported in Table 8. Each 

column represents the percent variation, normalized to the control values found in WT 

mice, of each parameter investigated in transgenic mice at 3 and 6 months of age. The 

differences between the parameters investigated in CA1 and CA3 at 3 or 6 months of 

age, were then evaluated using the Student’s t test. It is evident from the data in the 

table that astrogliosis was higher in CA1, both in terms of density of astrocytes and of 

length of astrocyte branches. The number of IBA1+ microglia did not vary significantly 

between the two areas, while CD68+ microglia was more pronounced in both SP and 

SR of CA3.  TNFα showed a very peculiar characteristic: it was expressed by astrocytes 

in CA1 SR, while in CA3 it was present not only in astrocytes, but also in other 

structures. The percent variation of iNOS was higher in CA1 SR at 3 months of age, 

while that of IL1β varied similarly in CA1 and CA3 SR at 3 and 6 months of age. CA1 

pyramidal neurons of transgenic mice were significantly smaller and less numerous than 

those of WT mice, causing significant shrinkage of CA1 SP. On the contrary, CA3 

pyramidal neurons of transgenic mice did not change significantly, in terms of both 

number and volume and did not show significant increase of apoptosis, even at 6 
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months of age. The decrease of CA1 pyramidal neurons possibly was caused, at least in 

part, by increase of apoptotic mechanisms, which indeed were significantly more 

pronounced in CA1 than in CA3 SP. Interestingly, neuron-astrocytes-microglia triads 

were more numerous in CA1 SR than in CA3 SR. Astrocytes and microglia, forming 

triads with neurons, help clearing apoptotic and degenerating neurons at higher degree 

in CA1, in comparison to CA3.  

Table 8. Differences between CA1 and CA3 in all parameters investigated. 

All data represent percent differences from WT, taken as 100%. *P<0.05; **P<0.01; 
***P<0.001 in comparison to CA3 (Student’s t test). 

 Tg 3M  Tg 6M 
 CA1 CA3 CA1 CA3  
Density of astrocytes in SP +43 +8 +65** +5 
Intensity of GFAP in SR +33 +13 +32 +8 
Length of astrocyte branches in SR +17** -3 +32** -5 
Density of IBA1+ microglia in SP +7 +2 +35 +46 
Density of IBA1+ microglia in SR +1 -2 +72 +48 
Density of CD68+ microglia in SP +82 +252 +347* +1,448 
Density of CD68+ microglia in SR +36 +940 +902* +3,395 
Volume of CD68+ microglia in SR + 487* +170 +626 +434 
Density of triads in SR +219 +111 +674** +170 
Density of TNF-α+ cells in SR +187 +254 +410 +1646 
iNOS +50.75 +58.86 +65.87* +1.342 
IL1β +25.11 +28.38 +83.55 +122.5 
Density of Cyt C+ neurons in SP +129*** +10 +82 +36 
Density of neurons in SP -15** +7 -28** -8 
Volume of neurons in SP -36*** +5 -42*** +8 
Thickness of SP -12** +19 -40* +3 
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IN VIVO AND IN VITRO MODELS OF BRAIN ISCHEMIA 

Part IV – In vivo model of ischemia 

4.18 Analysis of neurons and neuronal debris in CA3 Stratum 
Pyramidale, Stratum Lucidum and Stratum Radiatum of sham, 2VO-
vehicle, and 2VO-dipyridamole treated rats 
 
In order to evaluate whether chronic ischemia may cause loss of neurons in area CA3 of 

the hippocampus, we performed an analysis of neurons immunolabelled with anti NeuN 

antibody in SP, SL and SR of CA3 of sham (SHAM), 2VO-vehicle, and 2VO-

dipyridamole treated rats (Figure 45A-C).  

Our results demonstrated that there was no significant decrease of CA3 pyramidal 

neurons in the hippocampus of 2VO-vehicle in comparison to controls (One-way 

Anova: F(2,14)=0.9879, ns, Figure 45D).  

It has been reported that SL of area CA3 is mainly a-neuronal (Amaral and Lavenex, 

2007). Nevertheless, immunostaining of neurons using the anti NeuN antibody revealed 

the presence of numerous neurons, that we defined “ectopic”, scattered throughout the 

SL of 2VO-vehicle and 2VO-dipyridamole treated rats. Quantitative analysis in Figure 

45F (plain columns) showed that ectopic neurons were significantly more numerous in 

the SL of 2VO-vehicle rats (+78%) and of 2VO-dipyridamole treated rats (+140%) in 

comparison to sham rats (One-way ANOVA: F(2,13)=15.14, P<0.001; Newman-Keuls 

post test: *P<0.05 2VO-vehicle vs sham, ***P<0.001 2VO-dipyridamole treated rats vs 

Sham). 

Ectopic neurons were significantly more numerous in SR of 2VO-vehicle (+103%) and 

of 2VO-dipyridamole treated rats (+98%) in comparison to sham rats (One-way 

ANOVA, F(2,14)=29.65, P<0.001, Newman-Keuls post test, ***P<0.001 2VO-

dipyridamole treated rats vs Sham, 2VO-vehicle vs Sham). In both SL and SR, we 

found no significant differences in the number of ectopic neurons between 2VO-vehicle 

and 2VO-dipyridamole treated rats.  

It has been described that interneurons in the CA3 SL are calretinin+ and are known to 

be sensitive to ischemia (Freund and Magloczky, 1993; Hsu and Buszaki, 1993). We 

thus performed calretinin immunostaining of CA3 interneurons (Molgaard et al., 2014). 

The anti calretinin antibody revealed the presence of many interneurons, mainly located 
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in SL CA3, as shown in Figure 45E-E3. Quantitative analysis in Figure 45F (hatched 

columns) showed that the density of calretinin+ interneurons was not different in 2VO-

vehicle rats or in 2VO-dipyridamole treated rats in comparison to sham rats in both SL 

and SR. On the other hand, statistical analysis showed that calretinin+ interneurons 

were significantly less numerous than ectopic neurons in SL of 2VO-vehicle rats or in 

2VO-dipyridamole treated rats and in SR of sham and 2VO-vehicle rats or in 2VO-

dipyridamole treated rats (# P < 0.05 and ## P < 0.01 vs ectopic neurons, two-tailed 

Student’s t test, Figure 45F). These latter results indicated that the increased ectopic 

neurons in 2VO-vehicle rats or in 2VO-dipyridamole treated rats were not calretinin+ 

interneurons. From the graph in Figure 45F it is also evident that calretinin+ 

interneurons were significantly more numerous in SL than in SR of all experimental 

groups. 

As already demonstrated (Cerbai et al., 2012; Lana et al., 2014), astrocytes branches 

infiltrating the neuronal cell body seem to be fragmenting ectopic neurons to form 

neuronal debris, thus cooperating with the microglia in phagocytic events (see below). 

NeuN staining revealed the presence of neuronal debris (Figure 46A and see 

Methodological considerations) scattered throughout the CA3 SL and SR of sham, 

2VO-vehicle and 2VO-dipyridamole rats. Figure 46A shows a magnification of the 

framed area in Figure 46B. The dotted circles evidence the dimensions of neuronal 

debris in comparison to a neuron (open arrow). In the GFAP and NeuN double stained 

slice shown in Figure 46B, which represents a sub-slice obtained stacking 15 

consecutive confocal z scans (0.3 µm each, total thickness 4.5 µm) starting at a depth of 

3 µm into the slice, it is clearly visible a neuronal debris closely apposed to GFAP+ 

astrocyte branches (dotted circle). In the Figures 46 A-B it is also possible to appreciate 

the size difference between the debris and a healthy neuronal cell body (open arrow). 

Quantitative analysis showed that neuronal debris were significantly more numerous in 

CA3 SL of 2VO-vehicle rats (+103%) than in sham rats (Figure 46C) and this effect 

was reverted in 2VO-dipyridamole rats (+29%), as shown by statistical analysis (one 

way ANOVA F(2,11)=8.654; P=0.0055; *P<0.05 vs the two other groups, Newman-

Keuls Multiple Comparison Test). Quantitative analysis in SR showed that neuronal 

debris were significantly more numerous in CA3 SR of 2VO-vehicle rats (+82%) than 

in sham rats and this effect was reverted in 2VO-dipyridamole rats (+33%), as shown by 

statistical analysis (one way ANOVA F(2,12)=8.133; P<0.0059; * P<0.001 vs the two 

other groups, Newman-Keuls Multiple Comparison Test) (Figure 46C). From the graph 
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in Figure 46C it is also evident that neuronal debris were significantly more numerous 

in SL than in SR of all experimental groups.  

 

 
 
Figure 45. Immunohistochemical analysis of neurons with anti NeuN antibody in SP, SL and 
SR of CA3 of sham, 2VO-vehicle and 2VO-dipyridamole rats. A-C: Representative 
photomicrographs of NeuN immunostaining (red) of neurons in CA3 of sham (A), 2VO-vehicle 
(B), and 2VO-dipyridamole rats (C). The white lines indicate the borders of CA3 subregions SP, 
SL and SR.  Scale bar: 80 µm. D: Quantitative analysis of NeuN+ pyramidal neurons 
(cells/mm2) in CA3 SP of sham (white columns), 2VO-vehicle (grey columns) and 2VO-
dipyridamole rats (black columns). Data in graph bars are mean±SEM. SP: sham, n=5; 2VO-
vehicle, n=5; 2VO-dipyridamole, n=5. E-E3:  Representative photomicrographs of double 
immunostaining for neurons (red) and interneurons with anti calbinding antibody (green, open 
arrows) in CA3 SP, SL and SR of a 2VO-vehicle rat. Scale bar: 60 µm. E1-E3: Magnification 
of the framed area in panel E showing the calretinin interneurons (open arrows, E1) and ectopic 
neurons (E2, white arrows. Scale bar: 30 µm. F: Quantitative analysis of NeuN+ ectopic 
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neurons (cells/mm2) and calretinin+ interneurons in CA3 SL and SR of sham (white columns), 
2VO-vehicle (grey columns) and 2VO-dipyridamole rats (black columns). Data in graph bars 
are mean±SEM. SL: sham, n=4; 2VO-vehicle, n=5; 2VO-dipyridamole, n=5. SR: sham, n=5; 
2VO-vehicle, n=5; 2VO-dipyridamole, n=5. Ectopic neurons: plain columns; Calretinin+ 
interneurons: hatched columns. Please note the different range of the Y-axis between panels D 
and F. 

 
Figure 46. Examples of neuronal debris. A: magnification of the framed image in Figure 2B 
showing the size difference between a neuron (open arrow) and neuronal debris (circles). Scale 
bar: 15 µm. B: double immunofluorescent staining of astrocytes (GFAP, green) and neurons 
(NeuN, red) that shows a neuronal debris (circle) closely apposed to astrocyte branches. Scale 
bar: 10 µm. C: Quantitative analysis of NeuN+ neuronal debris (debris/mm2) in CA3 SL and SR 
of sham (white columns), 2VO-vehicle (grey columns) and 2VO-dipyridamole rats (black 
columns). Data in graph bars are mean±SEM. SL: sham, n=5; 2VO-vehicle, n=4; 2VO-
dipyridamole, n=5. SR: sham, n=5; 2VO-vehicle, n=5; 2VO-dipyridamole, n=5. 
 

4.19 Analysis of apoptotic neurons in CA3 stratum pyramidale of sham, 
2VO-vehicle, and 2VO-dipyridamole treated rats 
It was previously demonstrated, in a similar animal model of chronic hypoperfusion, 

that CA1 pyramidal neurons undergo apoptotic death between 2 and 25 weeks after the 

onset of 2VO (Bennett et al., 1998; Lana et al., 2014). Therefore, in order to verify in 

our model whether CA3 pyramidal neurons were also undergoing apoptsis, 

hippocampal sections from sham, 2VO-vehicle, and 2VO-dipyridamole rats were triple 
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immunostained with anti NeuN for neurons (green), with anti CytC for apoptosis (red), 

and with anti IBA1 for microglia (blue) (Figure 47). The presence of a diffuse CytC 

immunostaining in the cytoplasm is highly visible in some pyramidal neurons of CA3 

SP (open arrows in Figure 47A-C, that show the merged immunostaining of NeuN and 

CytC). Figure 47D represents the magnification of the framed area in Figure 47B 

showing the diffuse CytC immunostaining in the cytoplasm of two apoptotic neurons. 

All CytC+ cells in SP were neurons since they were also NeuN+. CytC+ neurons in SP 

were counted 

 

 
 

Figure 47. Analysis of apoptotic pyramidal neurons in CA3 SP of sham, 2VO-vehicle and 
2VO-dipyridamole rats. A-C: Representative photomicrographs of double immunostaining for 
neurons (green) and cytochrome C (red) in CA3 SP of sham (A), 2VO-vehicle (B), and 2VO-
dipyridamole rats (C). The white lines indicate the borders of the CA3 subregion SP. Open 
arrows point to apoptotic neurons in CA3 SP. The white arrow in panel B shows a CytC+ 
ectopic neuron. Scale bar: 80 µm. D: Magnification of the framed area in panel B showing the 
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CytC immunostaining of two apoptotic neurons. Scale bar: 10 µm. E: Quantitative analysis of 
CytC+ NeuN+ apoptotic neurons (cells/mm2) in CA3 SP of sham (white columns), 2VO-vehicle 
(grey columns) and 2VO-dipyridamole rats (black columns). Data in graph bars are mean±SEM. 
SP: sham, n=4; 2VO-vehicle, n=5; 2VO-dipyridamole, n=5. F: Representative confocal 
immunostaining of neurons (NeuN, green), CytC (red), and microglia (IBA1, blue) in CA3 SP 
of 2VO-dipyridamole rats. The panels show a neuron “sub-slice” of 10 consecutive confocal z 
scans, total thickness 3 µm, acquired starting at 1.8 µm depth into the neuron. The white arrow 
shows a microglia cell (blue) that approaches an apoptotic neuron, sending its branches to 
phagocytose the it (open arrow). Scale bar: 5 μm. G1-G3: Representative confocal 
immunostaining of neurons (NeuN, green) and microglia (IBA1, blue) in CA3 SP of 2VO-
dipyridamole rat. The panels show a neuron “sub-slice” of 33 consecutive confocal z scans, 
total thickness 9.9 µm, acquired starting at 3 µm depth into the neuron. sub-slice of 33 
consecutive confocal z scans of NeuN (green, G1) and IBA1 (blue, G2) immunostaining and the 
merge of the two previous images (G3). The empty arrow shows a microglia that actively 
phagocytoses a CA3 pyramidal neuron. Scale bar: 7.5 μm. H1-H):  sub-slice of 8 consecutive 
confocal z scans of NeuN (green, H1) and IBA1 (blue, H2) immunostaining and the merge of 
the two previous images (H3). The open arrow shows a microglia that actively phagocytoses a 
neuron in CA3 Str. Radiatum. Scale bar: 10 μm.  

Quantitative analysis shown in Figure 47E demonstrates that CytC+ neurons were 

significantly more numerous in 2VO-vehicle rats (+82%) than in sham rats and 

dipyridamole significantly reverted this effect (2VO-dipyridamole +9% vs sham, n.s.), 

as shown by statistical analysis (One-way ANOVA: F(2,11)=5.697, *P=0.02; Newman-

Keuls post test: *P<0.05 2VO-vehicle vs sham, #P<0.05 2VO-dipyridamole vs 2VO-

vehicle rats). The white arrows in panel 47B show CytC+ ectopic neurons (red). 

In order to verify whether CytC+ neurons, undergoing apoptosis, were phagocytosed by 

microglia, sections were triple immunostained with anti NeuN for neurons (green), anti 

CytC (red), and with anti IBA1 for microglia (blue) (Figure 47F). The image 47F shows 

a sub-slice of a neuron, obtained from 10 consecutive confocal z scans (total thickness 3 

μm) acquired starting at a depth of 1.8 μm into the neuron, showing the internal part of 

the cell. The presence of a diffuse CytC immunostaining in the cytoplasm indicates that 

the cell is undergoing apoptosis. The merge of the three confocal scans shows that the 

apoptotic CytC+ neuron was in contact with a microglial cell (blue, white arrow). The 

image is a clear example of a microglial cell projecting its branches to surround and to 

infiltrate the neuronal cell body.  

The images in Figure 47G1-G3 show immunostaining with anti NeuN for neurons 

(green), and with anti IBA1 for microglia (blue) of CA3 SP of 2VO-dipyridamole rat. 

The image is a sub-slice obtained from 33 consecutive confocal z scans (thickness 9.9 

μm) acquired starting at a depth of 3.0 μm into the neuron indicated by the open arrow 

(Figure 47G1), showing the internal part of the cell. The merge of the two images shows 

that a microglial cell is in the act of phagocytosing the pyramidal neuron (open arrows, 
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Figure 47G3). The image is again a clear example of a microglial cell projecting its 

branches to surround and to infiltrate the neuronal cell body. The neuron shows signs of 

degeneration. 

The images in Figure 47H1-H3 show immunostaining with anti NeuN for neurons 

(green), and with anti IBA1 for microglia (blue) of CA3 SR of 2VO rat. The image is a 

sub-slice obtained from 8 consecutive confocal z scans (thickness 2.4 μm) acquired 

starting at a depth of 6.0 μm into the neuron, indicated by the open arrow, showing the 

internal part of the cell. The merge of the two images shows that a microglial cell is in 

the act of phagocytosing the ectopic neuron (open arrows, Figure 47H3). The image is 

an example of a microglial cell projecting its branches to surround and to infiltrate the 

neuron which does not appear to have any sign of degeneration. 

4.20 Analysis of astrocytes in CA3 Stratum Pyramidale, Stratum 
Lucidum and stratum radiatum of sham, 2VO-vehicle, and 2VO-
dipyridamole treated rats 

Astrocytes were immunolabelled with anti GFAP antibody (Figures 48A-C) and 

quantified in CA3 SP, SL e SR of sham, 2VO-vehicle, and 2VO-dipyridamole rats.  

We found a statistically significant increase of astrocytes in SP of 2VO-vehicle (+15%) 

and 2VO-dipyridamole rats (+45%) compared to sham rats, as shown in Figure 48D by 

statistical analysis (One-way ANOVA: F(2,12)=17.58, P=0.0003, Newman-Keuls post 

test: ***P<0.001 2VO-dipyridamole rats vs sham, **P<0.01 2VO-vehicle vs sham and 

2VO-dipyridamole rats). The number of astrocytes did not change significantly in SL of 

2VO-vehicle rats (-10%). We found a significant increase of astrocytes in SL of 2VO-

dipyridamole rats (+19%) in comparison to sham rats, as shown by statistical analysis 

(One-way ANOVA: F(2,12)=9.504, P=0.0034; Newman-Keuls post test: *P<0.05 2VO-

dipyridamole vs sham rats). In CA3 SR a significant increase of astrocytes was found 

both in 2VO-vehicle (+18%) and 2VO-dipyridamole rats (+18%), as demonstrated by 

statistical analysis (One-way ANOVA: F(2,12)=10.18, P=0.0026; Newman-Keuls post 

test: **P<0.01 2VO-dipyridamole and 2VO-vehicle rats vs sham). 

The length of astrocytes branches was measured, as reported in the Methods section, 

separately in SP, SL and SR of sham, 2VO-vehicle, and 2VO-dipyridamole rats. The 

results, shown in Figure 48E demonstrated that no significant differences were found 

either among the CA3 subregions or among the three experimental groups. 
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Figure 48. Analysis of astrocytes in CA3 SP, SL and SR of sham, 2VO-vehicle and 2VO-
dipyridamole rats. A-C: Representative photomicrographs of GFAP immunostaining (green) of 
astrocytes in CA3 of sham (A), 2VO-vehicle (B), and 2VO-dipyridamole rats (C). The white 
lines indicate the subdivision of the CA3 subregions: SP, SL and SR.  Scale bar: 80 µm. D: 
Quantitative analysis of GFAP+ astrocytes (cells/mm2) in CA3 SP, SL and SR of sham (white 
columns), 2VO-vehicle (grey columns) and 2VO-dipyridamole rats (black columns). Data in 
graph bars are mean±SEM. SP: sham, n=5; 2VO-vehicle, n=5; 2VO-dipyridamole, n=5. SL: 
sham, n=5; 2VO-vehicle, n=5; 2VO-dipyridamole, n=5. SR: sham, n=5; 2VO-vehicle, n=5; 
2VO-dipyridamole, n=5. E: Quantitative analysis of the length of principal astrocyte branches 
(µm) in CA3 SP, SL and SR of sham (white columns), 2VO-vehicle (grey columns) and 2VO-
dipyridamole rats (black columns). Data in graph bars are mean±SEM. SP: sham, n=5; 2VO-
vehicle, n=5; 2VO-dipyridamole, n=5. SL: sham, n=5; 2VO-vehicle, n=5; 2VO-dipyridamole, 
n=5. SR: sham, n=5; 2VO-vehicle, n=5; 2VO-dipyridamole, n=5. 
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4.21 TNFα expression in CA3 Stratum Pyramidale, Stratum Lucidum 
and stratum radiatum of sham, 2VO-vehicle, and 2VO-dipyridamole 
treated rats 

We analyzed whether the levels of TNFα were modified in CA3 of 2VO rats. As shown 

in Figure 49A-B, we found a significant increase of TNFα+ cells in SR of 2VO-vehicle 

rats (+89% vs sham rats), and dipyridamole completely blocked this effect (-6% vs 

sham rats, n.s.).  

 
 
Figure 49. Analysis of TNFα expression in CA3 SP, SL and SR of sham, 2VO-vehicle and 
2VO-dipyridamole rats. A-A3: Representative photomicrographs of TNFα (green) and GFAP 
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(red) immunostaining of astrocytes in CA3 of a 2VO-vehicle rat. The white lines indicate the 
subdivision of the CA3 subregions: SP, SL and SR.  Scale bar: 100 µm. A1-A3: Magnification 
of the framed area in panel A showing a TNFα+ astrocyte. Scale bar: 25 µm. B: Quantitative 
analysis of TNFα+ cells (cells/mm2) in CA3 SR of sham (white columns), 2VO-vehicle (grey 
columns) and 2VO-dipyridamole rats (black columns). Data in graph bars are mean±SEM; 
sham, n=4; 2VO-vehicle, n=4; 2VO-dipyridamole, n=4. C-C3: Representative 
photomicrographs of TNFα (green) and neurofilament (red) immunostaining in CA3 of a 2VO-
vehicle rat. The white lines indicate the subdivision of the CA3 subregions: SP, SL and SR.  
Scale bar: 50 µm. C1-C3: Magnification of the framed area in panel C showing a TNFα+, and 
neurofilament positive dendrite.  Scale bar: 25 µm. D: Quantitative analysis of TNFα+ dendrites 
(µm) in CA3 SR of sham (white columns), 2VO-vehicle (grey columns) and 2VO-dipyridamole 
rats (black columns). Data in graph bars are mean±SEM.; sham, n=4; 2VO-vehicle, n=4; 2VO-
dipyridamole, n=4. 

As shown in Figure 49B statistical analysis performed by one way ANOVA followed 

by Newman Keuls multiple comparison test demonstrated that this effect was 

statistically significant (One-way ANOVA: F(2,11)=4.966, P<0.05; Newman-Keuls post 

test: *P<0.05 2VO-vehicle vs sham and vs 2VO-dipyridamole).  

Double labelling immunofluorescent microscopy using antibodies for TNFα and GFAP 

demonstrated that TNFα+ cells were astrocytes (Figure 49A1-A3, magnification of the 

framed area in Figure 49A). Furthermore, in CA3 SL and SR we found an increase of 

TNFα expression in neuronal dendrites (Figure 49A, arrow). Indeed, double labelled 

immunofluorescence with antibodies for TNFα and neurofilament (Figure 49C-C3) 

demonstrated colocalization of TNFα in many, but not all, neurofilament-positive 

dendrites, both in SL and SR of 2VO rats (Figure 49C1-C3, magnification of the framed 

areas in Figure 49C).  

Quantitative analysis of the length of TNFα+ dendrites in SR (Figure 49D) 

demonstrated a significant increase in 2VO-vehicle rats (+56% vs sham), but 

dipyridamole only partially reversed this effect (+46% vs sham) (One-way ANOVA: 

F(2,11)=6.607, P<0.05; Newman-Keuls post test: *P<0.05 2VO-vehicle and 2VO-

dipyridamole vs sham). Figures 49C1-C3 clearly show a TNFα+ cell (open arrow) 

negative for neurofilament, possibly representing an astrocyte. We never found any 

colocalization of TNFα with microglia markers (data not shown). 

4.22 Analysis of microglia in CA3 Stratum Pyramidale, Stratum Lucidum 
and stratum radiatum of sham, 2VO-vehicle, and 2VO-dipyridamole 
treated rats 

Total microglia (resting plus activated microglia) was labelled using anti IBA1 antibody 

(Figure 50A-C) in area CA3 SP, SL and SR of sham, 2VO-vehicle and 2VO-
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dipyridamole rats. IBA1+ microglia cells were quantified in the ROI of SR (Figure 

50D).  

 
Figure 50. Analysis of microglia in CA3 SP, SL and SR of sham, 2VO-vehicle and 2VO-
dipyridamole rats. A-C: Representative photomicrographs of IBA1 immunostaining (green) of 
microglial cells in CA3 of sham (A), 2VO-vehicle (B), and 2VO-dipyridamole rats (C). The 
white lines indicate the borders of the CA3 subregions: SP, SL and SR.  Scale bar: 80 µm. D: 
Quantitative analysis of IBA1+ microglial cells (cells/mm2) in CA3 SP, SL and SR of sham 
(white columns), 2VO-vehicle (grey columns) and 2VO-dipyridamole rats (black columns). 
Data in graph bars are mean±SEM. SP: sham, n=5; 2VO-vehicle, n=5; 2VO-dipyridamole, n=5. 
SL: sham, n=5; 2VO-vehicle, n=5; 2VO-dipyridamole, n=5. SR: sham, n=5; 2VO-vehicle, n=5; 
2VO-dipyridamole, n=5. E: representative image of an OX6-positive microglia. Scale bar: 10 
µm. 
 
A significant decrease of microglia was found in SP of 2VO-dipyridamole rats (-12%), 

as demonstrated by statistical analysis (One-way ANOVA: F(2,12)=1.554; Newman-

Keuls post test: *P<0.05 2VO-dipyridamole vs sham). A significant increase of 

microglia was found in SL of 2VO-vehicle (+12%) and 2VO-dipyridamole (+24%) rats 

in comparison to sham rats (One-way ANOVA: F(2,12)=17.56, P=0.0003; Newman-
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Keuls post test: *P<0.05 2VO-vehicle vs sham, ***P<0.001 2VO-dipyridamole vs 

sham, $$P<0.01 2VO-dipyridamole vs 2VO-vehicle). A significant increase of 

microglia was also found in SR of 2VO-vehicle (+14%) and 2VO-dipyridamole (+22%) 

rats in comparison to sham rats (One-way ANOVA: F(2,12)=7.865, P<0.01; Newman-

Keuls post test: **P<0.01 2VO-dipyridamole vs sham, *P<0.05 2VO-vehicle vs sham, 

$P<0.05 2VO-dipyridamole vs 2VO-vehicle).  

We then utilized the OX6 antibody (anti   MHC-II) to visualize activated microglia. 

Very sparse OX6+ microglia cells were found in SP, SL and SR of the three 

experimental groups (see image in Figure 50E). Quantitative analysis of OX6-positive 

activated microglia did not give any significant difference in any area among the three 

experimental groups (not shown). 

4.23 Characterization and quantification of neuron-astrocytes-microglia 
triads in CA3 stratum lucidum and stratum radiatum of sham, 2VO-
vehicle, and 2VO-dipyridamole treated rats 
In order to verify the hypothesis that astrocytes and microglia might actively collaborate 

in the triad formation around apoptotic neurons and neuronal debris in the CA3 region 

of the hippocampus of 2VO rats as demonstrated in CA1 (Cerbai et al., 2012; Lana et 

al., 2016), we studied the interplay among neurons and microglia in CA3 SL and SR of 

sham, 2VO-vehicle and 2VO-dipyridamole rats using the triple immunostaining of 

neurons, astrocytes, and microglia.  

Neurons, astrocytes, and microglia were triple immunostained in the CA3 of sham, 

2VO-vehicle, and 2VO-dipyridamole rats.  Triple immunostaining of astrocytes with 

anti GFAP antibody (green), neurons with anti NeuN antibody (red) and microglia with 

anti IBA1 antibody (blue) in the CA3 SR of a 2VO-vehicle rat clearly shows the 

presence of  neuron-astrocytes- microglia triads in CA3 SL and SR of all experimental 

groups  (Figure 51A-C). Figures 51B-B1 show an example of neuron-astrocyte-

microglia triad in CA3 SR of a 2VO-vehicle rat: the neuron (red) is tightly embraced by 

astrocyte branches (green), the microglial cell (blue) is in a phagocytic state, the three 

cells are in direct contact with each other. The open arrow indicates a neuron fragment 

engulfed in the cytoplasm of phagocytic microglia.  

Figure 51B shows a “top-down view” while 8B1 a “bottom-up view” of the 3D 

rendering of one triad located in the SR of a 2VO-vehicle rat.  It is possible to see that 

an ectopic neuron is tightly surrounded by astrocyte branches that form a micro scar 
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around it. To complete the triad, a microglia cell (IBA1+, blue) is in close contact with 

the neuronal cell body, possibly phagocytosing the neuron. Indeed, it is clearly visible 

in panel 51B that portion of the neuronal cytoplasm is engulfed by the microglia cell 

(arrow).  

 

 
Figure 51. Analysis of the neuron-astrocyte-microglia triads in CA3 SL and SR of sham, 2VO-
vehicle and 2VO-dipyridamole rats. (A-C): Confocal microscopy 3D renderings of triple 
immunostaining of neurons (NeuN, red), astrocytes (GFAP, green) and microglia (IBA1, blue) 
in CA3 SL and SR of sham (A), 2VO-vehicle (B), and 2VO-dipyridamole rats (C). Scale bar: 10 
µm. (B-B1): B shows a “top-down view” while B1 a “bottom-up view” of the 3D rendering of 
one triad located in the SR of a 2VO-vehicle rat. The open arrow (pink colour) indicates a 
neuron fragment engulfed in the cytoplasm of phagocytic microglia. (B2): Image obtained by a 
digital subslicing of the neuron-astrocyte-microglia triad shown in panel B, obtained stacking 3 
consecutive z scans (total thickness 0.9 µm) starting at a depth of 7.4 µm into the neuron. The 
open arrow in B2 indicate the presence of astrocytes branches infiltrating the neuronal cell 
body. Scale bar: 5 µm. (D): Quantitative analysis of neuron-astrocyte-microglia triads (n of 
triads/mm2) in CA3 SL and SR of sham (white columns), 2VO-vehicle (grey columns) and 
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2VO-dipyridamole rats (black columns). Data in graph bars are mean±SEM. SL: Sham, n=4; 
2VO-vehicle, n=4; 2VO-dipyridamole, n=5. SR: Sham, n=4; 2VO-vehicle, n=4; 2VO-
dipyridamole, n=5. 
 
This image clearly shows that astrocyte branches (open arrow), not visible in the top-

down and bottom up 3D renderings, are located inside the neuronal cell body. These 

morphological features are consistent with the hypothesis that astrocyte branches are 

bisecting this ectopic neuron to form neuronal debris. Quantitative analysis of the 

neuron-astrocytes-microglia triads (as defined in Methodological considerations) was 

performed in CA3 SL and SR of shams, 2VO-vehicle and 2VO-dipyridamole rats. 

Results in Figure 51D show that in SL of 2VO-vehicle and 2VO-dypiridamole rats the 

number of triads, although increased, was not statistically different from sham rats 

(One-way ANOVA F(2,10)=0.947, n.s.). However, the number of triads significantly 

increased in SR of 2VO-vehicle rats (+392%). Dipyridamole partially but significantly 

prevented this effect (+169%), as shown by statistical analysis (One-way ANOVA 

F(2,10)=19.69; P=0.0003; *** P < 0.001 vs shams; ##P<0.01 vs 2VO-vehicle; *P<0.05 vs 

2VO-dipyridamole; Newman-Keuls Multiple Comparison Test).  

 

Part V - In vitro models of brain ischemia 

4.24 Electrophysiological experiments 

It has been established that 7 min OGD episodes bring about irreversible depression of 

neurotransmission and the appearance of a severe neuronal depolarization or AD 

(Pugliese et al., 2006, 2007, 2009), a critical event that has been demonstrated both in 

vivo (Somjen, 2001) and in vitro (Pugliese et al., 2006, 2007, 2009). Therefore, we 

studied the effects of two selective adenosine A2B receptor antagonists, MRS-1704 and 

PSB603, on AD development in the CA1 region of acute rat hippocampal slices under 

severe OGD episodes by extracellular recording of fEPSPs on 133 hippocampal slices 

taken from 42 rats. 

4.25 The selective adenosine A2B receptor antagonism prevents or delays 
AD development and protects from synaptic failure induced by severe 
OGD in CA1 hippocampus 
In agreement with our previous results (Pugliese et al., 2006, 2007, 2009), in untreated 

OGD slices the d.c. shift presented a mean latency of 6.04 ± 0.2 min (calculated from 

the beginning of OGD) and a mean peak amplitude of -6.7±0.4 mV (n = 24) (Figure 
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52A). Seven min OGD exposure induced a rapid and irreversible depression of fEPSPs 

amplitude evoked by Schaffer-collateral stimulation, since synaptic potentials did not 

recover their amplitude after return to oxygenated aCSF (Figure 52D, n = 24, 2.5±2.7% 

of pre-OGD level, calculated 50 min from the end of OGD). Control slices, followed for 

up to 3 h in oxygenated aCSF, maintained stable fEPSPs for the entire experimental 

time recording and never developed the d.c. shift (data not shown). OGD was then 

applied in the presence of the selective adenosine A2B receptor antagonists MRS1754 or 

PSB603, administered 15 min before, during and 5 min after OGD. The two A2B 

receptor antagonists did not modify basal synaptic transmission measured before OGD. 

Indeed, MRS1754 (500 nM, n=17) did not modify fEPSPs amplitude under normoxic 

conditions (from 1.05±0.06 mV immediately before to 1.01±0.08 mV after 15 min drug 

application, n=17). In addition, PSB603 did not change the amplitude of synaptic 

potentials under normoxic conditions (from 1.32±0.12 mV before to 1.35±0.14 mV 

after 15 min drug application, n=15). These data indicate that the blockade of A2B 

receptors does not modify low-frequency-induced CA1 synaptic transmission under 

normoxic conditions, in agreement with results reported in mouse hippocampal slices 

(Gonçalves et al., 2015). Nevertheless, the two A2B receptor antagonists were able to 

prevent or delay the appearance of AD and to modify synaptic responses after OGD. 

During 7 min OGD, MRS1754 prevented the appearance of AD in 13 out of 17 slices 

tested (Figure 52B). In these 13 slices a complete recovery of fEPSPs was recorded 

(111.9±7.4%, calculated 50 min from the end of OGD, Figure 52D). In the remaining 4 

slices, AD developed, although at later times (Figure 52F, mean AD latency: 7.37±0.41 

min; mean peak amplitude: -5.8±1.1 mV, n=4), and, unexpectedly, was followed by a 

consistent fEPSP recovery (85.2±15.3%, n=4, Figure 52D).  During 7 min OGD, 

PSB603 prevented the appearance of AD in 11 out of 15 slices tested (Figure 52C). In 

these 11 slices a complete recovery of fEPSPs was found (110.4±10.2 %, n=11, Figure 

52E). In the remaining 4 slices in which AD appeared, a delay in AD latency was 

recorded (Figure 52F, mean AD latency: 7.33±0.08 min; mean peak amplitude: -6.8±1.9 

mV, n=4). Moreover, in these 4 PSB603-treated slices, a significant recovery of fEPSP 

(36.2±19.7%, n=4, Figure 52E) was found. In the slices in which AD appeared in the 

presence of MRS1754 or PSB603, we compared the time of AD appearance in the 

absence and in the presence of drugs. As illustrated in Figure 52F, during 7 min OGD, 

AD appeared in OGD slices with a mean latency of 6.04±0.2 min (left panel) and a 

mean peak amplitude of 6.7±0.4 mV (n=24, right panel). When 7 min OGD was applied 
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in the presence of 500 nM MRS1754 or 50 nM PSB603 the d.c. shifts were always 

delayed (Figure 52F, left panel), while AD amplitude values were not significantly 

modified in comparison to OGD slices (Figure 52F, right panel). In an experimental 

group of slices which never developed AD in the presence of PSB603 (50 nM; n=6) and 

MRS1754 (500 nM; n = 6), we followed the evolution of the synaptic response for 3 

hours after the end of the 7 min ischemic like insult in comparison to untreated OGD 

slices (n=6). As reported in the representative electrophysiological traces shown in 

Figure 52G, PSB603 (50 nM) and MRS1754 (500 nM) allowed the recovery of synaptic 

potentials for at least 3 h after 7 min OGD.  

 

Figure 52. The selective adenosine A2B receptor antagonists MRS1754 or PSB603 
significantly reduced the synaptic failure induced by 7 min OGD in the CA1 region of rat 
hippocampal slices. A-C: AD was recorded as a negative d.c. shift in response to 7 min OGD in 
untreated OGD slices (A), in 500 nM MRS1754-treated slices (B) or 50 nM PSB603-treated 
slices C: Note that MRS1754 prevented the appearance of AD in 13 out of 17 slices, while 
PSB603 in 11 out of 15 slices. D: The graph shows the time-course of the effect of 7 min OGD 
on fEPSP amplitude, expressed as percentage of pre-OGD baseline in the CA1 hippocampal 
region in the absence (n=24) or in the presence of 500 nM MRS1754 (n=17). Note that, in 
untreated slices, the ischemic-like insult caused gradual reduction, up to disappearance, of 
fEPSPs amplitude that did not recover after washing in oxygenated aCSF. On the contrary, after 
reperfusion in oxygenated standard solution, a recovery of fEPSP in all MRS1754 treated OGD 
slices was found, even in those in which AD developed. E: The graph shows the time course of 
the effect of 7 min OGD on fEPSP amplitude in 50 nM PSB603 treated OGD slices. Note that, 
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after reperfusion in normal oxygenated standard solution, a recovery of fEPSP was found in all 
OGD-treated PSB603 slices, even those in which AD occurred. F: Left panel: each column 
represents the mean±SEM of AD latency recorded in the CA1 region during 7 min OGD in the 
absence or in the presence of MRS1754 (500 nM) or PSB603 (50 nM). AD latency was 
measured from the beginning of OGD insult. Note that when OGD was applied in the presence 
of MRS1754 or PSB603 the appearance of AD was significantly delayed in comparison to OGD 
untreated slices. *P<0.05 vs OGD, One-way ANOVA followed by Newman-Keuls Multiple 
comparison test. Right panel: each column represents the mean±SEM of AD amplitude recorded 
in the CA1 during 7 min OGD. The number of slices is reported in the columns.  G: The graph 
shows the time course of the effect of 7 min OGD on fEPSP amplitude in OGD-untreated slices 
and in 500 nM MRS1754- or 50 nM PSB603-treated slices. The selective antagonism of 
adenosine A2B receptors counteracted the CA1 synaptic damage induced by severe OGD up to 3 
hours from the end of the insult. Inset: 7 min OGD induced AD was recorded untreated OGD 
slices, but not in the presence of 500 nM MRS1754 or 50 nM PSB603. Grey bar: OGD time 
duration. Open bar: time of drug application. Amplitude of fEPSPs (mean±SEM) is expressed 
as percentage of pre-OGD baseline. 

4.26 Analysis of neuronal damage in CA1 stratum pyramidale 1 h and 3 
h after the end of 7 min OGD 

The extent of neuronal damage caused by 7 min OGD in SP of hippocampal CA1 was 

assessed by immunohistochemistry using the anti NeuN antibody in control slices, in 

slices after 7 min OGD, and after 7 min OGD in the presence of 500 nM MRS1754 or 

50 nM PSB603, both at 1 h and 3 h after the end of OGD. Representative images of 

NeuN immunostaining in CA1 of slices collected 1 h after the end of OGD are shown in 

Figure 53A-D. Figure 53E and F show the quantitative analyses of the area of NeuN+ 

immunofluorescence in CA1, which represents an index of the number of pyramidal 

neurons, 1 h and 3 h after the end of OGD, respectively. The data demonstrate that 

NeuN+ CA1 pyramidal neurons significantly decreased both 1 h (Figure 53E) and 3 h 

(Figure 53F) after the end of 7 min OGD. Statistical analysis showed that 7 min OGD 

caused a statistically significant reduction of NeuN+ area at 1 h (-29.6%, *P<0.05 vs 

control slices) and at 3 h (-41%, *P<0.05 vs control slices). The time-course of the 

effect, indicating that the decrease of NeuN+ area was more pronounced at 3 h than at 1 

h after the end of OGD, demonstrates that neuronal degeneration is an ongoing process 

at least at these time points. The decrease of NeuN+ area in CA1 SP was completely 

antagonized by treatment with 50 nM PSB603 (-1% at 1 h and -14% at 3 h, n.s. vs 

control slices). This effect was statistically significant vs 7 min OGD slices both at 1 h 

and 3 h after the end of OGD ($P<0.05 vs respective OGD). Treatment with 500 nM 

MRS1754 completely blocked the decrease of NeuN+ area in CA1 SP 3 h after the end 

of OGD (-7% vs control slices, n.s.; #P<0.05 vs OGD). MRS1754 had no effect 1 h after 

the end of OGD (-31.5% vs control slices; n.s. vs OGD). Therefore, antagonism of A2B 
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receptors blocked the neuronal damage induced by 7 min OGD up to 3 hours after the 

end of the simil ischemic insult. In the OGD slices treated either with MRS1754 or 

PSB603 that developed AD we found a partial reduction of neuronal damage at 1 h after 

the end of OGD (data not shown). Closer examination of CA1 SP with confocal 

microscopy indicated the presence of many damaged neurons both 1 h and 3 h after the 

end of 7 min OGD. The representative confocal z stacks in Figure 54B and B, each 

obtained stacking 37 consecutive confocal z scans (0.3 µm each, total thickness 11.1 

µm) through the thickness of CA1, show that 3 h after the end of OGD the layout and 

morphology of CA1 pyramidal neurons was significantly different from that of the 

control slice (Figure 54A). Panels 54A1 and B1 are magnification of the framed areas in 

panels 54A and B, and show stacks of 2 consecutive z scans, 0.3 µm each, total 

thickness 0.6 µm, taken at 2.1 µm depth inside the neurons. It appears evident from 

panel 54B1 the altered morphology of pyramidal neurons after OGD, in comparison to 

those of the control slice shown in panel 54A1. 

 
Figure 53. Analysis of NeuN+ immunofluorescence in CA1 SP after the simil-ischemic insult. 
A-D: Representative images of NeuN+ immunofluorescence in the ROI of CA1 of a control 
slice (CTR, A), a slice collected 1 h after 7 min OGD (OGD, B), a slice treated with 500 nM 
MRS1754 (OGD+MRS, C), and a slice treated with 50 nM PSB603 (OGD+PSB, D), all 
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harvested 1 h after the end of 7 min OGD. Scale bar: 75 µm. E-F: Quantitative analyses of 
NeuN+ immunofluorescence in the four experimental groups 1 h (E) and 3 h (F) after the end of 
7 min OGD. Each column represents the area, expressed in pixels (x 106) above a threshaged, 
maintained constant for all slices investigated. E: Statistical analysis: One-way ANOVA: 
F(3;13)=6.296, P<0.01, Newman-Keuls multiple comparison test: *P<0.05, OGD vs CTR; 
$P<0.05, OGD+PSB vs OGD. CTR, n=6; OGD, n=5; OGD+PSB, n=3; OGD+MRS, n=3. F: 
Statistical analysis: One-way ANOVA: F(3,16)=4.924, P<0.02; Newman-Keuls multiple 
comparison test: *P<0.05 OGD vs CTR, #P<0.05 OGD+MRS vs OGD, $P<0.05 OGD+PSB vs 
OGD. CTR, n=6; OGD, n=3; OGD+PSB, n=4; OGD+MRS n=4. All data in the graphs are 
expressed as mean±S.E.M. 

Indeed, in CA1 SP of OGD slices, both at 1 h and 3 h after the end of OGD, we 

observed the presence of many neurons with nuclei that exhibit a highly condensed 

NeuN+ nucleus and very faint NeuN cytoplasmic labelling (Figure 54B-B1, open 

arrows). We defined these neurons as High Density Nucleus neurons, “HDN neurons”. 

Furthermore, we observed many NeuN+ neurons that have lost the NeuN+ nuclear 

immunofluorescence, an index of damaged nuclei, while NeuN+ immunofluorescence 

persists in the cytoplasm (Figure 54B-B1, white arrows). We defined these neurons as 

Low Density Nucleus neurons, “LDN neurons”. In order to better characterize this 

phenomenon, we performed the quantitative analysis of HDN and LDN neurons in 

control, 7 min OGD, 7 min OGD plus MRS1754 and 7 min OGD plus PSB603 slices at 

1 h and 3 h after the end of OGD. The results, presented in Figure 54C-D, show that 

HDN neurons increased significantly in 7 min OGD slices both at 1 h (+603% vs 

control slices, **P<0.01) and 3 h (+794% vs control slices, ***P<0.001) after the end of 

OGD. The increase of damaged, HDN neurons in the CA1 area caused by the simil-

ischemic insult was significantly blocked by treatment with 50 nM PSB603 at 1 h and 3 

h after the end of OGD (-97% at 1 h, and -77% at 3 h vs 7 min OGD slices, both 
$$$P<0.001; n.s. vs controls). Conversely, treatment with 500 nM MRS1754 

significantly blocked the increase of HDN neurons only 3 h after the end of OGD (-70% 

vs 7 min OGD slices, ###P<0.001; n.s. vs control slices), but not 1 h after the end of 

OGD (+12% vs OGD slices, n.s.; ## P<0.01 vs control slices). In addition, as shown by 

the representative images in Figure 54B-B1, we found many LDN neurons in SP 1 h 

and 3 h after the end of 7 min OGD. As demonstrated by quantitative analysis (Figure 

54E-F) LDN neurons in SP were significantly increased both 1 h and 3 h after OGD, in 

comparison to control slices. The increase of LDN neurons, in comparison to control 

slices, was 1489% at 1 h (***P<0.01 vs control slices) and 1033% at 3 h after the end of 

7 min OGD (***P<0.01 vs control slices). The increase of damaged, LDN neurons 

brought about by the simil-ischemic insult was significantly blocked by treatment with 
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50 nM PSB603 both at 1 and 3 h after the end of OGD (-98% at 1 h, and -62% at 3 h vs 

OGD, both $$$P<0.001). Treatment with 500 nM MRS1754 significantly blocked the 

increase of LDN neurons only 3 h after the end of OGD (-52% vs 7 min OGD, 

###P<0.001), but not 1 h after the end of OGD (-17% vs 7 min OGD, n.s.; ##P<0.01 vs 

controls). These data further confirm the efficacy of the two A2B receptor antagonists, 

and particularly of PSB603, in reducing not only the electrophysiological effects but 

also the morphological modifications that OGD caused on CA1 pyramidal neurons, up 

to 3 h after the end of the ischemic-like insult.  

 

 
 

 
 
 
 
 

Figure 54. Analysis of damaged neurons in CA1 SP after the simil-ischemic insult. A-B1: 
Representative images of NeuN+ immunofluorescence in the CA1 area of a control slice (CTR, 
A,A1), and of a slice harvested 3 h after the end of 7 min OGD (OGD, B,B1). A1-B1: 
magnification of digital subslices of the framed areas in A,B (stacks of 2 consecutive z scans 
taken at 2.1 µm depth inside the neurons, total thickness 0.6 µm). Note the presence of many 
HDN neurons (open arrows) and LDN neurons (white arrows) in CA1 SP after OGD (B, B1). 
Scale bars: A, B: 25 µm; A1, B1: 10 µm. C-D: Quantitative analyses of NeuN+ HDN neurons 
in CA1 SP 1 h (C) and 3 h (D) after the end of OGD. C: One-way ANOVA: F(3;12)=11.32, 
P<0.001. Newman-Keuls multiple comparison test: **P<0.01, OGD vs CTR; ##P<0.01, 
OGD+MRS vs CTR; $$$P<0.001 OGD+PSB vs OGD. CTR, n=5; OGD, n=5; OGD+PSB, n=3; 
OGD+MRS, n=3. D: One-way ANOVA: F(3;12)=64.33, P<0.001. Newman-Keuls multiple 
comparison test: ***P<0.001, OGD vs CTR; ###P<0.001, OGD+MRS vs OGD; $$$P<0.001 
OGD+PSB vs OGD. CTR, n=5; OGD, n=3; OGD+PSB, n=4; OGD+MRS, n=4. E-F: 
Quantitative analysis of NeuN+ LDN neurons in CA1 SP 1 h (E) and 3 h (F) after the end of 
OGD. E: One-way ANOVA: F(3;14)=13.80, P<0.001. Newman-Keuls multiple comparison test: 
***P<0.01, OGD vs CTR; ##P<0.01, OGD+MRS vs CTR; $$$P<0.001 OGD+PSB vs OGD. 
CTR, n=6; OGD, n=6; OGD+PSB, n=3; OGD+MRS, n=3. F: One-way ANOVA: F(3;12)=69.77, 
P<0.001. Newman-Keuls multiple comparison test: ***P<0.001, OGD vs CTR; ###P<0.001, 
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OGD+MRS vs OGD; $$$P<0.001 OGD+PSB vs OGD. CTR, n=5; OGD, n=3; OGD+PSB, n=4; 
OGD+MRS, n=4. All data in the graphs are expressed as mean±S.E.M.  

4.27 Analysis of apoptotic neurons in stratum pyramidale of CA1 1h and 
3 h after 7 min OGD 
These data demonstrate that 7 min OGD can induce neuronal damage in CA1 SP, as 

evidenced by immunohistochemical analyses that highlight conformational 

modifications of pyramidal neurons that may subtend cell death. Therefore, we studied 

whether all the above-described effects and the decrease of neurons in CA1 SP might be 

caused by apoptosis. To this end, as an apoptosis marker we used CytC, a protein 

which, in physiological conditions, is found in mitochondria but in the most advanced 

stages of apoptosis is intensely and diffusely released in the cytoplasm, where it 

activates caspases (Yang et al., 1997; Kluck et al., 1997; Jiang  and Wang, 2004; Suen 

et al., 2008) and can be used as a marker of apoptosis using immunohistochemical 

analysis (Martínez-Fábregas et al., 2014). Using a selective antibody, CytC can be 

visualized in apoptotic cells as an intense and diffuse cytoplasmic immunostaining, as 

shown by the white arrows in the representative confocal images of an OGD slice 1 h 

after the end of OGD (Figure 55A-A2). As shown in the confocal subslice of the framed 

area of Figure 55A2, obtained stacking 17 consecutive confocal z scans through the 

CytC+ neuron (0.3 µm each, total thickness 5.1 µm), it is evident that the CytC+ neuron 

is a LDN neuron (Figure 55B1 open arrow), thus demonstrating that LDN neurons are 

apoptotic. 

From the quantitative analysis of CytC+ neurons in CA1 SP, we demonstrated that both 

1 h and 3 h after the end of 7 min OGD many CA1 pyramidal neurons were apoptotic 

(Figure 55C-D). The increase was statistically significant in comparison to control 

slices both at 1 h (+277% vs control slices, ***P<0.001) and at 3 h (+107% vs control 

slices, **P<0.01) after OGD. These data indicate that in CA1 area, already after 1 h 

from the end of OGD, neurons had clear signs of apoptotic processes.  

In the presence of MRS1754 or PSB603, there was a significant reduction of CytC 

immunostaining, both at 1 h and 3 h after the end of OGD, showing that antagonism of 

A2B receptors significantly reduced neuronal death by apoptosis at both times 

investigated. Indeed, treatment with MRS1754 decreased apoptotic neurons by 61% at 1 

h (###P<0.001 vs 7 min OGD; n.s. vs control slices) and by 33% at 3 h (#P<0.05 vs 7 

min OGD; n.s. vs control slices), in comparison to OGD slices.  

Treatment with PSB603 decreased apoptotic neurons by 63% ($$$P<0.001 vs 7 min 
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OGD; n.s. vs control slices) and by 46% ($$P<0.001 vs 7 min OGD; n.s. vs control 

slices) in comparison to OGD slices. In the OGD slices treated either with MRS1754 or 

PSB603 that developed AD the number of HDN and LDN neurons were partially 

decreased in comparison to OGD slices (data not shown). These data indicate that in the 

CA1 area already 1 h after the end of OGD, when there was still no recovery of 

neurotransmission, neurons showed obvious signs of apoptosis. These data demonstrate 

that antagonism of A2B receptors brought about significant protection against neuron 

degeneration.   

 
Figure 55: Analysis of CytocromeC+ (CytC+) neurons in CA1 SP after the simil-ischemic 
insult. A-A2: Representative microphotographs, taken at the laser scanning confocal 
microscope, of apoptotic neurons labelled with anti CytC antibody (A, red), of pyramidal 
neurons labelled with anti NeuN antibody (A1, green) and the merge of the two previous images 
(A2). NeuN+ and CytC+ apoptotic neurons in CA1 SP are indicated by the arrows (yellow-
orange color in A2). Scale bar: 25 μm. B-B2: Subslice of the framed area in A2, obtained 
stacking 17 consecutive confocal z-scans (5.1 µm total thickness), shown at higher 
magnification (2x). The open arrow shows an LDN apoptotic pyramidal neuron. Scale bar: 10 
μm. C-D: Quantitative analysis of NeuN+ and CytC+ neurons in CA1 SP at 1 h (C) and 3 h (D) 
after the end of 7 min OGD. Note the significant increase of CytC+ neurons both 1 h and 3h 
after the end of OGD. C: Statistical analysis: One-way ANOVA: F(3;11)=18.40, P<0.001,  
Newman-Keuls multiple comparison test :  * * *P<0.001,  OGD vs CTR; 
# # #P<0.001, OGD+MRS vs OGD; $ $ $P<0.001,  OGD+PSB vs OGD. CTR, n=4; 
OGD, n=3; OGD+PSB, n=4; OGD+MRS, n=4. D: Statistical analysis: One-way ANOVA: 
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F(3;11)=11.41, P<0.02, Newman-Keuls multiple comparison test: **P<0.01, OGD vs CTR; 
#P<0.05, OGD+MRS vs OGD; $$P<0.01, OGD+PSB vs OGD. CTR, n=4; OGD, n=3; 
OGD+PSB, n=4; OGD+MRS, n=4. All data in the graphs are expressed as mean±S.E.M. 

4.28 Analysis of phospho-mTOR in area CA1 of the hippocampus 1 h 
and 3 h after 7 min OGD 

We used a selective antibody for phospho-(Ser244)-mTOR, the activated form of 

mTOR, to investigate whether mTOR activation might be modified in our experimental 

conditions. Representative qualitative images of mTOR activation in cell bodies and 

dendrites of CA1 pyramidal neurons in a control slice are shown in Figure 56A1 

(green). Neurons were also immunolabelled with anti NeuN antibody (red).  

 
Figure 56. mTOR activation in CA1 SP and SR after the simil ischemic insult. Representative 
microphotographs, taken at the laser scanning confocal microscope, showing immunolabelling 
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with anti NeuN antibody (red) and anti phospho-mTOR antibody (green) of a control slice (A-
A1), a slice harvested 3 h after 7 min OGD (B-B1), a slice treated with MRS and harvested 3 h 
after 7 min OGD (C-C1), and a slice treated with PSB and harvested 3 h after 7 min OGD (D-
D1). Scale bar: 75 µm. E-F: Digital subslices of a control slice (E) and a slice collected 3 h after 
7 min OGD (F) immunostained for phospho-mTOR (green) and NeuN (red). The open arrow 
shows the presence of activated mTOR in the cell body and arrows in the dendrites of pyramidal 
neurons in the control slice (E). G-H: Quantitative analysis of activated mTOR in CA1 SP in 
the different experimental conditions. Each column represents the mTOR+ immunofluorescent 
area calculated using the ImageJ program (number of pixels above a reference, fixed 
threshaged). G: No difference among the four experimental groups, was found 1 h after the end 
of 7 min OGD. Statistical analysis: One-way ANOVA: F(3;11)=0.4563, P>0.05, ns. H: Slices 
harvested 3 h after the end of 7 min OGD. Note the significant decrease of activated mTOR in 
CA1 pyramidal neurons 3 h after the end of OGD.  Both MRS and PSB significantly blocked 
this effect. Statistical analysis: One-way ANOVA: F(3;10)=26.99, P<0.001, Newman-Keuls 
multiple comparison test: ***P<0.001, OGD vs CTR; ##P<0.01, OGD+MRS vs OGD; 
$$$P<0.001, OGD +PSB vs OGD. CTR, n=4; OGD, n=3; OGD+PSB, n=3; OGD+MRS, n=4. 
All data are expressed as mean±S.E.M. I-J: Quantitative analysis of phospho-mTOR+ dendrites 
in CA1 SR in the different experimental conditions. I: Length of phospho-mTOR+ dendrites in 
CA1 SR 1 h after the end of 7 min OGD. No difference among the four experimental groups, 
was observed. Statistical analysis: One-way ANOVA: F(3;11)=0.7143, P>0.05, n.s.. J: Length of 
mTOR+ dendrites in CA1 SR 3 h after the end of 7 min OGD. Note the significant decrease of 
activated mTOR in dendrites 3 h after the end of OGD. PSB significantly blocked this effect. 
Statistical analysis: One-way ANOVA: F(3;9)=12.38, P<0.02, Newman-Keuls multiple 
comparison test: **P<0.01, OGD vs CTR; $P<0.05, OGD+PSB vs OGD. CTR, n=3; OGD, n=3; 
OGD+PSB, n=3; OGD+MRS, n=4. All data in the graphs are expressed as mean±S.E.M. 

The merge of the immunofluorescence (yellow-orange) in a control slice is shown in 

Figure 56A. It is evident from the images that in basal conditions activated mTOR is 

present in CA1 pyamidal neurons where it is localized both in the cell body and in 

neuronal apical dendritic tree spanning throughout the SR. The simil ischemic condition 

caused a significant decrease of mTOR activation 3 h after the end of OGD, as shown in 

the representative image of Figure 56B-B1. This effect is more evident in Figure 56E-F, 

that represent digital subslices obtained stacking 9 consecutive confocal z-scans 

throughout the neuronal cell bodies (0.3 µm each, total thickness 2.7 µm) of control and 

OGD slices. The images clearly show that in control conditions phospho-mTOR was 

present both in the cell body (Figure 56E, open arrow) and in the dendrites (Figure 56E, 

white arrows), while 3 h after 7 min OGD activation of mTOR decreased both in cell 

body and dendrites (Figure 56F). Quantitative analysis showed that in slices harvested 1 

h after the end of 7 min OGD, no significant modification of activated mTOR 

immunostaining was present in the neuronal cell body (Figure 56G) or in the apical 

dendrites of CA1 pyramidal neurons in any of the groups investigated (Figure 56I). On 

the contrary, in slices harvested 3 h after the end of 7 min OGD, we found highly 

significant decrease of activated mTOR immunostaining in the cytoplasm and dendrites 

of CA1 pyramidal neurons (Figure 56H, J). 
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Indeed, statistical analysis, shown in Figure 56H, demonstrates that 3 hours after the 

end of 7 min OGD there was a statistically significant reduction of activated mTOR 

immunostaining in the cytoplasm of CA1 pyramidal neurons (-74.8%, ***P<0.001 vs 

control slices, Figure 56H) in comparison to control slices.  As shown in Figure 56H, 

treatment with 50 nM PSB603 blocked this effect (-4% vs control slices, n.s., 
$$$P<0.001 vs 7 min OGD), while treatment with 500 nM MRS1754 partially, but still 

significantly attenuatedd this effect (-31% vs controls, n.s., ##P<0.01 vs 7 min OGD). 

We used, as a determinant of mTOR activation in the dendrites, the analysis of the 

length of phospho-mTOR+ dendrites, as reported in the methods. The results shown in 

Figure 56I reveal that mTOR activation was not statistically significant among the four 

experimental groups 1 h after the end of 7 min OGD.  However, in the slices collected 3 

h after the end of 7 min OGD we found a significant decrease of mTOR+ dendrites in 

the SR of the CA1 area (Figure 56J). 

From the statistical analysis we found a significant decrease of mTOR immunopositive 

dendrites in CA1 SR of 7 min OGD slices 3 h after the end of OGD (-80% vs controls, 

**P<0.01, Figure 56J). The selective antagonist MRS1754, did not significantly modify 

this effect, while treatment with PSB603 partially, but significantly, reversed this effect 

(+226% vs 7 min OGD, $P<0.05). These data demonstrate that OGD significantly 

decreased mTOR activation and that the selective antagonism of A2B receptors 

significantly reduced this impairment, a further indication of prevention of neuronal 

degeneration by blockade of this receptor.  

4.29 Analysis of astrocytes in CA1 Stratum Radiatum after 7 min OGD 

Astrocytes were labelled with the anti GFAP antibody and quantified in the SR of CA1 

hippocampus in the four experimental conditions: in control slices, in slices after 7 min 

OGD alone, and after 7 min OGD in the presence of 500 nM MRS1754 or 50 nM 

PSB603, both at 1 h and 3 h after the end of OGD, as shown in the representative 

microphotographs in Figure 57A-D, taken at 3 h after the end of OGD. In the SR of 

slices harvested 1 h after the end of 7 min OGD we found a slight, not significant 

increase of astrocytes (Figure 57E, +19%, n.s. vs controls), which became significant at 

3 h after the end of 7 min OGD (Figure 57F, +43% vs control slices, **P<0.01). Both 

A2B receptor antagonists, partially but significantly, reduced the increase of astrocytes 

caused by the simil ischemic conditions. MRS1754 decreased the number of astrocytes 

by 10% (n.s. vs OGD), while PSB603 by 13% ($P<0.05 vs OGD). Quantitative analysis 
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of total microglia did not reveal statistically significant modifications in the different 

experimental conditions both at 1 h and 3 h after the end of 7 min OGD (data not 

shown).  

 
Figure 57. Quantitative analysis of astrocytes in the CA1 area in the different experimental 
conditions after the simil ischemic insult. A-D: Representative microphotographs, taken at the 
epifluorescence microscope, of astrocytes immunolabelled with anti GFAP antibodies in the SR 
(green) of a control (A), OGD (B), OGD plus MRS1754 (C), and OGD plus PSB603 (D) slice. 
Scale bar: 50 μm. E-F: Quantitative analysis of astrocytes in the SR of CA1 in control, OGD, 
OGD plus MRS1754 and OGD plus PSB603 slices at 1 h (E) and 3 h (F) after 7 min OGD. E: 
No significant differences among the four experimental groups analyzed was found. Statistical 
analysis: One-way ANOVA: F(3;18)=0.877, P>0.05, ns. CTR, n=8; OGD, n=7; OGD+PSB, n=3; 
OGD+MRS, n=4. F: Statistical analysis: One-way ANOVA: F(3;15)=6.734, P<0.01, Newman-
Keuls multiple comparison test: **P<0.01, OGD vs CTR; $P<0.05, OGD+PSB vs OGD. CTR, 
n=7; OGD, n=4; OGD+PSB, n=4; OGD+MRS, n=4. All data in the graphs are expressed as 
mean ± S.E.M. 
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4.30 Neurodegeneration of CA1 pyramidal neurons induced by glutamate 
was not prevented by adenosine A2B receptor antagonists 
In order to have an insight into the mechanism of A2B receptor antagonism-induced 

neuroprotection, we verified whether MRS1754 and PSB603 might protect CA1 

pyramidal neurons from the well-known neurodegenerative effects caused by glutamate 

exposure. We incubated the hippocampal slices in vitro with 100 µM glutamate for 10 

min and verified the effect of MRS1754 and PSB603 on glutamate-induced cell death. 

Administration of 100 µM glutamate for 10 min caused significant amage to pyramidal 

neurons at 3 h after the end of incubation, evidenced by the significant increase of HDN 

neurons in hippocampal CA1, as shown in the representative image presented in Figure 

58B. Quantitative analysis (Figure 58D) demonstrated that the increase of HDN neurons 

was statistically significant in comparison to control slices, and that neither MRS1754 

nor PSB603 protected CA1 pyramidal neurons from the excitotoxic effect of glutamate 

(*P<0.05 vs all other groups). 

 

Figure 58. Evaluation of glutamate induced neurotoxicity in CA1 SP in the different 
experimental conditions. A-C: Representative microphotographs, taken at the epifluorescence 
microscope, of CA1 pyramidal neurons immunolabelled with anti NeuN antibodies in a control 
slice (A), a slice treated with glutamate (GLU, B), a slice treated with glutamate plus PSB603 
(GLU+ PSB, C) slice. Scale bar: 50 μm. D: Quantitative analyses of NeuN+ HDN neurons in 
the four experimental groups 3 h after the end of drug incubation. Statistical analysis: One-way 
ANOVA: F(3;15)=3.313, P<0.05, Newman-Keuls multiple comparison test: *P<0.05, vs all other 
groups. CTR, n=6; GLU, n=6; GLU+PSB, n=3; GLU+MRS, n=4. 
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In the first part of my research, we demonstrated that the communication among 

neurons and astrocytes-microglia is of particular interest in physiological and 

pathological conditions and can provide insights into the aging process and help identify 

biomarkers of aging. Here we studied the changes in the intercommunication among 

neurons, microglia and astrocytes in the DG of the hippocampus during aging and in 

response to acute experimental neuroinflammation induced by treatment with LPS. 

Therefore, we studied two different conditions, one characterized by chronic low-grade 

inflammation caused by aging and the other one by a more intense, subchronic 

inflammatory response caused by LPS. We focussed on the DG of the hippocampus as 

it represents the first link of the canonical trisynaptic pathway that conveys 

electrophysiological inputs from the enthorinal cortex to the hippocampus proper 

(Amaral and Lavenex, 2007; Witter, 2007). Particularly, our study was directed to 

understand the modifications that might occur in the GL and PL of the DG.  

The progressive modifications that occur in the aging brain, or “inflammaging,” 

(Franceschi et al., 2007; Deleidi et al., 2015), are characterized by chronic, low-grade, 

upregulation of several pro-inflammatory mechanisms, and by changes in the reciprocal 

intercellular communication in the triads among neurons, astrocytes and microglia 

(Cerbai et al., 2012; Lana et al., 2014, 2016, 2017) that cause neuroinflammation. Here 

we demonstrated that in the GL and PL of aged and LPS-treated rats astrocytes were 

less numerous than in adult rats. Nevertheless, in the GL of LPS-treated rats the GFAP+ 

astrocytes acquired the morphology of reactive astrocytes, with principal branches 

longer than astrocytes of adult rats. Total and activated microglia increased in aged rats 

and in rats treated with LPS. Mainly in the GL of aged but also, to a lesser extent, in the 

GL of LPS-treated rats many neurons showed signs of apoptosis. Consistent with these 

results, the number of granular neurons decreased significantly in GL and PL of aged 

rats. This effect was not evident in GL and PL of LPS-treated rats, suggesting that the 

subchronic neuroinflammation was insufficient to reproduce a similar degree of 

granular cell loss. We found that in PL of aged and LPS-treated rats many damaged 

neurons were embraced by microglia and were infiltrated by astrocyte branches, which 

appeared to be bisecting the neuron to form cellular debris which were phagocytosed by 

reactive microglia. Triads were significantly more numerous in PL of aged and LPS-

treated rats. This effect was consistent with microglia scavenging dying neurons. The 

levels of the chemokine CX3CL1 increased, and in the PL of aged and LPS-treated rats 
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CX3CL1 immunoreactivity was colocalized both in the branches and in the cell body of 

activated microglia.  

The networks of communication among different cells change during aging or disease, 

and this aspect is particularly true and can have great consequences in the brain. It is not 

clear whether age-related changes of intercommunication and interplay among different 

cell types are simply adaptations to aging, or actively contribute to aging or disease 

mechanisms per se. Consequently, the interplay among different cell types may 

modulate or even control aging or may be unbalanced in particular diseases (De Keyser 

et al., 2008; Sofroniew, 2009). For a long time neurons have been considered the basic 

functional units of the central nervous system, and glia only trophic and supportive 

elements. However, recently it is becoming evident that for the functional organization 

of the brain proper intercommunication among cells that form the neuron-astrocyte-

microglia ‘‘triad’’ is fundamental (Barres, 2008; Allen & Barres 2009). We and others 

(Cerbai et al., 2012; Lana et al., 2016; Re et al., 2014) demonstrated that in stress 

conditions, astrocytes fragment degenerating neurons and cooperate with microglia in 

the disposal of neuronal debris.  

In line with our previous data (Cerbai et al., 2012; Lana et al., 2016), here we found that 

many neurons in the granular layer of aged rat hippocampus underwent apoptosis, 

which caused cellular degeneration and death. The decrease of neurons in DG of aged 

rats, possibly made more significant by reduction of neurogenesis during aging (Kuhn et 

al., 1996), may contribute to age-related memory impairments, as demonstrated in 

previous experiments with similar rat models (Lana et al., 2016). In the aged rat DG, not 

only neurons showed signs of degeneration, but also astrocytes were less numerous and 

had morphological features of clasmatodendrosis (Hulse et al., 2001; Mercatelli et al., 

2016). In a less neuron-centric view of neurodegeneration during aging, the loss of 

astrocytes and their functions such as brain homeostasis maintenance, extracellular 

glutamate and ion buffering, as well as energy and nutrient supply to neurons, may 

contribute to spread of neural damage and degeneration (Miller et al., 2017). It has been 

demonstrated (Bernal & Peterson, 2011) that the decrease of astrocytes in DG of aged 

rats is accompanied by decreased astrocyte-dependent VEGF expression during aging, 

further supporting our findings. Nevertheless, the findings in this regards are still 

controversial (for rev. see Rodrìguez-Arellano, 2016). 

The current investigation did not find significant decrease of neurons in DG of LPS-

treated rats. Since LPS is detrimental for neurogenesis (Ekdahl et al., 2003; Littlefield et 
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al., 2015), other mechanisms must be taken into consideration to explain this apparent 

discrepancy. First, apoptotic neurons in GL of LPS-treated rats, although more 

numerous than in adult rats, were significantly less numerous than in aged rats, and the 

consequent the neuronal death may be less relevant. Furthermore, although in LPS-

treated rats, as in aged rats, astrocytes were less numerous than in adult rats, in LPS-

treated rats astrocytes were in a reactive state. Indeed, astrocyte branches were longer, 

and were able to pass through the entire depth of the granular layer, a finding indicative 

of a better trophic support exerted by astrocytes towards granular cells in LPS-treated 

rats. This phenomenon, contrary to that observed in CA1 (Lana et al., 2014), can be 

considered a protective effect of astrocytes towards neurons.  

Taken together with our previous reports (Cerbai et al., 2012; Lana et al., 2014, 2016) 

our findings confirm that reactive astrogliosis is not a single, uniform process, and not 

always a negative phenomenon. In moderate astrogliosis, astrocytes have hypertrophic 

bodies and processes (Wilhelmsson et al., 2006), are distributed in contiguous, non-

overlapping domains (Bushong, et al., 2002), their proliferation is limited and do not 

form scars. In line with these findings, it has it been shown that adaptive astrogliosis is 

beneficial for neurons, while suppression of astroglia reactivity may increase neuronal 

vulnerability, exacerbating the pathological progression and altering regeneration 

(Sofroniew, 2009; Burda and Sofroniew, 2014; Pekny et al., 2014). Supporting our 

findings, other data demonstrated that hypertrophy of astrocytes may reflect astrocytes 

adaptive plasticity, as demonstrated in aged rodents increasing morphological 

complexity by an enriched environment (Rodrìguez et al., 2013; Sampedro-Piquero et 

al., 2014). 

Here we showed that many neurons that form triads with astrocytes and microglia in the 

PL of the DG were granular cells, located very close to the GL, although clearly 

detached from it. These results are in agreement with the current knowledge that during 

the first steps of apoptosis caspases break the cell cytoskeleton, allowing the apoptotic 

cell to detach from the surrounding, healthy cells (Böhm, 2003). This mechanism may 

explain how apoptotic, damaged neurons migrate from the GL to the PL to form triads 

in which phagocytosis may take place. Active and controlled cell death may serve a 

homeostatic function in regulating the number of cell population in healthy and 

pathological conditions (Becker and Bonni, 2004; Kerr et al., 1972). Thus, triad 

formation seems a specific mechanism for disposal of degenerating neurons, not only 

through phagocytosis, but also through the mechanism of phagoptosis (Brown and 
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Neher, 2012). Phagoptosis is triggered by cell stress which is too mild to cause cell 

death, too serious to allow adaptation of the neuron to the damage but sufficient to 

recruit astrocytes and microglia for phagocytosis (Kao et al., 2011).   

Microglia activation has been long considered detrimental for neuron survival, more 

recently it appears that this is not always the case (Solito and Sastre, 2012; Zhu et al., 

2016). Furthermore, given the increased number of total and activated microglia cells in 

the DG of rats treated with LPS, we can hypothesize that the scavenging processes were 

more effective in DG of LPS-treated rats than in aged rats. These data are in agreement 

with results that showed that during aging, although microglia increased, the cells had 

morphological modifications that caused less neuroprotective and defensive capabilities 

of microglia (Tremblay et al., 2011; Streit and Xue, 2013; Streit et al., 2009). 

In the current study, we confirmed that hippocampal levels of CX3CL1 (Cerbai et al., 

2012) increased significantly both in aged and LPS-treated rats. At the morphological 

level, we found that CX3CL1 was never colocalized with neurons or astrocytes, but 

only with activated microglia. This is an interesting, unexpected finding since, as 

reported by Luo et al. (2016), although CX3CL1 is considered to be principally 

expressed by neurons, while its receptor by microglia (Cardona et al., 2006; Harrison et 

al., 1998; Lauro et al., 2008), it is still debatable whether other cell types also express 

CX3CL1. We had previously demonstrated that CX3CL1 immunostaining in CA1 was 

localized on neurons phagocytized by microglia (Cerbai et al., 2012). Nevertheless, in 

the periphery CX3CL1 is expressed in different inflammatory conditions by monocytes, 

macrophages, and other cells types such as fibroblasts, endothelial cells, and dendritic 

cells (Jones et al., 2010). Therefore, as the resident macrophage cells of the brain, it is 

possible that in particular areas and in certain stress conditions such as inflammation, 

microglia will express CX3CL1. Consistent with these data we also found a highly 

significant increase not only of total but also of activated microglia in PL of LPS-treated 

rats. On the other hand, microglia express the only receptor for CX3CL1, whose role in 

the CX3CL1-associated activation of microglia is well known (Jung et al., 2000). 

Therefore, it is also plausible that immunofluorescence of CX3CL1 that we detected on 

microglia might depend upon the binding of CX3CL1 to its receptor. Indeed, although it 

has been shown that CX3CL1 maintains microglia in a quiescent state (Lyons et al., 

2009; Bachstetter et al., 2011), it has also been demonstrated that soluble CX3CL1 

increases and is released in cerebral ischemia (Denes et al., 2008), in response to 

apoptosis (Fuller and  Van Eldik, 2008) and to glutamate excitotoxicity (Chapman et al., 
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2000). Nevertheless, CX3CL1 role as a neuroprotective or neurotoxic molecule remains 

unresolved (Lauro et al., 2015). It has been shown that CX3CL1 is neuroprotective in 

cultured rat hippocampal neurons (Limatola et al., 2005; Cipriani et al., 2011) and 

Cx3cr1–/– mice show reduced damage after cerebral ischemia; this protection may be 

due to the anti-inflammatory state of local microglia (Tang et al., 2014). CX3CL1 may 

also be or deleterious (Liu et al., 2015) in different models of neurodegenerative 

diseases, indicating that the effects of CX3CL1 may be different, according upon 

different degenerative stimuli (Lauro et al., 2008).  

Comparison of the results obtained in studies of the DG, CA1 and CA3 

It is generally believed that neuroinflammation is characterized by astroglia activation, 

which can be typified by morphological changes, accompanied by low to moderate 

levels of inflammatory mediators in the parenchyma. Although it is commonly agreed 

that astroglia is activated and reacts similarly in different conditions (Ransohoff, 2016) 

and brain areas, our data demonstrate the responses of astrocytes and microglia to aging 

and LPS-induced inflammation to the same stressful stimuli are different not only 

among different subregions but also within the same hippocampal subregion. The 

differential reactivity of astrocytes and microglia is reported in Table 2, which is built 

from results taken from our present data and from previous published papers (Cerbai et 

al., 2012; Lana et al., 2016), all obtained in the same rat models of aging and brain 

inflammation. From the data reported in Table 2 it is interesting to note that in all 

hippocampal subregions of aged rats, astrocytes decreased significantly, while total 

microglia decreased in CA1 only, and increased in CA3 and DG. In LPS-treated rats 

both total and activated microglia increased in all three regions, while astrocytes did not 

vary in CA1 SR (SR), increased in CA3 SR and decreased in DG PL. Of note is also the 

much lower density of activated microglia in CA1 in comparison to CA3 and DG, in the 

three experimental models. Thus, taken together with the results from our previous 

investigations of the hippocampus under identical conditions, we conclude that in DG 

PL, and in CA1 and CA3 SR (Cerbai et al., 2012; Lana et al., 2016), all subregions of 

rat hippocampus that are contiguous and interconnected, astrocytes and microglia show 

very different reactivity in the three experimental groups. These data demonstrate that 

astrocytes and microglial responses to the same insult are not uniform but vary 

significantly from area to area and in different stress conditions. It will be of great 

interest to confirm whether these differences of glial reactivity may explain the 

differential susceptibility of the hippocampal areas to aging or to different inflammatory 
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insults (Masgrau et al., 2017). It was previously demonstrated that activated microglia 

are seen diffusely scattered throughout the brain after two days of LPS infusion (Wenk 

et. al, 2000). During the next weeks, the number of activated microglia gradually 

decreases in all cerebral regions and after four weeks, the greatest inflammatory 

response is concentrated within the hippocampus (Wenk et. al, 2000). These findings 

suggest that LPS initiates a cascade of biochemical processes that show time-dependent, 

regional and cell specific changes that are maximal after four weeks of LPS infusion 

(Wenk, 2000; Hauss-Wegrzyniak, 1998).   

In the second part of my research we demostrated that on the one hand, glial cells play a 

main defensive role against exogenous pathogens and endogenous noxious molecules in 

the CNS. On the other hand, they can exert deleterious effects in a sustained pro-

inflammatory response. Rapid neuroprotective effect of microglia is facilitated by its 

regular distribution, which minimizes the distance from possible pro-inflammatory 

triggers, such as amyloid deposits, cell debris and entire damaged neurons. Astrocytes 

constantly contact neuron surfaces, interact with neuron debris (Reemst et al. 2016), 

thus the continuous meshwork of their projections may be the first glial structure 

contacting possible targets of microglia phagocytosis. We demonstrated the hypothesis 

that a direct cell-cell interaction exists between astrocytes and microglia in rat 

hippocampus, influencing and mediating microglial branching and, in turn, addressing 

branch tree extension towards pro-inflammatory triggers. We also demonstrated that the 

astrocyte meshwork disruption occurring in aged hippocampus, could be related to 

dysregulation of microglial defensive activity. 

Analyses on microglia morphology, disclosed by IBA1 staining, revealed that branch 

volume in LPS-treated rats was higher than in control rats. According to previous 

findings, extension of microglial projections during inflammation can be considered a 

chemotactic process sensing the localization of phagocytosis targets in an inflammatory 

milieu (Hanisch & Kettenmann, 2007). This process is known to depend on ECM com-

ponents (Honda et al., 2001) and soluble chemoattractants (Fan  et al., 2017; Hall, 1998; 

Ohsawa et al., 2000). Confocal imaging of IBA1 immunostaining showed remarkable 

branch sprout along microglial projections in LPS-rats, suggesting that microglial 

branch sprouting might be triggered by neuroinflammation. IBA1 is a microglial marker 

known to promote actin rearrangement in migration and phagocytosis processes 

(Damani et al., 2011). Measurements here reported on immunofluorescence intensity 

showed that a correspondence exists between IBA1 expression in microglial projections 
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and their volume, being both higher in LPS than in control rats. Therefore, it can be 

suggested that an increase of IBA1-mediated cytoskeletal rearrangement may play a 

key-role in the initial steps of microglial activation and migration in an inflammatory 

milieu, such as in the hippocampus of LPS rats. In aged rats, our analyses reported 

lower branching and smaller volume of their projections in comparison to the other 

animal groups. These data are consistent with previous findings (Wong, 2013; von 

Bernhardi et al., 2015) and suggest that aged microglia cells are characterized by low 

efficient cytoskeletal remodeling in their projections and, consequently, impairment of 

microglial migration and phagocytic activity.  

Confocal microscopy analysis of IBA1+ microglia and GFAP+ astrocytes in aged CA1 

hippocampus first correlated the extent of microglial branching with integrity of the 

astrocyte meshwork. In a previous paper of our group, the remarkable disruption of the 

astrocyte meshwork in aged rats is ascribable to clasmatodendrosis: a fragmentation of 

astrocytes projections. These data support the existence of astroglia-microglia crosstalk 

in the rat hippocampus, involved in microglia distribution and branching. The analyses 

of microglial expression of integrin-β1, a known mechanosensor (Fan et al., 2017), 

suggested the involvement of mechanotransduction in these interactions: in control and 

LPS rats, microglial integrin-β1 was significantly concentrated at contact sites between 

microglia cells projections and astrocytes projections. In the current work, we have 

postulated a link between integrin-β1 localization at microglia cells and astrocytes 

projections contacts and the dynamic remodeling of microglial branch tree, which is 

present in normal CNS and may be intensified during inflammation (Hanisch & 

Kettenmann, 2007). Quantitative analyses in aged rats revealed a parallel decrease of 

microglia cells and astrocytes projections contact extent and integrin-β1 expression. 

Morphological analyses revealed a dichotomous situation: microglia processes appeared 

ramified and showed high accumulation of integrin-β1 at contact sites within the intact 

astrocyte meshwork, whereas they appeared unbranched, enlarged and with scanty 

integrin-β1 accumulation in the disrupted astrocyte meshwork. These data suggest that a 

scattered impairment of astroglia-microglia direct interaction might hamper microglial 

branching and migration in aged rats. 

The same pattern of contact distribution was observed also in LPS rats. These data 

suggest that local increase of astroglia-microglia interactions may address microglia 

branching towards damaged neurons in the “find me” step of neurophagocytic activity. 

In aged rats, a direct correlation was found between integrity of the astrocyte meshwork, 
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microglia-astrocyte interactions and patterns of neurophagocytic activity. In aged rats, 

impairment of microglia-astrocyte interaction due to clasmatodendrosis may reduce the 

efficiency of microglial neurophagocytic activity, thus contributing to the increase of 

pro-inflammatory cell debris in the nervous tissue. 

In summary, our findings suggest that in rat hippocampus a direct astrocytes-microglia 

interaction exists, affecting microglial branching and distribution. Such interaction is 

dynamic, involves accumulation of integrin-β1 at microglia-astrocyte contacts and may 

address microglia branching towards targets of phagocytosis. We hypothesize that the 

impairment of this interaction in aged rats hampers the migration of microglia causing 

inefficient phagocytosis of injured neurons. A detrimental loop could be triggered in the 

aged rat hippocampus where accumulation of toxic debris might hamper microglia 

clearance activity by inducing disruption of the astrocyte meshwork. The data reported 

in the present study contribute to expand the wealthy panel of interactions occurring 

among the different cell populations of the nervous tissue and add plausibility to the 

idea that such interactions give rise to a network of morphological and functional 

reciprocal reliance and dependency. To comprehend peculiar aspects of the onset and 

progression of neuroinflammation, it is necessary to cosidered that any tissue, and first 

of all the nervous tissue, is not composed by a collection of single elements but rather 

by interacting and interdependent cell populations that cooperate to maintain 

homeostasis and functionality of an organ. Different kind of alterations affecting one 

population reasonably will reverberate to the others either favoring or dysregulating 

their activities. 
The third part of my study was to investigate and compare the quantitative, temporal, 

and spatial modifications of the interplay between astrocytes, microglia and neurons in 

CA1 and CA3 hippocampus of TgCRND8 mice, a mouse model of Aβ deposition, at 3 

and 6 months of age. The comparison between these two hippocampal areas is 

fundamental and can help explaining the more pronounced sensitivity of CA1 pyramidal 

neurons to neurodegenerative insults, both in experimental animals and in humans 

(Bartsch et al., 2015; Mueller et al., 2010; Small et al., 2011). It is also important 

because of the critical, although different, role of these areas in memory processing and 

because of their significant functional, structural, and morphological alterations in AD 

(Bartsch and Wulff, 2015). Therefore, in this work, we studied the different patterns of 

neuron degeneration and apoptosis, glia activation/modification, as well as different 

expression of proinflammatory mediators, at different stages of plaque deposition, 
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subdividing the hippocampus in the two main regions of interest CA1 and CA3. The 

principal findings of this study were that the two contiguous and interconnected 

hippocampal regions of transgenic mice display remarkably different cellular 

modifications and neuronal vulnerability to the deposition of Aβ plaques. Interestingly, 

while total Aβ load in CA1 was not significantly different from that of CA3, both at 3 

and 6 months of age, in CA1 SR of Tg 6M mice the Medium and Large plaques were 

significantly more numerous than in CA3 SR. As expected, we found many 

hypertrophic astrocytes surrounding and infiltrating Aβ plaques, both in CA1 and CA3. 

Nevertheless, astrogliosis was also evident not only close to the plaques, but also in the 

SR parenchyma far from and devoid of plaques. Astrogliosis, evidenced by increased 

recruitment of astrocytes, increased expression of GFAP and elongation of astrocyte 

branches, significantly increased in the entire CA1 of transgenic mice, mainly at 6 

months of age, while in CA3 it was significantly lower than in CA1. Healthy astrocytes 

are indispensable for synaptogenesis, synaptic maintenance and maturation (Pfrieger, 

2009; Heneka et al., 2010), significantly contributing to memory-associated processes 

(Verkhratsky et al., 2011), but they are also involved in AD, as first suggested by Alois 

Alzheimer (Alzheimer, 1910). The involvement of astrocytes in AD progression is 

variegated, depending upon the brain area interested and the gravity of the disease. 

Indeed, in the hippocampus, progression of AD has been associated with an early 

atrophy of astrocytes, defined clasmatodendrosis (Hulse et al., 2001; Penfield, 1928) 

that, at later stages of the disease, coexists with reactive astrocytes around plaques 

(Olabarria et al. 2010; Yeh et al. 2011). We never found clasmatodendrotic astrocytes in 

CA1 and CA3 parenchyma of transgenic mice at both 3 and 6 months of age.  

Dissecting the hippocampus in the two main regions CA1 and CA3 we observed 

significant differences in most of the parameters investigated, at different stages of 

plaque deposition. In CA1 SR of 6 months aged transgenic mice, we found significantly 

higher levels of the expression of the cytokines TNFα, IL1β, as well as iNOS in 

astrocytes, confirming our and others’ results in TgCNRD8 mice (Luccarini et al., 2012) 

and other models of neurodegenerative diseases (Deng et al., 2014; Lana et al., 2017). It 

has been demonstrated that the inflammatory cytokine TNFα is usually expressed in the 

brain by activated microglia, and, to a lesser extent, by activated astrocytes and neurons 

(Perry et al., 2002). Nevertheless, many studies have shown that the gradual deposition 

of Aβ peptide and overproduction of inflammatory mediators activate astrocytes, further 

inducing expression and release of cytokines, interleukins, NO and other 
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proinflammatory mediators (Heneka et al., 2015; Choi et al., 2014) that in turn increase 

pro-apoptotic cascades in the surrounding brain areas (Luccarini et al., 2012), and 

exacerbate AD pathology (Tan et al., 2007). Furthermore, it has been demonstrated that 

TNFα induces apoptosis primarily through the activation of cell-surface TNFα type I 

receptors that contain death domains (Park et al., 2007). In line with these data, our 

results demonstrate that in CA1 SP, both at 3 and 6 months of age, a significant number 

of pyramidal neurons underwent apoptosis, possibly targeted by increased TNFα 

expression and release by astrocytes. In addition, stimulation of iNOS by cytokines in 

astrocytes may cause increased concentrations of NO that can be toxic to neurons. 

Indeed, iNOS is upregulated AD patients’ brain (Vodovoz et al., 1996) and Knock Out 

of iNOS is protective in mouse models of AD (Nathan et al., 2005). These mechanisms 

may be the cause of the significant loss of CA1 pyramidal neurons and shrinkage of 

CA1 stratum pyramidale, evidenced in CA1 but not in CA3.  

It is known that Aß plaques induce production and release of pro-inflammatory 

cytokines by neurons and astrocytes (Hickman et al. 2008, Daria et al. 2017) which, in 

turn, promote a shift in microglia activity, from surveillance/maintenance mode, to 

execution of immune tasks. Microglia can assume two different phenotypic forms, M1 

and M2 (Loane & Kumar, 2016). While M1 microglia can express and release 

proinflammatory cytokines (de Bilbao et al., 2009; Protti, et al., 2013), M2 microglia is 

more active in the surveillance/maintenance of tissue homeostasis, phagocytosing 

apoptotic or degenerating neurons, preventing secondary inflammatory mechanisms and 

promoting tissue regeneration (Hu et al., 2012; Suenaga et al., 2015). In both CA1 and 

CA3 of transgenic mice, we found an increase of total microglia, and of reactive 

microglia, corresponding to the M1 phenotype, which significantly increased in CA1 SP 

and SR at 3 and 6 months of age. These data indicate that the inflammatory milieu 

triggered by plaque deposition caused increased recruitment of microglia cells, and 

significantly increased its reactivity. Furthermore, in agreement with data obtained by 

Bolmont et al. (2008) in the cortex of APPPS1 transgenic mice, we found significant 

spatial orientation of microglia towards Large plaques, both in CA1 and CA3 SR of Tg 

6M mice.  

The reactivity state of microglia in CA1 SR, together with increased astrogliosis, caused 

increased formation of neuron-astrocytes-microglia triads. The concerted actions of 

astrocytes and microglia in the formation of triads with neurons can recognize "danger 

signals", including cellular debris produced from apoptotic or necrotic cells (Milligan & 
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Watkins, 2009), and can clear the damaged neurons or neuronal debris by phagocytosis 

(Cerbai et al., 2012; Lana et al., 2014). Indeed, we found several reactive microglia cells 

that cooperated with astrocytes in the phagocytosis of degenerated neurons, mainly in 

SR of transgenic mice. Under physiological conditions, the effects of astrocytes and 

microglia are protective, removing entire neurons by phagoptosis (Lana et al., 2017), 

clearing dysfunctional synapses and controlling inflammation and the diffusion of 

cellular damage to neighboring tissue. Also, activated microglia contribute to Aß-

clearance and removal of cytotoxic debris from the nervous tissue. However, 

phagocytosis of living healthy neurons by microglial in inflamed CNS has also been 

reported (Neher et al. 2012; Vilalta & Brown 2017). Furthermore, uninterrupted 

microglia activation may exacerbate inflammation, increase Aß-deposition and intensify 

neurodegeneration (Michaud et al. 2015). Indeed, in AD, as for astrocytes, pro-

inflammatory and detrimental, or antiinflammatory and even protective properties have 

been attributed to microglia (Heneka et al., 2015; Heppner et al., 2015; Mandrekar & 

Landreth, 2010). All these different findings may suggest that microglia may acquire 

heterogeneous activation states, or, as in our results, microglia can be protective or 

detrimental, depending on the region where it is located and other concauses.  

Here we have demonstrated that not only the proximity to plaques determines the 

development of a specific reactive phenotype of microglia (Plescher et al., 2018) and 

astrocytes (Olabarria et al., 2010), but also the different plaque size and distribution 

within different brain areas. In CA1 and CA3 hippocampus, although Aβ load was 

similar, plaque organization in terms of dimensions was different, and glia and neurons 

responded with differential patterns of activation and neurodegeneration. The sensitivity 

of the subregional pyramidal neurons to neurodegeneration was very different, at both 3 

and 6 months of age. Our paper is in line with recent evidence showing hippocampal 

subregional-specific patterns of neurodegeneration at different stages of Aß deposition 

(Mahar et al., 2017; Albuquerque et al., 2015). 

Significant progress has been made in understanding the relationships of amyloid 

pathology to hippocampal dysfunctions, however complete understanding of this 

process across hippocampal anatomical areas remains incomplete. Although the 

hippocampus is often described as a unitary structure, this is hardly the case. The unique 

molecular and synaptic milieu of its spatial domains allow asking how AD 

pathophysiology can arise in one region versus the other one. Memory impairment, 

particularly episodic and spatial memory, is the most important symptom of AD, often 
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related to the dysfunction of pyramidal neurons in CA1 and entorhinal cortex (Hyman et 

al., 1984; Kerchner et al., 2010; Scheff et al., 2007; West et al., 2000). Studies have 

shown that lesions centering on CA1 are sufficient for memory impairment (Zola-

Morgan et al., 1986). Indeed, our data lend support to the idea that Aβ load exerts 

greater effects on CA1 than on CA3. Many authors found that the CA1 is the most 

vulnerable region of the hippocampus to neuronal loss both in animal models of AD and 

in AD patients (Corbett et al., 2013; Stepanichev et al., 2006; West et al., 2000; Price et 

al., 2001; Rossler et al., 2002). Among AD patients, variable degree of atrophy between 

CA1 and CA3 is often found, CA3 being the least damaged area (Hyman et al., 1984). 

On the other hand, in different transgenic mouse models of AD it has also been found 

(Gruart et al., 2008) that learning and memory deficits are not directly correlated to Aβ 

load. Therefore, other factors, besides Aβ deposition may be involved in memory 

deficits. 

The loss of CA1 pyramidal neurons, which underwent neuronal death by apoptosis, 

caused shrinkage of the CA1 pyramidal cell layer. All these modifications may be at the 

basis of memory loss, which was repeatedly demonstrated in this transgenic mouse 

model of Aß deposition, even at early stages (Chishti et al., 2001; Hamm et al., 2017). 

Interestingly however, it has been shown that increased physical activity improves 

behavioural and cognitive deficits in murine models of AD (García-Mesa et al., 2011) 

and reduces the risk of AD in humans (Buchman et al., 2012). The precise mechanism 

of action underlying the positive effects of physical activity are still not known, but may 

involve astrocytes (Latimer et al., 2011), indicating that astrogliosis may become a 

therapeutic target for AD (Colangelo et al., 2014).  
 

In the fourth part of this research, we used the model of brain chronic hypoperfusion 

with the permanent bilateral common carotid artery occlusion or two vessel occlusion  

(2VO) in the rat (Sarti et al, 2002a,b; Farkas et al., 2007; Lana et al., 2014), which is a 

suitable animal species for this purpose since the circle of Willis affords reduced blood 

flow to the brain (Otori et al., 2003). As outlined by Farkas and coworkers (2007) the 

rat 2VO model is useful to investigate the long-term effects of chronic cerebral 

hypoperfusion (Farkas et al., 2007) since hypoperfusion is global although mild, and 

represents a model of cerebrovascular stenosis in aging humans. Furthermore, the 

damage to the nervous tissue, although chronic, is less dramatic than in focal ischemic 

models (Farkas et al., 2007). In a recent paper, we studied the quantitative and 
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qualitative changes induced by 2VO on neurons, astrocytes, microglia, in hippocampal 

CA1 (Lana et a.l, 2014). Here we studied the effect of 2VO on hippocampal area CA3 

and the comparison between the results obtained in CA1 and CA3 will be useful to 

understand the different reactivity of the two areas after the hypoxic insult, and more 

specifically to understand if and why CA3 pyramidal neurons show better adaptation to 

an ischemic insult and to degeneration in comparison to CA1 pyramidal neurons. In our 

study, dipyridamole was tested in the 2VO model to evaluate its protective role against 

the physiopathological mechanisms that the ischemic insult exerts in the CA3 region of 

the hippocampus. 

Brain chronic hypoperfusion, caused by partial carotid occlusion during aging, 

represents a chronic, dynamic process that causes multiple progressive alterations, and 

eventually leads to neurodegeneration (Ozacmak et al., 2007; Farkas et al., 2007) and 

vascular dementia (Chmayssani et al., 2007). The CA1 region of the hippocampus 

results particularly vulnerable to decreased blood flow and glucose supply caused by 

2VO occlusion, that cause failure of neuronal signaling, and impairments in 

hippocampally-based forms of memory (De Jong et al., 1999; Liu et al., 2005; Farkas et 

al., 2006; Melani et al., 2010; Lana et al., 2013). It is well known that CA3 and CA1 

hippocampal areas, although well interconnected, respond differently to 

ischemic/hypoxic insults (Kirino et al., 2000). As demonstrated in animal models 

(Schmidt-Kastner & Freund 1991), CA1 neurons of patients with cerebral hypoxia are 

the most vulnerable in the brain (Zola-Morgan et al., 1986; Petito et al., 1987). At early 

stages after an ischemic insult, the pyramidal neurons from CA1 and CA3 are exposed 

to similar triggering events such as the increase of extracellular glutamate (Mitani et al., 

1992). Energy deprivation reduces intracellular ATP modifying the ionic gradients and 

inverting glutamate transport both in pyramidal CA1 (Rossi et al., 2000) and CA3 

neurons (Jabaudon et al., 2000). At later times, NMDA-mediated responses increase in 

CA1 pyramidal neurons, which become more sensitive, while are transiently depressed 

in CA3 pyramidal neurons, that become more resistant. It has also been demonstrated 

that the balance kinase/phosphatase is different between CA1 and CA3. In CA1, the 

balance kinase/phosphatase is in favour of kinase activity, while in CA3 it is in favour 

of phosphatase activity (Gee et al., 2006). Nevertheless, the question that remains to be 

answered to is how and why these two contiguous, interconnected regions of the 

hippocampus respond differently to an ischemic event.  
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Here we exploited the 2VO hypoperfusion paradigm to verify whether and how the 

interaction between glia and neurons in CA3 may change after hypoperfusion. 

Immunohistochemistry and confocal microscopy analysis revealed the presence of 

significantly more numerous "ectopic" pyramidal neurons in the CA1 Str. Radiatum of 

2VO rats, localized both in SL and SR layers. Since the SL subregion is 

paradigmatically defined as “a-neuronal” (Amaral et al., 2007), the ectopic neurons are 

likely deriving from CA3 SP. Our results demonstrate that the CA3 of hypoperfused 

rats undergoes a process of low-grade inflammation and programmed cell death, and 

astrocytes and microglia form triads with degenerating neurons and cooperate in the 

phagocytosis and clearance of ectopic neurons and neuronal debris. This phenomenon 

may represent a sign of alteration and damage of the hippocampal CA3 pyramidal 

neurons. The cells we defined as ectopic neurons had a pyramidal shape, typical of 

pyramidal neurons and were located both in SL and in SR. Using immunostaining for 

CytC, a marker for apoptosis, we demonstrated that in SP and SL of CA3 of 2VO-

vehicle rats many neurons were apoptotic, significantly more numerous in SP of 

hypoperfused rats. We also demonstrated the presence of a significantly higher number 

of neuronal debris, possibly deriving from apoptotic neurons, both in SL and SR of 

2VO-vehicle rats, but not in SL and SR of 2VO-dypiridamole treated rats. This latter 

finding may explain the protective effect of dypiridamole, as explained in more details 

below. 

Despite the increase of apoptotic neurons, of ectopic neurons and of neuronal debris in 

hippocampal SL and SR of 2VO-vehicle rats, we did not find significant decrease of 

CA3 pyramidal neurons in comparison to sham rats. This effect could depend upon 

increased neurogenesis during the restitution phase of brain chronic ischemia, as shown 

in vivo (Dirnagl, 2012; Farkas et al., 2007) and in vitro (Maraula et al., 2013) in models 

of chronic ischemia. Newborn neurons may then migrate from the subgranular zone 

(SGZ) of the DG to integrate the apoptotic neurons in the CA3 pyramidal layer.  

During chronic cerebral hypoperfusion, astrogliosis is generally considered a late-

emerging event (Farkas et al., 2007; Farkas et al., 2004, 2006; Pappas et al., 1996; 

Schmidt-Kastner et al., 2005) in the hippocampus. Consistently, we found significant 

increase of astrocytes in SP and SR of 2VO-vehicle rats and in SP, SL and SR of 2VO-

dypiridamole treated rats. The length of astrocyte branches were not different among 

groups and regions investigated, indicating that the astrocytes were not hypertrophic or 

hyperactivated. We hypothesize that the increased number of astrocytes might be the 
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consequence of higher demand of oxygen and nutrients by neurons that are in a 

hypoxic/hypoglycemic milieu given by the hypoperfusion state. The reduced trophic 

support to CA3 neurons could be balanced by increased number of astrocytes. This 

phenomenon, contrary to that observed in CA1 in the same model of chronic cerebral 

hypoxia (Lana et al., 2014) can be considered a protective effect of astrocytes towards 

neurons. The idea that an increased number of astrocytes is always a negative 

phenomenon is rapidly changing, thanks to new data and to new concepts that suggest a 

more complex and more variegated role of astrocytes in physiological mechanisms and 

in different neuropathological disorders (Sofroniew et al., 2009; Verkhratsky et al., 

2013; Burda et al., 2014). It is becoming more and more evident that dysfunctions in the 

process of astrogliosis contribute to or are the primary cause of damaging mechanisms 

in the central nervous system, both through loss of normal functions and through 

increase of damaging effects (Sofroniew, 2009). As reported by Sofroniew (Sofroniew, 

2009; Sofroniew and Vinters, 2010), and demonstrated in other papers from our 

laboratory (Lana et al., 2012, 2014, 2016) astrogliosis is not a single uniform process, 

nor always synonymous with scar formation. In moderate reactive astrogliosis, such as 

the one we found in CA3 SL and SR, astrocyte proliferation is scarce, and astrocytes do 

not form scars but occupy non-overlapping domains (Bushong et al., 2002). Astrocytes 

infiltrate their branches inside the body of ectopic pyramidal neurons to trigger or help 

their disgregation, as previously found (Cerbai et al 2012, Re et al. 2014, Lana et al., 

2014, 2016). Indeed, with the triple immunostaining of neurons, astrocytes and 

microglia we demonstrated that in in SL and SR of the three experimental groups many 

ectopic neurons were surrounded by astrocyte branches and by microglia forming the 

so-called triads. Triads were significantly more numerous in the SR of 2VO-vehicle rats 

than in the two other groups. Dypiridamole reduced this effect, although not completely. 

The phenomenon of neuron infiltration, and fragmentation by astrocytes branches, first 

demonstrated in our laboratory (Cerbai et al., 2012), was later confirmed by Re and 

coworkers in a model of ALS (Re et al., 2014) and in other papers from our group (Lana 

et al., 2014, 2016). As we demonstrated, astrocyte branches intermingled and penetrated 

the neuronal cytoplasm, fragmenting the neuronal cell body to give rise to cellular 

debris. The fragmentation of ectopic neurons may be the consequence of the apoptotic 

process, which these neurons were undertaking because of the hypoxic state of the 

tissue after 2VO.  As demonstrated in other models of neurodegeneration (Cerbai et al., 

2012; Huizinga et al., 2012; Polazzi and Monti, 2010), fragmentation of apoptotic 
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neurons may be triggered or accelerated by astrocyte branches that infiltrate the 

neuronal cell body, forming smaller debris ready for phagocytosis by microglia.  Thus, 

we hypothesize that it may represent a mechanism common to many neurodegenerative 

processes. 

We found an increase of IBA1+ microglia in SL and SR of 2VO-vehicle and 2VO-

dypiridamole treated rats, an indication that the low grade of local inflammation could 

recruit microglia in these regions, while in SP of 2VO-dipyridamole rats IBA1+ 

microglia decreased. Microglia recruitment and activation has long been considered a 

negative mechanism that leads to accumulation of neurotoxic phagocytes, but more 

recently, it is considered a reversible multistep process which leads to neuroprotective 

effects (Hanisch & Kettenmann, 2007; Kettenmann et al., 2013; Ransohoff & Perry, 

2009). We found that many microglial cells cooperated with astrocytes forming triads to 

remove, through phagocytosis, degenerating, apoptotic neurons, both in SR of 2VO-

vehicle and 2VO-dypiridamole treated rats. In SL and SR of 2VO-dypiridamole treated 

rats we found the presence of a significantly lower number of neuronal debris. Several 

authors have indicated that microglial activation following neuronal injury represents 

mainly a protective mechanism that limits further neurodegeneration (Minghetti & Levi, 

1998; Streit et al., 1999; Polazzi and Contestabile, 2002). Indeed, it has been shown that 

phagocytosis of apoptotic cells by microglia decreases the production of pro-

inflammatory cytokines, such as TNFα and IL-12, without affecting the secretion of 

anti-inflammatory and potentially neuroprotective molecules, such as IL-10 and TGF-ßl 

(Magnus et al., 2001). It has also been demonstrated that microglia releases molecules 

able to rescue neurons from apoptotic death and, in turn, diffusible signals from 

apoptotic neurons enhance the neuroprotective properties of microglia (Polazzi et al., 

2001). This effect may also be responsible for the recently described phenomenon of 

phagoptosis (Zhang et al., 2015) through which microglia is able to phagocyte whole 

neurons damaged by the ischemic insult that do not show any sign of 

neurodegeneration. The heterogeneous distribution of microglia, which is more densely 

present in SL in comparison to SP, may thus be functional for the protective role that 

microglia may have in these conditions (Morsch et al., 2015), and particularly in this 

CA3 subregion where we also demonstrated a higher number of ectopic neurons and 

triads. It was also found that CA1 pyramidal cell death, 1 day after OGD, was 

significantly increased in microglia-depleted organotypic cultures, again suggesting a 

neuroprotective role of the normal content of microglia (Montero et al., 2009). Since it 
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is well known that the CA3 area of the hippocampus is more resistant than the CA1 to 

hypoxic insults, the increase of microglia cells that occurs in concert with the removal 

of dead cells (Nathan and Ding, 2010) may have both anti-inflammatory effects and 

consequently neuroprotective properties (Liesz et al., 2009). Indeed, the  increase of 

microglia in CA3 and its decrease in CA1 (Lana et al., 2014) may explain the higher 

sensitivity of CA1 pyramidal cells to an ischemic insult. Our results may be interpreted 

as follows: the increase of total microglia in CA3 SL and SR of 2VO-vehicle rats, 

during the restitution phase of brain chronic hypoperfusion, may depend on the release 

of anti-inflammatory cytokines that boosts an anti-inflammatory milieu (Spite and 

Serhan, 2010). Though very sparse OX-positive, activated, microglia cells were found 

in SP, SL and SR of the three experimental groups, many IBA1+, reactive microglia 

cells (Beynon and Walker, 2012) phagocytosed ectopic pyramidal neurons or neuronal 

debris in CA3 SR of 2VO-vehicle rats. The high motility of microglia that effectively 

monitor the status of the local surroundings may explain the decrease of microglia in 

CA3 SP and the increase in CA3 SL and SR where it endocytoses small cellular debris 

derived from apoptotic cells. Therefore, post-ischemic production of cytokines and 

recruitment of microglia to the damaged tissue (Farkas et al., 2002) can facilitate tissue 

repair by increasing phagocytosis or phagoptosis, promoting the resolution of 

inflammation and exerting direct cytoprotective effects on surviving cells in the 

ischemic area. It would be of interest to investigate the modification of the number of 

microglia in the acute phase of brain chronic hypoperfusion, taking hippocampal slices 

at earlier times after 2VO-vehicle and make a comparison between CA3 and CA1 areas.  

As reported (Iadecola and Anrather, 2011), the post-ischemic insult is a self-limiting 

process subsiding during the so-called restitution phase (Dirnagl, 2012; Farkas et al., 

2007) and preparing the terrain for the structural and functional reorganization of the 

injured brain. The restitution phase is thought to be orchestrated by the interplay of 

numerous cells, processes and mediators (Spite and Serhan, 2010), including 

development of an anti-inflammatory milieu, removal of dying/apoptotic cells, and 

neurogenesis (Nathan and Ding, 2010; Spite and Serhan, 2010). We used hippocampal 

slices from animals 90 days after 2VO, a sufficient time for the tissue to undergo the 

restitution phase after brain chronic hypoxia (Dirnagl, 2012; Farkas et al., 2007).  

Dipyridamole, introduced in therapy in 1959 as an antianginal drug (Picano, 1989), is a 

potent inhibitor of platelet activation (Heptinstall et al., 1986), reduces thrombi 

formation in vivo (Elkeles et al., 1968), and has beneficial effects in therapy for 
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secondary stroke prevention (Halkes et al., 2006). Experimentally we have 

demonstrated that dipyridamole significantly restores hippocampally based spatial 

memory (Melani et al., 2010) and has a protective effect on hippocampal CA1 

pyramidal neurons (Lana et al., 2014) 90 days after 2VO. The increases of extracellular 

adenosine (Figueredo et al., 1999), together with increased VEGF production (Ernens et 

al., 2010), and the potentiation of the NO system (Aktas et al., 2003; Venkatesh et al., 

2010) help explaining the protecting effect of dipyridamole in this rat model of 

hypoperfusion. Dipyridamole has a positive effect on blood flow and angiogenesis 

through the nitrite/NO endocrine system (Venkatesh et al., 2010), increases NO levels 

and decreases superoxide formation both in ischemic and non-ischemic animals (Pattillo 

et al., 2011), and has pleiotropic pharmacological effects, such as antioxidant and anti-

inflammatory proprieties (Blake, 2004; Eisert, 2002; Hsieh et al., 2010; Riksen et al., 

2005). Dipyridamole decreases the production of proinflammatory cytokines (Al 

Bahrani et al., 2007), chemokines (Weyrich et al., 2005), inhibits matrix 

metalloprotease-9 (Weyrich et al., 2005), COX-2 activity (Chen et al., 2006), and the 

neutrophil adhesion to endothelium (Chello et al., 1999).  

We demonstrated that apoptosis in CA3 SP decreased significantly in 2VO-

dipyridamole rats in comparison to 2VO-vehicle rats. An interesting result was the 

reduction of neuronal death associated with the formation of the triads in CA3 SR in 

2VO-dipyridamole rats in comparison with 2VO-vehicle rats. These data show clearly 

the beneficial effect of dipyridamole against the physiopathological mechanisms of the 

ischemic insult. The conspicuous number of ectopic neurons and the increase of 

microglial cells in 2VO-vehicle and 2VO-dipyridamole rats in comparison to sham rats 

might be due not only to phagocytosis by microglia, but also to the newly defined 

mechanism of neuronal death called phagoptosis (Zhang et al., 2015). In this 

mechanism microglial cells engulf and digest whole neurons that appear damaged but 

still not fragmented. According to our data we show that microglial cells engulf some 

ectopic neurons, particularly in SL of 2VO-vehicle and 2VO-dipyridamole rats. 

We hypothesize that the administration of dipyridamole during the acute phase of brain 

chronic hypoperfusion is responsible for the smart opposition towards the progression 

of the pathophysiological mechanisms of the ischemic insult. This hypothesis is 

sustained by the reversion of many of the effects observed in 2VO-vehicle rats by 

dipyridamole, such as the further increase of  microglia in CA3 SL and SR that mirrors 

the decrease of neuronal debris in the same regions. We had previously demonstrated 
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that dypiridamole restores the number of microglia in CA1 (Lana et al., 2014). Further 

experiments are needed to fully understand the mechanisms of dipyridamole in rescuing 

the CA1 hippocampal region from the damages induced by chronic hypoperfusion  

Taken together, our results demonstrate the presence of neuronal damage and alteration 

in the interplay between neurons and glia in CA3 of 2VO-vehicle rats. The effect of 

dipyridamole to revert or slow the progression of the pathophysiological mechanisms of 

brain chronic hypoperfusion seem to depend in this region upon its role as an anti-

inflammatory drug increasing the phagocytic/phagoptotic activity of microglia. 

Astrocytes and microglial cells actions might contribute to the neuronal damage in a 

pathological condition but also represent a protective mechanism to control the 

inflammatory process and the ensuing diffusion of the cellular damage in the 

neighbouring tissues.   

Finally, in the last part of my research we investigated the putative protective role of 

adenosine A2B receptors in cerebral ischemia in the CA1 region of hippocampal slices 

under oxygen-glucose deprivation, an experimental condition that mimics, albeit with 

the limits of in vitro methodology, the most common causes of cerebral ischemia, such 

as vessel occlusion. In vitro slices give a partial view of the physiology of the brain 

because of the absence of an intact vascular system and the altered tridimensional 

microenvironment. These alterations involve not only neurons but also glia, and more 

generally the physiology of the neurovascular unit formed by astrocytes, pericytes, 

microglia, neurons and the extracellular matrix (Holloway and Gavins, 2015).  

Nevertheless, the in vitro systems have many benefits such as the opportunity to obtain 

highly valuable information in terms of the time-course of the electrophysiological 

events, changes in membrane potential (AD), changes in synaptic transmission and 

morphological and biochemical changes in neurons and glia. Our results confirm that in 

the CA1 region of rat hippocampus, the application of a 7 min OGD induced the 

appearance of AD, followed by irreversible synaptic damage and neurodegeneration of 

CA1 pyramidal neurons (Coppi et al., 2007; Pugliese et al., 2006, 2009; Traini et al., 

2011). We now demonstrate that these events are accompanied by neurodegeneration of 

CA1 pyramidal neurons, with reduction of neuronal density and significant increase of 

apoptotic neurons.  For the first time we demonstrated here that antagonism of A2B 

receptors using the selective ligands MRS1754 or PSB603, applied before, during and 

after OGD, prevented or delayed the appearance of AD, and prevented the irreversible 

loss of neurotransmission induced by 7 min OGD. Adenosine A2B receptor antagonism 
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also counteracted the reduction of neuronal density in CA1 SP and decreased apoptosis 

at least up to 3 hours after the end of the insult. Both A2B receptor antagonists did not 

protect CA1 neurons from neurodegeneration induced by glutamate application, 

indicating that the antagonistic effect is upstream of glutamate release.  

The hippocampus, and particularly CA1 SP, is one of the most vulnerable brain regions 

to ischemic damage. We used the acute preparation of rat hippocampal slice, which 

allows measurements of synaptic transmission with good spatial and temporal 

resolution. In the early phases, hypoxia/ischemia is known to induce a massive increase 

of extracellular glutamate levels which trigger hyperactivation of glutamate receptors, 

production of reactive oxygen species, pathological increase of intracellular Ca2+, rapid 

decrease in ATP reserves and activation of various proteolytic enzymes (Karadottir et 

al., 2005; Al Majed et al., 2006; Kovacs et al., 2006). In hippocampal slices, a severe 

OGD insult as that applied in the present experiments elicits the appearance of AD 

within the OGD period and is invariably followed by irreversible loss of 

neurotransmission (Pugliese et al., 2007, 2009; Frenguelli et al., 2007), an index of cell 

suffering, damage to neurons and to the surrounding tissue (Somjen, 2001). AD is 

caused by the sudden increase of extracellular K+ and by the contemporary explosive 

rise in glutamate extracellular concentration (Somjen, 2001). Contemporarily to the 

extracellular increase of glutamate, the extracellular concentration of adenosine 

significantly increases, as demonstrated both in in vivo and in vitro experiments (Latini 

and Pedata, 2001). After 5 min OGD, adenosine reaches an extracellular concentration 

of 30 μM in hippocampal slices (Latini et al., 1999; Pearson et al., 2006). At such high 

concentration, adenosine can stimulate all its receptor subtypes, including the A2B 

receptor, which exhibits affinity for adenosine with an EC50 in the range of 5-20 µM, 

lower than all other subtypes (Fredholm et al., 2011). For this reason, it is possible that 

activation of A2B receptors occurs mainly during pathological conditions, such as 

inflammation, hypoxia, trauma, and ischemia (Fredholm et al., 2001).  

Our data show that A2B receptor antagonists, by preventing or delaying the onset of AD, 

prevent the irreversible loss of neurotransmission induced by 7 min OGD allowing 

complete recovery of synaptic potentials. We showed for the first time that a partial 

recovery of neurotransmission was also observed in a group of hippocampal slices, 

treated with A2B receptor antagonists, that developed AD immediately after 

reoxygenation. This delay of AD appearance might account for the partial recovery of 

neurotransmission observed in these slices. The occurrence of AD after the end of OGD 
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period is a peculiar characteristic that we observed in our hippocampal preparation. We 

envisage that when the AD appears during the reoxygenation period, similarly to the 

phenomenon of spreading depression (Somjen, 2001), neurons are less damaged, and 

they can partially recover their electrical activity. Thus, even in those slices treated with 

the A2B receptor antagonists in which AD takes place, this event is less harmful to 

neuronal viability. This is a substantial difference from A2A receptor antagonist-

mediated neuroprotection during a 7 min OGD insult. Indeed, fEPSP recovery was 

never observed in those few slices undergoing AD in the presence of the A2A receptor 

blocker ZM241385, as previously published (Pugliese et al., 2009).  

As to the mechanism by which A2B receptor antagonists protect from hypoxia/ischemia, 

recent studies by Gonçalves et al. (2015) have demonstrated that in mouse hippocampus 

A2B receptors are expressed on glutamatergic terminals, anatomically comparable to 

those from which our recordings were performed. Their selective stimulation 

counteracts the predominant A1 receptor-mediated inhibition of synaptic transmission. 

In accordance to data reported by Canals et al. (2008) in a model of chemical penumbra 

produced by a mitochondrial gliotoxin in the hippocampus in vitro, we would have 

expected conservation of synaptic transmission during the first min of OGD and 

acceleration of AD appearance. In our conditions, a similar response was observed only 

in a limited number of slices during 7 min OGD. Furthermore, when overstimulated 

such as during ischemia, A1 receptors undergo desensitization (Siniscalchi et al., 1999). 

This phenomenon can be further increased by A2B receptors activation, triggering a 

vicious circle in which the beneficial effect of A1 receptor stimulation is overcome by 

the noxious effect of A2B receptors activation (Gonçalves et al., 2015) as already 

suggested for A2A adenosine receptors (Pugliese et al., 2009). Further mechanistic 

studies suggest that the A2A receptor, when stimulated, facilitates A2B receptor 

externalization from the endoplasmic reticulum to the plasma membrane, possibly 

increasing the formation of the A2A-A2B dimer (Moriyama and Sitkovsky, 2010). All 

these results taken together may explain the deleterious activity of adenosine A2B 

receptor stimulation during an ischemic insult, and the protective effect of A2B receptor 

antagonists in this condition. Finally, observation that the A2B receptor antagonists did 

not protect CA1 neurons from neurodegeneration induced by direct glutamate 

application, confirms that the mechanism underlying their protection against ischemia–

induced neurodegeneration is exerted at adenosine receptors that, by the 

abovementioned mechanisms, regulate extracellular glutamate release. Alternatively, 
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since OGD is above all a problem of efficient energy recovery, the demonstration that 

A2B receptors control astrocytic and neuronal glycogen metabolism (Magistretti et al., 

1986; Allaman et al., 2003) and glucose utilization by hippocampal slices (Lemos et al., 

2015) may suggest an additional effect of these receptors on metabolic activity during 

OGD.  

Severe OGD increased apoptosis and damaged CA1 pyramidal neurons at 1 and 3 h 

after the end of the ischemic insult. Immunohistochemistry showed that CA1 pyramidal 

neurons had significant morphological changes, with increased density of nuclei (HDN 

neurons), karyorrhexis (LDN neurons) and possibly nuclear fragmentation, as evidenced 

by the significantly higher number of LDN neurons and cell death after OGD. These 

results are in agreement with those found by Ünal-Çevik and coworkers (2004) in the 

cerebral cortex of the rat after mild ischemia. Pyknosis is typical of apoptotic cells 

(Elmore, 2007) and may precede karyorrhexis. We demonstrated that LDN neurons, 

being highly positive for CytC, were undergoing apoptosis. It has been demonstrated 

that CytC released into the cytosol binds to apoptotic protease activating factor-1, which 

leads to activation of caspase-9 which is important in neuronal cell death following 

ischemia (Yang et al., 1997; Kluck et al., 1997; Jiang  and Wang, 2004; Love, 2003; 

Suen et al., 2008; Martínez-Fábregas et al., 2014; Lana et al., 2014, 2016, 2017a, 

2017b). In turn, caspase-9 is activated by high glutamate levels, as occurs during 

ischemia (Li et al., 2009). As reported in the literature, activation of mTOR, which has 

multiple roles in cells among which local protein synthesis at the dendritic and spine 

level (Frey and Morris, 1997; Thoreen et al., 2012; Tsokas et al., 2007), can be modified 

in ischemic conditions (Dennis et al., 2001; Laplante and Sabatini, 2012). As already 

reported (Maragakis and Rothstein, 2004), the decrease of mTOR activation may be 

secondary to the excitotoxic mechanisms evoked by massive increase of glutamate 

during OGD, which is known to be an important component of neuronal injury in vitro 

(Newell et al., 1995). The participation of decreased mTOR activation in OGD-induced 

neuronal damage is supported by our results showing decreased activation of mTOR in 

both the cell body and dendrites of CA1 neurons 3 h after the end of OGD.  

Within the limits of the in vitro model and the alteration of the neurovascular unit and 

of neuro glia interplay, we found interesting effects on astrocytic responses. Indeed, 

astrocytes proliferation, possibly caused, among other stimuli, by increased release of 

glutamate, is one of the early events that takes place after acute focal CNS damage 

(Burda and Sofroniew, 2014).  In accordance to our previous results (Pugliese et al., 
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2009), we found evidence of significant, although limited, astrocytic proliferation in 

CA1 SR already 3 h after the end of OGD, possibly caused by increased glutamate 

release. A2B receptor antagonism significantly prevented all the above neuronal and 

astrocytic modifications, sparing neurons from the degenerative effects caused by the 

simil-ischemic conditions, and reducing astrocytes proliferation. CA1 pyramidal 

neurons treated with the A2B receptor antagonists had a similar morphology to those of 

control slices, had neither increased nor decreased nuclear density, did not undergo 

apoptosis, and had activated mTOR levels similar to those of controls.  

The similar effects obtained using two different A2B receptor antagonists strengthen the 

hypothesis that the A2B receptor is involved in the mechanisms of cerebral ischemia. 

Nevertheless, MRS1754 seems to have lower efficiency than PSB603 on some of the 

parameters investigated. It is possible that the two drugs act with a different time-course 

or that PSB603 is more efficacious than MRS1754 in this model. 



__________________________________________________________________________Conclusions 

187 
 

Conclusions 



Conclusions________________________________________________________________ 

188 
 

In conclusion, the experimental work carried out during my doctorate demonstrates that 

a common scenario of derangement of the interplay between neurons and glia is at the 

basis of many neurodegenerative processes in the hippocampus. We demonstrated a 

variable pattern of quantitative and qualitative alterations in neurons, astrocytes and 

microglia cells in different animal models of neurodegeneration. 

In particular, in our model of aged and LPS-treated rats, we assessed a close 

cooperation between astrocytes and microglia in the phagocitosis/phagoptosys of 

apoptotic neurons. Nevertheless, the differential expression/activation of astroglia and 

the alteration of their intercommunication may be responsible for the different 

susceptibility of the subregions of the hippocampus (CA1, CA3 and DG) to 

neurodegeneration during aging and LPS-induced inflammation.  

Furthermore, by 3D confocal analysis we assessed microglia-astrocytes interaction in 

the rat hippocampus via cell-cell contacts, mediating microglial cell branching in 

models of inflammation. In aged rats, the impairment of such an interaction correlates 

with altered distribution, morphology, and inefficient clearance by microglia. These 

data support the idea that generally accepted functional boundaries between microglia 

and astrocytes should be re-evaluated to better understand how their functions overlap 

and interact. 

In our model of Alzheimer’s disease, TgCRND8 mice, we demonstrated that the 

responses of neurons and glia to neurodegenerative patterns induced by Aβ plaques 

deposition is not uniform in the different hippocampal areas: in CA1 pyramidal neurons, 

the higher sensitivity may be related to the different plaque distribution. All these 

modifications may be at the basis of memory loss, the peculiar symptom of AD, which 

was demonstrated in this transgenic mouse model of Aβ deposition, even at early stages. 

In a similar manner to the model of normal brain aging and LPS-induced 

neuroinflammation, also in the model of brain ipoperfusion (bCCAo rat) we 

demonstrated a cooperation between microglia and astrocytes in the phagocytosis of 

apoptotic neurons and debris, through a new mechanism called phagoptosis. Neurons in 

CA3 showed a better adaptive capacity than those in CA1 to the ischemic insult, 

possibly due to the different behaviour of astrocytes and microglial cells.  

Finally, in our in vitro model of brain ischemia (OGD acute hippocampal slices) we 

demonstrated that antagonists of adenosine A2B receptors protect the CA1 area of the 
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hippocampus from an acute damage induced by severe hypoxic/ischemic conditions. 

The mechanism likely resides in the prevention from the alterations that involve not 

only neurons but also glia, and more generally the physiology of the neurovascular unit 

formed by astrocytes, pericytes, microglia, neurons, and the extracellular matrix. 

It should be pointed out that every tissue, and first of all the nervous tissue, is not 

composed by a collection of single, separate elements but rather by interacting and 

interdependent cell populations that cooperate to maintain homeostasis and functionality 

of the organ. Different types of alterations that affect one population reasonably 

reverberate to the other ones, either favoring or dysregulating their activities. 
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