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Abstract
Aims We investigated whether individuals of Silene
paradoxa L., grown in serpentine and non-serpentine
soils, displayed variation in functional traits and adap-
tive strategies together with a differentiation of the gene
pool. We hypothesised that individuals growing in ser-
pentine sites may be exposed to a higher degree of
stress, resulting in measurable differences in leaf traits
and adaptive strategies, and as well that the differences
in the soil type were associated with a genetic process of
differentiation.
Methods We analysed a specific set of leaf functional
traits of populations of S. paradoxa grown on serpentine
and non-serpentine soils. Furthermore, DNA-
fingerprinting techniques were used to further dissect
the emergence of genetic processes of differentiation
linked to the different soil types.
Results We detected a relevant intraspecific trait varia-
tion in S. paradoxa, with the populations from serpen-
tine sites significantly polarised towards the stress-
tolerant adaptive strategy. This polarisation came with
a shift in gene pool selection, even if we did not detect

quantitative differences in the genetic diversity or evi-
dence of genetic drift.
Conclusions The results indicate that particular edaphic
conditions acted on the selection of some regions of the
species’ genome, independently of the site, with various
portions of the genome being exclusive to or prevalent
in the serpentine or non-serpentine populations.

Keywords AFLP . CSR strategy . Leaf traits . Genetic
structure . Loci under selective pressure .

Serpentinophyte.

Introduction

Different environments in natural landscapes can exert
divergent selection on plant species (Sakaguchi et al.
2017). In particular, the type of substrate (i.e. soil type)
is one of the most important factors of ecological pres-
sure, which is often pivotal in plant species diversifica-
tion (Rajakaruna 2018). Indeed, plants found on extreme
substrates are ideal systems for investigating the complex
interactions between environment/edaphic factors and
species at microevolutionary scales, disentangling the
factors shaping genetic variation across a landscape
(Bragg et al. 2015). Serpentine outcrops are chemically
extreme substrate, extraordinarily challenging for plant
life, and considered to be real “ecological islands” in a
sea of normal soils (Lefèbvre and Vernet 1990). World-
wide distributed, they are characterised by high concen-
trations of trace elements (namely Ni, Co, and Cr), along
with other edaphic constraints, including high Mg
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concentration, low Ca/Mg ratio, high pH values, and heat
stress (Brooks 1987; Gonnelli and Renella 2012;
Kazakou et al. 2008; Rajakaruna and Boyd 2009). Due
to these characteristics, the spontaneous evolution and
speciation of serpentinophytes have been frequently ob-
served (see Rajakaruna 2018 and references therein).
However, while on the one hand serpentine soils house
several endemic strict metallophytes, on the other hand,
they host (even more frequently) several species thriving
on both metalliferous and non-metalliferous soils (Sianta
and Kay 2019; Pollard et al. 2014; Harrison and
Rajakaruna 2011). These facultative serpentinophytes
may show a marked functional differentiation in serpen-
tine ecotypes. For example, phenotypic differences have
been observed between locally adapted serpentine and
riparian populations of the serpentine Helianthus
exilis A.Gray, with the serpentine population displaying
smaller plants and leaves, bigger flower heads, and
higher leaves nitrogen content (Sambatti and Rice
2007). These differences may be reflected in genetic (or
more often multi-genetic) differentiation among serpen-
tine and non-serpentine populations (VonWettberg et al.
2014), as shown in the case of Arabidopsis lyrata (L.)
O'Kane & Al-Shehbaz, in which a large number of
genetic differences were found between populations from
serpentine and non-serpentine soils (Turner et al. 2010).

The genetic basis is fundamental in the selection of
associated traits in extreme habitats (Bratteler et al.
2006; Burrell et al. 2012; Courbot et al. 2007; Deniau
et al. 2006; Selby andWillis 2018; Willems et al. 2007).
Thus, serpentine outcrops provide an excellent study
system to explore the phenotypic plasticity of plants
and understand whether the influence of environmental
constraints on the genetic structure of a species may be
related to variations of the observed functional traits.
Moreover, while it has been proposed that the strong
selective pressure and spatial isolation of serpentine
soils might reduce the genetic diversity in serpentine
populations (Nordal et al. 1999; Deng et al. 2007),
several studies have so far shown that the opposite
might also occur. Indeed, serpentine populations have
also been found to have high genetic variation within
populations, comparable or greater than that found in
non-serpentine ones (Mengoni et al. 2000; Quintela-
Sabarís et al. 2010; Moore et al. 2013; Stojanova et al.
2020).

Silene paradoxa L. (Caryophyllaceae) provides an
interesting model system to study the ecology and ge-
netics of the adaptation to the serpentine habitats. It is

widely distributed in southern Europe, presenting a
large altitudinal amplitude, growing from the sea level
up to 1300 m a.s.l. and colonising different types of
soils, from siliceous to calcareous ones. It is a facultative
serpentinophyte since it is generally found in non-
contaminated dry areas (Pignatti 1997) but also shows
several metallicolous populations on various kinds of
metalliferous soils, such as serpentine outcrops (Selvi
2007) or mine tailings (Chiarucci et al. 1995). In previ-
ous studies focusing on their metal tolerance, several
S. paradoxa populations from serpentine sites in central
Italy have proved to be highly tolerant to Ni, showing a
metal excluder strategy (Arnetoli et al. 2008; Colzi et al.
2015; Gonnelli et al. 2001; Pignattelli et al. 2013;
Martellini et al. 2014). Moreover, when looking at the
genetic polymorphisms and phylogenetic relationships
among different populations, random amplified poly-
morphic DNA and chloroplast microsatellite analyses
have previously highlighted the lack of genetic diver-
gence among serpentine and non-serpentine populations
(Mengoni et al. 2000, 2001). Furthermore, Mengoni
et al. (2001) proposed that the relatively high genetic
diversity within serpentine populations found with both
approaches may be linked to a reduced gene flow for
S. paradoxa populations (especially considering their
relatively low geographic distance). These views and
findings fit with the ecological island model for serpen-
tine outcrops and contaminated sites (Lefèbvre and
Vernet 1990).

According to Grime’s Competitive Stress-tolerant
Ruderal (CSR) theory (Grime 1977; Grime and Pierce
2012), the selective pressures to which plants are sub-
jected induce adaptive responses that follow three main
directional lines. C-selected plants have developed high-
ly competitive abilities, S-selected plants possess phys-
iological peculiarities necessary to tolerate environmen-
tal stress and R-selected plants display characteristics
necessary for the colonization of disturbed habitats.
Such strategies are reflected in a number of different
plant functional traits. Ranging from morphological,
biochemical, physiological, structural, phenological to
behavioural characteristics expressed in the phenotypes
of an organism, they underpin both species role in
ecosystem properties and services and their response
to environmental stressors and disturbances (Violle
et al. 2007; Suding et al. 2008). Recently, Pierce et al.
(2017) showed that the position of individuals in the
CSR framework can be reasonably deduced via the
measurement of only three leaf functional traits: leaf
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area (LA), leaf dry matter content (LDMC), and specific
leaf area (SLA), representing interspecific variation in
plant size and conservative vs. acquisitive resource eco-
nomics. It has long been observed that the Stress Resis-
tance Syndrome is common to plants found in habitats
characterised by water and nutrient limitations, the pres-
ence of toxins or edaphically toxic habitats (including
serpentine soils), pollutants, or excesses of required
nutrients (see Von Wettberg et al. 2014 and references
therein). In these contexts, stress-tolerant plants tend to
share a suite of traits, including low growth rates and
tissue turnover coupled with slow rates of nutrient up-
take and relatively highly-defended, carbon-rich tissue
(Von Wettberg et al. 2014). SLA for instance is consid-
ered a key indicator of plant response to environmental
conditions, decreasing in low-nutrient conditions and
harsh climates, even if the actual variation of this trait
may be linked to multiple non-independent environ-
mental factors (Anacker et al. 2011). Moreover, partic-
ularly in Mediterranean serpentine settings, serpentine
soils are considered a stressful growing environment for
most plants due to their chemical (i.e. presence of ex-
cessive concentrations of trace elements) and physical
properties (e.g., coarse texture, low accumulation of
organic matter and low water-holding capacity,
Sambatti and Rice 2007 and references therein).

In the present study, we determined whether individ-
uals of S. paradoxa growing on serpentine and non-
serpentine sites display significant differences in CSR
adaptive strategies, identified through the measurement
of LA, SLA and LDMC. In particular, we hypothesized
that plants could display traits reflecting their position
along a continuum where there is an increase in the
magnitude of stress, with the species growing on ser-
pentine soils being those displaying a higher degree of
stress due to the peculiar features of these soils. We
therefore expected serpentine populations to display a
higher relative importance of the S strategy and related
traits, e.g. lower SLA. Furthermore, despite the demon-
strated absence of genetic divergence among serpentine
and non-serpentine populations of S. paradoxa, we test-
ed whether the populations growing on serpentine sites
displayed specific DNA loci under selective pressure.
Using a high-throughput, and high-resolution DNA-fin-
gerprinting methodology we evaluated: (i) the genetic
structure of S. paradoxa populations, particularly veri-
fying the presence of differentiation in those grown on
serpentine sites; and (ii) the relative contribution of
genetic variation, in particular detecting DNA regions

under selective pressure and their link with serpentine
populations (thus reflecting potential adaptation to ser-
pentine sites).

Methods

Sampling design and data collection

S. paradoxa is a perennial hemicryptophyte protandrous
and self-compatible species. It has showy white flowers
and is pollinated mainly by insects (Kruckeberg 1986).
Both self- and cross-pollination can occur, and seeds are
dispersed close to the mother plant by gravity and show a
high germination rate (Kruckeberg 1986). To characterise
the functional response of S. paradoxa, we sampled
plants and soil material from 12 distinct populations from
two different soil types: six serpentine sites and six non-
serpentine ones (all in Tuscany, Central Italy, see Fig. 1).
The geological substratum in non-serpentine sites varied
from basalt to travertine and marl and sandstones (see
table 1, data deduced from the geological map of Tuscany
available at http: / /www502.regione.toscana.
it/geoscopio/geologia.html). In each site, we collected
five soil samples to evaluate the elemental concentration
of the selected trace elements (Ca, Mg and Ni). All sites
represent the typical habitat of S. paradoxa and were
mostly comparable concerning the vegetation structure,
with a low shrub cover and a discontinuous herbaceous
layer. These factors lead to a generally high solar
radiation and to some degree of water stress. The area
occupied by S. paradoxa populations within the sampling
sites varied from 0.5 to 8 hectares, but all populations had
a high number of individuals (> 100 individuals). The
sampling for both genetic analyses and functional trait
measurement included individuals in the main core of the
population and excluded isolated individuals at its
margins. The main information on the collection sites is
summarised in Table 1.

To describe the adaptive strategy of S. paradoxa indi-
viduals, we measured a specific set of leaf traits, follow-
ing the indications detailed in Perez-Harguindeguy et al.
(2013). In each sampling site, we collected five leaves
from each of ten different individuals. All the samplings
took place in June 2018. Leaves were immediately im-
mersed in cool deionised water and processed for the
measurement within 24 hours from collection. We sub-
sequently measured the following traits: (a) Leaf Fresh
Weight (LFW); (b) LA, measured after digitizing the leaf
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Fig. 1 Study area and location of the 12 sampling sites: BI =Bibola,
Aulla; CV=Colle Val d’Elsa; MU=Murlo; MC =Monte Ceceri,
Fiesole; MO=Montecatini Val di Cecina; VE =Vecchietto, Aulla;
GA =Gabbro, Rosignano Marittimo; GL =Galceti, Prato; IM =

Impruneta; MP=Monte Pelato, Rosignano Marittimo; PE=Monte
Petroso; PS=Poggio degli Scopeti. Map layer contains data from
OpenStreetMap (http://www.OpenStreetMap.org, © OpenStreetMap
(and) contributors, CC-BY-SA)

Table 1 Information on the collection sites

Soil type Site Full name of the site Geological
Substratum

Extant
(ha)

Ni (μg/g) Ca (mg/g) Mg (mg/g) Ca/Mg

Non-serpentine BI Bibola, Aulla Basalt 2 153.3±3.4 a 13.6±0.6 a 24.9±1.5 a 0.55±0.04 a

CV Colle Val d'Elsa Calcareous
(travertine)

1 87.4±2.7 b 103.7±4 b 5.7±0.3 b 18.5±1.4 b

MU Murlo Marl 3 68.8±1 b 8.3±0.4 c 11.4±0.1 b 0.73±0.03 a

MC Monte Ceceri, Fiesole Marl and
sandstones

0.5 69.8±1.6 b 2.9±0.1 d 9.7±0.2 b 0.3±0.01c

MO Montecatini Val
di Cecina

Basalt 0.5 84.3±3.0 b 2.7±0.1 d 9.7±0.2 b 0.27±0.01 c

VE Vecchietto, Aulla Basalt 2 138.2±3.1 a 28±0.8 e 37.1±1.1 a 0.76±0.03 a

Serpentine GA Gabbro, Rosignano
Marittimo

Serpentine 0.5 1150.7±86.9 c 28.9±0.7 e 119.6±8.2 cd 0.25±0.02 c

GL Galceti, Prato Serpentine 8 1683.5±12.2 d 2±0.2 f 132.6±6.5 c 0.02±0 d

IM Impruneta Serpentine 1 1639.5±47.9 d 2.4±0.1 d 135.3±5.9 c 0.02±0 d

MP Monte Pelato, Rosignano
Marittimo

Serpentine 2 1724.7±17.9 d 9.2±0.2 c 94.1±10.5 d 0.10±0.01 e

PE Monte Petroso Serpentine 1 1671.6±68.1 d 10.4±0.4 c 123.6±9.1 c 0.09±0.01 e

PS Poggio degli Scopeti Serpentine 2 1736.4±10 d 6.7±0.2 g 126.1±4.7 c 0.05±0.01 f

Different letters indicate significant differences after a PostHOCTukey test on soil concentrations of Nickel (Ni), Magnesium (Mg), Calcium
(Ca) and soil Ca/Mg ratio. Extant = Approximated surface occupied by population of Silene paradoxa in the site (ha = hectares)
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outline (1200 dpi) using ImageJ v. 1.51 software
(Schneider et al. 2012) and (c) Leaf Dry Weight
(LDW), after 72 h at 70 °C in an oven. Leaves weight
was measured with an analytical balance, accurate to
0.02 mg. For each leaf, we calculated the SLA according
to the formula SLA =LA/LDW and the LDMC accord-
ing to the formula LDMC=LDW/LFW. The values of
the leaf traits were averaged by plant and we used the
StrateFy analysis tool (Pierce et al. 2017) to calculate the
relative contribution of CSR parameters for each individ-
ual according to Grime (1977) and Pierce et al. (2017).
Additional leaves were collected from each sampled
individual for chemical and genetic analyses.

Analyses of elements in soils and leaves

Since the excess of Ni, together with the excess of Mg
and a low Ca/Mg ratio, is considered a remarkably
unfavourable chemical characteristic of the serpentine
factor (Brooks 1987; Gonnelli and Renella 2012), the
concentrations of such elements were determined in soil
and plant samples from all sampling sites. Soils were
air-dried at room temperature for 7 days and then sieved
to 2 mm with a stainless-steel mesh. After being dried-
up completely at 60 °C in an oven, five aliquots of 0.5 g
from each soil samples were weighted and used for the
acid mineralisation through a microwave digestion sys-
tem (Mars 6, CEM) as in Bettarini et al. (2019). Ten mL
of 69% HNO3 were added to the soil material and a
cycle at 175 °C for 20 minutes was used.

Leaf samples were carefully washed with deionised
water and oven-dried at 70 °C for 24 h. Leaves collected
from the same plant individual were pooled together,
grounded with mortar and pestle, and homogenised.
Aliquots of 0.05 g dried material were mineralised
through a microwave oven as described above for soils
(200 °C for 20 min). After mineralization, total element
concentration in both soil and plant samples was deter-
mined by flame atomic absorption spectrometry
(AAnalyst 200, Perkin Elmer) as in Bettarini et al.
(2019).

Genetic analyses

Individual leaf samples collected during the field cam-
paign were dried on silica-gel and subsequently ground
in a mortar with sterile sand to be subjected to genetic
analyses. The DNAwas extracted by using the 2xCTAB
protocol (Doyle and Doyle 1990). The extracted DNA

was quantified by a Bio-Photometer (Eppendorf). An
analysis of divergence at Amplified Fragment Length
Polymorphism (AFLP) was performed following the
standard procedure in Vos et al. (1995), but with minor
changes as described in Coppi et al. (2014 and
references therein). The appealing of AFLP approach
consists in the increasing ease (low cost and low time
consuming) of generating a large number of analysable
markers, and the possibility to identify a number of
DNA regions showing an unusual pattern of variation,
thus potentially under selective pressure. After a prelim-
inary test on the reproducibility of the AFLP protocol
(Coppi et al. 2018), one combination of primers was
selected for the final analysis: hex_EcoRI-CTA/MseI-
ATG and fam_EcoRI-TAC/MseI-ATG. Analysis of the
AFLP profiles obtained by capillary electrophoresis was
performed with GeneMarker v1.5 (SoftGenetics LLC,
PA USA). A cut-off value was fixed at 5% of the
maximum fluorescence peak observed.

We evaluated the presence/abundance of outlier loci
to identify regions of the genome under natural selec-
tion, using differences in loci frequencies between pop-
ulations (Beaumont and Nicholas 1996; Beaumont and
Balding 2004). This method assumes that the locus
frequencies within a population follow a multivariate
β-distribution as a function of the multilocus Fixation
Index value and the average of locus frequencies of each
locus between populations (Burr 2000; Rannala 1996;
Rannala and Hartigan 1996). The BayeScan analysis
was carried out following Yang et al. (2016). The num-
ber of pilot runs was kept at 20, with a length of 10 000
iterations each one (Coppi et al. 2018). We then calcu-
lated the within-population average genetic diversity
(He hereafter) using the program Arlequin v2.000
(Schneider et al. 2000) and following the Nei’s metrics
(Nei 1987). The He values were calculated for the total
of the AFLP loci detected (He_all), and then separately
for the outlier loci (He_out).

Data analyses

We analysed the ion concentration among soils from the
different collection sites at two levels. First, to describe
the chemical features of the collection sites, we used a
one-way parametric ANOVA coupled with a Tukey’s
PostHOC comparison with ion concentration as the
response variable and collection site as the explanatory
variable. As a second analysis, to assess the differences
among soil types (i.e. serpentine vs. non-serpentine
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ones), we set a series of nested ANOVAs via linear
mixed models (LMMs) evaluating the differences in
ion concentration. In the LMMs we used soil type as
the fixed effect term and the collection site as the ran-
dom effect term nested in the soil type. The significance
of the fixed effect was evaluated by means of a type III
ANOVA table with Satterthwaite approximation for
degrees of freedom. As a measure of goodness of fit in
the analysis and of the importance of the random effect
factor, we calculated two different pseudo R-squared
(R2) measures according to the Nakagawa and
Schielzeth (2013) definition. We calculated the margin-
al R2 describing the proportion of variance explained by
the fixed factors alone, and the conditional R2 describ-
ing the proportion of variance explained by both fixed
and random factors.

To evaluate the role of each soil type in defining the
functional response of the individuals, we run again a
series of nested ANOVAs via LMMs evaluating the
differences in leaf trait values (i.e. LA; LFW; LDW;
LDMC; SLA) and in each component in the CSR dia-
gram. Here, to avoid autocorrelation of individuals from
the same population, we used the soil type as the fixed
effect term and the population of origin as random effect
term nested in the soil type. Similarly, we used LLMs to
examine ion accumulation of Ni, Ca, Mg and the Ca/Mg
ratio in shoot tissues in individuals from different soil
type; also in this case we used the soil type as the fixed
effect term and the population of origin as the random
effect term nested in the soil type. In LMMs, response
variables were transformed adopting the one-parameter
Box–Cox transformation (Box and Cox 1964) to
achieve normality of residuals and the significance of
the fixed effect was evaluated by means of an ANOVA
table with Satterthwaite approximation for degrees of
freedom. Again we calculated the marginal and the
conditional R2 as described above.

We run a Principal Component Analysis (PCA)
using the main leaf trait values (i.e. LA; LDMC; SLA)
and concentrations of Ni, Ca, Mg and the Ca/Mg ratio in
individuals as response variables to evaluate the position
of these individuals in the ordination diagram, and ver-
ify how individuals from different soil type segregate in
the ordination space.

To evaluate the structure of S. paradoxa populations,
we performed an analysis of molecular variance
(AMOVA, Excoffier et al. 1992), implemented in
Arlequin v2.000 (Schneider et al. 2000). This was used
to analyse the partition of the genetic variation within

and among populations, as well as grouping the popu-
lations on the base of the soil type. Genetic distances
among populations were estimated by computing a ma-
trix of pairwise Fst values (Slatkin 1995). The
neighbour-joining dendrogram (Saitou and Nei 1987)
was then used to represent the levels of genetic differ-
entiation among populations. Moreover, to verify the
presence of a correlation between genetic distance
expressed by Fst values and geographic distance among
the populations, these were compared using a Mantel’s
randomization test (according toManly 1986). Mantel’s
test may provide simple and useful tools for multivariate
analysis of spatial patterns of genetic divergence (Diniz-
Filho et al. 2013). Genetic structure among populations
was also investigated using the STRUCTURE software
version 2.3.3 (Pritchard et al. 2000). Admixture models
were adopted with a burn-in period of 10,000 steps
followed by 500,000 Monte Carlo Markov Chain repli-
cates. The optimal value of K was assigned using the
AveDissR function, as described by Yang and Fu
(2017).

The differences in the total number of polymorphic
loci between populations were measured with a non-
parametric Kruskal test due to the non-normality of
residuals. These differences were then used to determine
the genetic diversity among populations from different
soil types. The differences in He_all and He_out were
assessed with a one-way ANOVA.We further inspected
these differences at the individual level by identifying
patterns of variation in both the number of total and
outlier loci, again with a nested ANOVAs via LMMs,
specifying the population of origin as a random effect
factor nested in soil type. The significance of the fixed
effect was evaluated by means of an ANOVA table with
Satterthwaite approximation for degrees of freedom and
we calculated the marginal and the conditional R2 as
described above.

The variation in the distribution of both total and
outlier loci in individuals according to the different soil
types was analysed by means of a Canonical Correspon-
dence Analysis (CCA), using the presence/absence of
loci in each individual as response variables and the soil
type as explanatory variable. The significance of the
effect of the soil type was evaluated using a test on the
constrained axis with 4999 permutations. Furthermore,
to assess the specificity of loci to one of the soil types,
we carried out an Indicator Species Analysis (ISA,
Dufrêne and Legendre 1997). The ISA enables us to
compute an indicator value d (ranging between 0 and
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100) for each locus as the product of the relative fre-
quency and relative average abundance of loci in clus-
ters. The significance of d is considered as the probabil-
ity of obtaining a value as high as that observed over
1000 iterations.

All analyses were carried out in R version 4.0.3
(https://www.R-project.org). LMMs were performed
using the ‘lme4’ package version 1.1–20 (Bates et al.
2015) and the significance of the fixed effects was
evaluated using the ‘lmerTest’ package version 3.0–1
(Kuznetsova et al. 2017). Marginal and conditional R2

of LMMs were calculated using the “piecewiseSEM”
package version 2.1.0 (Lefcheck 2016). Tukey’s
PostHOC comparisons on soils were done using the
‘multcomp’ package version 1.4-8 (Hothorn et al.
2008), and all graphs were drawn using ‘ggplot2’ ver-
sion 3.1.0 (Wickham 2016) and ‘ggtern’ version 3.1.0
(Hamilton and Ferry 2018). All multivariate analyses
and relative graphs were made using Canoco 5 for
Windows (version 5.10; Ter Braak and Smilauer 2012).

Results

Element concentration in soils and plants

Serpentine soils showed significantly higher mean con-
centrations of Ni (1601 ± 91 vs. 100 ± 15 µg g− 1) and
Mg (122 ± 6 vs. 16 ± 5 mg g− 1) compared to non-
serpentine ones (see Table 2). Although generally lower
values were measured in serpentine (9.9 ± 4.0 mg/g)
than in non-serpentine soils (26.5 ± 15.9 mg/g), the total
mean Ca concentration was not significantly different
between the two soil types (Table 2), probably due to a

very high variability within the non-serpentine sites
(particularly coming from very high Ca concentration
in Colle Val d’Elsa, due to the calcareous parent mate-
rial of this site). The mean Ca/Mg ratio was however
significantly lower in serpentine soils (0.1 ± 0.03 vs. 3.5
± 3.0) compared to non-serpentine ones (Table 2). Some
differences in the concentrations of the analysed metals
were also found within similar soil types (see Table 1 for
site values and Table 2 for results of statistical analyses
at site level). Regarding element concentrations in
shoots, the serpentine plants showed a significantly
higher concentration only in the case of Mg (P value <
0.001, Table 2). No significant differences were record-
ed for Ni, Ca and Ca/Mg ratio.

Leaf traits

As to leaf traits, LA, LFW and SLA were significantly
different among populations occurring on different soil
types (P value < 0.05, Table 3), while LDMC differed
only slightly (difference only partially significant, P
value < 0.1, Table 3). Plants from serpentine sites had
smaller leaves, thus also showing a smaller LFW, but a
slightly higher LDMC. In addition, SLA was signifi-
cantly lower in plants from serpentine sites. The differ-
ences in these leaf traits are reflected in differences in the
relative components of the CSR diagram (all differences
significant at P value < 0.05, Table 3). Individuals from
serpentine sites resulted more polarised toward the S
component, at the expense of the other two components
(see Fig. 2a and b), whereas individuals from non-
serpentine sites showed a higher contribution of the C
and R components.

Table 2 Result of the comparisons of elements contents in soils at the site and soil type (i.e. non-serpentine and serpentine sites) level

VARIABLES λ Sum Sq Df Fvalue P value Marginal R2 Conditional R2

Site levele Ni 0.262 2839.86 11, 47 1609.24 < 0.001 *** - -

Ca -0.182 31.49 11, 47 589.07 < 0.001 *** - -

Mg 0.586 6245.01 11, 47 179.73 < 0.001 *** - -

Ca/Mg -0.141 269.86 11, 47 444.26 < 0.001 *** - -

Soil type level Ni 0.3 123.58 1, 10.01 457 < 0.001 *** 0.97 1

Ca -0.2 0.01 1, 10 0.53 0.484 0.04 0.99

Mg 0.6 507.25 1, 9.98 140.71 < 0.001 *** 0.90 0.97

Ca/Mg -0.1 0.65 1, 9.99 14.82 0.003 ** 0.55 0.99

Marginal and Conditional R2 are provide in case of linear mixedmodels. λ = lambda value adopted in power Box–Cox transformation of the
variables; Sum Sq sum of squares, Df degrees of freedom; Significance codes: P value < 0.001 ‘***’; P value < 0.01 ‘**’
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Individuals from different soil types appeared well
segregated according to the PCA first axis (Fig. 3, total
variation 777.0, variation explained by PC1 = 37.7%,
variation explained by PC2 = 20.5%). Particularly, axis
PC1was highly positively correlated to SLA (increasing
in individuals from non-serpentine sites) and negatively
correlated to LDMC, Mg and Ni (increasing in individ-
uals from serpentine sites). On the other hand, axis PC2
expressed a further differentiation, mostly independent
from the soil type, positively correlated to the Ca/Mg
ratio and, to a lesser extent, to Ca.

Genetic analyses

The AFLP analysis produced reliable results for 118
samples. The selected combinations of primers
highlighted 236 total loci, with a percentage of poly-
morphic loci ranging from a maximum of 72.9 for BI, to
a minimum of 47.5 for PE. The analysis of the partition
of genetic variation, within and among populations,
showed that most of the variance was due to within-

population differences (74.13% of the total variation, P
value < 0.001) rather than among population differences
(25.87% of total variation, P value < 0.001). The parti-
tion of variance remained unvaried also when grouping
the populations on the base of the soil types (data not
shown).

The reconstruction of the genetic relationships
among the populations did not support any particular
structure toward a clustering of populations from ser-
pentine sites. Indeed, even though genetic distances
among populations were mostly significant (P value <
0.05 according to a pairwise distance test with 1023
permutations, except from IM and GL), serpentine pop-
ulations did not form a separate group in the Neighbour-
Joining (Fig. 4). Moreover, the Mantel test did not
highlight a significant correlation between genetic and
geographical distances between populations (P value >
0.05). The analysis of genetic distinctness with
AveDissR allowed identifying three different genetic
groups (K = 3). The clustering with STRUCTURE
showed that the populations are largely homogeneous,

Table 3 Result of the comparisons of leaf traits, CSR relative component and chemical element concentrations across individuals from non-
serpentine and serpentine sites

VARIABLES Non-
serpentine

Serpentine λ Sum Sq Df Fvalue P value Marginal
R2

Conditional
R2

Leaf traits LA (mm2) 171.7 ± 7.6
(0.32)

122.5 ± 5.9
(0.37)

0.465 134.78 1,10 12.02 0.006 ** 0.178 0.282

LFW (mg) 53.9 ± 2.7
(0.37)

41.4 ± 2.2
(0.40)

0.343 11.67 1,10 6.147 0.033 * 0.097 0.205

LDW (mg) 12.7 ± 0.7
(0.38)

10.5 ± 0.5
(0.37)

0.343 1.62 1,10 2.53 0.143 0.054 0.231

LDMC (%) 23.6 ± 0.4
(0.12)

25.76 ± 0.4
(0.11)

1.071 30.26 1,10 3.355 0.097 0.1 0.393

SLA (mm2/mg) 14.1 ± 0.4
(0.22)

11.8 ± 0.3
(0.19)

-0.788 < 0.01 1,10 6.663 0.027 * 0.167 0.406

CSR relative
component

C (%) 14.5 ± 0.6
(0.32)

11.0 ± 0.5
(0.38)

0.667 29.40 1,10 9.019 0.013 * 0.127 0.216

S (%) 56.6 ± 2.4
(0.31)

74.0 ± 1.9
(0.19)

1.636 241723.80 1,10 8.023 0.018 * 0.214 0.478

R (%) 28.8 ± 2.2
(0.56)

15.0 ± 1.7
(0.87)

0.505 49.55 1,10 6.524 0.029 * 0.177 0.445

Content of
chemical
elements in
leaves

Ni (μg/g) 10.1 ± 0.9
(0.69)

12.1 ± 0.9
(0.6)

0.343 2.54 1,10 1.504 0.249 0.042 0.295

Ca (μg/g) 7143 ± 522
(0.53)

8189 ± 483
(0.45)

0.667 8472.50 1,10 0.379 0.552 0.015 0.421

Mg (μg/g) 3420 ± 133
(0.28)

5420 ± 221
(0.31)

0.020 2.69 1,10 24.662 < 0.001 *** 0.345 0.455

Ca/Mg 2.1 ± 0.1
(0.44)

1.5 ± 0.1
(0.35)

0.788 0.73 1,10 3.175 0.105 0.129 0.569

Mean values ± Standard Errors are given, while the coefficient of variation of themean (CV) is indicated in round brackets. λ = lambda value
adopted in power Box–Cox transformation of the variables; Sum Sq sum of squares, Df degrees of freedom; Significance codes: P value <
0.001 ‘***’; P value < 0.01 ‘**’; P value < 0.05 ‘*’

Plant Soil



with the predominance of one or two gene pools. The
only exception was for BI, in which all of three gene
pools were well represented (Fig. 5).

The outlier analysis identified eight loci that had a
posteriori probability greater than 0.76 (at a threshold of
log10 PO > 0.5), representing 3.4% of all loci. The
higher mean number of outliers per individual was 6.2
for GA, whereas the lowest was 0.4 for MC. Neverthe-
less, the total number of loci detected, He_all (mean
value 0.209) and He_out (0.188), were comparable
among populations from different soil types (Table 4).

No significant differences were detected in the mean
number of total loci and outlier loci among individuals
from different soil types (Table 4).

Notwithstanding the lack of quantitative differences,
both the CCA and the ISA highlighted the presence of
qualitative differences in the distribution of total and
outlier loci in relation to the soil type (Fig. 6a and b).
The ISA individuated a higher number of both total and
outlier loci significantly specific to populations from
serpentine sites (i.e. 85 loci and 4 outlier loci specific
to serpentine sites vs. only 4 loci and 1 outlier locus
specific to non-serpentine sites).

Discussion

Serpentine soils are characterised by high Ni concentra-
tions and a low Ca/Mg ratio (Brooks 1987), as also
highlighted by our chemical analyses. Nevertheless,
despite the contrasting chemical properties of serpentine
and non-serpentine soils, S. paradoxa populations col-
lected from the different sites showed similar Ni and Ca
concentrations and Ca/Mg ratio in shoot tissues. Thus,
both Ni exclusion and Ca accumulation are likely to
account for several adaptation mechanisms evolved by
the serpentine populations of S. paradoxa. In particular,
the latter mechanism is a well-known strategy used to

Fig. 2 Ternary CSR plot of individuals of Silene paradoxa grown
on serpentine (blue tringles) and non-serpentine sites (pink cir-
cles). In (a) single individuals are shown, while in (b) they are
pooled by population of origin. C = Competitive; S = Stress toler-
ant; R = Ruderal

Fig. 3 Ordination plot of individuals of Silene paradoxa grown
on serpentine (blue squares) and non-serpentine sites (black cir-
cles) based on Principal Component Analysis with leaf trait values
(i.e. LA = Leaf area; LDMC = Leaf dry matter content; SLA =
Specific leaf area) and concentrations of Ni, Ca, Mg and Ca/Mg
ratio in individuals as response variables

Plant Soil



maintain adequate internal concentrations of Ca at the
low Ca/Mg ratios typical of serpentine soils (Wallace
et al. 1982; Tibbetts and Smith 1993; Asemaneh et al.
2007, Ghasemi et al. 2015). In the serpentine popula-
tions of S. paradoxa, the great Ca acquisition was re-
sponsible for the reversal of the Ca/Mg ratio in the plant
tissue compared with the soil, which is a trait already
found in other serpentinophytes (Bettarini et al. 2019;
Mengoni et al. 2006). As for Mg, despite its elevated
concentration in soils, also this element appeared to be
excluded by the individuals from the serpentine out-
crops. The exclusion of Mg, together with Ca

accumulation, is consideredas a possible physiological
mechanism of serpentine-adapted plants to cope with
the low soil Ca/Mg (Madhok and Walker 1969;
Sambatti and Rice 2007). Indeed, although shoot Mg
concentrations were higher than in the non-serpentine
populations, values in serpentine populations remained
within the optimal range for plants (Marschner 1995).
These results highlight how in Ni-excluding plants, such
as S. paradoxa, the measurement of trace metals in
shoots may be a biased trait, insufficient alone to eval-
uate the possible correlation between the chemical char-
acteristics of the soil and the plant ionome, and should

Fig. 4 Neighbour-Joining
dendrogram of serpentine and
non-serpentine populations based
on pairwise FST distances

Fig. 5 Genetic structure of S. paradoxa populations resulting from the model-based clustering performed by STRUCTURE, with K = 3
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therefore be accompanied by the measurement of other
traits and metal concentrations in soils.

We detected a relatively wide variability in leaf traits,
highlighting separate adaptive strategies in S. paradoxa
populations. As expected, individuals growing on ser-
pentine sites showed a greater polarisation of the typical
features allowing survival in stressed environments,
with traits responding to the central leaf economics
spectrum (Wright et al. 2004), going toward a conser-
vative economy. As a result, individuals in serpentine
soils had substantially smaller leaves, with smaller SLA
and (slightly) higher LDMC, and therefore slightly
thicker leaves. These data are consistent with findings
in Silene vulgaris (Moench) Garcke (Muszyńska et al.
2019), where metallicolous populations had thicker
leaves than non-metallicolous ones. Even in crop plants,
trace metal treatments have also been found to contrib-
ute to the appearance of xerophytic features in the leaf
structure (i.e. small leaflets, thick lamina, thick upper
epidermis, Shi and Cai 2009). Our results are consistent
with the general concept that a low SLA is linked to a
Stress-tolerant strategy, together with low rates of nutri-
ent uptake, low growth rates and slow leaf turnover
(Wright et al. 2004; Westoby and Wright 2006). Nev-
ertheless, it should be noted that considering the multi-
faceted source of stress within serpentine contexts, this
trait variation may be the combined result of different
environmental factors acting simultaneously and not
independently, as pointed out by Anacker et al. (2011).

Individuals of S. paradoxa grown in serpentine and
non-serpentine sites showed a significant intraspecific
trait variation in leaf traits. This was linked with the
polarisation towards the S strategy of individuals from
populations grown on serpentine sites. Particularly,

those grown on serpentine sites showed a net S/SR
strategy, while those grown on non-serpentine sites also
showed an important C component. resulting in a S/
CSR strategy. The significance of intraspecific trait
variation in our model system is consistent with the
findings of many authors, who have already shown that
species might exhibit trait differences among popula-
tions, for example due to geographic clines correspond-
ing with environmental gradients (see Aitken and
Whitlock 2013) or differences in the ecology of hosting
sites (Astuti et al. 2018). Here we should note that the
approach proposed by Pierce et al. (2017) concerned the
use of leaf traits to depict the CSR strategies among
species across widely diverging biomes worldwide. Our
case study however supports the idea that such an ap-
proach may be also used at the intraspecific level, as
already shown by Astuti et al. (2018) in the case of
Bellevalia webbiana Parl., showing significant intraspe-
cific variation in CSR strategy in sites with different
ecological constraints. Trait divergence under the selec-
tive pressures stemming from metalliferous soils has
been documented in several other case studies from
broad niche metallophytes (es. Anisopappus chinensis
(L.) Hook. & Arn. in tropical Africa from Lange et al.
2017) or facultative serpentinophytes (as in the already
cited case study of Helianthus exilis from Sambatti and
Rice 2007). This is in line with recent arguments that
world-wide economics spectrum may not hold when
working at smaller spatial or organisational scales (e.g.
Niinemets 2015) and with the need to consider within-
species economics spectrum in regional- to biome-level
analyses. Similarly, intraspecific trait variation should
be carefully considered in the study of global trends in
plant adaptive strategies.

Table 4 Result of the comparisons of genetic diversity among populations and individuals from non-serpentine and serpentine sites

VARIABLES Non-
serpentine

Serpentine Stat. Value Df P value Marginal
R2

Conditional
R2

POP levele Total number of loci 137.7 ± 7.2 130.3 ± 8.9 Kruskal-Wallis
χ2

1.641 1 0.200 - -

He_all 0.21 ± 0.01 0.20 ± 0.01 F value 0.546 1,10 0.477 - -

He_out 0.21 ± 0.03 0.16 ± 0.03 F value 1.002 1,10 0.340 - -

Individual
level

Number of total loci 108.8 ± 4.1 120.4 ± 3.3 Fvalue 0.646 1,10 0.440 0.039 0.731

Number of outlier
loci

3.4 ± 0.3 3.9 ± 0.3 Fvalue 0.199 1,10 0.665 0.013 0.785

Mean values ± Standard Errors are given.Marginal and Conditional R2 are provide in case of linear mixed models. Stat. Statistics of the test,
Value Value of test statistics,Df degrees of freedom. Significance codes: P value < 0.001 ‘***’; P value < 0.01 ‘**’; P value < 0.05 ‘*’. We
provide marginal and conditional R2 for the analises at the individual level
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We recorded a medium-high genetic diversity for the
populations from both soil types (serpentine and non-
serpentine sites), with no significant differences among
serpentine versus non-serpentine populations. These re-
sults are consistent with a previous study on another
non-obligate serpentinophyte (Onosma echioides L.,
Boraginaceae, see Mengoni et al. 2006), but contrasted
with the reduction in genetic diversity observed in

several taxa from serpentine, or in general, stressful
environments (Coppi et al. 2008; Deng et al. 2007;
Nordal et al. 1999), including S. paradoxa populations
found in mine tailings (Mengoni et al. 2001). Neverthe-
less, the lack of a specific genetic structure of the pop-
ulations, with no clear separation among serpentine and
non-serpentine populations obtained via AFLP analy-
ses, is consistent with the results obtained on the same
species with random amplified polymorphic DNA
(Mengoni et al. 2000) and chloroplast microsatellite
analyses (Mengoni et al. 2001). Our data reinforce the
hypothesis that the adaptation to serpentine soils may
emerge repeatedly from the genetic pool of the non-
serpentine populations. It is not clear whether, as sug-
gested in Sakaguchi et al. (2019) for Solidago
virgaurea, divergence in serpentine ecotypes may be
maintained in parapatry via prezygotic isolation through
divergent flowering time (early flowering times of ser-
pentine ecotypes). According to von Wettberg et al.
(2014), many serpentine tolerant taxa may have evolved
from taxa from other habitats also displaying stress-
tolerant traits, and (following Chapin et al. 1993) the
taxa in which adaptation to serpentine soils is most
likely to evolve, are those that already have stress toler-
ance. Moreover, again according to Chapin et al. 1993,
the adaptations to stressful habitats may evolve rapidly
with variation in very few genes, as also demonstrated in
more recent case studies (see for example the case of
twoHoweaBecc. palm species in Savolainen et al. 2006
or the case of divergence in Helianthus L. ecotypes in
Andrew and Rieseberg 2013) Indeed there is large evi-
dence for a repeated evolution of metal-tolerance in
Silene L. genus, as well as the evolution of metal-
tolerant ecotypes, e.g. in the case of a copper ecotype
within the S. burchelli complex in southern Africa,
which falls into a gradient of morphological and ana-
tomical modifications within this complex (Malaisse
et al. 1983).

Notwithstanding the lack of quantitative differences,
the CCA and the ISA highlighted the presence of sub-
stantial differences in the distribution of total and outlier
loci among populations from serpentine and non-
serpentine sites, allowing the identification of a number
of total and outlier loci typical of the serpentine popu-
lations. Similar results were obtained in the facultative
hype r accumu la to r Aly s sum se rpy l l i f o l i um
Desf. (Brassicaceae), where 34 out of 374 AFLP loci
had a potential adaptive value related to Ni-
hyperaccumulation and serpentine tolerance (Quintela-

Fig. 6 Distribution of loci as detected by AFLP analyses accord-
ing to Canonical Correspondence Analyses constrained on site soil
type: S = serpentine sites; N-S = non-serpentine sites. (a) Total
loci, (pseudo-F = 2.3; P value < 0.001) and (b) loci under selective
pressure (pseudo-F = 19; P value < 0.001)
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Sabarıs et al. 2017). Although it is not possible at
present to propose a mechanistic basis for these results,
our data provide evidence that the observed intraspecific
variation in functional traits could stem from the DNA
marker-trait associations. Indeed, AFLP restriction sites
in plants are often located within gene sequences, or
linked to multiple major or minor genes or associated to
quantitative trait loci (QTLs), including some of the
traits considered in this research, such as LA and SLA
(Caballero et al. 2013; Medrano et al. 2014; Scalfi et al.
2004; Bratteler et al. 2006) indicated that Ni tolerance
and leaf succulence of S. vulgaris were associated with
the selection of 15 major and 8 minor QTLs, providing
valuable insights for the understanding of the genetic
architecture of serpentine adaptation.

As reported for other biological systems, we cannot
exclude that the presence of high concentrations of trace
elements could produce DNA mutations due to a possi-
ble increase in random mutation rate (Coppi et al. 2018;
Mengoni et al. 2001) or to DNA methylation (Labra
et al. 2004). In our case, the use of a methylation-
sensitive restriction enzyme (EcoRI), may have mixed
up the effects of methylation changes. These issues
suggest new research possibilities on the role of meth-
ylation in adaptation to stressful environments. As well,
the use of advanced genomics studies, such as Tran-
scriptomics and Next-Generation sequencing, converg-
ing in the field of “serpentinomics” (sensu Wright and
von Wettberg 2009), can be considered pivotal in
unravelling the mechanistic and genetic basis of the
complexities of tolerance of and adaptation to serpentine
soils, thus providing more insight in the system we
propose within this study.

In conclusion, our data highlighted the presence of a
not negligible intraspecific trait variation in populations
of S. paradoxa growing in serpentine vs. non-serpentine
sites, coupled with a valuable polarisation toward the S
strategy in the CSR context of serpentine populations.
The adaptive trade-off in S. paradoxa could be linked to
the selection of specific outlier loci, revealing a genetic
structure of the species that should be studied in greater
detail. Further studies, with the use of more in deep
genomics approaches and also including other function-
al traits more specific of trace metal stress, are needed to
disentangle the effective role of these DNA regions
under selective pressure in the emergence of adaptive
strategies, unravelling the genetic control of ecological-
ly important traits.
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