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Interior gradient bounds for nonlinear elliptic systems

Paolo Marcellini

Abstract. This manuscript is dedicated to Umberto Mosco, with esteem and affection. Um-
berto was my mentor at the University of Rome, where I completed my four years studies in
Mathematics before my PhD program in Pisa. I dedicate to him the article, which is divided
in two parts. In the first section I propose some reqularity theorems, precisely some interior
bounds for the gradient of weak solutions to a class of nonlinear elliptic systems; the title of this
manuscript takes its origin from this section. The second part of the manuscript deals with my
first studies in Rome together with Umberto Mosco and with my next studies in Pisa where I met
Ennio De Giorgi and where I had the good fortune of assisting to the birth of the G—convergence
and the I'—convergence theories, with some connections with the Mosco’s convergence.
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1. Nonlinear elliptic systems in divergence form

The nonlinear elliptic system that we take under considerations has the form

Z 5y 0 (Du(@) =0, a=12...m, (1.1)

and it consists of m > 1 partial differential equations in an open set 2 C R", for
some n > 2. The map u = u(x) is defined for x = (z;) € @ C R™ and takes
values in R™. The symbol Du represents the m x n gradient-matrix of the map
u:Q CR® — R™;ie. the matrix Du = (%Zi )?::11’,22’?::;;? of the partial derivatives
of u.
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We assume that the vector field A (§) = (af* (€))i= 11’22:_";1", A: Rmxm — RmXn

(3

is of class C'! and that it satisfies the ellipticity condition

> Z é XA >0, YA EER™ N
1,7=1a,B J

As often happens in the context of the Calculus of Variations, we consider
the vector field A (£) to be the gradient of a real function f (£); i.e., there exists a
function f: R™*" — R of class C2 (R™*") (it is sufficient the weaker assumption
f e W2 (R™*™)) such that A(£) = Def (€); in terms of components af =

loc

3750‘ = feo, for all @« = 1,2,...,m and 7 = 1,2,...,n. Under this variational
COIllditiOIl, the previous ellipticity condition can be equivalently written in the
form o2
> %A?Af >0, VAEER™™ :N£Q.
i 0870

Thus the ellipticity condition of the system is equivalent to the positivity on R™*"
of the quadratic form of the second derivatives Dg f (&), which implies the (strict)
convexity of the function f.

In this case any weak solution (in a class of Sobolev maps u to be defined) to
the differential elliptic system (1.1) is a minimizer to the energy integral

u)z/Qf(Du)dm. (1.2)

That is, the map u: Q@ C R™ — R"™ satisfies the inequality

/f(Du> dxé/f(D(U+<p)) da
Q Q

for every test function ¢ with compact support in Q; i.e., ¢ € C§ (Q;R™).

It is well known that in the vector-valued case, i.e. m > 2, in general we cannot
expect everywhere regularity of the local minimizers of integrals as in (1.2), nor of
the weak solutions to nonlinear differential systems as in (1.1). Examples of non-
smooth solutions are originally due to De Giorgi [42], Giusti-Miranda [61], Necas
[84], and more recently to Sverak-Yan [92], De Silva-Savin [47], Mooney-Savin [79],
Mooney [80].

A classical assumption finalized to the everywhere regularity is a modulus-
dependence in the energy integrand; i.e., in terms of the function f, we require

that
&) =g(&h) (1.3)

with a convex increasing function g = g (¢), g: [0,400) — [0,+00), ¢’ (0) = 0. In
fact the first regularity result for weak solutions to nonlinear systems in divergence
form of the type (1.1) is due to Karen Uhlenbeck obtained in her celebrated paper
[97], published in 1977 and related to the energy-integral f (¢) = g (|¢]) = [£|” with
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p > 2. Later Marcellini [68] in 1996 considered general energy-integrands g (|£|)
allowing ezponential growth and Marcellini-Papi [74] in 2006 also some slow growth.
Related regularity results, with energy-integrands f (x, &) = g (z, |£]) depending on
x too, are due to Mascolo-Migliorini [78], Beck-Mingione [5], Di Marco-Marcellini
[48], De Filippis-Mingione [40]. See also Apushkinskaya-Bildhauer-Fuchs [1] for a
local gradient bound of a-priori bounded minimizers.

The following Theorem 1.1 nowadays is the most general local Lipschitz con-
tinuity result, valid for nonlinear elliptic systems under either slow or fast growth
conditions, when the integrand function f (£§) = ¢ (|¢]) is independent of .

Theorem 1.1 (Marcellini-Papi [74]). Let to,H > 0 and f € (1/n,2/n). Let

g :[0,+00) — [0, +00) be a convex increasing function of class W 2°. We assume

that for every ac € (1,n/ (n — 1)] there exist K = K («) such that

ﬁﬁﬁ l(d(ﬂ)"nz N g’(t)] <g'B) <K {gl(t)Jr (M)u] JVE>te  (1.4)

4 t t 4

(here we explicitly consider the casen > 3; if n = 2 the exponent (n — 2) /n must be
replaced by any fived real number in (0, 1)) If u is a minimizer in VV1 L(Q; R™) of
the energy integral (1.2), then u € Wlifo (©2; R™). Moreover u satisfies the gradient
bound: for every given € > 0 and concentric balls B,,Br compactly contained in
of radius respectively 0 < R there exists a constant ¢ = ¢ (n,m,a, 8, H, K, ¢, 0, R)

such that

1+4€
DUl iy < [ 147D} o) (15)

The quoted results [68],[74],[78],[5],[48],[40],[1] are sometime technical and not
always easy to read. Here we give some regularity results with simpler and less
technical assumptions which, at the current state of art, are valid for a large class
on nonlinear variational systems and, in spite of their simplicity, are not weaker
than any other Lipschitz regularity result known in the mathematical literature
for autonomous energy integrals as in (1.2).

To this aim we consider separately the linear, the superlinear and the sublinear
growth. Precisely, we consider the energy integral (1.2) with integrand f () =
(L§|) as in (1.3) and g: [0,4+00) — [0,4+00) convex increasing function of class
W2 i.e. the second derivative g” of g is locally bounded in (0,400). In this

loc

case, with the modulus dependence f (£) = g (|£]), we have

L aF©) ag(e) ole| o
@i () = & = o M Ge T

Therefore af (£) = g (|§|)

Yo

and the differential system (1.1) assumes the form

\SI

(|IDul)
= =1,2,... . 1.
< |DU| um 0, « 5 4y ,m ( 6)

X
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We can see which kind of ellipticity conditions are satisfied by the system (1.6).
This aspect turns out to be equivalent to test which kind of uniform convezity
conditions are satisfied by the energy integrand f(£). With a computation, for
instance as in [74, formula (3.3)], we find

win { 0D g eIV < T feper (€00
Ld:enf (1.7)

g/(|£‘) 1" 2
gmax{ 1 <|5|>}A|

for every A, £ € R™*". Therefore the real functions ¢t — @ and t — ¢” (t) play
a relevant role to establish the convexity condition of the energy integrand and
ellipticity conditions of the nonlinear differential system. As clearly described in
section 2 of [72], a first crucial step for the everywhere regularity is to establish
the local Lipschitz continuity of minimizers and respectively of weak solutions; in
this context the role of the functions @ and ¢” (t) is relevant when t — +o0;
i.e., for t > ty for some given tg > 0.

We consider separately three cases. We say that the system (1.1), or equiv-
alently the system (1.6), has either linear or superlinear or sublinear growth re-
spectively if

/
t
SLLoe@toe): L P <r, iz, (18)
()
tlg?oo = +0o0, (1.9)
/

t
im 20 _g. (1.10)

t—+oo ¢
For instance, for the p—Laplacian we have ¢ (t) = t? and & = pt?~2; therefore

(1.8),(1.9),(1.10) respectively correspond to p = 2, p > 2 and to p < 2. In the
three cases the p— Laplace equation or the p— Laplace system

NG,

corresponds to the Laplace system Au® =0, « = 1,2,...,m when p = 2, which

of course is a linear system (of m Laplace equations, each one independent from

the others); it is a superlinear system if p > 2 and it is sublinear when p € (1, 2).
Of course from the above scheme (1.8),(1.9),(1.10) it is excluded the case

{|Du|p_2ug‘i}:0, a=12...m, (1.11)

T (t I (t
minf 2 Z 0 and  Gmsup 2 50 (1.12)
t—+oo t— 400 t
or the case - ”
lim inf ®) <400 and limsup 9 = 400, (1.13)
t——4o00 t t—+o00 t
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when the system (1.1),(1.6) has an indefinite oscillating growth as t = |¢] — +o0.
However some of these cases enter in the regularity Theorem A in Marcellini-Papi
[74] and in [68].

1.1. Elliptic systems with linear growth

In this section we consider the system (1.1), or equivalently (1.6), with linear
growth as in (1.8). Let to > 0 and 1 < 8 < 2 be fixed. We assume that there
exists positive constants m = m (8) and M such that

m (B)
12

<g'(t) <M, Vtxt. (1.14)

Note that the condition (1.14) is satisfied if for instance the second derivative of g
is bounded away from zero for large values of ¢; i.e., if there exist positive constants
to, m, M such that

m<g'({t)<M, Vt>t. (1.15)

Under these conditions the following regularity result holds.
Theorem 1.2 (gradient bound under linear growth). Let g : [0, +00) — [0, +00)

be a convex increasing function of class Wli’coo satisfying (1.8) and (1.14); i.e.,
there exist positive constants Ly, Lo, m (8),M and 8 € (1 2), to € (0,400) such

that , o
7O, mE)

L < : 128

<g'(t) <M, Yt>tg. (1.16)

Then every weak solution u to the nonlinear elliptic system (1.1) is locally Lipschitz
continuous in 2. Moreover the following gradient bound holds: there exists an
exponent w > 1 and, for every o, R, 0 < o < R, there exists a positive constant C
such that

-y {1+ £ () ) . (1.17)

The exponent w depends on 3,n, while the constant C depends on o, R,n, o, 3, tgy
and sup{g”’(t): t € (0,t9)}. Here B, and Br are concentric balls compactly con-
tained in Q of radius respectively o and R.

Proof. By (1.16)

w0 _me) J0
pr L S pr SOTWSMSMT S Vizt. o (L1§)

We are in the conditions required in the assumption (1.4) of Theorem 1.1. In fact
from (1.18) we can also deduce that

m (B)
2128

and by the regularity Theorem 1.1 we get the conclusion of Theorem 1.2. O
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1.2. Elliptic systems with superlinear growth

In this section we consider the system (1.1), or equivalently (1.6), with superlinear
growth as in (1.9). We assume that for some ¢y > 0 and for every a > 1 there
exists positive constants m, M = M («) such that

!/ t !/ t @
mgt()gg”(t)gM<gt()> . Vit>t. (1.20)
Theorem 1.3 (gradient bound under superlinear growth). Let g : [0,4+00) —
[0, +00) be a convex increasing function of class WIZ’COO satisfying (1.9) and (1.20);
i.e., there exist positive constants m, M and tg € (0,+00) such that

g () g ) g ()

lim =400, mMm
t—4oc0 t + t t

gg”(t)gM< )a, Vi>te. (1.21)

Then every weak solution u to the nonlinear elliptic system (1.1) is locally Lipschitz
continuous in 2. Moreover u satisfies the gradient estimate in (1.17).

Proof. Since by (1.9) lim;_, 1 2 ()

2
, then also lim;_, ;o0 (9 (t)) "= 4o0.

+
Therefore there exists t; > 0 such that ( ) > 1 for all ¢ > t;. We also have

a2 g'(t) /
(905)) ot <9t(t), V>t (1.22)

g\
(%)
By (1.20),(1.22) we get

B[ <.

We are under the conditions of the assumption (1.4) in Theorem 1.1, in the form

% [(9/(’5»” +9/(t)] <q" 1) <M<g/(t)>a, V¢t > max {to,t1}

t

t t t

and the conclusion of Theorem 1.3 follows from Theorem 1.1. O

1.3. Elliptic systems with sublinear growth

In the case with sublinear growth as in (1.10) we assume that for some ¢y > 0 and
for some 8 such that % < B < % there exists positive constants m = m (8), M
with the properties

m(5) (g/(t)> ’ Sg"(t)SMg/t(t), Vit (1.23)
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Theorem 1.4 (gradient bound under sublinear growth). Let g : [0,+00) —
[0,4+00) be a convex increasing function of class I/Vlicoo satisfying (1.10) and (1.23);
i.e., there exist positive constants B € (%L, %), m(8), M and ty € (0,4+00) such
that

g (t)
t

lim 22 =
et 126

m (f) (9’ (t)

n—2
t) <g't) <M , Vit>ty. (1.24)

Then every weak solution u to the nonlinear elliptic system (1.1) is locally Lipschitz
continuous in ). Moreover u satisfies the gradient estimate in (1.17).

2
Proof. Since by (1.10) limg— 4 oo £ (t =0, then also lim;_, | o (gT(t)> " = 0. There-

3o

fore there exists ¢; > 0 such that (

- () (1)

By (1.23),(1.25) we get

m (8) l(g’(t))”ﬂg’(t)] <.

) <1 for all t > t;. We also have

n—2

) LoVt (1.25)

/-\

2126 t

Thus the condition (1.4) holds in the form

m (B) l(g’ (t)>" n gl(t)] <g"(t) < M@, V¢ > max {to,t,}

2126 t t -

and the conclusion of Theorem 1.4 follows from Theorem 1.1. O

1.4. Some references on related regularity results under general growth

The first gradient bound for weak solutions to a class of nonlinear elliptic systems
with general growth has been given in [68]. Other classes of elliptic systems with
general growth have been considered in [74] under slow growth, and in [78, 5, 48, 40]
under x—dependence too.

We also quote some recent related regularity results for elliptic and parabolic
equations and systems under general growth conditions. We start from the general
P, q—growth case, whose regularity theory, based on the local gradient bounds,
takes its origins from some articles published by the author in the years 1989-1993.
For more recent results we refer to Eleuteri-Marcellini-Mascolo [52]-[55], Cupini-
Marcellini-Mascolo [28]-[34], De Filippis [38], Duzgun-Marcellini-Vespri [50, 51],
Carozza-Giannetti-Leonetti-Passarelli [18], Carozza-Kristensen-Passarelli [19]. In
particular in [69, 70, 72, 73] it is possible to find an updated list of references. We
quote the recent studies of the so-called double face case by Colombo-Mingione
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[26, 27], Baroni-Colombo-Mingione [4]; see also Eleuteri-Marcellini-Mascolo [55],
De Filippis-Ho [41], Nguyen-Tran [85], Fiscella-Pinamonti [58].

The case of the p (x) —exponent, i.e. variable exponents by Eleuteri-Marcellini-
Mascolo [53], Cencelja-Radulescu-Repovs [20], Papageorgiou-Radulescu-Repovs-
Dusan [86], Chlebicka [21], Chlebicka-De Filippis [22, 23], Ding-Zhang-Zhou [49],
Chlebicka-De Filippis-Koch [23]. General growth conditions even for the one-
dimensional case n = 1 have been studied in [15, 60]. For the general case n > 1
and m > 1 under quasiconvezity conditions see [67] and the integral convexity
condition [8] by Bogelein-Dacorogna-Duzaar-Marcellini-Scheven; see also [9]-[14].

2. The origins of the I'-convergence in Pisa and the links
with the Mosco’s convergence

2.1. A story that began in 1968

Once upon a time ... a young student at the University of Roma, i.e. at the
Sapienza Universita di Roma, if more precisely we use the today’s name. At that
time only one State University, named Universita degli Studi di Roma, existed in
Rome. It was the year 1968. Yes, the protests year, protest movements not only
in the States but also in many European Universities, also in Rome. In 1968 I
knew Umberto Mosco as a teacher to students in Mathematics at their third year
of university studies. At that time I was younger than Umberto, only few years
younger, and till now I am younger than Umberto!

Umberto was fascinating as a teacher. Immediately I was strongly interested in
his classes. We must not think that - at that moment - other good mathematicians
did not teach Analysis at the University of Rome; the opposite! There was for
instance Guido Stampacchia, a great mathematician as well as strong personality,
and Beppe Da Prato, a special mathematician always very deep and precise, strong
expert in functional analysis and its applications to partial differential equations.
At the Mathematical Institute in Rome (at that time Departments were not jet
born in Ttaly) Gaetano Fichera, a strong mathematician, was also teaching there;
I had a discussion with Fichera that probably pushed me to choose different direc-
tions of research. I was fascinated by the classes of Guido Stampacchia too. The
subjects of his teaching were the fundamental tools in Analysis, such as Lebesgue
integrals, LP and Sobolev spaces, in order to arrive soon to the theory of sec-
ond order linear elliptic equations with measurable coefficients; and then to the
variational inequalities, which were one of his main mathematical interests and
that received strong consideration in the mathematical literature of that years, in
particular by the French and the Italian schools.

As well as some other students in these years, for instance Lucio Boccardo,
Italo Capuzzo Dolcetta, Michele Matzeu, Maria Agostina Vivaldi, I was mostly
attracted by the warm classes by Umberto Mosco about convexr analysis; but let
me say - as a student - I was more attracted by the weak topology and weak
convergence in Banach spaces or in locally convex topological vectorial spaces. At
that time, for me as a young student, it was very exciting to discover the relative
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compactness in the weak topology of bounded sequences in infinite dimensional
Hilbert or Banach spaces. It was also a very interesting tool to discover that this
property does not come for free in the infinite dimensional case, but it needs the
reflexivity of the space, or at least it needs the weak™ topology, especially in the
way explained by Umberto Mosco.

Today I meet some students who have attended the first course of Analysis in
my classes and who have now reached the end of their studies in Mathematics;
sometimes I ask them: among your studies, which subject was more relevant and
more useful for your subsequent studies in Analysis? Some students answered
Taylor’s Formula for its applications to numerical analysis; some others, know-
ing my research interest in the Calculus of Variations, answered the Weierstrass
Theorem about the existence of the maximum and the minimum values of a con-
tinuous function on a closed and bounded interval of the real line. I mention to
them my opinion: it is the relative compactness of the bounded sequences in R,
the theorem that in Italy we call Bolzano-Weierstrass Theorem. This theorem
gave origin to a chain of relevant compactness theorems in Functional Analysis,
such as for instance the Ascoli-Arzela Compactness Theorem for equicontinuous
and equibounded sequences of functions; the Rellich Theorem, also named Rellich—
Kondrachov theorem, on the compact embedding concerning Sobolev Spaces. The
weak convergence enters too: the relative weak compactness of bounded sequences
in an infinite dimensional Hilbert space is a main - and relatively simple - example
of application of the Bolzano-Weierstrass Theorem.

Thus I was attracted by the fascinating classes by Umberto Mosco and I decided
to prepare my bachelor thesis in Rome under his supervision. I discussed my thesis
on November 1970, on Bochner integrals about multivalued applications. I never
studied anymore Bochner integrals for multivalued functions, however I continued
to be strongly interested in the scientific researches that Umberto Mosco was
carried out in these years. In fact, also in the period that I spent to prepare
my thesis, I continued to study convex analysis and in particular the Mosco’s
convergence of convex sets and of convex functions.

Immediately after the conclusion of my thesis in Rome, I applied for a PhD
position at the Scuola Normale in Pisa. At that time, and also now, the PhD
Program at the Scuola Normale in Pisa is named Corso di Perfezionamento. 1
applied for a PhD position and I had to pass a colloquium. Edoardo Vesentini
was the president of the committee of my colloquium; later he was also Director
of the Scuola Normale. I passed the colloquium. Edoardo Vesentini liked me as a
student! I say this because, although Geometer, he remained scientifically in touch
with me also when I started my research studies in Analysis; after some years we
also published together, as editors, the Lecture Notes [87].

I arrived at the Scuola Normale Superiore in Pisa as a PhD Student at the end
of 1970, beginning of 1971. I started to follow the courses of Guido Stampacchia,
who in the meantime moved form the University of Rome to the Scuola Normale in
Pisa; I also followed courses by Sergio Spagnolo, Antonio Marino, some classes by
Giovanni Prodi, Sergio Campanato, Franco Conti, Aldo Andreotti, some seminars
by Enrico Bombieri and others, of course. In these years it was easy to meet in
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Pisa, coming from Firenze, Enrico Giusti, Mariano Giaquinta, Giorgio Talenti.
Last but not least, I followed some courses by Ennio De Giorgi, one in Logic,
one about Evolution Problems, one in Calculus of Variations. At the beginning it
was difficult for me to well understand his classes. The reasons? For sure I had to
study a lot before to understand better; however on one side the level of his courses
was very high, on another side for Ennio De Giorgi all the mathematical subjects
were easy although sometimes difficult for others. I was strongly attracted by his
mathematical charisma.

As already said above, at that time (1971-1973) Ennio De Giorgi was interested
in Logic too, a lot of his time was dedicated to the fundaments of mathematics;
but of course to partial differential equations and calculus of variations too. I had
the pleasure in these years to meet him, not only in his office at the third floor
of the Scuola Normale, facing Piazza dei Cavalieri in Pisa, but also for lunch and
dinner, sometime with his colleagues mathematicians and with my colleagues PhD
students, but also sometime - more often on Sundays - with my wife Manuela; we
were used to go for the Sunday lunch to the Salustri Restaurant in San Giuliano
Terme, near Pisa, where Ennio was well known to the family who ran the restau-
rant. When in his office, De Giorgi used to let me write on his blackboard while
he seated in front of me on a large brown armchair, reading in French Le Monde.
Sometime he was saying “Si, si/ Yes, go on!” while continuing to read Le Monde!
You would have a wrong impression to think that he was not aware: at the end
always he was posing questions, remarks and advice. Maybe you may think that
he already knew what I was describing!

In this context I had the opportunity to describe to Ennio De Giorgi the
Mosco’s convergence, and the relations with the wariational convergences that
at that time we started to understand; it was the time of the starting of the
G—convergence and of the I'—convergence in Pisa. The G—convergence by Ennio
De Giorgi and Sergio Spagnolo started in the articles [91, 77, 46] (see the next sec-
tion for more precise details). The first manuscript [45] by Ennio De Giorgi about
I'—convergence was published in 1975 in collaboration with Tullio Franzoni. Since
then, the definition the I'—convergence was simplified; the modern approach is
described below in the Definition 2.1. At that time, also inspired by the previ-
ous approach that Umberto Mosco gave to the convergence that now takes his
name (see the Definition 2.2 below) in a joint paper with Lucio Boccardo [7] we
gave exactly the definition adopted nowadays, with iminfy o fr (zx) > f (2),
and so on, as in the Definition 2.1 below, although in the specific context of the
I'—convergence of convex energy integrals of the calculus of variations. See also
the Definition 3 in [64].

For completeness it is correct to mention that the theory of the G— convergence
and of the I'—convergence took origin not only in Pisa, but for instance also from
the researches by Babuska and by the French school, in particular by Jacques
Louis Lions, Luc Tartar, Frangois Murat, Gilles Francfort, Doina Cioranescu and
many others, whose results arrived in Italy only later the first approaches in Pisa.
For some reference books of the French school, who mainly used the name homog-
enization, we quote Hédy Attouch [2], Alain Bensoussan, Jacques Louis Lions and
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George Papanicolaou [6], Doina Cioranescu and Patrizia Donato [25], Luc Tartar
[96] and the references therein.

In Italy at the beginning the I'—convergence was named G—convergence.

2.2. The De Giorgi-Spagnolo G—convergence

The energy integral of the calculus of variations that we consider is, for instance,
of the type

F(u) = /Qf(x,Du (2)) dzx, (2.1)

where u = u (z) is a real function defined for z in a bounded open set Q@ C R™ with
n > 2, Du = Du(x) is its gradient in £, and f : Q x R®™ — R is a Carathéodory
function, i.e., f = f(x,£) is convex with respect to the gradient variable £ € R™
and measurable with respect to z € 2. The x—dependence of the integrand f
corresponds to an energy which is not homogeneous with respect to the body €.
This is the inhomogeneous, or the non-homogeneous case. One of the aspects who
gave origin to the G—convergence and to the I'—convergence is to consider the
inhomogeneity spread in {2 in a random way, like for two or more materials mixed
together. A mathematical approach is to consider a periodic distribution of the
two (or more) materials with a small n—dimensional period, say depending on
a positive (small) parameter €, or equivalently on an integer number k — +oo,
with e = %; any corresponding minimizer u. of the energy integral of the type in
(2.1) with integrand f = f. (#,£) = f (%£,£) describes the microscopic behavior
of the physical system. Then a natural approach is to go from microscopic to
macroscopic. The mathematical process corresponds to consider a minimizer u.
of the energy integral as in (2.1), related to the integrand f. (z, ), and let € go to
zero, describing the weak limit u. — w, where u is a minimizer of an homogeneous
energy of the form [, fo (Du ()) dz. This is the method of homogenization, also
well known under the names I'— convergence, G— convergence, H—convergence. In
the next section we give some details, as well as we describe some connections
between these notions and the Mosco-convergence.

We consider the energy integral F (u) as in (2.1). For instance, the energy
F (u) may have the expression

F(u) = /an:a (z) <§Z>2dx (2.2)

for some bounded measurable coefficients a; (z),az2 (z),...,a, (x) greater than
some positive constant. The x—dependence corresponds to a not homogeneous
body Q. This is a non-homogeneous case (for a discussion related to this aspect
see also [71]). If we fix the potential at the boundary 02, say u (z) = uo (x) for
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every x € 052, then an equilibrium potential u satisfies the Dirichlet problem

n O ou\
Zi:laxi<ai(z)8wi>o’ v e,

u(x) =ug(z), =x€dN.

(2.3)

A similar, but more general energy in this inhomogeneous context is
Z ou Ou
F(u) = /Q > aij (@) 5o (2.4)
i,j=1
where A (z) is the square n X n matrix
ann (z) az(xz) -+ an(z)
az (z) ag(x) -+ azn(x)
an1 (1') An2 (.CE) ctr Opn (I)

while in the previous case (2.2) the vector (a1 (x),...,a, (z)) deserves to be rep-
resented as the diagonal n X n matrix

ap (x) 0 0
0 as () 0
6 O - an (33)

From this relevant example the G—convergence, I'-convergence, homogenization
theories took their origin, in the ’70, with the contribution of De Giorgi, Marino,
Spagnolo et al. The first references on this subject is the article [46] published
by De Giorgi-Spagnolo in 1973, a paper which followed the first pioneering at-
tempts by Spagnolo [91] and Marino-Spagnolo [77] in 1968-69, all of them be-
ing related to second order linear elliptic (and parabolic) operators of the form
ZZ‘:l D;(a;;(z)D;), whose energy functional is expressed in (2.4). The celebrated
Marino-Spagnolo [77] result in loose form states that solutions of Dirichlet prob-
lems associated to the general energy integral in (2.4) can be approximated, in the
strong L2—topology, as well as in the weak topology of W2 (Q), by the solutions
of Dirichlet problems related to simpler energy integrals as in (2.2). A drastic dif-
ference with respect to the convergence of the coefficients: the non-diagonal zero
coefficients may become nonzero in the G—limit!

This is nowadays a well known fact, which gave origin to the G—convergence
and to the I'—convergence theories, and we will not go further here. A reader
can see the well known books by Dal Maso [35], Braides [16]. Reference books for
homogenization are due to Bensoussan-Lions-Papanicolaou [6] and to Cioranescu-
Donato [25]. Relevant are the Lecture Notes book by Luc Tartar [96] and the article
[59] by Francfort-Murat-Tartar, who gave also several other relevant contributions
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to the G—-convergence, H—convergence, homogenization. See also Attouch [2],
Attouch-Buttazzo-Michaille [3], Buttazzo [17] and Cioranescu-Damlamian-Griso
[24]. The first homogenization formula in the nonlinear case was proposed in
[65]. Nowadays some hundreds papers deal with G—convergence, H— convergence,
homogenization, and it is impossible to describe all the points of view; just to refer
to some more recent papers, neither from the French school nor from the Italian
school, we mention for instance [56, 57].

Here we observe that the described phenomenon related to matrices and to lin-
ear Dirichlet problems was discovered, at the very beginning of the G—convergence
and I'—convergence theories, also when lower order terms are considered; see for
instance Carlo Sbordone [88, 89, 90, 76] and Luc Tartar [93, 94, 95]. For the linear
case with lower order terms see also the not usual approach in [66].

The first attempts of I'—convergence are due to Ennio De Giorgi [45] in 1975
in collaboration with Tullio Franzoni. With this paper the G—convergence, that
at the beginning was related to the convergence of the weak solutions to elliptic
and parabolic pde’s, with the new name of I'—convergence, became a tool to treat
also general energy functional and their minimizers. In the same year De Giorgi
published in the Rendiconti di Matematica the paper [43] which, in the generalized
form that Carlo Sbordone gave to it in [90], was and still is a fundamental step
for the construction of the I'—convergence theory, as nowadays is presented in the
book [35] by Gianni Dal Maso.

In the years 1973-1976 the first nonlinear attempts for the I'—convergence in
the nonlinear context of convex energy functionals can be also found in [63, 64], in
connection with the Mosco convergence too, and some aspects are described in the
next section. The definition of I'—convergence was proposed and discussed in [7]
in connection with the convergence of minimizers, the convergence of eigenvalues
and eigenfunctions, and the convergence of solution to variational inequalities. In
[75] the authors characterize the Mosco and the I'—convergence of various classes
of energy integrals, with respect to the LP and WP weak and strong topologies,
in terms of the integrands and their conjugates; moreover some I'—compactness
results are proved without coerciveness assumptions.

2.3. Connections between the I' and the Mosco convergences

Relations between I'—convergence and the Mosco convergence are well known,
although few details seem to be less known and maybe can be pointed out. We
refer to the approaches started in the 70%s, in the period of time when in Pisa
took origin the I'—convergence theory, mainly by the fundamental work of Ennio
De Giorgi, as described in the previous section. We emphasize here some of the
Mosco’s results where his contribution is more related to the I'—convergence; in
particular we refer to the Mosco’s papers [81, 82]; in this context we also refer
to the Mosco’s paper [83] about convergence of Dirichlet forms. See also Dal
Maso-Mosco [36, 37] and Lancia-Mosco-Vivaldi [62].

We recall the sequential definition of I'—convergence. Details can be found
in the reference books by Dal Maso [35] and Braides [16]. See also Attouch [2],
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Attouch-Buttazzo-Michaille [3], Buttazzo [17], Cioranescu-Donato [25] Tartar [96].

Definition 2.1 (of I'-convergence). Let (X, ) be a topological space and (fx),cn
be a sequence of functions defined in X with values in RU {+o00}. We say that fj
I'—converges to f : X — RU{+o0} in the (sequential) topology 7 if the following
two conditions hold:

(i) (equi-lower semicontinuity) for every x € X and every sequence (x),cy
converging to z in the topology 7

lkigiroloffk (xr) > f () ;

(ii) (optimality) for every x € X there exist a sequence (2 ),y converging to
x in the topology 7 such that the equality holds; i.e.,

li = .

S fi (2x) = f ()

Definition 2.2 (of the Mosco convergence). Let X be a real Banach space and
(fr)ren be a sequence of functions defined in X with values in R U {+o00}. We
say that fi M—converges (Mosco-converges) to f : X — RU {+oo} in X if fj
I'—converges to f in the strong topology as well as in the weak topology of X.

Of course many properties satisfied by sequences I'—converging either in the
weak or in the strong topology of a real Banach space are satisfied also by Mosco-
converging sequences and vice-versa. Clearly this fact is not always true; for
instance the compactness properties of weakly I'—converging sequences, which are
typical and which characterize the I'—convergence. However the Mosco-convergence,
other than useful for instance in the convergence of solutions to variational inequal-
ities, which was one of the main Mosco’s motivations (see [81]), is very elegant
because it allows to treat variational problems in a symmetric general way, for
instance in the original Mosco’s description of the continuity of the Young-Fenchel
transform (see the definition below in (2.5) and details in the Mosco’ paper [82]).

Let X be a reflexive real Banach space and let f: X — RU {400}, not identi-
cally +00. The conjugate, or the Young-Fenchel transform f*: X* — R U {400},
is the function defined in the dual Banach space X* of X by

[ @) =sup{(z*,z) — f(x): z € X}. (2.5)

The following Theorem 2.5 is a modification of a similar result given by Mosco
[81, 82] in the version proposed in [63, 64]; see in particular Lemma 1 in [64]. In
the original terminology by Mosco Theorem 2.5 below is one of the main steps
for the so-called continuity of the Young-Fenchel transform with respect to the
Mosco-convergence. Despite of this fact, we give below essentially part of the
original results by Umberto Mosco about the convergence of convex sets and of
convex functions, which he studied in [81, 82].

Lemma 2.3 and Lemma 2.4 below, and their consequence Theorem 2.5, are the
main results of this section. As already said, they are a modification of similar
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results given by Mosco [81],[82] in the version proposed in [63],[64]; see in particular
Lemma 1 in [64]. Although originally stated under convexity assumptions, the
following Lemma 2.3, Lemma 2.4 and Theorem 2.5 hold independently of the
convexity of the functions fx, f: X — RU {+oo}.

Lemma 2.3. Let fi, f: X — RU {400}, not identically +oo. Let us assume
that the optimality condition (ii) holds for fi, f, in the weak (respectively strong)
topology of X. Then the equi-lower semicontinuity condition (i) for fi, f* holds
in the strong (respectively weak) topology of X*.

Proof. We follow Lemma 1b in [64]. In order to obtain the equi-lower semicon-
tinuity of f;, for every z € X with f(z) finite by (ii) in the Definition 2.1 we
can consider (zy),cy converging to z in the weak (respectively strong) topology
of X such that limy_, o fx (xx) = f(x). If z} converges to z* in the strong
(respectively weak) topology of X* then

fi (ay) = sup {(zy, x) — f(2)} = (wp, 2x) = f (23) -

zeX

As k — 400 we obtain

liminf f (z3) > (z*,z) — f (2). (2.6)

k—+4o0

Since (2.6) trivially holds if f (x) = +oo, then it is satisfied for all z € X and

liminf f7 (a7) > sup {(", ) — f ()} = /" (). (2.7)
— 400 zeX

O

In the next Lemma we make two assumptions. One is stated below in (2.9)
and it is a coercivity condition. An other technical condition is necessary to avoid
trivial cases such as fi () = g (x) + k for some given function g (z), that in the
limit as £ — +o0o would give f identically equal to +oo, in contrast with the fact
that we allow functions f: X — R U {+oco} not identically +oo. More precisely,
we require that there exists a sequence y; in X converging in the weak topology
of X such that

lim sup f (yx) < +00. (2.8)
k—+oo

Lemma 2.4. We assume (2.8) and that there exist constants m > 0 and p > 1
such that

fe@) >m|z|% , VzeX, VkeN. (2.9)

If the equi-lower semicontinuity (i) holds for fi, [ in the weak topology of X, then
for every x* € X* we have

limsup f7 (z*) < f* (z¥) . (2.10)

k—+o00
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Proof. We consider the sequence y; in X converging in the weak topology of X
such that (2.8) holds; then for every z* € X*

inf {f () — (&%, 2)} < [fi (@) = (@ D))oy, = fr(gp) — (@500 (2.10)

zeX

Let us first consider the case limsup,,_, o, fi (z*) < +o0o. Then f} (z*) is finite
for every large value of k and there exists a sequence xj € X such that

inf {fi () — (@20} + 3 > f () — (o). (212)

From (2.11),(2.12) we get

n@w—www>n@w—w@w_%

By the coercivity condition (2.9) we obtain

T (i) + 127 e Nlyellx > fr (ye) — (@7, y) > fio (2x) — (@7, 28) — % (2.13)

1 -1
>m|lzelf = o™ x- loellx — 7 = llzwllx (m ekl — Hx*HX*) - 1.

By (2.8) the real sequence fi (yx) is bounded from above. Since y; converges in the
weak topology of X , the left hand side of (2.13) is bounded from above. Therefore
also the right hand side remains bounded and, being p > 1, also ||z4|| i is bounded.
In fact, if by contradiction ||zy||y — 400 for a subsequence of k — +oc0, then the

quantity (m [N Hx*||X) would be positive for large values of k and thus

all the left hand side of (2.13) would go to +oo.

Up to a subsequence, which we continue to denote with the same symbol,
as k — +oo the sequence zj; weakly converges to some zg € X. We rewrite
(2.12) by using the definition of the Young-Fenchel transform (2.5) fi (z*) =

sup,ex {(z*, ) — fr (x)}; we obtain

i @)+ > @) — )

and, passing to the liminf as k — +o0,

—limsup f; («*) > liminf [f} (zr) — (", 2%)] -
k— 00 k—+oo

We use the equi-lower semicontinuity (i) in the Definition 2.1; we get

limsup f7 (x*) < (z*,20) — liminf fj () < (", 20) — f (20) .
k— o0 k—+oco

Since f* (%) = sup,ex {(*, ) — f (x)} we finally get

limsup f7 (x*) < (z",20) — f (o) < f* (z¥) (2.14)

k—+4o00
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which is the conclusion (2.10) for the case limsup,,_, . f (%) < +o0.

In the case limsup,,_, o, fi (z*) = +oo then up to a subsequence, which we
continue to denote with the same symbol, limg_,4o fi (z*) = 400. For every
M > 0 there exists kyr € N such that f (z*) > M for all k > kj;. Then, being
fi (@) = sup,ex {(&*, ) — fr ()} > M, for every k > kp there exists x € X
such that

(", x) — fr (z) > M. (2.15)

By the coercivity assumption (2.9)
* —1 *
—M > fio (o) = (o) 2 el (mlleal = 2

which, being M > 0, implies [|zx|/% ' < L [|z*| x. . Up to a subsequence, which
we continue to denote with the same symbol, as k¥ — +o00 the sequence zj weakly
converges to some o € X. Passing to the limit as k — 400 in (2.15), by the
equi-lower semicontinuity (i) in the Definition 2.1 we get

M < limsup [{(z*, 2x) — fr (xx)] = (¥, 20) — liminf f ()
k——+o00 k—+o00

< (x*,mo) — f (w0) < f* (%)

The arbitrarily of M gives f* (z*) = +o0o which proves

limsup f7; () = +o0 = f* (z¥). (2.16)

k—+oo

This gives the conclusion (2.10) also in the case limsup,_, | . fi (z*) = +00. O

The following Theorem 2.5 is direct consequence of Lemma 2.3 and Lemma
2.4. See also the version in [73]. We have only to verify that the technical condition
(2.8) is satisfied. This is a consequence of the assumption that fj is a sequence
of functions which I'—converges to f in the weak topology of X: since f: X —
R U {+o0} is not identically +oo, then there exists yo € X with f (y0) € R and
limyp— oo fi (Yr) = f (y0) < 4o00.

Theorem 2.5. Let X be a reflexive real Banach space. Under the coercivity
assumption (2.9), let fr, [ functions defined in X with values in R U {400, },
not identically +o0o. If fi I'—converges to f in the weak topology of X then f}
T'—converges to f* in the strong topology of X*. Moreover

lim f; (z*) = f* (z*) . (2.17)

As shown in the proof above, the result of Theorem 2.5 is independent of the
convezity of the functions fy; it also gives the convergence of the minimum values
when the sequence fj I'—converges. In fact, if each function f : X — RU {+oc0}
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is also weakly lower semicontinuous on X and it is not identically equal to +o0,
then the coercivity assumption (2.9) ensures the existence of the minimum value

min {f (z) — (z*,2): z € X} (2.18)

for any linear perturbation z* € X* and the minimum value holds — f; (z*) by the
same definition of the Young-Fenchel transform f* in (2.5). The limit condition
(2.17) states that, as k — 400, the minimum value in (2.18) converges to the
corresponding minimum value for f. Under the coercivity condition (2.9) we can
also obtain the weak convergence (up to a subsequence) of the minimizers.

For instance we refer to the well known context in pdes when X = W2 (Q),
Q bounded open set in R™ for some n > 1, and the notation f : X — R U {+oc0}
is modified into Fj: W12 () — R U {+oco} and it is given, for example, by the
Dirichlet integral

Fy, (u) = / Z afj (2) gz, dz, uwe W ?(Q), (2.19)
Q.

3,7=1

where u is defined in €2, in the Sobolev class W2 (Q), and Du = (ug,);—1 5,
k

is its gradient. For every k € N the n x n symmetric matrix (aij) is positive

definite and bounded, in the sense that m |£\2 < ZZ]’:I ai—“j (x)&& < M |§|2 for
some positive constants m, M, for all £ € R", a.e. x € Q and for every k£ € N.
With the notation of this section, z* is an element of the dual space of W (Q)
of functions u € W12 (Q) with zero boundary value on 9%; for instance z* is a

generic function h € L? (€2). The minimization problem corresponding to (2.18) is

n

min /Q Z afj (%) Ug, U, — R (z)u(z)| do: uE W2 (Q) 3. (2.20)

i,7=1

As well known, in this context the I'—convergence of the sequence of Dirichlet
integrals Fj: Wol’2 () — R in (2.19) implies the convergence of the minimum
values FJ; (ug) and also the convergence of the minimizers uy in the weak topology
of W% (). In fact in this context the I'—convergence of the Dirichlet energy
integrals Fj, as in (2.19) is equivalent to the convergence, for every h € L? (), of
the minimum values in Wy % () of

Fy (u) — /Q hu dz

and also to the weak convergence in Wy"? () of the corresponding minimizers uy
of the Dirichlet problem (2.20).
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