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Abstract: Kidneys of mice, rats and humans possess progenitors that maintain daily homeostasis and
take part in endogenous regenerative processes following injury, owing to their capacity to proliferate
and differentiate. In the glomerular and tubular compartments of the nephron, consistent studies
demonstrated that well-characterized, distinct populations of progenitor cells, localized in the parietal
epithelium of Bowman capsule and scattered in the proximal and distal tubules, could generate
segment-specific cells in physiological conditions and following tissue injury. However, defective
or abnormal regenerative responses of these progenitors can contribute to pathologic conditions.
The molecular characteristics of renal progenitors have been extensively studied, revealing that
numerous classical and evolutionarily conserved pathways, such as Notch or Wnt/β-catenin, play
a major role in cell regulation. Others, such as retinoic acid, renin-angiotensin-aldosterone system,
TLR2 (Toll-like receptor 2) and leptin, are also important in this process. In this review, we summarize
the plethora of molecular mechanisms directing renal progenitor responses during homeostasis and
following kidney injury. Finally, we will explore how single-cell RNA sequencing could bring the
characterization of renal progenitors to the next level, while knowing their molecular signature is
gaining relevance in the clinic.

Keywords: renal progenitors; molecular mechanisms; kidney injury; single-cell RNA sequencing;
molecular signature

1. Introduction

Mechanisms of endogenous regeneration and repair have been proposed for several
mammalian organs [1]. Classical regenerative organs, such as the gastrointestinal tract and
the skin, have been extensively studied over the years and have brought to light the major
role of endogenous progenitors [2]. In the intestine, intestinal stem cells maintain daily
homeostasis, while distinct stem/progenitor cells are in charge of the fast repair processes
following injury [2]. Likewise, epidermal stem cells form a heterogeneous stem cell pool
taking part in epidermal homeostasis, as well as tissue repair, following wounding [3].

The adult kidney is an organ with a low cellular turnover and endowed with pro-
genitors capable of proliferating and differentiating [4,5]. This valuable property allows
researchers and clinicians to contemplate new therapeutic avenues to restore kidney func-
tion after injury.

Here, we propose an overview of the molecular mechanisms taking place in glomeru-
lar and tubular renal progenitors in physiological and pathological conditions (Figure 1)
and of how a dysregulation of these pathways could be at the origin of kidney disease.
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We will also examine how renal progenitors could be further characterized using single-
cell RNA sequencing (scRNAseq) technology and the clinical relevance of the molecular
signature of these cells.
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Figure 1. Main molecular mechanisms controlling renal progenitor responses in physiological and pathological conditions: 
(A) glomerular progenitors and (B) tubular progenitors. β-cat: β-catenin, CXCL12: C-X-C Motif Chemokine Ligand 12, 
Dach1: Dachshund homolog 1, ROCK: Rho kinase, Ang II/AT1: Angiotensin II/Angiotensin II receptor, IFN-α/IFN-β: in-
terferon-α and interferon-β, BMP-7: bone morphogenetic protein 7, Bmi-1: B lymphoma Mo-MLV insertion region 1 and 
TLR2: Toll-like receptor 2. 

2. Renal Progenitors 
Renal progenitors were discovered by Sagrinati et al. in human kidneys, based on the 

expression of the stem cell markers CD133 and CD24, in the absence or low expression of 
differentiation markers [6,7]. CD133+CD24+ cells are localized at the urinary pole of the 
Bowman capsule, as well as scattered cells localized along the tubular compartment of the 
nephron among differentiated tubular cells [6]. Some renal progenitors, including those 
localized in the Bowman capsule and a subset of the ones scattered along the tubule, also 
express CD106 (also called vascular cell adhesion molecule 1, VCAM1), while the majority 
of progenitors localized along the tubule do not [6,8]. These phenotypical differences re-
flect a diverse functional capacity; indeed, CD133+CD24+CD106- cells scattered along the 
tubules display functional features of tubular progenitors, while CD133+CD24+CD106+ 
parietal epithelial cells (PECs) are multipotent [6]. In addition, a subset of 
CD133+CD24+CD106+ progenitors localized close to the distal pole of the Bowman cap-
sule and expressing podocalyxin is able to generate only podocytes [6]. Altogether, these 
observations configure a hierarchical lineage of renal progenitors within the kidney that 
reminds the hemopoietic system [9]. PECs with similar progenitor features and anatomi-
cal localization were also identified in mouse and rat kidneys [4,10,11]. The genetic tag-
ging of PECs in a transgenic inducible mouse line demonstrated that PECs migrate onto 
the glomerular tuft and differentiate into podocytes in adolescent mice [11]. More re-
cently, Pax2 has been identified as a marker for mouse renal progenitors, and the creation 
of an inducible mouse model for lineage tracing of the Pax2+ cell population allowed to 
demonstrate the differentiation of renal progenitors localized among PECs into podocytes 
during postnatal glomerular growth [4]. Further studies demonstrated that juxtamedul-
lary and cortical glomeruli have different numbers of Pax2+ progenitors, with cortical 
ones endowed with twice as many Pax2+ progenitors per glomerular podocyte count in 
healthy conditions [12]. In adult rat kidneys, immature cells expressing the neural cell 
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2. Renal Progenitors

Renal progenitors were discovered by Sagrinati et al. in human kidneys, based on the
expression of the stem cell markers CD133 and CD24, in the absence or low expression
of differentiation markers [6,7]. CD133+CD24+ cells are localized at the urinary pole of
the Bowman capsule, as well as scattered along the tubular compartment of the nephron
among differentiated tubular cells [6]. Some renal progenitors, including those localized in
the Bowman capsule and a subset of the ones scattered along the tubule, also express CD106
(also called vascular cell adhesion molecule 1, VCAM1), while the majority of progenitors
localized along the tubule do not [6,8]. These phenotypical differences reflect a diverse
functional capacity; indeed, CD133+CD24+CD106- cells scattered along the tubules display
functional features of tubular progenitors, while CD133+CD24+CD106+ parietal epithelial
cells (PECs) are multipotent [6]. In addition, a subset of CD133+CD24+CD106+ progenitors
localized close to the distal pole of the Bowman capsule and expressing podocalyxin is
able to generate only podocytes [6]. Altogether, these observations configure a hierarchical
lineage of renal progenitors within the kidney that reminds the hemopoietic system [9].
PECs with similar progenitor features and anatomical localization were also identified in
mouse and rat kidneys [4,10,11]. The genetic tagging of PECs in a transgenic inducible
mouse line demonstrated that PECs migrate onto the glomerular tuft and differentiate into
podocytes in adolescent mice [11]. More recently, Pax2 has been identified as a marker for
mouse renal progenitors, and the creation of an inducible mouse model for lineage tracing
of the Pax2+ cell population allowed to demonstrate the differentiation of renal progenitors
localized among PECs into podocytes during postnatal glomerular growth [4]. Further
studies demonstrated that juxtamedullary and cortical glomeruli have different numbers
of Pax2+ progenitors, with cortical ones endowed with twice as many Pax2+ progenitors
per glomerular podocyte count in healthy conditions [12]. In adult rat kidneys, immature
cells expressing the neural cell adhesion molecule (NCAM) and the progenitor cell marker
CD24 have been described among epithelial cells lining the rat Bowman capsule [10].
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The genetic tagging of Pax2+ progenitors of the Bowman capsule of mice allowed
to demonstrate that these progenitors differentiate into podocytes in models of focal
segmental glomerulosclerosis (FSGS), and their response to injury determines the outcome
of glomerular disorders, further substantiating their role as podocyte progenitors [4,12].
Recently, using a transgenic mouse model in which podocytes were labeled with GFP (green
fluorescent protein) and PECs were simultaneously labeled with tdTomato, Kaverina and
colleagues also provided strong evidence that PECs serve as a source of new podocytes
in adult mice upon injury. These cells co-expressed the two fluorescent labels, acquired
podocyte markers and showed the primary, secondary and tertiary foot processes [13].

An abnormal progenitor response to injury can also contribute to glomerular dis-
orders [4,10,14,15]. Indeed, in certain conditions, in humans, mice and rats, a chaotic
migration and proliferation of Bowman capsule progenitor cells has been demonstrated to
contribute to crescent formation and glomerular scarring [4,10,14]. Studies on human renal
biopsies are consistent with the concept that proliferating progenitors generate hyperplastic
lesions in crescentic and collapsing glomerulopathy [14], and similar results have been ob-
tained in rats [10]. In mice, the lineage tracing of PECs demonstrated that their proliferation
leads to a marked increase in cell numbers within crescents of murine nephrotoxic serum
nephritis and collapsing glomerulopathy [16] and the formation of sclerotic lesions and
extracellular matrix deposition in FSGS [15]. More recently, the specific genetic tracking of
progenitors among PECs demonstrated their involvement in the generation of hyperplastic
glomerular lesions that could be envisioned as a failure to regenerate podocyte following
injury [4]. From all these studies, it is now clear that renal progenitors localized among
PECs respond to podocyte injury, triggering a regenerative program, but an inefficient or
excessive response can lead a functional tissue to become a scar-like tissue composed of
cells and disorganized extracellular matrix. Therefore, knowing the mechanisms that drive
a correct proliferative and differentiative response of renal progenitors during homeostasis
and following injury is of crucial importance and may allow the identification of putative
modulators to boost the regenerative potential of renal progenitors.

2.1. Regulators of Glomerular Progenitor Physiology: When the Orchestra Tunes the Melody

Which signaling pathways regulate glomerular progenitor quiescence, proliferation
and differentiation toward podocytes in healthy kidneys? Studies on nephrogenesis demon-
strated that activation of β-catenin/Wnt signaling represents a pivotal step driving PEC
differentiation into podocytes during development [17,18]. Indeed, the deletion of Ctnnb1
(β-catenin 1) in PECs in a conditional knockout mouse at the late S-shaped body stage
induced glomerular anomalies and the replacement of PECs in Bowman capsules with
well-differentiated podocytes. Tracing nephrogenesis in embryonic conditional β-catenin
knockout mice revealed that these “parietal podocytes” derived from precursor cells in the
parietal layer of the S-shaped body by direct lineage switch. These findings demonstrate
that β-catenin/Wnt signaling is required for the proper differentiation and maturation of
PECs into podocytes [17]. WT1, a master regulator of this process [19], is also a potent
inhibitor of the β-catenin/Wnt signaling pathway [18]. Studies performed in quiescent
PECs demonstrated that the expression of WT1 is suppressed by high levels of Pax2 and
by the expression of high levels of microRNA-193a (miR-193a) [20]. When PECs downreg-
ulate the expression of miR-193a, this allows the upregulation of WT1, which suppress
β-catenin/Wnt signaling and induces PEC differentiation into podocytes. Recent in vitro
results demonstrated that apolipoprotein L1 (APOL1) also regulates the PEC molecular
phenotype through modulation of the miR193a expression and that APOL1 and miR193a
share a reciprocal feedback relationship [21]. Indeed, in a culture system, PEC differenti-
ation into podocytes was accompanied by a decrease in miR-193a expression. Similarly,
the suppression of miR-193a enhanced the APOL1 expression [21]. Future works should
address whether this APOL1–miR-193a axis functions in a similar way in vivo as it does
in vitro in relevant transgenic mouse models and in human kidneys. Interestingly, APOL1
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is a susceptibility gene, with genetic variants that increase the likelihood to develop podocy-
topathies [22].

The control of the cell-fate decision and cell proliferation in many different systems
is operated through the integrated signaling of the Wnt and the Notch signaling path-
ways [23]. Lasagni et al. reported that, in renal progenitors localized in the Bowman capsule,
Notch activation promotes entry into the S-phase of the cell cycle and subsequent mitosis
until they are in an undifferentiated state [24]. However, impaired downregulation of the
Notch pathway during renal progenitor differentiation induced the generation of podocytes
with abnormal DNA contents and their following deaths by mitotic catastrophe [24,25].
Recent results suggest that podocyte-derived CXCL12 (C-X-C motif chemokine ligand 12)
inhibits Notch signaling, thus maintaining the quiescence of podocyte progenitors [12].
Notch downregulation associates with the upregulation of cell cycle inhibitors p21, p27 and
p57 and the downregulation of cyclin D1 [24], conferring to the podocyte the characteristics
of a postmitotic, nonproliferative cell. The CXCL12-mediated podocyte-renal progenitor
feedback mechanism also limits podocyte regeneration after glomerular injury [12]. Indeed,
using the lineage tracing of Pax2+ renal progenitors in mice with Adriamycin-induced
nephropathy, the researchers showed that a CXCL12 blockade promotes de novo podocyte
formation and attenuates glomerulosclerosis [12].

As the enhancement of renal progenitor differentiation into podocytes may represent
an attractive therapeutic strategy to promote the remission of glomerular disorders, several
studies have been performed to identify differentiating compounds. Retinoic acids (RA)
are derivatives of vitamin A with established benefits in the treatment of a variety of can-
cers [26]. RA have also been shown to protect against renal injury in multiple experimental
models of kidney disease, including minimal change disease, membranous nephropathy,
FSGS, human immunodeficiency virus (HIV)-associated nephropathy (HIVAN) and lupus
nephritis [27]. Numerous studies have underlined the role of RA in podocyte differentia-
tion in vitro [28,29], and we used RA in the cell culture media to promote renal progenitor
differentiation towards the podocyte lineage [7]. Interestingly, exposure to albumin, which
binds RA with high affinity, during in vitro cultures could inhibit renal progenitor differen-
tiation toward podocytes by sequestering RA. In vivo, we reported that RA were released
within the Bowman space following glomerular injury and stopping the endogenous RA
synthesis in a model of focal segmental glomerulosclerosis worsened the albuminuria,
glomerular injury and mortality [30]. The exogenous administration of RA, neutralizing the
sequestering activity of albumin, allowed the regenerative response of renal progenitors,
establishing an increase in podocyte number and the improvement of renal function [30].
Recent results from Lasagni et al. [4] corroborated the hypothesis that pharmacological
approaches that increase podocyte responsiveness to RA signaling would mitigate the
progression of experimental renal injury. Indeed, the in vitro treatment of renal progeni-
tors with RA in the presence of 6-bromo-indirubin-3′-oxime (BIO), a glycogen synthase
kinases 3 (GSK3) inhibitor, induced a strong differentiation of human renal progenitors
toward podocytes through the activation of RA-responsive elements (RARE) transcrip-
tional activity, i.e., increasing the renal progenitor sensitivity to the differentiating effects
of endogenous RA. The enhancement of renal progenitor differentiation into podocytes
by using BIO in a murine model of FSGS resulted in an important effect on the disease,
increasing the disease remission in treated mice. In a progressive stage mouse model of
obesity-related type 2 diabetes, BIO as an add-on to the dual renin-angiotensin system
(RAS)/sodium-glucose transporter (SGLT)-2 inhibition with metformin, ramipril and em-
pagliflozin attenuated the glomerular filtration rate (GFR) decline by further reducing
glomerulosclerosis, increasing the podocyte numbers through sustaining specialization,
as well as inducing de novo differentiation from podocyte progenitors and improving the
filtration slit density [31].

Endlich et al. demonstrated the role of Dach1 (Dachshund homolog 1) in the cell fate
determination of PEC into podocytes and for proper podocyte function. Podocytes express
high levels of Dach1 in vivo and in vitro, while PEC express very low levels of Dach1.
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The authors found that the induction of Dach1 expression in PEC significantly upregulates
the podocyte-specific proteins synaptopodin and WT1. Interestingly, Dach1 is part of the
Eya-Six-Hox-Pax regulatory network, and the regulation of synaptopodin expression was
accompanied by a concomitant downregulation of Pax2 expression [32].

Guhr et al. analyzed by which mechanisms renal progenitors maintain the potential to
express podocyte proteins under pathophysiologic conditions and demonstrated that they
contain an activated ubiquitin-proteasome system (UPS) that leads to the rapid degradation
of newly synthesized podocyte-specific proteins [33]. On the other hand, the UPS maintains
the podocyte identity by regulating the levels of podocyte-specific proteins, such as the
actin-binding proteins α-actinin 4 (ACTN4) and synaptopodin (SYNPO), the transcription
factor Wilms tumor 1 (WT1), the stomatin family member podocin, the slit diaphragm
protein nephrin, the adaptor protein NCK1 and activated protein kinase Cλ (PKCλ) [33].
UPS activity is therefore an important determinant of glomerular cell phenotypes and
differentiation status.

It is well-known that, in the kidney, the mechanical environment is subjected to
modifications in established models of glomerular diseases and can affect the differentiated
state of numerous cell types, including podocytes [34]. We recently analyzed the impact of
substrate stiffness on renal progenitor behavior, demonstrating that, at least in vitro, the
phenotype of human renal progenitors is highly dependent on the Young’s modulus of the
substrate, which is a measure of the stiffness of the material defined as the ratio of stress
to strain, with stiffer substrates promoting renal progenitor proliferation and migration.
The substrate stiffness modulates also the capacity of renal progenitors to differentiate
toward podocytes, with a Young’s modulus of 12 kPa being optimal among those analyzed.
Using chemical and genetic inhibitors, we demonstrated that Rho kinase (ROCK) activity is
required to mediate the effects of stiffness on renal progenitor proliferation, migration and
differentiation [35]. A reduced glomerular stiffness is a common feature of many forms of
glomerular injury, including FSGS [34,36], suggesting an important role for ROCK also in
kidney disease.

Renin angiotensin aldosterone system inhibitors (RAAS-I) are drugs effective in re-
tarding the progression of kidney disease through a variety of actions. The mechanisms
responsible for the therapeutic effects of these drugs, as well as their renal cellular targets,
have been largely studied in several animal models of human kidney disease. Recent data
demonstrated that they might also exert their beneficial effects by promoting renal progeni-
tor differentiation into podocytes. Indeed, in a rat model of glomerular injury, a treatment
with ACE-I induced a reduction of progenitor proliferation, the diminution of crescent
formation and avoided the progression toward glomerulosclerosis [10]. Thus, modera-
tion of progenitor cell activation by drugs restored a normal glomerular architecture [10].
Interestingly, the expression of angiotensin (Ang) II receptor, AT1, was limited to rare
CD24+ PEC in normal human kidneys but was upregulated in the hyperplastic lesions [37],
suggesting a contribution of the Ang II/AT1 receptor pathway in promoting abnormal
renal progenitor migration and proliferation in proliferative diseases [37]. In accordance, in
a patient affected by CGN (crescentic glomerulonephritis), ACE-I therapy associated with
the regression of hyperplastic lesions and normalized the AT1 receptor expression on renal
progenitors. These results provide another explanation to the beneficial effects observed
after the angiotensin II receptor blocker (ARB) treatment. Similarly, the ARB treatment im-
proved the outcome in a rat model of mesangial proliferative glomerulonephritis, inducing
an increase in the number of PECs expressing stem cell markers [38].

Injuries to podocytes are considered an important contributor to diabetic kidney
disease progression toward end-stage kidney disease [39–41]. Suganami et al. reported the
prevention and reversal of renal injury by leptin administration in animal models of diabetic
nephropathy [39]. More recently, Pichaiwong et al. demonstrated that replacing leptin
could reverse the structural and functional parameters of advanced diabetic nephropathy in
leptin-deficient BTBR ob/ob mouse [41]. In particular, the leptin treatment, but not RAAS-I,
resulted in a significant increase in podocyte density and number and in an increase of WT1-
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positive proliferating PEC. The mechanisms underlying this process was further delineated
in a follow-up paper, where they showed that a dual treatment of leptin-deficient ob/ob
mice with a selective antagonist of the endothelin-1 type A receptor (ETAR) in combination
with RAAS inhibition led to an improved phenotype [40], characterized by the activation
of PECs and increased number of podocytes. These results provide indirect evidence that
PECs may be a potential reservoir to restore lost podocytes and that the differentiative
capacity of PECs may be a key element for the regression of diabetic nephropathy that
might be pharmacologically modulated.

2.2. Regulators of Glomerular Progenitors in Pathology: When the Orchestra Is Out of Tune

While renal progenitors can drive podocyte regeneration following injury [4], they
can also originate extracapillary proliferative lesions or crescents that are the hallmark of
both inflammatory and noninflammatory glomerular diseases [42]. Indeed, evidence in
experimental models [15] and in human biopsies indicate that crescents are composed of
renal progenitors [14] that abnormally shift their reactions from reparative to injurious. It is
not completely understood which factors are responsible for tilting the balance. CGN is
the best-characterized disease in which renal progenitors are the major culprits. Cellular
crescent is the typical morphological change observed in CGN. It is defined as the multi-
layered accumulations of renal progenitors and other cell types within the Bowman space.
Consequently, it occludes the urinary outlet and the flow of the primary urine, and later,
the implicated nephron is impaired. The rupture of glomerular capillaries in crescentic
disease leads to the exposure of renal progenitors to a high concentration of plasma that
dramatically increases the proliferation of human renal progenitors in culture [43]. Several
plasma components can account for the crescent formation, but, currently, there are con-
sistent data only for fibrinogen activation, a member of the activated coagulation cascade
during vascular injuries. A lack of fibrinogen or fibrinolysis prevents crescent formation in
several rodent models [43,44].

Collapsing nephropathy and pseudocrescents also originate from renal progeni-
tors [14]. At difference with crescents, it was proposed that pseudocrescents originate from
renal progenitors as a dysregulated response to the massive and fast podocyte detach-
ment occurring in certain conditions of direct podocyte injury (such as exposure to certain
drugs, immune-mediated disorders or infections that directly target the podocyte) occur-
ring in the absence of inflammatory components and leading to capillary collapse [22,45].
These lesions are also frequently observed in viral glomerulopathies, such as HIV- and
parvovirus-nephropathy [22]. In these viral glomerulopathies, interferon (IFN-)-α and
IFN-β not only trigger local inflammation inside the glomerulus but, also, act on PECs
and podocytes, with IFN-α inhibiting the migration of PECs and both suppressing renal
progenitor differentiation into podocytes in vitro [46]. In vivo, in a model of Adriamycin
nephropathy, the injection of either IFN-α or IFN-β aggravated proteinuria and glomeru-
losclerosis [46]. Recently, collapsing FSGS has been described in patients of recent African
ancestry with high-risk APOL1 genotype and infected with severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2) [47,48]. It has been proposed that SARS-CoV-2 could
directly infect the podocyte [49] and/or trigger an inflammatory cascade that involves
activation of the interferon–chemokine pathway, which, in turn, interacts with the APOL1
variant gene [50]. As indicated above, renal progenitor differentiation into podocytes
associates with APOL1 expression and could therefore be involved in coronavirus disease
2019 (COVID-19)-associated nephropathy.

Several recent studies highlighted a critical role for the de novo expression of CD9
and, subsequently, of CD44 as a pathogenic switch of PECs from a quiescent to an activated
phenotype in CGN and in FSGS [16,51,52], confirming the pathogenic role of PECs in these
diseases and offering new molecular targets for glomerular disease therapy. In support
of this idea, Kaverina et al. showed that PECs lose CD44 expression when differentiating
into podocytes in injured glomeruli of old mice, suggesting that a CD44 increase in PECs
represents not a regenerative but a pathological transition [53]. In FSGS, CD44 has been
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shown to have an important role in cell migration toward the injured filtration barrier,
where injured podocytes upregulate the migration inhibitory factor (MIF) and stromal cell-
derived factor 1 (SDF1) that stimulate CD44 expression and CD44-mediated migration [54].
Additionally, PECs produced both PEC-derived and podocyte-specific extracellular matrix
protein isoforms in a CD44-dependant manner [55]. Finally, a lineage tracing study of PECs
suggested that CD44 did not take part in kidney regeneration through differentiation into
podocytes and only participated in a pro-fibrotic pathway [56].

3. Tubular Progenitors

Renal progenitors from the parietal epithelial layer of the Bowman capsule can po-
tentially regenerate proximal tubular epithelial cells at the glomerulotubular junction [57].
However, tubular-committed progenitors scattered in the proximal and distal tubules also
exist in humans [6,58–60] and in mice [5,61–63] and increase upon tubular injury in patients
affected with acute or chronic tubular damage [6].

Kumar et al. performed lineage tracing of rare Sox9-expressing cells in the proximal
tubule and identified them as a putative tubular progenitor population involved in post-
acute kidney injury (AKI) recovery [64]. Sox9 is a transcription factor that, in kidney devel-
opment, controls epithelial branching and is expressed within nephron precursors [64,65].
Interestingly, when Sox9 was knocked out from the S1 and S2 segments, a slower recovery
of the physiological renal functions, enhanced tubular injury, as well as increased renal
fibrosis, occurred [64]. After partial nephrectomy, Sox9+ cells proliferate and generate
epithelial cells of the proximal tubule, Henle’s loop, distal tubule, collecting duct and the
parietal layer of glomerulus [66].

Recently, Lazzeri et al. provided evidence that tubular progenitors undergo mito-
sis and replace approximately half of the irreversibly lost tubular cells during AKI [5].
Performing lineage tracing of Pax2+ cells in a mouse model of tubular injury, they identified
tubular progenitors as a distinct tubular cell subpopulation that was resistant to death and
displayed high clonogenic activity, leading to the generation of long tubule segments [5].

3.1. Regulators of Tubular Progenitor Physiology: A Polyphonic Choir

Human renal progenitors express B lymphoma Mo-MLV (Moloney murine leukemia
virus) insertion region 1 (Bmi-1) [57]. Bmi-1 is a member of the polycomb family of tran-
scriptional repressors. It is involved in cell cycle regulation and the senescence of stem
cells endogenous to various organs, such as the prostate, small intestine and lungs [67–70].
In the kidneys, BMI-1 levels increased rapidly following injury in a mouse model of
AKI [71]. These findings point toward the involvement of Bmi-1 expressed in tubular
progenitors in renal regeneration. Indeed, Lv et al. showed that acute tubular necrosis
led to a Bmi-1 increase and subsequent tubular progenitor mobilization in wild-type mice,
while tubular progenitors were not mobilized in Bmi-1 knockout mice [72]. Bmi-1 knockout
mice displayed a strong renal phenotype, including interstitial fibrosis, tubular atrophy
and severe renal dysfunction, with decreased cell proliferation, increased cell apoptosis
and senescence and inflammatory cell infiltration [72,73]. In a recent study, Zhou et al.
further elucidated the role of Bmi-1 in renal progenitors, showing that Bmi-1 preserved
the self-renewal and stemness of renal progenitors by maintaining the redox balance and
preventing cell cycle arrest, through the inhibition of reactive oxygen species (ROS), p16
and p53 [74].

Another important molecule involved in the regulation of the tubular progenitor is
Toll-like receptor 2 (TLR2), or CD282, an evolutionary conserved membrane protein that
plays an important role in pathogen recognition and the activation of innate immunity.
TLR2 acts as a sensor of tissue injury through the detection of damage-associated molecular
pattern molecules (DAMPs) released by damaged tissues. TLR2 activation leads to the
activation of downstream transcription factors that regulate the expression of survival
genes or proinflammatory cytokines and chemokines [75–77]. Sallustio et al. showed that
tubular progenitors express TLR2, whose stimulation by agonists that mimic inflammatory
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mediators or DAMPs induces the massive secretion of monocyte chemoattractant protein-1
(MCP-1), interleukin 6 (IL-6), interleukin 8 (IL-8) and complement component C3 via NF-κB
(nuclear factor kappa-light-chain-enhancer of activated B cells) activation [59]. Moreover,
TLR2 stimulation modulated the proliferation rate and differentiation capacity of tubular
progenitors, suggesting an important role in renal repair [59]. Follow-up studies by the
same group identified distinct sets of miRNAs specifically expressed in tubular progeni-
tors [78]. Among those, miR-1915 and miR-1225-5p regulated the expression of CD133 and
PAX2, as well as TLR2. Sallustio et al. then dissected the recovery mechanisms following
AKI and found an essential role for TLR2 in renal regeneration [79]. They established that,
following injury, TLR2 damage sensing leads to the secretion of inhibin-A and decorin
by the tubular progenitors, which, in turn, promote tubular regeneration through cell
proliferation [79]. These two cytokines belong to the TGF-β (transforming growth factor-β)
signaling pathway and are involved in cell cycle regulation, the increase of cell proliferation
and the inhibition of apoptosis [80–84].

The expression of molecules from the Wnt pathway has been reported in adult re-
nal progenitors in mice [85] and humans [86]. Using a mouse model of lineage tracing,
Rinkevich et al. showed that, both during homeostasis and following injury, adult mam-
malian kidneys undergo segment-specific clonal expansion from cells derived from WNT
responsive precursors [63]. They suggested that the ability to respond to WNT signals
selects for the cells which will ultimately carry out robust clonal expansion. Studies in
SIX2+ urine-derived renal progenitors indicated that WNT pathway activation by GSK3β
inhibition induces the differentiation of renal progenitors into renal epithelial proximal
tubular cells [87]. In addition, Wnt3 exerted pro-regenerative effects and was upregulated
in CD133+ renal progenitors in an in vitro model of cisplatin injury [88]. In this study,
the authors unveiled the functional role of CD133 itself in renal tubular repair through
the maintenance of the proliferative response and control of senescence by acting as a
permissive factor for β-catenin signaling, preventing its degradation in the cytoplasm [88].
In zebrafish kidneys, damaged tubules were replaced by new nephrons from renal progen-
itors expressing the Wnt receptor frizzled9b and the transcription factor lef1. Following
injury, the expression of Wnt ligands Wnt9a and Wnt9b was induced in injured kidneys
at sites where the progenitor cells form new nephrons [89]. These results suggest that
the essential role of the Wnt/frizzled signaling pathway in kidney regeneration is highly
conserved among species.

As previously mentioned, Notch signaling is an evolutionary conserved pathway that
has a critical role in kidney injury and repair [24,90–93], particularly during AKI [94,95].
Kang et al. showed that Sox9+ renal progenitors expressed high levels of Notch, and over-
expression of the Notch1 intracellular domain (NICD1) in the Sox9+ population improved
the renal histology in a folic acid-induced model of AKI [62]. Ma et al. reported that the
activation of Sox9+ renal progenitors, whose role is essential in kidney repair, was mediated
by the Notch pathway, confirming previous report that the Notch1-3, Jagged1/2, Dll4 and
Sox9 expression levels increase after ischemia-reperfusion injury (IRI) [66]. Indeed, in other
organs such as the pancreas, Sox9 activation modulates the Notch pathway by regulating
Hes1 to maintain the progenitor cell pool [96].

Several drugs have been shown to improve kidney regeneration, and, among those,
histone deacetylase (HDAC) inhibitors (HDACis) may be a promising therapeutic option
for the treatment of AKI [97–102]. HDACs form a group of enzymes involved in multiple
cellular processes by removing the acetyl group from histone or nonhistone proteins [103].
Marumo et al. reported a reduction in HDAC5 activity, increased histone acetylation and
reactivation of bone morphogenetic protein 7 (BMP-7) in proximal tubular cells during
the recovery phase following renal IRI [104]. These observations suggest that HDACis
might exert their beneficial effects on renal recovery through the increased expression of
BMP-7, a protein that maintains a renal progenitor pool in undifferentiated status during
kidney development [105]. Interestingly, the treatment with HDACis expanded the renal
progenitor cell population in zebrafish [106]. In the nephrotoxic serum nephritis model of
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glomerulonephritis in mice, a trichostatin A (TSA) treatment activated kidney side popula-
tion (SD) cells [107]. SD cells form a subset of cells with multilineage potential and known
renoprotective properties that attenuate chronic kidney disease (CKD) through an increase
of BMP-7 expression [107]. Using the lineage tracing approach described above, Lazzeri
et al. showed that a treatment with two widely used HDACis, TSA and 4-phenylbutyrate
(4-PBA), led to Pax2+ progenitor proliferation, consequently avoiding the development of
tissue fibrosis and CKD [5]. The development of selective HDACis, with enhanced efficacy
and less toxicity, would improve kidney recovery through tubular progenitor proliferation.
Of note, HDACis have shown beneficial therapeutic effects in numerous experimental
models of kidney diseases besides AKI, including glomerulosclerosis, tubulointerstitial
fibrosis, glomerular and tubulointerstitial inflammation, lupus nephritis, polycystic kidney
disease and renal cell carcinoma (RCC), as reviewed in [108]. Several HDACis are currently
in Phase 1 or 2 trials for the treatment of RCC and renal impairment (clinicaltrial.org).

3.2. Regulators of Tubular Progenitors in Pathology: A Cacophonus Choir

Biological and molecular features of kidney cancer suggest that renal progenitors
could be at the origin of the development of different kidney tumor types.

In a recent study, Peired et al. showed that human renal progenitors overexpressing
NICD1 had an increased proliferative capacity and form aberrant mitosis in 2D cultures
and could generate a tumor-like mass in 3D cultures [8]. Similarly, Pax2+ renal progenitors
overexpressing NICD1 following transgene induction in adult mice or following IRI were at
the origin of papillary adenomas and RCCs [8]. In confirmation of this finding, a treatment
blocking endogenous AKI-induced NOTCH1 activation led to the development of fewer
tumors [8].

Recently, two studies suggested that angiomyolipomas originate from multipotent kid-
ney epithelial cells localized in the tubule and undergoing clonal expansion in response to
tuberous sclerosis complex (TSC) gene deletion [109,110]. Both studies proposed these cells
could be renal progenitors with multilineage differentiation capacity [109,110]. Interest-
ingly, Cho et al. revealed that the activation of a previously unreported Rheb-Notch-Rheb
regulatory loop, in which the cyclic binding of Notch1 to the Notch-responsive elements
(NREs) on the Rheb promoter is a key event, was the main mechanism behind the gen-
eration of the multiple lineages present in angiomyolipoma [109]. Taken together, these
results indicate that a deregulation of the Notch pathway in renal progenitors can lead to
renal pathologies.

Wan et al. observed that SOX9 expression was upregulated in RCC patients and
correlated with the advanced pathological grade [111]. RCC patients with high SOX9 levels
also had shorter survival [111]. These data confirmed a precedent study that associated
SOX9 expression with RCC Fuhrman grading and showed that patients with SOX9 (−)
had a much better therapeutic response to tyrosine kinase inhibitors than those with SOX9
(+) [112]. Therefore, we could hypothesize that an increase of SOX9 expression in SOX9+ re-
nal progenitors could contribute to RCC development. A similar mechanism was described
in basal-like breast cancer, where SOX9 expression in luminal stem/progenitor cells could
control the lineage plasticity for cancer through the activation of NF-κB signaling [113].

4. Outlook on the Future of Renal Progenitors
4.1. Single-Cell RNA Sequencing: Let Us Get in Tune with the Times

The fast development of scRNAseq is opening new perspectives for dissecting the
molecular processes involved in renal progenitor regulation in physiological and patholog-
ical conditions. ScRNAseq consists in obtaining gene expression profiling at a single-cell
resolution, putting in evidence the different cellular states and molecular dynamics of even
the rarer subpopulations. This novel technology has been used successfully in several
organs—for example, to study Prominin 1+ liver progenitors [114], Dach1–downregulated
lymphoid progenitors [115] and KTR5+ lung progenitors in COVID-19 patients [116].
Within the past few years, an increasing number of research groups have applied this
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strategy to define the cell populations of the kidneys in mice and humans [117–120]. In a
very recent study, Rudman-Melnick et al. identified the transcriptional signature of all cell
populations in an experimental model of AKI, highlighting the presence of previously un-
described injury-related molecules [119]. Such an approach could potentially reveal novel
mechanisms activated in renal progenitors following AKI, leading to the identification of
potential molecular targets. In their seminal paper, Young et al. were able to match clear
cell and papillary RCC cells to a subtype of proximal convoluted tubular cells defined by
SLC17A3 and VCAM1 expression [117]. As mentioned earlier, VCAM1 or CD106 expres-
sion characterizes, together with CD133, a rare population of renal progenitors scattered
mostly in the proximal tubule [6]. An analysis of the scRNAseq data revealed that the
human renal progenitor transcriptome shows similarities to PT1, the putative cell of origin
of human papillary RCC [8]. These observations substantiate our hypothesis that papillary
RCC originates from the Notch-mediated transformation and proliferation of a proximal
tubule population of renal progenitors [8].

4.2. Clinical Applications: The Clinic Calls the Tune

Renal progenitor-based therapies represent a promising new frontier in the treatment
of renal diseases, as several studies suggest that they improve kidney function following
injury [121]. However, injecting renal progenitors directly into animal models of kidney
injury to induce tissue regeneration presents important limitations that have been exposed
elsewhere [121]. These caveats could be circumvented thanks to the newly exploited prop-
erties of renal progenitors, which is their capacity to secrete trophic factors, cytokine or
chemokines that efficiently mediate kidney repair in a paracrine or autocrine manner
(Figure 2). Kenji et al. reported that the intraperitoneal injection of culture supernatant
obtained from adult rat kidney progenitors significantly suppressed the tubular cell apop-
tosis of residual renal cells, diminished the inflammation and promoted the proliferation
of immature cells in an experimental IRI model through the release of HGF (hepatocyte
growth factor), EGF (epidermal growth factor), TGF-β and Epo (erythropoietin) [122].
Indeed, the therapeutic use of numerous growth factors has been reported to ameliorate
kidney injuries, such as HGF, BMP7, EGF, TGF-β and VEGF (vascular endothelial growth
factor) [123–127]. Sallustio et al. reported that human renal progenitors not only signifi-
cantly repair damage tubular cells but, also, exhibit antifibrotic effects via the secretion
of CXCL6 (C-X-C motif chemokine ligand 6), SAA2 (serum amyloid A2), SAA4 (serum
amyloid A4) and BPIFA2 (BPI (bactericidal permeability-increasing) fold-containing family
A member 2) through a paracrine mechanism [128]. Aggarwal et al. reported that the renal
progenitor secretion of Epo limits renal fibrosis after tubular injury [129]. In addition to
soluble factors, renal progenitors secrete extracellular vesicles (EVs), nanometer-sized lipid
bilayer-delimited particles carrying bioactive lipids, proteins and RNAs that allow cell-to-
cell communication through paracrine actions. The smallest and best-described type of EVs
are the exosomes, which have been recently investigated for their protective effects against
IRI-induced AKI [130,131]. Li et al. demonstrated that renal progenitor-derived exosomes
could restore renal structures and functions via their immunomodulatory, antiapoptotic
and proliferation stimulation abilities in AKI models. MicroRNAs (miRNAs) were the
most abundant components of the exosomes, and among those, miR-146a was identified as
the key player in mediating cytoprotective effects by downregulating IRAK1 (interleukin 1
receptor associated kinase 1)/NF-kB signaling [130]. In a model of diabetic nephropathy,
urinary progenitor-secreted exosomes were found to reduce podocyte apoptosis by sup-
pressing caspase-3 and promoting vascular regeneration, which may be related with the
cytokines VEGF, TGF-β1, angiogenin and BMP-7 contained in urinary progenitor-derived
exosomes [132]. The inhibition of podocyte apoptosis was also related to the overexpression
of miR-16-5p in urinary progenitor-secreted exosomes by suppressing VEGF-A [133].
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Molecules and exosomes secreted by renal progenitors promote recovery from kidney
disease through their ability to exert a series of renoprotective and regenerative effects
thanks to their reduced immunogenicity and lower risk of maldifferentiation and tumori-
genesis compared to cell therapies. These remarkable features make them appealing for
clinical applications.

Another challenge in the clinical approach to kidney disease is the discovery of new
tools for diagnosing and monitoring kidney disease that would be easily accessible with
noninvasive procedures. In this context, urine represents a valuable biofluid due to its
accessibility, fast and easy sampling and broad variety in proteins, metabolites, cells and
cellular contents released from the urogenital tract [134]. The presence of cells in urine that
display stem cell properties was first described by Zhang et al. in 2008 [135]. In the follow-
ing years, several groups developed techniques to isolate and characterize urine-derived
progenitors from healthy donors and patients with kidney disorders [136]. No formal
consensus has yet been reached on which markers may be used to define urine-derived
progenitors. Most studies indicated that they express mesenchymal stem cell markers
(CD44, CD73 and VIM) and stem cell markers (such as POU5F1, SSEA4 and TRA-1-81,
as well as CD117) but no markers of hematopoietic- or urothelium-derived cell lineages
and low levels of tubular- or podocyte-specific markers [136]. Regarding their origins,
Bharadwaj et al. showed that urine-derived renal progenitors carried the Y chromosome
in a male-to-female kidney transplant recipient, indicating that they come from the kid-
neys [137]. These cells have the capability to differentiate into podocytes [138] and express
podocyte- and PEC-specific protein markers [137,139], suggesting that they originate from
PECs. A comparative transcriptome analysis of urine-derived renal progenitors and kidney
biopsy-derived renal epithelial proximal cells confirmed the renal progenitor identity of
urine-derived progenitors [87], indicating that they could also originate from scattered
tubular progenitors. These cells can be reprogrammed into induced pluripotent stem
cells (iPSC) and be used for regenerative medicine, disease modeling or pharmacological
testing [140,141].
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Recently, it has been proposed that the expression of the renal progenitor marker
CD133 in urinary EVs represents a good marker for the evaluation of the functional status of
the renal tubular compartment and of the presence of cells with proliferative and repairing
activity within tubules after injury. Indeed, two studies reported that CD133+ urinary
EV levels, elevated in healthy subjects, not only decrease in patients with acute tubular
damage [142] but, also, in acute and chronic glomerular conditions [143]. Furthermore,
the presence of renal progenitors themselves in urine may reflect the pathophysiological
status of renal tissue. In particular, Manonelles et al. provided evidence that the isolation
of CD133+ CD24+ renal progenitors from the urine of stable allograft recipients at six
months could predict the poor long-term outcome of the transplant at two years [144].
Renal progenitor proliferation and migration from the Bowman capsule to the glomerular
tuft across the urinary space in order to replace detached podocytes could explain the
excretion of renal progenitors and, if sustained over time, might fail to preserve the allograft
function, resulting in GFR decline, albuminuria and chronic glomerular histological lesion
development [144].

Urine-derived kidney cells could also be a powerful personalized tool for functional
studies on candidate variants in inherited renal disease. As described by Lazzeri et al., urine-
derived renal progenitors obtained from patients carrying pathogenic mutations in genes
encoding for podocyte proteins expand in culture but develop anomalies in the expression
or localization of podocyte proteins following podocyte differentiation [138]. In agreement
with this evidence, the same technique was used to demonstrate the pathogenicity of a
NPHS1 gene variant of unknown significance in a patient with refractory lupus nephri-
tis [145]. Another study underlined the possibility to use urine-derived renal epithelial
cells to carry out RNA and functional studies on kidney-specific genes, validating the
pathogenicity of a synonymous variant in PKHD1 (polycystic kidney and hepatic disease 1)
and confirming the genetic diagnosis of ARPKD (Autosomal Recessive Polycystic Kidney
Disease) in a patient with CKD associated with atypical polycystic kidneys [146].

5. Conclusions

A vast body of literature describes the numerous mechanisms of the regulation of
renal progenitors in the glomerular and in the tubular compartments, allowing us to have a
global vision of the complexity of the molecular processes taking place in the physiological
and in pathological conditions. Knowing the molecular signature of renal progenitors
opens the door to identifying new targets for drugs to sustain kidney regeneration or
biomarkers to monitor kidney health.
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