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RIASSUNTO 

 

L’impiego di ingenti quantitativi di antiparassitari, diserbanti ed altri prodotti 

chimici di sintesi ha fortemente compromesso la qualità dei raccolti e la 

produttività dei terreni agricoli, con serie ripercussioni sull’ambiente e sulla 

salute dell’uomo e degli animali. In Europa una maggior sensibilità 

dell’opinione pubblica verso questo tipo di tematiche e l’urgenza di trovare 

valide alternative ai metodi più comunemente utilizzati, hanno richiamato 

l’attenzione di molti dei paesi membri, che da alcuni anni stanno proponendo 

politiche ambientali più sostenibili. In questo contesto, le nanotecnologie 

rappresentano uno strumento di supporto utile allo sviluppo di nuove 

strategie e metodologie di trattamento in ambito agronomico. Nella presente 

tesi di dottorato sono state affrontate due problematiche di interesse 

primario per questo settore, vale a dire produttività e impiego di 

antiparassitari. A tal fine sono stati realizzati dei nanovettori lipidici 

utilizzando biorisorse naturali, con l’obiettivo ultimo di promuovere l’efficacia 

delle molecole veicolate dal nanosistema stesso. La scelta di utilizzare questo 

tipo di nanotecnologia nasce dai numerosi vantaggi d’impiego dei nanovettori 

a base lipidica, la cui composizione li rende particolarmente biocompatibili e 

biodegradabili. Nel primo caso è stato ideato e sviluppato un formulato per il 

trasporto di auxine derivato da uno scarto del processo di spremitura delle 

olive, la sansa di oliva. Le auxine sono ormoni vegetali comunemente utilizzati 

in floricoltura e nella riproduzione per talea per promuovere lo sviluppo e 

l’accrescimento della pianta. La scarsa idrosolubilità di questi composti, 

tuttavia, ne limita la biodisponibilità e, di conseguenza, l’efficacia di azione. 

Questo inconveniente è stato aggirato caricando le auxine nei nanovettori 
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lipidici ottenuti da sansa di oliva, la cui struttura è stata caratterizzata tramite 

tecniche di Dynamic Light Scattering, potenziale zeta e Small-angle X-ray 

Scattering e la cui efficacia è stata infine testata su talee di olivo appartenenti 

a tre differenti cultivar. I risultati ottenuti hanno mostrato un aumento della 

percentuale di radicazione rispetto ai trattamenti convenzionali in due delle 

tre cultivar selezionate. Nel secondo caso Nannochloropsis sp., una microalga 

marina principalmente costituita di lipidi, è stata scelta come biorisorsa per la 

realizzazione di nanovettori caricati con timolo. Questo terpenoide si ritrova 

nella miscela aromatica di numerose specie vegetali ed è un potente 

antibatterico e fungicida naturale. La sua natura volatile, però, ne pregiudica 

l’efficacia a lungo termine, limitandone fortemente le potenzialità. In questo 

lavoro il carattere idrofobico di questa molecola è stato sfruttato per 

favorirne l’associazione con i nanovettori lipidici ottenuti da alga che, 

fungendo da veri e propri siti di accumulo, sono stati sperimentati come 

agenti di trasporto dell’antibatterico in esperimenti in vitro condotti contro 

un batterio patogeno della pianta di pomodoro. I risultati di questi test hanno 

mostrato una completa inibizione della crescita batterica in presenza di 

nanovettori carichi di timolo per concentrazioni pari o superiori a 250 ppm. 

Struttura e dimensioni dei nanovettori sono state determinate tramite le 

tecniche sopracitate e il dosaggio del timolo caricato al loro interno è stato 

ottenuto mediante gas-cromatografia accoppiata a spettrometria di massa. 

Infine, l’utilizzo di timolo, carvacrolo ed eugenolo come antimicrobici naturali 

è stato ulteriormente indagato sperimentando l’efficacia di una formulazione 

solida, alternativa ai nanovettori lipidici in solvente acquoso. Questi tre 

terpenoidi sono stati scelti per lo sviluppo di sei co-cristalli, combinando 

ciascuno di essi con fenazina o esametilentetrammina (coformeri) secondo un 
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preciso rapporto stechiometrico; in tal modo sono stati ottenuti dei formulati 

di natura polverulenta la cui bioattività è stata saggiata in vitro contro sei 

specie batteriche e tre fungine fitopatogene o benefiche per le piante. I 

risultati ottenuti hanno mostrato come l’efficacia dei monoterpeni venga in 

alcuni casi potenziata dalla combinazione con il coformero, poiché a parità di 

concentrazione, alcuni co-cristalli mostrano un’azione biocida 

significativamente superiore a quella dei corrispondenti costituenti puri. Il 

rilascio della molecola bioattiva dal co-cristallo è stato inoltre studiato nel 

tempo a differenti temperature tramite gas-cromatografia accoppiata a 

spettrometria di massa in modalità spazio di testa. Il profilo di rilascio relativo 

al co-cristallo è risultato significativamente diverso rispetto a quello del 

composto puro, mettendo in risalto il ruolo chiave giocato dal processo di co-

cristallizzazione nel promuovere un rilascio più controllato e protratto nel 

tempo della molecola bioattiva, garantendone quindi un’efficacia d’azione più 

prolungata. In conclusione, in questa tesi vengono presentate tre 

formulazioni a base di composti derivati dalle piante, di cui due in solvente 

acquoso e una allo stato solido; la loro efficacia è stata studiata tramite test 

di laboratorio con l’intento finale di ideare e realizzare prodotti alternativi ai 

fitofarmaci tradizionali per possibili impieghi in agricoltura. 
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PREFACE 

 

Nanotechnologies include a wide range of devices of nanometer scale size, 

which find application in many different fields, such as medicine, aerospace, 

energy production and agriculture, to name but a few1,2. Dealing with 

biomedical applications, nano-emulsions, dendrimers, nano-gold shells, 

magnetic nanoparticles and liposomes, are only some examples of the 

currently available nanotechnology platforms. Among these, lipid-based 

nanoparticles have been the longest-studied nanocarriers, due to the fact 

that they are the least toxic for in vivo applications3. Their lipid composition 

improves biodegradability, biocompatibility, as well as their effectiveness as 

drug-delivery systems able to easily transport the payload across biological 

membranes. In addition, thanks to their hydrophobic structure, lipid carriers 

may allow the delivery of slightly water-soluble drugs and prevent drug 

degradation, acting as protective vehicles. 

Among different families of lipid-based nanoparticles, particular attention has 

been paid to liposomes and solid lipid nanoparticles (SLNs) (Fig.1), together 

with nanostructured lipid carriers (NLCs), which are considered the second 

generation of SLNs4. 

Being the most studied and the first to be developed in the early 60s of the 

last century, liposomes represent a milestone in the history of lipid-based 

nanocarriers. Their structure consists of a lipid bilayer of amphiphilic 

phospholipids enclosing an aqueous core, where hydrophilic drugs can be 

entrapped to be delivered. At the same time, the hydrophobic fatty acid 

chains of the phospholipids represent a suitable environment to store 
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lipophilic drugs, making liposomes a versatile nanoplatform for the inclusion 

of both lipophilic and hydrophilic compounds3,5,6. 

SLNs and NLCs were developed more recently. They are both characterized 

by a hydrophobic core that may be composed of glycerides, fatty acids, 

steroids and waxes, which perfectly meets the requirements for lipophilic 

drugs’ loading. Since their synthesis can be solvent-free, as well as implying 

low cost processes, this typology of lipid carriers has gained noteworthy 

interest, especially concerning scale-up production3,4.  

 

Figure 1. Schematic representation of a solid lipid nanoparticle (left) and of a 
liposome (right). Picture from García et Al. (2018). Self-assembled nanomaterials; 
Nanobiomaterials. 

 

The employment of nanotechnology in agriculture is relatively new, especially 

dealing with plant protection and production7. Since a transition from an 

intensive farming based on the massive use of pesticides and conventional 

phytochemicals towards a more sustainable one is by now mandatory8, the 

development of alternative formulations has been investigated in this work. 

Specifically, two natural matrixes were used as source of physiological lipids 

for the fabrication of nanoparticles, which were loaded with plant-derived 

compounds. The design, the structural characterization and finally, the testing 

Hydrophobic drug 
Hydrophilic drug 
Targeting ligand 

Hydrophobic drug 
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of these nanovectors, are presented and discussed in the first and second 

section of this thesis. 

Moreover, a formulation of co-crystals mainly composed of natural 

constituents was provided by the Department of Chemistry, Life Sciences and 

Environmental Sustainability of the University of Parma and tested as 

antimicrobial. Results of this experimentation are shown in the last section of 

the thesis. 

 

Contents 

A brief description of the work carried out during this PhD follows below and 

the setting of the thesis is graphically summarized in figure 2. 

 

In the first section, a specifically designed methodology for phytohormones’ 

application on olive cuttings is presented and experimented. More in depth, 

olive pomace was employed as lipid source for the development of 

nanocarriers delivering auxins as root-promoting phytohormones. Auxins are 

poorly soluble in water, thus lipid nanovectors were fabricated as carriers for 

their delivering to the roots, in order to improve their plant availability. In 

addition, the biocompatibility of these devices was improved choosing olive 

pomace as raw material for the manufacturing, and olive cuttings as final 

target of the experimentation, originating a green circle starting from olive 

waste and ending with olive plant itself. 

 

The second part of this thesis deals with the development of lipid-based 

nanocarriers derived from the microalga Nannochloropsis sp. 
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Similarly to auxins’ carrier-mediated transport, the obtained nanodevices 

were used to overcome the poor water solubility of the bioactive molecule to 

be delivered, thymol, and also to reduce its volatilization. This terpenoid 

belongs to a large family of plant-derived compounds which has received 

remarkable attention because of the peculiar characteristics displayed as 

antimicrobial, antifungal, insecticidal and antioxidant natural agents9. An 

evaluation of the antibacterial activity of the thymol-delivering nanovectors 

was carried out against a gram-negative bacterium affecting tomato and 

pepper plants. 

 

Finally, the third section is dedicated to a project in collaboration with the 

Department of Chemistry, Life Sciences and Environmental Sustainability of 

the University of Parma, where a powdery formulation of co-crystals 

specifically designed for the delivery of terpenoids was developed. A set of six 

co-crystals was synthesized matching thymol, eugenol and carvacrol with 

hexamethylenetetramine and phenazine in a specific stoichiometric ratio. 

The release profile of the bioactive molecules from the co-crystals were 

determined and the antibacterial and fungicidal activity displayed by this 

formulation was studied in vitro against six bacterial and three fungi species.  

 

Despite the different composition, state of matter and final purpose of use, 

all the systems studied during this PhD were specifically designed to favor the 

association with the compounds to be loaded, in order to overcome the poor 

water solubility displayed by auxins and terpenoids. The molecules selected 

for the delivery were all plant-derived and the composition of the three 

formulations was primarily based on the employment of natural constituents 
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extracted, purified or recovered by biological matrixes, being one of the prime 

intents that of proposing a biocompatible and low-toxic alternative to the 

conventional phytochemicals. 

 

 

 

 

 

 

Figure 2. Graphic summary of the thesis, organized in three sections. 
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SECTION 1. OLIVE POMACE-DERIVED NANOVECTORS FOR THE 

DELIVERY OF AUXINS 

 

1.1 INTRODUCTION 

During the last decades, the massive use of pesticides and agrochemicals has 

caused serious damages to the ecosystem, leading to soil degradation, 

environmental pollution and development of resistant plant pathogens. 

Therefore, sustainable and eco-friendlier technologies to increase both 

quantity and quality of agricultural products are by now needed1. 

In this context, new plant biotechnologies at the nanoscale level have proved 

to be useful tools to manage some challenges in agricultural sciences2,3. 

Phytochemical drugs can be encapsulated within inorganic nanoparticles (i.e. 

obtained from metal or metal oxides) or in soft matter nanocarriers: both 

these vectors can allow micro-transportation and intracellular delivery of 

poorly water-soluble molecules4,5.  

Lipid-based nanocarriers, such as liposomes and micelles, have been largely 

used as delivery systems as well as for imaging purposes in the biomedical 

field6.  

Their employment could be extended to agriculture, designing suitable 

nanovectors able to interact with plant cell membranes, taking advantage of 

the superior biocompatibility displayed by lipid-based nanocarriers. Using 

lipid mixtures extracted from the target organisms themselves is an 

innovative procedure in drug delivery that may facilitate the carrier-target 

interaction, and consequently, improve the effectiveness of encapsulated 

drugs. 
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In line with the philosophy of a sustainable approach inspired by green 

chemistry principles, lipids to fabricate nanocarriers can be obtained from 

microorganisms or from plants. In order to make the process not only eco-

friendly, but also helpful for the circular economy, it is desirable to re-utilize 

waste-products difficult to eliminate, such as olive mill pomace (OMP), as 

sources of lipids7. The OMP is the solid waste made up of small pieces of stone 

and parts of the olive pulp and skin.  

It is produced in large quantities from the olive oil industry and it is potentially 

harmful if freely discarded in the environment, because of its low pH, high 

salinity and presence of phytotoxic substances7.  

Nanotechnologies could open up new opportunities in agriculture, especially 

for one of its most limiting factors, that is a sustainable vegetative 

propagation of plants2. In vivo and in vitro vegetative propagation is necessary 

to produce clones, individuals genetically equal to each other and to the 

mother plant. Vegetative propagation allows to obtain healthier crops with 

specific agronomical and morphological traits of interest. Concerning plant 

multiplication, the most widely used root promoting compounds are auxins 

(mainly IAA, indole-3-acetic acid, IBA, indole-3-butyric acid, and NAA, 1-

naphtaleneacetic acid), a class of molecules that can either be found in nature 

or synthesized8. Despite the help provided by phytohormone administration, 

the rooting process may be quite difficult in greenhouses, and this is not only 

due to the intrinsically different root ability of the cultivated varieties, but also 

to the poor auxins’ solubility in water media. This inconvenient negatively 

affects auxins’ transport from the site of application to the root initiation, thus 

reducing their availability9. To overcome these limitations, large amounts of 

growth regulators are used in conventional practices, but still many 
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horticultural and woody species remain recalcitrant to rooting9. Therefore, 

novel techniques for phytohormone administration should necessarily be 

aimed to increase their plant availability, decreasing the total amount of 

auxins employed at the same time. 

In this project, olive pomace-derived nanovectors were developed and 

characterized in terms of structure and surface charge by physico-chemical 

techniques, such as Dynamic Light Scattering, Zeta Potential and Small Angle 

X-ray Scattering. Small amounts of purified phospholipids were also employed 

in the manufacturing, in order to improve the structure and shelf-stability of 

the carriers. Finally, an unconventional method of phytohormone 

administration was experimented on the initiation of the rooting process in 

Olea europaea L., an extensively cultivated species typical of the 

Mediterranean area. Specifically, three different cultivars were selected: 

“Canino” is a widespread cultivar in central Italy and was employed for in vitro 

experiments, whereas “Leccino” and “Leccio del Corno” were chosen for in 

vivo tests, the first being an easy-to-root and the latter a difficult-to-root 

cultivar. 

 

1.2 MATERIALS AND METHODS 

1.2.1 REAGENTS 

1,2-Dioleyl-sn-glycero-3-phosphocholine (DOPC) and 1,2-dioleyl-sn-glycero-

3-phosphoethanolamine (DOPE) were purchased from Lipoid GmbH. Indole-

3-butyric acid (IBA) and 1-naphtaleneacetic acid (NAA), agar and all the 

components used in tissue culture were purchased from Sigma Aldrich. 
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1.2.2 FABRICATION OF NANOVECTORS  

Olive pomace from various cultivars was provided by local oil producers, then 

mixed to obtain a homogeneous starting material, stored in freezer at -20 °C 

to prevent oxidation and de-frozen right before use. For lipid extraction, 

aliquots of 200 mg of olive pomace were treated with 1 mL Folch solution 

(CHCl3:CH3OH 2:1, v/v) under stirring at room temperature for 24 hours. Two 

types of systems were prepared: a) samples containing only lipids from 

pomace, b) samples containing lipids from olive pomace and pure 

phospholipids (DOPE or DOPC), added as adjuvant in small amount, i.e. 1:10 

w/w with respect to the pomace. Consequently, by taking 50% as average 

lipid extraction, the final ratio was estimated to be 1:5 purified lipid: natural 

lipid. After solvent evaporation, a lipid film was obtained to which auxins 

dissolved in the proper organic solvents were added. Specifically, CHCl3:C3H6O 

2:1, v/v solution was used for IBA, while NAA was dissolved in CHCl3. The stock 

concentration for both auxins was 10-2 M. Again, a dry lipid film was obtained 

by evaporation under-vacuum. This film was rehydrated with MilliQ water 

and equilibrated for 8-12 hours. The final suspension was homogenized 

through extensive vortexing, followed by eight cycles of freeze-thaw (i.e. 

soaking in liquid nitrogen, vortexing and then dipping samples in a warm bath 

at 45 °C). Subsequent sonication (5 cycles of 3 minutes each) at high power 

was used to downsize the lipid vectors. Noteworthy, this protocol allowed to 

scale the preparation up to a total volume of 1.2 L of lipid formulation in each 

trial. Smaller volumes (1-2 mL) for in vitro administration were prepared by 

extrusion performed 27 times with 100 nm polycarbonate porous 

membranes. These samples were filtered using sterile 0.45 µm pore filters 

and treated with UV light to avoid in vitro explant contamination during the 
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treatments. Sample names, composition, type of lipid used, and encapsulated 

auxin are summarized in table 1; molecular structures are also shown (Fig. 3). 

Sample  
acronym  Composition Lipid employed Auxin loaded 

E 200 mg/ml OP Only OP lipids empty   

IBA 200 mg/ml OP + IBA 10-2 M Only OP lipids IBA  

NAA 200 mg/ml OP + NAA 10-2 M Only OP lipids NAA   

EPE 160 mg/ml OP + 20 mg/ml DOPE OP lipids+ DOPE empty   

IPE 160 mg/ml OP + 20 mg/ml DOPE+ IBA 10-2 M OP lipids+ DOPE IBA  

NPE 160 mg/ml OP + 20 mg/ml DOPE+ NAA 10-2 M OP lipids+ DOPE NAA   

EPC 160 mg/ml OP + 20 mg/ml DOPC OP lipids+ DOPC empty   

IPC 160 mg/ml OP + 20 mg/ml DOPC+ IBA 10-2 M OP lipids+ DOPC IBA  

NPC 160 mg/ml OP + 20 mg/ml DOPC+ NAA 10-2 M OP lipids+ DOPC NAA  

 
Table 1. Nomenclature and sample composition of olive pomace-derived 
nanovectors. DOPE=1,2-dioleyl-sn-glycero-3-phosphoethanolamine; DOPC=1,2-
dioleyl-sn-glycero-3-phosphocholine; IBA=Indole-3-butyric acid; NAA=1-
naphtaleneacetic acid; OP=olive pomace. 
 
 

1,2-dioleoyl-sn-glycero-3-phoshoethanolamine (DOPE)   
 

         

C41H78NO8P        

              

1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)   

  

 

        

C44H84NO8P        

              

Indole-3-butyric acid (IBA) 1-Naphthaleneacetic acid (NAA) 
 

  
      

 

     

C12H13NO2   C12H10O2     

           

              

 
Figure 3. Molecule structures of auxins and phospholipids employed in nanovectors’ 
fabrication. 
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1.2.3 NANOVECTORS’ STRUCTURAL CHARACTERIZATION  

DYNAMIC LIGHT SCATTERING AND ZETA POTENTIAL MEASUREMENTS 

Dynamic Light Scattering (DLS), also known as Photon Correlation 

Spectroscopy, is a widely used technique to determine size, shape and size 

distribution of particles in suspension down to few nm of dimension. Briefly, 

a beam of monochromatic laser light is directed towards the cuvette holding 

the sample. The incoming light is deflected after hitting the diffusing particles: 

this corresponds to a changing of the scattered light wavelength that gives 

structural information about the distribution and dimensions of the scattering 

particles. 

In this work, a Malvern Zetasizer (Nano ZS) instrument equipped with a He-

Ne 633 nm, 4 mW laser with backscattering optics and micro-doppler effect 

analyzer for Zeta potential measures, was employed. Samples were diluted 

for 20 times with MilliQ water, to adjust the optical turbidity. The cumulant 

expansion was employed to analyze the autocorrelation function of the 

scattered intensity and to obtain mean size and polydispersity index (PdI)10. 

Data were acquired and analized using Zetasizer Malvern software. The 

information obtained with DLS were complemented by Zeta potential 

measurements, which report on the surface charge of colloidal aggregates in 

solution. Specifically, Zeta potential data were obtained from the 

electrophoretic mobility employing the Helmholtz-Smoluchowski equation11. 

 

SMALL ANGLE X-RAY SCATTERING (SAXS) ANALYSIS 

The structural properties of plain and auxin loaded nanovectors at high 

resolution were determined by Small Angle X-ray Scattering (SAXS). This 

technique provides information about the average size and shape of particles 
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in solution, but also about the internal structure of the analyzed system, 

which can be a solution of macromolecules, nanocomposites or metal 

nanoparticles. The sample solution in exposed to a monochromatic beam of 

X-rays, whose scattering intensity, I(q), is recorded at small angles of few 

degrees (typically 1-10°) as function of momentum transfer q (q = 4/ sin, 

where 2 is the scattering angle between the incidence and scattered 

radiation).  

The SAXS experiments described in this thesis were performed at the ID02 

beamline of the European Synchrotron Radiation Facility (Grenoble, France). 

The wavelength of the incoming beam was 1 m, and the sample detector 

distances was 1 m, which covered a q range 0.103-6.5 nm-1. The 2D SAXS 

patterns initially recorded were normalized to the absolute scale using a 

standard procedure reported elsewhere12,13. Samples were loaded on a flow 

through capillary of 2 mm diameter to ensure accurate background (water) 

subtraction. Data fitting was performed by using GAP (Global Analysis 

Program) package14,15, that allows to reproduce the SAXS intensity diagrams 

of both quasi-Bragg peaks (arising from oligolamellar structures) and diffuse 

scattering (originated from monolamellar vesicles). 

 

1.2.4 APPLICATION OF NANOVECTORS TO IN VIVO ROOTING 

One-year old olive scions were collected from plants of cultivar (cv) Leccino 

(easy-to-root), one of the most cultivated cultivars in Italy, and cv Leccio del 

Corno (difficult-to-root), an interesting cultivar for its agronomic and 

qualitative characteristics9. After the harvest, scions 3-3.5 mm in diameter 

were cut to a length of 10-15 cm, with 4-6 nodes and 4 leaves, to obtain semi-

hardwood cuttings. Each treatment consisted of 20 cuttings per experimental 



22 

 

unit. After each treatment, the cuttings were transferred in greenhouse 

benches containing pearlite and kept under mist for 90 days. Swelling of the 

cutting base, callus presence, rooting percentage and number and length of 

roots were analyzed. Eleven treatments (T) were carried out during three 

independent experiments performed in January, April and July 2017 (Table 2). 

Cutting basal ends of Leccino and Leccio del Corno were dipped in IBA and 

NAA nanovectors with two different cargo concentrations, 50 ppm (T4, T5) 

and 200 ppm (T6, T7), and in 200 ppm cargo PE and PC formulations (T8-T11). 

Cuttings were soaked for 48, 72 and 96 hours in different plain pomace, PE 

and PC series formulations (Table 2, Experiment 1; 2; 3). Respectively two 

types of controls were chosen, i.e. the “standard procedure” (SP; T2, T3) 

usually adopted for olive propagation, and control (C; T1) in water and 

without hormones. For the standard procedures, powder IBA was dissolved 

in hydro-alcoholic solution at 4000 ppm, powder NAA was dissolved in 

aqueous solution at 2000 ppm and then cuttings basal ends were dipped in 

the solutions for 7 seconds following the recommendations of Fabbri et al.9 

For control cuttings, bases were dipped in non-loaded nanovectors and water 

for 48, 72 and 96 hours, respectively (Table 2). 
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Table 2. Rooting induction treatments in Experiment 1 (January), 2 (April) and 3 
(July). 

  
  Experiment   

Code Treatment (T)  January (48 h) April (72 h) July (96 h) 

T1 Control (C) * x x x 

T2 SP-IBA (4000 ppm) x x x 

T3 SP-NAA (2000 ppm) x x x 

T4 IBA (50 ppm) x - - 

T5 NAA (50 ppm) x - - 

T6 IBA (200 ppm) - x x 

T7 NAA (200 ppm) - x x 

T8 IPE (200 ppm) - x - 

T9 NPE (200 ppm) - x - 

T10 IPC (200 ppm) - - x 

T11 NPC (200 ppm) - - x 

* controls in water and in nanovectors without hormones, comprehensive of E, EPE and EPC 
(see Table 1.) 

 

1.2.5 APPLICATION OF NANOVECTORS TO IN VITRO ROOTING 

Canino is a widespread olive cultivar in central Italy with high and constant 

productivity and low susceptibility to the major diseases that affect olive16. 

Various in vitro studies on this cultivar have been performed17, but no 

information about its rooting ability is reported. In the following experiment, 

four different treatments were tested on micro-cuttings (3 nodes length) of 

Canino  (Table 3): 1) IBA 2 mg/mL loaded nanovectors, 2) non-loaded 

nanovectors (E), 3) IBA 2 mg/mL dissolved in aqueous solution, 4) IBA 2 mg/L 

added to OM (Olive medium18) semisolid medium (conventional method). 
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The liquid solutions used for rooting experiment were sterilized by filtration 

(Sartorius 0.45µ pore filter) and maintained under UV light for 12h. Canino 

micro-cuttings were soaked in 1 mL of all liquid treatments (code number 1, 

2, 3 – Table 3.) under laminar flow hood in sterile conditions and covered by 

plastic containers to prevent dehydration (Fig. 10). The length of liquid 

treatment was 6 and 24 h, then the explants were placed on hormone free 

OM semisolid medium supplemented with 50 mg/L Fe-EDDHA, 36 g/L 

mannitol and 3 g/L Gelrite™. Micro-cuttings in conventional method were 

cultured in semisolid medium for 6 weeks. In the experiment, glass jars (500 

mL) with 100 mL of semisolid OM medium containing 6 micro-cuttings each 

were employed, for a total of 12 jars and 72 micro-cuttings. All jars were 

maintained at 22°C±1°C, under a 16h light/ 8h dark photoperiod at 60 μmol 

m-2 s-1 photosynthetically active radiation provided by cool-white fluorescent 

lamps. To favor root emission, the basal area of the micro-cuttings was kept 

in the dark by covering the base of the jars. Rooting percentage of micro-

cuttings was evaluated after 6 weeks.  

 
Table 3. Treatments on micro-cuttings cv Canino. 

    Lenght liquid treatment 

Code Treatments (h) (h) 

1 IBA (nanovectors) 6 24 

2 E (empty nanovectors) 6 24 

3 IBA liquid 6 24 

4 IBA 2mg/L medium - - 
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1.2.6 STATISTICAL ANALYSIS 

Data from in vivo tests were not normally distributed (Kolmogorov-Smirnov 

one-sample test) and were therefore analyzed using the non-parametric 

Kruskal-Wallis rank-sum test followed by the Mann-Whitney U Test for 

multiple comparisons between different treatments. Differences were 

accepted when significant at the 5% level. Statistical analyses were performed 

using SYSTAT 12.0 software (Systat Software Inc., San Jose, CA, USA). 
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1.3 RESULTS AND DISCUSSION 

 

1.3.1 CHARACTERIZATION OF THE NANOVECTORS 

DYNAMIC LIGHT SCATTERING AND ZETA POTENTIAL 

DLS data showed that aggregates with mean size in the range 170-400 nm 

were formed both by the natural lipid (pomace series: E, IBA and NAA) and 

composite formulations with DOPE (PE series: EPE, IPE and NPE) or DOPC (PC 

series: EPC, IPC and NPC), as shown in Figure 4. The polydispersity index (PdI) 

of all samples was in the range 0.2-0.4, indicating the presence of scattering 

objects with wide but controlled size distribution. The observed polydispersity 

was consistent with the structural complexity expected for these systems. 

Nevertheless, all samples were stable over time, as checked by repeated DLS 

measurements. All suspensions remained monophasic and homogeneous 

even after 4-6 months. The main differences were observed as a function of 

lipid composition. In particular, samples of the PE series (Fig. 4B) had smaller 

average dimensions (200-230 nm), with respect to samples from pomace only 

or to the PC series (350-400 nm, Fig.4A and 4C), thus evidencing the ability of 

DOPE to impart size control and improve monodispersity (Fig. 5). All 

nanovectors prepared with purified phospholipids showed narrower size 

distribution with respect to pomace lipids (Fig. 4). Moreover, aggregates 

containing purified lipids (either of the PE or PC series) did not show any 

marked size change due to the cargo loading, whereas for samples of the 

series prepared from pomace lipids only, the average dimensions increased 

upon association with auxins. This confirmed that in the absence of purified 

phospholipids the size and distribution of nanoaggregates were less 
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controlled and, consequently, guest molecules were able to easily induce 

variations. 

 

Figure 4. Size distributions obtained from Dynamic Light Scattering intensity, showing 

comparison among samples with different lipid composition. In each graph samples 

curves from the same series are reported, i.e. pomace only (4A), PE (4B) and PC (4C), 

pointing out differences in size and monodispersity based on the lipids employed in 

each one. 

 

Figure 5. Dynamic Light Scattering intensity distributions as a function showing 
comparison among the plots made by taking into account the loaded compound. In 
the same graph samples from the three series loaded with the same molecule are 
plotted, i.e. no compound (5A), IBA (5B) and NAA (5C), to assess the presence (or 
absence) of trends in size and monodispersity depending on the cargo. 
 

Concerning the surface charge, all samples had negative Zeta potential (≈-23÷ 

≈-13 mV) and conductivity were in the range 0.03-0.08 mS/cm (Table 4). After 

auxin loading, all nanovectors showed slightly less negative surface charge 

with respect to the corresponding empty systems, in line with the neutrality 

of the inserted molecules, expected to dilute the overall surface charge. 
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Only pomace series ZP (mV) PE series ZP (mV) PC series ZP (mV) 

E -19.4 EPE -22.4 EPC -17.6 

IBA -16.3 IPE -23.5 IPC -13.4 

NAA -16.5 NPE -23 NPC -13.6 

Table 4. Zeta potential (ZP) values for the three series of samples. Error value 
calculated over three different runs was ± 0.2 mV. 
 

SMALL ANGLE X-RAY SCATTERING 

The scattering intensity of the formulations made from only pomace showed 

unstructured SAXS profiles, indicating that very polydisperse aggregates (i.e. 

liposomes) were in solution (Fig. 6, green curve). The presence of DOPE or 

DOPC, even though added in small percentage, significantly modified the 

SAXS curves (Fig. 6, red and blue curve). In the case of samples from PC series 

(blue curve), SAXS diagrams were dominated by the large oscillations pattern 

characteristic of monolamellar vesicles. However, the presence of a quasi-

Bragg correlation peak (Fig. 6A) indicated that a fraction of bilamellar 

aggregates was present19. The other systems with the same lipid composition 

(EPC, IPC) showed similar patterns, suggesting a prevalence of monolamellar 

liposomes in solution. 

 

 

Figure 6. SAXS Intensity 
diagrams (I(q) vs q, 
curves shifted vertically 
for clarity) of samples 
loaded with NAA for 
each series, showing 
the different patterns 
due to the employed 
lipid.  
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Figure 6A. SAXS diagram 
and best fit for sample 
loaded with NAA of the PC 
series (arrows on the peak 
indicating the presence of 
bilamellar aggregates). 

 

 

 

 

 

For samples of the PE series, the observed SAXS profile was characteristic of 

a more ordered structure, i.e. a lyotropic phase, as evidenced by three well 

defined Bragg peaks (Fig. 7) with maxima in the ratio 1: √3: 2, typical of a 

hexagonal arrangement. This was consistent with the higher local curvature 

that DOPE is able to impart20. 

Figure 7. SAXS diagram and corresponding best fit for the sample loaded with NAA 
of the PE series, showing the ratios of the relative positions of the Bragg peaks. 
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Mass spectrometry analysis were also performed to assess the loading ability 

of the nanovectors. Data were provided by the CISM center of Sesto 

Fiorentino (Florence), and a loading capacity ranging from 200 to 300 ppm 

was measured. The loading efficiency, expressed as percentage of the lower 

starting concentration (i.e. 500 ppm), was attested around 60%, 

corresponding to about a 1:4 auxin/lipid molar ratio. 

 

1.3.2 APPLICATION OF NANOVECTORS TO IN VIVO ROOTING 

The efficacy of the auxin-delivering nanovectors was tested on olive tree 

cuttings of the two different cultivars easy-to-root “Leccino” and difficult-to-

root “Leccio del Corno”. In the first experiment conducted in January 2017, 

after 90 days from exposure to IBA and NAA loaded nanovectors at 50 ppm 

concentration for 48 h, for all treatments cv Leccino showed 65% of cuttings 

with swollen base and callus, while cv Leccio del Corno exhibited only callus 

in 25% of cuttings. Callus formation can be important in the rooting of olive 

cuttings since in several cultivars a close correlation was observed between 

callus development and rooting9. In any case, rooting process was observed 

only in cv Leccino, with a percentage of rooted cuttings in T4 (IBA 50 ppm) of 

15% with an average root length of 0.4 cm, (Fig. 8A). In T2 (SP-IBA) 10% of 

rooting with 0.8 cm of roots length was observed. No rooting was observed 

in all control treatments (Fig. 8A). Exposing the cuttings to only pomace (T6, 

T7) and IPE and NPE (T8, T9) nanovectors loaded with IBA and NAA at 200 

ppm for 72 h (Experiment 2, April 2017), the cvs Leccino and Leccio del Corno 

presented swollen base and callus in 24% and 10% of the cases, respectively.  

Rooting process was present only in Leccino and the maximum rooting 

percentage was observed in T6 and T8 treatment (Fig. 8B) with, respectively, 
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7 and 25 mean number of fully developed roots, and an average length of 1.8 

and 2.2 cm in both treatments (Fig. 9B and 9C). Interestingly, rooting was 

observed also in NPE (NAA-DOPE) nanovectors (T9), with 10% of rooting, an 

average of 18 roots, which length ranged from 1.5 to 1.7 cm (Fig. 9D), while 

the cuttings dipped in NAA standard (T3) or in NAA nanovectors (T7) did not 

show roots.  

 

 

Figure 8. Rooting percentage of Leccino cv cuttings in January (Experiment 1: graph 

A) and in April (Experiment 2: graph B). Error bars represent standard error values. 

Graph A: different letters indicate a significant difference by Mann-Withney U test 

(p-value < 0.05; d.f.=1). Graph B: different letters indicate a significant difference by 
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Kruskal-Wallis test (ꭓ2 = 13.40; p-value < 0.001; d.f.=3) followed by Mann-Withney U 

test for multiple comparisons. 

In T2 treatment, the percentage of rooted cuttings was of 10%, while no 

rooting was observed in all control treatments. 

In a third experiment (July 2017), after 90 days a high percentage of Leccino 

and Leccio del Corno cuttings (more than 95%), soaked in nanovectors (T6, 

T7, T10, T11 treatments), showed signs of basal rot (Fig. 9E, red arrow) though 

many examples of callous formation were observed (Fig. 9E and 9F, green 

arrows). 

Figure 9. Experiment 1 - Rooting effect of in vivo cultured cv Leccino cuttings treated 

A 
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with IBA loaded nanovectors 50 ppm (A): callus formation, roots emission and 

swelling of the base; Experiment 2 - Fully developed root in in vivo cultured cv Leccino 

cuttings treated with IBA 200 ppm loaded nanovectors (B), IPE loaded nanovectors 

(C) and NPE  loaded nanovectors (D); Experiment 3 – Callus formation in in vivo 

cultured cv Leccino cuttings treated with NPC loaded nanovectors (E) and IPC loaded 

nanovectors (F): basal rot (red arrows), callus formation (green arrows) and root 

emission (black arrow).  

 

Nevertheless, in T10 treatment one cutting had root emission (Fig. 9F black 

arrow). In T2 and T3 standard treatments, cuttings showed neither basal rot 

nor rooting, as expected for the brief soaking time of this procedure. The 

cuttings of all controls (T1) showed no sign of root formation. 

In olive trees, the success of rooting process can be affected by many factors, 

included the type of cultivar and the timing of cutting collection9. The results 

of a screening on rooting rate of 426 cultivars reported that more than 60% 

of cultivars present a low rooting ability (0-33%), 20% have a medium rooting 

ability (33-66%) and only 16% of the total show a rate of rooting higher than 

70%.  The most suitable season for cutting preparation coincides with the two 

annual peak points of April–June (summer cycle), when vegetative growth is 

at its peak, and of September-October (autumn cycle), before the 

physiological activity of the plant decreases due to the low winter 

temperatures9. In vivo results confirmed the higher rooting ability of cv 

Leccino compared to cv Leccio del Corno. Furthermore, this study reported 

that cv Leccino cuttings, dipped in IBA nanovectors in January, emitted roots, 

thus suggesting that the application of loaded nanovectors could increase the 

period of propagation of the cultivars in the nursery. In the second 

experiment, carried out in a favorable period for rooting, the aforementioned 
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results were confirmed, and the addition of PE nanocarriers in treatments 

with both hormones favored the rhizogenic effect and increased the roots 

number and length. This is in line with the enhanced control imparted by 

DOPE on nanovectors design, stability and cargo release, even in the case of 

NAA, the less bioavailable auxin. Moreover, the data revealed that 96h 

dipping, regardless of the treatment applied, is unsuitable for olive rooting. 

However, even in these unfavorable conditions, PC nanovectors induced 

swollen basal end (Fig. 9E), which could prelude to subsequent root emission 

(Fig. 9F). In this case further protocol adjustments need to be explored.  

In this research, the treatment with hormones encapsulated in nanocarriers 

enhanced rooting process, this effect might be due to improved hormone 

bioavability and easier accumulation, with supposedly a slow release in the 

basal part of the cutting. 

 

1.3.3 APPLICATION OF NANOVECTORS TO IN VITRO ROOTING 

The efficacy of the auxin-loaded nanovectors was then assessed in Canino cv; 

these micro-cuttings were soaked in liquid treatment for 6 hours and then 

transferred into OM semisolid medium for 6 weeks (Fig. 10). Results showed 

a higher percentage of root development in micro-cuttings exposed to IBA 

loaded nanovectors (27%) than the one registered for micro-cuttings treated 

with liquid IBA (18%) (Fig. 11). The extension of the length of treatment to 

24h was not effective in increasing the percentage of rooting, being it reduced 

to 16% in the case of IBA loaded nanovectors and to10% in liquid IBA (Fig. 11). 

Moreover, a prolonged treatment revealed symptoms of suffering in micro-

cuttings. The treatment with non-loaded formulations (E), both at 6 and 24h, 

showed some callus formation and no rooting in micro-cuttings (Fig. 12A). 
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Semisolid medium with conventional IBA administration recorded 16% of 

rooting (Fig. 12B), similar to IBA liquid after 6h, but poor rooting was produced 

in this treatment with respect to 6h IBA loaded nanovectors application (Fig. 

12 C, D, E). In vitro cultures treated with nanovectors showed less 

contamination compared to non-loaded nanovectors ones. 

 

 

Figure 10. In vitro olive micro-cuttings: A, B during treatment with nanovectors 
loaded with IBA for 6h; C micro-cuttings transferred in OM semisolid medium for 6 
weeks. 
 
 
 
 

 

Figure 11. Rooting percentage after 6 and 24h liquid pulse treatments in Canino 
micro-cuttings. Error bars represent standard error values. 
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Figure 12. In vitro olive micro-cuttings rooting after 6 weeks. A: callus formation after 
treatment with non-loaded nanovectors; B: roots development in treatment with IBA 
added in OM semisolid medium and C, D, E after treatment of 6h with IBA loaded 
nanovectors. 

 

Therefore, 6h liquid pulse treatment with loaded nanovectors at the 

concentration of 2 mg/mL was associated with more favorable emission and 

development of roots. The rooting micro-cuttings were in healthy conditions, 

thus further confirming the compatible and non-toxic nature of these 

treatments. The same condition was recorded also in micro-cuttings without 

roots treated with empty nanovectors. Phytotoxic effect is an aspect that 

needs to be taken into account and the lipid-based nanovectors used in this 

study, being of plant origin because deriving from olive pomace, did not show 

any visual sign of toxicity on the micro-cuttings.  
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In in vitro culture, in most cases, the culture medium is directly supplemented 

with IBA, before autoclaving, at the rate increasing from 1 to 4 mg/L to obtain 

highest rooted explants and root quality.  In this research, the application of 

2 mg IBA in conventional method showed lower rooting percentage in respect 

to other in vitro olive cultivars.  However, rooting ability vary significantly 

among different olive cultivars9. Regarding the sterilization method of liquid 

solutions, filtration and UV irradiation procedures have been considered, as 

the elevated temperatures used for autoclaving are not suited for the stability 

of lipid-based nanovectors.  

 

1.4 CONCLUSIONS 

In this project, olive pomace was employed as lipid source for the 

development of nanocarriers delivering auxins as root-promoting 

phytohormones, and a new methodology for phytohormones’ administration 

was experimented on olive cuttings obtained from three different cultivars 

(cv Leccino, cv Leccio del Corno and cv Canino). In two of these, the 

nanovectors-mediated treatment of the cuttings was found to improve the 

rooting process with respect to the conventional treatments, both in vivo 

(Leccino cv) and in vitro (Canino cv). These preliminary results represent a 

significant initial step for further investigations of the nanovectors’ 

potentialities of application to olive trees. 
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SECTION 2. NANNOCHLOROPSIS-DERIVED NANOVECTORS FOR 

THE DELIVERY OF THYMOL 

2.1 INTRODUCTION 

The employment of traditional pesticides is currently representing a 

worldwide problem that can no longer be postponed due to the serious 

impact that these agrochemicals display on the environment and, 

consequently, on human health too.  

In the last years, the increasing demand for natural products as substitutes, 

or to integrate the conventional ones, has received a great attention from the 

scientific community, which is attempting to find a sustainable and more 

environmentally friendly way to control plant diseases and pests1. Possible 

alternatives include the use of plant-derived antimicrobial compounds, like 

terpenes and terpenoids, which are the main constituents of the essential oils 

extracted from a large variety of plants and flowers2,3. Peculiar 

pharmacological properties, such as antibacterial, antifungal, anti-

inflammatory and antioxidant activity4, make this class of compounds an 

attractive resource for many different applications in the field of medicine, 

agrotechnology, food industry and cosmetics, to mention only a few. This 

complex and very large class of secondary metabolites plays an important role 

in plant defense against herbivores and pathogens attack, encouraging 

researchers towards a deeper understanding of the underlying mechanisms 

of actions of these molecules5. 

On the other hand, the volatile nature of terpenes and terpenoids represent 

one of the major drawbacks in terms of long-term efficacy, that certainly must 

be addressed in the developing of new commercial phytochemicals. 
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Moreover, the hydrophobic character of many of these compounds, some of 

which are insoluble in water, requires the design of an ad hoc formulation 

able to ensure the effectiveness of the product. In this context, lipid 

nanovectors, such as liposomes and solid lipid nanoparticles, represent an 

interesting nanotechnological platform to be further investigated. Their lipid 

structure displays multiple benefits: the membrane-like structure promotes 

biocompatibility and a non-toxic interaction with the target cell. At the same 

time, it acts as a protective shell that prevents degradation processes and 

volatilization of guest molecules6. Concerning the interaction between lipid 

structures and terpenes/terpenoids, these lipophilic compounds exhibit a 

marked preference for hydrophobic phases, which act as sites of 

accumulation2. Hence, the loading into the carriers is highly favored. Thanks 

to the aforementioned characteristics, lipid nanovectors fully meet the 

requirements needed for a successful association with these natural 

antimicrobial agents.  

Several studies report the higher antimicrobial activity of oxygenated and 

phenolic terpenoids in respect to hydrocarbon terpenes2,7. The presence of a 

hydroxyl group and a system of delocalized electrons in their structure is 

indeed thought to be crucial and strictly related to their higher efficacy as 

antibacterial agents. Thymol is an oxygenated phenolic monoterpenoid which 

was found to be the most effective antimicrobial among the constituents of 

essential oils8. It can be extracted from many aromatic plants, Thymus vulgaris 

being the principal one, and its indirect employment is historically 

documented since the time of ancient Egyptians and Greeks, who used thyme 

as food-preservative and flavoring agent9. Therefore, thymol was selected as 

vectors’ drug, among a wide variety of isoprenoid compounds. 
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In this work, the possibility of a thymol-delivery via lipid vectors was 

investigated and a green design was adopted for the realization of the 

nanoparticles. The lipids employed in the manufacturing were extracted from 

the marine microalga Nannochloropsis sp., an autotrophic microorganism 

chosen for its high natural lipid content, ranging from 39 to 68% of the total 

biomass10. There is a twofold advantage in the use of this microalga for the 

vectors’ fabrication: its easiness of cultivation allows to obtain large amounts 

of biomass, and the high lipid content leads to a good yield of extraction, thus 

reducing the wastes of raw material. 

The aim of this work was the production of lipid nanovectors employing lipids 

extracted from a photosynthetic biosource, to develop an eco-sustainable 

agrotechnological tool improving thymol long-term efficacy as antibacterial 

agent. A small amount of dioleoylphosphatidylethanolamine (DOPE), a 

purified neutral phospholipid, was also added to the lipid extract as a helper 

co-lipid, in order to facilitate nanovectors’ structuring. 

The characterization of the lipid fraction extracted from Nannochloropsis sp. 

and the determination of the thymol loaded into the obtained nanovectors 

were both performed via GC-MS analysis. Dynamic light scattering 

measurements provided key information about the dimension and 

distribution of the particles in solution and were complemented by zeta 

potential measures. A detailed structural characterization of the aggregates 

was obtained by small-angle X-ray scattering and finally, their efficacy as 

antibacterial formulation was tested in vitro against the plant pathogen 

Xanthomonas campestris pv. vesicatoria (Xcv). 

This bacterium is the causal agent of bacterial leaf spot (BLS) in tomato 

(Lycopersicon esclulentum Mill.) and pepper (Capsicum annuum L.) plants, 
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causing serious damages to fruit quality and production11. The conventional 

way to control plant bacterial diseases is the repeated application of copper 

compounds, which help to prevent bacterial infections, but has been shown 

to be harmful to the environment. In fact, copper is a heavy metal and 

accumulates in soil and water12. In addition, many bacterial strains of the 

genus Xanthomonas were found to develop resistance to copper treatments, 

giving proof of the serious consequences implied in copper compounds 

routinely applications13. Therefore, alternative solutions must be found, and 

essential oils and their constituents are definitely very promising candidates, 

as evidenced by numerous scientific publications2,3,10. For instance, a study by 

Dadasoglu et al. (2011) evidenced the effectiveness of thymol and the 

essential oils extracted from three Origanum species against a 

phytopathogenic Xanthomonas  species responsible for BLS disease3. 

In this project, an eco-compatible and biodegradable nanosystem tailored to 

obtain the delivery of a volatile and lipophilic drug was developed, and Xcv 

was chosen as target microorganism. 

 

 

2.2 MATERIALS AND METHODS 

 

2.2.1 REAGENTS  

1,2-Dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) and soybean 

phosphatidylcholine (S100) were purchased from Lipoid GmbH (Ludwigshafen 

am Rhein, Germany). Agar and Nutrient Broth were purchased from Sigma-

Aldrich and D-glucose was from Carlo Erba. 
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2.2.2 EXTRACTION OF THE LIPID FRACTION FROM NANNOCHLOROPSIS SP. 

Dry and powdered biomass of Nannochloropsis sp. (2g) was provided by the 

microalgae cultivation-specialized laboratory of the Department of 

Agriculture, Food, Environment and Forestry (DAGRI), University of Florence. 

The microalga was grown in nitrogen-deprived condition and the lipid content 

was expected to reach up to 68% of the total biomass. 

Lipid extraction procedure: 

- Weigh 15 mg of dry biomass per each screw-capped glass tube (tube 

1) 

- Add 250 µl CHCl3: MeOH (1:2, v/v) and glass beads, then vortex for five 

minutes 

- Add 750 µl CHCl3: MeOH (1:2, v/v) and heat at 60 °C for three minutes 

- Collect the supernatant in a second glass tube (tube 2) and rinse the 

glass beads as follows: 

o Three times with 0.5 CHCl3: MeOH (1:2, v/v) 

o Twice with 1 mL CHCl3: MeOH (1:2, v/v) 

- Centrifuge at 5000 rpm for five minutes and collect the supernatant in 

a glass tube (tube 3) 

- Add 1.5 mL CHCl3: MeOH (1:2, v/v) 

- Add 1.5 mL MilliQ water 

- Vortex the glass tube and centrifugate at 5000 rpm for five minutes 

- Collect the lower chloroform phase in a glass tube (tube 4) 

- Rinse tube 3 with 1 mL CHCl3, vortex, centrifuge as previously 

described and transfer the lower phase in tube 4 

- Evaporate the solvent and weight the dry lipid fraction extracted 
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The yield of lipid extraction was calculated as follows: 

YE= (DB2/DB1) x 100% 

where YE (w/w) was the Yield of Extraction (%), DB2 was the dry weight of the 

biomass after the extraction and DB1 was the dry weight of the biomass pre-

extraction. 

 

2.2.3 FABRICATION OF NANOVECTORS  

Nannochloropsis-derived nanovectors (N-NVs) 

Thymol (C10H14O) and 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine 

(C41H78NO8P) (15% w/w) as adjuvant lipid were added to the lipid fraction 

obtained from the extraction procedure above described. Both were 

dissolved in chloroform and the proper amount of thymol stock solution was 

added to get a lipid/thymol 5:1 molar ratio. Finally, the solvent was 

evaporated, and a thin film was formed. Rehydration with MilliQ water and 

nine freezing and thawing cycles (i.e. soaking in liquid nitrogen, vortexing and 

then dipping samples in a warm bath at 45 °C) promoted lipid molecules’ self-

assembly into particles whose dimensions were homogenized by four 

sonication cycles of four minutes each (at 95% power, with a probe equipped 

Sonopuls Bandelin ultrasonic homogenizer). Samples were sterilized by 

exposure to U.V. light under laminar flow hood for five hours of treatment, 

covered by parafilm to prevent dehydration and then stored in a refrigerator 

at 4°C. 
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Soybean phosphatidylcholine nanovectors (S100-NVs) 

A set of nanovectors made of soybean phosphatidylcholine (S100) was also prepared to compare a purified lipid 

nanoformulation with the Nannochloropsis-derived one. The same preparation procedure was followed with the exception 

of the extraction step, as purchased purified lipids (Lipoid S 100) were employed.  

 

A summary table of the NVs’ composition is reported (Table 5), whilst molecular structures of employed compounds are 

shown in figure 13. 

 
 
 
 
 
 
                         *N=Nannochloropsis sp.; N-NVs=Nannochloropsis-derived nanovectors. 

 
 
 
 
 
 
 

Table 5. Detailed composition of Nannochloropsis-derived NVs (N-NVs) and purified lipid-NVs (S100-NVs). The lipid concentration, 
together with the final volume of the samples, are also reported. 

N-NVs Sample  Lipid from N. 
sp (mg) 

 DOPE  Thymol  Volume of 
sample (mL) 

Lipid concentration  

 acronym (mg)   (mg/mL) 

Thymol-loaded N T 570 100.58 28.78 22.35   30 

Plain  N B 160 28.26 0 6.27   30 

Purified lipid Sample Phosphatidylcholine  Thymol  Volume of Lipid concentration 

NVs acronym (mg)   sample (mL) (mg/mL) 

Thymol-loaded S100 T 270 11.6 9 30 

Plain  S100 B 180 0 6 30 
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1,2-dioleoyl-sn-glycero-3-phoshoethanolamine (DOPE)   
 

 C41H78NO8P 
        

       

 

Thymol 
 

  Phosphatidylcholine from soybean (S100)   C42H82NO8P 
  

 

 

  
      

C10H14O         

         

              

Figure 13. Molecule structures of thymol and phospholipids employed in 
nanovectors’ fabrication. 

 

2.2.4 NANOVECTORS’ STRUCTURAL CHARACTERIZATION  

DYNAMIC LIGHT SCATTERING AND ZETA POTENTIAL MEASUREMENTS 

See description at paragraph 1.2.3 

SMALL ANGLE X-RAY SCATTERING (SAXS) ANALYSIS 

See description at paragraph 1.2.3 

 

2.2.5 GC-MS ANALYSIS: QUANTIFICATION OF THYMOL LOADED INTO 

NANOVECTORS AND DETERMINATION OF THE FATTY ACID COMPOSITION OF 

NANNOCHLOROPSIS SP. 

 

QUANTIFICATION OF THYMOL 

Extraction 

The thymol content was determined by gas chromatography-mass 

spectrometry technique.  

The extraction of thymol was performed as follows: 80 µL of nanovectors in 

aqueous solution were mixed with an equal volume of methanol and heptane. 

Methanol was added to break the lipid aggregates and heptane containing 
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tridecane 20 ppm as internal standard, was used as extraction solvent. 

Samples were then vortex-mixed for five minutes, sonicated for fifteen 

minutes and kept on over-night rotary agitation. After centrifugation at 4000 

rpm for ten minutes, the heptane phase was collected for the GC-MS analysis.  

 

Determination of Thymol partition coefficient 

As lipid nanovectors are aqueous samples and thymol is partially soluble in 

water (0.98mg/mL), its heptane/water partition coefficient was determined 

using a stock solution of thymol in heptane 25 ppm concentrated. The final 

concentration of the samples was adjusted according to this coefficient. 

A scheme of the extraction setting adopted to determine thymol partition 

coefficient and thymol content is reported in figure 14. 

 

Figure 14. In a glass GC-MS vial were respectively added: A) 80 µL of 25 ppm thymol 

in heptane stock solution; B) 80 µL of 25 ppm thymol in heptane stock solution, 80 

µL of MilliQ water, 80 µL of methanol MeOH; C) 80 µL of 25 ppm thymol in heptane 

       

A  B  C  D 

Thymol in 
Heptane 
25ppm 

 H2O           
Plain NVs 
(aqueous 
solution) 

 

Thymol-
delivering NVs 

(aqueous 
solution) 

  

 
Thymol in 
Heptane 
25ppm 

 

 
Thymol in 

Heptane 25ppm 
 Heptane 

  MeOH  

 
 

MeOH 
 
 

 MeOH 
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stock solution, 80 µL of plain nanovectors (NVs) in water solution, 80 µL of MeOH; 

D) 80 µL of heptane-tridecane, 80 µL of thymol-delivering NVs in water solution, 80 

µL of MeOH. 

 

GC-MS analysis 

An Agilent 7820 Gas Chromatograph system equipped with a 5975C MSD with 

EI ionization was employed, all from Agilent Tech. (Palo Alto, AC, USA). One 

µL of extract in solvent was injected in a split/splitless injector operating in 

splitless. A Gerstel MPS2 XL autosampler equipped with liquid option was 

used. The chromatographic settings were as follows: injector in splitless mode 

set at 260 °C, J&W innovax column (30 m,  0.25 mm i.d., 0.5 µm df); oven 

temperature program: initial temperature 40 °C for 1 min, then 5 °C min-1 until 

200 °C, then 10 °C min-1 until 220 °C, then 30 °C min-1 until 260 °C, hold time 

3 min. The mass spectrometer was operating with an electron ionisation of 

70 eV, in scan mode in the m/z range 29-330, at three scans sec-1. 

In order to quantify the analyte, thymol calibration curve was constructed by 

injecting known concentrations of thymol (1.25 ppm, 2.5 ppm, 5 ppm, 10 

ppm, 20 ppm, 40 ppm, 80 ppm, 160 ppm) into the gas chromatograph-mass 

spectrometer. Data was acquired and analyzed using Agilent MassHunter 

software. 

 

FATTY ACID COMPOSITION OF NANNOCHLOROPSIS SP. 

The lipid fraction was extracted following the procedure described at 2.2.2, 

then the three different lipid classes were separated through 

chromatographic fractionation in order of polarity: neutral lipids 
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(hydrocarbons, free fatty acid and sterols), glycolipids and polar lipids 

(phospholipids).  

 

Lipid fractionation 

The lipid fractionation was performed as follows: the dry lipid extract was 

weighted, resuspended in chloroform and vortexed. 100 µL were introduced 

in a chromatography column (Bond Elut SI, Agilent) and the three different 

fractions containing neutral lipid, glycolipids and phospholipids were 

collected in screw-capped glass vials washing the column respectively with 1 

mL of chloroform, 1 mL of acetone and 1 mL of methanol. Samples were 

heated at 60 °C and taken to dryness under liquid nitrogen. 

 

Derivatization of the fatty acids 

The esterified fatty acids obtained for each lipid class were transformed in the 

corresponding methyl esters via alkaline transmethylation reaction. 500 µL of 

methanol:toluene (1:1, v/v), 100 µL of KOH in MeOH 2 M and 10 µL of 

nonadecanoic acid (230 ng/µL) as internal standard, were added to the 

extracts. Samples were heated at 60 °C in a thermoblock heater for 15 

minutes to allow transesterification reaction to occur. 1 mL of 

hexane:chloroform (4:1, v/v), 300 µL of acetic acid 1 M and 1 mL of MilliQ 

water were added and samples were vortex-mixed for one minute. After 

centrifugation at 3000 rpm for five minutes, the upper organic phase was 

collected, and methyl esters were analyzed through GC-MS. A Fatty Acids 

Methyl Esters (FAMEs) standard mix, also added with nonadecanoic acid as 

internal standard, was employed to generate a four levels calibration curve. 

GC-MS analysis was performed as previously described and analytes were 
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identified comparing their Retention Time (RT) with those of the standard mix 

and matching the mass spectra acquired with those obtained from the 

standards and/or published in the NIST Mass Spectral Database. 

 

2.2.6 NANOVECTORS’ ANTIBACTERIAL ACTIVITY  

Pathogen Selection  

Pseudomonas syringae pv. tomato (Pst 50) and Xanthomonas campestris pv. 

vesicatoria (Xcv 46) are gram-negative bacteria both affecting tomato plants. 

Their sensitivity to thymol was evaluated as described below, in order to 

select the most sensitive pathogenic species.  

A loop of each bacterial suspension was taken from the long storage cultures 

at 4°C and streaked on the surface of Petri dishes containing Nutrient Glucose 

Agar (NGA) (Nutrient Agar amended with 2.5 g/L Glucose). Plates were 

incubated at 27 °C for 48 hours, then bacteria were scraped from the agar 

surface and suspended in saline solution (NaCl 0.8 %) to prepare a suspension 

of optical density (OD) 0.1 at 530 nm corresponding to about 1x108 colony-

forming units per mL (CFU/mL). 1.5 mL of each suspension were placed in a 

sterile Petri dish, then 15 mL of melted NGA was added and gently mixed with 

the suspension. Plates were left at room temperature (RT) under a laminar 

flow hood to allow agar solidification, then 3 mg of solid thymol were placed 

in the center of the agar surface. The plates were sealed with three layers of 

parafilm and incubated at 27 °C for 48 hours. The antibacterial activity was 

evaluated by measuring the diameter (cm) of the inhibition zone between the 

thymol and the margin of the bacterial growth. 
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Determination of thymol minimum inhibitory concentration (MIC) 

The next tests were performed using the pathogen Xcv that resulted the most 

sensitive species to thymol. Firstly, the growth of Xcv was studied in presence 

of increasing amount of thymol.  

Aliquots of 16 µL of Xcv bacterial suspension (OD 0.1 at 530 nm, prepared as 

described before), were transferred into plastic tubes containing 8 mL of 

sterile nutrient broth (NB). Appropriate amounts of a stock solution of thymol 

in methanol (4 mg/mL) were added to the cultures to get final concentrations 

of: 100, 500, 1000 µg/mL. An evaluation of methanol toxicity to Xcv was also 

performed growing the bacterium in nutrient broth (NB) amended with 

increasing methanol concentrations (0.4%, 2%, 4%). Three replicates per each 

concentration were prepared. Cultures were incubated at 27 °C on a rotary 

shaker. Bacterial growth was monitored by reading the OD of the cultures at 

530 nm after 0, 24, 48, 72 and 96 hours of incubation. A spectrophotometer 

Easyspec (International PBI, IT) was employed for measurements. 

 

Inhibition of Xcv growth by the thymol-delivering nanovectors 

The antibacterial activity of Nannochloropsis-derived and soybean 

phosphatidylcholine nanovectors delivering thymol, was then tested against 

Xcv. From the results obtained by the preliminary growth inhibition test, 

thymol at a concentration of 100 µg/mL showed a bactericidal effect, hence 

concentrations of 100, 250 and 500 µg/mL of thymol delivered via 

nanovectors were tested. The 100ppm aqueous solution of thymol was used 

as control in order to compare the effect of the pure compound with that of 

the delivered one. 
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Bacterial culture preparation and methodology to test Xcv sensitivity were the 

same described previously for preliminary test. Growth curves of Xcv were 

obtained by dilution plate count method. Samples of cultures were taken 

after 0, 24, 48, 72, 96 h of incubation at 27°C: 500 µL of each culture were 

suspended into 4.5 mL of saline solution and serially diluted. Five replicates 

of 20 µL per each dilution were placed on the surface of NGA in Petri dishes. 

Colonies were counted after 48 hours of incubation at 27 °C and final 

concentration was expressed as CFU/mL. 

 

2.2.7 STATISTICAL ANALYSIS 

Data from microbiological tests were not normally distributed (Kolmogorov-

Smirnov one-sample test) and were therefore analyzed using the non-

parametric Kruskal-Wallis rank-sum test followed by the Mann-Whitney U 

Test for multiple comparisons between different treatments within the same 

sampling time, and with the non-parametric Friedman test for comparisons 

within each single treatment at different sampling times. Differences were 

accepted when significant at the 5% level. Statistical analyses were performed 

using SYSTAT 12.0 software (Systat Software Inc., San Jose, CA, USA). 
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2.3 RESULTS AND DISCUSSION 

 

2.3.1 EXTRACTION OF THE LIPID FRACTION FROM NANNOCHLOROPSIS SP. 

Dry and powdered biomass of starved Nannochloropsis sp., i.e. grown in 

nitrogen-depleted medium, was employed for the lipid extraction. As 

reported in literature10, the cultivation in such conditions induces the 

microalga to accumulate up to 68% of lipids. 730 mg of lipids were obtained 

from 1441 mg of dry biomass, for a yield of extraction of 50.65%. 

 

2.3.2 NANNOCHLOROPSIS’S FATTY ACID COMPOSITION 

The lipid composition of starved Nannochloropsis sp., i.e. cultivated in 

nitrogen-deprived growth medium, was determined and results showed a 

strong prevalence of neutral lipids, which account for about 76% of the total, 

followed by glycolipids (19.37%) and phospholipids (4.73%) (Fig. 15). This is in 

line with the fact that in microalgae, stress factors such as nitrogen-depleted 

growth conditions, induce a sharp decrease of cell replication and 

accumulation of neutral lipids as storage (mainly triacylglycerides, TAGs)14. C 

16:0 and C 16:1 n 7 are typically incorporated into TAGs15, and together with 

C 18:1 n 9, were found to be the most representative in neutral lipid fraction, 

accounting respectively for about the 25%, 18% and 24% (Table 6). The 

saturated C 16:0, commonly known as palmitic acid, was predominant in all 

the fractions, representing up to the 62% of the fatty acids in the phospholipid 

fraction. Apart from palmitic acid, the main constituents of the glycolipid 

fraction were oleic acid (C 18:1 n 9; 26%), myristic acid (C 14:0; 17%) and 

stearic acid (C18:0; 12%), whilst myristic acid (13%) was found to be more 

abundant than oleic acid (10%) in phospholipid fraction. Lower amounts of 
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long chain fatty acids (i.e. equal or more than 20 carbon units) accounting for 

an overall 8.58%, were also found in the three fractions, the most 

representative of which were the polyunsaturated eicosapentaenoic acid (C 

20:5 n 3; 5.3%) and arachidonic acid (C20:4 n 6; 2%). Saturated fatty acids 

were strongly predominant in glycolipid and phospholipid fractions, whilst 

about the 52% of the neutral lipid fraction consisted of unsaturated fatty acids 

(Table 6). 

 

Table 6. Fatty acid composition (%) of neutral lipids (NL), glycolipids (GL), and 
phospholipids (PL) of starved Nannochloropsis. sp  

   Lipid class    
Fatty acid NL fraction  GL fraction PL fraction TOTAL (%) 

C 10:0 0.10 0.17 0.00 0.10 

C 14:0 14.31 17.25 13.03 14.54 

C 15:0 0.78 0.91 0.62 0.78 

C 16:0 25.34 35.85 61.62 28.61 

C 16:1 n 7 17.85 3.72 4.03 14.31 

C 17:0 1.90 1.67 0.82 1.77 

C 18:0 5.26 12.08 8.42 6.56 

C 18:1 n 9 c 23.61 26.40 10.28 15.46 

C 20:0 0.36 0.31 0.19 0.34 

C 20:3 n 6 0.99 0.31 0.42 0.82 

C 20:4 n 6  2.62 0.43 0.25 2.06 

C 20:5 n 3 6.82 0.85 0.28 5.30 

C 22:0 0.07 0.05 0.06 0.06 

Total (%) 75.90 19.37 4.73 100.00 

total saturated 48.10 68.29 84.75  
total unsaturated 51.90 31.71 15.25   
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Figure 15. Fatty acid profile (ng) of neutral lipids (NL), glycolipids (GL), and 
phospholipids (PL) of starved Nannochloropsis. sp. 

 

 2.3.3 STRUCTURAL CHARACTERIZATION OF THE NANOVECTORS: DYNAMIC 

LIGHT SCATTERING, ZETA POTENTIAL AND SMALL ANLGE X-RAY SCATTERING 

Dynamic Light Scattering measurements of plain soybean 

phosphatidylcholine vectors revealed the presence of a population with mean 

size 128 nm; a second distribution, centered at 136 nm, was also observed 

after thymol uploading (Fig. 16). The Nannochloropsis-derived nanovectors 

showed a mean diameter ranging from 114 for the thymol-delivering vectors, 

to 142 nm for the empty ones (Fig. 17). Polydispersity index (PdI) values were 

below 0.5, indicating a broad but defined size distribution for all the samples 

analyzed. From these results it is possible to infer that that thymol uploading 

left the structure substantially unchanged. Zeta potential measurements 
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showed that the surface charge was close to neutrality for all the samples, 

since the recorded potential values ranged between -5 ÷ +1 mV (Table 7). 

 

Nanovectors  Mean size  PdI Zeta potential 

 (nm)   (mV) 

Plain S100-NVs 128.2 0.402 -1.03±0.95 
Thymol loaded S100-NVs 136.2 0.285 +1.06±0.41 

Plain N-NVs 142.2 0.332 -1.19±0.92 
Thymol loaded N-NVs 113.7 0.116 -4.74±0.40 

 
Table 7. Mean size values and Polydispersity indexes obtained by Dynamic Light 
Scattering measurements. Zeta potential values are also reported as mean values of 
ten runs ± standard error. 
 

 

Figure 16. Dynamic light scattering intensity distributions of plain (red curve) and 
loaded (green curve) soybean phosphatidylcholine nanovectors (S100 NVs). 

 

                                  PLAIN S100 NANOVECTORS                                               THYMOL-DELIVERING S100 NANOVECTORS 
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Figure 17. Dynamic light scattering intensity distributions of plain (red curve) and 
loaded (green curve) Nannochloropsis-derived nanovectors (N-NVs). 

Regarding Nannochloropsis-derived nanovectors, Small Angle X-ray Scattering 

revealed the presence of clearly visible peaks whose pattern (1: √2: √6: √8: 

√10) could be attributed to cubic phases16. Therefore, a cubosome-like 

structure, consisting of cubic crystalline phases with an internal network of 

water channels, can be hypothesized for the aggregates in solution (Fig.18). 

 

Figure 18. Small angle X-ray scattering profile of plain Nannochloropsis-derived 
nanovectors. 
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2.3.4 GC-MS ANALYSIS 

The thymol content was measured by GC-MS analysis and results are 

summarized in table 8. 

Nanovectors Thymol concentration  Loading efficiency 

  (µg/mL) (%) 

N-NVs 906±117 70.4 

S 100-NVs 1248±154 96.9 

 
Table 8. Thymol concentration and loading efficiency registered for Nannochloropsis-
derived NVs and S100-NVs. Concentrations are reported as mean values of three 
replicates ± standard error. 
 

All vectors showed high loading capacity and in the case of S100 nanovectors, 

the GC-MS data indicated that almost all thymol could be incorporated. The 

differences observed were clearly related to the different lipid composition of 

the two systems. Soybean phosphatidylcholine is widely employed in the 

manufacturing of liposomes17: the use of this purified phospholipid mixture 

eases the development of ordered structures displaying both hydrophobic 

and hydrophilic character. Therefore thymol, which is lipid-soluble but also 

slightly soluble in water, is expected to well associate with this type of 

nanocarriers, as confirmed by the high loading rate registered. On the other 

hand, the lower loading efficiency showed by the Nannochloropsis-derived 

nanovectors was consistent with the heterogeneous composition of this 

nanosystem, in which the three main classes of zwitterionic lipids, glycolipids 

and phospholipids were all present. The lipid extract combined with a 15% of 

pure DOPE was used to develop carriers in which, despite the complex 

composition, thymol was uploaded with an efficiency of about 70%. 
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2.3.5 BACTERIAL GROWTH INHIBITION TEST 

Pathogen selection  

The bacteria Xanthomonas campestris pv. vesicatoria (Xcv) and Pseudomonas 

syringe pv. tomato (Pst) are phytopathogens of tomato plant and their 

sensitivity to thymol was evaluated in vitro, measuring the size of the growth 

inhibition halo, which reflects the susceptibility of the microorganism to the 

tested compound (Fig. 20). The mean growth inhibition diameter measured 

for Xcv was significantly higher than the value registered for Pst (respectively 

4.8 cm and 1.9 cm) (Fig. 19), then Xcv was chosen as the target bacterium for 

an in-depth investigation of its response to the thymol-delivering 

nanovectors.  

 

 

Figure 19. Growth inhibition halos (mean diameter ± standard error) generated by 
thymol against Pseudomonas syringae pv. tomato and Xanthomonas campestris pv. 
vesicatoria. Different letters indicate a significant difference by Mann-Withney U test 
(p-value=0.004; ꭓ2=8.456, d.f.=1).  
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Figure 20. Pathogen selection test. 

Inhibition halos are marked by dashed 

lines: Pseudomonas syringae pv. 

tomato (right Petri dish) and 

Xanthomonas campestris pv. 

vesicatoria (left Petri dish) inhibited 

by thymol. 

 

Determination of thymol minimum inhibitory concentration (MIC) 

Before testing nanovectors’ toxicity, a preliminary test was performed 

growing the bacterium Xcv in presence of 1000, 500 and 100 ppm thymol 

concentrations (Fig. 21 A and B). A stock solution of thymol dissolved in 

methanol was employed for the test, therefore a parallel evaluation of the 

solvent toxicity was also performed.  
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Figure 21. Preliminary growth inhibition test: growth curves of Xcv grown in presence 
of thymol (100, 500, 1000 ppm) and control, determined by Optical Density readings 
at 530 nm, after 0, 24, 48, 72 hours of incubation. Details of the overlapping curves 
are clarified in the graph B. Different letters indicate significant differences (p<0.05). 
Lowercase letters refer to the comparison between different treatments by non-
parametric Mann-Whitney U Test (d.f.=3, N° samples=12, a<b). Uppercase letters 
refer to the analysis between different sampling time (d.f.=3, N° samples=12, 
A<B<C<D) within each single treatment by non-parametric Friedman test. 
 

After 24 hours of incubation, the treatments tested (T 100 ppm, T 500 ppm 

and T 1000 ppm) completely shot down the growth of the bacterium and no 

growth was observed after 48 and 72 hours. Even the lower concentration 

tested (100 ppm) was found to be bactericidal against Xcv, whilst a regular 

growth curve was obtained for control (Xcv), with little cell division till 24 

hours sampling time (lag phase), followed by exponential growth (log phase, 

24-48 hours) and finally a gradual growth decrease (beginning of the 

stationary phase, starting from 48 hours). 
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Figure 22. Determination of thymol minimum inhibitory concentration (MIC): growth 
curves of Xcv grown in presence of methanol (0.4%, 2%, 4%) and control, determined 
by OD readings at 530 nm, after 0, 24, 48, 72 hours of incubation. Different letters 
indicate significant differences (p<0.05). Lowercase letters refer to the comparison 
between different treatments by non-parametric Mann-Whitney U Test (d.f.=3, N° 
samples=12, a<b<c). Uppercase letters refer to the analysis between different 
sampling time (d.f.=3, N° samples=12, A<B<C<D) within each single treatment by 
non-parametric Friedman test. 

 

At the lower methanol concentration tested (0.4%), no inhibitory effect on 

Xcv’s growth was observed. In fact, 0.4% MeOH curve overlaps growth curve 

of Xcv and no significant differences were registered between treatment and 

control. Since this amount of methanol was used to get a final thymol 

concentration of 100 ppm, the bactericidal effect against Xcv, can be ascribed 

to the activity of thymol. Significative differences between control and higher 

methanol concentrations (2% and 4%) were found at 24, 48 and 72-hours 

sampling times (Fig. 22). 
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Inhibition of Xcv’s growth by the thymol-delivering nanovectors 

Since the 100 ppm concentration of pure thymol resulted inhibitory to Xcv, 

the effect of thymol 100 ppm delivered through nanovectors on the 

bacterium growth curve was investigated. The aqueous solution of pure 

thymol 100 ppm was used as control (Fig. 23). Both Nannochloropsis-derived 

and soybean phosphatidylcholine nanovectors reduced the bacterial growth 

by an order of magnitude and statistically significant differences were 

observed between these treatments and control (Xcv), at all sampling times. 

A statistically significant reduction of the growth was also observed between 

thymol 100 ppm in water solution and control at 48, 72 and 96 hours. 

Concerning the comparison between thymol delivered via nanovectors 

(NT100 ppm and S100T 100ppm) and thymol in water solution (T100 in W), 

statistically significant differences were registered at 24, 48, 72 and 96 hours, 

with no growth observed for T100 in W treatment. Hence, at the tested 

concentration of 100 ppm, the treatment T100 in W resulted the most 

effective. The lower efficacy of the thymol-delivering nanovectors could be 

due to the gradual release of the antibacterial compound from the carriers. 

Therefore, higher concentrations could be necessary to get the same effect 

as T100 in W, to break down the bacterial growth. The successive toxicity 

assay was then carried out testing the effect of nanovectors delivering thymol 

100, 250 and 500 ppm (Fig. 24). Since the treatment with Nannochloropis-

derived nanovectors delivering thymol 100 ppm was not significantly 

different from that with soybean phosphatidylcoline nanovectors, the 

successive experiment was performed testing the effect of the only 

Nannochloropis-derived ones. 
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Figure 23. Effect of thymol 100 ppm in water solution and delivered via nanovectors 
(NT 100 ppm, S100 T 100ppm) on Xcv’s growth. Growth curves were obtained by 
serial colony counts after 0, 24, 48, 72 and 96 hours from inoculation. Different 
letters indicate significant differences (p<0.05). Lowercase letters refer to the 
comparison between different treatments by non-parametric Mann-Whitney U Test 
(d.f.=3, N° samples=12, a<b<c). Uppercase letters refer to the analysis between 
different sampling time (d.f.=3, N° samples=12, A<B<C<D<E) within each single 
treatment by non-parametric Friedman test. 
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Figure 24. Effect of thymol 100 ppm, 250ppm and 500 ppm delivered through 
Nannochloropsis-derived nanovectors (NT) on Xcv’s growth. Growth curves were 
obtained by serial colony counts after 0, 24, 48, 72 and 96 hours from inoculation. 
Different letters indicate significant differences (p<0.05). Lowercase letters refer to 
the comparison between different treatments by non-parametric Mann-Whitney U 
Test (d.f.=3, N° samples=12, a<b<c). Uppercase letters refer to the analysis between 
different sampling time (d.f.=3, N° samples=12, A<B<C<D<E) within each single 
treatment by non-parametric Friedman test. 
 

The concentration of thymol 100 ppm loaded in Nannochloropsis-derived 
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growing by an order of magnitude with significant differences between the 
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concentrations could be necessary to get the same effect for thymol delivered 

through nanovectors. This is reasonably attributable to a gradual release of 

thymol from the nanosystem, consequently reducing the number of active 

molecules promptly available in solution. The antimicrobial efficacy of highly 

volatile compounds, like thymol, can be enhanced delaying in somehow the 

volatility process, therefore in this sense, the lipid-nanovectors developed in 

this study represent a useful tool to be further investigated.  

 

2.4 CONCLUSIONS 

In this project two sets of lipid-based nanovectors were created employing 

respectively soybean phosphatidylcholine and the autotrophic microalga 

Nannochloropsis sp. as starting material for the manufacturing. The final 

purpose was to obtain the delivery of thymol via nanovectors, since the 

antibacterial effectiveness of this compound is strongly affected by its high 

volatility. The vectors were therefore designed aiming to get a gradual release 

of thymol, and a consequent improvement of its long-term efficacy. Both the 

typologies of nanovectors displayed good thymol loading rate (i.e. >70%) and 

biocidal activity in vitro against a phytopathogenic bacterium. Hence, these 

preliminary results represent a promising starting point for an in-depth 

investigation of this nanosystem’s potentialities, as a bioactive formulation 

alternative to the conventional ones. 
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SECTION 3. CO-CRYSTALS AS ANTIMICROBIAL FORMULATION 

DELIVERING THYMOL, EUGENOL AND CARVACROL 

 

3.1 INTRODUCTION 

Worldwide pesticide consumption is attested around 2 million tons per year, 

with Europe accounting for the 45% of the total amount, followed by the 

United States (25%) and the rest of the world (30%)1. The massive use of these 

phytochemicals is strictly related to the control of plant pathologies and pests, 

which is normally obtained through repeated chemical treatments, with a 

progressive accumulation of toxic residues in soil and water2. This implies 

serious consequences both on the environment and on human health, and 

claims for the introduction of safer and more sustainable techniques3. In this 

context, a new class of natural pesticides based on co-crystallization of 

essential oil constituents (EOCs) has been designed and experimented in this 

project. EOCs are secondary metabolites produced by plants and their 

antibacterial, antifungal and insecticide properties4 are very well known. 

Terpenes and terpenoids are the main EOCs: they are typically characterized 

by poor water solubility, high volatility and low melting point, as most of them 

are liquid at room temperature. This strongly limits their application in plant 

protection; therefore the development of alternative formulations is needed 

for their employment as natural agrochemicals5. For instance, in the second 

section of this thesis, a lipid-based formulation in liquid form, specifically 

designed for the delivery of thymol as EO constituent, was presented. Here, 

co-crystallization was chosen to obtain a powdery formulation, in order to 

better regulate the physico-chemical properties of EOCs. Co-crystals are 

multicomponent crystalline materials made by different chemical entities in 
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a specific stoichiometric ratio and their design requires a thorough knowledge 

of the molecular affinity between the partner compounds involved in the 

synthesis. Appropriate interactions between the EOCs molecules and suitable 

partners should provide a robust intermolecular network for the EOCs, thus 

stabilizing the liquid ingredient in a solid form6,7. This is a relevant aspect to 

be taken into account, since liquid or low melting compounds are generally 

less chemically stable than their solid analogues8, therefore their handling, 

transportation and storage present considerable environmental and cost-

related challenges. Co-crystals are mainly referred in literature as crystalline 

materials synthesized from solid reagents, with the only exception of few 

papers reporting the use of liquid components8,9. In this work, a set of six co-

crystals designed by combining eugenol (EUG; liquid), carvacrol (CAR; liquid) 

and thymol (THY; solid) with the two coformers phenazine (PHE) and 

hexamethylenetetramine (HMT), was obtained, as graphically represented in 

figure 25. The aim was scanning the range of properties resulted by pairing 

each EOC with a different molecular partner (i.e. the conformer). THY, CAR 

and EUG may be considered prototypal EOCs, due to their chemical structure, 

their widespread employment, and their known bioactivity against bacteria 

and fungi10. THY and CAR allowed to test the effect of molecular isomerism 

on the investigated properties, whereas EUG possesses a lipophilic chain, 

which possibly affects the molecular interaction with the coformer. 

Noteworthy, being phenol-derivatives, they all display a hydroxyl group in the 

structure that can act as hydrogen-bond donor. The two coformers PHE and 

HMT were selected as rigid molecules containing nitrogen atoms prone to act 

as H-bond acceptors. Initially, vanillin (VAN), theobromine (THE) and 

riboflavin (RIB) were also considered as potential coformers, as the first step 
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of the co-crystal design was the evaluation of the coformers’ propensity to 

generate co-crystals with the selected EOCs. This was assessed calculating the 

hydrogen bond propensity (HBP) for each possible molecule combination (i.e. 

coformer/EOC; coformer/conformer; EOC/EOC), obtaining a final Multi-

Component score (MC score = Best HBP heteromeric interaction – best HBP 

homomeric interaction) which indicates a favored co-crystal formation if 

positive, whilst negative values correspond to unfavored interactions (so co-

crystallization in unlikely to occur). 

In the case of VAN, THE and RIB, the HBP analysis suggested that homomeric 

interactions would have prevailed with respect to heteromeric interactions 

with THY, CAR and EUG; accordingly, co-crystallization experiments failed. On 

the contrary, positive MC scores were obtained for PHE and HMT combined 

with the three EOCs and the six resulting co-crystals were indeed successfully 

synthesized. The co-crystals were then characterized in terms of structure, 

physical properties and in vitro biological activity. Their performances were 

also compared with those of the corresponding pure EOCs (i.e. thymol, 

carvacrol and eugenol). The synthetic procedure adopted for the preparation 

was solvent-free11,12, thus reducing costs and preventing environmental 

contamination from solvent disposal. An example of the detailed structure of 

HMT-THY co-crystal is reported in figure 26. 
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Figure 25. Schematic representation of the co-crystals 1a-6 synthesized from the 
combination of three essential oil constituents (THY=Thymol, CAR=Carvacrol and 
EUG=Eugenol) and two coformers (PHE=Phenazine and 
HMT=Hexamethylenetetramine). Thumbnail images of the corresponding crystalline 
structures showing each EOC-coformer association. All not-H atoms are reported in 
ball-and-stick style. Colour code: C=grey, N=blue, O=red. Hydrogen atoms are 
reported in capped stick style for clarity. Blue dotted lines represent the EOC-
coformer intermolecular H-bonds. 
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Figure 26. Tridimensional 
structure of HMT-THY co-crystal 
(molar ratio 1:3). Upper part of 
the image showing HMT:THY3 

tetramers, with three thymol 
molecules organized around a 
central HMT. Lower part of the 
image showing arrays of THY 
trimers arranged in an antiparallel 
fashion: clockwise and 
anticlockwise tetramers are 
alternated within each array. 
 

 

 

 

 

 

 

3.2 MATERIALS AND METHODS 

 

3.2.1 SYNTHESIS OF CO-CRYSTALS 

Co-crystal 1a-6 were all prepared by grinding or direct mixing methods, with 

no need of any solvent addition.  

Since most of the resulting co-crystals are characterized by low melting point, 

the mortars containing samples were placed at low temperature (4°C) to 

prevent melting of the product due to heating by mechanic friction. Once 

thermalized back at ambient temperature, powder samples were collected in 

closed vials.  

The main characteristics of the six co-crystals are summarized in table 9. 

 



77 

 

Table 9. Detailed composition of co-crystals 1a-6. 

Co-crystal Ref. Coformer  EOCs Molar Aspect   

  number (mg)   ratio     

PHE-THY 1a; 1b 180 154 mg 1:1 Whitish powder 

PHE-CAR 2 180 320 µL 1:2 Plate-like yellowish crystals 

PHE-EUG 3 180 328 µL 1:1 Needle-like yellowish crystals 

HMT-THY 4 154 450 mg 1:3 Needle-like crystals 

HMT-CAR 5 154 450 µL 1:3 Plate-like crystals 

HMT-EUG 6 154 320 µL 1:2 Needle-like crystals 

 

 

3.2.2 PHYSICO-CHEMICAL CHARACTERIZATION 

HEADSPACE-GC/MS ANALYSES  

THY, CAR, EUG and co-crystals 1a-6 (1 mg) were independently inserted into 

10 mL vials and maintained at RT and 4°C, respectively for 5 min, 3, 7 and 14 

days. One mL of the headspace above the sample was injected into the gas 

chromatograph by using a PAL COMBI-xt autosampler (CTC Analytics AG, 

Zwingen, Switzerland). Three independent replicated measurements were 

always performed. A HP 6890 Series Plus gas chromatograph (Agilent 

Technologies, Palo Alto, CA) equipped with a MSD 5973 mass spectrometer 

(Agilent Technologies) was used. Helium was used as the carrier gas at a 

constant flow of 1.3 mL/min. Chromatographic analysis was performed on a 

30 m × 0.25 mm, df 0.25 μm MDN-5S capillary column (Supelco, Bellerofonte, 

USA), using the following temperature programme: initial temperature 70°C, 

10°C/min up to 140°C, 5°C/min up to 170°C. 

The transfer line and source were maintained at the temperatures of 270 and 

150 °C, respectively. Full scan electron ionization (EI) data were acquired 

under the following conditions: ionization energy: 70 eV; mass range: 40-200 

amu; scan time: 3 scan/s; electron multiplier voltage: 2212 V. Signal 
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acquisition and data handling were performed using the HP Chemstation 

(Agilent Technologies). Data collected were evaluated by using the statistical 

package SPSS Statistics (IBM, Milan, Italy). 

 

SOLUBILITY TEST IN WATER  

Solubility test in water was performed according to the flask method 

described in the OECD test guideline 10513.  

 

3.2.3 ANTIMICROBIAL ACTIVITY OF CO-CRYSTALS 

MICROBIAL CULTURES 

The antimicrobial activity of co-crystals was evaluated against different 

species of bacteria and fungi that were selected from the microbial collection 

of IPSP-CNR. Tests were performed against the gram-negative bacteria 

Agrobacterium tumefaciens (At C58), Pseudomonas syringae pv. tomato (Pst 

50), Xanthomonas arboricola pv. pruni (Xap Lc), the gram-positive bacteria 

Bacillus amyloliquefaciens (Ba M123), Clavibacter michiganensis subsp. 

michiganensis (Cmm), Rhodococcus fascians (Rf LMG 3605) and the fungi 

Alternaria alternata (Aa), Fusarium oxysporum f.sp. lycopersici (Fol) and 

Pythium ultimum (Pu). All strains, except for B. amyloliquefaciens, are 

phytopathogenic species. 

The following treatments were considered for antimicrobial assays: the pure 

three EOCs (CAR, EUG and THY), the six co-crystals (1a-6), PHE, HMT, and 

sterilized distilled water (SDW) as control. All tests were performed in 

triplicates or quadruplicates. 
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ANTIBACTERIAL ACTIVITY 

Strains were grown in nutrient agar amended with 0.25% glucose (NGA) for 

48 hours. The bacterial cultures were used to prepare suspensions in saline 

solution (SS 0.8% NaCl) of OD 0.1 at 530 nm corresponding to about 1x108 

cfu/mL. 1.5 mL of the suspensions were placed on the bottom of a sterile Petri 

dish where 15 mL of NGA were added and gently mixed with the suspension. 

Plates were left at room temperature under a laminar hood flux to allow agar 

solidification and then a sterile filter paper disk of 0.5 cm diameter was placed 

in the center of the agar surface. 20 mg of each co-crystal, 15 mg of each pure 

EOC, 10 mg of PHE and 6 mg of HMT were placed on the paper disk and then 

the plates were sealed with three layers of parafilm and incubated at 25±2 °C 

for 24-48 hours. The antibacterial activity was evaluated by measuring the 

width of the inhibition halo surrounding the paper disk. 

 

ANTIFUNGAL ACTIVITY 

All fungal strains were grown on potato dextrose agar medium (PDA) at 24±2 

°C for a time length suitable for the different species. A. alternata and F. o. 

f.sp. lycopersici produced in vitro high number of conidia and for these two 

species a conidial suspension was prepared. A volume of 10 mL of SS was 

added to the plate containing the fungal culture and the conidia were scraped 

from the colony surface by using a sterile spatula. The concentration of 

suspension was determined by counting the conidia using a Burker chamber 

and adjusted to a final concentration of 1x105 conidia/mL. 1.5 mL of the 

suspensions were placed on the bottom of a sterile Petri dish where 15 mL of 

PDA were poured and gently mixed with the suspension. From this step, the 

procedure followed that previously described for bacteria. 
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The fungus P. ultimum did not produce conidia, so that a different protocol 

was used. Disks of 0.5 cm diameter were cut from the edge of the fungal 

colony grown on PDA medium and placed on the surface of new PDA at one 

cm from the plate border. At the opposite site a sterile paper disk of 0.5 cm 

diameter was disposed and 20 mg of the compound to be tested were placed 

on the disk surface. Plates were incubated at 24±2 °C for 48-72 h. The 

antifungal activity was evaluated by measuring the width of the inhibition 

halo formed between the margin of the fungal colony and the paper disk.  

 

STATISTICAL ANALYSIS 

In order to investigate the efficacy of co-crystals compared to their chemical 

entities, the inhibitory effect on the growth of microorganism was calculated 

and compared within each treatment combination: EOC, its co-crystal, the 

molecular coformer and SDW. Besides, variation in microorganism response 

against each single treatment was determined and compared within bacterial 

species and within fungal species. Data were not normally distributed 

(Kolmogorov-Smirnov one-sample test) and they were analyzed using the 

non-parametric Kruskal-Wallis rank-sum test followed by the Mann-Whitney 

U Test for multiple comparisons. Differences were accepted when significant 

at the 5% level. Statistical analyses were performed using SYSTAT 12.0 

software (Systat Software Inc., San Jose, CA, USA). 

  



81 

 

3.3 RESULTS AND DISCUSSION 

A detailed characterization of the crystalline structure of the six co-crystals 

was provided by the Department of Chemistry, Life Sciences and 

Environmental Sustainability of the University of Parma. Physical parameters, 

such as melting point (MP) and release energy values, were also determined 

and reported for completeness in table 10.  

Results obtained about other physical parameters, such as water solubility 

and EOCs release, and about the bioactivity displayed by co-crystals are here 

presented and discussed in the following paragraphs. 
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3.3.2 PHYSICAL PROPERTIES OF CO-CRYSTALS 

Co-crystals were fully characterized in terms of EOCs release and water solubility. Analyses were performed at different 

temperatures to test the co-crystals’ adaptivity to varying external conditions. Results obtained are summarized in Table 10. 

 

  MP Release  Water EOs release EOs release 

Co-crystal   energy  Solubility 30°C (%) 4°C (%) 

  (°C)  (kJ/mol) 30°C 4 °C 5 (min) 14 (days) 5 (min) 14 (days) 

1a 87.3 -79.75 ns ns 63 30 19 24 

1b 90 -83,45 - - - - - - 

2 53.1 -83.4 ns ns 52 25 6 6 

3 38.8 -89.65 ns ns 30 24 0 0 

4 42.6 -79.9 ns ns 61 14 4 4 

5 33 -80.65 - s - - 5 4 

6 85.1 -99.8 s s 29 0 0 0 

 
Table 10. Physical properties of co-crystals 1a-6. Melting point (MP) of starting materials are THYmp=49°C, CARmp=1°C, EUGmp=-30°C. 
Release Energy calculated at B3LYP/6-31G (d, p) level of theory. Solubility in water observed at 20 g/L (ns= non-soluble, s=soluble); same 
results were observed both after 5 min and 72h. EOCs release in the headspace after 5 minutes and 14 days, normalized to the pure 
EOCs acute release. Properties of 1b were not tested as it is an elusive polymorph. Water solubility and EOC-release of 5 was not tested 
at 30 °C because of its low melting temperature. 
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RELEASE OF EOCs FROM CO-CRYSTALS 

In the food industry, EOCs are used as food flavorings whilst their 

employment as food preservatives14 is still very limited due to their high 

volatility. Therefore, co-crystallization has been investigated as mean to tune 

EOCs’ volatility. 

Each co-crystal was tested in terms of EOC release by performing headspace-

gas chromatography/mass spectrometry (HS-GC/MS) analyses over a period 

of 14 days. Results were then compared with those of the pure EOCs. As 

expected, pure EOCs showed a noticeable decrease in the responses of the 

active component at room temperature, until complete disappearance of the 

GC responses after 14 days (Fig. 27, left column, plain line). Co-crystallization 

significantly alters the delivery profile of the active component both in terms 

of acute and prolonged release (Fig. 27, left column, dashed and dotted lines). 

If compared with the pure substances, the acute EOC release resulted 

significantly limited for co-crystals (about 60% for 1a and 4, 50% for 2 and 30% 

for 3 and 6; table 10). Moreover, the co-crystal release profile over 14 days is 

significantly more persistent, thus suggesting that co-crystallization plays an 

important role for a controlled release of the active component. Noteworthy, 

the release profile is extremely influenced by the coformer used: HMT-based 

co-crystals (4 and 6) showed a lower EOCs release with respect to their PHE-

based analogues (1a and 3). Since EOCs are also used as food preservatives 

for perishable products such as tubers or vegetables, often stored in 

refrigerated rooms15, the co-crystals adaptability was investigated performing 

additional release analyses at 4°C (Fig. 27, right column). As expected, at these 

conditions the active molecule release was significantly lower both for pure 

EOCs and for co-crystals with respect to the results observed at 30°C.  
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Figure 27. EOCs release profile from the pure substance (plain line) and from co-
crystals (dashed and dotted lines) at 30°C (left) and 4°C (right). Release values were 
normalized with the acute release of EOC from the pure substance (i.e. after 5 
minutes at 30°C). EOC-release of 5 was not tested at 30 °C because of its low melting 
temperature. 
 

Furthermore, the release profile changed dramatically: the GC response 

smoothly decayed with respect to 30°C, thus suggesting an important 
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improvement in the use of these materials as food preservative in the 

refrigerated rooms.  

 

WATER SOLUBILITY 

Terpenes and terpenoids have a strong hydrophobic behavior which makes 

them inadequate for direct application on the plants. The increase of water 

solubility can then be essential for agronomical applications. Solubility in 

water of 1a-6 was tested at the standard concentration of 20 g/L which is the 

typical concentration of pesticides used for open field applications. Results 

evidenced that most of the co-crystals preserve the hydrophobic character of 

the pure EOC (1a, 2, 3, 4; Table 10), with the exception of 5 and 6 for which 

an increased water solubility was observed. 

 

3.3.3 ANTIBACTERIAL AND ANTIFUNGAL ACTIVITY  

The antimicrobial activity of co-crystals 1a-6 and of the pure EOCs and 

coformers was tested by disk diffusion assay against six bacterial and three 

fungal species. The pathogenic species were systematically distant (i.e. 

belonging to different genera, therefore genetically very different) and able 

to attack different host plants causing various symptoms and economic 

losses16. All microbial species resulted sensitive to THY, CAR and EUG even 

though at different rate, as proved by statistical analysis. Kruskal-Wallis 

ANOVA results showed significant differences in the inhibitory effect on the 

microbial growth within each treatment combination: EOC, corresponding co-

crystal, coformer and SDW (Sterilized Distilled Water as control) (Table 11). 
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Table 11. Statistical results of the Kruskal-Wallis test examining variations in the 
antimicrobial effect of EOC, co-crystal, molecular coformer and SDW within each of 
the six different treatment combinations (d.f.=3; N° samples=12; p-value: * p<0.05 
and ** p<0.01). 

 

In fact, pure EOCs and co-crystals showed generally higher antimicrobial 

activity with respect to PHE and HMT, which displayed a very low bioactivity 

against the microorganisms under investigation. In particular, Pst resulted the 

less sensitive bacterium whereas Cmm and the fungus Pu were strongly 

inhibited by the activity of the three EOCs.  

 

 

 

 

 

  Treatment combination 

  

THY, 
1a, 

PHE, 
SDW 

CAR, 
2, 

PHE, 
SDW 

EUG, 
3, 

PHE, 
SDW 

THY, 
4, 

HMT, 
SDW 

CAR, 
5, 

HMT, 
SDW 

EUG, 
6, 

HMT, 
SDW 

        

  χ2(p) 
  Bacteria 

M
ic

ro
o

rg
an

is
m

s 

At 9.5* 10.6* 9.6* 10.6* 10.7* 10.6* 
Ba 10.5* 10.6* 10.6* 10.6* 10.7* 10.7* 

Cmm 11.7** 11.4** 11.2* 11.3** 11.2* 10.3* 
Pst 10.8* 10.4* 10.7* 11.0* 10.6* 10.7* 
Rf 10.7* 10.6* 9.9* 10.8* 10.6* 10.6* 

Xap 9.5* 10.4* 9.6* 10.5* 11.6* 10.7* 

 Fungi 

Aa 10.8* 10.5* 9.6* 11.0* 10.6* 10.7* 
Fol 10.8* 10.7* 9.8* 9.5* 10.7* 10.6* 
Pu 10.6* 8.9* 9.6* 10.7* 9.6* 9.7* 
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Results of the antibacterial and antifungal activity for thymol-based co-

crystals are detailed in Table 12 (A and B). 

 A 

Pathogen SDW THHMT 1a TH:PH PH 

   Bacteria  

At 0 a 1.86±0.08 b C 1.86±0.07 b B 0 a A 

Ba 0 a 1.81±0.09 c C 2.28±0.07 d C 0.78±0.02 b C 

Cmm 0 a 4.5±0 c D 4.5±0 c D 0.59±0.07 b C 

Pst 0 a 0.34±0.04 b A 0.47±0.06 c A 0 a A 

Rf 0 a 1.46±0.04 c B 1.75±0 d B 0.30±0.03 b B 

Xap 0 a 2.02±0.24 b B 1.88±0.08 b B 0 a A 

 Fungi 

Aa 0 a 4.5±0 c B 4.5±0 c B 1.34±0.08 b B 

Fol 0 a 2.7±0.17 d A 2.0±0 c A 0.08±0 b A 

Pu 0 a 6.33±0.08 d C 5.42±0.3 c C 2.4±0.15 b C 

 

 B  

Pathogen SDW THHMT 4 TH:HMT HMT 

 Bacteria 

At 0 a 1.86±0.08 c C 2.92±0.08 d C 0.49±0.01 b C 

Ba 0 a 1.81±0.09 b C 2.58±0.27 c C 0 a A 

Cmm 0 a 4.5±0 c D 4.5±0 c D 0.08±0.03 b B 

Pst 0 a 0.34±0.04 b A 0.47±0.05 c A 0 a A 

Rf 0 a 1.46±0.04 c B 1.75±0 d B 0.11±0.01 b B 

Xap 0 a 2.02±0.24 b C 2.6±0.05 c C 0 a A 

 Fungi 

Aa 0 a 4.5±0 b B 4.5±0 b B 0 a A 

Fol 0 a 2.7±0.17 b A 3±0.76 c A 0 a A 

Pu 0 a 6.33±0.08 c C 7±0 d C 2.4±0.06 b B 

 
 
Table 12. Inhibitory effect of THHMT, TH:PH, PH (A) and of THHMT, TH:HMT, HMT (B)  
on the bacterial and fungal growth. Different letters indicate significant differences 
(p<0.05) by Mann-Whitney U Test: lowercase letters refer to the analysis between 
different treatments (d.f.=3, N° samples=12); upper case letters refer to the analysis 
within each single treatment between different species of bacteria  (d.f.=5, N° 
samples=18-20) and fungi (d.f.=2, N° samples=9). 
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1a showed higher inhibitory effect on the growth of Ba, Pst, Rf than THY, and 

lower antimicrobial activity against Fol and Pu. No significant differences in 

the antimicrobial effect were observed between THY and 1a against At, Cmm, 

Xap and Aa. 4 showed the highest inhibitory effect against At, Ba, Pst, Rf, Xap, 

Fol and Pu, whereas no significant differences in the antimicrobial activity 

were observed between THY and 4 against Cmm and Aa.  

Regarding CAR (Table 13), 2 and 5 resulted significantly sensitive to the effect 

of the coformer: in fact, taking the performances of the single active 

component (CAR) as a reference, 2 showed a drop of 28-33% with respect to 

bacteria and fungi, whereas 5 showed an improvement of 10-44% in the 

antibacterial and antifungal effect. Specifically, 2 showed lower antimicrobial 

activity than CAR against At, Ba, Cmm, Rf, Aa, and Fol, whereas no significant 

differences were observed for Pst, Xap and Pu. 5 showed a stronger inhibiting 

activity than CAR against all the microorganisms with the exceptions of Fol 

(Fig.28). 

 

Figure 28. Inhibitory effect of HMT (A), CAR (B), HMT-CAR (C) and SDW (D) on the 
growth of the fungus Pu. 
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 A 

Pathogen SDW CARHMT 2 CAR:PH PH 

 χ2(p) 

 Bacteria 

At 0 a 2.55±0.10 c D 1.78±0.12 b C 0 a A 

Ba 0 a 2.27±0.03 d C 1.68±0.19 c C 0.78±0.02 b C 

Cmm 0 a 2.65±0.23 d D 1.77±0.15 c C 0.59±0.07 b C 

Pst 0 a 0.21±0.05 b A 0.25±0.02 b A 0 a A 

Rf 0 a 2.60±0.10 d D 1.85±0.05 c C 0.30±0.03 b B 

Xap 0 a 0.99±0.03 b B 0.86±0.07 b B 0 a A 

 Fungi 

Aa 0 a 2.78±0.10 b B 1.95±0.23 c  1.34±0.08 b B 

Fol 0 a 2.42±0.07 d C  2.02±0.11 c  0.08±0 b A 

Pu 0 a 4.15±0.03 c B 4.17±0.43 c  2.40±0.15 b C 

 

                                 B 

Pathogen SDW CARHMT 5 CAR:HMT HMT 

 Bacteria 

At 0 a 2.55±0.10 c D 4.50±0 d D 0.49±0.01 b C 

Ba 0 a 2.27±0.03 b C 3.10±0.03 c B 0 a A 

Cmm 0 a 2.65±0.23 c D 4.50±0 d D 0.08±0.03 b B 

Pst 0 a 0.21±0.05 b A 0.29±0.04 c A 0 a A 

Rf 0 a 2.60±0.10 c D 3.78±0.03 d C 0.11±0.01 b B 

Xap 0 a 0.99±0.03 b B 3.68±0.03 c C 0 a A 

 Fungi 

Aa 0 a 2.78±0.10 b B 3.12±0.07 c B 0 a A 

Fol 0 a 2.42±0.07 c C 2.15±0.03 b A 0 a A 

Pu 0 a 4.15±0.03 c B 5.03±0.13 d C 2.40±0.06 b B 

 

Table 13. Inhibitory effect of CARHMT, CAR:PHE, PHE (A) and of CARHMT, CAR:HMT, 
HMT  (B) on the bacterial and fungal growth. Different letters indicate significant 
differences (p<0.05) by Mann-Whitney U Test: lowercase letters refer to the analysis 
between different treatments (d.f.=3, N° samples=12); upper case letters refer to the 
analysis within each single treatment between different species of bacteria  (d.f.=5, 
N° samples=18-20) and fungi (d.f.=2, N° samples=9). 
 
 

3 and EUG did not show significant differences in the antimicrobial activity 

against all the microorganisms with the exceptions of Ba and Pu that were 
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more sensitive to 3 and EUG respectively (Table 14; A). 6 showed the 

strongest activity against At, Ba, Pst, Rf, Aa, and Fol, whereas Pu was more 

sensitive to EUG. No significant differences were detected for Cmm, and Xap 

(Table 14; B). 

 
                                A 

Pathogen SDW EUGHMT 3 EUG:PH PH 

 Bacteria 

At 0 a 1.18±0.10 b B 1.28±0.03 b C 0 a A 

Ba 0 a 0.88±0.01 b B 1.87±0.09 c E 0.78±0.02 b D 

Cmm 0 a 1.52±0.02 c C 1.43±0.04 c D 0.59±0.07 b C 

Pst 0 a 0.47±0.02 b A 0.58±0.03 b A 0 a A 

Rf 0 a 1.02+0.02 c B 1.10±0.06 c B 0.30±0.03 b B 

Xap 0 a 0.98±0.02 b B 1.02±0.06 b B 0 a A 

 Fungi 

Aa 0 a 2.19±0.01 c B 2.09±0.2 c B 1.34±0.08 b B 

Fol 0 a 1.65±0.01 c A 1.77±0.08 c A 0.08±0 b A 

Pu 0 a 5.63±0.13 d C 4.42±0.3 c C 2.4±0.15 b C 

  

                             B 

Pathogen SDW EUGHMT 6 EUG:HMT HMT 

 Bacteria 

At 0 a 1.18±0.10 c B 1.89±0.02 d C 0.49±0.01 b C 

Ba 0 a 0.88±0.01 b B 1.42±0.09 c BC 0 a A 

Cmm 0 a 1.52±0.02 c C 1.67±0.34 c C 0.08±0.03 a B 

Pst 0 a 0.47±0.02 b A 0.78±0.02 c A 0 a A 

Rf 0 a 1.02+0.02 b B 1.19±0.04 c B 0.11±0.01 a B 

Xap 0 a 0.98±0.02 b B 1.23±0.04 b B 0 a A 

 Fungi 

Aa 0 a 2.19±0.01 b B 2.42±0.03 c A 0 a A 

Fol 0 a 1.65±0.01 b A 2.14±0.04 c A 0 a A 

Pu 0 a 5.63±0.13 d C 4.5±0 c B 2.4±0.06 b B 

 

Table 14. Inhibitory effect of EUGHMT, EUG:PH, PH (A) and of EUGHMT, EUG:HMT, HMT 
(B)  on the bacterial and fungal growth. Different letters indicate significant 
differences (p<0.05) by Mann-Whitney U Test: lowercase letters refer to the analysis 
between different treatments (d.f.=3, N° samples=12); upper case letters refer to the 
analysis within each single treatment between different species of bacteria  (d.f.=5, 
N° samples=18-20) and fungi (d.f.=2, N° samples=9). 
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In sum, statistically significant improvements of antimicrobial effects were 

observed in 44% (24 over 54) of the treatments involving cocrystals, 20% (11 

over 54) of treatments involving pure EOCs whereas no significant variations 

in inhibition of microbial growth among cocrystals and EOCs were detected in 

35% (19 over 54) of the cases under investigation (about 33%). Furthermore, 

it has to be pointed out that inhibitory effects on microbial growth of 1a, 2 

and 3 might be underestimated since all tests were normalized to the amount 

of EOCs in HMT-based cocrystals which are stoichiometrically richer in EOCs 

(Table 9). Further studies are required to assess the efficacy of the three co-

crystals in vivo against plant microorganisms having different ecology and 

mechanisms of infection. 

 

3.4 CONCLUSIONS 

In conventional agriculture the use of essential oil constituents is hampered 

by physical properties, such as their poor water solubility and the 

characteristic high volatility, which strongly affects the long-term efficacy of 

these compounds. Co-crystallization was then experimented to extend the 

range of applicability of EOCs. Following the philosophy of a more sustainable 

approach, a mechanochemical solvent-free synthesis was preferred to 

standard procedure. A set of six co-crystals based on thymol, carvacrol and 

eugenol was synthesized, and an in-depth structural characterization was 

performed. Water solubility, EOCs release and bioactivity were also 

determined and results showed an increase of the water solubility for HMT-

CAR and HMT-EUG, whilst the other co-crystals preserved their hydrophobic 

character. A more controlled EOCs release was observed for co-crystals with 
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respect to the release profiles of pure substances, pointing out the crucial role 

played by co-crystallization in the long-term release of the bioactive molecule. 

Finally, the antimicrobial properties of co-crystals were tested against six 

bacteria and three fungi. Overall co-crystals’ performances were comparable 

to those shown by the pure EOCs, but in some cases a synergic effect ascribed 

to the EOC/coformer matching was observed, thus allowing an extension of 

the antimicrobial spectrum of activity. 
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LIST OF ACRONYMS AND ABBREVIATIONS 

 

SECTION 1 

CISM: Centro di servizi di Spettrometria di Massa 

Cv: cultivar 

DLS: Dynamic Light Scattering 

DOPC: 1,2-Dioleyl-sn-glycero-3-phosphocholine  

DOPE: 1,2-dioleyl-sn-glycero-3-phosphoethanolamine 

IAA: Indole-3-acetic acid 

IBA: Indole-3-butyric acid 

NAA: 1-naphtaleneacetic acid 

OM: Olive Medium 

OMP: Olive Mill Pomace 

OP: Olive Pomace 

PC: same as DOPC 

PdI: Polidispesity index 

PE: same as DOPE 

SAXS: Small Angle X-ray Scattering 

SP: Standard Procedure 

T: treatment 

ZP: Zeta Potential  

 

SECTION 2 

BLS: Bacterial Leaf Spot 

DAGRI: Department of Agriculture, Food, Environment and Forestry 

DLS: Dynamic Light Scattering 

DOPE: 1,2-dioleyl-sn-glycero-3-phosphoethanolamine 

FAMEs: Fatty Acids Methyl Esters 
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GC-MS: Gas Chromatography-Mass Spectrometry 

MIC: Minimum Inhibitory Concentration 

N: Nannochloropsis sp. 

NAG: Nutrient Glucose Agar 

NB: Non-loaded Nannochloropsis-derived nanovectors 

NT: Thymol-loaded Nannochloropsis-derived nanovectors 

NVs: Nanovectors 

OD: Optical Density 

PDA: Potato Dextrose Agar 

Pst: Pseudomonas syringe pv. tomato 

S100 B: Soybean phosphatidylcholine non-loaded nanovectors 

S100 T: Soybean phosphatidylcholine thymol-loaded nanovectors 

S100: Soybean phosphatidylcholine 

SAXS: Small Angle X-ray Scattering 

TAGs: Triacylglycerides 

Xcv: Xanthomonas campestris pv. vesicatoria  

 

SECTION 3 

Aa: Alternaria alternata 

Ba: Bacillus amyloliquefaciens (Ba M123) 

CAR: Carvacrol 

Cmm: Clavibacter michiganensis subsp. Michiganensis 

EOC(s): Essential Oil Constituent(s) 

EUG: Eugenol 

Fol: Fusarium oxysporum f.sp. lycopersici  

HBP: Hydrogen Bond Propensity 

HMT: Hexamethylenetetramine 
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IPSP-CNR: Istituto per la Protezione Sostenibile delle Piante – Consiglio Nazionale 

delle Ricerche 

MC score: Multi-component score 

NAG: Nutrient Glucose Agar 

OD: Optical Density 

OECD: Organization for Economic Co-operation and Development 

PDA: Potato Dextrose Agar 

PHE: Phenazine 

Pst: Pseudomonas syringae pv. tomato (Pst 50) 

Pu: Pythium ultimum 

Rf: Rhodococcus fascians (Rf LMG 3605)  

RIB: Riboflavin 

SDW: Sterile Distilled Water 

SS: Saline Solution 

THE: Theobromine 

THY: Thymol 

VAN: Vanillin  

Xap: Xanthomonas arboricola pv. pruni (Xap Lc) 
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