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Understanding the mechanisms of immune tolerance is currently one of the
most important challenges of scientific research. Pregnancy affects the immune
system balance, leading the host to tolerate embryo alloantigens. Previous reports
demonstrated that β-adrenergic receptor (β-AR) signaling promotes immune tolerance
by modulation of NK and Treg, mainly through the activation of β2-ARs, but recently
we have demonstrated that also β3-ARs induce an immune-tolerant phenotype in mice
bearing melanoma. In this report, we demonstrate that β3-ARs support host immune
tolerance in the maternal microenvironment by modulating the same immune cells
populations as recently demonstrated in cancer. Considering that β3-ARs are modulated
by oxygen levels, we hypothesize that hypoxia, through the upregulation of β3-AR,
promotes the biological shift toward a tolerant immunophenotype and that this is the
same trick that embryo and cancer use to create an aura of immune-tolerance in
a competent immune environment. This study confirms the analogies between fetal
development and tumor progression and suggests that the expression of β3-ARs
represents one of the strategies to induce fetal and tumor immune tolerance.

Keywords: beta-blockers, beta-adrenergic, fetal immune tolerance, cancer immune-tolerance, embryo
implantation

INTRODUCTION

Starting From Immune Tolerance
Immunological privileges such as immune tolerance represent the most powerful mechanism
that preserves life. Understanding the mechanism of immune tolerance can lead to new strategic
therapies in several contexts, as in minimizing the use of toxic drugs in transplants and in
establishing more effective immune responses and vaccines for cancers and infection.

Abbreviations: β-ARs, β-adrenergic receptors; APC, antigen-presenting cells; cNK, conventional natural killer; COX-2,
cyclooxygenase-2; CTLA-4, cytotoxic T-lymphocyte antigen-4; dNK, decidual NK; FasL, Fas ligand; HLAs, human leukocyte
antigens; IDO, indoleamine-2,3-dioxygenase; MDSC, myeloid derived suppressor cells; NK, natural killer; NKG2DL, NKG2D
ligand; NFkB, nuclear factor-k B; PD-L1, programmed cell death-1 (PD-1)/PD-ligand 1; Treg, regulatory T cells; TGF-β,
transforming growth factor-β; TME tumor microenvironment.
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Cancer and embryo share similar mechanisms to sustain their
progression: both (i) grow in a hypoxic and catecholamine-rich
environment and (ii) tolerate a “foreign body” by creating an
immune-tolerant microenvironment.

Immune Tolerance in Fetus and Cancer
The maternal immune tolerance is one of the most intriguing and
powerful mechanisms in current biology. During pregnancy, the
maternal immune system actively tolerates embryo alloantigens,
leading to fetus development (1). At the beginning of pregnancy,
after conception, the endometrium converts into decidua to
promote embryo implantation and the interface between fetus
and maternal tissues becomes an immunologically privileged
site (2). Several immune cells in the subpopulation recruited
at the fetal–maternal interface are involved in maternal
immune tolerance.

Recent data show that successful pregnancy requires not
only fetal but also placental immune tolerance, contributing
to the promotion of an immune-tolerant environment for the
fetus. The human fetus is continuously exposed to self-antigens,
maternal alloantigens, and nutritional antigens transferred across
the placenta that its immune system must learn to tolerate.
Moreover, the human placenta, although not an immune organ
by definition, is highly active in promoting an immune-tolerant
environment. Several different immune subpopulations are
currently under investigation for the study of immune tolerance
in both pregnant women and cancer patients. Actually, cancer
is a foreign body for the host and thus different immune
subpopulations are needed to sustain an immune-tolerant
microenvironment. Here, we proposed a similarity between
placenta and tumor microenvironment (TME) in promoting
immune tolerance.

Among the different subpopulations involved in fetal and
cancer immune tolerance, myeloid-derived suppressor cells
(MDSCs) are activated at the fetal–maternal interface by
interaction with trophoblast cells, and suppress T cell activation
promoting Foxp3 expansion. In cancer, MDSCs induced the
upregulation of IL-10 that downregulates macrophage IL-6 and
IL-12 and tumor necrosis factor (TNFα) production, thereby
polarizing tumor-associated macrophages (TAMs) toward a
tumor-promoting M2 phenotype (3–5). Furthermore, cancer
MDSCs block natural killer (NK) activity and their INF-γ
secretion leads to anergic NK (6). Recent studies have shown that
MDSCs and TAMs can promote angiogenesis by the induction of
matrix metallopeptidase 9 (MMP9), vascular endothelial growth
factor (VEGF), and IL-1β (7–13).

Regulatory T cells (Treg) are the predominant cells in both
pregnancy and cancer and confer immunologic protection to
embryo and cancer. Immune-suppressive maternal Foxp3+
Treg cells, detected at the fetal–maternal interface are
critical to create and maintain a fetal–maternal-tolerant
microenvironment by blocking alloreactive Th1 cells (14, 15). An
altered Th1/Th2 cytokine balance with Th2 predominance and
T-cell transient anergy makes the placental microenvironment
an immunologically privileged site (16). Moreover, Treg cells
participate in indoleamine-2,3-dioxygenase (IDO) (17) and

placental heme oxygenase (HO)-inducible isoform expression,
engaged in Foxp3-mediated immune suppression (18).

Recently, it has been reported that Treg cells accumulated in
the human and murine decidua constitutively express cytotoxic
T-lymphocyte antigen 4 (CTLA-4) (19, 20) and inhibit the
interactions between CD28 expressed on T cells and their ligands,
B7-1 and B7-2, expressed on antigen-presenting cells, such as
macrophages or dendritic cells. Blockade of this interaction has
been shown to induce antigen-specific peripheral tolerance (21–
23). Fetal-specific Treg cells persist also after delivery, maintain
tolerance to preexisting fetal antigens, and rapidly re-accumulate
during subsequent pregnancy. Therefore, pregnancy imprints a
sort of regulatory memory through the specific maternal Treg
cells (24). Interestingly, a high number of maternal cells cross the
placenta and, in fetal lymphoid tissues, induce the development
of Treg cells (25).

In the human fetus, Treg cells are precociously detected,
as early as 13 weeks of gestation (26). Their prevalence is
significantly higher in fetal lymphoid tissues (on average, 15–20%
of CD4+ T cells) than that observed in adult lymph nodes (usually
less than 5%), and these cells are able to suppress the proliferation
and function of both CD4+ and CD8+ T cells (27). Moreover,
Treg cells induce immune suppression through the production of
inhibitory cytokines, such as Transforming Growth Factor beta
(TGF-β), IL-10, and IL-35 (28, 29), depleting the availability of
IL-2, or killing the effector or Antigen-Presenting Cells (APC),
thanks to the upregulation of perforin, production of granzyme
B, or interaction with Fas/FasL (Fas Ligand) (30).

Furthermore, Treg cells are activated by the ICOS (inducible
T−cell co-stimulator)−ICOSL (ICOS ligand) and programmed
cell death-1 (PD−1)/PD-ligand 1 (PD-L1) pathways in
conjunction with the inhibition of effector T cells by the
lymphocyte activation gene−3 (LAG−3)−MHC class II pathway
(31). The interaction between CTLA−4 expressed by Treg
cells and CD80/86 on APCs promotes IDO secretion (32).
It is well known that the expression of IDO and tryptophan
2,3-dioxygenase (TDO) leads to tryptophan depletion in the
TME and causes T cell dysfunction (33).

Natural killer cells represent the majority of immune cells
present in the fetal–maternal interface of the pregnant uterus,
where they show a specific function and a peculiar phenotype
during pregnancy (34). While circulating conventional natural
killer (cNK) cells are cytotoxic lymphoid cells programmed
to have an active role in promoting leukocyte activation and
immune surveillance against infections and cancer (35), distinct
subsets of resident NK cells have been described in specific
tissues, such as the uterus (36). In contrast to cNK cells, NK cells
detected in the decidua during pregnancy, referred to as decidual
NK (dNK), appear to be primarily responsible for promoting
placentation (37), as suggested by the expression of specific
inhibitory receptors (KIR) and poor cytotoxic activity (38).

Decidual NK show a distinct phenotype compared to
peripheral blood. In fact, despite that dNK have abundant
intracellular granules containing granzymes, granulysin, and
perforin, they are poorly cytotoxic, probably as a consequence
of the recognition of human leukocyte antigens-alpha chain E
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(HLA-E) expressed on trophoblasts (39), even though dNK cell
cytotoxicity can increase in an inflammatory environment
(40). dNK appear to be involved in the promotion of
immune tolerance, thanks to the interaction with decidual
myelomonocytic CD14(+) cells which induce Treg cell
expansion, through the expression of IDO, the production
of TGF-β, or an interaction mediated by CTLA-4 (41).

Moreover, NK infiltration represents instead a positive
prognostic marker in cancer cells, due to their cytotoxic activity
(42–44), but unfortunately, frequently the number of infiltrated
NK is reduced, and their activity is not sufficient to counteract
tumor progression (45, 46).

β-Adrenergic System and Immune
Regulation
Stress, catecholamine synthesis, and β-adrenergic receptors
(β-ARs) have long been investigated as regulators of many
physiological processes, including cardiac and pulmonary
physiology and immune responses. The effects of catecholamine
epinephrine and norepinephrine are mediated by β-ARs which
belong to the G-protein-coupled receptors family and classified
into three subtypes widely expressed in various tissues: β

1-, β2-, and β3-AR. It is well known that β-AR signaling
is involved in the regulation of several cellular processes
that contribute to cancer initiation and progression (47–
50): in particular, downregulation of antitumor responses and
accumulation of immunosuppressive cells, including TAMs and
MDSCs, is induced by stressful conditions. Several in vitro and
in vivo studies have demonstrated the behavioral stress and
catecholamine involvement in promoting cancer progression
through decreased NK activity and immune suppressive effects
(51–57). Norepinephrine, the β-AR agonist isoproterenol, and
the β2-AR selective-agonist metaproterenol inhibit NK cell
cytotoxic activity in splenocytes, by downregulating perforin,
granzyme B, and IFN-γ at the mRNA and protein levels
(58). Similarly, stress due to immobilization in rats induces an
upregulation of catecholamines and, consequently, a reduction
in NK cytotoxicity (59). Moreover, Shakhar G. et al. have shown
that β-AR agonism remarkably suppresses NK activity and
this compromises host resistance to mammary adenocarcinoma
MADB106, an NK-sensitive tumor, in rats (60). The same
result is observed in CRNK-16 leukemia where stress leads
to suppression of NK activity sufficient to promote tumor
development (61). In human patients, apparent conflicting
results of clinical studies have been reported: elevated NK activity
was reported after epinephrine infusion (62), open-heart surgery
(63), or physical exercise (64). However, subsequent studies
suggested that this increase was attributable to a marked, but
transitory, increase in the number of circulating NK cells, rather
than to an increase in activity per NK cells (65). The increase
in circulating number of NK cells occurs during the time of
elevated catecholamine levels and dissipates shortly after their
decline (66).

Recently, β2-AR has been detected on Treg cells. β2-AR
signaling, following norepinephrine stimulation, improves the
suppressive properties of Treg cells, associated with a decrease

in IL-2 expression, and increases the expression of CTLA-4,
a molecule that promotes T-cell anergy, improving Treg cell
suppressive function in a PKA-dependent manner. In addition,
β2-AR signaling stimulates Treg-cell-mediated conversion of
CD4+ Foxp3− cells (memory T-cells) into Foxp3+ iTreg
(induced Treg) cells, in a PKA-dependent manner, improving
Treg cells’ suppressive function (67). Moreover, MDSCs have
been reported to be increased in mice exposed to chronic stress
(68) and in patients who reported high levels of stress, suggesting
that they may be a contributing factor to the immune suppression
as observed in breast cancer patients (69). Experimental studies
demonstrated that in vitro treatment with norepinephrine
significantly enhanced the expansion of the MDSC population,
resulting in suppression of T-cell proliferation, suggesting a
role of catecholamines in myeloid cell differentiation and
function (70).

In summary, the current literature suggests that β-adrenergic
activation promotes immunosuppression, as indirectly
confirmed by the increased survival rate and the improved
response to immunotherapy in melanoma patients (71).
However, so far, the focus has been almost exclusively on β2-AR.
Recently, a great interest has accrued regarding the role played
by the β3-AR in the promotion of fetal and cancer growth and in
the induction of an immune-tolerant environment.

β-Adrenergic System and Fetal and
Cancer Development
The role of β-adrenergic signaling in pregnancy and the cancer
microenvironment is widely reported (47, 72, 73).

Catecholamines are required for mouse fetal development
and postnatal survival, as demonstrated by lethality at mid-
gestation after blocking their biosynthetic pathway (74, 75).
Moreover, during fetal development, catecholamines modulate
fetal circulation in hypoxic conditions by reducing the fetal heart
rate (72, 73) and preserve heart and brain glucose homeostasis,
and their increase at birth is essential to neonatal adaptation, for
example to facilitate delivery and induce surfactant production
(72, 73, 76).

Several studies show that catecholamines released during
stress and β-AR signaling are able to regulate multiple cellular
processes that accelerate tumor progression, including cancer
cell growth, migration, and angiogenesis, leading to reduction
in patient overall survival (47, 51). Among β-ARs, β2-AR
is considered the principal receptor subtype involved in the
modulation of catecholamine effect in cancer (77), and it may
explain why non-selective β-AR blockers (acting on β1- and β2-
AR) provide protection against different types of cancer (78–80).

β3-Adrenergic Receptor in Fetal and
Cancer Development
The roles played by β3-AR in embryonic development and
fetal life remain poorly understood. However, studies report
β3-AR expression in human and animal germ cells, where it
induces motility (81), in pre-implantation embryos (82, 83),
during the first stages of embryogenesis (84), in embryo tissues,
and in placenta (85, 86). Moreover, β3-AR is upregulated in
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the human pregnant myometrium where inhibits spontaneous
contractions and represents the predominant subtype over β2-AR
(87, 88). These data suggest a role of β3-ARs in the promotion of
fecundation, embryo implantation, and growth.

Recently, a growing number of studies have demonstrated
the emerging role of β3-AR signaling in cancer development
and progression. β3-AR expression has been reported in
different tumors, including colon cancer (89), leukemia
cells (90), and human vascular tumors (91). In addition,
the Trp64Arg polymorphism in ADRB3 (β3-AR gene) was
reported to be associated with susceptibility to endometrial
cancer and decreased risk for breast cancer, especially when
associated to Gln27Glu polymorphism in ADRB2 (β2-AR
gene) (92, 93). A recent study in β1-, β2-AR, and β1/β2-
AR knockout mice has suggested that not only β2- but
also β3-AR result to be actively involved in prostate cancer
development (94). Moreover, in melanoma B16F10 cells, we
have demonstrated that β3-AR is expressed and significantly
upregulated after the exposure to hypoxia, promoting VEGF
production in a nitric oxide (NO)-mediated manner. In mice
bearing melanoma, we have recently reported that β3-AR
blockade reduces tumor volume and the development of
tumor vasculature, through decreased cell proliferation and
increased apoptosis of melanoma cells (95–97). Recently,
the correlation between β3-AR expression and melanoma
aggressiveness has been demonstrated in human melanoma
tissue samples. This study, for the first time, detected β-AR
expression not only on the surface of cancer cells but also
in stromal, inflammatory, and vascular cells of TME, where
β3-AR was able to enhance melanoma cells, to respond to
environmental stimuli, to increase cancer cell motility, and to
induce stem-like traits. Finally, β3-AR stimulation in melanoma
accessory cells promotes stromal reactivity by inducing
pro-inflammatory cytokine production and vasculogenesis,
sustaining melanoma growth and aggressiveness, through the
ability of pro-inflammatory cytokines to recruit circulating
stromal cell precursors (98).

Hypothesis
Is β3-Adrenergic Receptor Functional for Cancer and
Fetus Immune Tolerance?
β3-ARs located in the endothelium of human coronary arteries,
for example, are 2- to 3-fold more expressed in failing compared
with non-failing canine (99) and human hearts (100) and induce
an adrenergic-induced vasodilatation through the NO pathway
(101). These data suggest that β3-AR upregulation may represent
a compensatory mechanism, induced by hypoxia, able to preserve
myocardial perfusion during ischemia (101). Similarly, β3-ARs
are upregulated in different hypoxic β1 scenarios, such as
the mouse model of oxygen-induced retinopathy, the most
widely used animal model of retinopathy of prematurity,
during the hypoxic phase (102, 103). Also, in this case
the demonstration that β3-ARs modulate VEGF release in
response to hypoxia through the NO pathway confirms the
compensatory mechanism of these receptors, useful to correct
retinal hypoxia (104). In conclusion, hypoxia appears to be the

ideal environment to induce β3-AR expression, and this is a
further similarity between embryo and cancer, where β3-ARs
are significantly upregulated under hypoxia conditions (91–
98, 105).

Since the involvement of β-ARs in both embryo and cancer
development, the similarities between fetal and cancer immune
tolerance and, finally, the role, recently demonstrated, of β3-ARs
in the promotion of cancer immune escape, we supposed that β3-
ARs played a pivotal role also in the regulation of fetal tolerance.

Our recent study, performed in a mouse model of melanoma,
has investigated the potential role of β3-ARs in immune-
tolerance regulation, evaluating the effect of β-AR blockade
on the number and activity of immune cell subpopulations
(Treg, NK, CD8, MDSC, macrophages, and neutrophils). First,
we described that both β2- and β3-ARs were expressed in
mouse peripheral blood mononuclear cells, but only β3-ARs
showed a reversible upregulation under hypoxic conditions,
followed by a fast downregulation after oxygen re-exposure.
Interestingly, β3-ARs were significantly upregulated in NK,
Treg, and MDSC infiltrating the tumor if compared with
circulating cells. In this study, antagonism of both genetic
and pharmacologic β3-ARs reduced melanoma growth in vivo,
and this effect was concomitant with a significant increase in
NK and CD8 number and cytotoxicity and a strong reduction
in Treg and MDSC within the tumor mass (105). Treatment
with β3-AR antagonists modified the environment rich in M2
macrophages and N2 neutrophils, enhancers of immune escape
in an immune-competent M1 and M2 TME. This study did not
evaluate specifically the cause–effect relationships between tumor
cell death and immune modulation. However, the observation
that pretreatment of PBMC under hypoxia with a selective
β3-AR antagonist induced an increase in tumor cell death
suggests a direct effect of β3-AR present in the immune cell
subpopulation (105).

We hypothesize that hypoxia, through the upregulation
of β3-AR, promotes the biological shift toward a tolerant
immunophenotype and that this is the same trick that embryo
and cancer use to create an aura of immune tolerance in a
competent immune environment.

MATERIALS AND METHODS

In vivo Experiment on Pregnant Mice
In vivo experiments were carried out according to the European
Union (EU) guidelines for animal care procedures and the
Italian legislation (DLgs 26/2014) application of the EU
Directive 2010/63/EU. The pregnancy model was established
using C57BL/6 mice, co-caging fertile male with adult females
overnight. The following morning after the vaginal plug,
detection was designated as day 0.5 of pregnancy. Pregnant
mice were subcutaneously treated twice a day with SR59230A,
CAS: 174689-39-5 (10 mg/kg, Sigma-Aldrich, Saint Louis, MO,
United States), or with a physiological solution (vehicle) starting
from day 12.5 to day 17.5 of pregnancy. At day 17.5 of pregnancy,
8 dams were sacrificed and the placentas and the maternal
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deciduae were collected. Briefly, the implantation sites were
dissected from the uterus; each placenta/decidua was separated
from both the uterine wall and the chorioallantoic membrane and
the decidua was gently detached from the placental surface. Eight
dams were immediately euthanized after the delivery, and the
placentas were rapidly collected and washed with a physiological
solution. Placentas were digested in an RPMI 1640 medium
containing collagenase D and DNase I for 30 min at 37◦C. The
total suspension was filtrated through a 70-µm-mesh strainer and
centrifuged in conical polypropylene tubes containing Ficoll–
Hystopaque. The gradient of mononuclear cells was washed and
used for cytofluorimetric analysis.

Real-Time and Hypoxic Stimulation
For the evaluation of β3-AR expression under normoxic
and hypoxic conditions, PBMC were isolated from mouse
placental blood with Ficoll–Hystopaque gradient. Then, cells
were incubated for 24 h under standard conditions (at 37◦C in
a humidified incubator with 5% CO2) at 21% O2 for normoxia
or 1% O2 hypoxia. After 24 h, cells were lysed and cDNA was
obtained from 500 ng of total RNA using iScript gDNA Clear
cDNA Synthesis Kit (Bio-Rad, United States). The expression
levels of the Adrb3 gene were analyzed through quantitative real-
time PCR (qRT-PCR) with the use of SsoAdvanced Universal
SYBR Green Supermix (Bio-Rad, United States) according to
the manufacturer’s instruction and the specific primers (Bio-
Rad Assay ID: qMmuCED0001037) in a CFX96 Touch System
instrument (Bio-Rad, United States). The normalization was
performed using Tbp and Hprt as housekeeping genes (Bio-Rad
Assay ID: qMmuCID0040542 and qMmuCID0005679), and the
analysis was done using the11 Ct method.

Flow Cytometry
For the evaluation of β3-AR expression on MDSC, NK, and Treg,
cells were isolated from mouse placenta and 50 µl of resuspended
cells was marked with β3-AR antibody Ab94506. After 15 min
of incubation, cells were washed and resuspended in PBS buffer
and marked with 1 µl of FITC-conjugated secondary antibody.
Then, cells were washed and resuspended in 200 µl of PBS
for FACS analysis.

For MDSC, NK, and Treg marker expression, cells isolated
from mouse placenta were incubated and stained with
appropriate dilutions of various combinations of the following
fluorochrome-conjugated antibodies: anti-CD45-VioBlue or
VioGreen (130-110-664, 130-110-665), anti-NKp46-FITC
(130-102-300), anti-CD8a-VioBlue (130-102-431), anti-CD3e
(17A2)-PE Vio 770 (130-109-839), anti-CD107a-PE (130-
102-219), anti-CD161 (NK1.1)-PercCP Vio700 (130-103-963),
anti-CD25-PE (130-102-593), anti-CD4-PerCP Vio700 (130-123-
213), anti-CD127-APC (130-102-529), anti-CD11b-APC Vio770
(130-109-288), anti-Gr1-PE (130-102-426), anti-CD106-PE (130-
116-323), and anti-CD49b-PE (130-108-174). All antibodies were
obtained from Miltenyi Biotec, Gladbach, Germany.

Gating strategies for cell detection are reported in
Supplementary Figure S1.

Cell Viability
To distinguish dead from living cells, Viobility 405/520 (120-
028-574), and 488/520 (120-028-575) Fixable Dyes obtained from
Miltenyi Biotec and analyzed by flow cytometry were used.

Statistical Analysis
Statistical analysis was performed using GraphPad Prism
software by one-way and two-way analysis of variance (ANOVA),
followed by the post hoc Bonferroni’s test for comparisons of
multiple groups. Values are presented as mean ± SEM, n = 4 per
group. ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001, ∗∗∗∗P < 0.0001, and
SR59230a-treated mice compared with vehicles.

RESULTS

Since β3-AR and catecholamine are involved in immune
tolerance, we evaluated the expression of this receptor in
placental tissues compared with blood samples of healthy mice.
Data shown in Figure 1 reveals an increased expression of β3-
AR in MDSC, NK, and Treg populations of placenta tissues
compared to blood samples.

To identify whether β3-ARs regulate immune tolerance also
in vivo, female mice at the second week of pregnancy received
β3-AR-antagonist SR59230a. Treatment was started on day 12
and continued for 5 days. The animals were sacrificed on day
17. β3-AR blockade increased NK number and cytotoxicity
(evaluated by expression of CD107a) and attenuated MDSC
and Treg number in mouse placentas (Figure 2). In vivo data
confirm that β3-ARs support host immune tolerance in the
maternal microenvironment by modulating different immune
cell populations.

In vivo β3-AR blockade had a different effect on decidual cells
(Figure 3). There is no significant variation in NK expression.
Instead, the deciduous NK and dNK (evaluated by the expression
of CD49b) show an opposite trend: their expression is increased
with the β3-AR blockade. This response agrees with the different
phenotype of the dNK reported in literature. It was not possible to
evaluate any changes in decidual MDSC expression because this
population was not found. As regards the other populations, the
data showed an increase in CD8 and a decrease in Treg cells. The
increase in CD8 shows an involvement of T cell toxicity.

To clarify a possible role on the effect of hypoxia on β3-ARs,
we evaluated the expression of the ADRB3 gene in mice PBMC
through PCR real time. Data reported in Figure 4A show an
increase in ADRB3.

To demonstrate the crucial role of hypoxia, we decided to
repeat the experiment on mouse placentas immediately after
birth, to indirectly demonstrate the hypoxic role. Indeed, after
birth the effects of hypoxia in the last stages of pregnancy are no
longer found. As results showed, SR59230A did not change the
immune population compared with the analysis made in placenta
at 17 day (Figure 4B).

In conclusion, this explorative study suggests that this
receptor, usually expressed in hypoxic environments, participates
in the local origin of fetal immune tolerance (Figure 5).
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FIGURE 1 | Placental tissues show β3-AR expression increased respect to placental blood samples. FACS quantification of β3-AR expression in NK, Treg, and
MDSC. NK (NKp46+/NK1.1 + gated on CD3-/CD45+/β3-AR+), Treg (CD25+/CD127–/β3-AR + gated on CD45+/CD4+) and MDSC (CD11b+, GR1 + β3-AR + gated
on CD45+) of placental tissues compared with blood samples of healthy mice. *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001, placental tissues compared
with placenta blood samples.

FIGURE 2 | β3-AR antagonism in vivo reverts immune-tolerant phenotype in placenta. Analysis of immunologic phenotype in pregnant mouse placenta (n = 4) at day
17 of pregnancy. FACS quantification of NK (NKp46+/NK1.1 + gated on CD3-/CD45+), Treg (CD25+/CD127– gated on CD45+/CD4+), and MDSC (CD11b+,
GR1 + gated on CD45+) in pregnant mice treated with SR59230a. *P < 0.05, **P < 0.01, and ****P < 0.0001, treated mice compared with vehicle mice.
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FIGURE 3 | β3-AR antagonism in vivo reverts immune-tolerant phenotype in decidua. Analysis of immunologic phenotype in pregnant mouse decidua (n = 4) at
2 weeks of pregnancy. FACS quantification of NK (NKp46+/NK1.1 + gated on CD3-/CD45+, CD49b), Treg (CD25+/CD127– gated on CD45+/CD4+) in pregnant
mice treated with SR59230a. *P < 0.05, **P < 0.01, and ***P < 0.001, treated mice compared with vehicle mice.

Further studies need to be conducted for understanding the real
role of β 3-ARs.

DISCUSSION

Recently, β3-ARs have been demonstrated to be involved in
cancer-related immune tolerance under hypoxic conditions
(105). It is well known that hypoxia plays a crucial role in
fetus development and in cancer progression, participating
in processes such as angiogenesis, apoptosis, cell migration,
invasion, and metastasis (106, 107). Actually, early human
placental tissue develops in a physiologically hypoxic
environment, such as required to induce specific placental
metabolic activities (108). Moreover, β3-ARs are upregulated and
represent the predominant subtype over β2-ARs in the human
pregnant myometrium (87), where they inhibit spontaneous
contractions (88). Here we postulate that the relationship linking
hypoxic upregulation of β3-ARs and promotion of immune
tolerance recently demonstrated to enhance cancer progression
(105) actually follows the same mechanisms originally foreseen
to guarantee fetal tolerance.

Since β3-ARs is involved in various hypoxic scenarios in
pathological and physiological states, including pregnancy, in this
work we have shown that β3-ARs is strongly induced in the
immune subpopulations responsible for immune tolerance and
that occurs because the intrauterine environment is hypoxic.

In this respect, we have recently demonstrated that β3-ARs
are actively involved in all the different scenarios where hypoxia

induces important steps necessary to ensure progression of
cancer and/or embryo.

β3-ARs, in fact, participate in the promotion of angiogenesis
(necessary for tumor progression but also for placenta
development), through an axis NO-VEGF mediated (95–98, 105).

Recently, our studies showed that β3-ARs are actively involved
in the stimulation of a metabolic shift (necessary in the
development of a metabolism specifically programmed to live
in a hypoxic environment) through the promotion of aerobic
glycolysis (109), yet another common feature shared by early
preimplantation mammalian embryo (110), decidua during early
pregnancy (111), and tumors (112, 113). Both cancer cells and
embryos increase the uptake of glucose and the expression
of glycolytic enzymes to obtain energy for growth (Warburg
effect). This metabolic shift favors their proliferative activity
since this metabolic pathway produces a large number of
useful intermediates to secondary biosynthetic pathways and
induces an increased export of lactate, useful to facilitate the
trophoblast or tumor infiltration (114). It has been reported
that both in cancer and embryonic stem cells, β3-ARs promote
this metabolic shift, not only inducing the specific glycolytic
cytoplasmic enzymes but also promoting the expression of UCP-2
(uncoupling protein-2) responsible for a reduced mitochondrial
activity and inhibition of mitochondrial reactive oxygen species
production (109). Interestingly, β3-ARs are highly expressed in
cancer stem cells, and our studies in melanoma have clearly
demonstrated that β3-ARs are involved in the enhancement
stem-like traits, such as CD133, and CD20 expression and P1
melanosphere formation (98).
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FIGURE 4 | Hypoxia induces an increased expression of ADRB3 and β3-AR antagonism in vivo promotes a different immune-tolerant phenotype in placenta after
birth. (A) ABRB3 gene expression analyzed by quantitative real-time PCR in mice PBMC isolated from placental blood and incubated for 24 h under normoxic (21%
O2) and hypoxic (1% O2) conditions. (B) Analysis of immunologic phenotype in pregnant mouse placenta (n = 4) after birth. FACS quantification of NK
(NKp46+/NK1.1 + gated on CD3-/CD45+), Treg (CD25 + gated on CD45+/CD4+), and MDSC (CD11b+, GR1 + gated on CD45+) in pregnant mice treated with
SR59230a. ***P < 0.001, treated mice compared with vehicle mice.

More recently, β3-ARs have been demonstrated to be related
with the maintenance of an undifferentiated state also in
neuroblastoma cells (115). These data are in line with the
demonstration that β3-ARs are precociously expressed in the

first phases of embryogenesis (84). We hypothesize that during
the first phases of embryogenesis, the strong hypoxia induces
a precocious expression of β3-ARs that maintains embryo in
an undifferentiated state. As pregnancy evolves, the placentation
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FIGURE 5 | Supposed β3-AR blockade involvement in immune tolerance process. Schematic representation of embryo and cancer immune-tolerance regulation by
β3-ARs.

induces a progressive increase in oxygen levels, and this
represents the signal for a reduction in the expression of β3-ARs,
and therefore, the induction of differentiation. Therefore, β3-ARs
appear again to play a similar role both in cancer and embryo.
Finally, this study provides the first data demonstrating how
β3-AR blockage can modulate distinct immune cell populations
involved in the immune tolerance process during pregnancy.
These data are consistent with those recently demonstrated
around and within the tumor (105). If these data will be
confirmed and supported by further experiments (for example
in the early stages of pregnancy), it will be possible to
imagine a decisive role of β3-AR in promoting fetal and tumor
immune tolerance.

Limitations and Perspectives
There are several limitations in this study.

The exploratory nature of this research, aimed at evaluating
a possible role of the β3-ARs in the modulation of the cells
involved in fetal immunotolerance, is confirmed by the limited
number of animals involved. It is therefore evident that a
much larger number of experiments are required to confirm the
reproducibility of our data.

Inbred mice were chosen because of the high reproducibility
of results that allowed reducing sample size, and therefore
the number of animals used (116). The choice of this animal
model deserves criticism. In fact, this study was performed on
a simplified pregnancy model, between syngeneic animals with
restricted polygenic diversity. However, in C57BL/6J pregnant
mice, immune tolerance is preserved and therefore this mouse

strain can represent a valid model for exploratory studies (117).
Rather, the demonstration that the blockade of β3-ARs induces
a sensitive modulation of the cells involved in fetal immune
tolerance in this “low immunologic impact” model could suggest
an even more relevant impact in allogeneic pregnancies. Also
in this case, the exploratory role of this study is evident,
and it therefore becomes necessary to repeat this study in
allogeneic pregnancies.

In this study, we decided to treat mice with the β3-AR
antagonist during the second week of gestation. Also, this choice
may appear legitimately questionable and criticizable, especially
if our hypothesis envisages hypoxia as a trigger for modulating
the immune phenotype. In fact, if the oxygenation of the
murine placenta behaved like the human placenta, with a positive
correlation between placental oxygenation and gestational age,
our hypothesis should be tested at an early stage of pregnancy
(108). However, the oxygenation of the murine placenta does
not undergo particular variations in the period between 10 and
18 days of pregnancy (118). In contrast, the lowest oxygen values
appear to be observed around the eighteenth day of pregnancy
(119). These observations therefore legitimize our choice of
intervention timing.

Finally, the adoption of this model did not make it possible to
evaluate whether β3-AR blockade at an early stage of pregnancy
could induce an increased abortion rate, essential information
to evaluate the relevance of this receptor for tolerance induction
in vivo and to evaluate a possible role in the implantation phase.

The significant limitations of this study require further
investigation with a larger number of experiments.
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CONCLUSION

In conclusion, this study presents a new hypothesis and a new
interpretation on the development of fetal and tumor immune
tolerance. Cancer appears to promote immune tolerance by
using the same molecular strategy (mainly β3-AR-mediated)
adopted by the embryo and fetus. In this light, TME might
act like placental tissue, and cancer might be a disease that
exploits the same strategies that allow the embryo to grow.
Furthermore, this study indicates that the TME reactivates fetal
competences, including immunosuppression, predominantly
through the activation of β 3-ARs.

Although clinical benefits are currently expected by the
addition of available non-selective β-blockers, in the near future
β3-AR blockade could represent a more effective strategy to
overcome immunoediting.
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