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Evaluation of the health impacts of the 1990
Clean Air Act Amendments using causal

inference and machine learning

Rachel C. Nethery1, Fabrizia Mealli2, Jason D. Sacks3, Francesca Dominici1 ∗

Abstract

We develop a causal inference approach to estimate the number of adverse health
events that were prevented due to changes in exposure to multiple pollutants at-
tributable to a large-scale air quality intervention/regulation, with a focus on the
1990 Clean Air Act Amendments (CAAA). We introduce a causal estimand called
the Total Events Avoided (TEA) by the regulation, defined as the difference in the
number of health events expected under the no-regulation pollution exposures and the
number observed with-regulation. We propose matching and machine learning meth-
ods that leverage population-level pollution and health data to estimate the TEA.
Our approach improves upon traditional methods for regulation health impact anal-
yses by formalizing causal identifying assumptions, utilizing population-level data,
minimizing parametric assumptions, and collectively analyzing multiple pollutants.
To reduce model-dependence, our approach estimates cumulative health impacts in
the subset of regions with projected no-regulation features lying within the support of
the observed with-regulation data, thereby providing a conservative but data-driven
assessment to complement traditional parametric approaches. We analyze the health
impacts of the CAAA in the US Medicare population in the year 2000, and our
estimates suggest that large numbers of cardiovascular and dementia-related hospi-
talizations were avoided due to CAAA-attributable changes in pollution exposure.

Keywords: Matching, Bayesian Additive Regression Trees, Counterfactual Pollution Expo-
sures, 1990 Clean Air Act Amendments
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1 Introduction

In its 2011 cost-benefit analysis of the 1990 Clean Air Act Amendments (CAAA), the

United States Environmental Protection Agency (EPA) estimates that the total direct

costs of compliance in the year 2000 were nearly $20 billion, and it anticipates that these

costs will increase to over $65 billion by 2020 (US EPA, 2011). The CAAA is an expansion

of the 1970 Clean Air Act, and it has prompted the enactment of numerous new regulatory

programs, both at national and local levels, to ensure that pollution emissions limits are

observed and that air quality standards are being met (see Henneman et al. (2019) for a

summary). Hereafter, for simplicity we use the term CAAA to refer to the set of regulations

put in place to adhere to the law. While the EPA estimates that the economic benefits of

the CAAA dwarf the costs (estimated 2000 benefits $770 billion, estimated 2020 benefits

$2 trillion), the increasing compliance costs call for continued evaluations of the effects of

the CAAA using the most advanced, rigorous methods. Of particular interest to the public

are the health impacts of the CAAA.

Traditionally, assessments of the health impacts of large-scale regulations, including

assessments of the CAAA, have relied on the combination of simulated air quality models

and pollutant-health exposure-response functions (ERF). These assessments have relied

on various tools including the World Health Organization’s AirQ+ software (WHO, 2019)

and EPA’s Environmental Benefits Mapping and Analysis Program - Community Edition

(BenMAP-CE) software (US EPA, 2011; Sacks et al., 2018). For example, when examining

a regulation within BenMAP-CE, atmospheric chemistry modeling is first used to estimate

concentrations of a pollutant on a grid across the area of interest in a post-regulation

year under (1) the factual/observed scenario of regulation implementation and (2) the

counterfactual/unobserved scenario of no regulation (hereafter referred to as factual and
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counterfactual exposures). The difference in the factual and counterfactual pollutant levels

in each grid cell are used as inputs in the ERFs. The ERFs employ these differences

along with the size of the exposed population, the baseline rate of mortality or morbidity,

and a health effect estimate, i.e., a linear model coefficient from a previously published

epidemiologic study capturing the relationship between pollutant exposure and a health

outcome, to estimate the number of health events prevented by the regulation-attributable

changes in pollutant exposures in the specified year. This process is performed separately

for each relevant pollutant-health outcome combination. For more detail on the traditional

approach and the ERFs, see Section 1 of the Supplementary Materials.

Causal inference principles have historically been featured heavily in analyses of the

health effects of short-term air pollution interventions, such as traffic bans often imposed

in cities hosting Olympic games, which can often be formulated as natural experiments.

Larger, gradually-implemented regulatory actions, such as the CAAA, are more complex

because 1) the resultant changes in levels of multiple pollutants vary in space and time,

2) long term health trends may coincide with changes in air quality, and 3) time-varying

confounding is likely (van Erp et al., 2008). Only recently have causal inference approaches

begun to be developed to address these issues. Zigler et al. (2012) investigate the ef-

fect of a component of the CAAA, the National Ambient Air Quality Standard (NAAQS)

non-attainment designations, on health in the Medicare population using a principal strati-

fication approach. To our knowledge, factual and counterfactual exposures from air quality

modelling software and causal inference methodology have not yet been integrated for reg-

ulation evaluation, despite their natural connection.

In this paper, we seek to estimate the number of health events prevented by the CAAA in

a specific year using a unique approach that combines factual and counterfactual pollution
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exposures with observed health outcome data from the Medicare population (instead of

relying on ERFs derived from previously conducted epidemiologic studies). We intend

to answer the question “How many mortality events, cardiovascular hospitalizations, and

dementia-related hospitalizations were prevented in the Medicare population in the year

2000 due to CAAA-attributable changes in particulate matter (PM2.5) and ozone (O3)

exposures in the same year?” Because pollution exposures may continue to impact health

beyond the year of exposure, we also wish to determine how many of each of these health

events were prevented in the year 2001 due to the CAAA-attributable changes in pollutant

exposures in the year 2000. We rely on estimates of PM2.5 and O3 exposure levels across the

US for the year 2000 under the factual with-CAAA scenario and under the counterfactual

no-CAAA scenario. We combine them with zipcode level counts of mortality, cardiovascular

hospitalizations, and dementia-related hospitalizations from Medicare in the years 2000 and

2001. Then we utilize the number of health events observed under factual PM2.5 and O3

levels to inform estimation of the number of health events that would have occurred under

the counterfactual pollutant levels (the counterfactual outcome).

We introduce a causal inference framework that can be applied to evaluate the CAAA

or any other large-scale air quality regulation. Reliance on counterfactual pollution pre-

dictions, which come from the EPA’s cost-benefit analysis of the CAAA (US EPA, 2011),

enables us to conduct a causal inference investigation in this otherwise intractable setting

where we observe no data whatsoever under the no-regulation scenario. The first novel

feature of our work is the introduction of a causal estimand, which we call the Total Events

Avoided (TEA) by the regulation. It is defined as the sum across all units of the difference

in the expected number of health events under the counterfactual pollution exposures and

the observed number of health events under the factual pollution exposures. We also lay
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out the corresponding identifiability conditions. The second novel aspect of this paper is

in the development of a matching approach for estimation of the TEA. We also propose an

alternative estimation approach using machine learning methods. Relying on minimal mod-

eling assumptions, both of these approaches use confounder-adjusted relationships between

observed pollution exposures and health outcomes to inform estimation of the counterfac-

tual outcomes. While we are seeking to estimate the same quantity estimated in traditional

health impact analyses of regulations (the number of health events prevented in a year due

to regulation-attributable changes in pollutant exposures that year), the statistical meth-

ods used are quite different. Our approach improves on the traditional one by: 1) defining

the causal parameter of interest; 2) formalizing the assumptions needed to identify it from

data; 3) relying on population-level health outcome data for estimation; 4) minimizing

parametric assumptions; and 5) accounting for synergistic effects of multiple pollutants.

However, to avoid extrapolation and heavy reliance on parametric modeling assumptions,

our methods exclude some areas from the analysis, thereby producing conservative yet

data-driven estimates of the health impacts of the regulation.

Matching is one of the most commonly used approaches to estimate causal effects (Ho

et al., 2007; Stuart, 2010). Machine learning procedures have emerged more recently as a

tool for causal inference (Hill, 2011; Hahn et al., 2020). Both have primarily been used to

estimate average treatment effects in settings with a binary treatment, with recent limited

extensions to the continuous exposure setting (Kreif et al., 2015; Wu et al., 2018). To

our knowledge, neither approach has been used in the context of a multivariate continuous

treatment (the pollution exposures in our setting). To estimate the TEA, we introduce both

a matching method and an adaptation of the Bayesian Additive Regression Trees (BART)

algorithm (Chipman et al., 2010) that accommodate multivariate continuous treatments.
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In Section 2, we discuss the air pollution and Medicare data that motivate our method-

ological developments. In Section 3, we formally introduce the TEA and identifying as-

sumptions, and we present our matching and machine learning methods for TEA esti-

mation. Section 4 describes simulations conducted to evaluate the performance of these

methods. In Section 5, we apply these methods to investigate the health impacts of the

CAAA. Finally, we conclude with a summary and discussion of our findings in Section 6.

2 Data

In this paper, we focus on the number of health events prevented due to CAAA-attributable

changes in two major pollutants– PM2.5 and O3. These two pollutants are known to

have large health impacts. We have obtained state-of-the-art factual (with-CAAA) and

counterfactual (no-CAAA) gridded PM2.5 and O3 exposure estimates for the continental US

in the year 2000. PM2.5 exposures (both factual and counterfactual) are measured in µg/m3

and represent annual averages, while O3 exposures are measured in parts per billion (ppb)

and represent warm season averages. Our factual pollution exposure estimates come from

so-called hybrid models which combine ground monitor data, satellite data, and chemical

transport modeling to estimate exposures on a fine grid across the US. The factual PM2.5

exposure estimates employed here are introduced in van Donkelaar et al. (2019) and are

produced at approximately 1 km2 grid resolution. Our factual O3 exposure estimates were

developed by Di et al. (2017), also at 1 km2 grid resolution.

We employ the year-2000 counterfactual gridded PM2.5 and O3 exposure estimates for

the continental US from the EPA’s Second Section 812 Prospective Analysis (hereafter

called the Section 812 Analysis), its most recent cost-benefit analysis of the CAAA (US
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EPA, 2011). To produce these, gridded hourly emissions inventories were first created

for the counterfactual (no-CAAA) scenario in 2000, representing estimated emissions with

scope and stringency equivalent to 1990 levels but adjusted to economic and population

changes in 2000. Note that this approach to creating counterfactual emissions inventories

assumes that in the absence of the CAAA 1) no new emissions regulations would have

been implemented in the US between 1990 and 2000 and 2) the scope and stringency of US

emissions would not have increased. We anticipate that these assumptions would slightly

bias the emissions estimates in opposite directions; thus, we expect that they balance out to

create a realistic counterfactual emissions scenario. The emissions inventories were fed into

atmospheric chemistry modeling software to produce estimates of counterfactual annual

average PM2.5 at 36 km2 grid resolution, and counterfactual warm season O3 at 12 km2

grid resolution. For more detail on the creation of the counterfactual exposure estimates,

see US EPA (2011). We note that factual exposure estimates were also produced for the

EPA’s Section 812 Analysis in an analogous manner to the counterfactual exposures. For

justification of our choice to use factual exposures from the hybrid models instead, and

potential impacts of this choice, see Section 2.1 of the Supplementary Materials.

Using the R package gstat (Gräler et al., 2016), we apply local block kriging to aggre-

gate the gridded PM2.5 and O3 values to zipcodes, in order to merge them with the Medicare

data (Cressie, 1993). See the zipcode maps of the factual and counterfactual PM2.5 and

O3 data in Figure 1. In the analyses in the main manuscript, we make the strong assump-

tion that the observed and counterfactual pollution levels are known or estimated without

error, because current limitations in air quality modeling impede reliable quantification

of uncertainties (Nethery and Dominici, 2019). This is a commonly-used assumption in

air pollution epidemiology; however, we discuss the implications in Section 6 and explore
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potential impacts using simulated exposure errors in the Supplementary Materials.

Figure 1: Maps of estimated year-2000 zipcode level factual and counterfactual annual
average PM2.5 (µg/m3) and warm season average O3 (ppb). The factual pollutant values
are estimates of the true exposures with the CAAA. The counterfactual values reflect the
anticipated pollutant exposures under the emissions scenario expected without the CAAA.

We construct datasets containing mortality records for all Medicare beneficiaries and

hospitalization records for all Medicare fee-for-service (FFS) beneficiaries in the continental

US for the years 2000 and 2001. Medicare covers more than 96% of Americans age 65

and older (Di et al., 2017). Because cross-zipcode moving rates are low in the Medicare

population (Di et al., 2017; Abu Awad et al., 2019), we make the assumption that, for each

of the 2000 and 2001 cohorts, subjects were exposed to the year-2000 pollution levels of

their zipcode of residence. Zipcode counts of mortality, cardiovascular hospitalizations, and

dementia-related hospitalizations in each cohort will serve as the outcomes in our analysis.
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For detailed information about how these counts were constructed, including the ICD-9

codes used to classify hospitalizations, see Section 2.2 of the Supplementary Materials. We

selected these health outcomes on the basis of previous literature associating each of them

with air pollution (Pope III et al., 2002; Brook et al., 2010; Power et al., 2016). We also

compute the Medicare person-months in each zipcode in each year to create rates of each

health event (e.g. count of hospitalizations in the Medicare FFS population in the zipcode

in year 2000/total Medicare FFS person-months in the zipcode in year 2000).

Finally, a set of potential confounders of air pollution and health relationships is con-

structed using data from the 2000 US census. All confounders are zipcode-aggregate fea-

tures that reflect all residents of the zipcodes, not only Medicare beneficiaries. They are

percent of the population below the poverty line (poverty), population density per square

mile (popdensity), median value of owner-occupied properties (housevalue), percent of the

population black (black), median household income (income), percent of housing units oc-

cupied by their owner (ownhome), percent of the population hispanic (hispanic), percent of

the population with less than a high school education (education), and regional indicators

(northeast, midwest, south, west). In Section 2.3 of the Supplementary Materials, we dis-

cuss our choice to conduct analyses at the zipcode level as opposed to coarser aggregations.

3 Methods

3.1 Estimand and Identifying Assumptions

In this section, we propose a causal inference estimand to measure the difference in the

number of health events in a given year under the regulation and no regulation scenarios,

and we lay out the identifying assumptions. The units of analysis for our case study of the
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CAAA will be zipcodes, but throughout this section we use the term units to emphasize

the generality of the approach to any areal units. Let Yi denote the count of health events

observed in unit i, i = 1, ..., N , and Pi the at-risk person-time in unit i. Then let Y ∗i = Yi
Pi

be the event rate. While our estimand involves counts, we must conduct modeling with

rates instead of counts when at-risk person-time varies. Let X i denote a vector of observed

confounders of the relationship between pollution and the health outcomes under study, as

well as any factors besides the observed pollutants which were impacted by the regulation.

Let T i denote the Q-length vector of continuous pollutant exposure measurements for unit

i, where Q is the number of pollutants under consideration (annual/warm season averages),

and we assume that T has compact support over a Q-dimensional hyperrectangle, Z, which

is a subspace of RQ. T i, the vector of pollutant exposure levels, will serve as the “treatment”

variable in our causal inference framework.

We develop our approach within the potential outcomes framework of Rubin (1974).

Recall that we will make use of both the factual and counterfactual pollution levels for each

unit. Then let Yi(T = t1i) be the number of health events that unit i would experience

under its observed pollutant values (t1i) in the factual scenario of regulation implementa-

tion. Let Yi(T = t2i) be the number of health events that unit i would experience under

its counterfactual pollution levels (t2i) in the no-regulation scenario, with all other features

of the unit identical to the observed ones. For each unit, Yi(T = t1i) is observed and

Yi(T = t2i) is unobserved. These potential outcomes can be constructed under the stable

unit treatment value assumption (SUTVA) (Rubin, 1980). SUTVA requires that the health

effect of a given treatment (pollution) level is the same no matter how that treatment level

is arrived at, and that one unit’s pollution level does not affect the number of health events

in another unit (the latter is known as the no interference assumption). The former as-
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sumption could be violated if, for instance, certain sources of pollution are more toxic than

others. No interference is likely to be a strong assumption (Zigler et al., 2012; Zigler and

Papadogeorgou, 2018), as most individuals are regularly exposed to the pollution levels in

areas other than their area of residence, which could impact their health. More discussion

of this assumption is provided in Sections 5 and 6.

Before formalizing the TEA, we emphasize that the TEA is designed to quantify the

health impacts of the regulation only through resultant changes in the pollutants in T ,

while holding all other measured features fixed at the observed levels (under the regula-

tion). The TEA characterizes a counterfactual scenario in which the only changes from the

observed with-regulation scenario are the pollution exposures, and compares the number of

health events in this counterfactual scenario and the observed one. We explain the motive

behind this estimand. Previous causal inference analyses (Zigler et al., 2012) have targeted

the effects of air pollution regulations on health both via the resultant changes in pollu-

tant exposures (associative effects) and via other intermediates (dissociative effects). These

studies investigated an element of the CAAA, the NAAQS non-attainment designations,

which impacted some locations and not others, providing variation in attainment status

and observed health outcome data under both the attainment and non-attainment scenar-

ios. These data enabled the estimation of both associative and dissociative effects. Here we

instead wish to evaluate a larger regulation which had “universal” impacts in areas under

its purview (hereafter referred to as a universal regulation). We do not observe any health

outcome data whatsoever under the no-regulation scenario. With this limitation, our anal-

ysis must rely entirely on the observed outcome data under regulation. Because the only

information we have about the no-regulation scenario is the counterfactual pollutant expo-

sures, it is only through these pollutants that the observed health outcome data can inform
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estimation of the health outcomes in the no-regulation scenario. Thus these data do not

allow any investigation of dissociative effects, which is why we have defined the TEA as the

effect of the regulation only through the resultant changes in the pollutants in T . The Sec-

tion 812 Analysis also estimates health effects exclusively through regulation-attributable

changes in pollutants. Previous studies have found positive dissociative health impacts of

regulations (Zigler et al., 2012). If such effects exist, the TEA will under-represent the

total number of health events prevented by the regulation.

The number of health events prevented due to regulation-induced changes in pollutants

is
∑N

i=1 {Yi(T = t2i)− Yi(T = t1i)}. Because Yi(T = t2i) is unobserved for all i, we instead

focus our analysis around the following estimand:

τ =
N∑
i=1

{E(Y (T = t2i)|X i)− Yi(T = t1i)}

τ is the TEA. With Yi(T = t1i) observed for all i, we only need to estimate E(Y (T =

t2i)|X i) for each i to obtain an estimate of the TEA. Note that this quantity is conditional

on X i, formalizing our statement above that, in using the TEA to evaluate a regulation,

we are making the assumption that the only factor that would have been different in the

no-regulation scenario is the pollutant exposures. Moreover, this causal estimand is unique

because it captures the health effects due to changes in multiple continuous pollutants si-

multaneously. This feature provides an important improvement over traditional regulation

health impact analyses, where health impacts are estimated separately for each pollutant.

When analyzing each pollutant separately, estimates can be biased if pollution exposures

are correlated and may fail to capture synergistic effects. We provide a detailed comparison

of the TEA to existing causal estimands in Section 3 of the Supplementary Materials.
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We now present the assumptions needed to identify E(Y (T = t2i)|X i) from the observed

data. These assumptions are extensions of those of Wu et al. (2018).

Assumption 1 (A1) Causal Consistency: Yi(T = t) = Yi if T i = t

The causal consistency assumption states that the observed outcome should correspond

to the potential outcome under the observed treatment value.

Assumption 2 (A2) Weak Unconfoundedness: Let Ii(t) be an indicator function taking

value 1 if T i = t and 0 otherwise. Then weak unconfoundedness is the assumption that

Ii(t) ⊥⊥ Yi(T = t)|X i.

The weak unconfoundedness assumption was introduced by Imbens (2000) and is com-

monly used for causal inference with non-binary treatments. In our context, it says that

assignment to treatment level t versus any other treatment level is independent of the

potential outcome at treatment t conditional on the observed confounders.

Assumption 3 (A3) Overlap: For each {t2i,xi}, 0 < P (T = t2i|X = xi).

The overlap assumption in this context differs slightly from the overlap (or positiv-

ity) assumption in classic causal inference analyses. It says that, for each unit’s set of

counterfactual treatment and confounders, the probability of observing that treatment and

confounder level together is greater than zero. This ensures that we are not considering

counterfactuals outside the space of feasible treatment and confounder combinations.

Assumption 4 (A4) Conditional Smoothness: Let Θt = [t1−δ1, t1+δ1]×· · ·×[tQ−δQ, tQ+δQ],

tq represents the qth element of t, and δ1, ..., δQ are positive sequences tending to zero. Then
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lim
δ1,...,δQ→0

E(Y |X,T ∈ Θt) = E(Y |X,T = t)

This multidimensional smoothness assumption is needed due to the continuous nature

of the multivariate treatments, which means that we will never have T = t exactly and

must instead rely on T within a small neighborhood of t.

Using (A1-4 ), we show that E(Y (T = t2i)|X i) can be identified from observed data.

E(Y (T = t2i)|X i) = E(Y (T = t2i)|X i,T = t2i) (by A2)

= E(Y |X i,T = t2i) (by A1)

= lim
δ1,...,δQ→0

E(Y |X i,T ∈ Θt2i) (by A4)

(1)

The expectation in the bottom line of equation 1 can be estimated from observed data for

small, fixed values of δ1, ..., δQ.

In the next two sections, we introduce methods to perform this estimation with the data

described in Section 2. Before doing so, we clarify a few additional assumptions that will

be relied upon in order to interpret a TEA estimate as the number of health events avoided

due to the regulation-attributable changes in pollutants. These assumptions, which are not

common in causal inference analyses, are needed in the universal regulation scenario due

to the complete reliance on observed data under the regulation for estimation. First, we

must assume that each of the following relationships would be the same in the regulation

and no-regulation scenarios: (1) the pollutant-outcome relationships, (2) the confounder-

outcome relationships, and (3) the pollutant-confounder relationships. Second, we must

assume that no additional confounders would be introduced in the no-regulation scenario.
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3.2 Matching Estimator of the TEA

In this section, we introduce a causal inference matching procedure to estimate E(Y |X i,T ∈

Θt2i) (and thereby the TEA). In Section 4 of the Supplementary Materials, we show that

the estimator is consistent, and we describe a bootstrapping approach that can be used

to compute uncertainties. The idea behind our matching approach is simple: we will find

all units with observed pollutant levels approximately equal to t2i and confounder levels

approximately equal to X i, and we will take the average observed outcome value across

these units (plus a bias correction term) as an estimate of E(Y |X i,T ∈ Θt2i).

Let ω be a Q-length vector of pre-specified constants and ν be a pre-specified scalar.

For a column vector b, |b| denotes the component-wise absolute value and ||b|| = (b′Ab)1/2,

with A a positive semidefinite matrix. In practice, A will be the sample covariance matrix

so that ||b1 − b2|| is the Mahalanobis distance. We let ϕ(i) denote the set of indices of the

units matched to unit i. Then

ϕ(i) = {j ∈ 1, ..., N : |t2i − t1j| ≺ ω ∧ ||X i −Xj|| < ν}

In the first condition here, we are carrying out exact matching within some tolerances ω on

the pollution variables, so that the units matched to unit i have observed pollution levels

(t1j) almost equal to the counterfactual pollution levels for unit i (t2i). This ensures that

the matched units have observed pollution values within a small hyperrectangle around

t2i, i.e. T ∈ Θt2i . The second condition carries out Mahalanobis distance matching within

some tolerance ν on the confounders, so that all matched units have confounder values

approximately equal to the confounder values for unit i. We use separate procedures

for matching on the pollution and the confounder values so that we can exercise more
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direct control over the closeness of the matches on pollution values. Literature on choosing

calipers in standard matching procedures (Lunt, 2013) and identifying regions of common

support in causal inference (King and Zeng, 2006) may provide insight into how to specify

ω and ν. All units that meet the above conditions are used as matches for unit i, thus

each i is allowed to have a different number of matches, Mi. Matching is performed with

replacement across the i. Then, we estimate E(Y |X i,T ∈ Θt2i) as

Ê(Y |X i,T ∈ Θt2i) =
Pi
Mi

∑
k∈ϕ(i)

Y ∗k (2)

We also test varieties of this matching estimator with bias corrections following Abadie

and Imbens (2011), because bias-corrected matching estimators can provide increased ro-

bustness. Let µ̂(t2i,X i) be a regression-predicted value of Y conditional on t2i and X i.

Then the bias-corrected estimator has the form

Ê(Y |X i,T ∈ Θt2i) =
1

Mi

∑
k∈ϕ(i)

(Y ∗k Pi + µ̂(t2i,X i)− µ̂(t2i,Xk))

While asymptotically matches will be available for all units (as a result of the overlap

assumption, A3 ), in practice there will likely be some units for which no suitable matches

can be found in the data. Let s = 1, ..., S index the units for which 1 or more matches was

found. Instead of τ , in finite sample settings we will generally estimate

τ ∗ =
S∑
s=1

E(Y |Xs,T ∈ Θt2s)− Ys(T = t1s)

by plugging in Ê(Y |Xs,T ∈ Θt2s) for E(Y |Xs,T ∈ Θt2s). This discarding of unmatched
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units is often called “trimming” and the remaining S units called the trimmed sample.

Trimming is done to avoid using extrapolation to estimate counterfactual outcomes in areas

of the treatment/confounder space that are far from the observed data. Such extrapolation

can produce results that are highly biased or model-dependent. The impacts of trimming

on the interpretation of the TEA estimate are discussed at length in subsequent sections

and in Section 5 of the Supplementary Materials.

3.3 BART for TEA Estimation

In this section, we propose an alternative approach to estimation of the TEA relying on

machine learning. Machine learning procedures are typically applied in causal inference as

a mechanism for imputation of missing counterfactual outcomes. BART (Chipman et al.,

2010) is a Bayesian tree ensemble method. Several recent papers have shown its promising

performance in causal inference contexts (Hill, 2011; Hahn et al., 2020).

The general form of the BART model for a continuous outcome Y and a vector of

predictors X is Y =
∑J

j=1 g(X; Tj,Mj) + ε, where j = 1, ..., J indexes the trees in the

ensemble, g is a function that sorts each unit into one of a set of mj terminal nodes,

associated with mean parameters Mj = {µ1, ..., µmj
}, based on a set of decision rules, Tj.

ε ∼ N(0, σ2) is a random error term. BART is fit using a Bayesian backfitting algorithm.

For estimation of average treatment effects (ATE) in a binary treatment setting, BART is

fit to all the observed data and used to estimate the potential outcome under treatment

and under control for each unit (Hill, 2011). The average difference in estimated potential

outcomes is computed across the sample to obtain an ATE estimate.

We invoke BART similarly to estimate the TEA, inserting the rates as the outcome.

For clarity in this section, we use the notation Y ∗i as the observed outcome rate under
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the factual pollution levels and Ȳ ∗i as the missing counterfactual outcome rate under the

counterfactual pollution levels. Boldface versions denote the vector of all outcomes. We fit

the following BART model to our data: Y ∗i =
∑J

j=1 g(t1i,X i; Tj,Mj) + εi. We collect H

posterior samples of the parameters from this BART model, referred to collectively as θ.

For a given posterior sample h and for each unit i, we collect a sample from the posterior

predictive distribution of Ȳ ∗i , p(Ȳ ∗i |Y∗) =
∫
p(Ȳ ∗i |Y∗, θ)p(θ|Y∗)dθ. Denote this posterior

predictive sample Ȳ
∗(h)
i . We use these to construct a posterior predictive sample of τ as

τ (h) =
∑N

i=1(Ȳ
∗(h)
i − Y ∗i )Pi. We then estimate τ̂ = 1

H

∑H
h=1 τ

(h), i.e. the posterior mean.

To relate this back to the notation of the previous section, note that this is equivalent to

estimating Ê(Y |X i,T ∈ Θt2i) = 1
H

∑H
h=1 Ȳ

∗(h)
i Pi for all i. A 95% credible interval is formed

with the 2.5% and 97.5% percentiles of the τ (h).

Recall that, with the matching estimator, units for which no matches can be found

within the pre-specified tolerances are trimmed to avoid extrapolation, so that we estimate

τ ∗ rather than τ . BART does not automatically identify units for which extrapolation is

necessary to estimate counterfactual outcomes. Hill and Su (2013) proposed a two-step

method to identify units for trimming with BART which could be adapted for use here.

In our simulations and analyses, to ensure comparability of the results from BART and

matching, we fit the BART model to the entire dataset but, in estimating the TEA, we

omit the same set of units that are trimmed with matching.

4 Simulations

In this section, we generate synthetic data mimicking the structure of our real data and test

the following methods for estimating τ ∗: our matching procedure with various types of bias
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correction, our BART procedure, and a simple Poisson regression. In these simulations, we

let N = 4, 900 and Q = 2, with one pollutant simulated to mimic PM2.5 and the other O3.

The observed pollutants are generated as spatial processes on a 70× 70 spatial grid using

the gstat package in R (Gräler et al., 2016). The vectors of PM2.5 and O3 values (PM

and O) are generated from PM∼MVN(12.18,Σ1) and O∼MVN(50,Σ2), where Σ1 and

Σ1 are exponential spatial covariance matrices. Then, letting t1i = [PMi Oi], we generate

the counterfactual pollution levels as t2i = t1i + zi, zi = [z1i z2i], z1i ∼ Unif(0, 6.64)

and z2i ∼ Unif(0, 25.87). The result is that the counterfactual pollutant levels are always

larger than the observed pollutant levels, but the magnitudes of the differences vary across

units and at appropriate scales for each pollutant.

We use the exposure values to generate five confounders, X1i, ..., X5i. We let Xhi =

t′1iαh + εhi, where εhi ∼ N(0, σ2
h). In addition to the exposures and confounders, we also

generate four random variables used as “unobserved” predictors of Y , i.e. we use them to

generate Y but do not include them in the estimation procedures (they are not confounders

because they are not related to exposure). In our real data analysis, there are likely many

unobserved predictors of the health outcomes considered (but hopefully no unobserved

confounders), thus it is important to evaluate our methods under such conditions.

In each simulation, we generate Yi ∼ Poisson(λi), with λi a function of the observed

exposures, confounders, and predictors. We also generate an expected counterfactual out-

come for each unit, λcfi using the same functional form but substituting the counterfactual

exposure values for the observed exposure values. We consider three different functional

forms for λi, and we refer to the different structures as S-1, S-2, and S-3. S-1 uses the most

complex form to construct Y , involving strong non-linearities and interactions both within

and across the exposures and confounders. S-2 is slightly less complex, with exposure-
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confounder interactions excluded. In S-3, all relationships are linear. See the model forms

and parameter values used in each simulation in Section 8 of the Supplementary Materials.

With these data, we first perform matching to determine which units have suitable

matches for their t2i in the data and will therefore contribute to the estimation of τ ∗.

Within each of the three simulation scenarios, we set ν = 1.94, which is approximately the

10th percentile of the Mahalanobis distances between all the units in the data, and consider

three different specifications of ω, the tolerances for the pollutant matches. We use 15%,

20%, and 25% of the standard deviations of the counterfactual pollutant distributions,

resulting in ω = [0.49 1.92], ω = [0.65 2.56], and ω = [0.82 3.20]. Following matching,

we estimate three variations of the matching estimator. The first is the simple matching

estimator given in equation 2 (Match 1). The second is this matching estimator plus a

bias correction from a Poisson generalized additive model (GAM) with smooth terms on

each predictor, i.e. log(λ) =
∑5

j=1 (sj(Xj)) + s6(t11) + s7(t12) (Match 2). The third is the

matching estimator with a bias correction from a Poisson regression in which the forms

of the exposures and confounders are correctly specified (Match 3). We also apply BART

as described in Section 3.3, fitting the BART model to all the data but estimating the

TEA with only the units retained after matching. We also compare these methods to a

simple Poisson regression. We fit a Poisson regression with all exposures and confounders

included as linear terms (PR 1) and a Poisson regression model in which the forms of the

exposures and confounders are correctly specified (PR 2). We compare each estimate to

the true TEA in the trimmed sample, τ ∗ =
∑S

s=1 λ
cf
s − λs.

Table 1 contains the results of 200 simulations. It shows the proportion of units retained

after trimming, the ratio of the true trimmed sample TEA to the true whole sample TEA,

and the percent bias and 95% confidence/credible interval (CI) coverage for each method
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Table 1: Percent absolute bias (95% CI coverage) of the following methods in estimation of
τ ∗ in 200 simulations: matching with no bias correction (Match 1), matching with a GAM
bias correction (Match 2), matching with correctly specified bias correction (Match 3),
BART, Poisson regression with linear terms (PR 1), correctly specified Poisson regression
(PR 2). ω refers to matching tolerances on pollutants, i.e. 0.15 means that matches are
restricted to be within 0.15 standard deviations for each pollutant. S/N is the proportion
of the sample retained after trimming, and τ ∗/τ is the ratio of the true trimmed sample
TEA to the true whole sample TEA.

ω S/N τ ∗/τ Match 1 Match 2 Match 3 BART PR 1 PR 2

S-1
τ = 195011

0.15 0.51 0.07 0.42 (0.00) 0.01 (0.98) 0.01 (0.93) 0.05 (0.62) 0.22 (0.00) 0.01 (0.88)
0.20 0.58 0.09 0.42 (0.00) 0.00 (0.98) 0.05 (0.46) 0.06 (0.57) 0.21 (0.00) 0.02 (0.86)
0.25 0.63 0.11 0.38 (0.00) 0.04 (0.74) 0.09 (0.08) 0.06 (0.56) 0.20 (0.00) 0.02 (0.81)

S-2
τ = 186852

0.15 0.51 0.20 0.04 (1.00) 0.02 (0.81) 0.02 (0.8) 0.00 (0.90) 0.05 (0.12) 0.01 (0.87)
0.20 0.58 0.25 0.03 (1.00) 0.03 (0.42) 0.03 (0.39) 0.00 (0.90) 0.06 (0.04) 0.02 (0.77)
0.25 0.63 0.29 0.01 (0.94) 0.06 (0.08) 0.06 (0.06) 0.01 (0.92) 0.07 (0.00) 0.02 (0.80)

S-3
τ = 132818

0.15 0.51 0.41 0.29 (0.00) 0.04 (0.98) 0.03 (0.98) 0.03 (0.99) 0.04 (0.53) -
0.20 0.58 0.47 0.30 (0.00) 0.04 (1.00) 0.04 (1.00) 0.05 (0.97) 0.06 (0.34) -
0.25 0.63 0.53 0.29 (0.00) 0.04 (0.98) 0.03 (0.99) 0.07 (0.89) 0.07 (0.18) -

in each simulation. Across all simulations, substantial portions of the sample are being

trimmed (37%-49%). These trimmed units account for a disproportionately high amount

of the TEA, as τ ∗/τ is generally much smaller than S/N . This reflects the scenario we

would expect in our real data, because the units with the highest counterfactual pollution

levels are likely to have the largest effect sizes, yet these units are unlikely to be matched

since we may observe few or no pollution exposures as high as their counterfactuals.

In practice we generally do not know the correct model form, therefore the results of the

oracle models in Match 3 and PR 2 have little relevance and we will focus on a comparison of

the other methods. Among the remaining methods, we generally see that as ω increases, the

bias of the TEA estimates increase. This is consistent with expectations, as a larger ω allows

matches with more distant exposure values, which can lead to inappropriate extrapolation.
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Match 1 and PR 1 each give highly biased results under certain data generating mechanisms

and, in all but one case, have bias greater than or equal to that of BART and Match 2.

Both BART and Match 2 have strong and consistent performance across all data gen-

erating mechanisms, with bias ≤ 7% in all simulations. Match 2 generally has lower bias

in S-1 and S-3, while BART has lower bis in S-2. The trends in coverage of Match 2 are

consistent with the bias, i.e., when bias is low, ≥ 95% coverage tends to be achieved and,

as the bias increases, the coverage experiences a corresponding decrease. With the more

complex data generating mechanisms (S-1 and S-2), BART tends to give unsatisfactory

coverage, even when bias is low. This anti-conservative property of BART predictive un-

certainties in settings with complex data generating processes is consistent with previous

findings (Wendling et al., 2018; Hahn et al., 2020), and appears to be a common limitation

of BART which should be considered when making inference.

These results demonstrate the trade-offs that must be considered when choosing the

matching tolerances, i.e., when choosing which units to trim. Because the TEA is a sum,

the removal of one unit when estimating the TEA is likely to have a larger impact than

it would when estimating an average. The stricter the tolerances, the more units are

dropped from the analysis and, generally, the more distant τ ∗ will grow from τ . Therefore,

the estimated TEA is less and less likely to reflect the population of interest. In our

context where greater pollution exposure is unlikely to have protective effects on health,

and where most of the counterfactual pollution levels are greater than the factual ones (i.e.

Y (T = t2i) − Y (T = t1i) > 0), we anticipate that stricter tolerances and the trimming of

more units will lead to underestimation of the TEA. However, stricter tolerances reduce the

potential for extrapolation and generally give estimates of τ ∗ with lower bias. The selection

of these tolerances should be considered carefully in the context of each data application.
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5 Application

We return now to the real data described in Section 2. Because the purpose of the CAAA

was to reduce air pollution, we would expect the counterfactual (no-CAAA) pollution

exposures to be higher than factual (with-CAAA) pollution exposures in most zipcodes;

however, the CAAA resulted in a complex set of regulations that could have led to decreases

in some areas and increases in others. In our data, in 30% of zipcodes the factual PM2.5

and/or O3 exposure estimate is larger than the corresponding counterfactual estimate, in-

dicating that the CAAA increased exposure. See Section 8 of the Supplementary Materials

for a map of these zipcodes. This could reflect real increases in pollution exposures due to

the CAAA or it could be partially due to differences in the pollution exposure modeling

used to produce the factual and counterfactual estimates. In our primary analysis (PA), to

be conservative we include these zipcodes, and we also perform a sensitivity analysis (SA)

in which they are removed. In the SA, we allow all zipcodes to serve as potential matches

but the TEA’s sum is only taken across zipcodes with both factual pollutant estimates

smaller than the corresponding counterfactual.

Within each of the PA and SA, we conduct separate analyses to estimate the health

impacts in years 2000 and 2001 due to CAAA-attributable changes in pollution exposures

in the year 2000. Prior to analysis, we remove any zipcodes with missing data or with

zero Medicare population. For the year 2000, the sample size following these removals is

N = 28, 724 zipcodes (SA: N = 20, 027). All descriptive statistics provided are from the

year 2000 data. Figures for 2001 deviate little, if at all, due to year-specific missingness and

Medicare person-time. For each year’s data we apply BART, matching with a GAM bias

correction, and a Poisson regression with linear terms to estimate the TEA for mortality,

cardiovascular disease (CVD) hospitalizations, and dementia hospitalizations.
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We first apply matching with a GAM bias correction to the data, collecting 50 bootstrap

replicates and setting tolerances ω = [0.50 0.77] and ν = 2.78. The ω values are 0.1

standard deviations of each counterfactual pollutant distribution, and ν is approximately

the 10th percentile of the Mahalanobis distances between all the confounders in the data.

These tolerances lead to trimming of 11,425 zipcodes (SA: 10,196), leaving S = 17, 299

zipcodes (SA: S = 9, 831) for estimation of the TEA. The portion of the full dataset

retained to estimate the TEA, S/N = 0.60 (SA: S/N = 0.49), is similar to that in the

simulations. As in Section 3, we fit the BART and Poisson regression to the entire sample

but only include the units retained after trimming for TEA estimation.

The total Medicare population in the zipcodes retained after trimming is 14,880,606

(SA: 7,820,770). Table 2 shows the means and standard deviations of the health outcome

rates, exposures and confounders in the full dataset, among the discarded/trimmed zip-

codes, and in the retained/untrimmed zipcodes used for estimation for the PA. In Section

8 of the Supplementary Materials, we provide a map of the discarded and retained zip-

codes after trimming for the PA, and an analogue of Table 2 for the SA. The discarded

zipcodes are primarily in the mid-Atlantic region, where Figure 1 shows some of the highest

counterfactual pollutant levels, and in major northeast and west coast population centers.

Notably, the discarded zipcodes have larger average population size and higher average

counterfactual pollutant exposures than the full dataset. This is likely due to the fact that

we have sparse observed data at very high exposure levels and therefore it is difficult to

find matches for zipcodes with very high counterfactual exposures (which also tend to be

the more populous zipcodes). We would also expect that many of the largest health bene-

fits of the CAAA may have come in zipcodes with large populations and whose no-CAAA

exposures would have been very high, thus our results are likely to be underestimates of
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the entire health benefits of the CAAA. See Section 5 of the Supplementary Materials for

a more detail on the interpretation of the TEA estimate in this context. Additionally,

because the sample retained after trimming under-represents some regions and population

subgroups, we discourage the use of this approach to make comparisons across such groups,

e.g., for the purpose of examining environmental justice issues.

Table 2: Average (and standard deviation) of Medicare population size, Medicare health
outcome rates, pollutant exposures and confounders in the full dataset, only the dis-
carded/trimmed zipcodes, and the retained/untrimmed zipcodes used for estimation.

Full Dataset Discarded Units Retained Units
Medicare population size 1102.78 (1537.59) 1470.08 (1815.02) 860.2 (1265.74)

FFS person-months 10791.81 (14548.64) 13723.07 (16799.63) 8855.88 (12475.97)
Mortality (rate per 1,000) 52.19 (21.33) 52.66 (22.19) 51.88 (20.75)
Dementia (rate per 1,000) 1.58 (1.28) 1.7 (1.46) 1.5 (1.15)

CVD (rate per 1,000) 6.77 (2.71) 6.8 (2.8) 6.75 (2.65)
Factual PM2.5 (µg/m3) 10.48 (3.79) 11.47 (3.61) 9.83 (3.76)

Factual O3 (ppb) 47.72 (6.58) 47.08 (6.87) 48.15 (6.34)
Counterfactual PM2.5 (µg/m3) 14.12 (5.01) 17.32 (4.7) 12.01 (3.99)

Counterfactual O3 (ppb) 53.57 (7.69) 57.85 (7.56) 50.74 (6.34)
poverty (proportion) 0.11 (0.1) 0.11 (0.11) 0.11 (0.08)
popdensity (per mi2) 1155.93 (4396.92) 2319.84 (6676.24) 387.23 (1086.17)

housevalue (USD) 104021.52 (83107.11) 133984.69 (111102.05) 84232.56 (48290.31)
black (proportion) 0.08 (0.16) 0.09 (0.18) 0.06 (0.14)

income (USD) 40193.35 (15989.31) 45151 (19837.6) 36919.11 (11733.04)
ownhome (proportion) 0.75 (0.15) 0.72 (0.19) 0.78 (0.11)
hispanic (proportion) 0.06 (0.12) 0.08 (0.16) 0.05 (0.1)

education (proportion) 0.38 (0.18) 0.37 (0.19) 0.39 (0.17)
northeast (proportion) 0.18 (0.39) 0.37 (0.48) 0.06 (0.23)
midwest (proportion) 0.32 (0.47) 0.26 (0.44) 0.36 (0.48)

south (proportion) 0.34 (0.47) 0.23 (0.42) 0.42 (0.49)
west (proportion) 0.16 (0.36) 0.14 (0.35) 0.16 (0.37)

The results of both the PA and SA appear in Figure 2. The point estimates in the PA
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and SA are similar, but the 95% CIs are substantially wider in the PA. This suggests that

the zipcodes for which one or both of the factual pollutant exposures are larger than the

counterfactual are adding noise into the results. Matching and BART find limited, although

somewhat inconsistent, evidence of effects on mortality. Only the BART SA for 2000 detects

an effect, estimating approximately 8,000 mortalities prevented in the retained zipcodes,

with the lower CI limit just exceeding zero. For CVD and dementia hospitalizations,

all the methods yield large positive point estimates, i.e., large estimates of the number

of events avoided in the specified year due to CAAA-attributable pollution changes in

2000. The estimates from BART and matching suggest that approximately 15,000 dementia

hospitalizations and 15,000-25,000 CVD hospitalizations were avoided in each year. Nearly

all of the results for CVD and dementia are “statistically significant”, i.e. the 95% CIs

do not overlap zero, providing strong evidence of an effect. The Poisson regression gives

positive and statistically significant TEA estimates for all outcomes, with the significance

attributable to extremely narrow CIs. We ran additional sensitivity analyses to evaluate

robustness to potential error in the pollution exposures and to the choice of confounder

matching parameter ν. Results are provided in Section 6 of the Supplementary Materials.

In summary, these analyses suggest that our findings are robust to these factors.

Air pollution literature accumulated over the past 20 years has provided strong evidence

to support a causal relationship between long-term PM2.5 exposure and mortality (US EPA,

2019), including studies using Medicare data (Di et al., 2017). One major difference in

our study compared to previous cohort studies examining long-term PM2.5 exposure and

mortality is that we are using zipcode aggregated data while they use individual level data.

The use of individual level data allows for adjustments for individual level features, while

the use of aggregated data does not. Moreover, due to the potential for ecologic bias,
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Figure 2: Primary analysis (PA) and sensitivity analysis (SA) estimates and 95% CIs for
the TEA in the Medicare population in 2000 and 2001 due CAAA-attributable changes in
PM2.5 and O3 in the year 2000. Estimation is performed using matching with a GAM bias
correction, BART, and Poisson regression (PR).

inference from the analysis of aggregate spatial data is inextricably linked to the spatial

units of analysis and cannot be transported to the individual level. Therefore, results

from individual level data are often preferred. Given the complex nature of mortality, our

inability to adjust for individual level factors may make mortality rates appear too noisy to

detect pollution effects. Our results are consistent with the those of Henneman et al. (2019)

who study zipcode level coal emissions exposures and find limited effects on mortality but

strong evidence of harmful effects on CVD hospitalizations in the Medicare population.

To demonstrate how the approach introduced in this paper can be used in conjunction
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with traditional health impact assessments, we provide the EPA’s Section 812 Analysis

estimates for the number of mortalities and CVD hospitalizations prevented due to the

CAAA in Section 7 of the Supplementary Materials. We also provide context to clarify

how their estimates can be compared to ours. In short, our approach yields results entirely

supported by real, population-level health outcome data, but that are likely conservative

due to trimming. Our methods also account for any synergistic effects of the pollutants.

The traditional approach used in the Section 812 analysis relies on 1) health effect estimates

from cohort studies which allow for extensive confounding adjustment but may not fully

reflect the population of interest; and 2) a stronger set of modeling assumptions which,

while unverifiable, allows for the number of events avoided to be estimated in all locations,

even areas with no support in the real data. The results of both types of analysis provide

useful insights about the health impacts of large air pollution regulations.

The strong causal identifying assumptions in Section 3 must be satisfied to obtain causal

results. The unconfoundedness assumption may be violated, because we have not directly

adjusted for potential behavioral confounders, e.g., smoking. However, these features may

be correlated with features we do adjust for, e.g., education or region. We also make

the strong assumption of no interference. It is unclear how a violation of this assumption

would impact our results. However, this assumption has been made in most causal inference

analyses of air pollution to date (Papadogeorgou and Dominici, 2018; Wu et al., 2018).

6 Discussion

In this paper, we have introduced a causal inference approach for evaluating the health

impacts of an air pollution regulation. We developed an estimand called the TEA and pro-
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posed a matching and a machine learning method for estimation. Both methods showed

promising performance in simulations. We implemented these methods to estimate the

TEA for mortality, dementia hospitalizations, and CVD hospitalizations in the Medicare

population due to CAAA-attributable pollution changes in the year 2000. We found com-

pelling evidence that CAAA-attributable pollution changes prevented large numbers of

CVD and dementia hospitalizations. Because more than one third of the zipcodes were

trimmed from our analysis to avoid extrapolation, and because the trimmed zipcodes tend

to have larger populations and larger improvements in air quality, we expect that the true

number of health events avoided may be considerably larger than our estimates.

While our causal inference approach improves on the traditional approach to regulation

evaluation in many ways, there are trade-offs to be considered. In order to avoid ex-

trapolation and strong model-dependence, our methods discard units whose counterfactual

pollution/confounder values are far outside the observed pollution/confounder space. This

often leads to discarding of units where the highest impacts would be expected. Our esti-

mates tend to have small bias in estimating the effects in the trimmed sample; however the

effects in the trimmed sample may be much lower than in the entire original sample. The

traditional approach to regulatory evaluation retains all units for estimation, and uses para-

metric models to extrapolate counterfactual outcomes for units with pollutant/confounder

values outside areas of support in the observed data. This extrapolation could produce

biased estimates, but it is not obvious what the direction of that bias would be. It may be

useful to apply and compare both approaches in future regulation evaluations.

The limitations of our methods present opportunities for future methodological advance-

ments. In particular, approaches for causal inference with interference could be integrated

from recent work (Barkley et al., 2017; Papadogeorgou et al., 2019). To our knowledge, no
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methods yet exist that can formally account for spatially dependent data in the context of

matching or tree ensemble models, and such extensions could improve model stability and

uncertainty estimates in this context. We also note that, because our outcome is rate data,

BART’s normality assumption may be violated. A BART for count data has been pro-

posed (Murray, 2017), but at the time of writing this manuscript, code was not available.

Moreover, future work could extend our approach to accommodate individual level data

instead of aggregated data. Finally, our approach relies on pollution data from different

sources, i.e., factual pollution estimates from hybrid models and counterfactual estimates

from atmospheric chemistry models. Although we justify this choice, our results may suffer

from incompatibility in these data sources, which could be improved upon in future work.

Finally, improvements in pollution exposure data more broadly are essential to increase

the reliability of our approach. Statisticians and engineers should work together to produce

nationwide factual and counterfactual pollution exposure estimates that are increasingly

spatially granular and are more tailored for this type of analysis. These estimates should be

accompanied by uncertainties, which could be taken into account in downstream analyses.

Disclaimer: This manuscript has been reviewed by the U.S. Environmental Protection

Agency and approved for publication. The views expressed in this manuscript are those of

the authors and do not necessarily reflect the views or policies of the U.S. Environmental

Protection Agency.

SUPPLEMENTARY MATERIAL

The Supplementary Material contains additional information about traditional approaches

to regulation health impact evaluations, our matching estimator, the simulations, the

CAAA analysis, and the Section 812 analysis results. (PDF file)
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