
 
Abstract: snores are respiratory sounds produced 
during sleep. they are reported to be a risk factor for 
various sleep disorders, such as obstructive sleep 
apnea syndrome (osa). diagnosis of osa relies on 
the expertise of the clinician that inspects whole night 
polysomnographic recording. this inspection is time 
consuming and uncomfortable for the patients. thus, 
there is a strong need for a tool to analyze snore 
sounds automatically. nocturnal respiratory sounds 
are composed of two kind of events: “silence” episodes 
and “sound” episodes that include breathing, snoring 
and “other” sounds. 
in this paper a new method to detect snoring episodes 
from full night audio recordings is proposed. signal 
analysis is performed in three steps: pre-processing, 
automatic segmentation, extraction of features and 
classification. With the segmentation step, only the 
“sound” parts of the audio signal are extracted using 
a short-term energy and the otsu thresholding 
method. the aim of classification step is the detection 
of snore episodes only, using two neural artificial 
network applied to four features (length, maximum 
amplitude, standard deviation and energy). 
data from 24 subject are analyzed using the proposed 
method; on the dataset, a sensitivity of 86,2% and 
specificity of 86,3% are obtained. 
Keyword: snore, obstructive sleep apnea, neural 
network, automatic segmentation 

 
I. INTRODUCTION 

 
Snoring can be defined as a respiratory noise that is 

generated during sleep when breathing is obstructed by a 
collapse in the upper air way. Loud and regular snoring is 
the earliest and most consistent sign of upper airway 
(UA) dysfunction leading to sleep apnea/hypopnea 
syndrome [1].  

Obstructive sleep apnea (OSA) is the most frequent 
encountered form of the sleep apnea [1]. In OSA, the 
upper airways are obstructed during sleep, resulting in the 
decrease of oxygen flow to the lungs. Patients suffering 
from OSA often wake up frequently. When there is a full  
closure of airways, the disease is termed “apnea” while 
when there is a partial closure, it is known as “hypopnea” 
[2]. The disease is associated with significant clinical 
consequences but it is frequently unrecognized and  
 

 
undiagnosed because simple, low-cost devices for mass 
screening of the population do not yet exist. 

The current “gold standard” method for sleep apnea 
assessment is Polysomnography (PSG). This technique 
requires a full night hospital during which the patient is 
connected to more than ten channels of measurements 
requiring physical contact with sensors. PSG is thus 
inconvenient, expensive and unsuited for community 
screening [3] [4] [5]. Thus, in order to study OSA non-
invasively, several researches focused on the analysis of 
snore sounds from full night audio signal recordings, 
using signal processing techniques. 

Commonly tracheal respiratory sounds are recorded 
using a microphone placed over the patient‟s neck or 
hung above the patient‟s head during the night, leading to 
long lasting audio signals (6–8 hours).  The length of a 
whole recordings is thus prohibitive for the analysis by 
listening to and for visual inspection of signal patterns. 
Hence, automatic methods are needed to speed up the 
analysis task.  
Despite its clinical relevance, a limited number of studies 
on automatic detection and classification of snore sound 
has been developed to date [6], [7], [8], [9], [10], [11]. In 
these works different kind of techniques of analysis are 
applied, such as: Energy and zero-crossing rate [6][7] [8], 
Hidden Markov Models (HMMs) and spectral-based 
features [9], 500Hz sub-band energy distribution [8],[10], 
normalized autocorrelation coefficient at 1 ms delay and 
the first predictor coefficient of LPC analysis [6], and 
frequency range of each formant [11].  

However, most often the automatic segmentation step 
is not included, the snore events being detected manually 
or with semi-automatic methods. 

Hence the motivation of this study was to develop an 
effective method to detect the snoring episodes, fully 
automatic and fast enough to allow processing full night 
recordings in a reasonable amount of time. 

A short-term energy measure was implemented for 
automatic detection of “sound” events and two neural 
artificial network were applied to four features (length, 
maximum amplitude, standard deviation and energy), for 
automatic classification of snore events. 

 
II. METHODS 

 
The aim of the proposed system of analysis is the 

detection of snoring events from full night audio 
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recordings. This is achieved by means of the following 
three steps: 
A.  Pre-processing: loading of audio signal, band-pass 

filtering and down sampling; 
B. Automatic segmentation: detection of the “sound” 

parts of the signal; 
C. Extraction of the features and classification: 

identification of snoring events. 
The implemented method, named Snore Analyzer, is 
developed under Matlab 7.11.00 software tool. A flow 
chart is shown in Figure 1.  
 Snore Analyzer is provided with a user-friendly 
interface (Figure 2) that easily allow the user to choose 
the audio signal to be processed (Load bottom) and set 
the following parameters for subsequent processing: 1) 
Sampling frequency (44.100 kHz by default); 2) Down 
sampling frequency (11.025 kHz by default); 3) Starting 
and ending samples, to select the part of the signal to be 
processed; 4) Size of analysis window (40 ms by default). 

Then the user starts the elaboration of the selected 
audio signal pushing the Start bottom. Through the Reset 
bottom, the user can delete all the items.  

The elaboration of whole signal (or a part of it) is fully 
automatic and the user should not act manually anymore.  

The length of each audio signal is about 7-8 hours and 
the complete analysis of whole signal requires about 30-
40 minutes. At the end, the software gives as output a list 
of extracted “sound” events which are labeled as snore or 
not-snore.  

The next sections (A, B, C) describe each step in detail. 
 
A. Pre-processing 

 
The use of a robust recording system can improve 

signal acquisition, but noise reduction is required to 
eliminate interferences. Therefore a pre-processing step is 
implemented to improve signal to noise ratio.  

In this study the audio signal is bandpass filtered by a 
Butterworth filter of order 5 and a cut-off frequency of 
100 – 1000 Hz, to reduce the effects of heart sounds and 
high-frequency noises [1]. Main frequency components 
of breathing and snoring sounds are in fact included in 
this range [12] [13].  After the filtering step, the signal is 
down sampled (to 11.025 kHz), to reduce the size of the 
data and hence speed up signal processing. 
 
B. Automatic Segmentation 

 
The audio signal is typically a mixture of two different 

kind of events: “silence” that do not contain any sound 
and “sound” that include breathing episodes, snoring 
episodes and “other” sounds such as oral noise, ambient 
sounds, patient‟s cough, speech and blanket movements, 
etc. 

This step is therefore devoted to identify the “sound” 
events. Short-Term Energy (STE) is a commonly used 

measure for determining the “sound” parts as it increases 
during “sound” events and decreases during “silence” 
episodes [14] [15].  

 

 
 

Fig. 1 Flow chart of the analysis system. 
  

 
 

Fig. 2 User-friendly interface of the implemented 
software tool. 

 
In our study, STE is evaluated in signal windows of 

40 ms in length with 50% overlap between adjacent 
windows. In order to determinate boundaries of “sound” 
events, we computed the histogram of the signal energy 
and the Otsu method is iteratively applied to obtain two 
thresholds: the upper one tu and the lower one tl [16], 
[17]. These thresholds are then used to find the starting 
and ending points of each “sound” event in the audio 
signal. In particular, when the STE curve overpasses the 
upper threshold, the first point under the lower threshold 
(on the left side of the curve with respect to the upper 
threshold) is detected in order to get the starting point. 
When the STE curve falls down tl, the ending point of the 
event is found (Figure 3). 
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 Fig. 3 The starting and ending points of a “sound” event. 

 
At the end of segmentation, the list of extracted 

“sound” events is saved in a text file to be used in the 
classification step.  

 
C. Extraction of the features and Classification 

 
Once all the “sound” events from the signal are 

obtained, they have to be classified as snore or not-snore 
(i.e. breath and “other” events). In fact for a reliable 
analysis of OSA, only snore episodes must be detected. 
This task is carried out in two step: in the first on, a set of 
four parameters is computed in time domain; in the 
second one, the events are identified with a classification 
system. 

The first parameter is the length of each “sound” event, 
calculated as the distance between the starting and the 
ending point of the event. This feature allows to 
distinguish between “other” events and breathing/snoring, 
as the average length (in samples), computed for 
breathing and snoring sounds, is lower than for “other” 
sounds, as shown in Table 1.  

Table 1 Mean and Standard Deviation of the length of 
snore/breath and of “other” sounds. 

 
length [sample] 

 Mean value std value 

snore/breath 4.7999 ·104 2.8492 ·104 

“other” 1.4405 ·104 1.3602 ·104 

 
The other parameters are: the Standard Deviation 

(STD), the mean value of Short-Term Energy (STE) and 
the maximum amplitude of “sound” events, given by the 
difference between the maximum and the minimum 
amplitude of the signal.  

These features allow to distinguish between snoring 
episodes and breathing episodes, as the average value of 
each single feature is higher in the class of snoring events 
than in the class of breathing events (Table 2) while the 
behaviour of these parameters is highly variable in 
“other” sounds. 

Hence the following observation can be made: “other” 
sounds can be found using the length of the events only; 
snoring and breathing sounds can be distinguished using 
the STD, the mean value of the STE and the maximum 
amplitude.  

 
Table 2 Mean and Standard Deviation of STD, mean of 

STE and Maximum Amplitude. 
 

std 

 Mean value std value 

snore 0.0038 0.0024 
breath 0.0014 0.0005 

 
ste 

 Mean value std value 

snore -5.4120 0.5283 
breath -6.0974 0.3061 

 
Maximum amplitude 

 Mean value std value 

snore 0.0498 0.0389 
breath 0.0142 0.0061 

 
According to these results, a classifier is designed 

made up by two artificial neural networks: the first one is 
used to identify the “other” sounds, while the second one 
is used to discriminate between snoring and breathing 
sounds.  

The sounds episodes were manually labelled by trained 
clinicians as snore or not snore to built the training and 
the testing datasets for the classification system. The 
training set is made up by 1643 sound signals equally 
distributed among snoring, breathing  and „other‟ sounds. 

The first network is trained with all the events of the 
training set using only the length of the event as input and 
the outcome of listening is used as teaching input.  

After the training step, the network output is tested and 
compared with the outcome of listening; the “other” 
sounds correctly recognized as “other” (true negative) are 
removed from the training set used in the second network 
that consists of three inputs, corresponding to the mean 
value of STE, its STD and the maximum amplitude, 
respectively. 

 
III. RESULTS 

 
Clinical audio signals (18 patients of different age and 

sex) are recorded at Fondazione Don Gnocchi, 
Pozzolatico, Firenze, where the patients slept in single 
bedroom, separated from television and others predictable 
sources of noise.  

The audio signal are digitized at 16-bit with a 
sampling frequency Fs=44.100 kHz, using a Tascam Us-
144 sound card and a unidirectional microphone Shure 
SM58, positioned at about 30 cm from the mouth of the 
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patient. The length of single signal is of about 7-8 hours, 
but, for the analysis, we considered thirty minutes of each 
recording, selected in the central part of the signal when 
the patient was sleeping and low environmental noise was 
detected. 

A preliminary evaluation was carried out to assess the 
performance of the automatic segmentation, evaluated as 
the percentage of sounds detected over the total number 
of sounds, Resulting in about 97%.  

Concerning the classification step, the first network 
was tested on 787 “sound” events, different from the 
original training set. From the analysis of the ROC curve, 
a “best” threshold was obtained that allows to correctly 
identify 85.4% of the “other” sounds. These sounds were 
stored in a list of not-snore events and removed from the 
test set.  

The second network was tested on the remaining 
sounds and, as for the first network, the best ROC 
threshold was computed and used to identify snore and 
not-snore sounds. 

The accuracy (number of correct classifications) of 
the second network was found equal to 86.2%. This result 
corresponds to a sensitivity (true positive (TP) ratio) 
equal to 86.2 and a specificity (true negative (TN) ratio) 
equal to 86.3.  

 
IV. DISCUSSION  AND CONCLUSIONS 

 
A full automatic and unsupervised system for snore 

identification during sleep is proposed.  
The proposed automatic segmentation was shown to 

be a reliable technique for the extraction of sound events 
as almost all silence events were discarded. 

The algorithm for classification correctly identifies 
the 86.2% of analysed events. However it fails in case of 
low intensity snores, as such events have low energy and 
low maximum amplitude. But, as post apnoeic snore 
events are usually more intense than non-post apnoeic 
ones, this limitation could be acceptable. 

Future work will be devoted to enhancing the 
procedure, increasing the dataset and defining a reliable 
method for the identification of post-apnoeic events from 
the automatically detected snore sounds, e.g. as in [18]. 
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