
	

Abstract: snoring is the hallmark of the obstructive 
sleep apnoea syndrome and several studies explore 
possible correlations between them. in this work an 
improved methodology with respect to [4] is proposed, 
based on a proper energy threshold applied on audio 
recordings for sound/silence detection, and on a 
feature vector of 14 elements (13 Mel frequency 
cepstral coefficient plus the number of zero 
crossings) for sound classification. this feature vector 
is obtained from a 62-elements one by applying a 
genetic algorithm, fitted to obtain the best 
classification of the training/validation sets. 
the feature vector is analyzed by means of a radial 
basis neural network to perform snore events 
identification. finally, formant frequencies and time 
analysis are also investigated to split up post-apnoeic 
snores and normal ones.  
audio data from 26 patients of different age and sex 
are used to test the methodology: 6 patients (3 male 
and 3 female) were used to train the nets (1800 snores) 
and 4 patients to validate the classification (600 
snores). on the whole dataset of patients, a sensitivity 
between 69% and 84% is obtained in the detection of 
post-apnoeic snores.  
 
Keywords: snore, neural network, Mel frequency 
cepstral coefficients, genetic algorithm, obstructive 
sleep apnoea. 

 
I. INTRODUCTION 

 
Obstructive  Sleep  Apnoea  (OSA)  is  a  pathological  
condition  where  the  upper  airways  collapse, reducing  
or  cutting  the  flow  to  the  mouth/nose.  The diagnosis 
of Obstructive Sleep Apnoea Syndrome (OSAS) is 
commonly made by means of Polysomnographic (PSG) 
examination. PSG is mainly performed in a clinical 
environment (sleep laboratories), but could also be 
performed in home environment. However, PSG 
examination is bothering for patient, unsuited for mass 
screening purposes and expensive. Hence, new, simpler 
and non-invasive methods are investigated to detect 
OSAS. At present, according to the Italian guidelines, 
OSA is detected from full-night sleep analysis 

(uninterrupted recordings lasting from 6 to 10 hours) by 
means of PSG. Such a huge amount of data implies 
several technical problems concerning acquisition, 
storage and processing of data. Hence, efforts are made in 
the scientific community to define reliable OSA 
identification techniques from the audio signal only. At 
present, processing is made over the whole signal that is 
commonly classified into three classes: snore, breath, 
silence [1] or five classes: snore, breath, silence, duvet 
noise, other noise [2]. Other works consider just temporal 
features [3].  
In  this  work  we  propose  an automatic  detection  of  
snore  events,  that  extends  the  results  obtained  in    
[4], followed  by  an  evaluation  of  the  number  of  
Apnoeas or Hypopnoea events (AHI Index) with the 
methodology proposed in [5]. Our approach allows to 
split-up snores from other sounds, without predefining 
other sound classes, thus reducing the total length of the 
signal to be processed. The method is developed under 
Matlab2007a®. Full-night audio data (26 patients) come 
both from clinical and home recordings. 
 

II. METHOD 
 
The flow chart proposed in [4] is revised here, with the 
aim of performing a faster analysis and a more careful 
sound/silence segmentation. Firstly, we evaluate the 
histogram of the audio signal energy to perform an Otsu 
thresholding [6]. This method has the advantage that it 
does not require data pre-filtering,  as  a  good  energy  
separation  between sound  and  silence  is  expected from  
our  recordings [1], even in home environment. This 
assumption has been verified with a careful setup of the 
process, both as far as the device and the environmental 
setup are concerned. Specifically, a unidirectional 
microphone has  been  used  to  perform  recordings  
connected  to  an  external  sound  card  to  reduce  noise  
artefacts of the laptop sound card. Patients were separated 
from bed partner and/or from pets, television and other 
predictable sources of noise. Moreover, the first 30 
minutes  of  each recording  were  cut  off,  to  avoid  
noise  due  to  patient’s  movements,  speaking  with  the 
clinician and similar ones. After the selection of sound 
events, a proper classification is proposed based on 
features extracted from  60  Mel  Frequency  Cepstral  
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Coefficients (MFCC) plus short term energy (STE) and 
the number of zero crossing (NZC), where: 
 

STE = log �
∑ s(i)2n

i=1
n � + k                                      (1) 

NZC =
∑ �sign�s(i + 1)� − sign(s(i))�n−1

i=1   
2                    (2)  

 
Where n=441 is the number of elements in each window, 
sign() is the sign function, s is the signal and k is a small 
constant value to avoid log(0). Mean and standard 
deviation of the MFCCs are obtained as in [4]. 
As the choice of the number of coefficients is often 
arbitrary or derived from boundary conditions, we 
performed a careful search of the most representative 
MFCCs by means of a genetic algorithm (GA), where 
each gene of a phenotype represents a MFCC. The 
population of feature vectors was processed by the neural 
network until we obtained the best fitting according to 
proper classification. Furthermore, after low-pass filtering 
the audio signal (2 kHz cut-off), the number of zero 
crossings has been used as a selection feature for 
snore/non-snore events. 
Several methods are proposed in literature to separate 
OSA events from non-OSA ones. Here we adapted the 
one proposed in [5] with the aim of identifying snore 
episodes after apnoea ones. This allows obtaining an AHI 
index related to apnoeic events only. A detailed flow 
chart of the process for the best feature vector selection is 
reported in Fig.1. 
Short term energy, number of zero crossing and MFCCs 
extraction from the signal are performed according to [4]. 
Mean (m) and standard deviation (std) of the MFCCs for 
all frames of an event are also evaluated.  
To detect starting and ending points of the event, the Otsu 
methodology [6] was iteratively applied to obtain two 
thresholds, the upper one and the lower one. The 
histogram was settled up to 2000 levels. After a first 
upper threshold detection tu, a second Otsu thresholding 
was performed from level zero to level tu, to obtain a 
lower threshold tl. When the STE of the signal overpasses 
tu, a starting point is detected, when the STE of the signal 
falls down tl, the ending point of the event is found. As in 
[4] this procedure allows to obtain two sets representing 
the starting and the ending points of the events. Filtering 
only these events instead of the whole signal greatly 
speeds up the signal processing. 
Once we have obtained all the events from the recording, 
we listened and classified the various frames as snoring 
or non-snoring frames to prepare a training set. We 
classified about 600 events from 6 patients (3 male and 3 
female) without regarding the prevalence of the 
pathology, for a total of about 1800 snoring frames and 
1500 non-snoring frames.  
At present, most of the approaches try to classify snoring 
and “other events”, e.g. mainly breath. However different 

noise events are included in “other events” that are 
difficult to classify. Hence a different approach is 
presented here, where we train the net with feature 
vectors representing only snore.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
           
 
 
 
 
 
 
    
  
 
 
 
 
 
 
 
 
 Figure 1. Flow chart of the sound detection 

and snore identification 
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Hence, if a unclassified feature vector (named here void 
vector) is presented to the net, according to the similarity 
of this new feature vector to the ones presented to the net 
during the training step, snore frames can be separated 
from non-snore ones.  
In our opinion, this approach is more general as it is not 
proper to assume that cough, bed noise, breath and 
similar sounds belong to the same class, as was proposed 
in our previous work [4], though quite good results were 
obtained. 
The improvement proposed here is based on a Radial 
Basis Neural Network (RBNN) that provides, as output of 
the hidden layer, a vector D representing the distance 
between the input vector (our feature vector of 62 
elements) and the input weight matrix. For the radial 
basis neuron, the output is equal to 1 when the distance 
between the weight vector and the input vector is 0. 
Hence, the maximum value of D points out if the feature 
vector represents a snore or not. 
All the 1800 frames representing snores are used as 
training set. Then, presenting several input vectors to the 
net, and taking into account the maximum of the output 
vector, 600 frames not already presented to the net are 
used to evaluate the network. The number of correct 
classifications over the validation set of 600 frames 
represents the value of our fitting function:  
 

𝑓𝑖𝑡 = − 𝑇𝑃+𝑇𝑁
600                                                (3)                        

 
Where TP=true positive (a snore correctly recognized as 
a snore), TN=true negative (a non-snore correctly 
recognized as a non-snore). The minus sign is due to the 
fact that the most common genetic algorithm tools aim to 
minimize the fitting function. 
To perform the GA, the input vector I to the net was 
obtained as the product between the vector M of 62 
elements (30 mean values and 30 std of the MFCCs plus 
STE and NZC) and a binary feature vector called 
phenotype G that represent the elements of the vector M 
that will belong to the input vector I or not. The various 
individuals of the population for the GA are different Gs 
with different combinations. The stop condition was set at 
30 minutes of elaboration. The whole process is shown in 
Fig.1. 
After GA optimization, the resulting best feature vector 
was used to train an Optimized Radial Basis Neural 
Network (ORBN) and to test the net on the whole 
database of patients. Here “optimized net” means a net 
trained with the optimized input set.  
The snore event recognized as snore is than processed to 
identify the post-apnoeic snore event, according to [5]. 
Also, a temporal feature is taken into account, based on 
the assumption that at least 10s of silence should exist 
before the snore to satisfy the apnoea definition (air flow 
absence lasting 10s at least [7]). 

 
III. RESULTS 

 
Experiments were carried on under the same conditions 
as in [4], and with the same equipment. Mainly three 
blocks of the chain in Fig.1 affect our results: the sound 
detection from the whole recording; the snores 
recognition from the sound; the OSA-snores recognition 
from the snores. 
The first step, mainly related to the reduction in time of 
the whole recording, gives good results. As an example, 
results for 4 subjects are shown in Table 1. 
 
Table1.Examples of reduction in time of the recordings. 

patient time of whole 
recording (min) 

time of whole 
events (min) 

subject 1 572 37 
subject 2 446 47 
subject 3 592 70 
subject 4 476 31 

 
The accuracy of this step, evaluated  as the number of 
sounds detected over the total number of sounds, is about 
96,65% (ranging from 93% to 99%). This accuracy was 
computed by listening to about 1 hour of recording for 10 
patients. 
The second step was validated by listening to 50 events 
extracted from 6 different patients. As in [4], an event is 
classified as snore if there is at least one frame 
recognized as snore in the whole event. The sensitivity, 
measured as TP/(TP+FN) varied from 87,1% to 97,82% 
with a good improvement with respect to [4]. Here FN 
(false negative), represents a snore wrongly recognized as 
non-snore. 
The best phenotype was obtained running five times the 
GA, with the stop condition of 30min  running, but in all 
cases the problem was optimized after 10 generations. 
From the five best phenotypes obtained, only the 
elements common to all of them were used, thus 
discarding 6 elements. Thus, the best phenotype is 
composed by 14 elements from the 62 of the original one, 
as shown in Table 2. 
Notice that the OSA evaluation was carried on offline 
after the automatic snore extraction. Only the snores that 
follow a silence longer than 10s were analyzed. 
Finally, we extended what suggested in [5], considering 
as apnoeic snores only the snores occurring after an 
apnoea event. In this way, we notice a little increasing of 
the post apneic snore formant frequencies. 
Taking into account the difference on formant 
frequencies and the temporal consideration regarding a 
10s silence before sound, we obtained a sensitivity 
varying from 85% to 87%. 
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Table 2. Best phenotype obtained from GA 

element 
of i 

element 
of M 

Meaning 

1 M(1) Mean of 1° MFCC 
2 M(4) Std of 2° MFCC 
3 M(5) Mean of 3° MFCC 
4 M(7) Mean of 4° MFCC 
5 M(14) Std of 7° MFCC 
6 M(15) Mean of 8° MFCC 
7 M(23) Mean of 12° MFCC 
8 M(24) Std of 12° MFCC 
9 M(30) Std of 15° MFCC 

10 M(37) Mean of 19° MFCC 
11 M(42) Std of 21° MFCC 
12 M(54) Std of 27 ° MFCC 
13 M(56) Std of 28° MFCC 
14 M(61) Number of Zero Crossing 

 
 

IV. DISCUSSION 
 
The proposed sound/silence detection algorithm mainly 
fails with low intensity snores, as such events have not 
enough energy to be classified as sound signals by the 
Otsu methodology. However, as post apnoeic snore 
events are more intense than non-post apnoeic ones, this 
limitation could be acceptable. Moreover, the Otsu 
thresholding fails if very few snore events are present in 
the recording. Specifically in 2 cases out of the 26 
analyzed, manual thresholding was required, as the 
patient snored few times as compared to the length of the 
whole recording. In this case, thresholds were not 
coherent with the sound. This happened for one 
laboratory recording where some devices added a 
continuous noise during the night and for one home 
recording, where the patient snored few times over the 
whole recording (about 6 minutes out of 7 hours of 
recording). However, as Table 1 points out, the reduction 
in time could be relevant. Hence further analysis is 
required to overcome these limitations and possibly 
define a time threshold that points out  if the recording is 
acceptable or not. 
The sensitivity of the ORBN was really good, achieving 
in some case the 98% of recognition. The large variety of 
different kind of snores does not allow for a perfect 
recognition, but these first results seem quite good also as 
compared to existing literature. 
At the end of the whole chain, the post apnoeic snore 
recognition varies from 69% to 84%, using the approach 
in [5]. Actually, sound detection and sound classification 
are hold on in automatic way, while the post apnoeic 
snore is analyzed offline, with a methodology not yet 
implemented in the algorithm.  
 

V. CONCLUSION 
 
We provide a full automatic highly sensitive system for 
snore identification during sleep that takes into account 
aspects of the problem not considered in other 
approaches. The search of the most meaningful features 
that identify the snore from other sounds could be further 
explored to provide a link between snoring arousal and 
other sound features.  
A post apnoeic classification provides a first attempt to 
validate the system from data recordings for syndrome 
evaluation. However, we point out two weaknesses: first, 
the non automatic performance of the post apnoeic 
identification step and second, the used approach that 
does not perfectly fit our needs, but that was chosen for 
its easy applicability. 
Finally, larger testing is needed to further validate our 
approach and compare its capability against the 
traditional home polysomnography approach.    
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