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Abstract
The classical Anderson-Darling test for Gaussianity cannot be applied on correlated data. It is possible to
circumvent correlation by resampling the data at wider spacing. A simple resampling criterion is developed using
digitally simulated standard Gaussian realizations following a single exponential correlation structure. The effects of
resampling on Gaussianity assessment are assessed on actual normalized cone tip resistance profiles from highly
homogeneous soil units.

Introduction

The spatial variations of soil measurements in any direction are generally correlated with each other. This is most
readily observed in the case of cone penetration test soundings, because of the small measurement intervals.
Statistical inference from correlated data is very complicated. Invariably, classical tests are based on the important
assumption that the data are independent. When they are applied indiscriminately to correlated data, large bias will
appear in the evaluation of the test statistics. Phoon et al. (2003) demonstrated this bias quantitatively for the case of
the Bartlett test. This paper shows that correlation introduces significant bias, even when the object of interest is the
marginal information, such as the ubiquitous Gaussian goodness-of-fit test. Intuitively, a simple method to
circumvent this correlation problem is to resample the data at wider spacings. However, the power of a test reduces
with sample size. Hence, the practical challenge is to determine the minimum spacing beyond which a classical
goodness-of-fit test can be applied. A simple resampling criterion would be developed based on simulation.

Simulation of Correlated Standard Gaussian Profiles

Realizations belonging to a zero-mean stationary Gaussian process X(t) can be generated using the well established

spectral approach as follows:
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in which ffS kk ∆)(2=σ , ∆f is the interval over which S(f) is discretized, fk = (2k-1)∆f/2, and Uk and Vk are
standard normal variates. The following target autocorrelation function is selected:
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in which τ is the spatial separation distance and δ is the scale of fluctuation, in the same units as τ. This single
exponential autocorrelation function (SNX) is quite commonly used to model spatial variability in geostatistics. A
first-order Markov or AR(1) process would also produce this autocorrelation function. Fig. 1 shows examples of
simulated profiles for kδ =δ/(∆z)=10 and 40, in which ∆z=measurement interval. If the random seed used in Eq. (1) is



maintained constant (as in the present
study), it can be shown that the same
dimensionless parameter kδ (i.e. the
number of measurements in one scale of
fluctuation) would produce the same set
of realizations.

Resampling

The aim of resampling in the context of
the present paper is to remove the
correlation in residuals of qc1N by
increasing the separation distance
between consecutive data values. The
physical motivation is that it will be less
likely for measurements to be related if
their separation distance is greater.
However, it is desirable to limit the
resampling interval to a minimum, as
resampling results in a reduced sample
size. The resampling interval can be
conveniently expressed as a multiple of
the scale of fluctuation, i.e. knδ.

The scale of fluctuation is a concise
indicator of the spatial extent of strong correlation. Hence, if data are resampled at a separation distance
corresponding to δ (i.e. kn=1), they should be uncorrelated. As the meaning of “strong” is not unequivocally defined
and possibly a function of context, it is of pragmatic interest to see whether data resampled at smaller separation
distances (i.e. kn<1) could be considered “uncorrelated” from the viewpoint of a classical goodness-of-fit test. This
would reduce the test bias caused by correlation while minimizing degradation in test power caused by inevitable
reduction in resampled sample size.

Based on results obtained by Uzielli et al. (2005), typical values of kδ for normalized cone penetration test
parameters range from 10 to 40. Sets of 10000 realizations of different lengths (nd=64, 128, 512 and 1024 data
points) were generated for kδ =10, 20, 30, 40. All realizations were resampled at 10 values of separation distances
knδ, with kn increasing from 0.1 to 1.0 in steps of 0.1.

Normality Testing for Optimum Resampling

If data are uncorrelated and Gaussian, a normality test should reject the null hypothesis of Gaussianity at a rate equal
to the prescribed level of significance (say 0.05). If, on the contrary, the Gaussian data are correlated, the null
hypothesis would be rejected too frequently. The basic idea is to resample until the resulting data achieve the correct
rejection rate.

The Anderson-Darling test [AD] (Anderson and Darling 1954) as modified by Stephens (1986) consists of the test
statistic A2* and the subsequent comparison with a critical value for a given level of significance. The AD test was
performed on resampled realizations for each combination of kδ and kn. The ratio of rejections of the null hypothesis
of normality to the total number of realizations (10000) was recorded.

The optimum value of the resampling parameter kn was taken as the minimum value after which the rejection ratio
for the resampled correlated simulations was definitively below 0.05, the confidence level adopted in the AD test.
Fig. 2 shows the rejection ratios obtained for kδ = 10, 20, 30, 40 and for kn=0.1 to 1.0 in steps of 0.1 (only the range
0.1-0.6 is shown as the rejection rate is below 0.05 for kn>0.6).

Figure 1. Examples of simulated profiles of detrended qc1N

for kδ=10 and kδ=40



Fig. 3 shows the optimum resampling coefficient, kn*, as a function of the dimensionless parameter I1=nd/kδ (Phoon
et al. 2003), which expresses the number of scales of fluctuation in the spatial extension of a realization (or, in case
of real data, the width of a soil layer under investigation). Two distinct zones are observed in Fig. 3: for small values
of I1, kn* increases with increasing I1; for larger values, kn* is essentially independent of I1. The proposed relations
for kn*, obtained by empirical fitting, are

( ) 100.0ln118.0 1
* += Ikn 1.5≤I1≤15 (3a)

42.0* =nk 15<I1≤100 (3b)

Curves deriving from Eq. (3a) and Eq. (3b) are shown in Fig. 3, superimposed to the rejection rate data obtained
from the AD test. Hence, for data whose autocorrelation structure is well described by the single exponential model,
correlation may be sufficiently reduced, insofar as the AD test is concerned, by resampling data using an interval of
kn*·δ (rounded up to the nearest multiple of ∆z). It is also interesting to observe that Gaussianity is rejected too
frequently when kn < kn*, clearly indicating that indiscriminate application of classical tests would lead to erroneous
conclusions.

The AD test was also performed on control sets of uncorrelated standard Gaussian data of the same length as the
correlated resampled simulations (i.e. varying according to kn). The rejection ratio for such sets was always constant
around 0.045.

Application to Real Data

To apply the procedure to a real data set:
(a) obtain a zero-mean random field by
subtracting a deterministic function [e.g.
a linear trend]; (b) calculate the sample
autocorrelation function [ACF] of the
residuals; (c) evaluate the goodness of
fit of the SNX model to the ACF by
regression [e.g. verify that R2≥0.9]; (d)
evaluate the scale of fluctuation; (e)
calculate kδ and check that 10≤kδ≤40; (f)
calculate I1 and check that 1.50≤I1≤100;
(g) resample the data using kn calculated
from Eq. (3a) or (3b). The paper by
Uzielli et al. (2005) can be referred to
for detailed description of steps (a)-(d).
Once correlation has been removed, it is
possible to apply the classical AD test
for the assessment of Gaussianity.

The criterion was applied to one
profile of normalized cone tip resistance
qc1N (calculated according to the revised
Robertson [1999] algorithm) whose
SNX autocorrelation structure and weak
stationarity of residuals were assessed
rigorously by Uzielli et al. (2005). The
profile comprises nd=555 measurements,
taken at interval ∆z =0.025m.
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Figure 2. Rejection ratios (for sets of 10000 simulated realizations)
for the estimation of the optimum resampling coefficient kn

*. Sets are
denoted by XXXX_YY where XXXX=number of elements in each

realization; YY=kδ.



A linear trend is removed from the
original data set. The fit of the SNX model
to the initial part of the autocorrelation
function whose coefficients exceed
Bartlett’s limit rb=1.96/(nd

0.5) is given by
the determination coefficient R2=0.99; the
resulting scale of fluctuation is δ = 0.98m.
Hence, I1=(555·0.025)/0.98=14.16; Eq.
(3a) yields kn

*=0.41. The resampling thus
should occur at a separation distance at
least 0.41δ =0.40m, i.e. every 16
measurements. The original set of
residuals [NONRES] and 5 of the possible
16 resampled sets [RES1–RES5] are
shown in Fig. 4. Sets RES1-RES4 contain
35 measurements, while RES5 contains 34
measurements. Note the drastic reduction
in sample size from 555 measurements to
35 measurements. If kn=1, then the
separation distance is 0.98m, i.e. every 40
points. The resulting resampled sample
only consists of a meagre 14
measurements!

To evaluate the effect of resampling in
terms of Gaussianity, the AD test is performed on the non-resampled set and RES1-RES5. The variation in the
assessment in Gaussianity by the AD test due to the reduction of correlation is reported in Table 1. The critical value
of the A statistic for a significance level of 0.05 is 0.787; it is seen that applying the AD test to NONRES provides a
biased assessment of Gaussianity, as the A2* statistic is very close to the critical value. The A2* statistics for [RES1-
RES5] are significantly smaller, ranging from 0.168 to 0.290. Such values show that in general the differences in the
A2* statistic between resampled sets are small; hence, in practice, it is not paramount to perform the AD test on more

than one resampled set. Fig. 5 shows
normal probability plots for NONRES and
RES1.

Conclusions

This paper shows that the classical AD test
for Gaussianity cannot be applied on
correlated data. It is possible to
circumvent correlation by resampling the
data at wider spacing, although this is
accompanied by a significant loss in
power. While the procedure can be
extended to any type of spatially correlated
data and to any correlation structure, the
results of this paper strictly apply to data
sets with an SNX-type correlation
structure, with 1.5≤I1≤100 and with
10≤kδ≤40.
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Figure 3. Optimum values of the resampling coefficient kn
* versus I1,

with proposed curves for practical application
Figure 4. Residuals from real qc1N profile [NONRES] and 5
resampled sets [RES1-RES5] (∆=0.025m; δ=0.98m; kn

*=0.41)
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Table 1. Anderson-Darling test
statistic A2* for non-resampled and
resampled qc1N residuals

set A2*

NONRES 0.714
RES1 0.228
RES2 0.214
RES3 0.170
RES4 0.290
RES5 0.168

Figure 5. Normal probability plots for non-resampled residuals
and resampled set RES1


