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Abstract

Purpose: The aim of this work was to establish a methodological approach for cre-

ation and optimization of an atlas for auto‐contouring, using the commercial soft-

ware MIM MAESTRO (MIM Software Inc. Cleveland OH).

Methods: A computed tomography (CT) male pelvis atlas was created and opti-

mized to evaluate how different tools and options impact on the accuracy of auto-

matic segmentation. Pelvic lymph nodes (PLN), rectum, bladder, and femurs of 55

subjects were reviewed for consistency by a senior consultant radiation oncologist

with 15 yr of experience. Several atlas and workflow options were tuned to opti-

mize the accuracy of auto‐contours. The deformable image registration (DIR), the

finalization method, the k number of atlas best matching subjects, and several post‐
processing options were studied. To test our atlas performances, automatic and ref-

erence manual contours of 20 test subjects were statistically compared based on

dice similarity coefficient (DSC) and mean distance to agreement (MDA) indices. The

effect of field of view (FOV) reduction on auto‐contouring time was also investi-

gated.

Results: With the optimized atlas and workflow, DSC and MDA median values of

bladder, rectum, PLN, and femurs were 0.91 and 1.6 mm, 0.85 and 1.6 mm, 0.85

and 1.8 mm, and 0.96 and 0.5 mm, respectively. Auto‐contouring time was more

than halved by strictly cropping the FOV of the subject to be contoured to the pel-

vic region.

Conclusion: A statistically significant improvement of auto‐contours accuracy was

obtained using our atlas and optimized workflow instead of the MIM Software pel-

vic atlas.
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1 | INTRODUCTION

In radiotherapy planning, image segmentation is one of the prelim-

inary and time‐consuming tasks, affected by interobserver variabil-

ity.1–6 This procedure, usually performed on computed tomography

(CT) images, is affected by the scarce image contrast that hinders

the application of semi‐automatic segmentation algorithms based

on threshold or region growing. Moreover, some of the criteria to

define targets and organs at risk (OAR) are not related to CT visi-

ble anatomical boundaries. For these reasons, image segmentation

for radiotherapy treatment planning is still a challenging and labor‐
intensive task. Semi‐automatic contouring methods are imple-

mented in commercial treatment planning systems (TPS) to sup-

port users in reducing contouring time, but only atlas‐based or

artificial intelligence methods can aim to fully automate the con-

touring processes.

The atlas‐based approach relies on the availability of one or more

CT series of a certain anatomical district, already contoured by an

expert physician following guidelines.7,8 The operating principle is to

perform a deformable registration of an atlas subject on the new

subject and then apply the same transformation to the atlas struc-

tures, to obtain a proposal of contouring for the new subject. While

the single‐subject approach uses only one subject, the multisubject

one uses N subjects, which should better represent patients'

anatomical variability. In principle, each subject of the multisubject

atlas could be deformed on the subject to be contoured, to obtain N

possible sets of structures. To save time and to increase the segmen-

tation accuracy, a reduced set of k subjects, the most similar to the

patient to be contoured, can be used. From each of the k subjects, a

contours proposal is derived, and finally, a finalization algorithm com-

bines these k series of contours into a single set of contours.

Although contours obtained with atlas‐based algorithms require

some minor or major editing,9 the atlas approach has been proved to

be effective in reducing CT contouring time and interoperator vari-

ability for various anatomical sites.2,5,10–17

In the last years, the increasing availability of computing power

and storage space has promoted the development of automatic seg-

mentation methods based on artificial intelligence and machine

learning approaches.3,18–21 Some of these methods have been

proved to be very effective to produce accurate contours requiring

minimal editing by physicians,20 but their implementation and train-

ing is very demanding. Even when neural networks are implemented

in commercial software, hospitals usually do not have the possibility

to collect an adequate training set of studies.21

For these reasons, atlas‐based segmentation remains a reason-

able option for automated contouring in radiotherapy and it is imple-

mented by several vendors, both as a TPS option or as a stand‐alone
software module (Table S1).

Several studies about CT images automatic segmentation of vari-

ous anatomical sites have been published,2,11–13,22–27 but only few

of them24,27 reported in detail the methodology adopted for atlas

creation. Most published works briefly described the used atlas and

then investigated the effect of automated contouring introduction

into clinical workflow in terms of time sparing2,5,10–16 and interob-

server variability.2,5,14,17

Thus, the aim of this work was to focus on the methodology for

atlas generation and on a workflow for automatic contouring using

MIM MAESTRO (MIM Software Inc., Cleveland, OH) software. A CT

male pelvis atlas was created and optimized to evaluate how differ-

ent tools and options impact on the accuracy of automatic segmen-

tation. The methodology presented here permits to understand

strength and weakness of each tool, besides learning how to take

full advantage of MIM MAESTRO automatic contouring tools. We

believe that this step‐by‐step analysis might guide the creation and

optimization of atlases and workflows for automatic segmentation of

any anatomical sites.

2 | MATERIALS AND METHODS

MIM MAESTRO v.6.8.2 (MIM Software Inc., Cleveland, OH), installed

on a workstation with Intel Core i7‐4770 CPU and 16 GB RAM, was

used to create a CT atlas of male pelvis. This software adopts a mul-

tisubject atlas‐based segmentation method that enables users to

select both atlas subjects and atlas representative subject. Moreover,

MIM MAESTRO software offers the possibility to embed the atlas

into a customizable workflow which allows users to set several

options, such as registration algorithm and finalization method, and

to implement some post‐processing operations.

In order to manage the large number of possible combinations of

atlas and workflow parameters, a two‐step process was employed. In

the first step, the best atlas was identified by using a standard work-

flow, while in the second step, the influence of all the workflow

parameters was investigated using the best atlas version previously

selected.

2.A | Atlas

To create an atlas, it is necessary to select some subjects and to reg-

ister each of them on a reference subject. This reference subject,

also named template, is chosen as atlas representative subject. Dur-

ing atlas construction, each subject is registered on the template,

using a rigid algorithm, to determine a similarity index, which aims to

quantify the anatomical affinity of each atlas subject to the template.

When the atlas is used to segment a new patient dataset, the

patient's CT study is registered on the atlas template and a similarity

index is evaluated. This value is compared to the similarity indices of

all the atlas subjects in order to choose the subject, or the k subjects

in a multisubject approach, which best matches the patient anatomy.

2.A.1 | Atlas creation

Subjects and template selection

Fifty‐five CT male pelvis studies were used to build the atlas. A Bril-

liance BigBore CT scanner (PHILIPS Healthcare) was used to acquire

CT studies (120 kV, 600 mm FOV, 512 × 512 matrix, and 3 mm
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slice thickness). Data were selected among CT images of patients

treated for prostate cancer, with intact prostate and no known nodal

involvement. Computed tomography studies of patients with pros-

thesis, calcifications and other high‐density elements, or acquired

with contrast medium were excluded.

As the field of view (FOV) and longitudinal extension of CT stud-

ies widely exceeded the pelvic area, all datasets were preprocessed.

The FOV was manually cropped to exclude the CT couch‐top poste-

riorly and to include the external patient contour plus about 1 cm of

air in the other directions. In the superior/inferior direction, CT stud-

ies were limited to L3/L4 edge and to include the lesser trochanter

of the femur (Fig. 1).

Original manual contours of pelvic lymph nodes (PLN), rectum,

bladder, and femurs, used for treatment planning, were reviewed for

consistency by a senior consultant radiation oncologist with 15 yr of

experience, according to RTOG criteria and Taylor et al. guidelines28

for PLN, before adding them to the atlas. Prostate was not con-

toured as previous studies,26,29,30 demonstrated that atlas based on

CT image segmentation resulted in suboptimal prostate contours. In

case of prostate, better results can be achieved using atlases based

on MRI images,31 or using deep learning.3,19,32

The choice of the atlas template subject was performed based

on a semiobjective criterion, according to the following four classes:

patient and bladder size, and bladder position and shape. For each

class, the most representative subject was chosen, and among them,

the typical subject, able to resume all the characteristics, was

selected to represent the atlas template.

Registration of the subjects on the template

During the automatic registration of each atlas’ subject on the tem-

plate, the operator can decide whether making manual corrections

or not. To investigate if this operation might influence automatic

segmentation accuracy, two atlases, with the same template and

the same subjects, were created. In the first case (Atlas 1), the reg-

istration of each subject on the model was performed roughly

aligning all the pelvis structures, while in the second case (Atlas 2),

this was executed trying to align primarily the bladder, as it turned

out to be the most challenging structure for the tested auto‐con-
touring algorithm, presumably due to the huge anatomical variabil-

ity.

In order to test the influence of FOV and longitudinal extension

of CT studies on automated‐contouring time, another atlas (Atlas 3)

was created using the original 55 CT studies without image cropping.

Each atlas subject was registered on the template aligning the blad-

der (as in Atlas 2).

2.A.2 | Atlas performances

Atlas 1 and Atlas 2 performances were evaluated on a subset of 20

subjects, randomly selected from those used to create the atlas, with

a leave‐one‐out approach, that is using a software option to exclude

the subject from the atlas while performing its own segmentation.

Automatic contours, obtained with each atlas version, were com-

pared to the reference ones (manually contoured by the radiation

oncologist), and similarity indices (see Section 2.D) were evaluated

for each patient and region of interest (ROI).

Atlas 2 and Atlas 3 were used to generate the contours of four

test subjects. Two versions of the same subject (CT or CT cropped)

were used, thus resulting in four configurations: Atlas 2 + CT, Atlas

2 + CT cropped, Atlas 3 + CT, Atlas 3 + CT cropped. Contouring

times were registered and compared.

2.B | Workflow customization and optimization

In the used workflow, for the atlas invoking, it is possible to select

and customize the following settings: the deformable registration

method, the finalization algorithm, and the number of subjects used

by the multisubject atlas. In order to regularize any odd shape of the

contours,9 it is convenient to add some postprocessing functions to

the workflow. In our case, we used the following tools: smooth,

clean, fill holes, and Hounsfield Unit (HU) range lock. After a rough

examination of ROI HU histograms for some test patients, we

adopted the following ranges: bladder (−39, 37), rectum (−60, 80),

pelvic nodes (−175, 100), femurs (>150).

F I G . 1 . Criteria used for field of view cropping. Axial, sagittal, and coronal views are showed, from left to right. The crop extension is
represented by the white box.
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2.B.1 | Deformable image registration (DIR)
algorithm

The core of any atlas‐based contouring software is the deformable

registration algorithm. MIM MAESTRO software is equipped with

Same‐subject and Multi‐modality algorithms (Piper JW, Richmond JH,

Nelson AS. VoxAlign Deformation Engine ® Deformable Algorithms;

2018)33.

The first is the standard method for mono‐modal registration,

while the latter is suitable for multi‐modality images or in those

cases when the standard algorithm fails.

The DIR deformation can be tuned choosing a smoothing factor

(SF), variable in the range 0 to 1. The lower the SF, the higher the

degree of deformation allowed. Automatic contours, obtained using

Same‐subject algorithm and three SF values (0.1, 0.5, 1), were com-

pared to the 20 test patients reference contours and similarity

indices were evaluated.

From this analysis, the best SF factor was assessed and then used

to compare the Same‐subject and Multi‐modality algorithms. The most

accurate DIR algorithm was included in the customized workflow.

Automatic reg refine option

The software provides also an automatic option to refine the deform-

able registration: Automatic Reg Refine (ARR). When this option is acti-

vated, the software automatically creates a set of bounding boxes,

with central point evenly spaced on the surface of atlas subject con-

tour. Inside these boxes, a local rigid algorithm is used to maximize

the match between reference (patient to be contoured) and deformed

(atlas subject) studies. We tested the following three configurations:

ARR inactivated (A), ARR activated with default options, that is,

60 mm box spacing and 30 mm box size (B), ARR activated with mod-

ified options, that is, 30 mm box spacing and 20 mm box size (C). The

three options were tested on a test sample of 20 patients.

2.B.2 | Finalization algorithm

Majority Vote (MV) and STAPLE34 are the finalization methods avail-

able to create, from the k set of contours, a single set. In case of

MV, a voxel is assigned to a certain structure if that voxel belongs

to the same structure for most k subjects. STAPLE, which is based

on an expectation–maximization algorithm, considers the collection

of k segmentations and computes a probabilistic estimate of the true

segmentation. Automatic contours obtained with the two finalization

methods were compared to the reference contours of the 20 test

patients and similarity indices were evaluated. The finalization algo-

rithm providing better results was included in the customized work-

flow.

Finalization algorithm: # of k best matching subjects

In the multisubject atlas, a selectable number of subjects (k) can be

used to extract multiple sets of contours. The multisubject approach

has been proved to be more effective than the single‐subject
one.24,35 Nonetheless, the selection of a reduced set of best

matching subjects could, in principle, reduce auto‐contouring time

and increase accuracy of the generated contours.27,35

Different numbers of best matching subjects (k) were tested (5,

9, 13, 17, 21). Automatic contours generated for each k value were

compared to the reference contours of the 20 test patients and simi-

larity indices were evaluated. The k value maximizing the accuracy

of all ROIs was included in the customized workflow.

2.C | Customized atlas and workflow vs MIM
provided atlas and workflow

MIM Software is provided with proprietary atlases (not editable) and

predefined editable workflows. A proprietary atlas contains a set of

anonymized CT series, with contours vetted before distribution

(MIM atlas high‐risk prostate contains 38 subjects).

To assess how the fine‐tuning of the workflow parameters and

the use of a locally developed atlas might impact on the contours’

accuracy, we extracted the automatic contours of the same 20 test

patients used in this study for other tests, using the following three

different configurations: MIM 6.9.5 default atlas and workflow, MIM

atlas and our customized workflow, our atlas and customized work-

flow. For the first option (MIM default atlas and workflow), we

decided to use MIM software version 6.9.5 (which became available

only at the end of the work), considering that most readers will use

6.9.5 or later versions. Automatic contours obtained with these three

approaches were finally compared to the reference contours and

similarity indices were evaluated.

2.D | Similarity indices and statistical analysis

2.D.1 | Similarity indices

To quantify the accuracy of atlas‐based contours, several parameters

can be used to compare them to reference contours. MIM MAES-

TRO software provides a tool which automatically calculates Jaccard

similarity coefficient (JSC), Dice similarity coefficient (DSC), mean

distance to agreement (MDA), and Hausdorff distance (HD) between

two contours. JSC and DSC indices are both an expression of con-

tours spatial overlapping, while MDA and HD quantify the average

and maximum distance between contours. Similar contours will exhi-

bit DSC and JSC values near 1 and low MDA and HD values. In

order to reduce redundancy, we selected just two indices: DSC, as it

is more widespread in the literature; and MDA, which is better than

HD in highlighting the contours that need a more demanding con-

tour editing in the refinement phase. A regularly shaped contour,

characterized by many regions with small deviations from the refer-

ence contour, presents a higher MDA while a contour which differs

from the reference for a single spike is better evidenced by HD. The

latter case is obviously easier to correct.

2.D.2 | Statistical analysis

For each ROI, similarity indices for each tested parameter were sta-

tistically compared to test differences significance. To guide the
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choice for the appropriated statistical test, between parametric and

nonparametric ones, a normality test of Shapiro–Wilk was con-

ducted. For two groups, t‐test and Wilcoxon signed rank test were

used for normally and not‐normally distributed data, respectively.

For multiple groups (par. 2.2.2, k optimization), ANOVA and Fried-

man test for normally and not normally distributed data, respectively,

were performed. Regardless of the chosen statistical test, two‐tailed
analyses were always performed and a significance level of 0.05 was

adopted. Online calculators were used to perform statistical tests:

Shapiro–Wilk test,36,37 ANOVA,38 Friedman,38 paired t‐test,38 and

Wilcoxon signed rank test.38

The choice of each parameter was guided by the output of the

statistical test, as follows: in case of significant difference, the best

option was selected; in case the statistical test did not highlight any

significant difference, we maintained the default option.

3 | RESULTS

3.A | Atlases performances

3.A.1 | Accuracy of auto‐contours

The comparison between reference and auto‐contours obtained

using Atlas 1 and Atlas 2 is reported in Fig. 2, showing DSC and

MDA box plot evaluated for each patient and ROI. The statistical

tests did not evidence any significant difference between Atlas 1

and Atlas 2 for both DSC and MDA (P ≥ 0.2 for all ROIs). This result

demonstrates that the registration approach used to register the

atlas’ subjects to the template did not influence the accuracy of

auto‐contours. Atlas 2 was embedded in the customized MIM auto‐
contouring workflow.

3.A.2 | Auto‐contouring time

The mean automatic contouring time for Atlas 2 + CT and for Atlas

3 + CT was 27 min while it was reduced to only 9 min for both

Atlas 2 + CT crop and Atlas 3 + CT crop. Notably, the FOV crop of

the subject to be contoured is effective in reducing the auto‐con-
touring time, while the FOV size of the atlas subjects is ineffective.

3.B | Workflow customization and optimization

3.B.1 | Deformable image registration algorithm

DSC and MDA similarity indices are reported in box plots of Fig. 3

for each ROI and for three smoothing factors for the Same‐subject
algorithm.

The Friedman test for the differences between the three groups

showed a statistically significant difference, both for DSC and MDA,

for all ROIs except for PLN. The worst results were obtained for

SF = 1 where the degree of deformation applied is limited. For DSC,

SF = 0.1 resulted significantly better than SF = 0.5 only for left

femurs, while for MDA, SF = 0.1 resulted significantly better for all

ROIs except for PLN. No difference in contouring time for different

SF values was observed. SF = 0.1 was set in our workflow.

The comparison between Multi‐modality and Same‐subject algo-

rithms was performed with SF = 0.1 (Fig. 4). As femur auto‐contours
were not significantly influenced by the registration algorithm, they

are not reported in the plot. DSC data showed worse accuracy for

bladder and rectum (P = 0.03 and P < 0.001, respectively) using Multi‐

modality instead of Same‐subject and equivalent performance for pelvic

lymph nodes. For MDA, better or equivalent results were obtained

using standard algorithm. A significant MDA reduction was observed

for rectum and PLN (P < 0.001 and P = 0.04, respectively). As for

bladder, despite a lower MDA median value for the standard algorithm,

it was not possible to detect any significant difference (P = 0.08).

Same‐subject algorithm with SF = 0.1 (instead of 0.5 default value) was

embedded in the customized MIM auto‐contouring workflow.

Automatic reg refine (ARR) option

It was not possible to evidence any significant difference among the

three tested options. Both from visual inspection of contours and

F I G . 2 . Box plots of dice similarity coefficient (a) and mean distance to agreement (b) between automatic contours, obtained with Atlas 1
and Atlas 2, and reference contours evaluated on a sample of 20 patients for different region of interests.
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box plots (Fig. 5), a slight increase in the dispersion of MDA and

DSC indices (more evident for bladder, PLN, and femurs) can be

noted for contours generated without activating ARR option. For this

reason, even if the use of ARR leads to an increase of computation

time, the default option (ARR activated with 60 mm box spacing and

30 mm box size settings) was embedded in the customized MIM

auto‐contouring workflow.

3.B.2 | Finalization algorithm

DSC and MDA, calculated for auto‐contours obtained with MV or

STAPLE vs reference manual contours, are reported in box plots of

Fig. 6.

The bladder auto‐contour was not significantly affected by the

finalization algorithm (P = 0.6 and P = 0.3 for DSC and MDA, respec-

tively). As for rectum, median DSC and MDA were similar: 0.85 and

1.9 mm for MV and 0.84 and 1.7 mm for STAPLE, respectively. Con-

tours obtained with MV or STAPLE were similar even if a statistically

significant difference was evidenced for DSC (P = 0.03), but not for

MDA (P = 0.3). The same effect was observed for femurs where the

differences between DSC and MDA were statistically significant

(P ≤ 0.001).

On the contrary, PLN auto‐contours obtained with STAPLE

showed a clear effect of volume overestimation. Reference con-

tours and automatic contours extracted with MV and STAPLE for

one test subject are reported in Fig. 7, as an example. Contours

produced with MV resulted evidently more accurate than those

produced with STAPLE. This finding was supported by higher DSC

and lower MDA for MV (0.83 and 2.0 mm, respectively) than for

STAPLE (0.68 and 5.5 mm, respectively). In conclusion, MV was

chosen for the definitive workflow, for its strong superiority regard-

ing PLN accuracy.

F I G . 3 . Box plots of dice similarity coefficient (a) and mean distance to agreement (b) between reference contours and automatic contours
obtained with Same‐subject algorithm varying the smoothing factor and evaluated on a sample of 20 patients.

F I G . 4 . Box plots of dice similarity coefficient (a) and mean distance to agreement (b) between reference contours and automatic contours
obtained with Same‐subject and Multi‐modality on a sample of 20 patients.
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Finalization algorithm: # of k best matching subjects

DSC and MDA values between reference contours and auto‐con-
tours obtained using different k are reported in box plots of Fig. 8

for all ROIs. Contours generated by selecting only five best matching

subjects (default option in MIM’s workflow) resulted inaccurate for

all ROIs. A significant difference between different k values was

observed (P < 0.001), for both DSC and MDA, for all ROIs except

for bladder (P = 0.13 and P = 0.08 for DSC and MDA, respectively).

For bladder and rectum, the best compromise was obtained for

k = 13 while for PLN, the accuracy of contours increases with k,

even if the gain is low for k ≥ 13. An increase in contours’ accuracy

with higher k value with only a modest DSC gain for k ≥ 13 was

also observed for both femurs.

The statistical analysis for differences, limited to k = 13, 17, 21,

highlighted no significant difference for any ROI neither for DSC nor

MDA. Based on this analysis and considering that contouring time

increases approximately linearly with k, k = 13 was embedded in the

customized MIM auto‐contouring workflow.

3.C | Performances of customized atlas and
workflow and MIM provided atlas and workflow

Figure 9 shows DSC and MDA between reference contours and

automatic contours obtained using the following settings: (a) MIM

6.9.5 default atlas and workflow; (b) MIM atlas and our customized

workflow; and (c) our atlas and customized.

Both for DSC and MDA, the distribution analysis in terms of

position showed that our atlas performs significantly better than

MIM default atlas (b–c, same workflow, P < 0.005 both for DSC and

MDA, all ROIs). Also workflow optimization only, using MIM atlas,

leads to a significant improvement of accuracy (A–B P < 0.05 for

DSC and MDA, all ROIs except Right Femur MDA P = 0.06).

F I G . 5 . Box plots of dice similarity coefficient (a) and mean distance to agreement (b) for the following settings for the Automatic Reg Refine
(ARR) option: not applied (a), applied with default settings, that is, 60 mm box spacing and 30 mm box size (b), and applied with customized
settings, that is, 30 mm box spacing and 20 mm box size (c).

F I G . 6 . Box plots of dice similarity coefficient (a) and mean distance to agreement (b) between reference contours and automatic contours
using MV or STAPLE and evaluated on a sample of 20 patients for different region of interests.
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Combining the two contributions (atlas and workflow, a–c), med-

ian DSC increases from 0.76 to 0.91 for bladder, from 0.59 to 0.85

for rectum, from 0.75 to 0.85 for PLN, from 0.94 to 0.96 for both

femurs. Our atlas also showed a better performance in terms of data

dispersion reduction for bladder (inter‐quartile range reduced from

0.19 to 0.06) and rectum (from 0.13 to 0.05).

4 | DISCUSSION

The creation and customization of an atlas‐based workflow for auto-

mated contouring require a careful selection of atlas subjects, an

accurate contours revision and a thorough tuning of workflow

parameters. This is a very time‐consuming task that not all institu-

tions can afford. The aim of this work is to understand how to take

full advantage of MIM MAESTRO automatic contouring tools and

workflow and to evaluate if it is worth investing time in developing

and fine‐tuning a personalized atlas and workflow. This plan has

been pursued evaluating the performances of each available tool

while developing and optimizing a CT male pelvis atlas based on 55

subjects. The atlas has been optimized on a training sample of 20

subjects randomly extracted from the atlas, with a leave‐one‐out
approach.

Regarding the method used to select atlas subjects, various

solutions have been proposed and tested in literature: selection

based on predefined keywords corresponding to anatomical charac-

teristics; manual selection performed by the operator before each

segmentation; selection based on predefined similarity indices (this

is the case for MIM MAESTRO). The study of Schipaanboord

et al.39 suggests that “atlas‐based segmentation with currently

available selection methods compares poorly to the potential best

performance, hampering the clinical utility of atlas‐based segmenta-

tion. Effective atlas selection remains an open challenge in atlas‐
based segmentation for radiotherapy planning.” In some studies,

different atlases (Small, Medium, Large) based on different patient

size and/or anatomical characteristics of the structures to be con-

toured have been used demonstrating good performances for

breast and anorectal cancer.40 In this work, we opted for the more

general approach including in the same atlas 55 subjects that pre-

sented a wide range of anatomical characteristics or size. To

choose atlas template, we looked for the specific subject with char-

acteristics common to most subjects. We demonstrated that the

strategy used to register each atlas subject on the atlas template

did not impact on the created contours accuracy. We did not

investigate the effect of using a different template because the

definition of a new template necessarily implies a new subjects’

registration on the template, thus introducing a second variable in

the comparison. Since we have now demonstrated that the manual

subjects’ registration on the template is not critical, it could be pos-

sible to further investigate and quantify the choice impact of the

template on automatic contours’ accuracy.

Up to 75% time saving, on average, was observed reducing the

FOV of the subject to be contoured and, as the time to perform

manual FOV reduction is only about 1 min, it is worth to spend time

for this preliminary operation.

The DIR algorithms that can be used in the auto‐contouring
workflow demonstrated different performances. The default algo-

rithm proposed by the vendor (Same‐subject), used with an optimized

smoothing factor 0.1 (k = 5 is the default value), has been confirmed

to be the most effective compromise between accuracy and calcula-

tion time. We demonstrated that better results for pelvic nodes and

comparable results for the other structures were obtained using MV

instead of STAPLE finalization method. This finding is supported by

the study of Acosta et Al.27 whose results suggested that the vote

decision rule is more robust when applied to a region with high

anatomical variability (marked pelvis feature). Also, Wong et al.24

found that MV performed better in bladder and prostate, which are

characterized by a high anatomical variability.

As for number k choice of best matching subjects, it is very hard

to choose the best k on the sole basis of visual examination. Using

MV, Acosta et al.27 found a DSC saturation with increasing k, at

expense of computation time. With STAPLE, they observed that the

accuracy had a less stable trend, even decreasing for higher k for

some organs. In our study, from a visual inspection of automatically

generated contours, only contours generated with k = 5 (default

value) seemed to be characterized by an evidently poorer accuracy.

F I G . 7 . Reference contours (green) and automatic contours extracted with MV (yellow) and STAPLE (red) for one test patient.
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(a) (b)

F I G . 8 . Box plot of dice similarity coefficient (on the left, column A) and mean distance to agreement (on the right, column B) between
reference and automatic contours for 20 test subjects varying the number k of best matching subjects.
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Our systematic analysis of accuracy trend as a function of k (Fig. 8)

shows that, considering all ROIs, the best compromise between

accuracy and calculating time is obtained for k = 13.

Wong et al.24 tested k effect with different atlas library sizes

(number of subjects composing the atlas varied among 1, 10, 30, 50)

and they found that STAPLE assured a better independence respect

F I G . 9 . Box plot of dice similarity coefficient (a) and mean distance to agreement (b) between reference contours and automatic contours
obtained using (a) MIM Atlas and workflow, (b) MIM Atlas and (c) our customized workflow and our Atlas and customized workflow on the
sample of 20 patients for different region of interests.

F I G . 10 . Mean dice similarity coefficient comparison of automatic contours of various region of interests (Bladder, Rectum, PLN, Femur L,
and Femur R) obtained by different authors. The results obtained in the present study are depicted with a bigger square. Error bars are not
displayed (sigma was on the order of 0.05).
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to the library size. Thus, their final choice was library size = 10 and

k = 5, with STAPLE finalization algorithm.

It is worth to be noticed that the trend of contours accuracy in

function of k is characteristic of each atlas, probably depending

mainly on the atlas size and on the selection method of the best

matching subjects. Also, Schipaanboord et al.39 recommend that each

institution should optimize k depending on the anatomical district

and on the particular atlas.

It would also be interesting to evaluate the approach efficacy of

the best matching subjects’ selection adopted by the software MIM

MAESTRO. We have ascertained that the selection of k best match-

ing subjects, for each test patient, is influenced by atlas template

choice. Furthermore, changing the test subject among the 20 test

subjects (randomly sampled from the 55 atlas subjects), the variabil-

ity of the atlas subjects chosen as best matching subjects is limited,

suggesting that there is a stable group of atlas subjects, common for

all the 20 test subjects.

To evaluate whether it is worth to invest time in atlas and work-

flow creation and customization, we compared the performance of

MIM Atlas and workflow; MIM Atlas and our customized workflow;

and our Atlas and customized workflow.

It is a must to point out that both reference contours and atlas

subjects have been contoured and reviewed following criteria and

guidelines adopted by our institution. On the contrary, MIM atlas sub-

jects were contoured by other physicians, in a different institution.

This could introduce a bias in favor of our atlas.12 Indeed, similarity

indices, used in this study for testing statistical difference between the

three combinations, are referred in all cases to a pool of test patients

which were reviewed for consistency by a radiation oncologist of our

institution. For this reason, the test results only establish whether

there is a statistically significant difference between these three

groups of similarity indices and needs a proper interpretation.

The increase in DSC and decrease in MDA, obtained with our atlas,

are due both to contouring criteria standardization and to atlas con-

struction optimization. We suggest that each institution creates and

optimizes its own atlas, based on a sample of subjects extracted from

local population and contoured according to standardized criteria.

Finally, due to the arbitrariness of reference contours, DSC cannot be

used as an absolute measurement of accuracy. DSC should only be used

to compare contours obtained with different methods and all referred

to the same reference contours. Nevertheless, all studies about atlas

optimization report mean DSC values of the obtained automatic con-

tours. In Fig. 10, our results are approximatively compared to those

found in literature.3,11,19,22–24,26,29,30,32,41 Our results are satisfactory

when compared to many atlas‐based studies and are comparable to

those based on deep learning.3,19 Of note, few studies in literature

include PLN in the atlas and this is an added value of our study.

5 | CONCLUSION

The results of automated contouring are highly dependent on criteria

standardization and contours accuracy of the atlas subjects. We

suggest a thorough optimization of the atlas‐based segmentation

tool, compatibly with data availability, radiation oncologists’ exper-

tise, and time to spend.

In the case of MIM MAESTRO software, the deformable registra-

tion algorithm shows high performances and the default options are

already tuned by the vendor and we only modified the smoothing

factor for deformable registration.

We suggest focusing atlas optimization and workflow mostly on

the template choice, the optimal number of best matching subjects,

the postprocessing options, the FOV optimization (eventual reduc-

tion) of the subject to be contoured. Particularly, the FOV reduction

of the subject to be contoured has proven to be the most effective

way to reduce the time necessary for automatic contouring (up to

75% time saving: on average from 27 to 9 min).
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