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ARTICLE INFO ABSTRACT
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The present study documents, for the first time, the ingestion of microplastics (MPs) by Longnose stingrays in the
Western Atlantic Ocean. We examined 23 specimens of Hypanus guttatus from the Brazilian Amazon coast and
found microplastic particles in the stomach contents of almost a third of the individuals. Fibers were the most
frequent item (82%), blue was the most frequent color (47%) and Polyethylene Terephthalate (PET) was the

most frequent polymer recorded (35%), as identified by 2D imaging - Fourier Transform Infrared (FTIR). The
ingestion of microplastics by Longnose stingray has not been previously recorded. The findings of the present
study thus provide an important baseline for future studies of microplastic ingestion by dasyatid rays and other
batoid species in the Atlantic Ocean, and contribute to the broader understanding of the spatial and temporal
dimensions of the growing problem of plastic pollution in aquatic ecosystems and organisms.

Microplastics (MPs) are now widely distributed in the environment,
reaching even the remotest areas of the oceans, and infiltrating food
webs worldwide (Germanov et al., 2019). These particles are potential
carriers of persistent organic pollutants (POPs) and metals (Yu et al.,
2019). Microplastics are normally defined as plastic particles with a
maximum dimension of less than 5 mm (Arthur et al., 2009). These
particles can be classified according to their origin as either primary or
secondary MPs. Primary MPs are produced intentionally as micro-sized
particles for use in cosmetics and a range of other industrial applica-
tions (Ogata et al., 2009), while secondary MPs are produced by the
physical or chemical degradation of larger plastic waste by the en-
vironment (Cole et al., 2011; Godoy et al., 2019). Given their small size
and abundance, MPs can be actively ingested by a wide range of or-
ganisms (Eriksen et al., 2014; Herrera et al., 2019), when the MPs are
mistaken for prey, or passively, through the unintentional ingestion of
the particles during normal feeding activities (Campbell et al., 2017;
Desforges et al., 2015).

Despite the large number of studies that have focused on the in-
gestion of MPs by marine teleost fishes (e.g. Markic et al., 2018;
Murphy et al., 2017; Pegado et al., 2018), few data are available on
elasmobranchs, and most of which refer to sharks or pelagic rays
(Alomar and Deudero, 2017; Anastasopoulou et al., 2013; Germanov
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et al.,, 2019; Valente et al., 2019). Up to now, only two reports have
apparently been published on the ingestion of MPs by benthonic rays in
marine environments; Neves et al. (2015) recorded MPs in specimens of
Raja asterias, off the coast of Portugal and Pegado et al. (2018) that
found MPs in an individual of Narcine brasiliensis from Amazon river
estuary. However, both studies analyzed less than 10 individuals, which
Markic et al. (2020) considered to be a suboptimal sample size for a
reliable estimate of plastic ingestion rates.

Elasmobranchs are commercially important fishes, being consumed
widely by some Latin American populations, from the Caribbean coast
to northeastern Brazil (Feitosa et al., 2018; Rodrigues et al., 2020;
Schmid et al., 2019). This suggests that the ingestion of microplastics by
stingrays and sharks may eventually also affect human food safety and
health (Van Cauwenberghe and Janssen, 2014). The Longnose stingray,
Hypanus guttatus (Bloch and Schneider, 1801), a species of the family
Dasyatidae, is an opportunistic, benthonic predator (Gianeti et al.,
2019; Last et al., 2016), distributed from the southern Gulf of Mexico to
southeastern Brazil (Bigelow and Schroeder, 1953; Rosa and Furtado,
2016). This species may reach up to 2 m in disc width and is very
common as by-catch in the artisanal and industrial fisheries along the
northern and northeastern coasts of Brazil (Rodrigues et al., 2020;
Tagliafico et al., 2013). The present study investigated the presence of

Received 19 June 2020; Received in revised form 18 October 2020; Accepted 19 October 2020

0025-326X/ © 2020 Elsevier Ltd. All rights reserved.

Please cite this article as: Tamyris Pegado, et al., Marine Pollution Bulletin, https://doi.org/10.1016/j.marpolbul.2020.111799



http://www.sciencedirect.com/science/journal/0025326X
https://www.elsevier.com/locate/marpolbul
https://doi.org/10.1016/j.marpolbul.2020.111799
https://doi.org/10.1016/j.marpolbul.2020.111799
mailto:t.pegado2@gmail.com
https://doi.org/10.1016/j.marpolbul.2020.111799

T. Pegado, et al.

44.50°W

2.50°S

44.50°W

Marine Pollution Bulletin xxx (xxxXx) xxxx

43.50°W

2.50°S

Il Mangrove
O State Capital
W Land

[T Ocean

43.50°W

Fig. 1. Map of the Maranhao Gulf estuarine complex, located on southern extreme of the Brazilian Amazon coast in the Western Atlantic Ocean, where the Longnose

stingray (Hypanus guttatus) individuals analyzed in this study were captured.

MPs in H. guttatus from the southern extreme of the Brazilian Amazo-
nian coast. The study also provides an important baseline for future
comparisons of the abundance, shape, and color of the microplastics
found in the stomach contents of elasmobranch species.

The Maranhdo Gulf is located at the southern extreme of the
Brazilian Amazonian coast (Fig. 1), and is formed by the bay of Sao
Marcos and Sdo José, on either side of Sao Luis Island (Castro et al.,
2018; Teixeira and Souza Filho, 2009). Sao Luis, the capital of Mar-
anhao state, with its population of more than one million inhabitants, is
located on this island (IBGE, 2010). This whole area forms an estuarine
complex that covers an area of 5414 km? (Souza Filho, 2005) and has
an extreme semidiurnal macrotidal regime, with mean tidal amplitude
of 3-7 m (Castro et al., 2018; Teixeira and Souza Filho, 2009). The local
climate is tropical humid, with an annual precipitation of approxi-
mately 2300 mm (Fisch et al., 1998) and a mean temperature of 26 °C
(Castro et al., 2018; Teixeira and Souza Filho, 2009).

The 23 Longnose stingray specimens analyzed in the present study
were obtained from local fishers, and were captured by longlines and
gillnets between August 2018 and March 2019. All individuals were
immediately transported to the laboratory on ice in portable coolers.
The length and width of the disc of each specimen were measured, and
they were then eviscerated through a longitudinal incision in the ab-
dominal area, using surgical forceps and a scalpel. The stomachs were
removed carefully, and their contents placed in Petri dishes for analysis
under a stereomicroscope (ZEISS Stemi DV4) at a magnification of 8 x
to 32 x. All the MPs identified during this analysis were placed in Petri
dishes containing distilled water, dried at 35 °C for 48 h, and then se-
parated according to shape and color. All the material and equipment
used during the laboratory processing were cleaned constantly and
protected from possible external contamination. Therefore, sample
processing (extraction and stomachs contents analysis) was executed

under a laboratory fume hood, by personnel using natural fiber clothing
and maintaining doors and windows closed. To guarantee the accuracy
of the readings, a clean Petri dish was placed beside the stereomicro-
scope during the analysis of the stomach contents and inspected after
the processing of the sample, to identify possible external contamina-
tion by MPs existing in the laboratory environment.

The findings of this analysis are presented here through descriptive
statistics, including the mean, minimum, and maximum numbers of
microplastic items, the percentages of the different categories of shape
and color, as well as the polymeric composition of the particles, and the
frequency of occurrence (FO%) of the microplastics found in the sto-
mach contents. The FO% was calculated by: FO% = (Ni / N) x 100,
where Ni = the number of stomachs that contained microplastic par-
ticles, and N = total number of stomachs examined.

Samples of each category of microplastic particle found in the gas-
trointestinal tracts of the stingrays were separated for 2D imaging-
Fourier transform infrared (FTIR) analysis. The FTIR analysis was
conducted directly on the dry filters (with no further processing), using
a Cary 620-670 FTIR microscope, equipped with a 128 x 128 FPA
detector (Agilent Technologies). The spectra were recorded directly on
the surface of the samples (or of the Au background) in reflectance
mode, with an open aperture and a spectral resolution of 8 cm ™!, with
128 scans being acquired for each spectrum. A “single-tile” analysis
resulted in a map of 700 x 700 pum? (128 x 128 pixels), with each
imaging map having a spatial resolution of 5.5 um (i.e., each pixel has
an area of 5.5 X 5.5 pm?).

The discs of the stingray specimens had a mean length of 52.3
(SD =+ 8.68) cm, with a minimum of 32.4 cm and maximum of
72.0 cm, and a mean width of 54.6 (SD = 10.0) cm, ranging from
34 cm to 83 cm (Table 1). Almost a third (FO% = 30.43%) of the
samples contained microplastics, a value similar to that recorded in
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Biometrics of the Longnose stingray (Hypanus guttatus) specimens and the characteristics (shape, color, and type of polymer) of the microplastic particles (MPs) found
in their stomach contents. The presence of MPs is expressed as the presence (1) or absence (0). The polymers are: ABS = Acrylonitrile Butadiene Styrene;
PA = Polyamide; PE = Polyethylene; PET = Polyethylene Terephthalate; PP = Polypropylene; SBR = Styrene-Butadiene Rubber.

Stingray Disc length (cm) Disc width (cm) Presence of MPs Shape of the MPs Color of the MPs Number of MPs Polymer
1 55 58 0 - - 0 -

2 55 59 0 - - 0 -

3 56.5 60 1 Fiber Transparent 6 PET, PP, PA
4 56 57.5 1 Fragment Blue 2 ABS

5 51 54 0 - - 0 -

6 56.5 54.5 0 - - 0 -

7 51 56 0 - - 0 -

8 57 61 0 - - 0 -

9 57.5 58.5 1 Fiber Red 1 Blend (PET + SBR)
10 72 73.5 0 - - 0 -

11 41.5 41 1 Fiber Blue 3 PET, PE
12 51.5 55 0 - - 0 -

13 72 83 1 Fiber Black 2 PA

14 52 55.5 0 - - 0 -

15 52.5 56 0 - - 0 -

16 45.5 48 1 Fragment Blue 1 ABS

17 48.3 52 0 - - 0 -

18 43.3 45.5 0 - - 0 -

19 44.8 48.5 0 - - 0 -

20 49 53 0 - - 0 -

21 43 45 0 - - 0 -

22 46 49 1 Fiber Blue 2 PE

23 32.4 34 0 - - 0 -

benthonic rays (43%) from the Portuguese coast (Neves et al., 2015).
This relatively high incidence of MP ingestion may be related to the
foraging strategy of the species (Romeo et al., 2015). The stingray H.
guttatus is an important predator of benthic and benthopelagic coastal
organisms, feeding on a wide range of prey. As a generalist top predator
when adult, it seems likely that these individuals were susceptible to
bioaccumulated microplastic contamination through the food chain, by
passive ingestion (Gianeti et al., 2019).

A total of 17 microplastic particles were found in the stomach
contents of seven stingrays, with a mean of 2.4 (SD * 1.7) particles per
individual (N = 7 individuals), ranging from one to six particles in a
given individual. The majority (82%) of the particles found in our study
were classified as fibers and the other 18% as fragments, which were
primarily blue (47%) or transparent (35.3%), with some black (11.8%)
and red (5.9%) particles (Fig. 2).

Neves et al. (2015) recorded a mean of only 0.5 (SD + 0.8) par-
ticles per individual in Raja asterias, and found only fibers in the sto-
mach content of this ray. Many authors have found that fibers are the
most abundant microplastic particles in marine environments (Alomar
and Deudero, 2017; de Lucia et al., 2018, 2014; Neves et al., 2015;
Rochman et al., 2015). Our findings further support that the marine
biota, including benthic stingrays like H. guttatus, may be most exposed
to microplastic fibers. The distribution of microplastics in the oceans
may be influenced directly by anthropogenic processes (Barnes et al.,
2009) and large amounts are found in aquatic environments near areas
of urban development (Garcia et al., 2020). In Sao Luis, like many other
largest cities in the Amazonian region, such as Manaus and Belém, due
to the lack of environmental awareness and efficient waste manage-
ment, more than 19% of the urban solid waste, including plastics, is not
collected by municipalities and an unknown fraction of this misman-
aged waste is washed into the Gulf of Maranhéo (Giarrizzo et al., 2019).

Further, Maranhao is recognized as one of the most important states
for artisanal fisheries in Brazil's northern and northeastern regions
(Almeida and Isaac-Nahum, 2015). This potentially contributes to the
high presence of filaments in the coastal and estuarine ecosystems,
originated by the fragmentation of fishing gear (Soares et al., 2017).
These particles are introduced into marine environments through ports
and fisheries activity, wastewater treatment plants, urban runoff (Peters
and Bratton, 2016), and river discharge (Woodall et al., 2014). Strong

macro-tidal currents and other oceanographic phenomena (e.g. the
permanent east-to-west prevailing winds) found in this region may
contribute to the ample dispersal of microplastics through the known
accumulating effects of enclosed or semi-enclosed bays within me-
tropolitan urban areas (Auta et al., 2017).

Six types of polymer were identified in the microplastic particles
analyzed by 2D FTIR Imaging in the present study (Fig. 3). The most
frequent polymer was Polyethylene Terephthalate (PET; 35.3%), fol-
lowed by Polyamide (PA), Acrylonitrile butadiene styrene (ABS), and
Polyethylene (PE), each with a frequency of occurrence of 17.6%, and
then Polypropylene (PP) and PET + SBR (Styrene Butadiene Rubber),
both with a frequency of 5.9%. The predominance of PET is consistent
with the fact that it is one of the polymers most produced by industries,
worldwide, and thus more likely than others to be present in the marine
environment (Andrady, 2011). This polymer is used in the production
of textiles, including clothes, blankets, and fleeces, as well as bottles
(Wang et al., 2017). Therefore, PET fibers are common in domestic
wastewater, in particular from washing machines, which contaminates
river basins and, eventually, oceans (Browne et al., 2011; Napper and
Thompson, 2016). As a relatively dense polymer, PET is also more
likely to sink to the bottom of aquatic environments, where it can be
ingested by benthic organisms (GESAMP, 2015), including the Long-
nose stingray. The second most common polymers were PE and PA,
which could come from the fishing gears, like nets and floats that are
often have these polymers in their composition (GESAMP, 2016). Over
time, however, lower-density polymers, such as PP and PE, may de-
compose and sink, and thus become available to a variety of benthic
organisms (Long et al., 2015; Morét-Ferguson et al., 2010).

In the present study, microplastic particles were found in the sto-
mach contents of almost one third of the analyzed H. guttatus speci-
mens. This stingray species is an important target of the artisanal
fisheries of Maranhéo State, at the Latin America and in southern ex-
treme of the Brazilian Amazon coast. Most of the particles were fibers,
and the most frequent polymer was PET. With 23 specimens analyzed,
the present study provides a more reliable estimate than the previous
reports of microplastic ingestion by benthonic rays. Our study provides
the first record of ingestion of MPs by Hypanus guttatus from the
Western Atlantic Ocean, as well as an important database for further
comparisons of the exposure of this elasmobranch group to plastic
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Fig. 2. Examples of the different categories of microplastic found in the stomach content of the Longnose stingray Hypanus guttatus specimens collected from the Gulf
of Maranhdo. A) Transparent Fiber; B) Red Fiber; C) Blue Fiber; D) Black Fiber; E) Blue Fragment. (For interpretation of the references to color in this figure legend,

the reader is referred to the web version of this article.)

contaminants in the marine environment. Such investigations, specifi-
cally for understudied areas and species, are important contributions
towards the understanding of spatial and temporal patterns of plastic
pollution in aquatic ecosystems and organisms, as well as to support
effective prevention and conservation efforts in response to this global
problem.
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Fig. 3. Representative FTIR reflectance spectra acquired different microplastic polymers, collected from the stomach contents of the Longnose stingray Hypanus
guttatus from the Maranhdo Gulf, Brazil. A) PET: Polyethylene Terephthalate; B) PA: Polyamide; C) ABS: Acrylonitrile Butadiene Styrene; D) PE: Polyethylene; E) PP:
Polypropylene; F) Blend of PET (Polyethylene Terephthalate), and SBR (Styrene-butadiene rubber).
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