
Università di Firenze, Università di Perugia, INdAM consorziate nel CIAFM

DOTTORATO DI RICERCA
IN MATEMATICA, INFORMATICA, STATISTICA

CURRICULUM IN INFORMATICA
CICLO XXXI

Sede amministrativa Università degli Studi di Firenze
Coordinatore Prof. Graziano Gentili

An algebraic and combinatorial study
of some infinite sequences of numbers

supported by symbolic and logic
computation

Settore Scientifico Disciplinare INF/01

Dottorando
Massimo Nocentini

Tutore
Prof. Donatella Merlini

Coordinatore
Prof. Graziano Gentili

Anni 2015/2018

La legge del Signore è perfetta, rinfranca l’anima;
la testimonianza del Signore è stabile,
rende saggio il semplice.

I precetti del Signore sono retti, fanno gioire il cuore;
il comando del Signore è limpido,
illumina gli occhi.

Il timore del Signore è puro, rimane per sempre;
i giudizi del Signore sono fedeli,
sono tutti giusti.

Ti siano gradite le parole della mia bocca;
davanti a te i pensieri del mio cuore,
Signore, mia roccia e mio redentore.

— Sal 18

Anyone who cannot understand that a useful science can be
built on stunt hacking will not understand this book, either.

— Manul Laphroaig

I spent many hours trying to do things that were well beyond
the intention of the kit designer.

— Jan Addis

Per vedere il sottile cuore delle cose liberati dei nomi, dei con-
cetti, delle aspettative, delle ambizioni e delle differenze.

— Lao Tzu

La prima regola che mi ha insegnato il mio Maestro Yoshi
era: “Coltiva sempre il giusto pensiero. Solo così potrai con-
quistare il dono della forza della conoscenza e della pace”. Ho
tentato di insegnarti a dominare la rabbia, Raffaello …Ma non è
ancora sufficiente. La rabbia ottenebra la mente, e se non è com-
pletamente controllata è un nemico invisibile. Tu sei l’unico fra
tutti i tuoi fratelli che è in grado di affrontare questo terribile
nemico da solo … Ma mentre lo combatti e lo fronteggi, non di-
menticarti di loro, e sopratutto non dimenticarti di me… Io sono
qui, figliolo.

— Maestro Splinter

https://github.com/massimo-nocentini/

MIT License

Copyright (c) 2015-2019 Massimo Nocentini

Permission is hereby granted, free of charge, to any person obtaining a copy

of this software and associated documentation files (the "Software"), to deal

in the Software without restriction, including without limitation the rights

to use, copy, modify, merge, publish, distribute, sublicense, and/or sell

copies of the Software, and to permit persons to whom the Software is

furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all

copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR

IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE

AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER

LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,

OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE

SOFTWARE.

https://github.com/massimo-nocentini/

Abstract

The subject of the thesis concerns the study of infinite se-
quences, in one or two dimensions, supporting the theoretical
aspects with systems for symbolic and logic computation. In
particular, in the thesis some sequences related to Riordan ar-
rays are examined from both an algebraic and combinatorial
points of view and also by using approaches usually applied
in numerical analysis.
Another part concerns sequences that enumerate particular

combinatorial objects, such as trees, polyominoes, and lattice
paths, generated by symbolic and certified computations;
moreover, tiling problems and backtracking techniques are
studied in depth and enumeration of recursive structures are
also given.
We propose a preliminary suite of tools to interact with

the Online Encyclopedia of Integer Sequences, providing a
crawling facility to download sequences recursively accord-
ing to their cross references, pretty-printing them and, finally,
drawing graphs representing their connections.
In the context of automatic proof derivation, an extension

to an automatic theorem prover is proposed to support the
relational programming paradigm. This allows us to encode
facts about combinatorial objects and to enumerate the cor-
responding languages by producing certified theorems at the
same time.
As a concrete illustration, we provide many chunks of code

written using functional programming languages; our focus
is to support theoretical derivations using sound, clear and
elegant implementations to check their validity.

Contents

1 Backgrounds 21

2 Functions and Jordan canonical
forms of Riordan matrices 37

3 Algebraic generating functions for
languages avoiding Riordan patterns 73

4 Crawling, (pretty) printing
and graphing the OEIS 101

5 Queens, tilings, ECO
and polyominoes 119

6 Semi-Certified Interactive
Logic Programming 133

7 Bibliography 145

List of Tables

2.1 sinP8,cosP8,sinC8,cosC8, sinS8 and cosS8 61

3.1 The autocorrelation vector for the pattern p = 10101. 74
3.2 The Riordan patterns of length 7 with first bit equal to 1 and

their correlation polynomials. 75
3.3 Matrices F [p]

n,k = R[p̄]
n,n−k if k ≤ n and F [p]

n,k = R[p̄]
k,k−n if

n ≤ k for the Riordan pattern p = 10101. 77
3.4 Series developments for S[1j+10j](t) where j ∈ {0, . . . , 8}. 82
3.5 Series developments for S[0j+11j](t) where j ∈ {0, . . . , 8}. 82
3.6 Series developments for S[0j1j](t) where j ∈ {0, . . . , 8}. 83
3.7 Series developments for S[(10)j1](t) where j ∈ {0, . . . , 8}. 83
3.8 Series developments for S[(01)j0](t) where j ∈ {0, . . . , 8}. 83
3.9 Set of words with 3, 3, 8, 3 and 3 occurrences of 1-bits avoid-

ing patterns 110, 001, 01, 101 and 010, respectively. 84
3.10 Series developments for L[1j+10j](t) where j ∈ {0, . . . , 7}. 85
3.11 Series developments for L[0j+11j](t) where j ∈ {0, . . . , 7}. 85
3.12 Series developments for L[0j1j](t) where j ∈ {0, . . . , 7}. 86
3.13 Series developments for L[(10)j1](t) where j ∈ {0, . . . , 7}. 86
3.14 Series developments for L[(01)j0](t) where j ∈ {0, . . . , 7}. 86

5.1 Uses of bitmasking functions. 119
5.2 The first 6 tilings enumerated by generator polyominoes us-

ing the shapes collection of pieces. 125
5.3 The first 6 tilings enumerated by generator polyominoes us-

ing the shapes collection of pieces under the restriction to
have 3 pieces for each shape and forbidden cells should be
left blank. 126

5.4 Parallelogram Polyominoes with semiperimeter 6, which are
42 in total, the 6th Catalan number. 128

5.5 Enumerations up to the 5th generation of binary trees. 130
5.6 Enumerations up to the 5th generation of Dyck paths. 130
5.7 Enumerations up to the 5th generation of balanced parens. 131
5.8 Enumerations up to the 5th generation of steep parallelo-

grams. 131

6.1 First 42 Dyck paths enumerated by relation dyckº. 136

Introduction

Combinatorics. Logic. Programming. This dissertation is an
attempt to explore how each entity relates to the others. Seen
as a set of rules that characterize our methodology, we apply
and use them to study the topic of infinite sequences. Our
approach is two-fold, it allows us, first, to prove theoretical
results about them; second, to built an orbit around them
composed of side-track techniques that helps our main goal,
such as programming techniques and logical reasoning.
In particular, the research field of interest concerns (i) the

manipulation of a set of matrices that can be algebraically
defined, which deserve interest both as standalone objects
and as tools to study other combinatorial structures; (ii) the
practice of programming that exposes our way of thinking
to its paradigms, functional and relational in particular, and
(iii) the rigor and power of mechanized logic.
In normal conditions, it is hard to tackle a problem in our

context with both entities present at the same time; however,
we sacrifice a direct approach to solve the given questions
to get the most out of the process that uses the three tenets
together. In this philosophy the constant delay, needed to
sharpen our knowledge in each individual field, is balanced
by the discovery of relations among apparently unrelated
subjects that when mixed together yield nicer, more elegant
and possibly unexpected solutions.
For this reason we spread our focus over many topics of

mathematics and computer science instead of composing a
mono-theme discussion; pairwise, we deepen into

Combinatorics and Programming the implementation of enu-
meration techniques for classes of combinatorial objects
from both the algebraic and applicative points of view;

Programming and Logic the study of a family of languages
designed for relational programming, using a general pur-
pose inference engine to perform deductions over domain
specific objects;

Logic and Combinatorics the formalization of proofs to which
corresponds certified enumerations of classes of objects,
using an extended theorem prover based on Higher Order

14

Logic.

Even though abstract reasoning took place most of the
time, we make some room for practical stuff; in particular,
we would like to provide a suite of tools that helps interact-
ing with the Online Encyclopedia of Integer Sequences, to
automate fetching, printing and graphing the networks they
compose. Moreover, some practice with bitmasking and back-
tracking techniques is done to show some interesting tiling
and enumeration problems.
Another force that drove our work is a pedagogical ap-

proach to problem solving, hence we preferred to refine a
first, naive solution over and over to cut away unnecessary
details and complexities; moreover, we don’t seek for effi-
ciency in all cases in favor of simple and beauty definitions.
This methodology allows us to use many programming lan-
guages and environments to support theoretical derivations
and this dissertation collects this heterogeneous pool of tech-
niques.

Structure

This dissertation has 5 main chapters that rely on the first
one, which introduces basic definitions needed by the follow-
ing ones; so, except for the first, the others can be read in any
order,

• Chapter 1 quickly recalls the theory characterizing the Ri-
ordan group and provides a set of constructors to define
those matrices programmatically, after the introduction of
the symbolic module Sympy implemented on top of the
Python programming language. Moreover, it shows our
programming style which is based on consecutive manip-
ulation of symbolic equations, as mush as possible close to
paper and pencil derivations.

• Chapter 2 presents a theoretical and practical framework
that lifts a scalar function to a matrix function, toward
application to Riordan matrices. To the best of our knowl-
edge, this is the first implementation that allows the user
to perform its computations fully symbolically, postponing
to the end the substitution of ground values to fill matrices
with numbers. Moreover, the Jordan Canonical Form of
Riordan matrices is also studied.

• Chapter 3 studies the enumeration of languages of binary
words avoiding a given pattern, provided that some con-
traints over the structure of each word are taken into ac-
count. In particular, when the pattern to avoid is a Rior-
dan pattern then the problem can be solved using Riordan

15

arrays, deriving new series developments about enumer-
ations with respect to the number of 1-bits and to the
length. Finally, some combinatorial interpretations are
shown, at least for simpler families of languages.

• Chapter 4 implements a suite of tools that interact with the
Online Encyclopedia of Integer Sequences; in particular,
a (i) crawler fetches sequences and their cross references
recursively, using asynchronous primitive to optimize net-
work delays, a (ii) (pretty) printer for the fetched sequences
that allows the user to filter the sections to be rendered
both in the terminal and in web interfaces and, finally, a
(iii) grapher that draw graphs where vertices are sequences
and edges are references among them.

• Chapter 5 is an exercise in backtracking techniques to
solve tiling and placement problems; for the sake of effi-
ciency, bit masking manipulation and encodings are used.
Moreover, it provides an implementation of a classic enu-
meration methodology that allows us to clearly show gen-
erations of combinatorial objects starting from concise and
recursive symbolic definitions; finally, counting all of them
is a check of the correctness of our implementation.

• Chapter 6 proposes an extension to the tactic mechanism
actually present in the HOL Light theorem prover inspired
by the relational paradigm. This prototype makes explicit
use of meta-variables to support substitutions and allows
backtracking facilities during the interactive proof process;
nonetheless, the proposed generalization offers composi-
tionality just as the current system does. So this extension
is stressed against an evaluator for a subset of the Lisp lan-
guage to find a quine program.

Moreover, a final paragraph concludes with a quick sum-
mary of our main results and the bibliography ends this dis-
sertation.

Typographical and typesetting conventions

This dissertation was typeset using the LATEX ’s style tufte-
book, which splits each page into two columns: the left-most
is greater in width and holds the main body, while the right-
most is lesser and holds captions, contextual data and code
comments; in particular, code chunks are printed in verbatim

and highlighted wherever possible, while outputs that denote
mathematical objects are printed in math style, as usual –
when their size overflows over the right column we prefer to
allow it to take the entire page width for the sake of clarity.

Acknowledgments

First, I want to thank my family who always supported me,
I dedicate my dissertation to my father and my mother, with
love and admiration; I also thank Angela, I can’t imagine a
better sister.
Second, I want to thank my advisor Donatella Merlini and

friends (Professors also) Giovanni Maria Marchetti and Marco
Maggesi.
Third, I want to thank Professors Paul Barry and Neil J.

Sloane who read carefully and proposed constructive criti-
cism and comments to make this work better.
I remember and keep within me my friends and those peo-

ple who make and have made my life beautiful; Glazie a tutti.

for Angela

1

Backgrounds

In this introductory section we review theoretical concepts
about the Riordan group that will be useful in subsequent
chapters; additionally, we provide a very short introduction to
symbolic computation using the sympy module implemented
using the Python programming language, giving a taste of
our programming style.

1.1 Riordan Arrays, formally

A Riordan array is an infinite lower triangular array (dn,k)n,k∈N,
defined by a pair of formal power series (d(t),h(t)) such that
d(0) 6= 0,h(0) = 0 and h′(0) 6= 0; furthermore, each element

dn,k = [tn]d(t)h(t)k, n,k ≥ 0,

is the coefficient of monomial tn in the series expansion of
d(t)h(t)k and the bivariate generating function

R(t,w) =
∑

n,k∈N

dn,kt
nwk =

d(t)

1−wh(t)
(1.1)

enumerates the sequence (dn,k)n,k∈N.
These arrays were introduced in [Shapiro et al., 1991], with

the aim of defining a class of infinite, lower triangular arrays
and since then they have attracted, and continue to attract, a
lot of attention in the literature and recent applications can be
found in [Luzon et al., 2014].

Example 1. The most simple Riordan matrix could be the
Pascal triangle

R
(

1

1− t
,

t

1− t

)
where dn,k =

(
n

k

)
;

22

moreover, another remarkable matrix is the Catalan triangle

R
(
1−

√
1− 4 t

2 t
,
1−

√
1− 4 t

2 t

)

where dn,k =

(
2n− k

n− k

)
−

(
2n− k

n− k− 1

)
.

An important property of Riordan arrays concerns the
computation of combinatorial sums; precisely, it is encoded
by the identity

n∑
k=0

dn,kfk = [tn]d(t)f(h(t)) (1.2)

and it is extensively commented in [Luzon et al., 2012, Merlini
et al., 2009, Sprugnoli, 1994]. It states that every combina-
torial sum involving a Riordan array can be computed by
extracting the coefficient of tn from the series expansion of
d(t)f(h(t)), where f(t) = G(fk) =

∑
k≥0 fkt

k denotes the
generating function of the sequence (fk)k∈N and the symbol
G denotes the generating function operator. Due to its impor-
tance, relation (1.2) is commonly known as the fundamental
rule of Riordan arrays. For short and when no confusion
arises, the notation (fk)k will be used as an abbreviation of
(fk)k∈N.
As it is well-known (see, e.g., [Luzon et al., 2014, Merlini

et al., 1997, Shapiro et al., 1991]), Riordan arrays consti-
tute an algebraic group with respect to the usual row-by-
column product between matrices; formally, the group oper-
ation · applied to two Riordan arrays D1(d1(t), h1(t)) and
D2(d2(t), h2(t)) is carried out as

D1 ·D2 = (d1(t)d2(h1(t)), h2(h1(t))). (1.3)

Moreover, the Riordan array I = (1, t) acts as the identity
element and the inverse of D = (d(t),h(t)) is the Riordan
array

D−1 =

(
1

d(h(t))
,h(t)

)
(1.4)

where h(t) denotes the compositional inverse of h(t).
An equivalent characterization of a each matrix R(d(t),h(t))

in the Riordan group is given by two sequences of coefficients
(an)n∈N and (zn)n∈N called A-sequence and Z-sequence,
respectively. The former one can be used to define every coef-
ficient dn,k with k > 0,

dn+1,k+1 = a0dn,k+a1dn,k+1+a2dn,k+2+ . . .+ajdn,k+j+ . . .

23

where the sum is finite because exists j ∈ N such that n =
k+ j; on the other hand, the latter one can be used to define
every coefficient dn,0 lying on the first column,

dn+1,0 = z0dn,0 + z1dn,1 + z2dn,2 + . . .+ zndn,n

where the sum is finite because dn,k+j = 0 for j > n− k.
Moreover, let A(t) and Z(t) be the generating functions of

the A-sequence and Z-sequence respectively, then relations

h(t) = tA(h(t)) and d(t) =
d0,0

1− tZ(h(t))

connect them with functions d(t) and h(t), where d0,0 is the
very first element of R; for the sake of completeness, [Merlini
et al., 1997] collects more alternative characterizations.

1.2 Symbolic computation

The main part of the symbolic computations supporting the
topics discussed in this dissertation has been coded using
the Python language, relying on the module sympy for what
concerns mathematical stuff. Quoting from http://www.

sympy.org/:

“SymPy is a Python library for symbolic mathematics. It aims
to become a full-featured computer algebra system (CAS) while

keeping the code as simple as possible in order to be
comprehensible and easily extensible.”

The paper [Meurer et al., 2017] explains it and many other
resources can be found online; for example, a comprehensive
documentation is [SymPy, a] and a well written, understand-
able tutorial [SymPy, b] is provided by the original develop-
ment team.
Here we avoid to duplicate the tutorial with similar exam-

ples, instead we state the methodology used while coding our
definitions. Python is a very expressive language allowing
programmers to use both the object-oriented and functional
paradigms. It can tackle different application domains by
means of modules and sympy is an example that targets the
manipulation of symbolic terms. Contrary to other propri-
etary software like Maple and Mathematica which ship their
own languages, sympy is implemented entirely in Python, al-
lowing a transparent and easy integration in other Python
programs, as we will see in later chapters.
The main point to grasp in our opinion is the difference

between the meta language, which is Python, and the object
language, which is the mathematical expressions denoted by
sympy objects.

http://www.sympy.org/
http://www.sympy.org/

24

Example 2. Symbol is a fundamental class of objects that
introduces arbitrary mathematical symbols.

>>> from sympy import Symbol

>>> a_sym = Symbol('a')

>>> a_sym

a

The previous snippet allows us to clarify the duality among
meta and object languages; precisely, the mathematical expres-
sion a is denoted by the Python object a_sym.

The above example is the first one found by the reader and
it shows a common pattern used through this document to
illustrate computations; in particular, when a line starts with
(i) >>> then it is an input line holding code to be executed,
(ii) ... then it is a continuation line holding an unfinished
code expression, otherwise (iii) it is an output line reporting
the result of the evaluation.
A second fundamental methodology that we embrace in

our symbolic manipulations is equational reasoning, namely
we use equations denoted by Eq objects to express identities
to reason about, used both to define things and to be solved
with respect to a desired symbol.

Example 3. Introduction of Eq, solve and symbols functions:

>>> from sympy import Eq, solve, symbols

>>> a, t = symbols('a t')

>>> a_def = Eq(a, 3)

>>> at_eq = Eq(a+5*t, 1/(1-t))

>>> a_def, at_eq(
a = 3, a+ 5t =

1

−t+ 1

)
>>> sols = [Eq(t, s) for s in solve(at_eq, t)]

>>> sols [
t = − a

10 −
1
10

√
a2 + 10a+ 5+ 1

2 ,

t = − a
10 +

1
10

√
a2 + 10a+ 5+ 1

2

]
Due to the importance of equations in our code, we intro-

duce two helper functions. First, define builds a definition:
def define(let, be, ctor=Eq, **kwds,):

if 'evaluate' not in kwds: # If `evaluate` is already given, use it # as it is,

kwds['evaluate'] = False # otherwise set to `False` to preevent evaluation

by `Eq`, which implicitly do simplifications;

return ctor(let, be, **kwds) # finally, return an equation object.

Example 4. Introduction of Function objects:

>>> from sympy import Function, sqrt

>>> f = Function('f')

>>> f(3)

25

f(3)

>>> t = symbols('t')

>>> define(let=f(t), be=(1-sqrt(1-4*t))/(2*t), ctor=FEq)

f(t) =
1

2t

(
−
√
−4t+ 1+ 1

)
The keyword argument ctor=FEq asks define to promote

the equation we are defining as a callable object by means
of the FEq class,
class FEq(Eq):

def __call__(self, *args, **kwds):

with lift_to_Lambda(self, **kwds) as feq:

applied = feq(*args)

if isinstance(applied, Eq):

subs = Subs(applied, self.lhs, self.rhs)

setattr(subs, 'substitution', partial(

lambda inner_self, *args, **kwds: self, subs))

return subs

else:

return applied

def swap(self):

return self.__class__(self.rhs, self.lhs)

def __iter__(self):

yield self.lhs, self.rhs

def as_substitution(self):

return dict(self)

def __mod__(self, arg):

def S(term):

return term.subs(self, simultaneous=True)

if isinstance(arg, Eq):

lhs = self.lhs if self.lhs == arg.lhs else S(arg.lhs)

rhs = S(arg.rhs)

return arg.__class__(lhs, rhs, evaluate=False)

else:

return S(arg)

which provides methods that allows it to be used as a substi-
tution too; in turn, it depends on
@contextmanager

def lift_to_Lambda(eq, return_eq=False, lhs_handler=lambda args: []):

lhs = eq.lhs

args = (lhs.args[1:] if isinstance(lhs, Indexed) else # get arguments wrt the type of `lhs` object;

lhs.args if isinstance(lhs, Function) else # here we handle both function and subscript

lhs_handler(lhs)) # notations. Finally, `Lambda` is the

yield Lambda(args, eq if return_eq else eq.rhs) # class of callable objects in SymPy.

Example 5. Introduction of IndexedBase objects:

>>> from commons import lift_to_Lambda

>>> from sympy import IndexedBase

>>> a = IndexedBase('a')

26

>>> aeq = Eq(a[n], n+a[n-1])

>>> aeq(n+1)

an+1 = n+ an + 1

>>> b = Function('b')

>>> beq = Eq(b(n), n+b(n-1))

>>> beq(n+1)

b(n+ 1) = n+ b(n) + 1

1.3 Riordan Arrays, computationally

In this section we describe a little framework that implements
parts of the concepts seen in the previous section; in par-
ticular, we provide some strategies to build Riordan arrays,
to find corresponding production matrices and their group
inverse elements, respectively.
First of all we introduce (i) function symbols d_fn and h_fn

to denote arbitrary symbolic functions d and h, (ii) indexed
symbols d and h to denote arbitrary symbolic and indexed
coefficients
>>> d_fn, h_fn = Function('d'), Function('h')

>>> d, h = IndexedBase('d'), IndexedBase('h')

respectively. To build Riordan matrices we use Matrix ob-
jects; in particular, the expression Matrix(r, c, ctor) de-
notes a matrix with r rows and c columns where each coeffi-
cient dn,k in the matrix is defined according to ctor which is
a callable object consuming two arguments n and k, its row From the official doc at https://docs.

python.org/3/library/functions.html#

callable: callable(object) return True

if the object argument appears callable,
False if not. If this returns true, it is
still possible that a call fails, but if it is
false, calling object will never succeed.
Note that classes are callable (calling a
class returns a new instance); instances
are callable if their class has a __call__
method.

and column coordinates. We call it ctor as abbreviation for
constructor, because it allows us to code the definition of each
coefficient with a Python callable object.
Here we show how to build a pure symbolic matrix:

>>> from sympy import Matrix

>>> rows, cols = 5, 5

>>> ctor = lambda i,j: d[i,j]

>>> Matrix(rows, cols, ctor)
d0,0 d0,1 d0,2 d0,3 d0,4

d1,0 d1,1 d1,2 d1,3 d1,4

d2,0 d2,1 d2,2 d2,3 d2,4

d3,0 d3,1 d3,2 d3,3 d3,4

d4,0 d4,1 d4,2 d4,3 d4,4

In the following sections we show a collection of such

ctors, each one of them implements one theoretical charac-
terization used to denote Riordan arrays and corresponding
examples are given.

1.3.1 Convolution ctor

The following definition implements a ctor that allows us to
build Riordan arrays by convolution of their d and h func-

https://docs.python.org/3/library/functions.html#callable
https://docs.python.org/3/library/functions.html#callable
https://docs.python.org/3/library/functions.html#callable

27

tions; here it is,
def riordan_matrix_by_convolution(dim, d, h):

t = symbols('t') # Local symbol to denote a formal variable `t`.

with lift_to_Lambda(d, return_eq=True) as D: # Lift equations `d` and `h` to become callables

with lift_to_Lambda(h, return_eq=True) as H: # objects, returning equations as well, in order

d_eq, h_eq = D(t), H(t) # to let both of them depend on variable `t`.

@lru_cache(maxsize=None)

def column(j): # Columns are memoized for the sake of efficiency.

if not j: return d_eq # Base case.

lhs = column(j-1).lhs * h_eq.lhs # Otherwise, use already computed column to build

rhs = column(j-1).rhs * h_eq.rhs # the current `lhs` and `rhs`.

return Eq(lhs, rhs)

@lru_cache(maxsize=None)

def C(j): # Local function that performs Taylor expansion

return column(j).rhs.series(t, n=dim).removeO() # of columns, which are symbolic terms up to now.

return lambda i, j: C(j).coeff(t, i).expand() # Return a lambda to be plugged in a `Matrix` ctor.

Example 6. Symbolic Riordan array built by two polynomials
with symbolic coefficients:

>>> d_series = Eq(d_fn(t), 1+sum(d[i]*t**i for i in range(1,m)))

>>> h_series = Eq(h_fn(t), t*(1+sum(h[i]*t**i for i in range(1,m-1)))).expand()

>>> d_series, h_series(
d(t) = t4d4 + t3d3 + t2d2 + td1 + 1, h(t) = t4h3 + t3h2 + t2h1 + t

)
>>> R = Matrix(m, m, riordan_matrix_by_convolution(m, d_series, h_series))

>>> R
1

d1 1

d2 d1 + h1 1

d3 d1h1 + d2 + h2 d1 + 2h1 1

d4 d1h2 + d2h1 + d3 + h3 2d1h1 + d2 + h2
1 + 2h2 d1 + 3h1 1

Example 7. The Pascal triangle built using closed generating
functions:

>>> d_series = Eq(d_fn(t), 1/(1-t))

>>> h_series = Eq(h_fn(t), t*d_series.rhs)

>>> d_series, h_series(
d(t) =

1

1− t
, h(t) =

t

1− t

)
>>> R = Matrix(10, 10, riordan_matrix_by_convolution(10, d_series, h_series))

>>> R

28

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1

1 9 36 84 126 126 84 36 9 1

1.3.2 Recurrence ctor

The following definition implements a ctor that allows us to
build Riordan arrays by a recurrence relation over coefficients
dn+1,k+1; here it is,

def riordan_matrix_by_recurrence(dim, rec, init={(0,0):1},

ctor=zeros, post=expand,

lattice=None):

if not lattice:

lattice = [(n, k) for n in range(1, dim) # `lattice` denotes the order in which coeffs in

for k in range(n+1)] # the array will be computed; it can be plugged in.

R = ctor(dim) # Initial array as base for recursive construction.

for cell, i in init.items(): R[cell] = i # Set boundary values for the recurrence `rec`.

for cell in lattice: # Visit cells as they appear in the order `lattice`;

for comb_cell, v in rec(*cell).items(): # then, get dependencies with respect the each cell.

try:

comb = (1 if cell == comb_cell

else R[comb_cell]) # If it is possible to access the dependee cell,

combined = v * comb # then perform the combination using the given `v`.

except IndexError:

combined = 0 # Otherwise, take `0` because combination fails.

R[cell] += combined # Finally, accumulate the current combination.

if callable(post): R = R.applyfunc(post) # If some post processing is desired, do it.

return lambda n, k: R[n, k] # Return a lambda that uses the computed `R`.

Example 8. Symbolic Riordan Array built according to the
recurrence:

dn+1,0 = b̄ dn,0 + c dn,1, n ∈ N

dn+1,k+1 = adn,k + bdn,k + c dn,k+1, n,k ∈ N

>>> dim = 5

>>> a, b, b_bar, c = symbols(r'a b \bar{b} c')

>>> M = Matrix(dim, dim,

29

... riordan_matrix_by_recurrence(

... dim, lambda n, k: {(n-1, k-1):a,

... (n-1, k): b if k else b_bar,

... (n-1, k+1):c}))

>>> M
1

b̄ a

b̄2 + ac b̄a+ ab a2

b̄3 + 2b̄ac+ abc b̄2a+ b̄ab+ 2a2c+ ab2 b̄a2 + 2a2b a3

b̄4 + 3b̄2ac+ 2b̄abc+ 2a2c2 + ab2c b̄3a+ b̄2ab+ 3b̄a2c+ b̄ab2 + 5a2bc+ ab3 b̄2a2 + 2b̄a2b+ 3a3c+ 3a2b2 b̄a3 + 3a3b a4

>>> production_matrix(M)

b̄ a

c b a

c b a

c b

Forcing a = 1 and b̄ = b yield the easier matrix Msubs
>>> Msubs = M.subs({a:1, b_bar:b})

>>> Msubs, production_matrix(Msubs)

1

b 1

b2 + c 2b 1

b3 + 3bc 3b2 + 2c 3b 1

b4 + 6b2c+ 2c2 4b3 + 8bc 6b2 + 3c 4b 1

 ,

b 1

c b 1

c b 1

c b

and the correspoding production matrix checks the substitution.

Previous examples uses the function production_matrix to
compute the production matrix [Deutsch et al., 2005, 2009] of
a Riordan array, here is its definition with two helper ctors:

def columns_symmetry(M):

return lambda i, j: M[i, i-j]

def rows_shift_matrix(by):

return lambda i, j: 1 if i + by == j else 0

def diagonal_func_matrix(f):

return lambda i, j: f(i) if i == j else 0

def production_matrix(M, exp=False):

f = factorial if exp else one

U = Matrix(M.rows, M.cols, rows_shift_matrix(by=1))

F = Matrix(M.rows, M.cols, diagonal_func_matrix(f))

F_inv = F**(-1)

V = F_inv * U * F

O = F_inv * M * F

O_inv = O**(-1)

PM = F * O_inv * V * O * F_inv

PM = F_inv * PM * F if exp else PM

PM = PM[:-1, :-1]

return PM.applyfunc(simplify)

implemented according to [Barry, 2017, page 215].

30

1.3.3 A and Z sequences ctor

The following definition implements a ctor that allows us to
build Riordan arrays by their Z and A sequences; here it is,
def riordan_matrix_by_AZ_sequences(dim, seqs, init={(0,0):1},

ctor=zeros, post=expand,

lattice=None):

if not lattice: lattice = [(n, k) for n in range(1, dim)

for k in range(n+1)]

Zseq, Aseq = seqs

t = symbols('t')

with lift_to_Lambda(Zseq) as Z, lift_to_Lambda(Aseq) as A:

Z_series = Z(t).series(t, n=dim).removeO()

A_series = A(t).series(t, n=dim).removeO()

R = ctor(dim)

for cell, i in init.items(): R[cell] = i

for n, k in lattice:

if k:

v = sum(R[n-1, j] * A_series.coeff(t, n=i)

for i, j in enumerate(range(k-1, dim)))

else:

v = sum(R[n-1, j] * Z_series.coeff(t, n=j)

for j in range(dim))

R[n, k] = v

if callable(post): R = R.applyfunc(post)

return lambda n, k: R[n, k]

in words, (i) it deconstructs seqs into objs denoting Z and
A seqs, promoting both of them as callables, (ii) it introduces
the formal variable t, (iii) it performs two Taylor expansions
with respect to t. In order to build the resulting matrix, it vis-
its each cell according to the order given by lattice then
if the cell lies not on the first column, it combines using
A_series coefficients up to the cell in position (k-1, dim-

1); otherwise, it combine using Z_series coefficients up to
the cell in position (k-1, dim-1). Finally, it stores the com-
bination and if some post processing is desired, it does so; at
last, it returns a lambda that uses the computed matrix R.

Example 9. Again the Pascal triangle built using A and Z
sequences
>>> A, Z = Function('A'), Function('Z')

>>> A_eq = Eq(A(t), 1 + t)

>>> Z_eq = Eq(Z(t),1)

>>> A_eq, Z_eq

(A(t) = t+ 1, Z(t) = 1)

31

>>> R = Matrix(10, 10, riordan_matrix_by_AZ_sequences(10, (Z_eq, A_eq)))

>>> R, production_matrix(R)

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1

1 9 36 84 126 126 84 36 9 1

,

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1

Example 10. Catalan triangle built using A and Z sequences,

>>> A_ones = Eq(A(t), 1/(1-t)) # A is defined as in the previous example

>>> R = Matrix(10, 10, riordan_matrix_by_AZ_sequences(10, (A_ones, A_ones)))

>>> R, production_matrix(R)

1

1 1

2 2 1

5 5 3 1

14 14 9 4 1

42 42 28 14 5 1

132 132 90 48 20 6 1

429 429 297 165 75 27 7 1

1430 1430 1001 572 275 110 35 8 1

4862 4862 3432 2002 1001 429 154 44 9 1

,

1 1

1 1 1

1 1 1 1

1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

Example 11. Symbolic Riordan arrays built using A and Z
sequences,

>>> dim = 5

>>> a = IndexedBase('a')

>>> A_gen = Eq(A(t), sum((a[j] if j else 1)*t**j for j in range(dim)))

>>> R = Matrix(dim, dim, riordan_matrix_by_AZ_sequences(dim, (A_gen, A_gen)))

>>> R
1

1 1

a1 + 1 a1 + 1 1

a2
1 + 2a1 + a2 + 1 a2

1 + 2a1 + a2 + 1 2a1 + 1 1

a3
1 + 3a2

1 + 3a1a2 + 3a1 + 2a2 + a3 + 1 a3
1 + 3a2

1 + 3a1a2 + 3a1 + 2a2 + a3 + 1 3a2
1 + 3a1 + 2a2 + 1 3a1 + 1 1

>>> z = IndexedBase('z')

>>> A_gen = Eq(A(t), sum((a[j] if j else 1)*t**j for j in range(dim)))

>>> Z_gen = Eq(Z(t), sum((z[j] if j else 1)*t**j for j in range(dim)))

>>> Raz = Matrix(dim, dim, riordan_matrix_by_AZ_sequences(dim, (Z_gen, A_gen)))

>>> Raz

32

1

1 1

z1 + 1 a1 + 1 1

a1z1 + 2z1 + z2 + 1 a2
1 + a1 + a2 + z1 + 1 2a1 + 1 1(

a2
1z1 + 2a1z1 + 2a1z2 + a2z1+

z21 + 3z1 + 2z2 + z3 + 1

)
a3
1 + a2

1 + 3a1a2 + 2a1z1 + a1 + a2 + a3 + 2z1 + z2 + 1 3a2
1 + 2a1 + 2a2 + z1 + 1 3a1 + 1 1

>>> production_matrix(R), production_matrix(Raz)

1 1

a1 a1 1

a2 a2 a1 1

a3 a3 a2 a1

 ,

1 1

z1 a1 1

z2 a2 a1 1

z3 a3 a2 a1

1.3.4 Exponential ctor

The following definition implements a ctor that allows us to
build an exponential Riordan array; here it is,

def riordan_matrix_exponential(RA):

return lambda i,j: factorial(i)*RA(i,j)/factorial(j)

Example 12. Build the triangle of Stirling numbers of the II
kind:

>>> d_series = Eq(d_fn(t), 1)

>>> h_series = Eq(h_fn(t), exp(t)-1)

>>> d_series, h_series(
d(t) = 1, h(t) = et − 1

)
>>> R = matrix(10, 10, riordan_matrix_exponential(

... riordan_matrix_by_convolution(

... 10, d_series, h_series)))

>>> R

1

1

1 1

1 3 1

1 7 6 1

1 15 25 10 1

1 31 90 65 15 1

1 63 301 350 140 21 1

1 127 966 1701 1050 266 28 1

1 255 3025 7770 6951 2646 462 36 1

>>> production_matrix(R), production_matrix(R, exp=True)

33

0 1

1 1

2 1

3 1

4 1

5 1

6 1

7 1

8

,

0 1

1 2

2 3

3 4

4 5

5 6

6 7

7 8

8

>>> inspect(R)

nature(is_ordinary=False, is_exponential=True)

In the above example we introduced another function
inspect that studies the type of array it consumes. Be-
fore reporting its definition we remark that the matrix on
the left is an usual production matrix (which tells us that
d6,4 = d5,3 + 4d5,4 = 25+ 4 · 10 = 65, for example); on
the other hand, the matrix on right helps to decide if the ar-
ray is an exponential one by proving that each diagonal is an
arithmetic progression, for more on this see [Barry, 2017].
def inspect(M):

P = production_matrix(M, exp=False) # Ordinary production matrix.

C = production_matrix(M, exp=True) # "Exponential" production matrix.

is_ord = all(P[:1-i, 1] == P[i-1:, i] # A RA is ordinary if columns of its PM

for i in range(2, P.cols)) # are shifted but equals.

diagonals = {d: [C[j+d,j] for j in range(1,C.rows-d)] # Fetch matrix diagonals for the

for d in range(C.rows-3) } # exponential case.

is_exp = all(map(is_arithmetic_progression, # A Riordan array is exponential if `diagonals`

diagonals.values())) # are arithmetic progressions, all of them.

return nature(is_ord, is_exp)

def is_arithmetic_progression(prog):

steps = len(prog)-1

for _ in range(steps):

prog = [(b-a).simplify() # Reduce the list by consecutive differences,

for a, b in zip(prog, prog[1:])] # till a single object survives.

assert len(prog) == 1 # Consistency check of the last comment.

return prog.pop() == 0 # Finally, the reduced object has to vanish.

Example 13. In this example we explore an exponential Rior-
dan array starting from the generating functions of the Pascal
triangle. Surprisingly the array we get back is known in the
OEIS (https://oeis.org/A021009) and looking for some com-
ments we quote the observation

https://oeis.org/A021009

34

”the generalized Riordan array (ex, x) with respect to
the sequence n! is Pascal’s triangle A007318”

by Peter Bala.

>>> d_series, h_series = Eq(d_fn(t), 1/(1-t)), Eq(h_fn(t), t/(1-t))

>>> d_series, h_series(
d(t) =

1

1− t
, h(t) =

t

1− t

)
>>> R = matrix(10, 10, riordan_matrix_exponential(

... riordan_matrix_by_convolution(

... 10, d_series, h_series)))

>>> R

1

1 1

2 4 1

6 18 9 1

24 96 72 16 1

120 600 600 200 25 1

720 4320 5400 2400 450 36 1

5040 35280 52920 29400 7350 882 49 1

40320 322560 564480 376320 117600 18816 1568 64 1

362880 3265920 6531840 5080320 1905120 381024 42336 2592 81 1

>>> production_matrix(R), production_matrix(R, exp=True)

1 1

1 3 1

4 5 1

9 7 1

16 9 1

25 11 1

36 13 1

49 15 1

64 17

,

1 1

1 3 2

2 5 3

3 7 4

4 9 5

5 11 6

6 13 7

7 15 8

8 17

>>> inspect(R)

nature(is_ordinary=False, is_exponential=True)

1.3.5 Group inverse elements

In this final section we show how to compute the composi-
tional inverse of a function and then apply this procedure to
find the inverse of a given Riordan array. By small steps, your
task is to find the compositional inverse of Pascal array’s h
function

h(t) =
t

1− t
,

35

namely you want to find a function h̄ such that h̄(h(t)) = t.
Starting from this very last identity we use the substitution
notation

h̄(h(t)) = t ↔ [
h̄(y) = t |y = h(t)

]
that allows us to reduce the original problem to solve y =
h(t) with respect to t; formally, using the definition of h we
rewrite

y =
t

1− t
that implies t =

y

1+ y
.

The latter identity can be used back in h̄(y) = t as substitu-
tion for t yielding h̄(y) =

y

1+ y
as required; this procedure

is promptly implemented as
def compositional_inverse(h_eq, y=symbols('y'), check=True):

spec, body = h_eq.lhs, h_eq.rhs # Destructuring function h denoted by `h_eq`,

t, = spec.args # let `t` be the formal var of function h.
h̄(h(t)) = t ↔ [

h̄(y) = t |y = h(t)
]
allows us

sols = solve(Eq(y, body), t) # to solve y = h(t) with respect to t because

for sol in sols: # h(t) is known, denoted by `body`. For each

L = Lambda(y, sol) # solution `sol`, which depends on y, we build

if L(0) == 0: # a callable object `L`. If it vanishes in 0 and

h̄(h(t)) = t, then it is a compositional

if check: assert L(body).simplify() == t # inverse of h.

h_bar = Function(r'\bar{{ {} }}'.format(# Prepare the name for function h̄ and

str(spec.func)))

eq = Eq(h_bar(y), sol.factor()) # build the corresponding equation that defines

return eq # h̄(y), compositional inverse of h(t).

raise ValueError # If the above code fails to return, raise an error.

def group_inverse(d_eq, h_eq, post=identity, check=True):

t, y = symbols('t y') # Formal symbols for symbolic functions f and g.
g_fn, f_fn = Function('g'), Function('f')

with lift_to_Lambda(d_eq, return_eq=False) as D: # Promote equations `d` and `h` to become

with lift_to_Lambda(h_eq, return_eq=True) as H: # callables objects, returning equations as well.

f_eq = compositional_inverse(H(t), y, check) # Let function f be the compositional inverse of

with lift_to_Lambda(f_eq, return_eq=False) as F: # function h, then promote it as callable and

F_t = F(t) # (i) evaluate it at t;
g = post(1/D(F_t)) # (ii) build and refine g, the first function of

f = post(F_t) # the new Ra; (iii) refine f, the snd function.

g_eq = Eq(g_fn(t), g.simplify()) # Build corresponding equation objects with

f_eq = Eq(f_fn(t), f.simplify()) # simplified expressions.

if check: # If it is required to certify the computation,

with lift_to_Lambda(g_eq, return_eq=False) as G: # then promote the just built equations `g` and

with lift_to_Lambda(f_eq, return_eq=False) as F: # `f` to perform group operation in order to

H_rhs = H(t).rhs # check that, it yields the identity element,

assert (D(t)*G(H_rhs)).simplify() == 1 # which has (i) 1 as first component and

assert F(H_rhs).simplify() == t # (ii) t as second component.

return g_eq, f_eq

36

Example 14. Compositional inverse of Catalan tringle’s h
generating function:

>>> catalan_term = (1-sqrt(1-4*t))/(2*t)

>>> d_series = Eq(d_fn(t), catalan_term)

>>> h_series = Eq(h_fn(t), t*catalan_term)

>>> h_series, compositional_inverse(h_series)(
h(t) = −

1

2

√
−4t+ 1+

1

2
, h̄(y) = −y (y− 1)

)
>>> C_inverse = group_inverse(d_series, h_series, post=radsimp)

>>> C_inverse(
g(t) =

1

2

√
4t2 − 4t+ 1+

1

2
, f(t) = t (−t+ 1)

)
>>> R = Matrix(10, 10, riordan_matrix_by_convolution(

... 10, C_inverse[0], C_inverse[1]))

>>> R

1

−1 1

−2 1

1 −3 1

3 −4 1

−1 6 −5 1

−4 10 −6 1

1 −10 15 −7 1

5 −20 21 −8 1

−1 15 −35 28 −9 1

Conclusions

This chapter offers to the reader a concise review of the the-
ory of Riordan Arrays by recalling definitions, characteriza-
tions and their fundamental properties; moreover, we pair
these formal arguments with a set of software abstractions
that allow us to mimic the theory with objects living in a
computer. Coding our definitions using the Python program-
ming language and taking advantage of the symbolic module
Sympy, we provide a coherent and unified environment to
experiment in.

2

Functions and Jordan canonical

forms of Riordan matrices

This chapter is an extended version of the recently published
paper [Merlini and Nocentini, 2019] which collects results
about Riordan arrays in the framework of matrix functions;
actually, the following methodology applies to any square
matrix m × m with exactly one eigenvalue λ of algebraic
multiplicity m ∈ N. Generalized Lagrange bases are used
to construct Hermite polynomials that interpolate a family of
functions; moreover, we show a parallel application of such
functions via Jordan canonical forms and case studies are
given.

2.1 Introduction

This work started as an educational effort to construct a prac-
tical framework that allows us to lift a scalar function f :
R → R to a matrix function gf : Rm×m → Rm×m,m ∈ N.
Although many books [Gantmacher, 1959, Golub and Loan,
1996, Horn and Johnson, 1991, Lancaster and Tismenetsky,
1985] study this argument, our approach is in the spirit of
[Higham, 2008], thus it does not include elementwise opera-
tions, functions producing a scalar result (such as the trace,
the determinant, the spectral radius, the condition number),
or matrix transformations (such as the transpose, the adju-
gate, the slice of a submatrix).
We provide two equivalent characterizations of the lifting

process: let f be the function to be applied to a square matrix
A, then the former is based on A’s eigenvalues, its algebraic
multiplicities and f’s derivatives, according to [Runckel and
Pittelkow, 1983, Verde-Star, 2005]; the latter is based on A’s
Jordan Canonical Form, an established approach to apply a
function to a matrix.
We restrict ourselves to a class of matrices belonging to

the Riordan group [Merlini et al., 1997, Shapiro et al., 1991,

38

Sprugnoli, 1994, He, 2015], namely lower triangular infinite
matrices that can be also manipulated algebraically using
generating functions. Riordan arrays are powerful tools in
combinatorics and in the analysis of algorithms, but here we
focus on common properties arising from their structure to
build polynomials interpolating desired functions; in fact,
each minor m×m of a Riordan array R shares the same and
unique eigenvalue λ1 with algebraic multiplicity m.
We report application of a class of differentiable functions

to the matrices of binomial coefficients, Catalan and Stirling
numbers; for example, starting with 8× 8 minors of the Pas-
cal and Catalan triangles

P8 =

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1

and

C8 =

1

1 1

2 2 1

5 5 3 1

14 14 9 4 1

42 42 28 14 5 1

132 132 90 48 20 6 1

429 429 297 165 75 27 7 1

respectively, which are two of the most commonly known
Riordan arrays, we find matrices

3
√
P8 =

1
1
3 1
1
9

2
3 1

1
27

1
3 1 1

1
81

4
27

2
3

4
3 1

1
243

5
81

10
27

10
9

5
3 1

1
729

2
81

5
27

20
27

5
3 2 1

1
2187

7
729

7
81

35
81

35
27

7
3

7
3 1

and

39

eC8 = e

1

1 1

3 2 1
23
2 8 3 1
154
3 37 15 4 1
127
4

572
3

163
2 24 5 1

746
5

6439
6 478 15 35 6 1

52481
6

39899
6

125
4

2965
3

495
2 48 7 1

such that 3

√
P8 · 3

√
P8 · 3

√
P8 = P8 and L8

(
eC8
)
= C8, where

L8(z) =
z7

7e7
−

7z6

6e6
+

21z5

5e5
−

35z4

4e4
+

35z3

3e3
−

21z2

2e2
+

7z

e
−

223

140

is a polynomial that interpolates the log function; moreover,
matrices sin(P8) and cos(P8) satisfying the classic identity

sin(P8) · sin(P8) + cos(P8) · cos(P8) = I8, (2.1)

where I is the identity matrix, the r-th power with r ∈ Q and
the log functions are studied in details.
Moreover, we show how to build matrices X and Y to factor

pairs of Riordan matrices A and B in Jordan canonical forms
AX = X J and B Y = Y J respectively, both sharing matrix J
which has a simple and interesting structure. First, we study
the application of a function f to matrix J to ease the compu-
tation of f(A) and f(B); second, we prove that it is always
possible to write a Riordan array A as a linear transformation
of any other Riordan array B by means of matrices X and Y
appearing in their Jordan canonical forms (in particular, there
are uncountably many such transformations since X and Y
are defined on top of arbitrary vectors v,w ∈ Rm).
Finally, to compare and contrast the study of a matrix with

a single eigenvalue with the study of a matrix with at least
two different eigenvalues, we show an example concerning
the Fibonacci numbers’ generator matrix. All theorems and
facts have been tested and confirmed by reproducible artifacts
using a symbolic module on top of the Python programming
language, fully available online in [Nocentini].

2.2 Basic definitions and notations

Let A ∈ Rm×m be a matrix and denote with σ(A) the
spectrum of A, namely the set of A’s eigenvalues σ(A) =
{λi : Avi = λivi, vi ∈ Rm} with corresponding multiplicities
mi such that

∑ν
i=1mi = m.

Let ν = |σ(A)| and define the characteristic polynomial
p(λ) = det(A− λI) =

∏ν
i=1 (λ− λi)

mi of matrix A. The
degree of p ism and any polynomial h of degree greater

40

than m can be divided as h(λ) = q(λ)p(λ) + r(λ) where
degr(λ) < m; by the Cayley-Hamilton theorem p(A) =
O where O is the zero matrix, therefore h(A) = r(A)
holds, namely polynomials h and r (possibly of different de-
grees) yield the same matrix when applied to A. Moreover,
∂(j)p

∂λj

∣∣∣∣∣
λ=λi

= 0 implies

∂(j) (h(λ) − r(λ))

∂λj

∣∣∣∣∣
λ=λi

=
∂(j) (q(λ)p(λ))

∂λj

∣∣∣∣∣
λ=λi

= 0,

so polynomials h and r satisfy h(A) = r(A) if and only if

∂(j)h

∂λj
=

∂(j)r

∂λj

∣∣∣∣∣
λ=λi

,
i ∈ {1, . . . ,ν}
j ∈ {0, . . . ,mi − 1}

;

in words, polynomials h and r take the same values on σ(A).
Let f : R → R be a function on the formal variable z; we

say that f is defined on σ(A) if exists

∂(j)f

∂zj

∣∣∣∣∣
z=λi

,
i ∈ {1, . . . ,ν}
j ∈ {0, . . . ,mi − 1}

.

Given a function f defined on σ(A), a polynomial g can
be defined such that f and g take the same values on σ(A);
in particular, g can be written using the base of generalized
Lagrange polynomials Φi,j ∈

∏
m−1, where

∏
r denotes

the set of polynomials of degree r ∈ N. Coefficients of each
polynomial Φi,j are implicitly defined to be the solutions of
the system with m constraints

∂(r−1)Φi,j

∂zr−1

∣∣∣∣∣
z=λl

= δi,lδj,r,
l ∈ {1, . . . ,ν}
r ∈ {1, . . . ,ml}

, (2.2)

δ being the Kroneker delta, defined as δi,j = 1 if and only if
i = j, otherwise 0; finally, polynomial g is called an Hermite
interpolating polynomial and is formally defined as

g(z) =

ν∑
i=1

mi∑
j=1

∂(j−1)f

∂zj−1

∣∣∣∣∣
z=λi

Φi,j(z). (2.3)

Remark 15. Observe that if mi = 1 for all i ∈ {1, . . . ,ν}

then m = ν and polynomialsΦi,1 reduce to the usual Lagrange
base; let ν = 4, then polynomials Φi,1,Φi,2,Φi,3,Φi,4 ∈

∏
3

41

defined as

Φ1,1(z) =
(z− λ2) (z− λ3) (z− λ4)

(λ1 − λ2) (λ1 − λ3) (λ1 − λ4)
,

Φ2,1(z) = −
(z− λ1) (z− λ3) (z− λ4)

(λ1 − λ2) (λ2 − λ3) (λ2 − λ4)
,

Φ3,1(z) =
(z− λ1) (z− λ2) (z− λ4)

(λ1 − λ3) (λ2 − λ3) (λ3 − λ4)
and

Φ4,1(z) = −
(z− λ1) (z− λ2) (z− λ3)

(λ1 − λ4) (λ2 − λ4) (λ3 − λ4)

are a Lagrange base with respect to eigenvalues λ1, λ2, λ3 and
λ4, respectively. On the other hand, if ν = 1 then there is only
one eigenvalue λ1 with algebraic multiplicity m1 = m; let m =

8, then polynomials Φ1,1,Φ1,2,Φ1,3,Φ1,4,Φ1,5,Φ1,6,Φ1,7,Φ1,8 ∈∏
7 defined as

Φ1,1(z) = 1,

Φ1,2(z) = z− λ1,

Φ1,3(z) =
z2

2 − zλ1 +
λ21
2 ,

Φ1,4(z) =
z3

6 − z2λ1
2 +

zλ21
2 −

λ31
6 ,

Φ1,5(z) =
z4

24 −
z3λ1
6 +

z2λ21
4 −

zλ31
6 +

λ41
24 ,

Φ1,6(z) =
z5

120 −
z4λ1
24 +

z3λ21
12 −

z2λ31
12 +

zλ41
24 −

λ51
120 ,

Φ1,7(z) =
z6

720 −
z5λ1
120 +

z4λ21
48 −

z3λ31
36 +

z2λ41
48 −

zλ51
120 +

λ61
720 ,

Φ1,8(z) =
z7

5040 −
z6λ1
720 +

z5λ21
240 −

z4λ31
144 +

z3λ41
144 −

z2λ51
240 +

zλ61
720 −

λ71
5040

(2.4)
are a generalized Lagrange base with respect to the unique
eigenvalue λ1.

Now we apply this framework to the Riordan group.

2.3 Riordan matrices

From here on, Rm ∈ Rm×m denotes a finite Riordan ma-
trix, namely a chunk of the infinite matrix R composed of
the first m rows and the firstm columns, see [Luzon et al.,
2016] for a study of finite Riordan matrices. Due to its tri-
angular shape, Rm admits the characteristic polynomial
p(λ) = det (Rm − λ Im) = (λ1 − λ)m, so σ(Rm) = {λ1}
entails ν = 1 and eigenvalue λ1 gets multiplicitym1 = m;
usually, functions d and h satisfy d(0) = 1 and h ′(0) = 1
respectively, therefore λ1 = 1. We relax the condition λ1 = 1
in order to use λ1 as a pure symbol to spot structures with
respect to λ1 and, lately, perform the substitution to specialize
non-ground terms.

42

Lemma 16. Let R be a Riordan array and m1 ∈ N, then a
base of generalized Lagrange polynomials Φ1,j ∈

∏
m1−1 for

the finite Riordan matrix Rm1
is

Φ1,j(z) =
(z− λ1)

j−1

(j− 1)!
, j ∈ {1, . . . ,m1}. (2.5)

Proof. Reasoning on Equation 2.4 we write polynomials Φi,j

in matrix notation

1

−λ1 1
λ21
2 −λ1 1

−
λ31
6

λ21
2 −λ1 1

λ41
24 −

λ31
6

λ21
2 −λ1 1

−
λ51
120

λ41
24 −

λ31
6

λ21
2 −λ1 1

λ61
720 −

λ51
120

λ41
24 −

λ31
6

λ21
2 −λ1 1

−
λ71
5040

λ61
720 −

λ51
120

λ41
24 −

λ31
6

λ21
2 −λ1 1

...
...

...
...

...
...

...
...

. . .

1

z
z2

2!
z3

3!
z4

4!
z5

5!
z6

6!
z7

7!
...

=

φ1,1(z)

φ1,2(z)

φ1,3(z)

φ1,4(z)

φ1,5(z)

φ1,6(z)

φ1,7(z)

φ1,8(z)
...

(2.6)

where the generic coefficient dn,k has the closed form

dn,k =
(−λ1)

n−k

(n− k) !
, k ≤ n;

therefore, we define

Φ1,j(z) =

j−1∑
k=0

(−λ1)
j−1−k

(j− 1− k)!

zk

k!

=
1

(j− 1)!

j−1∑
k=0

(
j− 1

k

)
zk(−λ1)

j−1−k =
(z− λ1)

j−1

(j− 1)!

which are required to satisfy the set of constraints

∂(r−1)Φ1,j

∂z

∣∣∣∣∣
z=λ1

= δj,r where r ∈ {1, . . . ,m1},

obtained by instantiating Equation 2.2. We proceed by cases,
(i) if j < r then it holds because the derivative vanishes, (ii) if
j = r then it holds because the derivative equals 1; otherwise,

43

(iii) if j > r then

∂(r−1)Φ1,j

∂zr−1

∣∣∣∣∣
z=λ1

=
(r− 1)!

(j− 1)!
(z− λ1)

j−r

∣∣∣∣
z=λ1

= 0

as required.

Observing that the outer sum in Equation 2.3 does exactly
one iteration because ν = 1 and by using polynomials in
Equation 2.5 we state the following

Theorem 17. Let R be a Riordan array,m ∈ N and f : R →
R; then the polynomial

gm(z) =

m∑
j=1

∂(j−1)f

∂zj−1

∣∣∣∣∣
z=λ1

(z− λ1)
j−1

(j− 1)!
(2.7)

is a Hermite interpolating polynomial of function f defined on
σ (Rm).

Remark 18. For any Riordan array R, the polynomial

g8(z) =
1

5040

d7

dz7
f(z)

∣∣∣∣
z=1

z7

+

(
1

720

d6

dz6
f(z) −

1

720

d7

dz7
f(z)

)∣∣∣∣
z=1

z6

+

(
1

120

d5

dz5
f(z) −

1

120

d6

dz6
f(z) +

1

240

d7

dz7
f(z)

)∣∣∣∣
z=1

z5

+

(
1

24

d4

dz4
f(z) −

1

24

d5

dz5
f(z) +

1

48

d6

dz6
f(z) −

1

144

d7

dz7
f(z)

)∣∣∣∣
z=1

z4

+

(
1

6

d3

dz3
f(z) −

1

6

d4

dz4
f(z) +

1

12

d5

dz5
f(z) −

1

36

d6

dz6
f(z) +

1

144

d7

dz7
f(z)

)∣∣∣∣
z=1

z3

+

(
1

2

d2

dz2
f(z) −

1

2

d3

dz3
f(z) +

1

4

d4

dz4
f(z) −

1

12

d5

dz5
f(z) +

1

48

d6

dz6
f(z) −

1

240

d7

dz7
f(z)

)∣∣∣∣
z=1

z2

+

(
d

dz
f(z) −

d2

dz2
f(z) +

1

2

d3

dz3
f(z) −

1

6

d4

dz4
f(z) +

1

24

d5

dz5
f(z) −

1

120

d6

dz6
f(z) +

1

720

d7

dz7
f(z)

)∣∣∣∣
z=1

z

+

(
f(z) −

d

dz
f(z) +

1

2

d2

dz2
f(z) −

1

6

d3

dz3
f(z) +

1

24

d4

dz4
f(z) −

1

120

d5

dz5
f(z) +

1

720

d6

dz6
f(z) −

1

5040

d7

dz7
f(z)

)∣∣∣∣
z=1

interpolates a function f defined on σ(R8).

2.4 Functions and polynomials

In this section we instantiate the abstract framework just
described to functions

f(z) = zr, f(z) =
1

z
, f(z) =

√
z, f(z) = eαz,

f(z) = log z, f(z) = sin z and f(z) = cos z,

where r,α ∈ R; in parallel, we construct and show corre-
sponding Hermite interpolating polynomials in a sequence

44

of theorems, respectively. From now on, we use m and λ in-
stead ofm1 and λ1 to simplify the notation; moreover, we
instantiate λ = 1 which is the natural eigenvalue for Riordan
arrays.
We start by generalizing the r-th power Ar, usually carried

out as A · · ·A︸ ︷︷ ︸
r times

, to rational powers r ∈ Q.

Theorem 19. Let f(z) = zr, where r ∈ Q, and R be a Riordan
array; then

Pm(z) =

m−1∑
j=0

(
r

j

)
(z− 1)j and, explicitly,

Pm(z) =

m−1∑
k=0

m−1∑
j=k

(−1)j
(
r

j

)(
j

k

) (−z)k

(2.8)

are both Hermite interpolating polynomials of the r-th power
function for the minor Rm,m ∈ N.

Proof. The closed form of the j-th derivative of function f is

∂(j)f(z)

∂z
= (r)(j)z

r−j, j ∈ N

where (r)(j) = r(r − 1) · · · (r − j + 1) denotes the falling
factorial; therefore,

Pm(z) =

m∑
j=1

(r)(j−1)z
r−j+1

∣∣∣
z=1

Φ1,j(z)

=

m∑
j=1

(r)(j−1)

(j− 1)(j−1)
(z− λ1)

j−1 =

m−1∑
j=0

(
r

j

)
(z− λ1)

j

restoring λ1 = 1 proves the first identity. On the other hand,

Pm(z) =

m∑
j=1

j−1∑
k=0

(r)(j−1)

(j− 1)(j−1)

(j− 1)!(−1)j−1−k

(j− 1− k)!

zk

k!

=

m∑
j=1

j−1∑
k=0

(−1)j−1

(
r

j− 1

)(
j− 1

k

)
(−z)k

=

m−1∑
k=0

 m∑
j=k+1

(−1)j−1

(
r

j− 1

)(
j− 1

k

) (−z)k

=

m−1∑
k=0

m−1∑
j=k

(−1)j
(
r

j

)(
j

k

) (−z)k

45

proves the explicit one.

Instantiation r = −1 in the previous theorem yields a
Hermite interpolating polynomial for the inverse function
which, in the explicit form, reduces to a binomial transform.

Theorem 20. Let f(z) = 1
z and R be a Riordan array; then

Im(z) =

m−1∑
j=0

(−1)j (z− 1)j and, explicitly,

Im(z) =

m−1∑
k=0

(
m

k+ 1

)
(−z)k

(2.9)

are both Hermite interpolating polynomials of the inverse func-
tion for the minor Rm,m ∈ N.

Proof. The closed form of the j-th derivative of function f is

∂(j)f(z)

∂zj
=

(−1)jj!

zj+1
, j ∈ N;

therefore, restoring λ1 = 1 in

Im(z) =

m∑
j=1

(−1)j−1(j− 1)!

zj

∣∣∣∣
z=1

Φ1,j(z)

=

m∑
j=1

(−1)j−1 (z− λ1)
j−1 =

m−1∑
j=0

(−1)j (z− λ1)
j

proves the first identity. On the other hand, in

Im(z) =

m∑
j=1

j−1∑
k=0

(
j− 1

k

)
(−z)k

=

m−1∑
k=0

 m∑
j=k+1

(
j− 1

k

) (−z)k

=

m−1∑
k=0

m−1∑
j=k

(
j

k

) (−z)k

the inner sum admits the closed expression
(

m
k+1

)
, proving

the explicit one.

Instantiation r = 1
2 yields the interpolation of the square

root function, we report its derivation for completeness.

46

Theorem 21. Let f(z) =
√
z and R be a Riordan array and(1

2
j

)
= (−1)j−1

4j(2j−1)

(
2j
j

)
; then,

Rm(z) =

m−1∑
j=0

(1
2

j

)
(z− 1)j and, explicitly,

Rm(z) =

m−1∑
k=0

m−1∑
j=k

(−1)j
(1

2

j

)(
j

k

) (−z)k

(2.10)

are both Hermite interpolating polynomials of the square root
function for the minor Rm,m ∈ N.

Proof. The closed form of the j-th derivative of function f is

∂(j)f(z)

∂zj
=

(−1)j−1

2

(j− 1)!

4j−1

(
2(j− 1)

j− 1

)
1

z
2(j−1)+1

2

, 0 < j ∈ N;

therefore, first observing that f(1)Φ1,1(z) = 1 entails

Rm(z) =

m−1∑
j=0

∂(j)f

∂zj

∣∣∣∣∣
z=1

Φ1,j+1(z)

= 1+

m−1∑
j=1

(−1)j−1

2

(j− 1)!

4j−1

(
2(j− 1)

j− 1

)
1

z
2(j−1)+1

2

∣∣∣∣
z=1

Φ1,j+1(z);

second, identities
(
v
w

)
= v

w

(
v−1
w−1

)
and

(−1
2
j

)
= (−1)j

4j

(
2j
j

)
allow

us to rewrite

Rm(z) = 1+
1

2

m−1∑
j=1

(−1)j−1

j 4j−1

(
2(j− 1)

j− 1

)
(z− 1)j

= 1+
1

2

m−1∑
j=1

1

j

(
−1

2

j− 1

)
(z− 1)j = 1+

m−1∑
j=1

(1
2

j

)
(z− 1)j;

finally, sum’s coefficient equals 1 for j = 0, hence summation
can be extended to start from index 0 incorporating the outer
value 1, proving the first identity. On the other hand,

Rm(z) =

m−1∑
j=0

(1
2

j

)
(z− 1)j =

m−1∑
j=0

j∑
k=0

(−1)j
(1

2

j

)(
j

k

)
(−z)k

=

m−1∑
k=0

m−1∑
j=k

(−1)j
(1

2

j

)(
j

k

) (−z)k

proves the explicit one.

47

Matrix exponentiation is a well studied problem [Moler
and Loan, 2003], here we show another way in the Riordan
arrays domain.

Theorem 22. Let f(z) = eαz, where α ∈ Q, and R be a
Riordan array; then

Em(z) = eα
m−1∑
j=0

αj

j!
(z− 1)j and, explicitly,

Em(z) = eα
m−1∑
k=0

m−1∑
j=k

(−α)j

j!

(
j

k

) (−z)k

(2.11)

are both Hermite interpolating polynomials of the exponential
function for the minor Rm,m ∈ N.

Proof. The closed form of jth derivative of function f is

∂(j)f(z)

∂zj
= αjeαz, j ∈ N;

therefore, restoring λ1 = 1 in

Em(z) =

m∑
j=1

αj−1eαz
∣∣∣
z=1

Φ1,j(z)

= eα
m∑
j=1

αj−1

(j− 1)!
(z− λ1)

j−1 = eα
m−1∑
j=0

αj

j!
(z− λ1)

j

proves the first identity. On the other hand,

Em(z) = eα
m∑
j=1

j−1∑
k=0

(−α)j−1

(j− 1)!

(
j− 1

k

)
(−z)k

= eα
m−1∑
k=0

 m∑
j=k+1

(−α)j−1

(j− 1)!

(
j− 1

k

) (−z)k

and moving the index j in the inner summation backward by
1 closes the proof.

We show a dual theorem of the previous one concerning
the interpolation of the logarithm function.

48

Theorem 23. Let f(z) = logz and R be a Riordan array; let
Hn be the n-th harmonic number, then

Lm(z) =

m−1∑
j=1

(−1)j−1

j
(z− 1)j and, explicitly,

Lm(z) = −

m−1∑
k=1

1

k

(
m− 1

k

)
(−z)k −Hm−1

(2.12)

are both Hermite interpolating polynomials of the logarithm
function for the minor Rm,m ∈ N.

Proof. The closed form of the j-th derivative of function f is

∂(j)f(z)

∂zj
=

(−1)j−1(j− 1)!

zj
, 0 < j ∈ N;

therefore, observing that f(1)Φ1,1(z) = 0 entails

Lm(z) =

m−1∑
j=0

∂(j)f

∂zj

∣∣∣∣∣
z=1

Φ1,j+1(z)

=

m−1∑
j=1

(−1)j−1(j− 1)!

zj

∣∣∣∣
z=1

Φ1,j+1(z)

=

m−1∑
j=1

(−1)j−1

j
(z− 1)j,

proving the first identity. On the other hand,

Lm(z) = −

m−1∑
j=1

j∑
k=0

1

j

(
j

k

)
(−z)k

= −

m−1∑
k=1

m−1∑
j=k

1

j

(
j

k

)(−z)k −

m−1∑
j=1

1

j

= −

m−1∑
k=1

1

k

(
m− 1

k

)
(−z)k −Hm−1

proves the explicit one.

Remark 24. For the sake of completeness, a Hermite inter-
polating polynomial g could also be studied by relaxing the
condition λ = 1 thus considering ĝ(z, λ) which subsumes
g(z) = ĝ(z, 1). Here are one of these augmented polynomials

49

interpolating the log function

L̂8(z, λ) =
z7

7λ7

+ z6
(
−

1

6λ6
−

1

λ7

)
+ z5

(
1

5λ5
+

1

λ6
+

3

λ7

)
+ z4

(
−

1

4λ4
−

1

λ5
−

5

2λ6
−

5

λ7

)
+ z3

(
1

3λ3
+

1

λ4
+

2

λ5
+

10

3λ6
+

5

λ7

)
+ z2

(
−

1

2λ2
−

1

λ3
−

3

2λ4
−

2

λ5
−

5

2λ6
−

3

λ7

)
+ z

(
1

λ
+

1

λ2
+

1

λ3
+

1

λ4
+

1

λ5
+

1

λ6
+

1

λ7

)
+ log(λ) −

1

λ
−

1

2λ2
−

1

3λ3
−

1

4λ4
−

1

5λ5
−

1

6λ6
−

1

7λ7
.

Theorem 25. Let f1(z) = sin z, f2(z) = cos z and R be a
Riordan array; then

Sm(z) = sin 1

2
⌈
m
2

⌉
−2∑

k=0

⌈
m
2

⌉
−1∑

j=
⌈
k
2

⌉
(−1)3j

(2j)!

(
2j

k

) (−z)k

+ cos 1

2
⌊
m
2

⌋
−1∑

k=0

⌊
m
2

⌋
−1∑

j=
⌊
k
2

⌋
(−1)3j+1

(2j+ 1)!

(
2j+ 1

k

) (−z)k

(2.13)

and

Cm(z) = cos 1

2
⌈
m
2

⌉
−2∑

k=0

⌈
m
2

⌉
−1∑

j=
⌈
k
2

⌉
(−1)3j

(2j)!

(
2j

k

) (−z)k

+ sin 1

2
⌊
m
2

⌋
−1∑

k=0

⌊
m
2

⌋
−1∑

j=
⌊
k
2

⌋
(−1)3j+2

(2j+ 1)!

(
2j+ 1

k

) (−z)k

(2.14)

are Hermite interpolating polynomials, explicitly written, of the
sine and cosine functions for the minor Rm,m ∈ N, respec-

50

tively.

Proof. The closed form of the j-th derivative of function f1 is

∂(j)f(z)

∂zj
= αjsin z+αj−1cos z, 0 < j ∈ N,

where α2k = (−1)k and α2k+1 = 0 for k ∈ N, with α−1 = 0

required when j = 0. We rewrite

Sm(z) =

m∑
j=1

(
αj−1sin z+αj−2cos z

)∣∣
z=1

Φ1,j(z)

= sin 1

m∑
j=1

αj−1Φ1,j(z) + cos 1

m∑
j=1

αj−2Φ1,j(z)

= sin 1

⌈
m
2

⌉∑
j=1

(−1)j−1Φ1,2j−1(z) + cos 1

⌊
m
2

⌋∑
j=1

(−1)j−1Φ1,2j(z)

= sin 1

⌈
m
2

⌉∑
j=1

2j−2∑
k=0

(−1)3j−3

k!(2j− 2− k)!
(−z)k

+ cos 1

⌊
m
2

⌋∑
j=1

2j−1∑
k=0

(−1)3j−2

k!(2j− 1− k)!
(−z)k.

Then, by swapping the sums and moving indices backwards
in the inner sums we finally get

Sm(z) = sin 1

2
⌈
m
2

⌉
−2∑

k=0

⌈
m
2

⌉∑
j=1+

⌈
k
2

⌉
(−1)3j−3

(2j− 2)!

(
2j− 2

k

) (−z)k

+ cos 1

2
⌊
m
2

⌋
−1∑

k=0

⌊
m
2

⌋∑
j=1+

⌊
k
2

⌋
(−1)3j−2

(2j− 1)!

(
2j− 1

k

) (−z)k

= sin 1

2
⌈
m
2

⌉
−2∑

k=0

⌈
m
2

⌉
−1∑

j=
⌈
k
2

⌉
(−1)3j

(2j)!

(
2j

k

) (−z)k

+ cos 1

2
⌊
m
2

⌋
−1∑

k=0

⌊
m
2

⌋
−1∑

j=
⌊
k
2

⌋
(−1)3j+1

(2j+ 1)!

(
2j+ 1

k

) (−z)k.

51

Proof. The closed form of the j-th derivative of function f2 is

∂(j)f(z)

∂zj
= αj+1sin z+αjcos z, j ∈ N,

where coefficients αi are defined in the sine function’s proof,
hence

Cm(z) =

m∑
j=1

(
αjsin z+αj−1cos z

)∣∣
z=1

Φ1,j(z)

= sin 1

m∑
j=1

αjΦ1,j(z) + cos 1

m∑
j=1

αj−1Φ1,j(z)

= cos 1

⌈
m
2

⌉∑
j=1

(−1)j−1Φ1,2j−1(z) + sin 1

⌊
m
2

⌋∑
j=1

(−1)jΦ1,2j(z)

= cos 1

⌈
m
2

⌉∑
j=1

2j−2∑
k=0

(−1)3j−3

k!(2j− 2− k)!
(−z)k

+ sin 1

⌊
m
2

⌋∑
j=1

2j−1∑
k=0

(−1)3j−1

k!(2j− 1− k)!
(−z)k;

finally, repeating manipulations done in the previous proof
we rewrite

Cm(z) = cos 1

2
⌈
m
2

⌉
−2∑

k=0

⌈
m
2

⌉∑
j=1+

⌈
k
2

⌉
(−1)3j−3

(2j− 2)!

(
2j− 2

k

) (−z)k

+ sin 1

2
⌊
m
2

⌋
−1∑

k=0

⌊
m
2

⌋∑
j=1+

⌊
k
2

⌋
(−1)3j−1

(2j− 1)!

(
2j− 1

k

) (−z)k

= cos 1

2
⌈
m
2

⌉
−2∑

k=0

⌈
m
2

⌉
−1∑

j=
⌈
k
2

⌉
(−1)3j

(2j)!

(
2j

k

) (−z)k

+ sin 1

2
⌊
m
2

⌋
−1∑

k=0

⌊
m
2

⌋
−1∑

j=
⌊
k
2

⌋
(−1)3j+2

(2j+ 1)!

(
2j+ 1

k

) (−z)k.

52

2.4.1 Case studies

Before showing explicit Hermite interpolating polynomials,
we point out that evaluation of a polynomial Φi,j ∈

∏
m−1

belonging to a generalized Lagrange base will be carried out
using the Horner algorithm for the sake of efficiency. Let
m = 8, each polynomial can be written in abstract form as

Φi,j(z) = z7φi,j,0 + z6φi,j,1 + z5φi,j,2 + z4φi,j,3

+ z3φi,j,4 + z2φi,j,5 + zφi,j,6 +φi,j,7

and can be computed as

Φi,j(z) = z
(
z
(
z
(
z
(
z
(
z
(
zφi,j,0 +φi,j,1

)
+φi,j,2

)
+φi,j,3

)
+φi,j,4

)
+φi,j,5

)
+φi,j,6

)
+φi,j,7,

where each coefficient φi,j,k ∈ R has to be interpreted as
φi,j,k I, namely a 0-filled matrix with φi,j,k on the main di-
agonal. Such approach requiresm− 2 matrix products and
m− 1 additions. We use this scheme in all subsequent poly-
nomial evaluations to a Riordan matrix.
In order to apply the functions described in the previous

section to Riordan arrays P8, C8 and S8 concerning binomial
coefficients, Catalan and Stirling numbers, we list the corre-
sponding Hermite interpolating polynomials for the

r-th power function

P8 (z) = (z− 1)7
(
r

7

)
+ (z− 1)6

(
r

6

)
+ (z− 1)5

(
r

5

)
+ (z− 1)4

(
r

4

)
+ (z− 1)3

(
r

3

)
+ (z− 1)2

(
r

2

)
+ (z− 1)

(
r

1

)
+

(
r

0

)
= z7

(
r

7

)
+ z6

((
r

6

)
− 7

(
r

7

))
+ z5

((
r

5

)
− 6

(
r

6

)
+ 21

(
r

7

))
+ z4

((
r

4

)
− 5

(
r

5

)
+ 15

(
r

6

)
− 35

(
r

7

))
+ z3

((
r

3

)
− 4

(
r

4

)
+ 10

(
r

5

)
− 20

(
r

6

)
+ 35

(
r

7

))
+ z2

((
r

2

)
− 3

(
r

3

)
+ 6

(
r

4

)
− 10

(
r

5

)
+ 15

(
r

6

)
− 21

(
r

7

))
+ z

((
r

1

)
− 2

(
r

2

)
+ 3

(
r

3

)
− 4

(
r

4

)
+ 5

(
r

5

)
− 6

(
r

6

)
+ 7

(
r

7

))
−

(
r

1

)
+

(
r

2

)
−

(
r

3

)
+

(
r

4

)
−

(
r

5

)
+

(
r

6

)
−

(
r

7

)
+ 1;

53

inverse function

I8(z) = − (z− 1)7 + (z− 1)6 − (z− 1)5 + (z− 1)4 − (z− 1)3 + (z− 1)2 − (z− 1) + 1

= −z7 + 8z6 − 28z5 + 56z4 − 70z3 + 56z2 − 28z+ 8;

square root function

R8(z) =
33

2048
(z− 1)7 −

21

1024
(z− 1)6 +

7

256
(z− 1)5 −

5

128
(z− 1)4

+
1

16
(z− 1)3 −

1

8
(z− 1)2 +

1

2
(z− 1) + 1

=
33z7

2048
−

273z6

2048
+

1001z5

2048
−

2145z4

2048
+

3003z3

2048
−

3003z2

2048
+

3003z

2048
+

429

2048
;

exponential function

E8(z) = eα
(

α7

5040
(z− 1)7 +

α6

720
(z− 1)6 +

α5

120
(z− 1)5 +

α4

24
(z− 1)4

+
α3

6
(z− 1)3 +

α2

2
(z− 1)2 +α (z− 1) + 1

)
= eα

(
α7z7

5040

+
α6z6

720
(−α+ 1)

+
α5z5

240

(
α2 − 2α+ 2

)
+

α4z4

144

(
−α3 + 3α2 − 6α+ 6

)
+

α3z3

144

(
α4 − 4α3 + 12α2 − 24α+ 24

)
+

α2z2

240

(
−α5 + 5α4 − 20α3 + 60α2 − 120α+ 120

)
+

αz

720

(
α6 − 6α5 + 30α4 − 120α3 + 360α2 − 720α+ 720

)
−

α7

5040
+

α6

720
−

α5

120
+

α4

24
−

α3

6
+

α2

2
−α+ 1

)
,

E8(z)|α=1 = e

(
z7

5040
+

z5

240
+

z4

72
+

z3

16
+

11z2

60
+

53z

144
+

103

280

)
and

E8(z)|α=−1 =
1

e

(
−

z7

5040
+

z6

360
−

z5

48
+

z4

9
−

65z3

144
+

163z2

120
−

1957z

720
+

685

252

)
;

(2.15)

54

logarithm function

L8(z) =
1

7
(z− 1)7 −

1

6
(z− 1)6 +

1

5
(z− 1)5 −

1

4
(z− 1)4 +

1

3
(z− 1)3 −

1

2
(z− 1)2 + (z− 1)

=
z7

7
−

7z6

6
+

21z5

5
−

35z4

4
+

35z3

3
−

21z2

2
+ 7z−

363

140
;

sine function

S8(z) = −
1

5040
(z− 1)7 cos (1) −

1

720
(z− 1)6 sin (1) +

1

120
(z− 1)5 cos (1) +

1

24
(z− 1)4 sin (1)

−
1

6
(z− 1)3 cos (1) −

1

2
(z− 1)2 sin (1) + (z− 1) cos (1) + sin (1)

=
1

720

(
−z6 + 6z5 + 15z4 − 100z3 − 195z2 + 606z+ 389

)
sin (1)

+
1

5040

(
−z7 + 7z6 + 21z5 − 175z4 − 455z3 + 2121z2 + 2723z− 4241

)
cos (1)

= −
z7

5040
cos (1) + z6

(
−

1

720
sin (1) +

1

720
cos (1)

)
+ z5

(
1

120
sin (1) +

1

240
cos (1)

)
+ z4

(
1

48
sin (1) −

5

144
cos (1)

)
+ z3

(
−

5

36
sin (1) −

13

144
cos (1)

)
+ z2

(
−
13

48
sin (1) +

101

240
cos (1)

)
+ z

(
101

120
sin (1) +

389

720
cos (1)

)
+

389

720
sin (1) −

4241

5040
cos (1);

cosine function

C8(z) =
1

5040
(z− 1)7 sin (1) −

1

720
(z− 1)6 cos (1) −

1

120
(z− 1)5 sin (1) +

1

24
(z− 1)4 cos (1)

+
1

6
(z− 1)3 sin (1) −

1

2
(z− 1)2 cos (1) − (z− 1) sin (1) + cos (1)

=
1

720

(
−z6 + 6z5 + 15z4 − 100z3 − 195z2 + 606z+ 389

)
cos (1)

+
1

5040

(
z7 − 7z6 − 21z5 + 175z4 + 455z3 − 2121z2 − 2723z+ 4241

)
sin (1)

=
z7

5040
sin (1) + z6

(
−

1

720
sin (1) −

1

720
cos (1)

)
+ z5

(
−

1

240
sin (1) +

1

120
cos (1)

)
+ z4

(
5

144
sin (1) +

1

48
cos (1)

)
+ z3

(
13

144
sin (1) −

5

36
cos (1)

)
+ z2

(
−
101

240
sin (1) −

13

48
cos (1)

)
+ z

(
−
389

720
sin (1) +

101

120
cos (1)

)
+

4241

5040
sin (1) +

389

720
cos (1).

55

Example 26. Let P be the matrix of binomial coefficients, also
known as the Pascal matrix,

P8 =

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1

where P =

(
1

1− t
,

t

1− t

)
. Then, the application of Hermite

interpolating polynomials yields the following matrices:

Pr
8 = P8 (P8) =

1

r 1

r2 2r 1

r3 3r2 3r 1

r4 4r3 6r2 4r 1

r5 5r4 10r3 10r2 5r 1

r6 6r5 15r4 20r3 15r2 6r 1

r7 7r6 21r5 35r4 35r3 21r2 7r 1

the special cases r = 1

2 and r = 1
3 have been illustrated in

Section 6.2 while r = 2 and r = −1 yield

P2
8 =

1

2 1

4 4 1

8 12 6 1

16 32 24 8 1

32 80 80 40 10 1

64 192 240 160 60 12 1

128 448 672 560 280 84 14 1

56

where P2 = R
(

1

1− 2 t
,

t

1− 2 t

)
, and

P−1
8 = I8 (P8) =

1

−1 1

1 −2 1

−1 3 −3 1

1 −4 6 −4 1

−1 5 −10 10 −5 1

1 −6 15 −20 15 −6 1

−1 7 −21 35 −35 21 −7 1

where P−1 = R

(
1

1+ t
,

t

1+ t

)
, corresponding to the prod-

uct and inverse operations in the Riordan group defined in
Equations 1.3 and 1.4, respectively. Additionally, matrices
eP8 = E8 (P8), which is known as A056857 in the Online En-
cyclopedia of Integer Sequences [Sloane], and logP8 = L8 (P8)

defined by

eP8 = e

1

1 1

2 2 1

5 6 3 1

15 20 12 4 1

52 75 50 20 5 1

203 312 225 100 30 6 1

877 1421 1092 525 175 42 7 1

and logP8 =

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

have eigenvalues e and 0; therefore, in order to check the (ex-
pected) identities log

(
eP8
)
= elogP8 = P8 it is required to

compute new Hermite interpolating polynomials using Theorem
17 on eigenvalues λ1 = 0 and λ1 = e, in place of L8(z) and
E8(z) which depend on eigenvalue λ = 1 instead.

57

Remark 27. For the sake of completeness, in order to recover
P8 back from logP8 we have to (i) to find its spectrum

σ(L8(P8)) = ({1 : (λ1, m1)} , {λ1 : 0} , {m1 : 8}) ,

(ii) to compute the generalized Lagrange base

Φ1,1(z) = 1,Φ1,2(z) = z,Φ1,3(z) =
z2

2
,Φ1,4(z) =

z3

6
,

Φ1,5(z) =
z4

24
,Φ1,6(z) =

z5

120
,Φ1,7(z) =

z6

720
,Φ1,8(z) =

z7

5040

and (iii) to build the Hermite interpolating polynomial

E8(z) =
α7z7

5040
+
α6z6

720
+
α5z5

120
+
α4z4

24
+
α3z3

6
+
α2z2

2
+αz+1

that interpolates the function f(z) = eαz, which is different
from the corresponding polynomials show in Equation 2.15 ;
finally, α = 1 closes.

Example 28. Let C be the matrix of Catalan numbers,

C8 =

1

1 1

2 2 1

5 5 3 1

14 14 9 4 1

42 42 28 14 5 1

132 132 90 48 20 6 1

429 429 297 165 75 27 7 1

where C =

(
1−

√
1− 4t

2t
,
1−

√
1− 4t

2

)
. Then, the applica-

tion of Hermite interpolating polynomials yields matrices

Cr
8e1 = P8 (C8)e1 =

1

r

r (r+ 1)
r
2

(
2r2 + 5r+ 3

)
r
3

(
3r3 + 13r2 + 18r+ 8

)
r
12

(
12r4 + 77r3 + 178r2 + 175r+ 62

)
r
30

(
30r5 + 261r4 + 875r3 + 1405r2 + 1075r+ 314

)
r
60

(
60r6 + 669r5 + 3002r4 + 6900r3 + 8510r2 + 5301r+ 1298

)

,

58

C−1
8 = I8 (C8) =

1

−1 1

−2 1

1 −3 1

3 −4 1

−1 6 −5 1

−4 1 −6 1

1 −1 15 −7 1

,

√
C8 = R8 (C8) =

1
1
2 1
3
4 1 1
3
2

7
4

3
2 1

55
16

15
4 3 2 1

545
64

143
16

55
8

9
2

5
2 1

79
32

727
32

273
16 11 25

4 3 1
15249
256

3855
64

2853
64

455
16

65
4

33
4

7
2 1

and

logC8 = L8 (C8) =

0

1 0

1 2 0
3
2 2 3 0
8
3 3 3 4 0
31
6

16
3

9
2 4 5 0

157
15

31
3 8 6 5 6 0

649
3

314
15

31
2

32
3

15
2 6 7 0

,

where the r-th power Cr
8 is a rather complex matrix of which we

report the first column only, formally multiplying on the right
by indicator vector e1 = [1, 0, . . . , 0].

Example 29. Let S be the matrix of Stirling numbers of the
second kind,

S8 =

1

1 1

1 3 1

1 7 6 1

1 15 25 10 1

1 31 90 65 15 1

1 63 301 350 140 21 1

1 127 966 1701 1050 266 28 1

where dn,k ∈ S ↔ dn,k =

n!

k!
[tn]et(et − 1)k. Then, the appli-

59

cation of Hermite interpolating polynomials yields matrices

Sr
8e1 = P8(S8)e1 =

1

r
r
2 (3r− 1)

r
2

(
6r2 − 5r+ 1

)
r
6

(
45r3 − 65r2 + 30r− 4

)
r
24

(
540r4 − 1155r3 + 890r2 − 273r+ 22

)
r
24

(
1890r5 − 5481r4 + 6125r3 − 3129r2 + 637r− 18

)
r
12

(
3780r6 − 14049r5 + 21014r4 − 15540r3 + 5474r2 − 645r− 22

)

,

S−1
8 = I8(S8) =

1

−1 1

2 −3 1

−6 11 −6 1

24 −50 35 −10 1

−120 274 −225 85 −15 1

720 −1764 1624 −735 175 −21 1

−5040 13068 −13132 6769 −1960 322 −28 1

,

√
S8 = R8(S8) =

1
1
2 1
1
8

3
2 1

0 5
4 3 1

1
32

5
8 5 5 1

− 7
128

11
32

45
8

55
4

15
2 1

1
128 − 7

128
161
32

105
4

245
8

21
2 1

159
256 −31

64
105
32

623
16

175
2

119
2 14 1

,

eS8 = E8 (S8) = e

1

1 1
5
2 3 1
21
2 16 6 1
203
3

235
2 55 10 1

14681
24 1176 1245

2 140 15 1
22018
3

367745
24 8911 4515

2
595
2 21 1

1348799
12

3014485
12

946043
6

131173
3 6475 560 28 1

and

60

logS8 = L8(S8) =

0

1 0

−1
2 3 0

1
2 −2 6 0

−2
3

5
2 −5 10 0

11
12 −4 15

2 −10 15 0

−3
4

77
12 −14 35

2 −35
2 21 0

−11
6 −6 77

3 −112
3 35 −28 28 0

.

The matrix S8 is related to matrix eP8 by the identity eP8 =

e ·
(
S8 · P8 · S−1

8

)
and even more connections involving these

matrices can be found in [Cheon and Kim, 2001].

Finally, we report sine and cosine function applications
in Table 2.1; finally, Equation 2.1 shows that the identity
sin2 z+ cos2 z = 1 is preserved by the framework of ma-
trices functions and even more trigonometric identities can
be checked; for example, the polynomial

SS8(z) = −
z7

5040
cos(2) + z6

(
−

1

720
sin(2) +

1

360
cos(2)

)
+ z5

(
−

1

120
cos(2) +

1

60
sin(2)

)
+ z4

(
−

1

24
sin(2) −

1

36
cos(2)

)
+ z3

(
−
1

9
sin(2) +

1

18
cos(2)

)
+ z2

(
7

15
cos(2) +

1

6
sin(2)

)
+ z

(
−
19

45
cos(2) +

14

15
sin(2)

)
−

19

45
sin(2) −

286

315
cos(2)

interpolates the function f(θ) = sin(2 θ) which allows us
to check the identity sin(2 θ) = 2 sinθ cosθ for a Riordan
matrix θ, formally SS(θ) = 2 S(θ)C(θ).

2.5 Jordan canonical form

We begin this section with necessary definitions about Jordan
canonical forms to help the computation of matrices func-
tions.
Let A ∈ Rm×m be a square matrix andΦi,j ∈

∏
m−1 a

generalized Lagrange base, so Z
[A]
i,j = Φi,j(A) denotes the j-th

component matrix of A relative to its i-th eigenvalue (from
here on, we just write Zi,j to keep clean the notation when no
confusion arises).
Component matrices enjoy the properties

• they are linearly independent and don’t depend on func-
tion f,

• they commute respect the product, ZijZkr = ZkrZij,

61

s
i
n
P
8

=
S
8
(P 8

) =

s
i
n

1
c
o
s

1
s
i
n

1
−

s
i
n

1
+

c
o
s

1
2
c
o
s

1
s
i
n

1

−
3
s
i
n

1
3
√
2
c
o
s
(π 4

+
1
)

3
c
o
s

1
s
i
n

1

−
6
s
i
n

1
−

5
c
o
s

1
−

1
2
s
i
n

1
6
√
2
c
o
s
(π 4

+
1
)

4
c
o
s

1
s
i
n

1

−
2
3
c
o
s

1
−

5
s
i
n

1
−

3
0
s
i
n

1
−

2
5
c
o
s

1
−

3
0
s
i
n

1
1
0
√
2
c
o
s
(π 4

+
1
)

5
c
o
s

1
s
i
n

1

−
7
4
c
o
s

1
+

3
3
s
i
n

1
−

1
3
8
c
o
s

1
−

3
0
s
i
n

1
−

9
0
s
i
n

1
−

7
5
c
o
s

1
−

6
0
s
i
n

1
1
5
√
2
c
o
s
(π 4

+
1
)

6
c
o
s

1
s
i
n

1

−
1
6
1
c
o
s

1
+

2
6
6
s
i
n

1
−

5
1
8
c
o
s

1
+

2
3
1
s
i
n

1
−

4
8
3
c
o
s

1
−

1
0
5
s
i
n

1
−

2
1
0
s
i
n

1
−

1
7
5
c
o
s

1
−

1
0
5
s
i
n

1
2
1
√
2
c
o
s
(π 4

+
1
)

7
c
o
s

1
s
i
n

1

c
o
s
P
8

=
C

8
(P 8

) =

c
o
s

1
−

s
i
n

1
c
o
s

1
−

s
i
n

1
−

c
o
s

1
−

2
s
i
n

1
c
o
s

1

−
3
c
o
s

1
−

3
√
2
s
i
n
(π 4

+
1
)

−
3
s
i
n

1
c
o
s

1

−
6
c
o
s

1
+

5
s
i
n

1
−

1
2
c
o
s

1
−

6
√
2
s
i
n
(π 4

+
1
)

−
4
s
i
n

1
c
o
s

1

−
5
c
o
s

1
+

2
3
s
i
n

1
−

3
0
c
o
s

1
+

2
5
s
i
n

1
−

3
0
c
o
s

1
−

1
0
√
2
s
i
n
(π 4

+
1
)

−
5
s
i
n

1
c
o
s

1

3
3
c
o
s

1
+

7
4
s
i
n

1
−

3
0
c
o
s

1
+

1
3
8
s
i
n

1
−

9
0
c
o
s

1
+

7
5
s
i
n

1
−

6
0
c
o
s

1
−

1
5
√
2
s
i
n
(π 4

+
1
)

−
6
s
i
n

1
c
o
s

1

1
6
1
s
i
n

1
+

2
6
6
c
o
s

1
2
3
1
c
o
s

1
+

5
1
8
s
i
n

1
−

1
0
5
c
o
s

1
+

4
8
3
s
i
n

1
−

2
1
0
c
o
s

1
+

1
7
5
s
i
n

1
−

1
0
5
c
o
s

1
−

2
1
√
2
s
i
n
(π 4

+
1
)

−
7
s
i
n

1
c
o
s

1

s
i
n
C 8

=
S
8
(C 8

) =

s
i
n

1
c
o
s

1
s
i
n

1
−

s
i
n

1
+

2
c
o
s

1
2
c
o
s

1
s
i
n

1

−
1
1 2

s
i
n

1
+

4
c
o
s

1
−

3
s
i
n

1
+

5
c
o
s

1
3
c
o
s

1
s
i
n

1

−
2
5
s
i
n

1
+

1
1 3

c
o
s

1
−

1
9
s
i
n

1
+

1
0
c
o
s

1
−

6
s
i
n

1
+

9
c
o
s

1
4
c
o
s

1
s
i
n

1

−
1
2
3
1

1
2

s
i
n

1
−

1
0
6

3
c
o
s

1
−

9
3
s
i
n

1
−

1
1 3

c
o
s

1
−

8
7 2

s
i
n

1
+

1
8
c
o
s

1
−

1
0
s
i
n

1
+

1
4
c
o
s

1
5
c
o
s

1
s
i
n

1

−
2
1
7
1

6
s
i
n

1
−

1
1
2
0
9

3
0

c
o
s

1
−

7
7
5

2
s
i
n

1
−

6
9
8

3
c
o
s

1
−

2
3
1
s
i
n

1
−

3
7
c
o
s

1
−

8
2
s
i
n

1
+

2
8
c
o
s

1
−

1
5
s
i
n

1
+

2
0
c
o
s

1
6
c
o
s

1
s
i
n

1

−
1
5
6
1
1
3

6
0

c
o
s

1
−

1
2
3
0
1

1
5

s
i
n

1
−

6
1
5
8
3

3
0

c
o
s

1
−

1
4
8
6
3

1
2

s
i
n

1
−

3
9
5
3

4
s
i
n

1
−

1
5
9
5

2
c
o
s

1
−

4
7
2
s
i
n

1
−

3
4
9

3
c
o
s

1
−

2
7
5

2
s
i
n

1
+

4
0
c
o
s

1
−

2
1
s
i
n

1
+

2
7
c
o
s

1
7
c
o
s

1
s
i
n

1

c
o
s
C 8

=
C

8
(C 8

) =

c
o
s

1
−

s
i
n

1
c
o
s

1
−

2
s
i
n

1
−

c
o
s

1
−

2
s
i
n

1
c
o
s

1

−
4
s
i
n

1
−

1
1 2

c
o
s

1
−

5
s
i
n

1
−

3
c
o
s

1
−

3
s
i
n

1
c
o
s

1

−
2
5
c
o
s

1
−

1
1 3

s
i
n

1
−

1
9
c
o
s

1
−

1
0
s
i
n

1
−

9
s
i
n

1
−

6
c
o
s

1
−

4
s
i
n

1
c
o
s

1

−
1
2
3
1

1
2

c
o
s

1
+

1
0
6

3
s
i
n

1
−

9
3
c
o
s

1
+

1
1 3

s
i
n

1
−

8
7 2

c
o
s

1
−

1
8
s
i
n

1
−

1
4
s
i
n

1
−

1
0
c
o
s

1
−

5
s
i
n

1
c
o
s

1

−
2
1
7
1

6
c
o
s

1
+

1
1
2
0
9

3
0

s
i
n

1
−

7
7
5

2
c
o
s

1
+

6
9
8

3
s
i
n

1
−

2
3
1
c
o
s

1
+

3
7
s
i
n

1
−

8
2
c
o
s

1
−

2
8
s
i
n

1
−

2
0
s
i
n

1
−

1
5
c
o
s

1
−

6
s
i
n

1
c
o
s

1

−
1
2
3
0
1

1
5

c
o
s

1
+

1
5
6
1
1
3

6
0

s
i
n

1
−

1
4
8
6
3

1
2

c
o
s

1
+

6
1
5
8
3

3
0

s
i
n

1
−

3
9
5
3

4
c
o
s

1
+

1
5
9
5

2
s
i
n

1
−

4
7
2
c
o
s

1
+

3
4
9

3
s
i
n

1
−

2
7
5

2
c
o
s

1
−

4
0
s
i
n

1
−

2
7
s
i
n

1
−

2
1
c
o
s

1
−

7
s
i
n

1
c
o
s

1

s
i
n
S 8

=
S
8
(S 8

) =

s
i
n

1
c
o
s

1
s
i
n

1

−
3 2

s
i
n

1
+

c
o
s

1
3
c
o
s

1
s
i
n

1

−
1
3 2

s
i
n

1
−

2
c
o
s

1
−

9
s
i
n

1
+

7
c
o
s

1
6
c
o
s

1
s
i
n

1

−
1
9
9

6
c
o
s

1
−

3
5 2

s
i
n

1
−

1
4
5

2
s
i
n

1
−

1
5
c
o
s

1
−

3
0
s
i
n

1
+

2
5
c
o
s

1
1
0
c
o
s

1
s
i
n

1

−
8
6
2

3
c
o
s

1
+

6
1
1

8
s
i
n

1
−

7
2
5

2
s
i
n

1
−

1
0
5
3

2
c
o
s

1
−

7
6
5

2
s
i
n

1
−

6
0
c
o
s

1
−

7
5
s
i
n

1
+

6
5
c
o
s

1
1
5
c
o
s

1
s
i
n

1

−
1
4
6
0
1

8
c
o
s

1
+

6
1
7
7
5

2
4

s
i
n

1
−

4
3
3
3
7

6
c
o
s

1
+

7
3
9
9

8
s
i
n

1
−

5
9
1
5

2
s
i
n

1
−

7
5
5
3

2
c
o
s

1
−

2
7
6
5

2
s
i
n

1
−

1
7
5
c
o
s

1
−

3
1
5

2
s
i
n

1
+

1
4
0
c
o
s

1
2
1
c
o
s

1
s
i
n

1
2
4
7
5
7

1
2

c
o
s

1
+

1
2
8
5
6
4

3
s
i
n

1
−

1
4
5
3
9
5

2
c
o
s

1
+

9
2
1
2
3
5

1
2

s
i
n

1
−

2
2
1
9
7
7

3
c
o
s

1
+

8
2
1
1

2
s
i
n

1
−

1
5
1
2
0
s
i
n

1
−

5
3
5
5
7

3
c
o
s

1
−

3
9
5
5
s
i
n

1
−

4
2
0
c
o
s

1
−

2
9
4
s
i
n

1
+

2
6
6
c
o
s

1
2
8
c
o
s

1
s
i
n

1

c
o
s
S 8

=
C

8
(S 8

) =

c
o
s

1
−

s
i
n

1
c
o
s

1

−
s
i
n

1
−

3 2
c
o
s

1
−

3
s
i
n

1
c
o
s

1

−
1
3 2

c
o
s

1
+

2
s
i
n

1
−

7
s
i
n

1
−

9
c
o
s

1
−

6
s
i
n

1
c
o
s

1

−
3
5 2

c
o
s

1
+

1
9
9

6
s
i
n

1
−

1
4
5

2
c
o
s

1
+

1
5
s
i
n

1
−

2
5
s
i
n

1
−

3
0
c
o
s

1
−

1
0
s
i
n

1
c
o
s

1
6
1
1

8
c
o
s

1
+

8
6
2

3
s
i
n

1
−

7
2
5

2
c
o
s

1
+

1
0
5
3

2
s
i
n

1
−

7
6
5

2
c
o
s

1
+

6
0
s
i
n

1
−

6
5
s
i
n

1
−

7
5
c
o
s

1
−

1
5
s
i
n

1
c
o
s

1
6
1
7
7
5

2
4

c
o
s

1
+

1
4
6
0
1

8
s
i
n

1
7
3
9
9

8
c
o
s

1
+

4
3
3
3
7

6
s
i
n

1
−

5
9
1
5

2
c
o
s

1
+

7
5
5
3

2
s
i
n

1
−

2
7
6
5

2
c
o
s

1
+

1
7
5
s
i
n

1
−

1
4
0
s
i
n

1
−

3
1
5

2
c
o
s

1
−

2
1
s
i
n

1
c
o
s

1

−
2
4
7
5
7

1
2

s
i
n

1
+

1
2
8
5
6
4

3
c
o
s

1
9
2
1
2
3
5

1
2

c
o
s

1
+

1
4
5
3
9
5

2
s
i
n

1
8
2
1
1

2
c
o
s

1
+

2
2
1
9
7
7

3
s
i
n

1
−

1
5
1
2
0
c
o
s

1
+

5
3
5
5
7

3
s
i
n

1
−

3
9
5
5
c
o
s

1
+

4
2
0
s
i
n

1
−

2
6
6
s
i
n

1
−

2
9
4
c
o
s

1
−

2
8
s
i
n

1
c
o
s

1

Table 2.1: sinP8,cosP8,sinC8,cosC8,
sinS8 and cosS8

62

• ZijZkr = O if i 6= k,

• Zi1Zij = Zij if j > 0,

• Zi2Zij = jZi,j+1 if j > 0,

• Zij =
Z
j−1
i2

(j−1)! if j > 1,

• Z
mi
i2 = O for i ∈ {1, . . . ,ν},

• I =
∑ν

i=1 Zi1 from f(z) = 1, and

• Zi2 = Zi1(A− λiI) from f(z) = z− λi, for i ∈ {1, . . . ,ν},

whose proofs can be found in [Brugnano and Trigiante, 1998,
Lakshmikantham and Trigiante, 2002] together with more
arguments and applications.

Example 30. Component matrices relative to P8 are

Z1,1 =

1

1

1

1

1

1

1

1

,

Z1,2 =

1

1 2

1 3 3

1 4 6 4

1 5 10 10 5

1 6 15 20 15 6

1 7 21 35 35 21 7

,

Z1,3 =

1

3 3

7 12 6

15 35 30 10

31 90 105 60 15

63 217 315 245 105 21

,

63

Z1,4 =

1

6 4

25 30 10

90 150 90 20

301 630 525 210 35

,

Z1,5 =

1

10 5

65 60 15

350 455 210 35

,

Z1,6 =

 1

15 6

140 105 21

,

Z1,7 =

 1

21 7

and Z1,8 =

1

;

in parallel, corresponding component matrices for C8 and S8

can be computed in a similar way.

64

Let v ∈ Rm be a non-zero vector to define a set of sub-
spaces

Mi =
{
xi,j = Z

j−1
i,2 Zi,1 v, j ∈ {1, . . . ,mi}

}
, i ∈ {1, . . . ,ν},

where dim(Mi) = mi; moreover, vectors xi,j are linearly
independent, therefore Mq ∩Mw = ∅ if q 6= w.

Lemma 31. Let λi ∈ σ(A), then vectors xi,j ∈ Mi satisfy the
recurrences

A xi,j = λi xi,j + xi,j+1, j ∈ {1, . . . ,mi − 1}

A xi,mi
= λi xi,mi

;

for this reason, they are also called generalized eigenvectors.

Proof. Recall that Zi2 = Zi,1 (A−λiI), then let j ∈ {1, . . . ,mi−

1} in

xi,j+1 = Z
j
i,2 Zi,1 v = Z

j−1
i,2 Zi,2 Zi,1 v

= Z
j−1
i,2 Zi,1 Zi,2 v = Z

j−1
i,2 Zi,1 Zi,1 (A− λiI) v

= Z
j−1
i,2 Zi,1 (A− λiI) v = (A− λiI)Z

j−1
i,2 Zi,1 v

= (A− λiI) xi,j

where the facts (i) ZijZkr = ZkrZij, (ii) Zi1Zij = Zij and
(iii) the linear independence of component matrices justify
the derivation steps in the branches above, respectively. This
proves the first recurrence; on the other hand, consider

Zi,2 xi,mi
= Zi,2 Z

mi−1
i,2 Zi,1 v = Z

mi
i,2 Zi,1 v = 0

which holds because Zmi
i,2 = O, proving the second recur-

rence.

Example 32. P8’s component matrices are used to build the
set of generalized eigenvectors

x1,1 =

α0

α1

α2

α3

α4

α5

α6

α7

, x1,2 =

0

α0

α0 + 2α1

α0 + 3α1 + 3α2

α0 + 4α1 + 6α2 + 4α3

α0 + 5α1 + 10α2 + 10α3 + 5α4

α0 + 6α1 + 15α2 + 20α3 + 15α4 + 6α5

α0 + 7α1 + 21α2 + 35α3 + 35α4 + 21α5 + 7α6

,

65

x1,3 =

0

0

2α0

6α0 + 6α1

14α0 + 24α1 + 12α2

30α0 + 70α1 + 60α2 + 20α3

62α0 + 180α1 + 210α2 + 120α3 + 30α4

126α0 + 434α1 + 630α2 + 490α3 + 210α4 + 42α5

,

x1,4 =

0

0

0

6α0

36α0 + 24α1

150α0 + 180α1 + 60α2

540α0 + 900α1 + 540α2 + 120α3

1806α0 + 3780α1 + 3150α2 + 1260α3 + 210α4

,

x1,5 =

0

0

0

0

24α0

240α0 + 120α1

1560α0 + 1440α1 + 360α2

8400α0 + 10920α1 + 5040α2 + 840α3

,

x1,6 =

0

0

0

0

0

120α0

1800α0 + 720α1

16800α0 + 12600α1 + 2520α2

,

x1,7 =

0

0

0

0

0

0

720α0

15120α0 + 5040α1

and x1,8 =

0

0

0

0

0

0

0

5040α0

,

66

where v = [α0, . . . ,α7]
T ∈ C8.

The recurrences can be merged in matrix notation as
AXi = Xi Ji where Xi =

[
xi,1, . . . , xi,mi

]
∈ Rm×mi and

Ji =

λi
1 λi

. . .
. . .

1 λi

 ∈ Rmi×mi ;

at last, each Ji is called the Jordan block of the eigenvalue λi.
Collecting matrices Xi and Ji for i ∈ {1, . . . ,ν}, the Jordan
canonical form of A is defined by the relation AX = X J,
where X = [X1, . . . ,Xν] ∈ Rm×m and

J =

 J1
. . .

Jν

 ∈ Rm×m

with respect to an arbitrary vector v ∈ Rm; finally, if X is
non-singular then matrices A and X−1AX = J are similar,
A ∼X J in symbols.

Remark 33. Column composition of vectors in 32 yields the
matrix X =

[
x1,1 x1,2 x1,3 x1,4 x1,5 x1,6 x1,7 x1,8

]
which is the most abstract matrix such that P8 ∼X J. In fact,
it shows that there are uncountably many matrices X̂ such that
P8 ∼X̂ J by choosing different real values for the components of
the vector v.

This derivations allow us to compute functions of matrices
in a easier way, with the help of the following

Lemma 34. Let f be a function defined on σ(A) and g the
corresponding Hermite interpolating polynomial. Then

A ∼X J → g(A) ∼X g(J),

for a matrix X which depends on an arbitrary vector v ∈ Rm.

Proof. By definition of similarity relation X−1AX = J,
application of g to both members preserves the identity
g(X−1AX) = g(J); finally, since g is a linear combination
of powers being a polynomial,

(
X−1AX

)i
= X−1Ai X entails

X−1 g(A)X = g(J), as required.

Previous lemma ensures that A ∼X J → g(A) = Xg(J)X−1

and allows us to compute f(A): in words, the procedure con-
sists of, first, finding matrices X and J; second, compute g(J);

67

third, multiply it by X on the left side and by X−1 on the right
side. Now, to study the application of f to J we can focus on
the application of f to the Jordan block Ji due to the block-
wise structure of matrix J and, lately, compose results block-
wise as well.

Remark 35. Since the Jordan block Ji is a mi-minor of the
Riordan array (λi + t, t) then it shares the same base of poly-
nomials shown in Equation 2.5, hence for a function f defined
on σ(Ji), the application f(Ji) yields the Toeplitz matrix

f(λi)
d

dλi
f(λi) f(λi)

1
2

d2

dλ2
i

f(λi)
d

dλi
f(λi) f(λi)

1
6

d3

dλ3
i

f(λi)
1
2

d2

dλ2
i

f(λi)
d

dλi
f(λi) f(λi)

1
24

d4

dλ4
i

f(λi)
1
6

d3

dλ3
i

f(λi)
1
2

d2

dλ2
i

f(λi)
d

dλi
f(λi) f(λi)

1
120

d5

dλ5
i

f(λi)
1
24

d4

dλ4
i

f(λi)
1
6

d3

dλ3
i

f(λi)
1
2

d2

dλ2
i

f(λi)
d

dλi
f(λi) f(λi)

...
...

...
...

...
...

. . .

1
(mi−1)!

dmi−1

dλ
mi−1

i

f(λi)
1

(mi−2)!
dmi−2

dλ
mi−2

i

f(λi) d
dλi

f(λi) f(λi)

.

We show columns for the family of functions studied in
previous sections for a minor 8× 8:

Jrie1 =

(r)1λ
r
i

0!
(r)i
1! λ

r−1
i

(r)2
2! λ

r−2
i

(r)3
3! λ

r−3
i

(r)4
4! λ

r−4
i

(r)5
5! λ

r−5
i

(r)6
6! λ

r−6
i

(r)7
7! λ

r−7
i

,

e1

Ji
=

1
λi

− 1
λ2i
1
λ3i

− 1
λ4i
1
λ5i

− 1
λ6i
1
λ7i

− 1
λ8i

,
√

Jie1 =

√
λi
1

2
√
λi

− 1

8λ
3
2
i

1

16λ
5
2
i

− 5

128λ
7
2
i

7

256λ
9
2
i

− 21

1024λ
11
2
i

33

2048λ
13
2
i

,

eJiαe1 =

eαλi

αeαλi

α2

2 eαλi

α3

6 eαλi

α4

24 e
αλi

α5

120e
αλi

α6

720e
αλi

α7

5040e
αλi

, log(Ji)e1 =

log(λi)
1
λi

− 1
2λ2i
1

3λ3i

− 1
4λ4i
1

5λ5i

− 1
6λ6i
1

7λ7i

,

68

sin (Ji)e1 =

sin (λi)

cos (λi)

−1
2sin (λi)

−1
6cos (λi)
1
24sin (λi)
1
120cos (λi)

− 1
720sin (λi)

− 1
5040cos (λi)

and cos (Ji)e1 =

cos (λi)

−sin (λi)

−1
2cos (λi)
1
6sin (λi)
1
24cos (λi)

− 1
120sin (λi)

− 1
720cos (λi)
1

5040sin (λi)

;

moreover, observe that if A is a Riordan array then its Jordan
canonical form reduces to matrices X = X1 and J = J1
because of the unique eigenvalue λ1 of algebraic multiplicity
m1 = m.

Example 36. Let P ∼X J, then Pascal triangle’s inverse P−1

can be computed by P−1 = X J−1 X−1, where

X = α0

1

0 1

0 1 2

0 1 6 6

0 1 14 36 24

0 1 30 150 240 120

0 1 62 540 1560 1800 720

0 1 126 1806 8400 16800 15120 5040

depends on v =

[
α0 0 0 0 0 0 0 0

]
, α0 ∈ R.

Considering any two Riordan arrays A and B such that
they share the same matrix J in their Jordan canonical forms,
the next theorem states that A is a linear transformation of B
and viceversa; the same transformation is preserved even for
matrices f(A) and f(B) where f is a function defined on both
σ(A) and σ(B).

Theorem 37. Let A and B be two Riordan matrices and let
AX = X J and BY = Y J be their Jordan canonical forms,
respectively, where matrices X and Y depend on complex vectors
v and w; then, A ∼XY−1 B. Moreover, f(A) ∼XY−1 f(B) also
holds, for any function f defined on both σ(A) and σ(B).

Proof. By transitivity of the similarity relation, X−1AX =

Y−1 BY entails Y X−1AXY−1 = B. Finally, let g be the Her-
mite interpolating polynomial of f, then g(Y X−1AXY−1) =

g(B) implies Y X−1 g(A)XY−1 = g(B), as required.

69

Example 38. Pascal and Catalan triangles are similar with
respect to P ∼XY−1 C and C ∼Y X−1 P , where

Y = β0

1

0 1

0 2 2

0 5 11 6

0 14 52 62 24

0 42 238 470 394 120

0 132 1084 3176 4348 2844 720

0 429 4956 20323 40562 42874 23148 5040

depends onw =

[
β0 0 0 0 0 0 0 0

]
, β0 ∈ R, given

C ∼Y J and P ∼X J, as before.

Finally, since the product of a Riordan matrix R (d(t),h(t))
and an infinite vector b = (bi)i∈N, where b(t) =

∑
i∈N bit

i,
yields R · b = d(t)b(h(t)) by the fundamental theorem of
Riordan arrays, in the next theorem we show a connection to
this result.

Theorem 39. Let A be a Riordan matrix, b a vector and
AX = X J be the A’s Jordan canonical form built on matrices
J and X depending on b. Let f be a function defined on σ(A),
then f(A) · b = X f(J)e0.

Proof. Observe that (Xb)
−1 b = e0 holds because Xb e0 =

x1,1 = Z0
1,2 Z1,1b = b. Let g be the Hermite interpolating

polynomial of function f, then f(A) = Xg(J)X−1 entails
f(A) · b = Xg(J)X−1 · b, provided that X depends on b.

Example 40. For the sake of clarity, here we lift the power
function for application to the generation matrix of Fibonacci
numbers, which isn’t a Riordan array; on the other hand, its
two eigenvalues are distinct and its shape is simple enough to
compare and contrast Φi,j polynomials, component matrices
and Jordan Canonical Form with respect to the main track.
Let F be a matrix having two eigenvalues λ1 6= λ2 defined

as

F =

[
1 1

1 0

]
, λ1 =

1

2
−

√
5

2
and λ2 =

1

2
+

√
5

2
,

respectively; we need to use the generalized Lagrange base com-

70

posed of

Φ1,1(z) =
z

λ1 − λ2
−

λ2
λ1 − λ2

and Φ2,1(z) = −
z

λ1 − λ2
+

λ1
λ1 − λ2

to define the polynomial

g(z) = z

(
λr1

λ1 − λ2
−

λr2
λ1 − λ2

)
+

λ1λ
r
2

λ1 − λ2
−

λr1λ2

λ1 − λ2

interpolating f(z) = zr. Therefore F r = g(F), in matrix
notation

F r =

[
fr+1 fr

fr fr−1

]
=

[
1

λ1−λ2

(
λ1λ

r
2 − λr1λ2 + λr1 − λr2

) λr1−λr2
λ1−λ2

λr1−λr2
λ1−λ2

λ1λ
r
2−λr1λ2

λ1−λ2

]

where fn is the n-th Fibonacci number within sequence A000045

in the OEIS; choosing r = 8 yields

F 8 =

[
f9 f8
f8 f7

]
=

[
34 21

21 13

]
.

In order to find the Jordan normal form, we use the following
component matrices

Z1,1 =

[
− λ2−1

λ1−λ2
1

λ1−λ2
1

λ1−λ2
− λ2

λ1−λ2

]
, Z2,1 =

[
λ1−1
λ1−λ2

− 1
λ1−λ2

− 1
λ1−λ2

λ1
λ1−λ2

]

which, in turn, generates subspaces M1 and M2 of generalized
eigenvectors

x1,1 =

[
− (λ2−1)α0

λ1−λ2
+ α1

λ1−λ2
α0

λ1−λ2
− α1λ2

λ1−λ2

]
, x2,1 =

[
(λ1−1)α0
λ1−λ2

− α1
λ1−λ2

− α0
λ1−λ2

+ α1λ1
λ1−λ2

]

respectively, both depending on vector v =

[
α0

α1

]
; so FX =

XJ is the Jordan normal form of matrix F , where

X =

[
− (λ2−1)α0

λ1−λ2
+ α1

λ1−λ2

(λ1−1)α0
λ1−λ2

− α1
λ1−λ2

α0
λ1−λ2

− α1λ2
λ1−λ2

− α0
λ1−λ2

+ α1λ1
λ1−λ2

]
and J =

[
λ1 0

0 λ2

]
.

Let v =

[
1

1

]
in F r =

(
X JX−1

)r
= X Jr X−1 =

X

[
λr1 0

0 λr2

]
X−1 where X =

[
−λ2+2
λ1−λ2

λ1−2
λ1−λ2

−λ2+1
λ1−λ2

λ1−1
λ1−λ2

]
, so matrices

71

F r and X Jr X−1, whose columns are

X Jr X−1e0 =

2−r
((

1+
√
5
)r

(λ1−2)(λ2−1)−
(
−
√
5+1

)r
(λ1−1)(λ2−2)

)
(λ1−2)(λ2−1)−(λ1−1)(λ2−2)

2−r
((

1+
√
5
)r

−
(
−
√
5+1

)r)
(λ1−1)(λ2−1)

(λ1−2)(λ2−1)−(λ1−1)(λ2−2)

 and

X Jr X−1e1 =

 2−r
(
−
(
1+

√
5
)r

+
(
−
√
5+1

)r)
(λ1−2)(λ2−2)

(λ1−2)(λ2−1)−(λ1−1)(λ2−2)

2−r
(
−
(
1+

√
5
)r

(λ1−1)(λ2−2)+
(
−
√
5+1

)r
(λ1−2)(λ2−1)

)
(λ1−2)(λ2−1)−(λ1−1)(λ2−2)

 ,

are similar; by the way, substituting r = 8 yields

XJ8X−1 =

[
34 21

21 13

]
as required.

Conclusions

In this chapter we studied Hermite interpolating polynomials
for functions f(z) = zr, f(z) = 1

z , f(z) =
√
z, f(z) = eαz,

f(z) = logz, f(z) = sin z and f(z) = cos z for application
to a well known class of matrices, namely Riordan arrays:
in this context, the submatrixm× m of the array R has a
unique eigenvalue λ of algebraic multiplicitym, which sim-
plify derivations sensibly. Other functions could be studied
provided that they are defined on σ(Rm); for example, the

normal density function f(z) =

√
2e−

z2

2

2
√
π

admits the interpo-

lating polynomial, for any Riordan matrix R8,

N8(z) =

√
2z7

504
√
πe

−

√
2z6

360
√
πe

−

√
2z5

20
√
πe

+
13
√
2z4

72
√
πe

−
5
√
2z3

72
√
πe

−
3
√
2z2

8
√
πe

−

√
2z

90
√
πe

+
2081

√
2

2520
√
πe

.

Another aspect that could be of interest concerns exami-
nation of functions that, once applied to Riordan arrays, pro-
duces matrices that are Riordan arrays themselves; the Pascal
triangle is a witness for the r-th power function, namely Pr

m

is a Riordan array, where r ∈ Q. To this purpose, we could
approach the problem from an analytic point of view in terms
of functions d(t) and h(t) defining the Riordan array under
investigation.

3

Algebraic generating functions for

languages avoiding Riordan patterns

This chapter is an extended version of our paper [Merlini
and Nocentini, 2018] that studies languages L[p] ⊂ {0, 1}∗

of binary words w avoiding a given pattern p such that
|w|0 ≤ |w|1 for any w ∈ L[p], where |w|0 and |w|1 correspond
to the number of 1-bits and 0-bits in the word w, respectively.
In particular, we concentrate on patterns p related to the con-
cept of Riordan arrays. These languages are not regular and
can be enumerated by algebraic generating functions corre-
sponding to many integer sequences which are unknown in
the OEIS. We give explicit formulas for these generating func-
tions expressed in terms of the autocorrelation polynomial of
p and also give explicit formulas for the coefficients of some
particular patterns, algebraically and combinatorially.

3.1 Introduction

The notion of a pattern can be formalized in several ways
and in this paper we consider factor patterns, that is, patterns
whose letters must appear in an exact order and contiguously
in the sequence under observation. The set of binary words
avoiding a pattern, without the restriction |w|0 ≤ |w|1, is de-
fined by a regular language and can be enumerated in terms
of the number of 1-bits and 0-bits by using classical results
(see, e.g., [Guibas and Odlyzko, 1980, 1981, Sedgewick and
Flajolet, 1996]). However, when we consider the additional
restriction that the words have no more 0-bits than 1-bits, the
language is no longer regular and enumerating it is a harder
problem.
In this paper we are interested in Riordan patterns, a con-

cept which has been defined in [Merlini and Sprugnoli, 2011]
in terms of the autocorrelation polynomial C[p](x,y) of pat-
tern p = p0 · · · ph−1. The coefficients of this polynomial are
given by the autocorrelation vector associated to p, that is, the

74

vector c = (c0, . . . , ch−1) of bits defined in terms of Iverson’s
bracket notation (for a predicate P, the expression [[P]] has
value 1 if P is true and 0 otherwise) as follows:

ci = [[p0p1 · · · ph−1−i = pipi+1 · · · ph−1]];

in words, the bit ci is determined by shifting p to the right
by i positions, setting ci = 1 if and only if the remaining
letters match the original. For example, when p = 10101 the

1 0 1 0 1 Tails ci

1 0 1 0 1 1

1 0 1 0 1 0

1 0 1 0 1 1

1 0 1 0 1 0

1 0 1 0 1 1

Table 3.1: The autocorrelation vector for
the pattern p = 10101.

autocorrelation vector is c = (1, 0, 1, 0, 1), as illustrated in
Table 3.1, and C[p](x,y) = 1 + xy + x2y2, namely we add
a term xjyi for each tail of the pattern with j 1-bits and i 0-
bits, where cj+i = 1. For each pattern p, we can compute the
complement pattern p̄ by changing every 1 to 0 and every 0
to 1; for example, if p = 10101 then p̄ = 01010, therefore
C[p](x,y) = C[p̄](y, x).
Addition of constraints to the nature of a pattern p yields

the following

Definition 41 (Riordan pattern). We say that p = p0 · · · ph−1

is a Riordan pattern if and only if

C[p](x,y) = C[p̄](y, x) =

b(h−1)/2c∑
i=0

c2ix
iyi,

with |n
[p]
1 −n

[p]
0 | ∈ {0, 1} , where n[p]

1 and n[p]
0 correspond to the

number of 1-bits and 0-bits in the pattern, respectively.

For example, Table 3.1 corresponds to a Riordan pattern
and p = 1100110110011000 is another Riordan pattern hav-
ing n

[p]
1 = n

[p]
0 = 8 and C[p](x,y) = 1. Moreover, in Table

3.2 we give all the Riordan patterns of length 7 with first bit
equal to 1 and their correlation polynomials, the correspond-
ing complement patterns can be easily determined.
The name Riordan in the above definition is due to the con-

nection with the well-known concept of Riordan arrays, intro-
duced in Chapter 1. Consider the languages L[p] ⊂ {0, 1}∗ of
binary words avoiding a pattern p and let R[p]

n,k be the number
of words avoiding p and having n 1-bits and n− k 0-bits; ad-
ditionally, let R[p] =

(
R
[p]
n,k

)
n,k∈N

the enclosing matrix. The

75

p C[p](x,y)
1010100, 1011000

1011100, 1100010

1100100, 1101000

1101010, 1101100
1

1110000, 1110010

1110100, 1111000

1001100, 1100110 1+ x2y2

1000111, 1001011

1001101, 1010011
1+ x3y3

1011001, 1100101

1101001, 1110001

1010101 1+ xy+ x2y2 + x3y3

Table 3.2: The Riordan patterns of length 7
with first bit equal to 1 and their correla-
tion polynomials.

following theorem, which is proved in [Merlini and Sprug-
noli, 2011], shows the importance of Riordan patterns:

Theorem 42. Matrices R[p] and R[p̄] are Riordan arrays if and
only if p is a Riordan pattern.

By previous theorem, matrices R[p] and R[p̄] can be defined
as

R[p] = (d[p](t),h[p](t)) and R[p̄] = (d[p̄](t),h[p̄](t))

for the appropriate d[p], h[p], d[p̄], h[p̄], given a Riordan pat-
tern p; moreover, they represent the lower and upper part of
the array F [p] = (F

[p]
n,k)n,k∈N, where F[p]n,k denotes the number

of words avoiding pattern p and having n 1-bits and k 0-bits .

Remark 43. Riordan patterns are not the only patterns related
to Riordan arrays; for example, given the pattern p = 0100100

corresponding to C[p](x,y) = 1+ xy2 + x2y4, matrix R[p] is
still a Riordan array but R[p̄] is not, as illustrated in Example
5.4 of [Baccherini et al., 2007]. However, in these situations it is
not easy to find functions d[p](t) and h[p](t) while for Riordan
patterns it is always possible, as shown in Theorems 42 and 45.

As already observed, the enumeration of the set of binary
words avoiding a pattern, without the restriction about the
number of 1-bits and 0-bits can be done by using classical
results and gives the following rational bivariate generating
function for the sequence (F[p]n,k)n,k∈N :

F[p](x,y) =
C[p](x,y)

(1− x− y)C[p](x,y) + xn
[p]
1 yn

[p]
0

,

76

where n[p]
1 and n

[p]
0 correspond to the number of 1-bits and

0-bits, respectively, and C[p](x,y) is the autocorrelation poly-
nomial, all relative to pattern p. Consequently, F[p](t, 1) and
F[p](t, t) count the words avoiding p according to the number
of 1-bits and to length of each word, respectively.
Using the theory of Riordan arrays and the results in [Mer-

lini and Sprugnoli, 2011], we give explicit algebraic generat-
ing functions enumerating the set of binary words avoiding a
Riordan pattern with the restriction |w|0 ≤ |w|1 according to
various parameters, in particular to the number of 1-bits and
to the words length. Most of the corresponding sequences
are new in the On-Line Encyclopedia of Integer Sequences
(OEIS for short) [Sloane], which uses the convention to iden-
tify each sequence with a label of the form Ax1x2x3x4x5x6,
where xi ∈ {0, . . . , 9}; moreover, we also give explicit formu-
las for the coefficients of some particular patterns by provid-
ing algebraic and combinatorial proofs.
Finally, our results can be interpreted in the theory of paths

and codes in light of the bijection among binary words and
paths, which maps a 0-bit to a south-east step� and a 1-bit
to a north-east step�. From this point of view, a coefficient
R
[p]
n,k ∈ R[p] counts the number of paths containing n steps

of� kind and n− k steps of� kind, avoiding the subpath
corresponding to pattern p, allowed to cross the x axis but
required to end at coordinate (2n− k,k) such that 0 ≤ k ≤
n. In particular, d[p](t) is the generating function of paths
which avoid p and end on the x axis.

Example 44. The Riordan pattern p = 10101 entails the
matrices shown in Table 3.3.

3.2 Riordan arrays for Riordan patterns

We start with a result which is a direct consequence of Theo-
rems 2.3 and 3.3 in [Merlini and Sprugnoli, 2011]:

Theorem 45. Let R[p]
n,k be the number of binary words with n

1-bits and n− k 0-bits, avoiding a Riordan pattern p. Then the
triangle R[p] = (R

[p]
n,k) is a Riordan array R[p] = (d[p](t),h[p](t)).

In particular, if n[p]
1 and n[p]

0 correspond to the number of 1-bits
and 0-bits in the pattern, C[p](x,y) is the autocorrelation poly-
nomial of p and C[p](t) = C[p](

√
t,
√
t), then:

• if n[p]
1 −n

[p]
0 = 1 we have:

d[p](t) =
C[p](t)√

C[p](t)2 − 4tC[p](t)(C[p](t) − tn
[p]
0)

,

77

F [p] =

1 1 1 1 1 1 1 1

1 2 3 4 5 6 7 8

1 3 6 10 15 21 28 36

1 4 9 18 32 52 79 114

1 5 13 30 60 109 184 293

1 6 18 46 102 204 377 654

1 7 24 67 163 354 708 1324

1 8 31 94 248 580 1245 2490

R[p] =

1

2 1

6 3 1

18 9 4 1

60 30 13 5 1

204 102 46 18 6 1

708 354 163 67 24 7 1

2490 1245 580 248 94 31 8 1

R[p̄] =

1

2 1

6 3 1

18 10 4 1

60 32 15 5 1

204 109 52 21 6 1

708 377 184 79 28 7 1

2490 1324 654 293 114 36 8 1

Table 3.3: Matrices F [p]
n,k = R[p̄]

n,n−k if

k ≤ n and F [p]
n,k = R[p̄]

k,k−n if n ≤ k for
the Riordan pattern p = 10101.

78

h[p](t) =
C[p](t) −

√
C[p](t)2 − 4tC[p](t)(C[p](t) − tn

[p]
0)

2C[p](t)
;

• if n[p]
1 −n

[p]
0 = 0 we have:

d[p](t) =
C[p](t)√

(C[p](t) + tn
[p]
0)2 − 4tC[p](t)2

,

h[p](t) =
C[p](t) + tn

[p]
0 −

√
(C[p](t) + tn

[p]
0)2 − 4tC[p](t)2

2C[p](t)
;

• if n[p]
0 −n

[p]
1 = 1 we have:

d[p](t) =
C[p](t)√

C[p](t)2 − 4tC[p](t)(C[p](t) − tn
[p]
1)

,

h[p](t) =
C[p](t) −

√
C[p](t)2 − 4tC[p](t)(C[p](t) − tn

[p]
1)

2(C[p](t) − tn
[p]
1)

.

If R[p](t,w) denotes the bivariate generating function of
the Riordan array R[p], as already mentioned in Section 3.1,
we have:

R[p](t,w) =
∑

n,k∈N

R
[p]
n,kt

nwk =
d[p](t)

1−wh[p](t)

and Theorem 45 allows us to state the following results.

Theorem 46. Let p be a Riordan pattern and S[p](t) =
∑

n≥0 S
[p]
n tn

the generating function enumerating the set of binary words
{w ∈ {0, 1}∗ : |w|0 ≤ |w|1} avoiding a Riordan pattern p ac-
cording to the number of 1-bits. Then we have:

• if n[p]
1 = n

[p]
0 + 1 :

S[p](t) =
2C[p](t)√

Q(t)
(√

C[p](t) +
√

Q(t)
)

where Q(t) = (1− 4t)C[p](t)2 + 4tn
[p]
1 ;

• if n[p]
0 = n

[p]
1 + 1 :

S[p](t) =
2C[p](t)(C[p](t) − tn

[p]
1)√

Q(t)
(
C[p](t) − 2tn

[p]
1 +

√
Q(t)

)

79

where Q(t) = (1− 4t)C[p](t)2 + 4tn
[p]
0 C[p](t);

• if n[p]
1 = n

[p]
0 :

S[p](t) =
2C[p](t)2√

Q(t)
(
C[p](t) − tn

[p]
0 +

√
Q(t)

)
where Q(t) = (1− 4t)C[p](t)2 + 2tn

[p]
0 C[p](t) + t2n

[p]
0 .

Proof. For the proof we can observe that S[p](t) =
∑

n≥0 S
[p]
n tn =

R[p](t, 1), or, equivalently, that S[p]n =
∑n

k=0 R
[p]
n,k and apply

the fundamental rule (1.2) with fk = 1.The statement of the
theorem can be found after some algebraic simplification.

Theorem 47. Let p be a Riordan pattern and L[p](t) =
∑

n≥0 L
[p]
n tn

the generating function enumerating the set of binary words
{w ∈ {0, 1}∗ : |w|0 ≤ |w|1} avoiding a Riordan pattern p ac-
cording to the length. Then we have:

• if n[p]
1 = n

[p]
0 + 1 :

L[p](t) =
2tC[p](t2)2√

Q(t)
(
(2t− 1)C(t2) +

√
Q(t)

) ,
where Q(t) = C[p](t2)

(
(1− 4t2)C[p](t2) + 4t2n

[p]
1

)
;

• if n[p]
0 = n

[p]
1 + 1 :

L[p](t) =
2t
√

C[p](t2)(t2n
[p]
1 −C[p](t2))√

Q(t)
(
(1− 2t)C[p](t2) + 2tn

[p]
0 +n

[p]
1 −

√
C[p](t2)Q(t)

) ,
where Q(t) = (1− 4t2)C[p](t2) + 4t2n

[p]
0 ;

• if n[p]
1 = n

[p]
0 :

L[p](t) =
2tC[p](t2)2√

Q(t)
(
(2t− 1)C(t2) − t2n

[p]
0 +

√
Q(t)

) ,
where Q(t) = (1− 4t2)C[p](t2)2 + 2t2n

[p]
0 C[p](t2) + t4n

[p]
0 .

Proof. For the proof we can observe that the application of
generating function R[p](t,w) as

R[p]

(
tw,

1

w

)
=

∑
n,k∈N

R
[p]
n,kt

nwn−k

80

entails that [trws]R[p]
(
tw, 1

w

)
= R

[p]
r,r−s which is the num-

ber of binary words with r 1-bits and s 0-bits. To enumer-
ate according to the length let t = w, therefore L[p](t) =∑

n≥0 L
[p]
n tn = R[p](t2, 1/t). The statement of the theorem

can be found after some algebraic simplification.

Theorems 46 and 47 allows us to find the generating func-
tions S[p](t) and L[p](t) in terms of the autocorrelation poly-
nomial for any Riordan pattern p. In what follows, we study
some special classes of patterns characterized by an autocor-
relation polynomial which can be easily computed, as in the
case C[p](x,y) = 1. For such particular patterns, Theorem 45
simplifies as follows.

Corollary 48. Let R[p] = (R
[p]
n,k)n,k∈N = (d[p](t),h[p](t)) be

the Riordan array corresponding to the number of binary words
with n 1-bits and n− k 0-bits which avoid the Riordan pattern
p. Then we have the following particular cases:

• for p = 1j+10j we have the Riordan array:

d[p](t) =
1√

1− 4t+ 4tj+1
, h[p](t) =

1−
√
1− 4t+ 4tj+1

2
;

• p = 0j+11j we have the Riordan array:

d[p](t) =
1√

1− 4t+ 4tj+1
, h[p](t) =

1−
√
1− 4t+ 4tj+1

2(1− tj)
;

• p = 1j0j and p = 0j1j we have the Riordan array:

d[p](t) =
1√

1− 4t+ 2tj + t2j
,

h[p](t) =
1+ tj −

√
1− 4t+ 2tj + t2j

2
;

• p = (10)j1 we have the Riordan array:

d[p](t) =

∑j
i=0 t

i√
1− 2

∑j
i=1 t

i − 3
(∑j

i=1 t
i
)2 ,

h[p](t) =

∑j
i=0 t

i −

√
1− 2

∑j
i=1 t

i − 3
(∑j

i=1 t
i
)2

2
∑j

i=0 t
i

;

81

• p = (01)j0 we have the Riordan array:

d[p](t) =

∑j
i=0 t

i√
1− 2

∑j
i=1 t

i − 3
(∑j

i=1 t
i
)2 ,

h[p](t) =

∑j
i=0 t

i −

√
1− 2

∑j
i=1 t

i − 3
(∑j

i=1 t
i
)2

2
∑j−1

i=0 t
i

.

As a peculiar instance, observe that when we instantiate a
pattern from family p = 1j0j with j = 1 we get a Riordan
array R[10] =

(
d[10](t),h[10](t)

)
such that

d[10](t) =
1

1− t
and h[10](t) = t,

so the number R[10]
n,0 of words containing n 1-bits and n 0-bits,

avoiding pattern p = 10, is [tn]d[10](t) = 1 for n ∈ N.
If we consider the combinatorial interpretation of R[p]

n,0 as
lattice paths as illustrated in the last paragraph of Section 3.1,
this corresponds to the fact that there is exactly one valley-
shaped path having n steps of both kinds� and�, avoiding
p = 10 and terminating at coordinate (2n, 0) for each n ∈ N,
formally the path 0n1n.
By applying Theorem 46 to the same patterns as before we

state the

Corollary 49. Let S[p](t) =
∑

n≥0 S
[p]
n tn the generating func-

tion enumerating the set of binary words {w ∈ {0, 1}∗ : |w|0 ≤ |w|1}

avoiding a Riordan pattern p according to the number of 1-bits.
We have the following particular cases:

• for p = 1j+10j we have:

S[p](t) =
2

√
1− 4t+ 4tj+1

(
1+

√
1− 4t+ 4tj+1

)
• for p = 0j+11j we have:

S[p](t) =
2(1− tj)

√
1− 4t+ 4tj+1

(
1− 2tj +

√
1− 4t+ 4tj+1

)
• for p = 1j0j and p = 0j1j we have:

S[p](t) =
2

√
1− 4t+ 2tj + t2j

(
1− tj +

√
1− 4t+ 2tj + t2j

)

82

• for p = (10)j1 we have:

S[p](t) =
2(1− tj+1)

1− 4t+ 3tj+1 +
√
1− 4t+ 2tj+1 + 4tj+2 − 3t2j+2

;

• for p = (01)j0 we have:

S[p](t) =
2(1− tj − tj+1 + t2j+1)√

Q(t)
(
1− 2tj + tj+1 +

√
Q(t)

)
where Q(t) = 1− 4t+ 2tj+1 + 4tj+2 − 3t2j+2.

We observe that the case p = (10)j1 in Corollary 49 corre-
sponds to the sequence studied in [Bilotta et al., 2013]; more-
over, in Table 3.4, Table 3.5, Table 3.6, Table 3.7 and Table 3.8
we report some series developments related to S[p](t) func-
tions just defined, respectively.

j/n 0 1 2 3 4 5 6 7 8 9 10 11

0 1 0 0 0 0 0 0 0 0 0 0 0

1 1 3 7 15 31 63 127 255 511 1023 2047 4095

2 1 3 10 32 106 357 1222 4230 14770 51918 183472 651191

3 1 3 10 35 123 442 1611 5931 22010 82187 308427 1162218

4 1 3 10 35 126 459 1696 6330 23806 90068 342430 1307138

5 1 3 10 35 126 462 1713 6415 24205 91874 350406 1341782

6 1 3 10 35 126 462 1716 6432 24290 92273 352212 1349768

7 1 3 10 35 126 462 1716 6435 24307 92358 352611 1351574

8 1 3 10 35 126 462 1716 6435 24310 92375 352696 1351973

Table 3.4: Series developments for
S[1

j+10j](t) where j ∈ {0, . . . , 8},
avoiding pattern p = 110; moreover,
when j = 2 the sequence corresponds to
A261058.

j/n 0 1 2 3 4 5 6 7 8 9 10 11

0 1 1 1 1 1 1 1 1 1 1 1 1

1 1 3 8 20 48 112 256 576 1280 2816 6144 13312

2 1 3 10 33 111 378 1302 4525 15841 55783 197389 701286

3 1 3 10 35 124 447 1632 6015 22336 83439 313216 1180511

4 1 3 10 35 126 460 1701 6351 23890 90398 343713 1312108

5 1 3 10 35 126 462 1714 6420 24226 91958 350736 1343069

6 1 3 10 35 126 462 1716 6433 24295 92294 352296 1350098

7 1 3 10 35 126 462 1716 6435 24308 92363 352632 1351658

8 1 3 10 35 126 462 1716 6435 24310 92376 352701 1351994

Table 3.5: Series developments for
S[0

j+11j](t) where j ∈ {0, . . . , 8},
avoiding pattern p = 001; moreover,
when j = 1 the sequence corresponds to
A001792.

Finally, by applying Theorem 47 to the pattern families
already examined, we find the following result.

83

j/n 0 1 2 3 4 5 6 7 8 9 10 11

0 1 3 10 35 126 462 1716 6435 24310 92378 352716 1352078

1 1 2 3 4 5 6 7 8 9 10 11 12

2 1 3 9 27 82 253 791 2499 7960 25520 82248 266221

3 1 3 10 34 118 417 1493 5400 19684 72196 266122 985003

4 1 3 10 35 125 454 1671 6211 23261 87641 331821 1261398

5 1 3 10 35 126 461 1708 6390 24086 91328 347965 1331072

6 1 3 10 35 126 462 1715 6427 24265 92154 351666 1347326

7 1 3 10 35 126 462 1716 6434 24302 92333 352492 1351028

8 1 3 10 35 126 462 1716 6435 24309 92370 352671 1351854

Table 3.6: Series developments for
S[0

j1j](t) (or, equivalently, S[1j0j](t))
where j ∈ {0, . . . , 8}, avoiding pattern
p = 01 (or, equivalently, p = 10);
moreover, when j = 0 the sequence
corresponds to A001700.

j/n 0 1 2 3 4 5 6 7 8 9 10 11

0 1 0 0 0 0 0 0 0 0 0 0 0

1 1 3 7 18 48 131 363 1017 2873 8169 23349 67024

2 1 3 10 32 109 377 1324 4697 16795 60425 218485 793259

3 1 3 10 35 123 445 1631 6036 22511 84460 318438 1205457

4 1 3 10 35 126 459 1699 6350 23911 90572 344737 1317397

5 1 3 10 35 126 462 1713 6418 24225 91979 350910 1344092

6 1 3 10 35 126 462 1716 6432 24293 92293 352317 1350272

7 1 3 10 35 126 462 1716 6435 24307 92361 352631 1351679

8 1 3 10 35 126 462 1716 6435 24310 92375 352699 1351993

Table 3.7: Series developments for
S[(10)

j1](t) where j ∈ {0, . . . , 8}, avoiding
pattern p = 101; moreover, when j = 1 the
sequence corresponds to A225034.

j/n 0 1 2 3 4 5 6 7 8 9 10 11

0 1 1 1 1 1 1 1 1 1 1 1 1

1 1 3 8 22 61 171 483 1373 3923 11257 32418 93644

2 1 3 10 33 113 393 1384 4920 17618 63456 229642 834342

3 1 3 10 35 124 449 1647 6099 22754 85394 322022 1219205

4 1 3 10 35 126 460 1703 6366 23974 90818 345691 1321092

5 1 3 10 35 126 462 1714 6422 24241 92042 351156 1345049

6 1 3 10 35 126 462 1716 6433 24297 92309 352380 1350518

7 1 3 10 35 126 462 1716 6435 24308 92365 352647 1351742

8 1 3 10 35 126 462 1716 6435 24310 92376 352703 1352009

Table 3.8: Series developments for
S[(01)

j0](t) where j ∈ {0, . . . , 8}, avoiding
pattern p = 010; moreover, when j = 1 the
sequence corresponds to A025566.

84

[t3]S[110](t)

111, 0111, 1011, 00111, 01011, 10011,

10101, 000111, 001011, 010011, 010101,

100011, 100101, 101001, 101010

[t3]S[001](t)

111, 0111, 1011, 1101, 1110, 01011,

01101, 01110, 10101, 10110, 11010,

11100, 010101, 010110, 011010,

011100, 101010, 101100, 110100, 111000

[t8]S[01](t)

11111111, 111111110, 1111111100, 11111111000,

111111110000, 1111111100000, 11111111000000,

111111110000000, 1111111100000000

[t3]S[101](t)

111, 0111, 1110, 00111, 01110, 10011, 11001,

11100, 000111, 001110, 010011, 011001, 011100,

100011, 100110, 110001, 110010, 111000

[t3]S[010](t)

111, 0111, 1011, 1101, 1110, 00111, 01101,

01110, 10011, 10110, 11001, 11100, 000111,

001101, 001110, 011001, 011100, 100011,

100110, 101100, 110001, 111000

Table 3.9: Set of words with 3, 3, 8, 3 and
3 occurrences of 1-bits avoiding patterns
110, 001, 01, 101 and 010, respectively.

Corollary 50. Let L[p](t) =
∑

n≥0 L
[p]
n tn the generating func-

tion enumerating the set of binary words {w ∈ {0, 1}∗ : |w|0 ≤ |w|1}

avoiding a Riordan pattern p according to the length. We have
the following particular cases:

• for p = 1j+10j we have:

L[p](t) =
2t

√
1− 4t2 + 4t2(j+1)

(
2t− 1+

√
1− 4t2 + 4t2(j+1)

)

• for p = 0j+11j we have:

L[p](t) =
2t(t2j − 1)

√
1− 4t2 + 4t2(j+1)

(
1− 2t+ 2t2j+1 −

√
1− 4t2 + 4t2(j+1)

)

• for p = 1j0j and p = 0j1j we have:

L[p](t) =
2t

√
1− 4t2 + 2t2j + t4j

(
−1+ 2t− t2j +

√
1− 4t2 + 2t2j + t4j

)

85

• for p = (10)j1 we have:

L[p](t) =
2t(t2j+2 − 1)

1− 4t2 + 3t2j+2 + (2t− 1)
√

Q(t)

• for p = (01)j0 we have:

L[p](t) =
2t(t2j+2 − 1)(t2j − 1)√

Q(t)(t2j+2 − 2t2j+1 + 2t− 1+
√

Q(t))

where Q(t) = 1− 4t2 + 2t2j+2 + 4t2j+4 − 3t4j+4.

In Table 3.10, Table 3.11, Table 3.12, Table 3.13 and Table
3.14 we report some series developments related to L[p](t)
functions just defined, respectively.

j/n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 3 3 7 7 15 15 31 31 63 63 127 127 255

2 1 1 3 4 11 15 38 55 135 201 483 736 1742 2699 6313

3 1 1 3 4 11 16 42 63 159 247 610 969 2354 3802 9117

4 1 1 3 4 11 16 42 64 163 255 634 1015 2482 4041 9752

5 1 1 3 4 11 16 42 64 163 256 638 1023 2506 4087 9880

6 1 1 3 4 11 16 42 64 163 256 638 1024 2510 4095 9904

7 1 1 3 4 11 16 42 64 163 256 638 1024 2510 4096 9908

Table 3.10: Series developments for
L[1

j+10j](t) where j ∈ {0, . . . , 7}.

j/n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 3 4 9 13 26 39 73 112 201 313 546 859 1469

2 1 1 3 4 11 16 40 61 147 231 542 870 2004 3269 7423

3 1 1 3 4 11 16 42 64 161 253 622 999 2414 3942 9396

4 1 1 3 4 11 16 42 64 163 256 636 1021 2494 4071 9812

5 1 1 3 4 11 16 42 64 163 256 638 1024 2508 4093 9892

6 1 1 3 4 11 16 42 64 163 256 638 1024 2510 4096 9906

7 1 1 3 4 11 16 42 64 163 256 638 1024 2510 4096 9908

Table 3.11: Series developments for
L[0

j+11j](t) where j ∈ {0, . . . , 7}.

86

j/n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 1 1 3 4 11 16 42 64 163 256 638 1024 2510 4096 9908

1 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8

2 1 1 3 4 10 14 33 48 109 163 362 552 1207 1868 4036

3 1 1 3 4 11 16 41 62 154 240 583 928 2217 3587 8459

4 1 1 3 4 11 16 42 64 162 254 629 1008 2455 4000 9614

5 1 1 3 4 11 16 42 64 163 256 637 1022 2501 4080 9853

6 1 1 3 4 11 16 42 64 163 256 638 1024 2509 4094 9899

7 1 1 3 4 11 16 42 64 163 256 638 1024 2510 4096 9907

Table 3.12: Series developments for
L[0

j1j](t) (or, equivalently, L[1j0j](t))
where j ∈ {0, . . . , 7}.

j/n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 3 3 7 8 19 23 53 66 150 191 429 555 1235

2 1 1 3 4 11 15 38 56 139 210 511 790 1892 2973 7034

3 1 1 3 4 11 16 42 63 159 248 614 978 2382 3857 9273

4 1 1 3 4 11 16 42 64 163 255 634 1016 2486 4050 9780

5 1 1 3 4 11 16 42 64 163 256 638 1023 2506 4088 9884

6 1 1 3 4 11 16 42 64 163 256 638 1024 2510 4095 9904

7 1 1 3 4 11 16 42 64 163 256 638 1024 2510 4096 9908

Table 3.13: Series developments for
L[(10)

j1](t) where j ∈ {0, . . . , 7}.

j/n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 3 4 9 13 28 42 87 134 271 425 844 1342 2628

2 1 1 3 4 11 16 40 61 149 234 558 895 2098 3420 7909

3 1 1 3 4 11 16 42 64 161 253 624 1002 2430 3967 9492

4 1 1 3 4 11 16 42 64 163 256 636 1021 2496 4074 9828

5 1 1 3 4 11 16 42 64 163 256 638 1024 2508 4093 9894

6 1 1 3 4 11 16 42 64 163 256 638 1024 2510 4096 9906

7 1 1 3 4 11 16 42 64 163 256 638 1024 2510 4096 9908

Table 3.14: Series developments for
L[(01)

j0](t) where j ∈ {0, . . . , 7}.

87

3.3 Code for enumeration and construction of Riordan arrays

>>> w_1, w_0 = 3, 2

>>> binary_words = words(avoiding=[1,1,0],

... ones=[1]*w_1,

... zeros=[0]*w_0)

>>> sorted(binary_words)

[[0, 0, 1, 1, 1], [0, 1, 0, 1, 1],

[1, 0, 0, 1, 1], [1, 0, 1, 0, 1]]

>>> words_as_strings(binary_words)

['00111', '01011', '10011', '10101']

>>> {w_0: sorted(words(avoiding=[1,1,0],

... ones=[1]*w_1,

... zeros=[0]*w_0))

... for w_0 in range(w_1+1)}

{0: [[1, 1, 1]],

1: [[0, 1, 1, 1], [1, 0, 1, 1]],

2: [[0, 0, 1, 1, 1], [0, 1, 0, 1, 1],

[1, 0, 0, 1, 1], [1, 0, 1, 0, 1]],

3: [[0, 0, 0, 1, 1, 1], [0, 0, 1, 0, 1, 1],

[0, 1, 0, 0, 1, 1], [0, 1, 0, 1, 0, 1],

[1, 0, 0, 0, 1, 1], [1, 0, 0, 1, 0, 1],

[1, 0, 1, 0, 0, 1], [1, 0, 1, 0, 1, 0]]}

After the initial imports

from collections import namedtuple

from functools import wraps

import sympy

J_index = namedtuple('J_index', ['j'])

W_index = namedtuple('W_index', ['w_1', 'w_0'])

we introduce the definition words to be a simple implemen-
tation of a word generator, in the sense of Python generator,
inspired by a tableau schema. If exausted, words yields all
binary words that don’t contain pattern avoiding, using the
given occurrences of ones and zeros, respectively.

def words(avoiding, ones, zeros):

a = len(avoiding)

def W(word, ones, zeros):

if ones:

one = ones[0]

new_word = word + [one]

if new_word[-a:] != avoiding:

yield from W(new_word, ones[1:], zeros)

if zeros:

zero = zeros[0]

new_word = word + [zero]

if new_word[-a:] != avoiding:

yield from W(new_word, ones, zeros[1:])

if not ones and not zeros: yield word

return W([], ones, zeros)

Together with the decorator avoiding

A decorator is a function returning
another function, usually applied as
a function transformation using the
@wrapper syntax.
The decorator syntax is merely syntactic

sugar, the following two function defi-
nitions are semantically equivalent with
respect to the staticmethod decorator:
>>> def f(*args):

... pass

>>> f = staticmethod(f)

>>> @staticmethod

... def f(*args):

... pass

Decorators provides metaprogramming
capabilities and modularity; for example,
a memoized version of Fibonacci num-
bers recursion can be coded using the
lru_cache decorator:
from functools import lru_cache

@lru_cache(maxsize=None)

def fibonacci(n):

'''

Fibonacci's numbers, memoized.

>>> fibonacci(100)

354224848179261915075

>>> list(map(fibonacci, range(20)))

... # doctest: +NORMALIZE_WHITESPACE

[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,

144, 233, 377, 610, 987, 1597, 2584, 4181]

'''

if n < 2:

return n

return fibonacci(n-1) + fibonacci(n-2)

class avoiding:

def __init__(self, pattern, G):

self.pattern = pattern

self.G = G # `G` stands for *generator*

def __call__(self, post):

@wraps(post)

def A(n_domain, j_domain, *args, **kwds):

T = {J_index(j):

{W_index(w_1, w_0): sorted(words)

for w_1 in n_domain

for w_0 in range(w_1+1)

for words in [self.G(pattern,

ones=[1]*w_1,

zeros=[0]*w_0)]}

88

for j in j_domain

for pattern in [self.pattern(j)]} # implicit `let`

res = post(T, *args, **kwds)

return res if res else T

return A

with the two helper definitions words_as_strings and
rows_sums

def words_as_strings(bws):

J = lambda w: ''.join(map(str, w))

return sorted(map(J, bws), key=len)

def rows_sums(M):

return list(M * sympy.ones(M.rows, 1))

it allows us to enumerate words in our families with

@avoiding(pattern=lambda j: [1]*(j+1) + [0]*j, G=words)

def ones_then_zeros_words(table): pass

@avoiding(pattern=lambda j: [0]*(j+1) + [1]*j, G=words)

def zeros_then_ones_words(table): pass

@avoiding(pattern=lambda j: [0]*j + [1]*j, G=words)

def zeros_equals_ones_words(table): pass

@avoiding(pattern=lambda j: [1,0]*j + [1], G=words)

def one_zero_star_one_words(table): pass

@avoiding(pattern=lambda j: [0,1]*j + [0], G=words)

def zero_one_star_zero_words(table): pass

over the domains for the number of 1-bits, the length and j
params
>>> n_domain, l_domain, j_domain = (list(range(11)),

list(range(13)),

list(range(3)))

respectively. Counting words grouped by the number of 1-
bits and by their length by definitions

def group_by_ones(n_domain, words):

Z = sympy.zeros(len(n_domain), len(n_domain))

for o in n_domain:

for z in range(o+1):

Z[o, o-z] += len(words[W_index(o, z)])

return Z

def group_by_length(n_domain, words):

rows = len(n_domain)

Z = sympy.zeros(2 * rows, 2 * rows)

for o in n_domain:

89

for z in range(o+1):

Z[o+z,o-z] += len(words[W_index(o, z)])

return Z[:rows,:rows]

respectively, we justify the content of previous tables with
the following computations

Proves the set of words already enumer-
ated in the first row of Table 3.9.

>>> binary_words = ones_then_zeros_words(n_domain, j_domain)

>>> words_as_strings([w for w_1 in [3]

... for w_0 in range(w_1+1)

... for J,W in [(J_index(1),W_index(w_1, w_0))]

... for w in binary_words[J][W]])

['111', '0111', '1011', '00111', '01011', '10011', '10101',

'000111', '001011', '010011', '010101', '100011', '100101',

'101001', '101010']

>>> M = group_by_ones(n_domain, binary_words[J_index(1)])

>>> rows_sums(M)

[1, 3, 7, 15, 31, 63, 127, 255, 511, 1023, 2047]

>>> M

Proves the series development in row
j = 1 of Table 3.4 as row summation M ·1.

1

2 1

4 2 1

8 4 2 1

16 8 4 2 1

32 16 8 4 2 1

64 32 16 8 4 2 1

128 64 32 16 8 4 2 1

256 128 64 32 16 8 4 2 1

512 256 128 64 32 16 8 4 2 1

1024 512 256 128 64 32 16 8 4 2 1

>>> binary_words = ones_then_zeros_words(l_domain, j_domain)

>>> M = group_by_length(l_domain, binary_words[J_index(1)])

>>> rows_sums(M)

[1, 1, 3, 3, 7, 7, 15, 15, 31, 31, 63, 63, 127]

>>> M

Proves the series development in row
j = 1 of Table 3.10 as row summation M ·1.

1

1

2 1

2 1

4 2 1

4 2 1

8 4 2 1

8 4 2 1

16 8 4 2 1

16 8 4 2 1

32 16 8 4 2 1

32 16 8 4 2 1

64 32 16 8 4 2 1

90

>>> M = group_by_length(l_domain, binary_words[J_index(2)])

>>> rows_sums(M)

[1, 1, 3, 4, 11, 15, 38, 55, 135, 201, 483, 736, 1742]

>>> M

Proves the series development in row
j = 2 of Table 3.10 as row summation M ·1.

1

1

2 1

3 1

6 4 1

9 5 1

18 13 6 1

29 18 7 1

58 44 24 8 1

96 64 31 9 1

192 151 90 39 10 1

325 228 123 48 11 1

650 524 333 164 58 12 1

3.4 Some combinatorial interpretations

In the previous section we proved results about the enumer-
ation of words avoiding patterns from an algebraic point of
view. The aim of this section is to analyze in more details
some particular cases of the various pattern families. We ap-
proach these problems either combinatorially by providing an
interpretation, or algebraically by computing the coefficients
of the involved generating functions explicitly.

3.4.1 Enumeration with respect to the number of 1-bits

Corollary 51. Consider pattern p = 1j+10j, there is only
one word in L[p] for j = 0; on the other hand, there are S[p]n =

2n+1 − 1 words for j = 1.

Proof. When j = 0 the pattern to avoid is p = 1, therefore
only words w in {ε} ∪ {0}+ are suitable choices; however, the
constraint |w|0 ≤ |w|1 makes w = ε the only one.
When j = 1 the pattern to avoid is p = 110 and we observe

that the generic binomial
(
r
k

)
can be interpreted as the num-

ber of binary words with r 0-bits containing k occurrences
of the substring 10, which we call an inversion with respect
to pattern p = 110. In order to build a word in the language
we start from the substring 0r for r ∈ {0, · · · ,n} and select
k ∈ {0, . . . , r} 0-bits, transforming each one using the map-
ping 0 7→ 10, while preventing the transformation of the 0-bit

91

in the 10 just introduced. This maneuver introduces k inver-
sions and the selection can be done in

(
r
k

)
ways; finally, we

pad on the right with a strip 1n−k, because it is mandatory
for a word to have n 1-bits, hence there is one padding for
each set of inversions and there is no other way to avoid p.
Therefore

n∑
r=0

r∑
k=0

(
r

k

)
= 2n+1 − 1 = S

[p]
n ,

as can be verified algebraically by extracting the coefficient of

the generating function S[p](t) =
1

1− 3t+ 2t2
=

2

1− 2t
−

1

1− t
, as required.

The same argument can be rewritten in term of sets which
allows us give a constructive approach. Let Sn,k,i be the set
of binary words containing n and k occurrences of 1-bits and
0-bits, respectively, with i inversions, namely an occurrence
of the subsequence 10. By union respect to i and k we get
sets S [p]

n,k and S
[p]
n , formally:

S [p]
n =

⋃
k∈{0,...,n}

S [p]
n,k =

⋃
i∈{0,...,k}

S [p]
n,k,i =

 ⋃
i∈{0,...,k}

S [p]
k,k,i

×
{
1n−k

}
For the sake of clarity, we enumerate all binary words avoid-
ing p = 110 containing n = 3 1-bits, formally we partition
S [p]
3 as follows

S [p]
3 = S [p]

0,0,0 × {111}

∪
(
S [p]
1,1,0 ∪ S [p]

1,1,1

)
× {11}

∪
(
S [p]
2,2,0 ∪ S [p]

2,2,1 ∪ S [p]
2,2,2

)
× {1}

∪
(
S [p]
3,3,0 ∪ S [p]

3,3,1 ∪ S [p]
3,3,2 ∪ S [p]

3,3,3

)
× {ε}

where

S [p]
3,0 = S [p]

0,0,0 × {111} = {ε}× {111} = {111}

S [p]
3,1 =

(
S [p]
1,1,0 ∪ S [p]

1,1,1

)
× {11} = {0111}∪ {1011}

S [p]
3,2 =

(
S [p]
2,2,0 ∪ S [p]

2,2,1 ∪ S [p]
2,2,2

)
× {1} = {00111}∪ {10011, 01011}∪ {10101}

S [p]
3,3 =

(
S [p]
3,3,0 ∪ S [p]

3,3,1 ∪ S [p]
3,3,2 ∪ S [p]

3,3,3

)
× {ε} = {000111}∪ {001011, 100011, 010011}

∪ {101001, 100101, 010101}∪ {101010}

the same set of words shown in Table 3.4.

92

Corollary 52. Consider pattern p = 0j+11j, there is one word
S
[p]
n = 1 for each n ∈ N in L[p] when j = 0; on the other hand,

there are (n+ 2)2n−1 words for j = 1.

Proof. When j = 0 the pattern to avoid is p = 0, therefore
only words w = 1n are suitable, hence there is one of them
for each n ∈ N.
When j = 1 the pattern to avoid is p = 001, therefore we

extract the n-th coefficient after instantiation of the corre-
sponding generating function [tn]S

[p]
n (t) = [tn]

1− t

(1− 2t)2
=

(n+ 2)2n−1, as required.
We also provide a combinatorial interpretation of the the-

orem; first of all, we observe that sequence S[p]n is the bi-
nomial transform of the sequence of the positive integers
(n+ 1)n∈N, formally

S
[p]
n = (n+ 2)2n−1 =

n∑
k=0

(
n

k

)
(k+ 1)

where the generic summand
(
n
k

)
(k+ 1) can be interpreted as

the number of binary words with n 1-bits containing n− k

occurrences of the substring 01, which we call an inversion
respect to pattern p = 001. We construct the set of words
avoiding p to show the bijection with the previous assert as
follows: if in a word w there are n − k occurrences of the
substring 01 then w contains 2n− 2k bits in total, n− k of
both kind. Since it is mandatory that the number of 1 is n,
we add k 1-bits to it, resulting in a new word w ′ of length
2n − k which can be augmented with at most k additional
0-bits, according to the constraint |w ′|0 ≤ |w ′|1. In order
to build a word with the structure of w ′, we start from the
substring 1n and select n− k 1-bits, transforming each one
using the mapping 1 7→ 01, simultaneously to prevent trans-
forming 1-bit in 01 just introduced. This maneuver introduces
n− k inversions and the selection can be done in

(
n
k

)
ways;

moreover, we are free to pad on the right with 0i strips, for
i ∈ {0, · · · ,k}, hence there are k+ 1 paddings for each set of
inversions. Therefore, since there can be up to n inversions,

n∑
k=0

(
n

n− k

)
(k+ 1) = (n+ 2)2n−1

concludes the proof by symmetry of binomial coefficients.

93

Corollary 53. Consider pattern p = 0j1j (or, equivalently,
p = 1j0j), there are

S
[p]
n =

n∑
k=0

(
n+ k

k

)
=

(
2n+ 1

n

)

words in L[p] for j = 0; on the other hand, there are S[p]n =

n+ 1 words for j = 1.

Proof. When j = 0 there is no pattern to avoid and this
situation corresponds to the enumeration of binary words
{w ∈ {0, 1}∗ : |w|0 ≤ |w|1 = n}. After instantiating the gener-
ating function S[p](t), we extract the n-th coefficient

[tn]S
[p]
n (t) = [tn]

1−
√
1− 4t

2t
√
1− 4t

obtaining
1

2

(
2(n+ 1)

n+ 1

)
=

(
2n+ 1

n+ 1

)
=

(
2n+ 1

n

)
which

simplifies by the identity
(
r+ s+ 1

s

)
=

s∑
q=0

(
r+ q

q

)
as

desired. It is possible to state the following combinatorial
interpretation: since the maximum number of 0-bits is n, we
reserve n boxes for them. To the left of each box reserve one
more box and, finally, another one to the right of the very last
box. In this way we have reserved 2n + 1 boxes where we
can put n 1-bits in

(
2n+1
n

)
ways, as required.

When j = 1 the pattern to avoid is p = 01 (or, equivalently,
p = 10), therefore only words w ∈ {1n} × ⋃

s∈{0,...,n}{0
s}

are suitable, which are n+ 1, one for each value that s can
take.

Last two patterns p = (10)j1 and p = (01)j0 are harder to
study: for j = 0 there are S[p]n = [[n = 0]] and S

[p]
n = 1 words,

respectively. On the other hand, when j = 1 we report only
the instantiated generating functions

S[101](t) =
(1+ t)

(
1− 3t−

√
1− 2t− 3t2

)
2t(3t− 1)

,

S[010](t) =
1− 2t− 3t2 − (1− t)

√
1− 2t− 3t2

2t2(3t− 1)
.

As pointed out by an anonymous referee, previous functions

94

can be rewritten as

S[101](t) =
(1+ t)(1− tM(t))

1− 3t
,

S[010](t) =
(1+ tM(t))(1− tM(t))

1− 3t

respectively, whereM(t) = 1−t−
√
1−2t−3t2

2t2
is the Motzkin

numbers’ generating function. Such rewriting shows a rela-
tion among Motzkin numbers and powers of 3; however, a
combinatorial argument is not easy to state to the best of our
knowledge.

3.4.2 Enumeration with respect to the length

Corollary 54. Consider pattern p = 1j+10j, there is one word
in L[p] for j = 0; on the other hand, there are 2m+1 − 1 words,
where n = 2m+ [[n is odd]], for j = 1.

Proof. When j = 0 the pattern to avoid is p = 1, therefore
instantiating the generating function we have L[p](t) = 1, as
required.
When j = 1 the pattern to avoid is p = 110, therefore we

instantiate and extract the n-th coefficient

L
[p]
n = [tn]

2

1− 2t2
+ [tn−1]

2

1− 2t2
− [tn]

1

1− t

and proceed by cases on the parity of n. If n = 2m then the
second term in the rhs disappears, otherwise if n = 2m+ 1

the first term disappears; in both cases it is required to per-
form [um] 2

1−2u = 2m+1 where u = t2, as required.
It is possible to state a combinatorial interpretation using

an argument similar to the one given in the proof of Corol-
lary 51. Let n = 2m, therefore a word w needs to have m+ j

1-bits, where j ∈ {0, . . . ,m}; conversely, w needs to have
n−m− j = m− j 0-bits. Fixing j in the given range, from
the substring 0m−j we select i ∈ {0, . . . ,m− j} 0-bits to in-
troduce i inversions, namely i occurrences of 10, applying the
mapping 0 7→ 10 simultaneously. This maneuver keeps the
original 0-bits and introduces at mostm− j 1-bits, so we pad
with 1-bits on the right in order to have the required m+ j

1-bits in the entire word; finally, selections can be done in

m∑
j=0

m−j∑
i=0

(
m− j

i

)
=

m∑
j=0

2m−j = 2m+1 − 1

95

ways, because padding can be done in only one way, complet-
ing the case for n even.
Let n = 2m+ 1, therefore a word w needs to havem+ 1+

j 1-bits, where j ∈ {0, . . . ,m}; conversely, w needs to have
n−m− 1− j = m− j 0-bits. Fixing j in the given range,
from the substring 0m−j we select i ∈ {0, . . . ,m− j} 0-bits to
introduce i inversions as done in the even case, introducing at
mostm− j 1-bits, and padding as necessary to havem+ 1+ j

1-bits, the total number of selections equals the one given for
the even case, completing the case for n odd.

Corollary 55. Consider pattern p = 0j+11j, there is one word
L
[p]
n = 1 for each n ∈ N in L[p] when j = 0; on the other

hand, there are L[p]n = Fn+3 − 2m words if n = 2m else
L
[p]
n = Fn+3 − 2m+1 words if n = 2m+ 1, for j = 1, where Fn

is the n-th Fibonacci number.

Proof. When j = 0 the pattern to avoid is p = 0, therefore
suitable words of length n are of the form w = 1n, hence
L
[p]
n = 1 for each n ∈ N.
When j = 1 the pattern to avoid is p = 001, therefore we

instantiate and extract the n-th coefficient

L
[p]
n = 2[tn+1]

t

1− t− t2
+ [tn]

t

1− t− t2

− [tn]
1

1− 2t2
− 2[tn−1]

1

1− 2t2

in order to have L[p]n = 2Fn+1 + Fn − an = Fn+3 − an, where
a2m = 2m and a2m+1 = 2m+1.
It is possible to state a combinatorial interpretation using

an argument similar to the one given in the proof of Corol-
lary 52. Let n = 2m, therefore a word w needs to have m+ j

1-bits, where j ∈ {0, . . . ,m}; conversely, w needs to have
n−m− j = m− j 0-bits. Fixing j in the given range, from
the substring 1m+j we select i ∈ {0, . . . ,m− j} 1-bits to in-
troduce i inversions, namely i occurrences of 01, applying the
mapping 1 7→ 01 simultaneously. This maneuver keeps the
original 1-bits and introduces at mostm − j 0-bits; finally,
selections can be done in

∑m
j=0

∑m−j
i=0

(
m+j
i

)
ways. In order

to find a closed form for the double summation, we inspect
the region of the Pascal triangle taken into account; marking

96

with ◦ the involved binomials

n/j 0 1 . . . m− 1 m m+ 1 . . . 2m− 1 2m . . .

0
...

m− 1

m ◦ ◦ . . . ◦ ◦
m+ 1 ◦ ◦ . . . ◦

...
...

... . .
.

2m− 1 ◦ ◦
2m ◦

2m+ 1
...

and using identity
(
r+1
k+1

)
−
(

s
k+1

)
=

∑r
i=s

(
i
k

)
for rearranging

the summation and identities 2n =
∑n

i=0

(
n
i

)
and Fn+1 =∑n

i=0

(
n−i
i

)
to collect terms, we obtain

m∑
j=0

m−j∑
i=0

(
m+ j

i

)
=

m∑
k=0

(
2m+ 1− k

k+ 1

)
−

(
m

k+ 1

)

which equals F2m+3 − 2m = L
[p]
2m, closing the case for n even.

Let n = 2m+ 1, therefore a word w needs to have m+

1 + j 1-bits, where j ∈ {0, . . . ,m}; conversely, w needs to
have n −m − 1 − j = m − j 0-bits. Fixing j in the given
range, from the substring 1m+1+j select i ∈ {0, . . . ,m− j}

1-bits to introduce i inversions as done for the even case;
in parallel, selections can be done in

∑m
j=0

∑m−j
i=0

(
m+1+j

i

)
ways. The involved region in the Pascal triangle has the same
shape as the one shown for the even case translated one row
to the bottom, so binomials lying on row m are excluded
and binomials

(
2m+1−k

k

)
are included, for k ∈ {0, . . . ,m}.

Therefore we rewrite

m∑
j=0

m−j∑
i=0

(
m+ 1+ j

i

)
=

m∑
k=0

(
2m+ 2− k

k+ 1

)
−

(
m+ 1

k+ 1

)

which equals F2m+4 − 2m+1 = L
[p]
2m+1, closing the case for

n odd.

Corollary 56. Consider pattern p = 0j1j (or, equivalently,
p = 1j0j), there are 2n−1 words in L[p] if n is odd else 2n−1 +

97

1
2

(
2m
m

)
where n = 2m, for j = 0; on the other hand, there are

L
[p]
n = m+ 1 words, where n = 2m+ [[n is odd]], for j = 1.

Proof. When j = 0 the pattern to avoid is p = ε, namely the
empty word, therefore instantiating the generating function
we have

L[p](t) =
1

2(1− 2t)
+

1

2
√
1− 4t2

we extract the coefficient L[p]n = 2n−1 + an
2 , where a2m+1 = 0

and a2m =
(
2m
m

)
, as required. We observe that these values

correspond to the summation
∑m

i=0

(
n
i

)
for n = 2m, 2m+

1, · · · , where the binomial coefficient computes the number
of ways to choose i 0-bits among n bits, and this gives the
combinatorial interpretation.
When j = 1 the pattern to avoid is p = 01 (or, equivalently,

p = 10), therefore after instantiation

L[p](t) =
1

4(1− t)
+

1

2(1− t)2
+

1

4(1+ t)

we extract the n-th coefficient L[p]n = 1
4 +

(−1)n

4 + n+1
2 , so

either n = 2m or n = 2m + 1 entails L[p]n = m + 1, as
required.
A combinatorial interpretation can be given as follows. If

n = 2m then suitable words have structure 1m1j0m−j for
j ∈ {0, . . . ,m}, and there arem+ 1 of them. On the contrary,
if n = 2m + 1 holds then suitable words have structure
1m+11j0m−j for j ∈ {0, . . . ,m}, they are m+ 1 in number
again, as required.

As before, last two patterns p = (01)j0 and p = (10)j1 are
harder to study and we avoid to report formulas about L[p](t)
functions because we have not a meaningful combinatorial
interpretation: we only point out that these functions can be
expressed in terms ofM(t2), where M(t) is the generating
function of Motzkin numbers, similarly to the corresponding
S[p](t) functions.

Conclusions

As a final remark, we observe a structural properties of ma-
trices R[p] against the studied families of patterns. Recall that
the Pascal triangle and its inverse correspond to the Riordan

98

arrays

P =

(
1

1− t
,

t

1− t

)
and P−1 =

(
1

1+ t
,

t

1+ t

)
,

respectively; therefore, for any Riordan array R[p] we can
compute B[p] = P−1 ∗ R[p], which is equivalent to say that
R[p] is the binomial transform of B[p], or R[p] = P ∗ B[p].
For the sake of clarity, consider the pattern family p =

1j+10j, so for j = 1 we have the minor

R[110] =

1

2 1

4 2 1

8 4 2 1

16 8 4 2 1

32 16 8 4 2 1

64 32 16 8 4 2 1

128 64 32 16 8 4 2 1

256 128 64 32 16 8 4 2 1

512 256 128 64 32 16 8 4 2 1

1024 512 256 128 64 32 16 8 4 2 1

which corresponds to

B[110] =

1

1 1

1 0 1

1 1 −1 1

1 0 2 −2 1

1 1 −2 4 −3 1

1 0 3 −6 7 −4 1

1 1 −3 9 −13 11 −5 1

1 0 4 −12 22 −24 16 −6 1

1 1 −4 16 −34 46 −40 22 −7 1

1 0 5 −20 50 −80 86 −62 29 −8 1

defined by functions d[110](t) = 1

1−t and h[110](t) = t
1+t .

On the other hand, the Riordan array R[11100], that is j = 2

99

in the family, is the binomial transform of

B[11100] =

1

1 1

3 1 1

5 3 1 1

15 7 3 1 1

31 16 9 3 1 1

87 43 17 11 3 1 1

201 101 55 18 13 3 1 1

543 271 119 67 19 15 3 1 1

1331 666 341 141 79 20 17 3 1 1

3533 1766 826 411 167 91 21 19 3 1 1

defined by functions

d[11100](t) =

√
1+ t

1− t− 5t2 + t3
and

h[11100](t) =
1+ 2t+ t2 −

√
(1− t− 5t2 + t3)(1+ t)

2(1+ t)2
;

in particular, the latter expands to

h[11100](t) = t+2t4− t5+7t6+24t8+17t9+98t10+O
(
t11
)
.

Riordan arrays B[p] can be completely defined by using the
results of Theorem 45 and the product rule of the Riordan
group. Doing so, for each pattern family studied in this work
with j > 1, the Riordan array R[p] appears to be the binomial
transform of another Riordan array B[p] with non-negative in-
teger coefficients, although it is not easy to spot this property
looking at the corresponding h functions because their series
expansions might contain negative coefficients, as shown for
matrices B[110] and B[11100]. This fact could be further investi-
gated from an algebraic and combinatorial point of view and
possibly yield interesting combinatorial interpretations also
in the case j > 1.

4

Crawling, (pretty) printing

and graphing the OEIS

In this chapter we present a suite of software tools that al-
lows us to interact with the Online Encyclopedia of Integer
Sequences; in particular, (i) a crawler fetches sequences recur-
sively and asynchronously, (ii) a pretty printer represents the
same data stored in the online archive using two different for-
mats, namely the old UNIX console and modern Jupyter note-
books, (iii) a grapher shows connections among sequences by
using graph structures.

4.1 Introduction

The Online Encyclopedia of Integer Sequences [Sloane] is an
online database of sequences of numbers that collects any
kind of data regarding them, available at https://oeis.org/.
It was founded by N. J. A. Sloane in 1964 and since then has
been, and continue to be, updated constantly by contributions
of many users. Despite of its powerful searching mechanisms,
shown in Figure 4.1, we design a parallel suite of software tools
that satisfies the necessities (i) to search the OEIS offline by
automating repeated searches, (ii) to work in a UNIX console
in order to use its programming facilities for a more efficient
manipulation of textual contents and (iii) to interface with
third-party libraries to visualize networks encoding connec-
tions among sequences.
A similar approach in the recent literature is [Nguyen and

Taggart, 2013] that mines the OEIS for new mathematical
identities, discussing how to store, compare and match inte-
ger sequences toward the formalization of some conjectures;
on the other hand, searching the word ”oeis” in GitHub re-
turns one hundred repositories, the majority of them (i) host
simple implementations of scripts that download data about a
desired sequence targeting all major programming languages.
Moreover, [Weidmann] is a project that tries to deduce closed

https://oeis.org/

102

Figure 4.1: The OEIS search page and re-
sults for a query concerning the sequence
(0, 1, 1, 2, 3, 5, 8, 13, 21, 34).

formulae that generates a given list of numbers.
Our approach complements the existing ones by providing

a recursive and asynchronous fetching process, vanilla data
storage in JSON files and visualization of relations among
sequences; the description of each tool is addressed in the
following sections, respectively.
The present suite of tools had been shown at an open

school on Combinatorial Method in the analysis of Algo-
rithms and Data Structures in Korea [Nocentini, 2017]; more-
over, all the sources that implements the applications can
be found online in the repository https://github.com/

massimo-nocentini/oeis-tools.

4.2 The Crawler

The script crawling.py implements a bot that given a se-
quence identifier in the form Axxxxxx, where xs are digits, it
issues an HTTP request to the main OEIS server and waits for
a response; once it is received, the bot stores data locally and,
looking into the response’s xref section that contains a set
of other sequences identifiers, repeats its behaviour on each
one of them, recursively. Such a bot is commonly known as
crawler.
Our implementation features neither threads nor race con-

ditions nor data sync; on the contrary, it targets pure asyn-
chronous computation by using async/await Python primitives
only. The approach is educational and we strive to create a

https://github.com/massimo-nocentini/oeis-tools
https://github.com/massimo-nocentini/oeis-tools

103

simple but elegant codebase which boils down to 300 lines of
Python code; eventually, it allows us to cache portions of the
OEIS to speed up repeated lookups and to restart the fetching
process from the cache already downloaded.
The script presents a help message to explain itself:

$ python3.6 crawling.py -h

usage: crawling.py [-h] [--clear-cache] [--restart] [--workers WORKERS]

[--log-level {DEBUG,INFO,WARNING,ERROR,CRITICAL}]

[--cache-dir CACHE_DIR] [--progress-mark PROGRESS_MARK]

[S [S ...]]

OEIS Crawler.

positional arguments:

S Sequence to fetch, given in the form Axxxxxx

optional arguments:

-h, --help show this help message and exit

--clear-cache Clear cache of sequences, according to --cache-dir

--restart Build fringe from cached sequences (defaults to False)

--workers WORKERS Degree of parallelism (defaults to 10)

--log-level {DEBUG,INFO,WARNING,ERROR,CRITICAL}

Logger verbosity (defaults to ERROR)

--cache-dir CACHE_DIR

Cache directory (defaults to ./fetched/)

--progress-mark PROGRESS_MARK

Symbol for fetched event (defaults to ●)

Example 57. We illustrate a typical session where we start
from scratch. First of all, we want to download the OEIS content
about two important and nice sequences, namely those corre-
sponding to the Fibonacci and Catalan numbers, respectively
identified by labels A000045 and A000108:
$ python3.6 crawling.py A000045 A000108

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●^C

fetched 30 new sequences:

{'A006480', 'A000045', 'A032443', 'A046161', 'A002390',

'A137697', 'A000142', 'A000736', 'A094639', 'A176137',

'A120303', 'A000344', 'A032357', 'A000753', 'A048990',

'A003519', 'A000108', 'A009766', 'A211611', 'A120274',

'A008276', 'A129763', 'A094216', 'A106566', 'A003518',

'A098597', 'A099039', 'A014137', 'A000245', 'A264663'}

After stopping the crawler, we check the content of the cache
with the commands
$ python3.6 crawling.py

30 sequences in cache ./fetched/

289 sequences in fringe for restarting

$ ls fetched/

A000045.json A000245.json A000753.json A003519.json

A009766.json A032443.json A094216.json A099039.json

A120303.json A176137.json A000108.json A000344.json

A002390.json A006480.json A014137.json A046161.json

A094639.json A106566.json A129763.json A211611.json

A000142.json A000736.json A003518.json A008276.json

A032357.json A048990.json A098597.json A120274.json

A137697.json A264663.json

104

which tell us that 30 sequences had been fetched and stored in
the default directory ./fetched/. Moreover, we can restart the
crawler from where it was interrupted with the command

$ python3.6 crawling.py --restart

●●●●●●●●●●●●●●●●●●●●^C

fetched 20 new sequences:

{'A000165', 'A001044', 'A003517', 'A027914', 'A214292', 'A152063',

'A014138', 'A062103', 'A003422', 'A238717', 'A045520', 'A064062',

'A144107', 'A045525', 'A007004', 'A002057', 'A244230', 'A099731',

'A033552', 'A121839'}

and we check that new sequences are actually collected,

$ python3.6 crawling.py

50 sequences in cache ./fetched/

354 sequences in fringe for restarting

as desired.

Having contents stored in JSON files, whose structure is
presented in Figure 4.2, allows us to inspect and manipulate
them using every tool available in our working environment,
as the next example shows.

Example 58. Combining the cat command with the Python
module json.tool, that prints JSON files with respect to inden-
tation, we can visualize data about the sequence of Fibonacci
numbers as follows

$ cat fetched/A000045.json | python3.6 -m json.tool

{

"greeting": "Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/",

"query": "id:A000045",

"count": 1,

"start": 0,

"results": [

{

"number": 45,

"id": "M0692 N0256",

"data": "0,1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,1597,2584,4181,6765,10946,

17711,28657,46368,75025,121393,196418,317811,514229,832040,1346269,2178309,

3524578,5702887,9227465,14930352,24157817,39088169,63245986,102334155",

"name": "Fibonacci numbers: F(n) = F(n-1) + F(n-2) with F(0) = 0 and F(1) = 1.",

"comment": [

"Also sometimes called Lam\u00e9's sequence.",

"F(n+2) = number of binary sequences of length n that have no consecutive 0's.",

"F(n+2) = number of subsets of {1,2,...,n} that contain no consecutive integers.",

"F(n+1) = number of tilings of a 2 X n rectangle by 2 X 1 dominoes.",

... # more comments here

]

... # more sections here

}

]

}

Our implementation takes strong inspiration from [van
Rossum and Davis] and provides the following abstractions:

105

Figure 4.2: The complete structure of the
JSON encoding of OEIS content about
the sequence A000045; in particular, the
property xref, highlighted in blue, is left
expanded because of its importance in
the recursive behaviour of the crawler,
namely every label in this section bacomes
a candidate sequence for the fetching
process.

106

reader objects, that have the responsibility to be asyn-
chronous iterators in the sense that they have to respond
to the message __anext__, where the computation waits
asynchronously for incoming data from the self.read
coroutine. The following code implements the description
precisely,

class reader:

def __init__(self, read):

self.read = read

def __aiter__(self):

return self

async def __anext__(self):

chunk = await self.read()

if chunk: return chunk

else: raise StopAsyncIteration

fetcher objects have the responsibilities (i) to create a socket
with OEIS server, (ii) to establish a working connection,
(iii) to send an HTTP GET request for the desired sequence,
(iv) to wait for the fetching process completes and (v) to
close the socket and signal that the it ends successfully. A
literal translation follows,

class fetcher:

def __init__(self, url,

resource_key=lambda resource: resource,

done=lambda url, content: print(content)):

self.url = url

self.response = b''

self.sock = None

self.done = done

self.resource_key=lambda: resource_key(self.url.resource)

def encode_request(self, encoding='utf8'):

request = 'GET {} HTTP/1.0\r\nHost: {}\r\n\r\n'.format(

self.resource_key(), self.url.host)

return request.encode(encoding)

async def fetch(self):

self.sock = socket.socket()

self.sock.setblocking(False)

await loop.sock_connect(self.sock, address=(self.url.host, self.url.port))

logger.info('Connection established with {} asking resource {}'.format(

self.url.host, self.url.resource))

await loop.sock_sendall(self.sock, self.encode_request())

self.response = await self.read_all()

107

self.sock.close()

return self.done(self.url, self.response.decode('utf8'))

async def read(self, nbytes=4096):

chunk = await loop.sock_recv(self.sock, nbytes)

return chunk

async def read_all(self):

response = [chunk async for chunk in reader(self.read)]

return b''.join(response)

crawler objects have the responsibilities (i) to keep a queue
of task, one for each candidate sequence, (ii) to put each
ready task into the scheduling process and (iii) to reclaim
memory for the completed ones and (iv) to deque them,
eventually; again, its code follows

class crawler:

def __init__(self, resources, fetcher_factory, max_tasks):

self.resources = resources

self.max_tasks = max_tasks

self.fetcher_factory = fetcher_factory

self.q = asyncio.Queue()

async def crawl(self):

for res in self.resources: self.q.put_nowait(res)

tasks = [loop.create_task(coro=self.work()) for _ in range(self.max_tasks)]

await self.q.join()

for t in tasks: t.cancel()

async def work(self):

while True:

resource = await self.q.get()

await self.fetcher_factory(resource, appender=self.q.put_nowait).fetch()

self.q.task_done()

4.3 The (Pretty) Printer

The script pprinting.py provides a proxy for searching into
the OEIS, therefore it shows exactly the same contents you
see from usual web interface on http://oeis.org; addition-
ally, it provides (i) tabular representations of data sections
in one and two dimensions using list and matrix notations,

http://oeis.org

108

respectively, (ii) filtering capabilities on most response’s sec-
tions and (iii) interoperability with the crawler tool by taking
advantage of cached sequences.
The script presents a help message to explain itself:

$ python3.6 pprinting.py -h

usage: pprinting.py [-h]

(--id ID | --seq SEQ | --query QUERY | --most-recents M)

[--force-fetch] [--cache-dir CACHE_DIR] [--tables-only]

[--start-index S] [--max-results R] [--data-only]

[--upper-limit U] [--comment-filter C]

[--formula-filter F] [--xrefs-filter X] [--link-filter L]

[--cite-filter R] [--console-width W]

OEIS Pretty Printer.

optional arguments:

-h, --help show this help message and exit

--id ID Sequence id, given in the form Axxxxxx

--seq SEQ Literal sequence, ordered '[...]' or presence '{...}'

--query QUERY Open query for plain search, in the form '...'

--most-recents M Print the most recent sequences ranking by M in ACCESS

or MODIFY, looking into --cache-dir, at most --max-

results (defaults to None)

--force-fetch Bypass cache fetching again, according to --cache-dir

(defaults to False)

--cache-dir CACHE_DIR

Cache directory (defaults to ./fetched/)

--tables-only Print matrix sequences only (defaults to False)

--start-index S Start from result at rank position S (defaults to 0)

--max-results R Pretty print the former R <= 10 results (defaults to 10)

--data-only Show only data repr and preamble (defaults to False)

--upper-limit U Upper limit for data repr: U is a dict '{"list":i,

"table":(r, c)}' where i, r and c are ints (defaults

to i=15, r=10 and c=10), respectively)

--comment-filter C Apply filter C to comments, where C is Python `lambda`

predicate 'lambda i,c: ...' referring to i-th comment c

--formula-filter F Apply filter F to formulae, where F is Python `lambda`

predicate 'lambda i,f: ...' referring to i-th formula f

--xrefs-filter X Apply filter X to cross refs, where X is Python

`lambda` predicate 'lambda i,x: ...' referring to i-th xref x

--link-filter L Apply filter L to links, where L is Python `lambda`

predicate 'lambda i,l: ...' referring to i-th link l

--cite-filter R Apply filter R to citation, where R is Python `lambda`

predicate 'lambda i,r: ...' referring to i-th citation r

--console-width W Console columns (defaults to 72)

In the next examples we show how pprinting’s facilities can
be used to apply filters, to print data-only visualization and to
search by an open query, respectively.

Example 59. Typing the following command into a shell, it
outputs on the stdout the pretty-printed contents about the
sequence of Fibonacci numbers, with two filters applied that
show comments made by prof. Barry and the first 5 formulae
only,

$ python3.6 pprinting.py \

--id A000045 \

109

--comment-filter 'lambda i,c: "Barry" in c' \

--formula-filter 'lambda i,f: i < 5'

A000045 - Fibonacci numbers: F(n) = F(n-1) + F(n-2) with F(0) = 0 and

F(1) = 1.

by _N. J. A. Sloane_, 1964

Keywords: `nonn,core,nice,easy,hear,changed`

Data:

[0 1 1 2 3 5 8 13 21 34 55 89 144 233 377]

Comments:

● F(n+2) = Sum_{k=0..n} binomial(floor((n+k)/2),k), row sums of

A046854. - _Paul Barry_, Mar 11 2003

Formulae:

● G.f.: x / (1 - x - x^2).

● G.f.: Sum_{n>=0} x^n * Product_{k=1..n} (k + x)/(1 + k*x). - _Paul

D. Hanna_, Oct 26 2013

● F(n) = ((1+sqrt(5))^n - (1-sqrt(5))^n)/(2^n*sqrt(5)).

● Alternatively, F(n) = ((1/2+sqrt(5)/2)^n -

(1/2-sqrt(5)/2)^n)/sqrt(5).

● F(n) = F(n-1) + F(n-2) = -(-1)^n F(-n).

Cross references:

● Cf. A039834 (signed Fibonacci numbers), A001690 (complement),

A000213, A000288, A000322, A000383, A060455, A030186, A020695,

A020701, A071679, A099731, A100492, A094216, A094638, A000108,

A101399, A101400, A001611, A000071, A157725, A001911, A157726,

A006327, A157727, A157728, A157729, A167616, A059929, A144152,

A152063, A114690, A003893, A000032, A060441, A000930, A003269,

A000957, A057078, A007317, A091867, A104597, A249548, A262342,

A001060, A022095, A072649.

● First row of arrays A103323, A234357. Second row of arrays

A099390, A048887, and A092921 (k-generalized Fibonacci numbers).

● a(n) = A094718(4, n). a(n) = A101220(0, j, n).

● a(n) = A090888(0, n+1) = A118654(0, n+1) = A118654(1, n-1) =

A109754(0, n) = A109754(1, n-1), for n > 0.

● Fibonacci-Pascal triangles: A027926, A036355, A037027, A074829,

A105809, A109906, A111006, A114197, A162741, A228074.

● Boustrophedon transforms: A000738, A000744.

● Powers: A103323, A105317, A254719.

● Numbers of prime factors: A022307 and A038575.

● Cf. A163733.

other sections, such as reference and link, are hidden by de-
fault to provide a cleaner output.

Example 60. The following command pretty prints (i) the
first 3 sequences from our current cache –the result may vary
if you try on your own machine–, (ii) ranking them according
to the most recent access time, (iii) reporting data only and
(iv) limiting up to 10 coefficients for linear sequences:

$ python3.6 pprinting.py \

--most-recent ACCESS \

110

--data-only \

--max-results 3 \

--upper-limit '{"list":10}'

A001044 - a(n) = (n!)^2.

by _N. J. A. Sloane_, _R. K. Guy_

Keywords: `nonn,easy,nice`

Data:

[1 1 4 36 576 14400 518400 25401600 1625702400 131681894400]

__

A048990 - Catalan numbers with even index (A000108(2*n), n >= 0): a(n)

= binomial(4*n, 2*n)/(2*n+1).

by _Wolfdieter Lang_

Keywords: `easy,nonn`

Data:

[1 2 14 132 1430 16796 208012 2674440 35357670 477638700]

__

A014138 - Partial sums of (Catalan numbers starting 1, 2, 5, ...).

by _N. J. A. Sloane_

Keywords: `nonn,nice`

Data:

[0 1 3 8 22 64 196 625 2055 6917]

Example 61. The following command pretty prints the re-
sponses about the open query ”pascal triangle”, using 2-
dimension representation for matrices in data sections, and
reports the first 2 sequences only,

$ python3.6 pprinting.py

--query 'pascal triangle' \

--tables-only \

--data-only \

--max-results 2

A007318 - Pascal's triangle read by rows: C(n,k) = binomial(n,k) =

n!/(k!*(n-k)!), 0 <= k <= n.

by _N. J. A. Sloane_ and _Mira Bernstein_, Apr 28 1994

Keywords: `nonn,tabl,nice,easy,core,look,hear,changed`

Data:

⎡1 0 0 0 0 0 0 0 0 0⎤

⎢1 1 0 0 0 0 0 0 0 0⎥

⎢1 2 1 0 0 0 0 0 0 0⎥

⎢1 3 3 1 0 0 0 0 0 0⎥

111

⎢1 4 6 4 1 0 0 0 0 0⎥

⎢1 5 10 10 5 1 0 0 0 0⎥

⎢1 6 15 20 15 6 1 0 0 0⎥

⎢1 7 21 35 35 21 7 1 0 0⎥

⎢1 8 28 56 70 56 28 8 1 0⎥

⎣1 9 36 84 126 126 84 36 9 1⎦

__

A047999 - Sierpiński's [Sierpinski's] triangle (or gasket): triangle,

read by rows, formed by reading Pascal's triangle mod 2.

by _N. J. A. Sloane_

Keywords: `nonn,tabl,easy,nice`

Data:

⎡1 0 0 0 0 0 0 0 0 0⎤

⎢1 1 0 0 0 0 0 0 0 0⎥

⎢1 0 1 0 0 0 0 0 0 0⎥

⎢1 1 1 1 0 0 0 0 0 0⎥

⎢1 0 0 0 1 0 0 0 0 0⎥

⎢1 1 0 0 1 1 0 0 0 0⎥

⎢1 0 1 0 1 0 1 0 0 0⎥

⎢1 1 1 1 1 1 1 1 0 0⎥

⎢1 0 0 0 0 0 0 0 1 0⎥

⎣1 1 0 0 0 0 0 0 1 1⎦

In parallel of the terminal interface, we develop pretty
printing functions that integrates in Jupyter notebooks. The
aim remains the same, namely to present contents taken
from the OEIS targeting a different environment that ac-
cepts their representation; this is the time of a dynamic web
interface that allows us to evaluate Python code on the fly.
Using the Markdown language (https://daringfireball.
net/projects/markdown/) to write textual content, we pro-
pose another view of the same data, as shown in Figures 4.3,
4.4 and 4.5; in particular, we take advantage of (i) hyper-
references to make labels of sequences clickable to quickly
visit them, (ii) font styles to emphasize words in italics and
bold-face and (iii) to render math expressions properly, such
as 2-dimensional array representation for matrices.

4.4 The Grapher

The script graphing.py allows us to represent networks
where vertices are sequences and edges are connections
among them, according to xref sections in their JSON en-
codings. It integrates with the crawler tool by parsing the
fetched files and creates Graph objects, defined in the Python
module networkx, having different layouts according to a set
of drawing algorithms.
It presents a help message to explain itself:

https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/

112

Figure 4.3: This screenshot shows search
results about the Fibonacci numbers
where (i) the section about comments is
filtered such that the word ”binomial” has
to appear in their text and (ii) the section
about formulae is hidden.

Figure 4.4: This screenshot shows search
results of a query using a subsequence,
showing data sections only.

113

Figure 4.5: This screenshot shows search
results of an open query using the ”pascal”
keyword, representing the data section as
a 2-dimensional array.

$ python3.6 graphing.py -h

usage: graphing.py [-h] [--directed] [--cache-dir CACHE_DIR]

[--graphs-dir GRAPHS_DIR] [--dpi DPI] [--layout LAYOUT]

F

OEIS grapher.

positional arguments:

F Save image in file F.

optional arguments:

-h, --help show this help message and exit

--directed Draw directed edges

--cache-dir CACHE_DIR

Cache directory (defaults to ./fetched/)

--graphs-dir GRAPHS_DIR

Graphs directory (defaults to ./graphs/)

--dpi DPI Resolution in DPI (defaults to 600)

--layout LAYOUT Graph layout, choose from: {RANDOM, CIRCULAR, SHELL,

FRUCHTERMAN-REINGOLD, SPRING, SPECTRAL} (defaults to

SHELL)

Example 62. The following command draws the graph shown
in Figure 4.6, where the width of each vertex grows according to
the number of its incoming connections,
$ python3.6 graphing.py --layout FRUCHTERMAN-REINGOLD graph.png

in order to emphasize most referenced sequences.

Moreover, it can extract essential data from the whole set
of JSON files, such as the list of vertices and edges, to inter-

114

Figure 4.6: Sequences network where
vertices are emphasized according to the
number of incoming connections.

face with third-party software tools that provide different
visualizations; in particular, libraries using the Javascript pro-
gramming language are very powerful and the output they
produce are very expressive. For our purposes, we use the
arborjs library (freely available at http://arborjs.org/)
to display two additional graphs described in the next two
examples, respectively.

Example 63. Figure 4.7 reports a new unlabeled graph that
shows the underlying structure of sequences connections. Here,
the layout spreads vertices such that the ones having many
outgoing connections are centered, while those having poor
connectivity are left on borders.
Under the hood, the Fibonacci and Catalan numbers are the

two central sequences and both of them have an orbit which
contains a set of highly connected sequences.

Example 64. On the other hand, Figure 4.8 adds labels and col-
ors to vertices in order to spot their identity and their relevance
according to a combination of their properties. In particular,
each color is represented by an RGB tuple that gets weigths
(i) the number of comments and formulae for red, (ii) the num-
ber of references and links for green and (iii) the number of
incoming and outgoing connections for blue, respectively. More-
over, we get the complement to 255 of each component because
many sequences have not so many details and this manipula-
tion allows us to obtain cleaner and more expressive graphs.

http://arborjs.org/

115

Figure 4.7: Sequences network abstracting
over identifier to spot the underlying
structure.

For the sake of clarity, the two sequences in evidence are
the Fibonacci and Catalan numbers, the former has the color
(006100)16 and its complement (FFFFFF)16 − (006100)16 =

(FF9EFF)16 means that it has many comments, formulae and
connections; the latter has the color (7C00E5)16 and its comple-
ment (FFFFFF)16 − (7C00E5)16 = (83FF1A)16 means that it
has lots of comments, links and references.

Remark 65. Recall that the interpretations given in the pre-
vious examples concern a subset of the OEIS only, in particular
the one fetched in our session; finally, the more we crawl, the
more graphs are effective and accurate.

Example 66. Finally, crawling for a while to get more se-
quences, we represent their connections in Figure 4.9, arranging
them using a circular layout and we emphasize vertices in the
dominating set using the red color.

Conclusions

This chapter presents a suite of tools that interacts with the
Online Encyclopedia of Integer Sequences, whose primary
goal is to automate simple and repetitive operations such

116

Figure 4.8: Sequences network with
labelel vertices, here we see that the
sequence of Fibonacci numbers (https:
//oeis.org/A000045) and of Catalan
numbers (https://oeis.org/A000108) are
the two central sequences, respectively.

https://oeis.org/A000045
https://oeis.org/A000045
https://oeis.org/A000108

117

Figure 4.9: A bigger sequences network
composed of 419 sequences; here the
sequence of Fibonacci numbers is denoted
by α and the sequence of Catalan numbers
is denoted by β, respectively.

118

as (i) crawling sequences to hold a local copy stored in JSON
files, (ii) pretty printing data with filtering capabilities, both
in the terminal and in Jupyter (http://jupyter.org/) note-
books and (iii) to visualize connections among sequences
using graphs.
In parallel, this suite has been though to be open to exten-

sion and to interface with the hosting environment, UNIX in
particular. For instance, the printer can be used in pipe with
the less command to gain scroll and search features for free
or the grapher can be augmented to generate more detailed
graph descriptions to be processed by visualization tools.
An additional work direction is to make graphs interactive,

namely to tie together the crawler and the grapher in a web-
browser interface such that a click on a vertex triggers the
execution of the fetching process (unless it has been down-
loaded already) and the new connections are added to the
network dynamically.

http://jupyter.org/

5

Queens, tilings, ECO

and polyominoes

This chapter solves placement and tiling problems by means
of the backtracking programming technique. Our approach
has an educational component in the sense that we aim to
code as clean as possible, relying on bitmasking manipulation
to balance efficiency drawback due to vanilla implementa-
tions. We will tackle the 8-Queens problem, tilings using pen-
tominoes and parallelogram polyominoes; for what concerns
placement problems, we will show an implementation of the
ECO methodology in order to enumerate classes of objects
that obeys particular symbolic equations.
First of all, we introduce basic bitwise tricks and program-

ming idioms that will be useful for the understanding of the
upcoming content, which heavily lies on those techniques for
the sake of efficency:
def is_on(S, j):

return (S & (1 << j)) >> j

def set_all(n):

return (1 << n) - 1

def low_bit(S):

return (S & (-S)).bit_length() - 1

def clear_bit(S, j):

return S & ~(1 << j)

>>> S = 0b101010

>>> is_on(S, 3), is_on(S, 2)

(1, 0)

>>> bin(set_all(10))

'0b1111111111'

>>> low_bit(0b100101)

0

>>> low_bit(0b100100)

2

>>> low_bit(1 << 5)

5

>>> S = 0b101010

>>> bin(clear_bit(S, 1))

'0b101000'

Table 5.1: Uses of bitmasking functions.

Many other techniques can be found in [Warren, 2012].

5.1 The n-Queens problem

The n-Queens problem is a well known problem in computer
science and it is often used as a ”benchmark” to test efficiency
of new heuristics and approaches; many resources talks about
it, see the survey [Bell and Stevens, 2009]. In this section we
provide a pythonic implementation of an algorithm using the
idea described in Chapter 3 of [Ruskey, 2003].

120

We use three bit masks, namely integers, to represent
whether a row, a raising ↗ and a falling↘ diagonals are
under attack by an already placed queen, instead of three
boolean arrays. It is sufficient to use one bit only to repre-
sent that a cell on a diagonal is under attack, hence to each
diagonal is associated one bit according to:

• if such diagonal is raising, call it d↗, then

ar1,c1 ∈ d↗∧ar2,c2 ∈ d↗ if and only if r1+c1 = r2+c2;

in words, the sum of the row and column indices is con-
stant along raising diagonals. Therefore diagonal d↗ is
associated to the bit in position r1 + c1 of a suitable bit-
mask p;

• otherwise, if such diagonal is falling, call it d↘, then

ar1,c1 ∈ d↘∧ar2,c2 ∈ d↘ if and only if c1− r1 = c2− r2;

in words, the difference of the column and row indices is
constant along falling diagonals. Therefore diagonal d↘
is associated to the bit in position c1 − r1 of a suitable
bitmask p. In order to be consistent, if c1 − r1 < 0 then
take the difference modulo 2n− 1, where n is the number
of rows (and columns), formally

p−1 p−2 . . . p−(n−1) →≡2n−1
p2n−2 p2n−3 . . . pn

which entails that(
pn−1 pn−2 . . . p0p−1 p−2 . . . p−(n−1)

)
2

equals

(p2n−2 p2n−3 . . . pnpn−1 pn−2 . . . p0)2 ,

where rows and cols indexes range in {0, . . . ,n− 1}; in both
cases, it is necessary a bitmask 2n− 1 bits long.
The function queens is a Python generator of solutions for

the n-Queens problem,
def queens(n):

sol = [0] * n # Initialize the permutation that has

columns indices and *rows* as values.

def gen(c, rows, raises, falls):

for r in range(n): # For each row index:

raising = c + r # when r > c negative positions appear in the

falling = (c - r) % (2*n-1) # *most significant part* of `falling`.

if (is_on(rows, r) # if there is no queen on the same row and on

and is_on(raises, raising) # the same raising and falling diagonals,

121

and is_on(falls, falling)): # then `r,c` is a candidate position.

sol[c] = r # remember the choice of `r`.

if c == n-1: # if this recursive call concerns the last

yield sol # column then no more work has to be done,

else: # yield a result. Otherwise, recurs looking

yield from gen(c+1, # for a location in the remaining columns,

clear_bit(rows, r), # propagating the fact that row `r` and

clear_bit(raises, raising), # diagonals `raising` and `falling`

clear_bit(falls, falling)) # are under attack and no more selectable.

return gen(0, set_all(n), set_all(2*n-1), set_all(2*n-1)) # start the enumeration of solutions.

and it returns all the solution to the given problem when
required to do so, as the next example shows.

Example 67. Solutions to the 5-Queens problem are

>>> for s in queens(5):

... print(pretty(s))

Q						Q								Q							Q						Q	
			Q					Q				Q						Q							Q			
	Q									Q					Q					Q								Q
				Q			Q						Q									Q				Q		
		Q							Q							Q			Q					Q				

	Q									Q			Q									Q				Q		
			Q					Q								Q			Q									Q
Q						Q								Q							Q				Q			
		Q							Q			Q						Q									Q	
				Q			Q								Q					Q				Q				

In these examples the following pretty printer is used to
represent solutions drawing them in bare minimal ASCII,
def pretty(sol):

n = len(sol)

s = ""

for r in range(n):

pos = sol.index(r)

row = "|".join('Q' if c == pos else ' '

for c in range(n))

s += "|{}|\n".format(row)

return s

Enumerating all solutions for different integers n we get
the known sequence http://oeis.org/A000170,
>>> [len(list(queens(i))) for i in range(1,13)]

[1, 0, 0, 2, 10, 4, 40, 92, 352, 724, 2680, 14200]

Example 68. We tackle the more complex 24-Queens problem,
whose first solution is about 3 seconds away

>>> more_queens = queens(24)

>>> print(pretty(next(more_queens)))

http://oeis.org/A000170

122

Q																							
			Q																				
	Q																						
				Q																			
		Q																					
																Q							
																					Q		
																	Q						
					Q																		
														Q									
						Q																	
																		Q					
																				Q			
							Q																
																							Q
																			Q				
																						Q	
								Q															
										Q													
												Q											
															Q								
									Q														
											Q												
													Q										

5.2 Polyominoes

In this section we play with some problems concerning poly-
ominoes, formalized and introduced by prof. Solomon Golomb
in [Golomb, 1996]. Our aim is to provide a generic algorithm
that consumes a board where it is possible to place some
pieces and produces a collection of (possibly incomplete)
tilings of the board. Therefore we describe (i) how boards are
encoded, (ii) how shapes can be defined and (iii) the funda-
mental concept of anchor that allows us to bookkeep the next
free cell in the board. Our implementation is coded in Python
and has an educational flavor; additionally, for more puzzles
and problems solved using the same language see [Goodger,
2015], while [Knuth, 2000] popularize the idea of [Hitotumatu
and Noshita, 1979] about a clever use of doubly linked lists
to tackle combinatorial enumerations via depth-first searches
and backtracking.

5.2.1 Boards, shapes, anchors for backtracking

Maybe the hardest part in the understanding concerns the
representations of both the board and the state (free or oc-
cupied) of each cell; moreover, the same difficulty arises for
shapes and their orientations as well. We answer to each
question in turn:

• a board with r rows and c columns is represented by an in-
teger with rc bits; this is because we want to use bit mask-
ing techniques and it is efficient to find the next free cell
(using the utility function low_bit), which correspond to
the position of the first bit 1 from the right, namely the

123

right-most 1 in its least significant part. Here it is,

0 r 2r . . . (c− 1)r

1 r+ 1 2r+ 1 . . . (c− 1)r+ 1
...

...
...

. . .
...

r− 1 2r− 1 3r− 1 . . . rc− 1

• a shape is a collection of cells, usually sharing an edge
pairwise. We choose to represent a shape as a namedtuple
object: it has an hashable component and a collection of
isomorphisms to represent rotations and mirroring, coded
as a lambda expression which consumes the anchor po-
sition as a pair of row and column indices, and returns a
list of isomorphic shapes, namely positions coding sym-
metry, reflection or rotation of the shape; therefore, each
isomorphism is a sequence of positions too.

• an anchor is the position in which the top-left cell of a
shape orientation will be placed in the next free cell of
the board and every orientation should be relative to the
anchor provided. The anchor is always given with respect
to position (r,c):

* (r-2,c+2)

* -> (r-1,c+2)

* * * (r,c) (r,c+1) (r, c+2)

so the orientation is coded as the tuple

((r,c), (r,c+1), (r-2,c+2), (r-1,c+2), (r, c+2))

in the given order, where pairs are listed according to the
order top to bottom then left to right, namely when rows are
exhausted repeat from to the top of the next column.

In order to structure our thoughts, we start with the defini-
tion of the shape concept as a namedtuple object

from collections import namedtuple

shape_spec = namedtuple('shape_spec', ['name', 'isomorphisms',])

that allows us to define the backtracking algorithm

def polyominoes(dim, shapes, availables='ones',

max_depth_reached=None, forbidden=[],

pruning=lambda coord, positions, shapes: False):

rows, cols = dim

sol = []

if not availables or availables == 'ones':

availables = {s.name:1 for s in shapes}

elif availables == 'inf':

availables = {s.name:-1 for s in shapes}

124

def place(S, positions):

for r, c in positions:

S = clear_bit(S, r + rows*c)

return S

def shapes_available():

return {s for s in shapes if availables[s.name]}

def gen(positions, attempts):

p = low_bit(positions)

c, r = divmod(p, rows)

if pruning((r,c), positions, shapes_available()):

raise StopIteration()

for i, s in enumerate(shapes):

if not availables[s.name]: continue

for j, iso in enumerate(s.isomorphisms(r, c)):

if all(0 <= rr < rows

and 0 <= cc < cols

and is_on(positions, rr + rows*cc)

for rr, cc in iso):

fewer_positions = place(positions, iso)

availables[s.name] -= 1

sol.append((s, positions, (r,c), iso),)

if not (fewer_positions and attempts):

yield sol

else:

yield from gen(fewer_positions, attempts-1)

sol.pop()

availables[s.name] += 1

return gen(place(set_all(rows*cols), forbidden),

max_depth_reached or -1)

5.2.2 Pentominoes

We start with a relatively simple set of shapes, those com-
posed of 5 unit cells and commonly known as pentomi-
noes. According to our encoding, we introduce shapes with
their orientations; for example, here is the definition of the
V_shape:
"""

* * * * * * * *

* * * *

* * * * * * * *

"""

V_shape = shape_spec(

name='V',

isomorphisms=lambda r, c: [

((r,c), (r+1,c), (r+2,c), (r+2, c+1), (r+2, c+2)),

((r,c), (r, c+1), (r,c+2), (r+1, c+2), (r+2, c+2)),

125

((r,c), (r,c+1), (r-2,c+2), (r-1,c+2), (r, c+2)),

((r,c), (r+1,c), (r+2,c), (r,c+1), (r, c+2))

])

>>> for i in range(6):

... print(pretty(next(tilings)))

┌─────────────────────┐

│ β δ δ δ ε ε ι ι ι ι │

│ β δ θ δ α ε ε λ λ ι │

│ β θ θ α α α ε η λ λ │

│ β θ γ μ α η η η λ ζ │

│ β θ γ μ μ η κ ζ ζ ζ │

│ γ γ γ μ μ κ κ κ κ ζ │

└─────────────────────┘┌─────────────────────┐

│ β δ δ δ η η α ζ ζ ζ │

│ β δ θ δ η α α α ζ κ │

│ β θ θ η η λ α ε ζ κ │

│ β θ γ λ λ λ ε ε κ κ │

│ β θ γ ι λ ε ε μ μ κ │

│ γ γ γ ι ι ι ι μ μ μ │

└─────────────────────┘┌─────────────────────┐

│ β δ δ δ η η ι ι ι ι │

│ β δ θ δ η ε ε λ λ ι │

│ β θ θ η η α ε ε λ λ │

│ β θ γ μ α α α ε λ ζ │

│ β θ γ μ μ α κ ζ ζ ζ │

│ γ γ γ μ μ κ κ κ κ ζ │

└─────────────────────┘┌─────────────────────┐

│ β ε ε ζ ζ ζ ι ι ι ι │

│ β κ ε ε ζ λ θ θ θ ι │

│ β κ κ ε ζ λ λ λ θ θ │

│ β κ γ δ δ α λ η η μ │

│ β κ γ δ α α α η μ μ │

│ γ γ γ δ δ α η η μ μ │

└─────────────────────┘┌─────────────────────┐

│ β ε ε ζ ζ ζ ι ι ι ι │

│ β κ ε ε ζ λ θ θ θ ι │

│ β κ κ ε ζ λ λ λ θ θ │

│ β κ γ μ η η λ α δ δ │

│ β κ γ μ μ η α α α δ │

│ γ γ γ μ μ η η α δ δ │

└─────────────────────┘┌─────────────────────┐

│ β ε ε μ μ μ ζ δ δ δ │

│ β κ ε ε μ μ ζ δ θ δ │

│ β κ κ ε α ζ ζ ζ θ θ │

│ β κ γ α α α λ η η θ │

│ β κ γ ι α λ λ λ η θ │

│ γ γ γ ι ι ι ι λ η η │

└─────────────────────┘

Table 5.2: The first 6 tilings enumerated by
generator polyominoes using the shapes
collection of pieces.

With the current setup we can define the complete set of
shapes and, consequently, the generator over the solution
space for the tilings of a board 6× 10 having 1 piece of each
shape, respectively.
>>> '''

... X: I: V: U: W: T:

... * * * * * * * * *

... * * * * * * * * *

... * * * * * * * * * *

... *

... *

...

... Z: N: L: Y: F: P:

... * * * * * *

... * * * * * * * * * * * * *

... * * * * * * *

... * * * *

... '''

>>> shapes = [X_shape, I_shape, V_shape, U_shape, W_shape, T_shape,

... Z_shape, N_shape, L_shape, Y_shape, F_shape, P_shape]

>>> dim = (6,10)

>>> tilings = polyominoes(dim, shapes, availables="ones")

In Table 5.2 we report an application of our implementation;
in particular, it shows our choice to represent tilings, drawing
shapes as collections of multiple occurrences of the same
greek letters.

With forbidden cells and limited shapes availability

It is possible to taylor the enumeration with respect to (i) the
number of available pieces for each shape and to (ii) for-
bidden placements on the board. Both of them can be easy
achieved by tuning the application of polyominoes provid-
ing the keyword arguments availables and forbidden, re-
spectively. For the former, provide a dictionary of (k, v)

objects, where k denotes the shape’s name and v denotes its
pieces availability; for the latter, provide a list of positions
that should be avoided in the placement process. An example
follows,
>>> dim = (6,10)

>>> tilings = polyominoes(

... dim, shapes,

... availables={s.name:3 for s in shapes},

... forbidden=[(0,0), (1,0), (2,0), (3,0), (4,0),

... (1,9), (2,9), (3,9), (4,9), (5,9),

... (1,5), (2,4), (2,5), (3,4), (3,5)])

and some tilings are shown in Table 5.3.

126

5.2.3 Polyomino’s order

In the exercise 7 of his book, Ruskey asks to find the order of
some polyomino, defined according to

>>> for i in range(6):

... print(pretty(next(tilings)))

┌─────────────────────┐

│ γ γ γ δ δ δ ζ ζ ζ │

│ ι ι γ δ δ λ ζ │

│ ι μ γ λ λ ζ │

│ ι μ μ η λ λ │

│ ι μ μ θ θ η η η │

│ β β β β β θ θ θ η │

└─────────────────────┘┌─────────────────────┐

│ γ γ γ ι ι ι ι λ λ │

│ μ μ γ ι ε λ λ │

│ μ μ γ ε ε λ │

│ δ μ δ η ε ε │

│ δ δ δ θ θ η η η │

│ β β β β β θ θ θ η │

└─────────────────────┘┌─────────────────────┐

│ γ γ γ ι ι ι ι λ λ │

│ γ μ μ ι ε λ λ │

│ γ μ μ ε ε λ │

│ δ μ δ η ε ε │

│ δ δ δ θ θ η η η │

│ β β β β β θ θ θ η │

└─────────────────────┘┌─────────────────────┐

│ γ γ γ θ θ δ δ λ λ │

│ γ θ θ θ δ λ λ │

│ γ ε ε δ δ λ │

│ ε ε κ ζ μ μ │

│ ε κ κ κ κ ζ μ μ │

│ β β β β β ζ ζ ζ μ │

└─────────────────────┘┌─────────────────────┐

│ γ γ γ θ θ δ δ λ λ │

│ γ θ θ θ δ λ λ │

│ γ ε ε δ δ λ │

│ ε ε κ η η μ │

│ ε κ κ κ κ η μ μ │

│ β β β β β η η μ μ │

└─────────────────────┘┌─────────────────────┐

│ γ γ γ θ θ δ δ λ λ │

│ γ θ θ θ δ λ λ │

│ γ ε ε δ δ λ │

│ ε ε κ μ μ μ │

│ ε κ κ κ κ μ μ ι │

│ β β β β β ι ι ι ι │

└─────────────────────┘

Table 5.3: The first 6 tilings enumerated by
generator polyominoes using the shapes
collection of pieces under the restriction to
have 3 pieces for each shape and forbidden
cells should be left blank.

Definition 69. The order of a polyomino P is the smallest
number of P copies that will perfectly fit into a rectangle board,
where rotations and reflections of P are allowed.

We take into account the Y polyomino and we check that
its order is actually 10 in tailing a board 5× 10; in order to
show this fact, we give 10 copies of the Y_shape object, each
one with one piece available, respectively; although there are
many other solution,
>>> Y_shapes = [

... shape_spec(name="{}_{}".format(Y_shape.name, i),

... isomorphisms=Y_shape.isomorphisms)

... for i in range(10)

...]

>>> dim = (5,10)

>>> Y_tilings = polyominoes(dim, Y_shapes, availables='ones')

>>> print(pretty(next(Y_tilings)))

┌─────────────────────┐

│ α γ γ γ γ ζ ι ι ι ι │

│ α α δ γ ζ ζ ζ ζ ι κ │

│ α δ δ δ δ η η η η κ │

│ α β ε ε ε ε θ η κ κ │

│ β β β β ε θ θ θ θ κ │

└─────────────────────┘

the one shown above solves the problem.

5.2.4 Fibonacci’s tilings

In this section we take into account a smaller set of shapes,
composed of squares and dominos pieces, in order to tile
boards with an increasing number of rows; eventually, enu-
merations of tilings for greater boards are counted by known
sequences in the OEIS.
"""

*

"""

square_shape = shape_spec(

name='square',

isomorphisms=lambda r, c: [((r, c),)])

"""

* * *

*

"""

domino_shape = shape_spec(

name='domino',

isomorphisms=lambda r, c: [((r, c), (r, c+1)),

((r, c), (r+1, c))])

fibonacci_shapes = [square_shape, domino_shape]

127

Tiling greater boards, ascending ordered according to the
number of rows, we enumerate the sequences
>>> [[len(list(polyominoes(dim=(j,i),

... shapes=fibonacci_shapes,

... availables='inf')))

... for i in range(n)]

... for j, n in [(1, 13), # https://oeis.org/A000045

... (2, 13), # https://oeis.org/A030186

... (3, 7), # https://oeis.org/A033506

... (4, 7), # https://oeis.org/A033507

... (5, 6)]] # https://oeis.org/A033508

[[0, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233],

[0, 2, 7, 22, 71, 228, 733, 2356, 7573, 24342, 78243, 251498, 808395],

[0, 3, 22, 131, 823, 5096, 31687],

[0, 5, 71, 823, 10012, 120465, 1453535],

[0, 8, 228, 5096, 120465, 2810694]]

which counts Fibonacci’s numbers, the number of match-
ings in graphs P2 × Pn, P3 × Pn, P4 × Pn and P5 × Pn, re-
spectively. For the sake of clarity, the f6 = 13 ways to tile a
simple board 1× 6 are:
┌─────────────┐ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐

│ α α α α α α │ │ α α α α β β │ │ α α α β β α │ │ α α β β α α │

└─────────────┘ └─────────────┘ └─────────────┘ └─────────────┘┌─────────────┐ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐

│ α α β β β β │ │ α β β α α α │ │ β β α α α α │ │ β β α α β β │

└─────────────┘ └─────────────┘ └─────────────┘ └─────────────┘┌─────────────┐ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐

│ α β β α β β │ │ α β β β β α │ │ β β α β β α │ │ β β β β α α │

└─────────────┘ └─────────────┘ └─────────────┘ └─────────────┘┌─────────────┐

│ β β β β β β │

└─────────────┘

5.3 Parallelogram Polyominoes

In this section we study a collection of polyominoes where
their shapes are subject to a constraint; precisely, a parallel-
ogram polyomino is defined by two paths that only intersect
at their origin and extremity, composed of East and South
steps only. They are counted by Catalan numbers according
to their semiperimeter, which equals the sum of their heights
and widths; for the sake of clarity, both [Delest and Fedou,
1993, Delest et al., 1987] are extensive studies.

Example 70. The set of 42 parallelogram polyominoes shown
in Table 5.4 can be used to tile a board 16× 16; precisely, using
the enumerator polyominoes again, we show the first incom-
plete and the first complete tilings,

128

▢ ▢ ▢ ▢ ▢ ▢ ▢ ▢ ▢ ▢ ▢ ▢ ▢ ▢ ▢ ▢ ▢
▢ ▢ ▢ ▢ ▢ ▢ ▢ ▢ ▢ ▢ ▢ ▢ ▢ ▢ ▢ ▢ ▢ ▢
▢ ▢ ▢ ▢ ▢ ▢ ▢ ▢ ▢ ▢ ▢

▢ ▢

▢ ▢ ▢ ▢ ▢ ▢ ▢ ▢ ▢ ▢ ▢
▢ ▢ ▢ ▢ ▢ ▢ ▢ ▢ ▢ ▢ ▢ ▢ ▢ ▢
▢ ▢ ▢ ▢ ▢ ▢ ▢ ▢ ▢ ▢ ▢ ▢ ▢ ▢

▢ ▢ ▢

▢ ▢ ▢ ▢ ▢ ▢ ▢ ▢ ▢ ▢ ▢ ▢ ▢ ▢
▢ ▢ ▢ ▢ ▢ ▢ ▢ ▢ ▢ ▢ ▢ ▢ ▢ ▢ ▢

▢ ▢ ▢ ▢ ▢ ▢ ▢

▢ ▢ ▢ ▢ ▢ ▢ ▢ ▢ ▢ ▢ ▢ ▢ ▢
▢ ▢ ▢ ▢ ▢ ▢ ▢ ▢ ▢ ▢ ▢ ▢ ▢ ▢ ▢ ▢
▢ ▢ ▢ ▢ ▢ ▢

▢

▢ ▢ ▢ ▢ ▢ ▢ ▢ ▢ ▢ ▢
▢ ▢ ▢ ▢ ▢ ▢ ▢ ▢ ▢ ▢
▢ ▢ ▢ ▢ ▢ ▢ ▢ ▢ ▢
▢ ▢ ▢

▢ ▢ ▢ ▢ ▢ ▢ ▢ ▢ ▢ ▢
▢ ▢ ▢ ▢ ▢ ▢ ▢ ▢ ▢ ▢ ▢
▢ ▢ ▢ ▢ ▢ ▢

▢ ▢ ▢

▢ ▢ ▢ ▢ ▢ ▢ ▢ ▢ ▢ ▢ ▢ ▢ ▢ ▢
▢ ▢ ▢ ▢ ▢ ▢ ▢ ▢
▢ ▢ ▢ ▢
▢ ▢ ▢

▢

Table 5.4: Parallelogram Polyominoes with
semiperimeter 6, which are 42 in total, the
6th Catalan number.

_ _
			_	_ _ _ _ _		●				_		_	_ _						
			_									_		_ _ _	_ _				
_ _ _				_	_			_		_ _ _				_	_ _ _	_ _ _			
	_ _	_ _	_		_			_			_ _	_ _	_			_	_		
_			_ _	_		_			●	_			_ _						
	_ _	_ _	_	_	_	_				_ _	_ _	_			_			_ _	
		_		_ _	_ _ _	_ _	_ _				_				_	_			_
_ _ _	_ _		_	_	_		●	_ _ _	_ _		_	_	_ _	_	_ _				
	_	_	_ _ _	_			_			_	_	_ _ _	_		_				
			_	_	_ _	_ _						_	_		_	_			
_ _ _	_ _	_ _ _ _	_ _ _	_		_		_ _ _	_ _	_ _ _ _	_		_ _	_ _					
	_		_ _			●		_		_	_		_ _						
_ _ _ _		_ _ _	_ _ _ _				●	_ _ _ _		_ _ _	_ _ _ _								
		_ _	_ _ _		_	_	_ _				_ _	_ _ _ _ _	_		_				
	_		_	_ _	_		_ _			_		_	_ _	_	_				
_ _ _	_ _	_ _ _ _	_ _	_ _ _	_ _		_ _ _	_ _	_ _ _ _	_ _	_ _ _	_ _							

respectively. The solution space of this problem is very sparse
and the enumeration is pretty hard; despite the vanilla ap-
proach used, our implementation allows us to provide an heuris-
tic function (to prune any attempt to insert a polyomino on
last row or last column, for example) but we get no gain in ef-
ficiency. On the contrary, we note that the order in which poly-
ominoes are choosen for placement leverage the execution time,
even for smaller boards; however, for greater boards the problem
remains open.

129

5.4 An implementation of the ECO method

The ECO methodology is introduced in [Barcucci et al., 1998b]
and refined in [Barcucci et al., 1999] in order to enumerate
classes of combinatorial objects; relying on the idea to per-
form local expansion on objects’ active sites by means of an
operator, the ECO method gives a recursive construction of
the class that objects belong to.
In the spirit of [Bernini et al., 2007, Bacchelli et al., 2004],

we provide a implementation of the ECO method which
allows us to build classes of combinatorial objects; conse-
quently, enumeration comes for free. Moreover, defining a
recursive shape as the combination of symbols denoting the
objects’ structure with symbols denoting the objects’active
sites, namely positions where it is possible to perform a local
expansion, we have a data structure to be manipulated by a
Python function, which reifies the operator concept.
For the sake of clarity, let ★ be an active site that accepts to

be replaced by
●

★ ★

hence, operator → performs replacements for each site; for
example,
● ● ● ●
● ★ → ● ★ ● ★ ● ●

★ ★ ● ★ ● ★ ★
★ ★ ★ ★

In order to understand how → works, we label each ★ with a
integer subscript that denotes the discrete time in which it
will be replaced,
● ● ● ●
● ★₃ → ● ★₃ ● ★₃ ● ●

★₁★₂ ● ★₂ ● ★₄★₅
★₄★₅ ★₄★₅

and we normalize discrete times of produced objects in order
to restart the application of operator → to each one of them,

● ● ●
● ★₂ ● ★₁ ● ●
● ★₁ ● ★₁★₂

★₃★₄ ★₂★₃

From this characterization it is possible to recover the corre-
lated concepts of generating tree and succession rule [Chung
et al., 1978]. The former is straightforward encoded within
the application of the operator →, the latter is (3) ↪→ (4)(3)(2)
because (i) on the left hand side of → there are 1 object with
3 active sites and (ii) on the right hand side of → there are 3
objects with 4, 3 and 2 active sites, respectively.
In the following examples we apply this methodology to

build and enumerate known classes of combinatorial objects.

130

Example 71 (Binary trees). Their class is encoded by

binary_tree_shapes = {

'bintree': lambda r, c: Anchor(symbol='●', stars=[

Star(row=r+1, col=c-1, offsets=None,

link='bintree', symbol='★'),

Star(row=r+1, col=c+1, offsets=None,

link='bintree', symbol='★'),

]),

}

and enumerated in Table 5.5.

According to the symbolic equation
★ = ●

★ ★

symbol ★ enumerates the (i) generation
●
★ ★

the (ii) generation
● ●
● ★ ●

★ ★ ★ ★

the (iii) generation
● ● ● ● ●

● ★ ● ★ ● ● ● ●
● ★ ● ★ ★ ● ★ ●

★ ★ ★ ★ ★ ★ ★ ★

the (iv) generation
● ● ● ●
● ★ ● ★ ● ★ ● ●

● ★ ● ★ ● ● ● ★ ★
● ★ ● ★ ★

★ ★ ★ ★

● ● ● ●
● ★ ● ● ● ● ●
● ☆ ★ ● ● ★
● ★ ★ ● ★ ★

★ ★ ★ ★

● ● ● ●
● ● ● ● ●

● ● ★ ● ★ ● ●
★ ★ ● ★ ● ★ ★

★ ★ ★ ★

● ●
● ●
● ●

● ★ ●
★ ★ ★ ★

where the symbol ☆ means the sovrappo-
sition of symbols ● and ★ in back and fore
ground, respectively.
Table 5.5: Enumerations up to the 5th
generation of binary trees.

The previous example shows our way to encode the recur-
sive shape of binary trees; in particular, shapes are vanilla
Python dictionaries, where each one of them contains key-
value pairs (k, v) where k denotes the shape label and v

denotes a function that consumes a coordinate (r,c) and
produces an Anchor object that carries information about the
structure symbol and the collection of shape’s active sites.

Example 72 (Dyck paths). Their class is encoded by

dyck_path_shapes = {

'dick': lambda r, c: Anchor(symbol='/', stars=[

Star(row=r-1, col=c+1, offsets=(0, 2),

link='dick', symbol='★'),

Star(row=r, col=c+2, offsets=None,

link='dick', symbol='★'),

]),

}

and enumerated in Table 5.6.
According to the symbolic equation

★
★ = / ★

symbol ★ enumerates the (i) generation
★

/ ★

the (ii) generation
★
/ ★ ★

/ ★ / / ★

the (iii) generation
★

/ ★ ★
/ ★ / / ★ / ★

/ ★ / ★ / / ★

★
/ ★ ★

/ / ★ / / / ★

the (iv) generation
★
/ ★ ★

/ ★ / / ★ / ★
/ ★ / ★ / / ★

/ ★ / ★ / ★

★
/ / ★ ★
/ ★ / / ★ / / / ★

/ / ★ / ★ / ★

★
/ / ★ / / ★ / ★

/ / ★ / / ★ / / / ★

★
/ ★ ★
/ ★ / / ★ / ★

/ / ★ / / ★ / / / ★

★
/ ★ ★

/ / / ★ / / / / ★

Table 5.6: Enumerations up to the 5th
generation of Dyck paths.

Previous example spots a feature provided by Star objects,
namely the capability to shift part of the structure in order
to make room for local expansions; this is achieved by the
keyword argument offset, which has to be a pair (or, oc)

where components are integers that denote row and column
offsets, respectively. For the Dyck paths shape, we provide
offset=(0,2) for the topmost active site because when the
structure is expanded there, the rightmost path already gen-
erated should be shifted by 2 columns while remaining at the
same distance from the x axis.

Example 73 (Balanced Parens). Their class is encoded by

balanced_parens_shapes = {

'parens': lambda r, c: Anchor(symbol='(', stars=[

Star(row=r, col=c+1, offsets=(0, 3),

link='parens', symbol='★'),

Star(row=r, col=c+3, offsets=None,

link='parens', symbol='★'),

]),

}

and enumerated in Table 5.7.

131

Both the previous examples and the next one enumer-
ate classes of objects counted by Catalan numbers and each
class obeys to the succession rule (1) ↪→ (2) and (k) ↪→
(2) · · · (k+ 1), where k > 1.

Example 74 (Steep parallelograms polyominoes). They are a
refinement of parallelogram polyominoes because the lower bor-
der of those polyominoes has no pair of consecutive horizontal
steps. Their class is encoded by

According to the symbolic equation
★ = (★)★

symbol ★ enumerates the (i) generation
(★ ★

the (ii) generation
((★ ★ ★
((★ ★

the (iii) generation
(((★ ★ ★ ★
(((★ ★ ★
(((★ ★
(((★ ★ ★
(((★ ★

the (iv) generation
((((★ ★ ★ ★ ★
((((★ ★ ★ ★
((((★ ★ ★
((((★ ★
((((★ ★ ★ ★
((((★ ★ ★
((((★ ★
((((★ ★ ★
((((★ ★
((((★ ★ ★ ★
((((★ ★ ★
((((★ ★
((((★ ★ ★
((((★ ★

Table 5.7: Enumerations up to the 5th
generation of balanced parens.

According to the mutually symbolic
equations

☆ ☆
★ = ▢ ☆ = ▢ ★

symbol ★ enumerates the (i) generation
☆
▢

the (ii) generation
☆
▢ ★
▢

the (iii) generation
☆
▢ ★ ☆
▢ ★ ▢ ▢
▢ ▢

the (iv) generation
☆
▢ ★ ☆ ☆
▢ ★ ▢ ▢ ▢ ☆ ▢ ★
▢ ★ ▢ ★ ▢ ▢ ▢ ▢
▢ ▢ ▢ ▢

☆
▢ ★ ☆
▢ ★ ▢ ▢ ▢ ☆ ▢
▢ ★ ▢ ★ ▢ ▢ ▢ ☆
▢ ★ ▢ ★ ▢ ★ ▢ ▢
▢ ▢ ▢ ▢

☆ ☆
▢ ★ ☆ ▢ ★

▢ ▢ ▢ ◐ ▢ ▢ ★ ▢ ★
▢ ★ ▢ ▢ ▢ ▢ ▢ ▢
▢ ▢ ▢ ▢

☆
▢ ▢

▢ ▢
▢

where the symbol ◐ means the sovrappo-
sition of symbols ▢ and ☆ in back and fore
ground, respectively.
Table 5.8: Enumerations up to the 5th
generation of steep parallelograms.

steep_shapes = {

'one_star': lambda r, c: Anchor(symbol='▢', stars=[

Star(row=r-1, col=c, offsets=None,

link='two_stars', symbol='☆'),

]),

'two_stars': lambda r, c: Anchor(symbol='▢', stars=[

Star(row=r-1, col=c, offsets=None,

link='two_stars', symbol='☆'),

Star(row=r, col=c+1, offsets=None,

link='one_star', symbol='★'),

]),

}

and enumerated in Table 5.8.

In [Barcucci et al., 1998a] it is proved that steep parallel-
ogram polyominoes are counted by the Motzkin numbers, in
particular the set of those polyominoes having semiperimeter
n + 1 has Mn objects – the n-th Motzkin number. More-
over, the enumeration verifies that steep parallelogram poly-
ominoes obey the succession rule (1) ↪→ (2) and (k) ↪→
(1) · · · (k− 1)(k+ 1), where k > 1.

Example 75 (Rabbits). These shapes encode that (i) a couple of
young rabbits ○ gets old and becomes ● which, in turn, (ii) gives
birth to a couple of young rabbits and gets older.

rabbits_shapes = {

'young': lambda r, c: Anchor(symbol='○', stars=[

Star(row=r-1, col=c+1, offsets=None,

link='senior', symbol='★'),

]),

'senior': lambda r, c: Anchor(symbol='●', stars=[

Star(row=r, col=c+1, offsets=None,

link='young', symbol='▲'),

Star(row=r+1, col=c+1, offsets=None,

link='senior', symbol='★'),

]),

}

The complete enumeration contains doubles, so we report
the set of those structures that is actually counted by the
Fibonacci numbers; according to the mutually symbolic equa-
tions,

132

★
☆ = ○ ★ = ●☆

★

the enumeration process starts with ☆ and enumerates the (i),
(ii), (iii) and (iv) generations

| | ★ | ●☆
★ | ●☆ | ●○ ● | ●○ ★ ● ★ ●

○ | ○ ★ | ○ ★ ○ ●☆ | ○ ○ ●○ ○ ●
| | ★ | ★ ●☆
| | | ★

and, finally, the (v) generation
★

●○ ●
●○ ★ ●○ ●☆ ● ●☆ ● ●

○ ○ ★ ○ ●○ ★ ○ ● ★ ○ ●
●○ ●
★ ●☆

★

as required.

Conclusions

This chapter has presented an extensive exercise in coding,
practicing with backtracking programming techniques; in
particular, vanilla implementations pair with bitmasking
techniques to speed up computation, keeping elegance and
clarity at the same time.
We strive to write generic algorithms that work in different

contexts ranging from the placement problems, such as the
n-Queens problem, to tiling problems using different shapes;
moreover, the same minimal and open approach allows us
to tackle enumeration tasks starting from simple but pow-
erful specifications of classes of combinatorial objects and a
well known enumeration method called ECO has been fully
implemented.

6

Semi-Certified Interactive

Logic Programming

This chapter studies an embedded Domain Specific Language
for logic programming. First, we give a quick introduction
of µKanren, a purely functional implementation of this lan-
guage and, second, we extend the HOL Light theorem prover
in order to introduce the relational paradigm in its tactics
mechanism.

6.1 µKanren and relational programming

The central tenet of relational programming is that programs
corresponds to relations that generalize mathematical func-
tions; our interest here is to deepen our understanding of the
underlying concepts and data structures of languages in the
miniKanren family. The main reference that drives our work
is [Friedman et al., 2018] and advanced topics are discussed in
Byrd’s dissertation [Byrd, 2009].
The heavy use of higher order functions, infinite streams

of objects and unification à-la Robinson makes possible to
implement µKanren [Hemann and Friedman, 2013], a purely
functional core of miniKanren; we repeat the exercise of cod-
ing it using different programming languages, in particular

Python we provide both a complete implementation of the
abstract definition and a test suite that stresses our func-
tions against all questions in the reference book. Moreover,
we characterize our code with a fair enumeration strategy
based on the dovetail techniques used in the enumeration
of the Rationals numbers; precisely, the monadic function
mplus(streams, interleaving) enumerates the states
space streams, using different strategies according to the
argument interleaving.
In order to understand states enumeration can be helpful
to use a ”matrix notation”, that associates a row to each
stream α of states in streams, which is an iterable object

134

over a countably, possibly infinite, set of states streams, so
the matrix could have infinite rows. In parallel, since each
states stream α lying on a row is an iterable object over a
countably, possibly infinite, set of satisfying states, the ma-
trix could have infinite columns too; therefore, the matrix
we are building could be infinite in both dimensions. So, let
streams be represented as

s00 s01 s02 s03 . . .

s10 s11 s12 . . .

s20 s21 . . .

s30 . . .

. . .

where each si,j is a state that carries a substitution which
satisfies the relation under study. Such states are visited
according to the dovetail techniques which enumerates by
interleaving state objects lying on the same rising diago-
nal, resulting in a fair, complete scheduler in the sense that
every satisfying state object will be reached, eventually.
For the sake of clarity, enumeration proceeds as follows

s00, s10, s01, s20, s11, s02, s30, s21, s12, s03, . . .

with respect to its implementation

def mplus(streams, interleaving):

if interleaving:

try: α = next(streams)

except StopIteration: return

else: S = [α]

while S:

for j in reversed(range(len(S))):

β = S[j]

try: s = next(β)

except StopIteration: del S[j]

else: yield s

try: α = next(streams)

except StopIteration: pass

else: S.append(α)

else:

for α in streams: yield from α

Scheme we provide our implementation using the same lan-
guage that original authors use for their canonical version.
We diverge from them in the way we represent substitu-
tions, choosing an union-find data structure that allows us
to maintain a balanced tree to track associations. The over-

135

head work that was necessary to implement a fully-flagged
µKanren yield a Scheme library to define and manipulate
infinite streams of objects, and this allows us to have an-
other way to define Riordan arrays for free, such as
(test '((1)

(1 1)

(1 2 1)

(1 3 3 1)

(1 4 6 4 1)

(1 5 10 10 5 1)

(1 6 15 20 15 6 1)

(1 7 21 35 35 21 7 1)

(1 8 28 56 70 56 28 8 1)

(1 9 36 84 126 126 84 36 9 1))

((list○take 10) (riordan-array stream:1s stream:1s)))

lying on the procedural abstraction riordan-array that
consumes two formal power series and produces a stream
of lists, each one denoting a triangle’s row; its definition is
clear and elegant in our opinion,
(define riordan-array

(Λ (d h)

(stream:dest/car+cdr (d ∅)

((dcar dcdr) (stream:cons

(list dcar)

((stream:zip-with cons)

dcdr (riordan-array (series:× d h) h)))))))

where stream:× denotes the series convolution operator and
the syntactic abstraction Λ is defined as an ”augmented
lambda” form that allows us to define delayed by means of
delay-force,
(define-syntax Λ

(syntax-rules ()

((Λ args body ...)

(lambda args (delay-force (begin body ...))))))

Smalltalk this implementation is an exercise in object-oriented
programming and its coding has been driven by a test-first
approach [Beck, 2002] and it is a literal port of the canoni-
cal one.

OCaml finally, this version is preparatory for the extension
of the HOL Light theorem prover which we are going to
describe in the rest of this chapter.

All these prototypes can be found in [Nocentini, 2018] and
some examples follows using the Scheme implementation to
show the power of the present paradigm.

Example 76. The context free grammar D that defines the set
of Dyck paths

D = ε | ◦ D • D

is encoded in the relation dyckº defined by the µKanren goal

136

(define dyckº

(lambda (α)

(condº/§

((nullº α))

((fresh (β γ) (∧

(dyckº β)

(dyckº γ)

(appendº `(○ . ,β) `(● . ,γ) α)))))))

and an enumeration is reported in Table 6.1.

(()

(○ ●)

(○ ○ ● ●)

(○ ● ○ ●)

(○ ○ ○ ● ● ●)

(○ ● ○ ○ ● ●)

(○ ○ ● ● ○ ●)

(○ ● ○ ● ○ ●)

(○ ○ ● ○ ● ●)

(○ ● ○ ○ ○ ● ● ●)

(○ ○ ● ● ○ ○ ● ●)

(○ ● ○ ● ○ ○ ● ●)

(○ ○ ○ ● ● ● ○ ●)

(○ ● ○ ○ ● ● ○ ●)

(○ ○ ● ● ○ ● ○ ●)

(○ ● ○ ● ○ ● ○ ●)

(○ ○ ○ ○ ● ● ● ●)

(○ ● ○ ○ ● ○ ● ●)

(○ ○ ● ● ○ ○ ○ ● ● ●)

(○ ● ○ ● ○ ○ ○ ● ● ●)

(○ ○ ○ ● ● ● ○ ○ ● ●)

(○ ● ○ ○ ● ● ○ ○ ● ●)

(○ ○ ● ● ○ ● ○ ○ ● ●)

(○ ● ○ ● ○ ● ○ ○ ● ●)

(○ ○ ● ○ ● ● ○ ●)

(○ ● ○ ○ ○ ● ● ● ○ ●)

(○ ○ ● ● ○ ○ ● ● ○ ●)

(○ ● ○ ● ○ ○ ● ● ○ ●)

(○ ○ ○ ● ● ● ○ ● ○ ●)

(○ ● ○ ○ ● ● ○ ● ○ ●)

(○ ○ ● ● ○ ● ○ ● ○ ●)

(○ ● ○ ● ○ ● ○ ● ○ ●)

(○ ○ ● ○ ○ ● ● ●)

(○ ● ○ ○ ○ ○ ● ● ● ●)

(○ ○ ● ● ○ ○ ● ○ ● ●)

(○ ● ○ ● ○ ○ ● ○ ● ●)

(○ ○ ○ ● ● ● ○ ○ ○ ● ● ●)

(○ ● ○ ○ ● ● ○ ○ ○ ● ● ●)

(○ ○ ● ● ○ ● ○ ○ ○ ● ● ●)

(○ ● ○ ● ○ ● ○ ○ ○ ● ● ●)

(○ ○ ● ○ ● ● ○ ○ ● ●)

(○ ● ○ ○ ○ ● ● ● ○ ○ ● ●))

Table 6.1: First 42 Dyck paths enumerated
by relation dyckº.

Example 77. The recurrence relation for the Fibonacci numbers

fn+2 = fn+1 + fn, n ≥ 0

is encoded in the relation fibonacciº defined by the goal

(define fibonacciº

(lambda (depth n α)

(cond

((zero? depth) (≡ α (list n)))

(else (fresh (β γ)

(∧

(fibonacciº (sub1 depth) (sub1 n) β)

(fibonacciº (sub1 depth) (sub2 n) γ)

(appendº β γ α)))))))

which enumerates the following identities

fn+2 = fn + fn+1

fn+2 = fn−2 + 2 fn−1 + fn

fn+2 = fn−4 + 3 fn−3 + 3 fn−2 + fn−1

fn+2 = fn−6 + 4 fn−5 + 6 fn−4 + 4 fn−3 + fn−2

fn+2 = fn−8 + 5 fn−7 + 10 fn−6 + 10 fn−5 + 5 fn−4 + fn−3

fn+2 = fn−10 + 6 fn−9 + 15 fn−8 + 20 fn−7 + 15 fn−6 + 6 fn−5 + fn−4

compacted in fn =

j∑
i=0

(
j

i

)
fn−2 j+i where j ≤

n

2
.

Example 78. The recurrence relation for the Pascal triangle

d0,0 = 1,

dn+1,0 = dn,0, n ≥ 0

dn+1,k+1 = dn,k + dn,k+1, n,k ≥ 0

is encoded in the relation tartagliaº defined by the goal

(define tartagliaº

(lambda (depth n k α)

(cond

((zero? depth) (≡ α (list (list n k))))

(else (fresh (β γ)

(∧

(tartagliaº (sub1 depth) (sub1 n) (sub1 k) β)

137

(tartagliaº (sub1 depth) (sub1 n) k γ)

(appendº β γ α)))))))

which enumerates the following identities

dn+1,k+1 = dn,k+1 + dn,k

dn+1,k+1 = dn−1,k+1 + 2 dn−1,k + dn−1,k−1

dn+1,k+1 = dn−2,k+1 + 3 dn−2,k + 3 dn−2,k−1 + dn−2,k−2

dn+1,k+1 = dn−3,k+1 + 4 dn−3,k + 6 dn−3,k−1 + 4 dn−3,k−2 + dn−2,k−3

dn+1,k+1 = dn−4,k+1 + 5 dn−4,k + 10 dn−4,k−1 + 10 dn−4,k−2 + 5 dn−4,k−3 + dn−4,k−4

dn+1,k+1 = dn−5,k+1 + 6 dn−5,k + 15 dn−5,k−1 + 20 dn−5,k−2 + 15 dn−5,k−3 + 6 dn−5,k−4 + dn−5,k−5

compacted in
(
p+m

r+m

)
=

m−1∑
j=0

(
m− 1

j

)(
p− 1+m

r− j+m

)
for

p, r,m ∈ N – recall that dn,k =

(
n

k

)
.

6.2 Toward certified computation

Theorem provers are employed to construct logically veri-
fied truths. In this work, we propose an extended language
of tactics which support the derivation of formally verified
theorems in the spirit of the logic programming paradigm.
Our setup, is based on the HOL Light theorem prover,

in which we extend the currently available tactics mecha-
nism with three basic features: (i) the explicit use of meta-
variables, (ii) the ability to backtrack during the proof search,
(iii) a layer of tools and facilities to interface with the under-
lying proof mechanism.
The basic building block of our framework are ML proce-

dures that we call solvers, which are a generalization of HOL
tactics and are –as well as tactics– meant to be used composi-
tionally to define arbitrarily complex proof search strategies.
We say that our approach is semi-certified because

• on one hand, the produced solutions are formally proved
theorems, hence their validity is guaranteed by construc-
tion;

• on the other hand, the completeness of the search pro-
cedure cannot be enforced in our framework and conse-
quently has to be ensured by a meta-reasoning.

At the present stage, our implementation [Maggesi and
Nocentini, 2018] is intended to be a test bed for experiments
and further investigation on this reasoning paradigm.

138

6.3 A simple example

To give the flavor of our framework, we show how to per-
form simple computations on lists.
Consider first the problem of computing the concatenation

of two lists [1; 2] and [3]. One natural way to approach this
problem is by using rewriting. In HOL Light, this can be done
by using conversions with the command
REWRITE_CONV [APPEND] `APPEND [1;2] [3]`;;

where the theorem
APPEND;;

val it : thm =

|- (!l. APPEND [] l = l) /\

(!h t l. APPEND (h :: t) l = h :: APPEND t l)

gives the recursive equations for the operator APPEND.
Our implementation allows us to address the same prob-

lem from a logical point of view. We start by proving two
theorems
APPEND_NIL;;

val it : thm = |- !l. APPEND [] l = l

APPEND_CONS;;

val it : thm =

|- !x xs ys zs. APPEND xs ys = zs

==> APPEND (x :: xs) ys = x :: zs

that gives the logical rules that characterize the APPEND oper-
ator. Then we define a solver
let APPEND_SLV : solver =

REPEAT_SLV (CONCAT_SLV (ACCEPT_SLV APPEND_NIL)

(RULE_SLV APPEND_CONS));;

which implements the most obvious strategy for proving a
relation of the form `APPEND x y = z` by structural analysis
on the list `x`. The precise meaning of the above code will be
clear later in this note; however, this can be seen as the direct
translation of the Prolog program
append([],X,X).

append([X|Xs],Ys,[X|Zs]) :- append(Xs,Ys,Zs).

Then, the problem of concatenating the two lists is de-
scribed by the term
`??x. APPEND [1;2] [3] = x`

where the binder `(??)` is a syntactic variant of the usual
existential quantifier `(?)`, which introduces the meta-
variables of the query.
The following command

list_of_stream

(solve APPEND_SLV

`??x. APPEND [1; 2] [3] = x`);;

139

runs the search process where the solve function starts the
proof search and produces a stream (i.e., a lazy list) of so-
lutions and the outermost list_of_stream transform the
stream into a list.
The output of the previous command is a single solution

which is represented by a pair where the first element is the
instantiation for the meta-variable `x`and the second element
is a HOL theorem
val it : (term list * thm) list =

[([`x = [1; 2; 3]`], |- APPEND [1; 2] [3] = [1; 2; 3])]

Now comes the interesting part: as in logic programs, our
search strategy (i.e., the APPEND_SLV solver) can be used for
backward reasoning.
Consider the variation of the above problem where we

want to enumerate all possible splits of the list [1; 2; 3].
This can be done by simply changing the goal term in the
previous query:
list_of_stream

(solve APPEND_SLV

`??x y. APPEND x y = [1;2;3]`);;

val it : (term list * thm) list =

[([`x = []`; `y = [1; 2; 3]`],

|- APPEND [] [1; 2; 3] = [1; 2; 3]);

([`x = [1]`; `y = [2; 3]`],

|- APPEND [1] [2; 3] = [1; 2; 3]);

([`x = [1; 2]`; `y = [3]`],

|- APPEND [1; 2] [3] = [1; 2; 3]);

([`x = [1; 2; 3]`; `y = []`],

|- APPEND [1; 2; 3] [] = [1; 2; 3])]

6.4 A library of solvers

Our framework is based on ML procedures called solvers.
Solvers generalizes classical HOL tactics in two ways, (i) they
facilitate the manipulation of meta-variables in the goal and
(ii) they allows us to backtrack during the proof search. We
observe that the tactics mechanism currently implemented in
HOL Light already provides basic support for meta-variables
in goals; however, it seems to be used only internally in
the implementation of the intuitionistic tautology prover
ITAUT_TAC.
We provide a library of basic solvers with the convention

that their names end in _SLV as in REFL_SLV, for instance.
Every HOL tactic can be ‘promoted’ into a solver using the

ML function
TACTIC_SLV : tactic -> solver

A partial list of solvers approximately corresponding to
classical HOL tactics are ACCEPT_SLV, NO_SLV, REFL_SLV,
RULE_SLV (corresponding to MATCH_MP_TAC).

140

Notice that these solvers are different from their corre-
sponding tactics because either

1. use the stream mechanism instead of OCaml exceptions to
handle the control flow; or

2. perform some kind of unification.

For (1), a very basic example is the solver NO_SLV which,
instead of raising an exception, it returns the empty stream of
solutions.
One example of (2) is the REFL_SLV solver: when it is ap-

plied to the goal
?- x + 1 = 1 + x

where x is a meta-variable, closes the goal by augmenting
the instantiation with the substitution 1/x and producing the
theorem |- 1 + 1 = 1 + 1. Observe that the corresponding
REFL_TAC fails in this case.
As for tactics, we have a collection of higher-order solvers.

Some of them, are the analogous of the corresponding tacti-
cals: ASSUM_LIST_SLV, CHANGED_SLV, EVERY_SLV, MAP_EVERY_SLV,
POP_ASSUM_LIST_SLV, POP_ASSUM_SLV, REPEAT_SLV, THENL_SLV,
THEN_SLV, TRY_SLV, UNDISCH_THEN_SLV.
Given two solvers s1 and s2 the solver combinator CONCAT_SLV

make a new solver that collect sequentially all solutions of s1
followed by all solutions of s2. This is the most basic con-
struction for introducing backtracking into the proof strategy.
From CONCAT_SLV, a number of derived combinators are

defined to capture the most common enumeration patterns,
here we give a brief list of those combinators without an
explicit description. However, we hope that the reader can
guess the actual behaviour from both their name and their
ML type:
COLLECT_SLV : solver list -> solver

MAP_COLLECT_SLV : ('a->solver) -> 'a list -> solver

COLLECT_ASSUM_SLV : thm_solver -> solver

COLLECT_X_ASSUM_SLV : thm_solver -> solver

Solvers can be used interactively. Typically, we can start
a new goal with the command gg and execute solvers with
ee. The command bb restore the previous proof state and pp

prints the current goal state. The stream of results is pro-
duced by a call to top_thms().
Here is an example of interaction. We first introduce the

goal, notice the use of the binder (??) for the meta-variable x:
gg `??x. 2 + 2 = x`;;

val it : mgoalstack =

`2 + 2 = x`

one possible solution is by using reflexivity, closing the proof
ee REFL_SLV;;

val it : mgoalstack =

141

we can now form the resulting theorem

list_of_stream(top_thms());;

val it : thm list = [|- 2 + 2 = 2 + 2]

Now, if one want to find a different solution, we can restore
the initial state

bb();;

val it : mgoalstack =

`2 + 2 = x`

then we use a different solver that allows us to unify with the
equation |- 2 + 2 = 4

ee (ACCEPT_SLV(ARITH_RULE `2 + 2 = 4`));;

val it : mgoalstack =

and again, we take the resulting theorem

list_of_stream(top_thms());;

val it : thm list = [|- 2 + 2 = 4]

Finally, we can change the proof strategy to find both solu-
tions by using backtracking

bb();;

val it : mgoalstack =

`2 + 2 = x`

ee (CONCAT_SLV REFL_SLV (ACCEPT_SLV(ARITH_RULE `2 + 2 = 4`)));;

val it : mgoalstack =

list_of_stream(top_thms());;

val it : thm list = [|- 2 + 2 = 2 + 2; |- 2 + 2 = 4]

The function

solve : solver -> term -> (term list * thm) stream

runs the proof search non interactively and produces a list of
solutions as already shown in Section 6.3. In this last case it
would be

list_of_stream

(solve (CONCAT_SLV REFL_SLV (ACCEPT_SLV(ARITH_RULE `2 + 2 = 4`)))

`??x. 2 + 2 = x`);;

val it : (term list * thm) list =

[([`x = 2 + 2`], |- 2 + 2 = 2 + 2);

([`x = 4`], |- 2 + 2 = 4)]

6.5 Case study: Evaluation for a lisp-like language

The material in this section is strongly inspired from the inge-
nious work of Byrd, Holk and Friedman about the miniKan-
ren system [Byrd et al., 2012], where the authors work with
the semantics of the Scheme programming language. Here,
we target a lisp-like language, implemented as an object lan-
guage inside the HOL prover. Our language is substantially
simpler than Scheme; in particular, it uses dynamic (instead

142

of lexical) scope for variables. Nonetheless, we believe that
this example can suffice to illustrate the general methodology.
First, we need to extend our HOL Light environment with

an object datatype sexp for encoding S-expressions.
let sexp_INDUCT,sexp_RECUR = define_type

"sexp = Symbol string

| List (sexp list)";;

For instance the sexp (list a (quote b)) is represented as
HOL term with
`List [Symbol "list";

Symbol "a";

List [Symbol "quote";

Symbol "b"]]`

This syntactic representation can be hard to read and gets
quickly cumbersome as the size of the terms grows. Hence,
we also introduce a notation for concrete sexp terms, which
is activated by the syntactic pattern '(…). For instance, the
above example is written in the HOL concrete syntax for
terms as
`'(list a (quote b))`

With this setup, we can easily specify the evaluation rules
for our minimal lisp-like language. This is an inductive pred-
icate with rules for: (i) quoted expressions; (ii) variables; (iii)
lambda abstractions; (iv) lists; (v) unary applications. We de-
fine a ternary predicate `EVAL e x y`, where e is a variable
environment expressed as associative list, x is the input pro-
gram and y is the result of the evaluation.
let EVAL_RULES,EVAL_INDUCT,EVAL_CASES = new_inductive_definition

`(!e q. EVAL e (List [Symbol "quote"; q]) q) /\

(!e a x. RELASSOC a e x ==> EVAL e (Symbol a) x) /\

(!e l. EVAL e (List (CONS (Symbol "lambda") l))

(List (CONS (Symbol "lambda") l))) /\

(!e l l'. ALL2 (EVAL e) l l'

==> EVAL e (List (CONS (Symbol "list") l)) (List l')) /\

(!e f x x' v b y.

EVAL e f (List [Symbol "lambda"; List[Symbol v]; b]) /\

EVAL e x x' /\ EVAL (CONS (x',v) e) b y

==> EVAL e (List [f; x]) y)`;;

We now use our framework for running a certified evalu-
ation process for this language. First, we define a solver for a
single step of computation.
let STEP_SLV : solver =

COLLECT_SLV

[CONJ_SLV;

ACCEPT_SLV EVAL_QUOTED;

THEN_SLV (RULE_SLV EVAL_SYMB) RELASSOC_SLV;

ACCEPT_SLV EVAL_LAMBDA;

RULE_SLV EVAL_LIST;

RULE_SLV EVAL_APP;

ACCEPT_SLV ALL2_NIL;

RULE_SLV ALL2_CONS];;

143

In the above code, we collect the solutions of several differ-
ent solvers. Other than the five rules of the EVAL predicate,
we include specific solvers for conjunctions and for the two
predicates REL_ASSOC and ALL2.
The top-level recursive solver for the whole evaluation

predicate is now easy to define:
let rec EVAL_SLV : solver =

fun g -> CONCAT_SLV ALL_SLV (THEN_SLV STEP_SLV EVAL_SLV) g;;

Let us make a simple test. The evaluation of the expression
((lambda (x) (list x x x)) (list))

can be obtained as follows:
get (solve EVAL_SLV

`??ret. EVAL []

'((lambda (x) (list x x x)) (list))

ret`);;

val it : term list * thm =

([`ret = '(() () ())`],

|- EVAL [] '((lambda (x) (list x x x)) (list)) '(() () ()))

Again, we can use the declarative nature of logic programs
to run the computation backwards. For instance, one intrigu-
ing exercise is the generation of quine programs, that is, pro-
grams that evaluates to themselves. In our formalization, they
are those terms q satisfying the relation `EVAL [] q q`. The
following command computes the first two quines found by
our solver.
let sols = solve EVAL_SLV `??q. EVAL [] q q`);;

take 2 sols;;

val it : (term list * thm) list =

[([`q = List (Symbol "lambda" :: _3149670)`],

|- EVAL [] (List (Symbol "lambda" :: _3149670))

(List (Symbol "lambda" :: _3149670)));

([`q =

List

[List

[Symbol "lambda"; List [Symbol _3220800];

List [Symbol "list"; Symbol _3220800; Symbol _3220800]];

List

[Symbol "lambda"; List [Symbol _3220800];

List [Symbol "list"; Symbol _3220800; Symbol _3220800]]]`],

|- EVAL []

(List

[List

[Symbol "lambda"; List [Symbol _3220800];

List [Symbol "list"; Symbol _3220800; Symbol _3220800]];

List

[Symbol "lambda"; List [Symbol _3220800];

List [Symbol "list"; Symbol _3220800; Symbol _3220800]]])

(List

[List

[Symbol "lambda"; List [Symbol _3220800];

List [Symbol "list"; Symbol _3220800; Symbol _3220800]];

144

List

[Symbol "lambda"; List [Symbol _3220800];

List [Symbol "list"; Symbol _3220800; Symbol _3220800]]]))]

One can easily observe that any lambda expression is triv-
ially a quine for our language. This is indeed the first solution
found by our search:
([`q = List (Symbol "lambda" :: _3149670)`],

|- EVAL []

(List (Symbol "lambda" :: _3149670))

(List (Symbol "lambda" :: _3149670)))

The second solution is more interesting. Unfortunately it
is presented in a form that is hard to decipher. A simple trick
can help us to present this term as a concrete sexp term: it is
enough to replace the HOL generated variable (`_3149670`)
with a concrete string. This can be done by an ad hoc substi-
tution.
let [_; i2,s2] = take 2 sols;;

vsubst [`"x"`,hd (frees (rand (hd i2)))] (hd i2);;

val it : term =

`q = '((lambda (x) (list x x)) (lambda (x) (list x x)))`

If we take one more solution from sols stream, we get a
new quine, which, interestingly enough, is precisely the one
obtained in [Byrd et al., 2012].
val it : term =

`q =

'((quote (lambda (x) (list x (list (quote quote) x))))

(quote (quote (lambda (x) (list x (list (quote quote) x))))))`

Conclusions

We presented a rudimentary framework implemented on top
of the HOL Light theorem prover that enables a logic pro-
gramming paradigm for proof searching. More specifically, it
facilitates the use of meta-variables in HOL goals and permits
backtracking during the proof construction.
It would be interesting to enhance our framework with

more features:

• Implement higher-order unification such as Miller’s higher-
order patterns, so that our system can enable higher-order
logic programming in the style of λProlog.

• Support constraint logic programming, e.g., by adapting
the data structure that represent goals.

Despite the simplicity of the present implementation, we
have already shown the implementation of some paradig-
matic examples of logic-oriented proof strategies. In the code
base, some further examples are included concerning a quick-
sort implementation and a simple example of a logical puzzle.

7

Bibliography

S. Bacchelli, E. Barcucci, E. Grazzini, and E. Pergola. Exhaus-
tive generation of combinatorial objects by ECO. Acta
Informatica, 40(8):585–602, Jul 2004. ISSN 1432-0525. doi:
10.1007/s00236-004-0139-x.

D. Baccherini, D. Merlini, and R. Sprugnoli. Binary words
excluding a pattern and proper Riordan arrays. Discrete
Mathematics, 307:1021–1037, 2007.

E. Barcucci, A. Del Lungo, J.M. Fédou, and R. Pinzani. Steep
polyominoes, q-Motzkin numbers and q-Bessel functions.
Discrete Mathematics, 189(1):21 – 42, 1998a. ISSN 0012-
365X. doi: https://doi.org/10.1016/S0012-365X(97)00275-
6. URL http://www.sciencedirect.com/science/

article/pii/S0012365X97002756.

E. Barcucci, A. Del Lungo, E. Pergola, and R. Pinzani. A
methodology for plane tree enumeration. Discrete Math-
ematics, 180(1):45 – 64, 1998b. ISSN 0012-365X. doi:
https://doi.org/10.1016/S0012-365X(97)00122-2. URL
http://www.sciencedirect.com/science/article/pii/

S0012365X97001222. Proceedings of the 7th Conference on
Formal Power Series and Algebraic Combinatorics.

E. Barcucci, A. Del Lungo, E. Pergola, and R. Pinzani. ECO:a
methodology for the enumeration of combinatorial objects.
Journal of Difference Equations and Applications, 5(4-5):
435–490, 1999. doi: 10.1080/10236199908808200.

P. Barry. Riordan Arrays: A Primer. Lulu.com, 2017. ISBN
9781326855239. URL https://books.google.it/books?id=

7fGBDgAAQBAJ.

K. Beck. Test-Driven Development: By Example. Pearson
Education, 2002.

J. Bell and B. Stevens. A survey of known results
and research areas for n-queens. Discrete Mathe-
matics, 309(1):1 – 31, 2009. ISSN 0012-365X. doi:

http://www.sciencedirect.com/science/article/pii/S0012365X97002756
http://www.sciencedirect.com/science/article/pii/S0012365X97002756
http://www.sciencedirect.com/science/article/pii/S0012365X97001222
http://www.sciencedirect.com/science/article/pii/S0012365X97001222
https://books.google.it/books?id=7fGBDgAAQBAJ
https://books.google.it/books?id=7fGBDgAAQBAJ

146

https://doi.org/10.1016/j.disc.2007.12.043. URL http:

//www.sciencedirect.com/science/article/pii/

S0012365X07010394.

A. Bernini, I. Fanti, and E. Grazzini. An exhaustive generation
algorithm for Catalan objects and others. 2007.

S. Bilotta, E. Pergola, and E. Grazzini. Counting Binary Words
Avoiding Alternating Patterns. Journal of Integer Sequences,
16, 2013.

L. Brugnano and D. Trigiante. Solving Differential Problems by
Multistep Initial and Boundary Value Methods. Australia Etc.
: Gordon & Breach, 1998.

W. E. Byrd. Relational Programming in miniKanren: Tech-
niques, Applications, and Implementations. 2009. PhD
dissertation.

W. E. Byrd, E. Holk, and D. P. Friedman. miniKanren, Live
and Untagged: Quine Generation via Relational Interpreters
(Programming Pearl). In Proceedings of the 2012 Annual
Workshop on Scheme and Functional Programming, Scheme
’12, pages 8–29, New York, NY, USA, 2012. ACM. ISBN
978-1-4503-1895-2. doi: 10.1145/2661103.2661105. URL
http://doi.acm.org/10.1145/2661103.2661105.

G.-S. Cheon and J.-S. Kim. Stirling matrix via Pascal matrix.
Linear Algebra and its Applications, 329:49 – 59, 2001.

F.R.K. Chung, R.L. Graham, V.E. Hoggatt, and M. Kleiman.
The number of baxter permutations. Journal of Combinato-
rial Theory, Series A, 24(3):382 – 394, 1978. ISSN 0097-3165.
doi: https://doi.org/10.1016/0097-3165(78)90068-7. URL
http://www.sciencedirect.com/science/article/pii/

0097316578900687.

M. Delest, D. Gouyou-Beauchamps, and B. Vauquelin. Enu-
meration of parallelogram polyominoes with given bond
and site perimeter. 3:325–339, 01 1987.

M.-P. Delest and J.-M. Fedou. Enumeration of skew Ferrers
diagrams. Discrete Mathematics, 112(1-3):65–79, 1993.

E. Deutsch, L. Ferrari, and S. Rinaldi. Produc-
tion matrices. Advances in Applied Mathemat-
ics, 34(1):101 – 122, 2005. ISSN 0196-8858. doi:
https://doi.org/10.1016/j.aam.2004.05.002. URL http:

//www.sciencedirect.com/science/article/pii/

S0196885804000673.

E. Deutsch, L. Ferrari, and S. Rinaldi. Production Matrices and
Riordan Arrays. Annals of Combinatorics, 13(1):65–85, Jul
2009. ISSN 0219-3094. doi: 10.1007/s00026-009-0013-1.
URL https://doi.org/10.1007/s00026-009-0013-1.

http://www.sciencedirect.com/science/article/pii/S0012365X07010394
http://www.sciencedirect.com/science/article/pii/S0012365X07010394
http://www.sciencedirect.com/science/article/pii/S0012365X07010394
http://doi.acm.org/10.1145/2661103.2661105
http://www.sciencedirect.com/science/article/pii/0097316578900687
http://www.sciencedirect.com/science/article/pii/0097316578900687
http://www.sciencedirect.com/science/article/pii/S0196885804000673
http://www.sciencedirect.com/science/article/pii/S0196885804000673
http://www.sciencedirect.com/science/article/pii/S0196885804000673
https://doi.org/10.1007/s00026-009-0013-1

147

D. Friedman, W. E. Byrd, and O. Kiselyov. The Reasoned
Schemer, Second Edition. MIT Press, 2018.

F. R. Gantmacher. The Theory of Matrices, volume one. Chelsea,
New York, USA., 1959.

S. Golomb. Polyominoes. Princeton University Press, 2nd
edition, 1996. ISBN 9780691024448.

G. H. Golub and C. F. Van Loan. Matrix Computations. Johns
Hopkins University Press, Baltimore, MD, USA, third edi-
tion, 1996., 1996.

D. Goodger. Polyominoes: Puzzles & Solutions, 2015. URL
http://puzzler.sourceforge.net.

L. J. Guibas and A. M. Odlyzko. Long repetitive patterns in
random sequences. Zeitschrift für Wahrscheinlichkeitstheorie
und Verwandte Gebiete, 53(3):241–262, Jan 1980. ISSN 1432-
2064. doi: 10.1007/BF00531434. URL https://doi.org/

10.1007/BF00531434.

L. J. Guibas and A. M. Odlyzko. String overlaps, pattern
matching, and nontransitive games. Journal of Combinato-
rial Theory, Series A, 30(2):183 – 208, 1981. ISSN 0097-3165.
doi: https://doi.org/10.1016/0097-3165(81)90005-4. URL
http://www.sciencedirect.com/science/article/pii/

0097316581900054.

T.-X. He. Matrix characterizations of Riordan arrays. Linear
Algebra and its Applications, 465:15 – 42, 2015.

J. Hemann and D. P. Friedman. µKanren: a Minimal Func-
tional Core for Relational Programming. 2013. Scheme2013,
Alexandria.

N. J. Higham. Functions of Matrices. Siam, 2008.

H. Hitotumatu and K. Noshita. A technique for implement-
ing backtrack algorithms and its application. Information
Processing Letters, 8(4):174 – 175, 1979. ISSN 0020-0190.
doi: https://doi.org/10.1016/0020-0190(79)90016-4. URL
http://www.sciencedirect.com/science/article/pii/

0020019079900164.

R. A. Horn and C. R. Johnson. Topics in Matrix Analysis.
Cambridge University Press, 1991.

D. E. Knuth. Dancing links. eprint arXiv:cs/0011047, November
2000.

V. Lakshmikantham and D. Trigiante. Theory of Difference
Equations : Numerical Methods and Applications. New York:
Marcel Dekker, 2002.

http://puzzler.sourceforge.net
https://doi.org/10.1007/BF00531434
https://doi.org/10.1007/BF00531434
http://www.sciencedirect.com/science/article/pii/0097316581900054
http://www.sciencedirect.com/science/article/pii/0097316581900054
http://www.sciencedirect.com/science/article/pii/0020019079900164
http://www.sciencedirect.com/science/article/pii/0020019079900164

148

P. Lancaster and M. Tismenetsky. The Theory of Matrices,
second edition. Academic Press, London, 1985.

A. Luzon, D. Merlini, M. A. Moron, and R. Sprugnoli. Iden-
tities induced by Riordan arrays. Linear Algebra and its
Applications, 436(3):631 – 647, 2012. ISSN 0024-3795.
doi: https://doi.org/10.1016/j.laa.2011.08.007. URL
http://www.sciencedirect.com/science/article/pii/

S0024379511005805.

A. Luzon, D. Merlini, M. A. Moron, and R. Sprugnoli. Com-
plementary Riordan arrays. Discrete Applied Math-
ematics, 172:75 – 87, 2014. ISSN 0166-218X. doi:
https://doi.org/10.1016/j.dam.2014.03.005. URL http:

//www.sciencedirect.com/science/article/pii/

S0166218X14001280.

A. Luzon, D. Merlini, M. A. Moron, L. F. Prieto-Martinez, and
R. Sprugnoli. Some inverse limit approaches to the Riordan
group. Linear Algebra and its Applications, 491:239 – 262,
2016.

M. Maggesi and M. Nocentini. Kanren Light, 2018. URL
https://github.com/massimo-nocentini/kanren-light.

D. Merlini and M. Nocentini. Algebraic Generating Functions
for Languages Avoiding Riordan Patterns. Journal of Inte-
ger Sequences, 21, 2018. URL https://cs.uwaterloo.ca/

journals/JIS/VOL21/Merlini/merlini5.html.

D. Merlini and M. Nocentini. Functions and jordan
canonical forms of riordan matrices. Linear Alge-
bra and its Applications, 565:177 – 207, 2019. doi:
https://doi.org/10.1016/j.laa.2018.12.011.

D. Merlini and R. Sprugnoli. Algebraic aspects of some Rior-
dan arrays related to binary words avoiding a pattern. The-
oretical Computer Science, 412(27):2988 – 3001, 2011. ISSN
0304-3975. doi: https://doi.org/10.1016/j.tcs.2010.07.019.
URL http://www.sciencedirect.com/science/article/

pii/S0304397510004056. Combinatorics on Words
(WORDS 2009).

D. Merlini, D. G. Rogers, R. Sprugnoli, and M. C. Verri. On
Some Alternative Characterizations of Riordan Arrays.
Canadian Journal of Mathematics, 49:301 – 320, 08 1997.

D. Merlini, R. Sprugnoli, and M. C. Verri. Combinato-
rial Sums and Implicit Riordan Arrays. Discrete Math.,
309(2):475–486, January 2009. ISSN 0012-365X. doi:
10.1016/j.disc.2007.12.039. URL http://dx.doi.org/10.

1016/j.disc.2007.12.039.

http://www.sciencedirect.com/science/article/pii/S0024379511005805
http://www.sciencedirect.com/science/article/pii/S0024379511005805
http://www.sciencedirect.com/science/article/pii/S0166218X14001280
http://www.sciencedirect.com/science/article/pii/S0166218X14001280
http://www.sciencedirect.com/science/article/pii/S0166218X14001280
https://github.com/massimo-nocentini/kanren-light
https://cs.uwaterloo.ca/journals/JIS/VOL21/Merlini/merlini5.html
https://cs.uwaterloo.ca/journals/JIS/VOL21/Merlini/merlini5.html
http://www.sciencedirect.com/science/article/pii/S0304397510004056
http://www.sciencedirect.com/science/article/pii/S0304397510004056
http://dx.doi.org/10.1016/j.disc.2007.12.039
http://dx.doi.org/10.1016/j.disc.2007.12.039

149

A. Meurer, C. P. Smith, M. Paprocki, O. Čertík, S. B. Kir-
pichev, M. Rocklin, A. Kumar, S. Ivanov, J. K. Moore,
S. Singh, T. Rathnayake, S. Vig, B. E. Granger, R. P. Muller,
F. Bonazzi, H. Gupta, S. Vats, F. Johansson, F. Pedregosa,
M. J. Curry, A. R. Terrel, Š. Roučka, A. Saboo, I. Fernando,
S.h Kulal, R. Cimrman, and A. Scopatz. SymPy: symbolic
computing in Python. PeerJ Computer Science, 3:e103, Jan-
uary 2017. ISSN 2376-5992. doi: 10.7717/peerj-cs.103.
URL https://doi.org/10.7717/peerj-cs.103.

C. Moler and C. Van Loan. Nineteen Dubious Ways to Com-
pute the Exponential of a Matrix, Twenty-Five Years Later.
SIAM review, 45:3 – 49, 2003.

H. D. Nguyen and D. Taggart. Mining the Online Encyclope-
dia of Integer Sequences, 2013. Preprint.

M. Nocentini. Simulation Methods. URL https://

massimo-nocentini.github.io/simulation-methods/

build/html/index.html.

M. Nocentini. OEIS Tools. Open School on Combina-
torial Method in the analysis of Algorithms and Data
Structures, SKKU University, Korea, 2017. URL http:

//massimo-nocentini.github.io/PhD/skku-aorc-2017/

oeistools.html.

M. Nocentini. µKanren Implementations, 2018. In the follow-
ing repositories, indexed by programming languages:

Python https://github.com/massimo-nocentini/

microkanrenpy

Scheme https://github.com/massimo-nocentini/

on-scheme/blob/master/src/microkanren.scm

Smalltalk https://github.com/massimo-nocentini/

microkanrenst

OCaml https://github.com/massimo-nocentini/

kanren-light

respectively.

H. Runckel and U. Pittelkow. Practical computation of matrix
functions. Linear Algebra and its Applications, 49:161 – 178,
1983.

F. Ruskey. Combinatorial Generation. 2003. URL http:

//www.1stworks.com/ref/RuskeyCombGen.pdf.

R. Sedgewick and P. Flajolet. An Introduction to the Analysis of
Algorithms. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1996. ISBN 0-201-40009-X.

https://doi.org/10.7717/peerj-cs.103
https://massimo-nocentini.github.io/simulation-methods/build/html/index.html
https://massimo-nocentini.github.io/simulation-methods/build/html/index.html
https://massimo-nocentini.github.io/simulation-methods/build/html/index.html
http://massimo-nocentini.github.io/PhD/skku-aorc-2017/oeistools.html
http://massimo-nocentini.github.io/PhD/skku-aorc-2017/oeistools.html
http://massimo-nocentini.github.io/PhD/skku-aorc-2017/oeistools.html
https://github.com/massimo-nocentini/microkanrenpy
https://github.com/massimo-nocentini/microkanrenpy
https://github.com/massimo-nocentini/on-scheme/blob/master/src/microkanren.scm
https://github.com/massimo-nocentini/on-scheme/blob/master/src/microkanren.scm
https://github.com/massimo-nocentini/microkanrenst
https://github.com/massimo-nocentini/microkanrenst
https://github.com/massimo-nocentini/kanren-light
https://github.com/massimo-nocentini/kanren-light
http://www.1stworks.com/ref/RuskeyCombGen.pdf
http://www.1stworks.com/ref/RuskeyCombGen.pdf

150

L. W. Shapiro, S. G., W.-J. Woan, and L. C. Woodson. The Ri-
ordan group. Discrete Applied Mathematics, 34(1):229 – 239,
1991. ISSN 0166-218X. doi: https://doi.org/10.1016/0166-
218X(91)90088-E. URL http://www.sciencedirect.com/

science/article/pii/0166218X9190088E.

N. J. A. Sloane. The Encyclopedia of Integer Sequences. URL
http://oeis.org/.

R. Sprugnoli. Riordan arrays and combinatorial sums. Dis-
crete Mathematics, 132(1):267 – 290, 1994. ISSN 0012-365X.
doi: https://doi.org/10.1016/0012-365X(92)00570-H. URL
http://www.sciencedirect.com/science/article/pii/

0012365X9200570H.

SymPy. SymPy’s documentation, a. URL http://docs.sympy.

org/latest/index.html.

SymPy. SymPy’s tutorial, b. URL http://docs.sympy.org/

latest/tutorial/index.html.

G. van Rossum and J.J. Davis. A Web Crawler With asyncio
Coroutines. URL http://www.aosabook.org/en/500L/

a-web-crawler-with-asyncio-coroutines.html.

L. Verde-Star. Functions of matrices. Linear Algebra and its
Applications, 406:285 – 300, 2005.

H. S. Warren. Hacker’s Delight. Addison-Wesley Professional,
2nd edition, 2012. ISBN 0321842685, 9780321842688.

P. E. Weidmann. Sequencer. URL https://github.com/

p-e-w/sequencer.

http://www.sciencedirect.com/science/article/pii/0166218X9190088E
http://www.sciencedirect.com/science/article/pii/0166218X9190088E
http://oeis.org/
http://www.sciencedirect.com/science/article/pii/0012365X9200570H
http://www.sciencedirect.com/science/article/pii/0012365X9200570H
http://docs.sympy.org/latest/index.html
http://docs.sympy.org/latest/index.html
http://docs.sympy.org/latest/tutorial/index.html
http://docs.sympy.org/latest/tutorial/index.html
http://www.aosabook.org/en/500L/a-web-crawler-with-asyncio-coroutines.html
http://www.aosabook.org/en/500L/a-web-crawler-with-asyncio-coroutines.html
https://github.com/p-e-w/sequencer
https://github.com/p-e-w/sequencer

	Backgrounds
	Riordan Arrays, formally
	Symbolic computation
	Riordan Arrays, computationally

	Functions and Jordan canonicalforms of Riordan matrices
	Introduction
	Basic definitions and notations
	Riordan matrices
	Functions and polynomials
	Jordan canonical form

	Algebraic generating functions forlanguages avoiding Riordan patterns
	Introduction
	Riordan arrays for Riordan patterns
	Code for enumeration and construction of Riordan arrays
	Some combinatorial interpretations

	Crawling, (pretty) printingand graphing the OEIS
	Introduction
	The Crawler
	The (Pretty) Printer
	The Grapher

	Queens, tilings, ECOand polyominoes
	The n-Queens problem
	Polyominoes
	Parallelogram Polyominoes
	An implementation of the ECO method

	Semi-Certified InteractiveLogic Programming
	Kanren and relational programming
	Toward certified computation
	A simple example
	A library of solvers
	Case study: Evaluation for a lisp-like language

	Bibliography

