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By “paradox” one usually means a statement claiming something which
goes beyond (or even against) ‘common opinion’ (what is usually believed
or held). Paradoxes form a natural object of philosophical investigation
ever since the origins of rational thought; they have been invented as part
of complex arguments and as tools for refuting philosophical theses (think
of the celebrated paradoxes credited to Zeno of Elea, concerning motion,
the continuum, the opposition between unity and plurality, or of the
arguments entangling the notions of truth and vagueness, credited to the
Megarian School, and Eubulides of Miletus). Paradoxes—termed as
Insolubilia—form also a substantial part of logical and philosophical
investigations during the Middle Ages.

This entry concentrates on the emergence of non-trivial logical themes and
notions from the discussion on paradoxes from the beginning of the 20th
century until 1945, and attempts to assess their importance for the
development of contemporary logic. Paradoxes involving vagueness,
knowledge, belief, and space and time are treated in separate entries.

A terminological warning is in order. The word “antinomy” is used below
as alternative to, and synonymous with, “paradox”. Most paradoxes—but
not all—involve contradictions; for such cases, we often use the word
“contradiction“ as well.
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1. Introduction

Between the end of the 19th century and the beginning of the 20th century,
the foundations of logic and mathematics were affected by the discovery
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of a number of difficulties—the so-called paradoxes—involving
fundamental notions and basic methods of definition and inference, which
were usually accepted as unproblematic. Since then paradoxes have
acquired a new role in contemporary logic: indeed, they have led to
theorems (usually negative results, such as unprovability and
undecidability) and they are not simply confined to the realm of a sterile
dialectic. Several basic notions of logic, as it is presently taught, have
reached their present shape at the end of a process which has been often
triggered by various attempts to solve paradoxes. This is especially true
for the notions of set and collection in general, for the basic syntactical
and semantical concepts of standard classical logic (logical languages of a
given order, the notion of satisfiability, definability). After the first forty
years, the by-products of the paradoxes included axiomatizations of set
theory, a systematic development of type theory, the foundations of
semantics, a theory of formal systems (at least in nuce), besides the
introduction of the dichotomy predicative/impredicative which was
important for conceptual reasons, but also for the future of proof
theoretical methods.

2. Paradoxes: early developments (1897–1917)

Early work on paradoxes of particular importance pertained to the
following notions:

1. ordinal and cardinal numbers (Burali-Forti, Cantor);
2. property, set, class (Russell, Zermelo);
3. proposition and truth (Russell);
4. definability and the arithmetical (or atomistic) continuum (Richard,

König, Bernstein, Berry, Grelling).

Some of these contradictions are already treated as separate entries in this
encyclopedia (liar paradox, Russell’s paradox); the emphasis here will be
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on the background problems, their mutual links and the interaction with
foundational and philosophical issues.

2.1. Difficulties involving ordinal and cardinal numbers

The earliest modern paradoxes concerned the notions of ordinal and
cardinal number. Burali-Forti, a mathematician of Peano’s school,
attempted to prove that the ordinal numbers are not linearly ordered.
Assuming by contradiction that the class  of all ordinals could be
linearly ordered, he observed that then  itself would be well-ordered
and it would possess an ordinal . Thus  would be similar
(order-isomorphic) to a proper initial segment of itself, the one determined
by , contradicting a well-known theorem about well-ordered sets. The
result was published in 1897 and, though Burali-Forti’s original aim is
impossible to achieve, his argument showed that the collection  is
problematic at best (Moore-Garciadiego 1981).

The father of set theory, Cantor, had noticed similar difficulties already in
1895 (as witnessed by Bernstein and by letters to Hilbert and Dedekind).
Indeed, in a second letter to Dedekind of August 31, 1899 Cantor pointed
out another problem, involving the notion of the cardinal number and
implying that one cannot consistently think of the “the set of all
conceivable sets”, say . Were  a genuine set, then it would possess a
cardinal number , which would be the maximum cardinal number. But
one could also consider the set  of all subsets of , and by Cantor’s
theorem the cardinality of  ought to be strictly bigger than the
purported maximum : contradiction.

As a consequence, Cantor suggested a crucial distinction—still regarded
as “subjective”, i.e., mathematically not precise, by Hilbert (as late as
1904, see van Heijenoort 1967, p. 131)—between totalities that cannot be
conceived as a whole (the inconsistent ones) and those which can be
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regarded as completed (fertige Menge). Roughly, the former is a collection
that cannot be an element of other collections, whereas the latter is a small
collection, which can be an element of other collections (see also the entry
on the early development of set theory). This corresponds to the
distinction between classes and sets, later made precise and axiomatized in
the class-theoretic approach (von Neumann, Bernays, Gödel); it is
reminiscent of the Russellian limitation-of-size doctrine (see 3.1 below;
Garciadiego 1992).

In the case of the difficulty discovered by Burali-Forti, the consequence
for Cantor was that the multiplicity (Mannigfaltigkeit) of ordinal numbers
is itself well-ordered, but is not a set: hence, no ordinal can be assigned to
it, and the antinomy is resolved.

2.2 Russell’s contradiction

The second famous published antinomy (Russell 1903, paragraphs 78,
101–106; Frege 1903, Appendix, dated October 1902; see the entry
Russell’s paradox and Klement 2010) takes us from Cantor’s paradise into
the realm of the foundations of logic and the philosophy of mathematics. It
is strikingly simple, involves only predicate application, and it has an
explicit self-referential (reflexive) character. In Russell’s own words (June
16, 1902, letter to Frege, translation in van Heijenoort 1963, pp. 124–125),

Russell was at first entangled in the study of “the contradictions in the
relation of continuous quantity to number and the continuum” (cited in

let  be the predicate: to be a predicate that cannot be predicated
of itself. Can  be predicated of itself? From each answer, the
opposite follows. Likewise, there is no class (as a totality) of those
classes which, each taken as a totality, do not belong to themselves.
From this I conclude that under certain circumstances a definable
collection does not form a totality.

w
w
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Moore 1995, p. 219), and he obtained his contradiction (May 1901) as a
result of considering the antinomy arising with Cantor’s theorem (see
Russell 1903, footnote 7, par. 344; par. 100, p. 101). Russell probably
realized the importance of the discovery only after Frege’s reply. The
effect of the antinomy is that it is impossible to have an abstraction
operation  mapping injectively any concept (property)  into
its extension (the class of all  such that  (i.e., so that if the classes
defined by  and  are equal, then , for every object . As a
consequence, it is also impossible to lay out the foundations of set theory
on a pure logical notion of set where membership faithfully mirrors
predicate application, in the sense that, in the light of Frege,  means
that (1)  for some concept , and (2)  truly applies to .
(For historical details on Russell’s discovery of the paradox, see Moore
1995).

2.3 Russell’s paradox involving propositions and truth: the
emergence of type theory

Russell’s Principles of Mathematics (1903) contains extended discussions
of Russell’s and Burali-Forti’s paradoxes in various forms in the sections
78, 84–85, 101, 301. Russell’s paradox is adapted to show that a
propositional function  cannot be a logical subject (i.e., as separated
from its argument; it is not saturated in Frege’s terms); otherwise, 
would apply to itself,  would be a propositional function and it
would be possible to reproduce the inconsistency.

In ch. 10, section 102, Russell also gives a form of Cantor’s theorem,
which captures the logical essence of diagonalization (this version is by
now folklore): no binary relation can parameterize all unary predicates
over a given domain  (i.e., no binary relation  exists such that for all
unary predicates  over , there is an object  in  for which one has: for
all  in .

ϕ ↦ {x ∣ ϕ} ϕ
x ϕ(x))

ϕ ψ ϕ(a) ↔ ψ(a) a)

x ∈ y
y = {x ∣ ϕ(x)} ϕ ϕ x

ϕ
ϕ

¬ϕ(ϕ)

U R
P U a U

x U, R(a, x) ↔ P(x))
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In sum, Russell’s contradiction shows the critical status of apparently safe
logical principles: either one has to give up the assumption that “any
propositional function containing only one variable is equivalent to
asserting membership for a class defined by the propositional function”
(i.e., the comprehension principle); or one has to reject the idea that “every
class can be taken as one term” (pp. 102–103).

In Russell’s hands the paradox applies to predicates, classes, and
propositional functions and leads to a new picture of the logico-
mathematical universe, which is outlined in a first exposition of the
doctrine of types: to each propositional function  is associated a range of
significance, i.e., a class of objects to which the given  applies in order to
produce a proposition; moreover, precisely the ranges of significance form
types. However, there are objects that are not ranges of significance; these
are just atoms (i.e., urelemente or individuals) and they form the lowest
type. The next type consists of classes or ranges of individuals; then one
has classes of classes of objects of the lowest type, and so on (see also the
entry on type theory)..

New difficulties still arise if one accepts that propositions form a type (as
they are the only objects of which it can be meaningfully asserted that they
are true or false). First of all, there are obviously at least as many
propositions as objects (just consider the map associating with  the
proposition expressed by ; p. 527). On the other hand, if it is
possible to form types of propositions, there are more types of
propositions than propositions, by Cantor’s argument. Then we can inject
types of propositions into propositions by means of the notion of logical
product. Let  be a class of propositions and let  be the proposition
“every proposition of  is true” (regarded as a possibly infinitary
conjunction); then, if  and  are different classes, the propositions 
and  are different, i.e., the map associating to  its product  is
injective. Therefore, if we consider the class

ϕ
ϕ

x
(x = x)

m Πm
m

m n Πm
Πn m Πm
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we have, by injectivity, a contradiction.

Of course, if one were to adopt the extensional point of view, and hence
identify equivalent propositions, the contradiction above could not be
derived. Russell, however, sticks to an intensional point of view, stressing
that equivalent propositions often can be quite different. So one is
apparently forced to reject the assumption that propositions form one type,
and hence to require that they ought to have various types, while logical
products ought to have propositions of only one type as factors.

This was eventually the basis of the ramified theory of types, but in 1903
Russell still regarded the suggestion as harsh and artificial. As the footnote
on p. 527 shows, he believed that the set of all propositions is a
counterexample to Cantor’s theorem.

2.4 The mathematicians and the contradictions: Hilbert and
Zermelo

Zermelo independently discovered Russell’s paradox in Göttingen (as
witnessed by Hilbert and Husserl) in the following form: a set  that
comprises as elements all of its subsets is inconsistent. Indeed, consider
the set  of all elements of  which are not elements of themselves
(e.g., the empty set is in . This set is a subset of  and hence by
assumption on . If , then  is not a member of
itself. Hence  and since : contradiction.

In addition, Hilbert had noticed in unpublished work (see Kahle and
Peckhaus 2002) that additional contradictions of a mathematical nature
can arise. The first one derives from assuming that there is a well-defined
set  which satisfies the following closure conditions: (i) the set  of
natural numbers is an element of ; (ii) , whenever  (where 

{p ∣ ∃m(Πm = p & p ∉ m)} = R,

M

M0 M
)M0 M

M, ∈ MM0 ∈M0 M0 M0
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 is the set of all functions from  to ; (iii) , whenever .
Then by (iii),  and finally . But by definition of
union, ; hence there would exist a map of  onto  and a
contradiction could be derived by diagonalization.

Furthermore, as is witnessed by Hilbert’s unpublished Sommer Vorlesung
1905 (see Kahle 2004), Hilbert discovered a remarkable functional version
of Russell’s paradox, later to become popular in the context of
combinatory logic, lambda calculus and recursion theory. The argument is
based on functional self-application and hence direct self-reference.

The contradiction is obtained by assuming that the universe includes
everything, i.e., variables range over both objects and functions, and that
there are at least two distinct objects. Then one introduces a new operation
(universal application in our sense):  is the result of applying  to .
Given two distinct objects 0 and 1, and on the assumption that the universe
is closed under arbitrary definition by cases, there exists an object  such
that , if , and , if . Then one chooses  (as 

 ranges over everything) and easily derives a contradiction.

The results of the Hilbert school were not published because
contradictions and paradoxes were regarded as symptoms of growth and as
temporary difficulties. The diagnosis was that traditional logic is
insufficient and the theory of concept-formation needs to be sharpened.
Any concept  is given in a network of concepts (letter of Hilbert to
Frege, Dec. 27, 1899; see Frege 1976, pp. 79–80), and this network is
determined by the axioms. Only the consistency of the axioms that define
the concept guarantees the legitimacy of . In a nutshell: paradoxes tell us
that we must develop a metamathematical analysis of the notions of proof
and of the axiomatic method; their importance is methodological as well
as epistemological.

XX X X) ∪X ∈ C X ⊆ C
∪C = U ∈ C F = ∈ CUU

F ⊆ U U F

xy x y

f
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2.5 Around 1905: difficulties arising from definability and the
continuum

As the reactions of the mathematical world made clear, the paradoxes
were crucially involved around 1905 when basic problems of set theory
were worked on. Indeed, the new contradictions not only affected the
conception of set and logical concepts, they also came to include the
notion of definability and its relation with a fundamental issue: the
structure of the mathematical continuum and in particular whether the
continuum can be well-ordered and whether Cantor’s Continuum
Hypothesis (CH) holds.

At the Heidelberg Congress in 1904, Julius König tried to refute Cantor’s
continuum hypothesis. Due to a mistake discovered by Zermelo, his paper
was immediately withdrawn, but the subsequent year, König produced a
new argument.

Consider the reals which are definable in finitely many words. They form a
countable sequence: . Since the continuum is uncountable,
there exist reals not occurring in the given enumeration. Assuming that the
continuum is well-ordered, there exists “the least real  which is not in the
sequence ”; this real is not in the sequence, but the very
expression “the least real  which is not in the sequence” defines  with
finitely many words; so  occurs somewhere in the sequence:
contradiction!

König also observed that the argument extends to the second number class
and a similar paradox could be obtained by considering the collection 

 of finitely definable countable ordinals. In this case, taking
inspiration from Cantor, König’s solution is that Cantor’s second number
class is not a set in a proper sense (a completed totality). To define a set,

, … , , …E0 En

E
{ ∣ n ∈ Ω}En

E E
E

FOD
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according to König, one should provide not only a rule for defining its
elements, but also a means for distinguishing them.

A contradiction related to König’s had been published slightly earlier by
Jules Richard, a mathematician of a Lyceé in Dijon. Using an enumeration
of all permutations with repetitions of the twenty-six letters of the French
alphabet, Richard noticed that the set  of reals that can be defined by
finitely many French words is denumerable and hence one can assume to
have an enumeration  of all those numbers. But then one can
define the following real : the integer part of  is 0, while its th
decimal digit of  is  if  has the th decimal digit  different from
both 8 and 9; otherwise, the th decimal digit of  is 1. By construction, 

 will not occur in . On the other hand, if we consider that  is
defined by means of a finite collection of letters, this must occur in 

.

Contrary to König, Richard did not rely upon the well-ordering of the
continuum, and the proposed solution is interesting for the foundational
debate to come. He pointed out that the definition of the number  refers
to the totality of definable reals, to which  itself belong; but no object
should be definable in terms of a collection containing it. So it appears that
the definition is viciously circular, and that makes the definition illusory.
This idea soon became the basis of Poincaré’s solution, and eventually
also Russell’s (see below 3.1, the issue of impredicatively defined
collections).

So, why definability? The motivation was made clear for instance by
Bernstein’s “Die Theorie der reellen Zahlen” (1905a), where Cantor’s
continuum hypothesis was claimed to be settled in the positive. He
criticized the so called “Dirichlet notion” of arbitrary function and stated
that it is possible to give a foundation to the continuum using only

E

, , …u1 u2
N N n

N p + 1 un n p
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computable reals, i.e., reals possessing an explicit “formation law”
(“Bildungsgesetz”).

According to him, this is not a restriction since—he claims—there are
nondenumerably many computable reals in his sense. He also states that it
is possible to display the new computable continuum in a hierarchy (i.e., a 

-increasing sequence)  of subsets of , which is defined
in such a way that each  is at most of cardinality  and hence that the
cardinality of the union of the sequence is at most . The idea is to start
with a basic domain  of simple functions (e.g., those having
finitely many values), then to define a new domain  which extends 
with operations that are defined from elements of , and so on.

Though his claims are not justified, in the light of Gödel’s later work on
constructibility, one might say that Bernstein’s basic intuition was sound:
the continuum problem can be settled, if one has an appropriately general
notion of definability (or computability, constructibility) and by iterating it
along the ordinals.

This question was ultimately connected with the problem of understanding
the atomistic continuum. The arithmetized conception—in the sense of
Dedekind or Cantor, where real numbers are identified with suitable sets
of rationals—shifted the attention towards arbitrary infinite sequences of
natural numbers. But this notion was not so easy to accept. According to
Bernstein (Bernstein 1905a, p. 449), an infinite sequence (or an infinite
set) must be given by a genuine rule. But what is a rule? Since one must
be liberal (in order not to have just special classes of reals, if one is too
restrictive), one is naturally driven to think of arbitrary finitely described
laws, shifting the attention towards the syntax of the rules. However,
unless one considers ordinary language, no such syntax is available and
this engenders indeterminacy (this is Peano’s diagnosis, see below Peano
1902–1906).

⊂ { ∣ α < }Bα ℵ1 NN

Bα ℵ1
ℵ1

⊂B0 NN
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The need for a specification of infinite sets is crucial in the discussion of
the related well-ordering problem. It also affects the related issue of the
classification of discontinuous functions and analytically representable
functions of real variables, tackled by the French semi-intuitionists Borel,
Baire and Lebesgue. At the same time, they held the view that a
mathematical entity (like an infinite set or a function) exists only insofar as
it is “nameable by a finite number of words”, against the platonistic views
of Hadamard and Zermelo (see Borel et al. 1905).

3. Paradoxes, predicativism and the doctrine of
types: 1905–1913

In the light of the foundational debate, the following years were rich in
seminal work: new paradoxes were discovered (Berry, Grelling-Nelson),
an old paradox—the Liar—showed up again, a comprehensive view of the
contradictions of logic and mathematics was masterfully outlined in the
opening section of Russell’s 1908 paper and the preceding Russell 1906a,
while a conceptual distinction between two kinds of paradoxes was set
forth in Peano’s paper of 1906. Also, the basic ideas of predicativity
emerged in the discussion between Poincaré, the leading mathematician of
the time, and Russell. Even more important for the history of
mathematical logic, fundamental technical advances for solving the
paradoxes and shaping the foundations of logic and mathematics were
made: Russell’s theory of (ramified) types and Zermelo’s axiomatization
of set theory.

3.1 Poincaré and Russell on contradictions

Russell’s and Poincaré’s ideas for solving paradoxes are to be found in a
number of papers published in the period 1905–1912:

1. the long essay “Les mathématiques et la logique”, in the Revue de

Andrea Cantini and Riccardo Bruni
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Métaphysique et de Morale (Poincaré 1905, 1906a), wherein
Poincaré strongly criticizes axiomatic and logicist foundations;

2. Russell’s “On some difficulties in the theory of transfinite numbers
and order types” (read in 1905, published in 1907);

3. Poincaré’s counter-attack (Poincaré 1906b), the subsequent papers by
Russell in the Revue (Russell 1906) and the American Journal of
Mathematics (Russell 1908), and Poincaré’s last articles (1909a,
1910, 1912).

Poincaré (1906b) took the contradictions as grounds to defend an
intuitionistic, Kantian point of view. According to him, number-theoretic
induction and the axiom of choice constitute independent intuitions, truly
synthetic a priori judgements. He then argues against Russell’s logical
definition of natural numbers as those numbers which belong to all
recurrent classes (those classes which contain 0 and are closed under
successor). His objection is that the definition is not admissible since it
refers essentially to a totality to which the class to be defined belongs—the
definition is impredicative—and hence it is to be regarded as circular. But,
according to Poincaré, mathematical objects do not exist without a proper
definition, and a proper definition must be predicative, i.e., it must avoid
vicious circles; Poincaré thus somewhat extended Richard’s diagnosis.

Poincaré’s views evolved over the years and in the debate with Russell. In
the later period, he advanced a novel approach to predicativity, which,
though informally sketched, is suggestive of later developments in
definability and proof theory (see Feferman 1964, Heinzmann 1985). He
no longer insisted on the vicious circularity of the definition involved in
the contradictions; instead, he held the view that a predicative
classification is characterized by invariance, i.e., that it cannot be affected
by the introduction of new elements; by contrast, impredicative notions
are subject to constant modification whenever new elements are
introduced.

Paradoxes and Contemporary Logic
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In the light of contemporary logic, Poincaré is hinting at some form of
absoluteness or invariance under extension (that will be made precise by
Kreisel 1960 via model theory and recursion theory): his ideas will inspire
the non-ramified approach to the foundations of predicative analysis.

In his last contribution to Acta Mathematica (1909) and in his fifth
Göttingen lecture (1910), he also gave a restatement of Richard’s paradox,
as a refinement of Cantor’s theorem, in the form: “there is no definable
enumeration of definable reals”.

While mathematicians and Poincaré himself focused on the problems
raised by the contradictions insofar as they involved the foundations of
specific mathematical notions (the continuum, the natural numbers, the
theory of cardinal and ordinal numbers), Russell directly attacked the
comprehension principle, that is, the assumption that certain propositional
functions determine a class (see also 2.3 above). The paradoxes prove that
a propositional function may be well-defined for every argument, and yet
the collection of the values for which it is defined need not be a class. So
the crucial problem becomes logical: to give a criterion for selecting those
propositional functions which give rise to classes (understood as well-
defined objects).

Under the influence of Poincaré, Russell (1906, p. 634) accepted the
vicious circle principle, for which he used a formulation in the
terminology and adopting the notions of formal logic as formulated by
Peano:

In logical terms, we are not allowed to quantify over a given class  when
defining an element of  itself (see also the entry on definitions).

Whatever comprises an apparent variable should not be one among
the possible values of that variable.

X
X
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Of course, the vicious circle principle is not itself a theory, but a condition
any adequate theory has to satisfy. Russell (1906, 1907) tentatively
proposed three alternative approaches: the zigzag theory, the theory of
limitation of size, and the no-classes theory. The zigzag theory attempts to
capture the idea that the right functions ought to be ‘simple’, while
according to the second view, ‘predicative’ would be characterized by a
certain limitation of the size of classes which can be predicatively defined
(e.g., the collection of all ordinals  is too large). In the no-classes
theory, classes are not independent entities and anything said about them is
to be regarded as an abbreviation of a statement about their members and
the propositional functions defining them. This is not far from Poincaré’s
idea that mathematical objects should be specified in finitely many words.
However, Russell developed his own technical devices—such as the
‘substitution method’ (Landini 1998), and the contextual elimination of
definite descriptions (see the entry Russell) – in order to implement his
ideas.

In contrast to Poincaré, Russell 1906 did not consider the actual infinite as
an essential component of the foundational malaise, and he stressed that
contradictions arise even if the infinite is not involved. This is clearly
shown by the Liar paradox in the form ‘I am lying’. As far as we know, it
is exactly at this point in time that the (probably) most cited semantical
puzzle in the history of logic regains a conspicuous position in logical
analysis.

In his analysis of the Liar paradox, Russell assumed that there exists a true
entity—the proposition—that is presupposed by a genuine statement (e.g.,
when I say that Socrates is mortal, there is a fact corresponding to my
assertion and it is this fact that is called ‘proposition’). The same holds if
the statement is false, but not in the case where the statement itself
contains quantified variables.

ON
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The paradox is then solved by construing the Liar as ‘there is a proposition
that I state and that is false’; hence the statement contains a quantification
(hence an apparent variable) over the collection of all propositions, and it
is not a proposition in a proper sense (Russell 1906, 642–644). So the
conclusion is that the Liar is false because it does not state a proposition.

Similar considerations apply to the paradox suggested by Berry, which is
briefly stated in Russell 1906 for the first time in published form, and has
the merit of not going beyond the domain of finite numbers.

Consider the natural numbers that are definable by means of less than 18
syllables: this set is non-empty and finite. So there exist numbers which
are not definable using less than 18 syllables. Consider the least such
number: clearly, by definition, it is not definable with less than 18
syllables.

On the other hand such a number is definable with less than 18 syllables,
since it is uniquely determined by the expression “the least number not
definable with less than 18 syllables”, which itself has less than 18
syllables.

For the sake of historical accuracy, we should remark that Beppo Levi,
who made an articulated contribution to the debate on the axiom of choice
in the first two decades of the 1900s, outlined an antinomy which is
essentially a variant of Berry’s paradox in the context of discussing
Richard’s paradox (see Levi 1908, and also Lolli 2007 and Bruni 2013 for
further comments about Levi’s approach to paradoxes).

3.2 Mathematical logic as based on the theory of types

The Russellian theory of types is widely known and investigated in the
literature (see the entries on type theory and Bertrand Russell): it is of
current interest and has descendants in logic and its applications. It was
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first developed by Russell in the fundamental memoir Mathematical Logic
as based on the theory of types of 1908.

The doctrine of types is based upon the observation that universal
quantification—understood as full generality, i.e., when  ranges ‘over the
whole universe’—does not make sense: when we state that  is true,
we only claim the function  has the value ‘true’ for all arguments  for
which it is meaningful. The essential point is that each propositional
function has a range of significance, i.e., a type, and quantification is
legitimate only over types. Formally speaking, each variable must have a
preassigned type. The paradoxes (or reflexive fallacies) prove that certain
collections, such as the totality of all propositions, of all classes and so on,
cannot be types. So we can quantify over the collection of men, but we
cannot properly state ‘all propositions of the form  are true’.
Therefore, the logical entities divide into types, and, in particular, every
propositional function must have a higher type than its arguments.
Moreover, in the light of the vicious circle principle, the notion of order
must also be introduced. No object can be defined by quantifying over a
totality which contains the object itself as element; hence the order of
every propositional function must be greater than the order of
propositional functions over which it quantifies.

The main idea is clarified in Russell 1908 (pp. 163–164) by considering
how propositions can be arranged into a suitable “ramified” hierarchy,
according to their order and so as to satisfy the vicious circle principle.
First of all, there are elementary propositions, i.e., those containing no
bound variables at all, while the lowest type consists of individuals.
Individuals are entities without logical structure and can be regarded as the
subjects of elementary propositions. The second logical type embraces the
first order propositions, i.e., those whose quantifiers (if any) range only
over individuals. Quantification over first order propositions gives rise to a
new type, consisting exactly of second order propositions. In general, the 
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th logical type comprises propositions of order , which contain
quantification only up to the th order.

Since a propositional function can be obtained from a proposition ‘by
treating one or more of its constituents as variables’, the hierarchy of types
and orders is naturally lifted to propositional functions, and it makes sense
to speak of order of a function, its order being roughly the order of the
value (i.e., a proposition) which the function assumes when it is applied to
an argument for which it makes sense. So, for instance, a function which
applies to individuals and takes first-order propositions as values is first-
order.

Following the doctrine of types, we must replace ‘all propositions’ by ‘all
propositions of order ’ for a given . Hence the Liar sentence becomes “it
is not true of all propositions  of order , that if I affirm  is true”,
which is a proposition of order . Then the Liar is simply false rather
than contradictory; and this solves the paradox. Similar arguments solve
the other paradoxes.

In this theory, predicative functions of one argument, i.e., those having as
order the successor of the order of their argument, play a crucial role. For
instance, a predicative function of an individual variable must have order 1
(in current terminology, it is elementarily definable and quantifies only
over individuals). The axiom of reducibility (AR) states that every
propositional function is equivalent, for all its values, to a predicative
function of the same variables. So, for instance, we might have a definition
of a property  of natural numbers (regarded as individuals) which
quantifies over, say, second-order propositions. But AR implies that there
exists a function  which is satisfied by exactly the same numbers as 

 and is predicative, i.e., it involves quantification only on numbers.

(n + 1) n
(n − 1)

n n
p n p, p
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Thus, according to the axiom of reducibility, statements about arbitrary
functions can be replaced by statements about predicative functions; and
predicative functions play the role of classes, i.e., canonical
representatives of arbitrary complex concepts (e.g., among the possible
properties of different order which have the same extension as , 
canonically represents the class of numbers satisfying .

Besides the axiom of infinity, AR is an essential tool for reconstructing
classical mathematics, but it is a strong existential principle, apparently in
conflict with the philosophical idea that logical and mathematical entities
are to be constructively generated according to the vicious circle principle.
Nonetheless, it was adopted in the (first edition of the) monumental
Principia Mathematica, written in collaboration with A.N. Whitehead and
published in 1910 (vol. 1), 1912 (vol. 2) and 1913 (vol. 3).

Interestingly, the basic idea underlying Russell’s ramified hierarchy of
types is a crucial ingredient in Gödel’s later consistency proof of the
continuum hypothesis via its inner model  of constructible sets. Also, as
already observed in Gödel (1944), a form of AR becomes true in  in the
sense that, roughly, an arbitrary propositional function of natural numbers
is extensionally equivalent to some function of order , for some
countable ordinal  (see the entry Kurt Gödel). Other important
applications of ramified hierarchies have been given since the late fifties in
different fields (from recursion theory to proof theory; see the entry on
type theory).

3.3 Completing the picture

There is a sizeable literature on paradoxes already in the early years of the
20th century, which is not at all exhausted by the previous discussion.
Refinements and variations of foundational and logical interest are to be
found in the works of several authors, including prominent

P(n) (n)P∗
P(n))
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mathematicians, among them Peano, Borel, Schönflies, Brouwer, and
Weyl. Some of the more stimulating and original proposals are surveyed in
the rest of this section.

3.3.1 Peano, Schönflies, Brouwer, and Borel

Peano’s criticism (in Additione a Super Theorema de Cantor-Bernstein) of
Richard’s paradox is mainly known because it points out that “Richard’s
example pertains to linguistics, not to mathematics” and this statement
opens up the distinction between set-theoretic or mathematical antinomies
and semantical antinomies: the weak point in Richard’s definition is that to
some extent it is symbolic and formal, but it also makes use of the natural
language (“lingua commune”); this contains ideas that are quite familiar
but nevertheless are not sharply defined and are ambiguous (Peano 1906,
p. 357–358). For instance, there is no precise criterion for deciding
whether a given expression of the natural language represents a rule
uniquely defining a number.

In spite of that, Peano elaborated a formal solution. He tried to get rid of
vagueness and reference to , the set of finitely definable reals in the unit
interval, by fixing an explicit “Gödel-numbering”: given a natural number 

, write  in base , for sufficiently large  (so as to include the number
of alphabet letters plus punctuation marks). Then each number is assigned
a finite string of symbols in the natural language, and in certain cases the
string will define a number,  “the decimal number which is
determined by the expression encoded by  and interpreted according to
the rules of the natural language”. Now, in order to get the paradox, one
has to prove that there exists a unique number  in (0, 1), satisfying the
condition given by Richard (see 2.5 above), but this condition, and hence 

 itself, depends on , which is possibly obscure and cannot be defined
exactly according to the rules of mathematics (p. 352, p. 358). The
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conclusion is that no such a real can exist and Richard’s definition is
defective in the same way that “the greatest prime number” is.

Schönflies and Brouwer, by contrast, reacted to the paradoxes while
strongly opposing axiomatic and formal methods.

Schönflies (1906) stuck to a contentual, genetic conception of sets.
According to him, sets are generated and, once formed, are conceptually
invariant. When a new set is built up, it is added to those that have been
used in forming it, without altering their pre-existent structure. So self-
membership does not make sense, the universal set does not exist and
Russell’s paradox disappears. His view can be seen as hinting at a sort of
iterative conception of sets. For Schönflies, the contradictions arise in
logic, as opposed to mathematics, and are due to the scholastic nature of
logic. He regarded logic as having an unhealthy influence (“unheilvollen
Einflüss”) on mathematics (“Für den Cantorismus, aber gegen den
Russellismus” is the final motto of Schönflies 1911).

Brouwer’s approach to paradoxes was also based on a contentual
conception of mathematics. It can be found in the dissertation of 1907,
chapter III (cf. also van Dalen 1999, pp. 105). As to Russell’s
contradiction, Brouwer noticed that the usual logical principles only hold
for words with mathematical content, not for linguistic systems, like those
of Peano or Russell. For instance, in order to decide whether a class falls
under a propositional function, the class has to be a completed totality. The
contradictions show that there are propositional functions which define
complementary (disjoint) classes and yet do not satisfy the tertium non
datur. Similar ideas can be found in the philosophical paper of 1908, “On
the unreliability of tertium non datur” (see van Dalen 1999).

A positive by-product of Richard’s paradox in Brouwer’s work (1907, p.
149) is the notion of denumerably unfinished set, i.e., a set in which we
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can determine only denumerable subsets of elements, but where these
denumerable subsets do not exhaust the given set, so that one can
immediately produce new elements of the set from any given denumerable
such subset. Typical examples of denumerably unfinished sets are the
totality of countable ordinals, the points of the continuum, and in
particular, as could be shown using Richard’s paradox, the set of all
definable points of the continuum (1907, p. 150). Brouwer considers
Burali-Forti’s contradiction not as a mathematical paradox, since it
concerns a logical structure (the collection of all ordinals), which is not a
well-defined mathematical object and has no proper mathematical content.
Mathematically speaking, the contradiction can be avoided by denying
that the largest well-ordered type has a successor order type (p. 153; this is
analogous to Bernstein 1905b).

Among the French mathematicians, the semi-intuitionist Borel (1908)
introduced the distinction between effectively enumerable sets and
denumerable ones. The Richard paradox is then solved by observing that
Richard’s set  is certainly denumerable, because one can only determine
at most a denumerable set of reals by finite means. Yet  is not effectively
enumerable, i.e., one cannot produce with finitely many words a procedure
for assigning unambiguously a rank (i.e., a position) to each element of the
set. In order to make the enumeration of  effective, one ought to have
solved all the mathematical problems which one could possibly state,
because there are expressions which become definitions of a real only
modulo a proof or solution of a certain problem. Borel has in mind a
particular example: consider the expression “the unique transcendental
number whose decimal expansion is obtained from that of  by replacing
everywhere 7 with 8, and 8 with 7”. Of course, this is a good definition
only if we have shown that the number is not algebraic (see Borel 1908. p.
446).
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Borel, like Poincaré, adheres to a point of view—definability in finitely
many words—which is an extension of the algebraic, Kroneckerian point
of view: only objects constructible in finitely many steps are proper
mathematical objects. However, unlike Poincaré, he disregards the
problem of predicative definitions: for him all paradoxes of set theory
derive from viewing the proposition that every denumerable set is
effectively enumerable (“Tout ensemble dénombrable est effectivement
énumérable”) as evident, which is false.

3.3.2 Hessenberg, Grelling, Zermelo and Weyl

On the side of mathematical foundations, three chapters of Gerhard
Hessenberg’s Bericht (1906) on the fundamentals of set theory are devoted
to foundational questions. They contain interesting ideas about the
philosophy of mathematics, which unfortunately cannot be discussed in
detail here. For instance, Hessenberg underlines the distinction between
set theoretic definitions which give criteria for effectively deciding
membership in a given set, and definitions which don’t. Concerning
Kronecker’s constructive criticism of the arithmetized continuum, he
holds that, although each irrational number determines an infinite fraction
and each infinite fraction possesses a formation rule (“Bildungsgesetz”), it
is not true that such a rule is given by explicit finite means. For otherwise,
we could derive (a form of) the paradox of finite denotation, i.e., were
formation laws to coincide with definable ones, they would be at most
denumerable and hence the reals would be denumerable, against Cantor’s
theorem.

In dealing with set theoretic contradictions, Hessenberg distinguishes the
‘ultrafinite’ (paragraphs 96–99) from the ‘transfinite’: this latter notion is
an exclusive attribute of sets. By contrast, the collections involved in the
paradoxes (such as the Russell set, the set of all sets, of all things, and of
all ordinal numbers) are ultrafinite.
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As to the proposed solutions of the paradoxes, Hessenberg was inspired by
a Kantian idea. Just as in the natural sciences antinomies arise if Nature is
conceived as a closed whole, similarly the collection  and the set of all
sets cannot be conceived as completed totalities. Hence the distinction
‘ultrafinite’/‘transfinite’ is apparently in accord with a theoretical approach
which is close to Russell’s limitation of size doctrine.

Close to the same philosophical inspiration, the influential paper of
Grelling and Nelson (1908) provides an attempt to unify paradoxes and to
isolate their underlying structure. The philosopher Leonard Nelson was a
prominent figure in the Göttingen of the early twentieth century, who had
Hilbert’s strong support (see Peckhaus 1990). The paper is part of a
project to develop a philosophically minded “kritische Mathematik”. It
contains a new paradox (credited to Grelling) with a semantical flavor (see
also the entry self-reference):

Zermelo’s axiomatization of set theory (1908; for more details see entries
on set theory, the early development of set theory, alternative axiomatic
set theories) supplied a sensible tool for blocking contradictions. The main
ideas of the axiomatization can be summarized as follows: (i) naïve
comprehension is restricted to a separation axiom, i.e., to a principle
granting the existence of enough subsets of an already given set of objects
(numbers, points, functions on a given space); ‘enough subsets’ here refers

ON

To each word there corresponds a concept, that the very word
designates, and which applies to it or does not apply; in the first
case, we call the word autological, else heterological. Now the
word ‘heterological’ itself is autological or heterological.
Assuming that the word is autological, the concept that it
designates applies, hence ‘heterological’ is heterological. But if the
word is heterological, the designated concept does not apply, so
‘heterological’ is not heterological.
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to all the subsets specifiable by means of definite conditions involving the
primitive notions (set equality and membership) and satisfying the laws of
classical logic; (ii) there are axioms ensuring that the basic operations of
forming singleton, union, pairing, and power set are well defined and that
there exist at least an infinite set and the empty set; (iii) extensionality is
assumed: two sets are equal if and only if they have the same elements;
(iv) an axiom of choice is postulated, which allows selecting a choice set
out of any family of disjoint non-empty sets.

It is immediate to see that Burali-Forti’s antinomy cannot be derived in
Zermelo’s system, since the collection of all order types does not exist as a
set, and Russell’s paradox simply becomes the theorem that there does not
exist a universal set.

However, one could raise at least two objections against the theory on
different grounds. First of all, Zermelo’s approach is actually highly
impredicative and impredicativity was regarded as indispensable by him
(else one would be forced to reject standard mathematics, e.g., Zermelo
believed this was the case even with the Cauchy-Weierstrass proof of the
fundamental theorem of algebra). But impredicativity makes the
construction of a model or of an interpretation more difficult and less
evident. The second point is that Zermelo believed that the paradox of
finite denotation (mentioned by Hessenberg) and Richard’s are blocked in
set theory, as the separation axiom ought to yield clear criteria for defining
sets. But this is not the case, because Zermelo’s notion of definite property
(definite Eigenschaft) is given informally and is ultimately vague.

The latter issue was taken up in Weyl’s “Habilitation” lecture (1910),
where he addressed the general question: when is a relation explicitly
definable from a set of given primitive concepts in mathematics? First of
all, he considers, as a concrete case study, the problem of characterizing
the explicitly definable concepts of elementary plane geometry: these can
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be inductively generated by means of five basic definition principles from
two suitably chosen primitive concepts (e.g., the identity between points
=, and the ternary relation , ‘the distance of point  from point 
is the same as the distance of point  from point ’).

The five definition principles correspond to a finite axiomatization of the
elementary comprehension principle, and they imply the existence of
exactly those sets (relations), which are definable by formulas in the
elementary language comprising two predicate symbols for . More
explicitly, one requires closure under the logical operations of negation,
conjunction, existential quantification and suitable combinatorial
operations of permutation and expansion.

In the light of the geometric example, Weyl attacks the concept “defined
by means of finitely many words” as not precise, and long before Fraenkel
and Skolem, he succeeds in making the separation principle precise: he
simply replaces Zermelo’s informal concept of definite property with the
notion of ‘relation explicitly definable from extensional equality and
membership by means of the basic elementary logical principles’ (we
should simply say: first-order definable).

According to Weyl, Richard’s paradox teaches us the following
distinction: on the one hand, we are able to characterize only denumerably
many subsets of a given set by means of explicit definitions; but, on the
other hand, new objects and (possibly uncountable) sets can be introduced
by applying the remaining set theoretic operations, like power set or
union.

Weyl addressed the problem of generating the admissible properties over a
given domain a few years later in Das Kontinuum (1918). As in 1910, the
set of sets of natural numbers that are definable via admissible operations
(to which now also a form of iteration is added) is denumerable. By
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Cantor’s argument there is no relation which parametrizes all subsets of
natural numbers (Weyl 1918, section 5). Weyl apparently followed a
relativistic attitude, according to which the extension of the universe of
sets and their properties depend on the operations which are accepted to
construct sets (see also the entry Hermann Weyl).

It should be stressed that Weyl’s attitude towards Grelling’s antinomy is
utterly negative: he considers it pure Scholasticism (Weyl 1918, section 1):
there is no way, according to him, of assigning a meaning to
‘heterological’ and one should ultimately resolve these problems by
appealing to philosophy.

It is interesting to observe that, in the light of recent developments, Weyl’s
negative verdict ought to be weakened (see section 6).

4. Logical developments and paradoxes until 1930

In the period until 1930, the problem of paradoxes led naturally to and was
subsumed under the investigation of logical calculi (its final by-product
being the Hilbert-Ackermann textbook of 1928). This in turn opened the
way to the simplification of type theory, to important generalizations of the
notion of set, and to an almost final axiomatic elaboration of set theory
(along the Zermelian route, but also following the new path opened up by
Johann von Neumann). The basic logical tool is essentially axiomatic
formal analysis.

4.1 Set Theory and paradoxes: circular sets and other matters

Do circular objects exist in set theory? Zermelo’s view of sets as
axiomatized in 1908 did not in itself exclude the possibility of self-
membership. The problem was raised anew by Mirimanoff (1917a, 1917b,
1920; see also the entry Zermelo’s axiomatization of set theory). Once
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circular sets are allowed, a strengthening of extensional equality by means
of a suitable isomorphism relation (bisimulation, in current terminology)
is needed which essentially corresponds to the isomorphism of the trees
picturing the given sets. Russell’s argument then suggests a distinction
between sets of first kind, which are not isomorphic with any of their own
elements, and sets of second kind which are indeed isomorphic with at
least one of their elements. In the light of this distinction, Russell’s
contradiction shows that the collection R of sets of first kind does not exist
as a set. Indeed, a set of second kind always contains a set of second kind;
hence a set of sets of first kind must be of first kind. If  were a set, it
should be of first kind; but then it could not contain all sets of first kind.
Mirimanoff 1917a then introduced the fundamental distinction between
ordinary (well-founded) and extraordinary (non-well-founded) sets: a set 

 is ordinary if every -descending chain in  is finite; it is extraordinary,
otherwise (there exist infinite -descending chains). It follows that all sets
of the second kind are extraordinary, but the converse is not true (for
instance, consider the set , where , 

, etc.).

For the history of paradoxes, it is important to emphasize that Mirimanoff
1917a gave a generalization of the Burali-Forti antinomy, the paradox of
grounded sets. This paradox actually proves that the collection  of
ordinary sets (on a given set of atoms) is not itself a set. Indeed, let  be
the set of grounded (= ordinary = wellfounded) sets; then  itself is
grounded, for were , then  would be an
ungrounded member of , which is absurd. Hence , so 
is ungrounded, contradiction (the same paradox will also appear in Shen-
Yuting 1953).

Mirimanoff’s work is also important for the foundations of set theory. He
introduced the notion of ordinal rank for ordinary sets and he noticed that
ordinary sets can be arranged in a cumulative hierarchy, indexed by their
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ranks. However, the existence of a cumulative structure of ordinary sets is
not considered as a ground for excluding extraordinary sets. Mirimanoff
(pp. 212–213) explicitly points to the use of extraordinary sets for
modelling mirror-like situations. He mentions the case of a book  whose
covering is decorated with a picture  representing two children glancing
at the same book, i.e. to the picture  of . In  one could perceive again
the two children and the picture  of the book in perspective. Now  can
be regarded as a set including as elements the two children  and , and
the picture  of , which in turn decomposes into the pictures  of 

 and , and the picture  of , and so on ad infinitum, Now  is
isomorphic to one of its elements, i.e.  can be considered as a set of
second kind and hence extraordinary. This non-mathematical example is
suggestive of later developments, i.e., the theory of non-well founded sets
and its recent applications to semantics. A set  of second kind is also
assimilated to an impredicative collection in the sense of Poincaré
(Mirimanoff 1920, p. 34) because of its circularity: indeed,  is given by a
condition , where  depend on .

On the other hand, in Mirimanoff’s 1917a there is a remarkable use of
Burali-Forti’s paradox which suggests a necessary condition for set-hood
in terms of size, viz., if a collection is in bijection with the set of all
ordinals, then it does not exist as a set. In Mirimanoff 1917a,b, one can
also find the idea of von Neumann ordinal (von Neumann 1923, 1925) and
a form of the replacement axiom is present.

Von Neumann’s system of 1925 deals with an alternative axiomatic
foundation of set theory. There are two sorts of objects: objects of type II
(functions, corresponding to classes) and objects of type I (arguments),
linked by the application operation of a function to its arguments. The two
domains partly overlap and there are objects of type I–II, corresponding to
sets (as functions which can also be arguments). The fundamental axiom
IV-2 then states that an object  is a proper class (i.e., it is not type I–II) if
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and only if the totality of its members can be mapped onto the totality of
all arguments. The Burali-Forti antinomy shows that the class  of all
ordinals is not a set, which implies with axiom IV-2 that there is an
application of  onto the universe of all sets, and hence that the universe
of sets is well-ordered. Conceptually, the system settles the problem of
making Cantor’s distinction between inconsistent and consistent precise
and applicable (against Hilbert’s early criticism); it also shows that global
choice becomes a theorem on a suitable view of sets. Though circular
objects cannot live in von Neumann’s hierarchical model of set theory,
they can be found in the investigations of other mathematicians and
logicians, e.g., Finsler. According to Finsler, paradoxes hinge upon
circular notions, but circularity does not necessarily lead to contradictions.
In particular, Finsler regards Cantor’s notion of set as intrinsically circular:
sets depend on sets or on general things depending also on sets and the
associated dependence graph can drive us back in a circle. For the
contemporary reader, it is worth mentioning that an original intuition of
Finsler 1926b is the use of graph theory for representing circular
structures. So arrows are used for interpreting membership, and it is not
difficult to imagine a set that has itself as unique element and more
complicated circular situations (for more on Finsler’s set theory see
Holmes 1996 in Other Internet Resources). Finsler 1926 applies Richard’s
paradox in order to produce metamathematical results, in particular
‘formally undecidable propositions’. However, Finsler’s arguments are not
conclusive and cannot be considered a proper anticipation of the Gödel
incompleteness theorems (on the limit of his ideas, see the discussion in
van Heijenoort, 438–440); but they show that an attentive reading of the
paradox might have unexpected applications.

4.2 Type-theoretic developments and the paradoxes

Concerning the subsequent developments in connection with logic, the
process of streamlining the tools of logic steadily continued in Göttingen
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through the work of Hilbert and his school. This is especially clear from
his unpublished lecture notes (e.g., those of Winter-Semester course 1917–
1918 Prinzipien der Mathematik), which are in many respects close to the
textbook of Hilbert-Ackermann of 1928 and which contain formulations
of first and second order logic, together with ramified type theory and the
axiom of reducibility. Paradoxes are derived by allowing a suitable form
of unrestricted comprehension; the problematic assumption is located in
the admissibility of predicates and propositions as objects, i.e., formally in
the expressions . Variants of the traditional Liar and of the
Berry antinomy are introduced. Interestingly, Hilbert sticks essentially to
type theory (he does not lecture upon Zermelo’s system); he defines the
ramified theory of types with the axiom of reducibility, proving that
certain parts of mathematics can be carried out in the system (on Russell’s
influence, see Mancosu 2003).

That type theory and Russell’s work had a central place not only in
Hilbert’s Göttingen is further attested to by the work of Chwistek and
Ramsey, who attempted a revision of Principia Mathematica (PM) from
opposite stand-points. Both authors rejected ramified type theory (RTT, in
short) and the axiom of reducibility. Their work can be considered a
typical outcome of the process that was to yield streamlined versions of
logical formalisms. Insofar as paradoxes are concerned, the main problem
is to show that RTT is not required for solving the paradoxes.

The solution proposed by Chwistek was prompted by a
constructivistic/predicativistic conception. His position in 1921 was that
Principia Mathematica were not enough to avoid Richard’s classical
antinomy. On the other hand, Chwistek proposed a version of the Liar that
can be reconstructed in the simple theory of types without the axiom of
reducibility, once we are allowed to quantify over all propositions. On his
side, Chwistek adhered to a kind of nominalistic position, and tried to
develop a theory of constructive types for the foundations of analysis (his

X(Y), P(P)
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attempt of founding mathematics without the axiom of reducibility was
called “heroic” in the introduction to the second edition of the Principia
Mathematica, 1925, see Linsky 2004).

Ramsey 1926 introduced the by-now standard distinction between logical
and epistemological contradictions (but see already Peano 1906, and
section 3.3.1 of this entry). While logical contradictions involve
mathematical or logical terms, like class, number, and hence show that our
logic or mathematics is problematic, semantical contradictions involve,
besides purely logical terms, notions like “thought”, “language”,
“symbolism”, which, according to Ramsey, are empirical (not formal)
terms. Hence these contradictions are due to faulty ideas about thought or
language and they properly belong to “epistemology”.

According to Ramsey, the antinomies of the first group (such as Russell’s,
or Burali-Forti’s) can be avoided by referring to a universe of
mathematical objects which is structured into types of individuals,
functions of individuals, functions of functions of individuals, etc.
Quantification over arbitrary types is legitimate and hence types are closed
under impredicative comprehension, which is considered necessary for
mathematics. Types are intrinsic to logical and mathematical objects and
the logical paradoxes are exactly those which require type distinctions to
be solved (e.g., self-membership is blocked for objects in the type-
theoretic hierarchy). In order to solve the semantical antinomies (e.g., the
Liar, Berry’s), Ramsey proposes to distinguish several notions of meaning.
In light of later developments, it is interesting to note that for him
semantics is not a viable universal notion: in particular, it is impossible to
obtain “an all-inclusive relation of meaning for propositional functions.
Whatever one we take there is still a way of constructing a symbol to
mean in a way not included in our relation. The meanings of meaning
form an illegitimate totality” (Ramsey 1926, p. 372). This yields the clue
to the solution of Grelling’s paradox (see 3.3.2). Let  be the meaningR
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relation linking an adjective  to the corresponding propositional function
denoted by  (so that  holds). In the definition of “heterological” we
do use the relation  is heterological iff there exists  such that  does
not apply to  and . Now, there exists a propositional function, say ,
which is the meaning of the adjective “heterological”. Ramsey’s point is
that this sense of meaning cannot be the same as that given by  and this
blocks the contradiction, when we apply  to “heterological” (ibid.,p.
370). So one needs a new meaning relation depending on the given fixed 

. These ideas foreshadow those of Tarski. (For an analysis of semantical
antinomies in a ramified context, compare also the later contribution of
Church 1976, also reconsidered and criticized in Martino 2001.).

5. Paradoxes: between metamathematics and type-
free foundations (1930–1945)

With the work of Gödel and Tarski, paradoxical arguments were reshaped
into fixed point results, while the semantic conception of truth, the
formalization of semantics and the arithmetization of syntax yielded firm
grounds for systematic metamathematical investigations. In addition, an
effort was made to elaborate new grand logics as a reaction to the logic of
Principia Mathematica. Conceptually, the notions of (self-applicable)
function-in-intension/operation and property/ predicate were accepted as
primitive, and the very mechanism of definition/combination of concepts
was studied. This line of thought gave impulse to the elaboration of
syntactical methods within combinatory logic and to the rise of recursion
theory. The diagnosis of the paradoxes was further enriched by a subtler
analysis of purely logical features of paradoxical reasoning: this is
especially true for negation and the crucial role of contraction and
duplication properties built into the laws of standard implication. Three
valued logic was applied to naïve comprehension.

5.1 Paradoxes and diagonalization
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The heuristic role of paradoxes is witnessed by Gödel himself, when he
intuitively and explicitly relates his construction of formally undecidable
sentences to epistemological paradoxes (“the analogy with the Richard
antinomy leaps to the eye”, Gödel 1931, van Heijenoort 1967, p. 599).
However, self-referential constructions attained an adequate degree of
mathematical rigor and became genuine mathematical tools only when
non trivial number-theoretic techniques were put to work (see the entry
recursive functions), for instance in the analysis of syntactical substitution
and in providing arithmetical models of formal provability (the crucial role
of substitution for producing contradictions was already noticed by
Russell, although he did not publish this; see Pelham and Urquhart 1994).
Conceptually, it is clear from Gödelian constructions that self-reference by
itself is innocuous if it is understood in the indirect sense: one can have
formulas , expressing properties of their own “name” , but no
dangerous circularity arises.

Gödel’s construction was soon given a general form, as a general
diagonalization lemma, which refers to arbitrary definable properties. This
is to be found in Carnap 1934b, p. 91, Carnap 1934a, p. 270, and in Rosser
1939, p. 57, Lemma 1:

As a matter of fact the lemma has become the standard tool for producing
self-referential statements and for transforming the semantical paradoxes
into indefinability and (formal) undecidability results (see the entry on

ϕ(x) ⌜ϕ⌝

For every formula  with only  free, there exists a sentence 
such that

is provable (see also the entry on Gödel’s incompleteness
theorems).

ψ(v) v ϕ

ϕ ↔ ψ(⌜ϕ⌝)
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self-reference). The algebra underlying the Gödelian constructions will be
grasped only much later during the 1970’s. It is also important to stress
that a few years later (1938) an analog of the diagonalization lemma (the
so-called second recursion theorem) was discovered by Kleene and was
soon to become a basic tool in the foundations of recursion theory and
computability theory.

5.2 Paradoxes and the foundations of semantics

It is evident from the work done in the twenties surveyed above that the
problem of finding a formal solution to the semantical paradoxes, such as
the Liar and the Richard paradox, remained essentially open. Type-
theoretic solutions had not been pursued to the extent of providing a
systematic formal analysis of semantical notions (like truth or
definability). But why would this problem be worth studying from a
logical and mathematical point of view? As a matter of fact, semantical
notions—in particular the notion of definability—were more or less
explicitly used in certain parts of set theory (descriptive set theory) and in
more “set theoretically inclined” parts of function theory, which were
cultivated by Polish mathematics in the twenties. At the same time, the
project of a formal methodology and of a scientific semantics was
developed by prominent Polish philosophers and logicians working in
Lvov (now Lviv) and Warsaw (Lesniewski, Łukasiewicz, Chwistek; see
Wolenski 1995 and the entries on Lesniewski, on Łukasiewicz and on the
Lvov-Warsaw school). For instance, Chwistek attempted an elementary
semantics on the ground of a nominalistic foundational program, where
sets are identified with propositional functions, extensionality is rejected
and the fundamental notion of semantics is the substitution relation “  is
the result of the substitution of  for  in ” (Chwistek 1933, p. 374). In
this stimulating environment, Tarski developed his fundamental analysis
of semantical paradoxes, first dating back to 1929 and 1930, reported by
Łukasiewicz to the Polish Society of Sciences in Warsaw in 1931 and then
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detailed in the long memoir of 1935 (see the entries on Tarski and on
Tarski’s truth definition).

First of all, the analysis of the Liar paradox starts out by specifying a
formal requirement to be met in the semantical investigation of truth, i.e.
“a materially adequate (sachlich zutreffende) definition” of the term “true
sentence ” (wahre Aussage). This amounts to the celebrated schema (T),
which can be roughly stated in simplified form as:

where  stands for a sentence and  is a name of  (the idea being in
accord to the classical correspondence intuition). The result that Tarski
draws from the Liar is that there cannot be any interpreted language which
is free from contradictions, obeys the classical laws of logic, and meets the
requirements (I)–(III), where

I. the language has names available for all of its sentences;
II. any expression obtained from (T) by substituting  with an arbitrary

sentence of the language and  with a corresponding name of  is
accepted as true in the language;

III. there exist self-referential sentences, i.e., it is legitimate that a
sentence comprises its own name as constituent (so that we can
legitimately stipulate that the name  denotes a sentence .

Given these essential obstacles, Tarski provides a structural definition of
the basic semantical notions, i.e., one that relies only on the logical form
of an expression and the fact that expressions are recursively defined. But
this route is only viable for a language which is structurally described,
e.g., a formalized language. For such languages, which are usually closed
under quantification and contain formulas with free variables, Tarski
elaborates an appropriate notion of satisfaction, which allows him to
introduce the notions of definability, denotation, truth, logical

x is a true sentence if and only if p.(T)
p x p

p
x p

c α(… c …))

Andrea Cantini and Riccardo Bruni

Fall 2017 Edition 37



consequence. It is then possible to give a precise version and a proof of the
adequacy condition (T) in a meta-science, whose principles comprise: (i)
general logical axioms, (ii) special axioms that depend upon the object
theory we consider, and (iii) axioms for dealing with the fundamental
properties of the structural notions, i.e., principles of proof and definition
by induction. Given this semantical machinery, Tarski can solve in the
negative the problem of the existence of (a formal counterpart of) a
universal language, i.e., one where it is possible to define an adequate
notion of truth for the same language. Although the theory of simple types,
(where the type 0 is the type of individuals; the type  is the collection
of all classes of type  objects) with the axiom of infinity and
extensionality is apparently a good candidate as a general metatheory, it is
shown that whichever definition we choose in the theory of types for the
term “true”, then it is possible to deduce in the same theory the negation of
some instance of the adequacy schema (T). In the proof of this theorem,
Tarski applies arithmetization and diagonalization, hence following the
Gödelian pattern. On the positive side, the concept of truth can be
adequately defined for any formalized language L in a language (the so-
called metalanguage), provided it is of higher order than L. Also, Tarski’s
semantics makes precise Gödel’s remark (1931, footnote 48) that “the true
reason of the incompleteness is that the formation of ever higher types can
be continued into the transfinite[…], while in any formal system at most
denumerably many of them are available”. Tarskian semantical notions
play the role of the higher types hinted at by Gödel. To sum up, the
outcome of Tarski’s work is that the semantical notions are eliminated in
favor of the (extensional) notions of type or set, and a theoretical
explanation of semantical paradoxes is finally achieved.

5.3 “The inconsistency of certain formal logics”

In the twenties and in the early thirties, the orthodox view of logic among
mathematical logicians was more or less type- or set theoretic. However,

n + 1
n
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there was an effort to develop new grand logics as substitutes for the logic
of Principia Mathematica. These frameworks arose both as attempts to
recover the simplicity of the type-free approach, as derived from the so-
called naive comprehension principle, as well as in order to satisfy
metamathematical needs, such as the clarification of fundamental concepts
underlying the notions of “formal system,” “formalism,” “rule,” etc. In
particular, Church and Curry proposed theories which (i) assume as
primitive the notions of self-applicable function-in-intension (operation),
and (ii) stress the very mechanism of definition/combination of concepts.
If one looks closely at the development of these systems, one can see that
paradoxical constructions have become essential tools for defining objects
and proving non-trivial logical mathematical facts. Following ideas of
Schönfinkel and aiming at a mathematical analysis of the substitution
process, Curry’s 1930 thesis introduced a formal language based on basic
general operators, the so-called combinators  (composition), 
(permutation),  (duplication),  (cancellation),  (equality), and logical
constants like the universal quantifier and implication. Expressions are
then inductively generated by application from constants; intuitively, a
term  stands for a function, and the applicative term  (juxtaposition
plays the role of application and parentheses are associated to the left)
denotes the value of the term obtained by replacing the first variable of 
with . Self-application  is admissible and this feature tells us that the
objects of combinatory logic cannot be simply interpreted as set-theoretic
functions. The formal system consists of standard equations on
combinators (e.g, , or , rules for
equality and the logical constants; its main goal is to derive equalities 

 and to make assertions of the form  is provable).
Combinatory logic is a theory which analyzes the modes of combinations
of formal objects, substitution, and the notions of proposition and
propositional function (see the entry on combinatory logic for a proper
introduction to variants of the formalism and an overview of the properties
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of related calculi). For Curry, the root of the paradoxes is found in
assuming that combinations of concepts are always propositions. The
notion of proposition becomes a theoretical concept, which is decided by
the theory. Types are not assigned to the expressions of the formal system
at the outset, but are instead inferred by means of the system itself, which
has a dual nature: it can derive identities, but also truths. In particular, if 

 is derived, this can be read as “  is of type ” or “  is an element
of ”. These ideas foreshadow fundamental developments such as the so-
called formulas-as types interpretation (see Howard 1968).

Church’s formalism—originally introduced in Church 1932, 1933 as a set
of postulates for the foundation of formal logic—includes conversion (i.e.,
computational) rules, which allow the replacement of terms with
intensionally equivalent ones, and rules for asserting certain terms as
“true”. The syntax yields a general notation system for functions, based on
an applicative language, where there is one basic category of terms (well-
formed formulas in his terminology). Some terms are formally provable
(or assertable) and are classified as true. Terms are inductively defined
from a set of basic constants and variables by means of application and the
characteristic lambda abstraction operator: if  is a term containing the
variable  is a term, naming the function defined by . The basic
constants designate logical operations: (a kind of restricted) formal
implication; existential quantifier, conjunction, negation, description
operation, and generalized abstraction (i.e., if  is formal logical
equivalence,  is “what  has in common with any  formally
equivalent to ”). It turns out that Church’s logic can interpret naive class
theory and hence the system is suspiciously strong and expressive
(strength and expressivity are inherited by the formalism which was
devised out of Church’s: see the entry on the lambda calculus). Church’s
hope was that contradictions could be avoided by ensuring the possibility
that a propositional function be undefined for some argument.
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However, the theories of Curry and Church were almost immediately
shown inconsistent in 1934, by Kleene and Rosser, who (essentially)
proved a version of the Richard paradox (both systems can provably
enumerate their own provably total definable number theoretic functions).
The result was triggered by Church himself in 1934, when he used the
Richard paradox to prove a kind of incompleteness theorem (with respect
to statements asserting the totality of number theoretic functions).

The reason for the inconsistencies was eventually clarified by Curry’s
1941 essay. There he distinguishes two basic completeness notions: a
system  is deductively complete, if, whenever it derives a proposition 
from the hypothesis , then it also derives the implication 
(deduction theorem or introduction rule for implication);  is
combinatorially complete (Curry 1941, p. 455.) if, whenever  is a term
of the system possibly containing an indeterminate , there exists a term
(Church’s  naming the function of  defined by . Curry then
remarks that the paradox of Kleene-Rosser arises because Church’s and
Curry’s systems satisfy both kinds of completeness, thus showing that the
two properties are incompatible. In the more technical part of the paper,
Curry carefully axiomatizes the main ingredients exploited by Kleene and
Rosser and carries out a lot of non-trivial work both on the logical side and
the mathematical side (e.g, to develop a portion of recursive arithmetic, to
define the existence of an enumerator, i.e., a term  such that, if  is the
Gödel number of a closed term  and  is the term formally representing

, then  is provable in , etc.). Curry’s proof of the
inconsistencies of combinatory systems is unsatisfactory because it
heavily uses a detour through number theory and Gödelization, which, as a
matter of fact, is unnecessary as Curry himself soon discovered and
presented in a paper with the same title as the one by Kleene and Rosser,
“in deference to the original discoverers of the contradiction” (Curry
1942). The main result in it is the following theorem (Curry’s paradox, see
the entry Curry’s Paradox):
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1. assume that we have a combinatorially complete system, i.e.,
essentially a system of combinatory logic which contains the standard
properties of equality and the basic axioms ensuring the definability
of Church’s lambda with the corresponding axioms defining 

;
2. assume also that the system contains an implication operator 

satisfying, for arbitrary terms 

For the proof, it is enough to find, for any given term B, a term A such that
. Curry notes that a twofold construction is possible. By direct

self-reference, we can choose: , where  and
. On the other hand, one can apply indirect self-reference

and exploit the machinery of Curry 1941 and Kleene-Rosser: using an
enumerator , one sets  and , being  the
Gödel number of . Curry suggests that these two routes are akin,
respectively, to Russell’s paradox and to the Liar. It is interesting to note
that the two ways correspond to by-now standard tools, the so-called first
fixed point theorem and second fixed point theorem of combinatory logic
and lambda calculus (Barendregt 1984, p. 131 and p. 143; see also the
distinction between the first recursion theorem and the second recursion
theorem of classical recursion theory, in this SEP, entry recursive
functions).

Curry’s analysis of the solutions to the paradox would lead us into the
realm of the theory of functionality, the history of combinatory logic and
proof theory. Here it is enough to recall that according to him, a remedy
would be to formulate within the system the very notion of proposition,
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⊢ M ⊃ M
⊢ M ⊃ (M ⊃ N) ⇒⊢ M ⊃ N
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and a way to avoid the contradictions would lead to a hierarchy of
canonical propositions (or to a theory of levels of implication, already
adumbrated by Church). Related ideas have been developed since the
seventies by Scott 1975, Aczel 1980, Flagg and Myhill 1987, and others.

5.4 Criticizing standard implication and negation

In the 1930s, an alternative route to solve the antinomies emerged. This
approach exploits the duplication (contraction) combinator  which
satisfies ; if  represents negation and , then 

 is a fixed point of negation, and it is a functional
analogue of the Russell class. On the logical level, assigning a type to 
leads to the essential inference applied in the derivation of Curry’s
paradox, i.e., the contraction rule . The role of
contraction was noticed by Fitch 1936, who observed that, in order to
derive the Russell paradox one considers a function of two variables, then
one diagonalizes and regards such an object as a new unary propositional
function. But this step only works if  is accepted. Fitch then proposed a
“non-contractive” logic, but his paper did not go beyond a brief sketch of a
fragment of classical logic with predicates. One has to wait until the mid
eighties to see contraction-free logics used systematically in proof theory
and in theoretical computer science (see the entry linear logic).

Fitch 1942 proposed a new approach to the problem of finding consistent
combinatory logic systems, which were progressively expanded and
refined over many years (until 1980). Fitch’s method to avoid paradoxes
consists of the construction of suitable syntactical models, endowed with
self-referential notions of class, membership and truth. Truth and
membership are inductively generated by iterating rules that correspond to
natural logical closure conditions and can be formalized by means of
positive (i.e. negation- and implication-free) clauses. This fact implies that
the generation process is cumulative and becomes saturated at a certain

W
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point, thus yielding consistent non-trivial interpretations for truth and
membership. Mathematically, a collection of positive clauses always gives
rise to an operator, say , mapping sets of expressions into sets of
expressions and preserving the inclusion relation (i.e., monotone); the
saturated sets then correspond to fixed points of the monotone operator 
(i.e., to sets  satisfying , which exist according to a classical
theorem about complete lattices (see Birkhoff 1967).

In the early 1940s, Fitch explored a purely positive (negationless)
combinatory system  with the explicit aim of defining a sort of universal
formal system, where every system of logic could be represented. Later he
was able to strengthen his approach to include forms of negation and
implication, insofar as he provided a simultaneous generation of truth and
falsehood, and this actually amounts to conceive truth as a partial
predicate. Fitch’s approach is radically intensional: classes are always
classes of expressions  in some language (say, of the basic logic) and
they are identified with attributes, while membership is essentially reduced
to truth in the sense of . Thus, that  holds, essentially means that 

 truly falls under the property specified (or expressed) by  (see also the
entry on combinatory logic). Logical systems, along similar lines, were
also proposed and proved consistent via proof theoretic methods by
Schütte in the early fifties (see Schütte 1960 for a comprehensive
treatment).

To a certain extent, the ideas of Fitch can be regarded as introducing the
view that the basic predicates of truth and membership have to be partial
or, if you like, three-valued. Bochvar (1937) outlines a proposal based on
the introduction of a three-valued logic, where, besides the standard truth
values T (truth) and F (false), there exists a third value N, to be interpreted
as “meaningless”. His logical analysis leads to the conclusion that the
paradoxes involve meaningless statements. A characteristic feature of
Bochvar’s formalism is that it distinguishes two types of connectives,
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roughly corresponding to two different modes of assertion. A statement 
in itself assumes exactly one among the prescribed values (true, false or
meaningless); but the internal three-valued logical operations are also
equipped with external logical operations, which correspond to statements
on the metalevel and allow the use of classical logic in dealing with non-
classical statements. Formally, he described three valued truth tables for
the main propositional internal connectives & (and),  (negation),  (or), 

 (implication),  (logical equivalence). The truth values of ,
etc., coincide with their classical values if  assume classical values;
they are meaningless (assume value N) if one among  has value N
(strictness). No formula built up with the standard connectives can be
valid (or a tautology, i.e., is true under all possible assignments), as 

 has value N, if  is meaningless. But there are connectives
allowing the formation of metatheorical statements such as ,
to be read as “  is true”, “  is false”, “A is meaningless” (in the given
order). The value of  is true if  is true (false), false (true)
otherwise. Bochvar describes a version of the extended type-free logical
calculus of Hilbert-Ackermann (1928), and, in order to dispose of the
paradoxes, he restricts substitution and hence the comprehension schema
of the form

, where  is any formula in which  is not free and
which may or may not have  free.

to conditions  with only internal logical operations. Apparently,
Bochvar’s solution is not simply a gap solution, where the logic is
weakened; instead, he formalizes the distinction between object level and
metalevel in the logic itself. This makes his theory quite expressive (e.g., it
can handle the very notion of “non-sensical”, “meaningless”).

5.5 Non-terminating processes, cycles and typical ambiguity
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Behmann’s paper 1931 (presented in 1929) locates the source of the
paradoxes in the definitional machinery. The paper begins with an analysis
of Russell’s contradiction in the form of predicate application. There he
observes that, once the Russell predicate  is defined by the stipulation

it must be possible to eliminate  from any argument involving it. But, if
we try to replace  by its definiens, we obtain , and we are
trapped in an infinite regress, as there is no -free expression that could
replace . So the contradiction is ascribed to an error in the theory of
definitions, namely to the use of definitions that give rise to an infinite
chain of substitutions, without converging to a result. Behmann’s technical
proposal consists in a reformed logic without types but with an added
operator ! which, when given a predicate , singles out exactly those
arguments  to which  meaningfully applies. For instance, the syllogism
Barbara, usually stated in the form

is corrected to

where the range of the final quantifier is restricted to those  for which it
does make sense. Behmann did not develop a systematic theory until much
later and it is unclear how to interpret his special operator . Nevertheless,
his work has inspired work by Aczel and Feferman (1980).

Lewis and Langford (1932) are led to conclusions which are not dissimilar
to those of Behmann. According to them, the paradoxes show that certain
expressions do not express propositions. They adopt the notation  to
mean that  is a name whose meaning is the proposition  (so  and “ ”
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denote the same entity and can replace each other); typically the Liar
amounts to “  is false”, but we can also imagine more complex self-
referential situations, for instance:

In this case, there is no contradiction, but we become entangled in a
vicious regress (p. 440), and hence no proposition arises. In general, one
can create arbitrary complicated cycles and check that they can lead either
to contradictions or to infinite regress; but in either case, the expression
fails to converge to a definite proposition.

Even after the logics developed by Russell, Zermelo and Tarski had
created the theoretical means to get rid of difficulties involved in the
notions of class, set, truth, definability, the paradoxes have remained alive.
This probably is due to a persistent interest in alternative formal
paradigms, to the controversial features and axioms of Principia
Mathematica, and to the problematic place that self-reference occupies in
mathematical logic. In this context, it is worth mentioning Quine’s paper
of 1937 on the system NF (see the entry Quine’s New Foundations), which
takes inspiration from the Russellian notion of typical ambiguity, that is,
from the systematic device of suppressing the order indices of
propositional functions and their arguments, leaving them to be restored at
will, when needed, according to the discipline of type theory (see 3.2
above). The idea is to restrict naive comprehension to those instances that
are stratified, where in general a formula  is stratified iff it is possible to
assign a natural number (type in short) to each term occurrence in such a
way that the resulting formula is well-formed in the sense of type theory,
e.g., if  s is a subformula of , the type of  is one greater than the type
of , etc.. Clearly, stratification blocks set formation when formulas of the
form  are present. Moreover, in NF the universal set exists.
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The consistency problem for NF is still open (though partial results are
known concerning fragments with bounds on stratification or restriction to
extensionality). Remarkably, NF refutes the axiom of choice by a classical
theorem of Specker. Again, a classical result of Specker establishes the
existence of a model of NF in a suitable version of simple type theory with
a formal counterpart of typical ambiguity. Paradoxes are not that far from
NF. In 1942 Rosser (and independently Lyndon) published a form of
Burali-Forti’s antinomy in a seemingly natural extension (named ML) of
the system NF, obtained by adding “ultimate classes”. ML was defined to
avoid certain weaknesses of NF (e.g., with respect to number theoretic
induction). Once more, the Lyndon-Rosser result brought about the
unexpected presence of a paradox in set theory and the foundations of
mathematical logic.

6. Conclusion: a glance at present-day investigations

One might think that the development of logic and set theory in the 20th
century has exorcized paradoxes, and that contradictions in logical
systems is a phenomenon of the years of foundational crisis only. This is
not so: paradoxes have been discovered in several recent logical systems,
especially systems related to computer science.

For instance, Girard showed that a constructive theory of types, due to Per
Martin-Löf (1970) and based on the Curry-Howard correspondence, is
inconsistent with the existence of a type of all types; the contradiction
follows by means of a type theoretic reconstruction of an argument related
to the Burali-Forti antinomy and the Mirimanoff paradox of grounded sets.
Later Coquand (1986) proved that certain extensions of the calculus  of
constructions are inconsistent. Very roughly,  is a higher order
impredicative type theory, extending Girard’s system , a powerful
second-order typed lambda calculus with abstraction on types which is
suitable for representing proofs of impredicative intuitionistic second

C
C
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order logic. Coquand 1994 offered a new paradox affecting type theory,
which refines Reynold’s result that there is no classical set-theoretic model
of polymorphism (read: Girard’s system , see the entries Type Theory
and Intuitionistic Type Theory). A general type-free development of the
theory of constructions as a foundation for constructive provability in
logic and mathematics was originally proposed by Kreisel and Goodman.
It turned out to be affected by an antinomy, and has been recently
reconsidered by Dean and Kurokawa 2016.

Grišin 1981 (but recall section 5.4 of this entry) proved that the system
based upon the paradoxical principle par excellence—the uniform naïve
comprehension schema—and (some form of) non-contractive logic enjoys
cut elimination and hence is consistent. Of course ‘uniform’ here means
that a variable-binding abstraction operator  for naming the
set defined by , depending on a list of given parameters , is available.
Interestingly, it has been shown that closely related systems have
unexpected applications to the characterization of complexity classes
(Girard 1998, Terui 2004, Eberhard and Strahm 2015); on the other hand,
the system is computationally complete (it can interpret combinatory logic,
Cantini 2003)

On the borderline between foundational issues and applications in
computer science, arguments with typical paradoxical flavor appear in the
investigation of Feferman’s explicit mathematics (EM), a theory of (self-
applicable) operations and non-extensional classifications. For instance,
the existence of a strong power type construction leads to inconsistency in
the theories of types and names, a development of EM introduced by
Jäger. Paradoxical arguments are also useful for assessing the role of
universes and refuting non-extensionality in EM, in presence of forms of
uniform naïve comprehension (see Cantini and Minari 1999).

F

{x ∣ ϕ(x, a)}
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The role of uniformity is essential in previous investigations. Indeed,
concerning naïve comprehension, it is known since the seventies (Malitz
1976) and the eighties (Weydert 1988, Forti and Hinnion 1989) that there
exist nice topological models of extensionality and non-uniform naïve
comprehension restricted to generalized positivity conditions. This has led
to the study of so-called hyperuniverses. Additional
consistency/inconsistency results about the relationship between
extensionality and uniform vs. non-uniform comprehension principles can
be found, e.g., in Hinnion and Libert 2003, Esser and Libert 2005.

In a similar direction, recent theoretical proposals combine anew ideas
from combinatory logic and lambda calculus with “inductive”
reinterpretations of naïve comprehension and unrestricted truth schema,
along a path already opened by Fitch in the late forties (see Scott 1975,
Flagg and Myhill 1987, Aczel 1980, and Feferman 1982).

Beginning in 1992, there was an attempt, due to K. Grue, to resurrect
Church’s lambda calculus as a foundation of mathematics. Grue 2001
presents a very strong extension of lambda calculus, the so-called map
theory, in which standard axiomatic set theory becomes interpretable, and
which can be used to shed light on the difference between Russell’s and
Burali-Forti’s paradoxes.

In standard metamathematics, an important role for a thorough
understanding of the second incompleteness theorem has been played by
Löb’s theorem (Löb 1955). The proof of the theorem is related to Curry’s
paradox (see section 5.3 and the entry on Curry’s paradox) and to an
informal argument due to Geach 1955. Löb’s theorem is essential for
defining mathematical structures, which are adequate for providing
versions of self-reference and incompleteness (see the so called Magari
algebras and the modal analysis of formal provability, Boolos 1993). In
the same area, there are applications of Berry’s paradox. For instance, in
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1966 Vopenka proved the second incompleteness theorem for the Bernays-
Gödel theory of sets and classes using a form of the same paradox. Boolos
1989 exploits a Berry-type argument to prove incompleteness in the form
“there is no algorithm whose output contains all true statements of
arithmetic and no false ones” without appealing to diagonalization. The
Berry paradox has been related to the incompleteness phenomena also
because of work (going back to the sixties and the seventies) in the so-
called Kolmogorov complexity and algorithmic information theory. In
particular, Chaitin has shown in a number of papers how to exploit
randomness to prove certain limitations of formal systems (see Chaitin
1992). In connection with Chaitin’s results, Kritchman and Raz 2011 give
a proof of the second incompleteness theorem, which is based on an
argument resembling the Surprise test paradox (see epistemic paradoxes).

Since Mirimanoff, Finsler and others, logicians have studied universes of
set theory where circular sets exist. However, it is only since the early
eighties that a genuine mathematics of non-well-founded sets has been
being developed. Using the axiom AFA of anti-foundation, direct self-
reference is allowed in set theory and there exist plenty of sets solving
general self-referential equations (AFA was introduced by Forti and
Honsell in 1982; for systematic development and history, see Aczel 1988
or the entry on non–wellfounded set theory). In particular, non-well
founded sets are applied to the analysis of the paradoxes, to the semantics
of natural languages and to theoretical computer science (see Barwise and
Etchemendy 1984, Barwise and Moss 1996).

Concerning the issue whether self-reference can be avoided in deriving
paradoxes, and hence whether there are genuine contradictions arising
from ungroundedness, a positive answer has been given by the semantical
paradox of Yablo 1995 (there are infinitely many agents , etc.,
each one claiming the same sentence: “at least one agent following me is
lying”; but this yields a contradiction – see also the entries on self-

, ,a0 a1 a2
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reference and liar paradox). The issue this construction raises, namely
whether circularity and self-reference are necessary and sufficient
conditions to the appearance of paradoxes, has been further considered in
Yablo 2006 (see Cook 2014 for a comprehensive study on this matter, and
Halbach and Zhang (forthcoming) for a proof without diagonal lemma).
Moreover, the connection between the incompleteness phenomena and
paradoxes has been extended up to include Yablo’s paradox, as a special
case of Liar-type paradoxes (Kurahashi 2014, Kikuchi and Kurahashi
2016).

The analysis of self-reference and diagonalization has motivated the
application of algebraic and topological techniques: consider Scott’s
models for extensional lambda calculus (Scott 1972) and their subsequent
categorical understanding. On the other hand, category theory has been
used for new approaches to paradoxes since Lawvere 1969. A
mathematical approach to the general issue of “self-reference vs.
unfoundedness” can be found in Bernardi 2001, 2009. Besides Yablo’s
paradox and a game theoretic version of Mirimanoff’s paradox, several
classical results (existence of a non r.e. set, Cantor’s theorems on the non-
denumerability of the reals) can be transformed into existence theorems
for suitable unfounded chains (and formally, unfounded chains are
regarded as generalized fixed points).

Philosophical motivations are strongly influential in contemporary logical
investigation of paradoxes. This is especially clear from the Neo-Fregean
approach based on Hume’s principle and variations thereof: consistent
subsystems of Frege’s Grundgesetze have been isolated and are currently
studied (see Burgess 2005, also for a comprehensive reference list to
preceding work by Boolos, Wright and Hale, Heck, Wehmeier, Ferreira,
Antonelli and May, the essays contained in Reck and Cook 2016, and also
the entry Logicism and Neologicism).
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A host of logical papers arise from the discussion of the foundations of
semantics, with a number of proposals which generalize or modify
Tarski’s semantical conception of truth. Tarski notwithstanding, since
1975 the hierarchical approach has been somewhat superseded by new
ideas that have rendered the ideal of logical and semantical closure in
many respect accessible (especially by means of the fixed point methods
used by Kripke 1975 and Martin-Woodruff – see Martin 1984; for a
presentation, an evaluation of their impact, as well as relations to further
studies, see the entries on self-reference and axiomatic theories of truth).
We also mention the approach stemming from Herzberger, Gupta and
Belnap 1993 (see the entry revision theory of truth), that has connections
with non-elementary parts of definability theory and set theory (Welch
2001). Gupta 2011 presents an application of revision theory to the
concept of strategic rationality in a certain type of finite games. His
analysis stems from considerations about circularity, being inherently
connected to the common way of understanding rational choice. Although
developed independently, Gupta’s stance is reminiscent of previous work
by H. Gaifman about rationality being affected by paradoxes resembling
the truth theoretic paradoxes like the liar paradox (see Gaifman 1999).
From the technical point of view, the notable aspect of Gupta’s application
is that it makes use of only the finite part of revision theory (i.e., it does
not need the transfinite iteration of this construction), and it gets rid of the
rule for dealing with stages corresponding to limit ordinals. This limit rule,
which is essential to address the concept of truth, turned out to be the most
critical aspect of the revision-theoretic approach to circular concepts from
both the conceptual, and the complexity point of view.

Field (2003, 2008) has generated solutions of the semantical paradoxes
which combine Kripkean and revision theoretic techniques. According to
him, the present solutions to the paradoxes are not satisfactory because of
the following points: (i) the lack of a decent conditional (and
biconditional); (ii) the failure of (some instances of) the T-schema (
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; (iii) the failure of intersubstitutivity between  and 
; (iv) the impossibility of producing an internal analysis of the

defectiveness of the paradoxical sentences. Field (2008) has consequently
developed a theory of truth with a non-classical conditional operator,
which allows to express a notion of determinate truth and to state that the
Liar is not determinately true. Analysis of Field’s construction have
provided sophisticated set-theoretic and recursion theoretic developments
(see Welch 2008, 2009 and Meadows 2015 for a proof-theoretic
counterpart of the latter source). Field’s proposal can be viewed as an
example of the approach that aims at solving paradoxes by revising
classical logical principles – an approach now gaining attention among
scholars (see the articles in Murzi and Carrara 2015 for a comprehensive
overview). As the attention of scholars to the whole topic of conditionals
in theories of truth continues to grow, Field’s proposal has inspired other
approaches along similar lines (see Rossi 2016 for an alternative relatively
light conditional, and see Gupta and Standefer forthcoming for a further
discussion, as well as for an original proposal of new conditionals inspired
by the revision-theoretic approach mentioned earlier).

In the same direction, a considerable attention has been directed in recent
literature to the so called revenge problem: typical solutions, say, of the
Liar paradox, rely on notions that, if expressible in the object language,
give rise to new versions of the paradox. So the solution is only an
illusion. The revenge problem can be instantiated by the so-called
Strengthened Liar: informally, once we have a model which makes the
Liar sentence L itself neither true nor false, and we can express this very
fact, L is after all not true. But this is the claim made by L , and hence L is
true. So the paradox seems to show up again (for more details, see the
entry liar paradox, the collection of essays contained in Beall 2007, and
Welch 2014 as a recent contribution to the subject related to Field’s
proposal above).

A ↔ T(⌜A⌝)) A
T(⌜A⌝)
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Indexical solutions of the Liar have been developed in several
contributions, e.g., by Burge, Gaifman, Simmons. The idea is that the Liar
paradox does not involve sentences, but specific occurrences of sentences,
i.e., sentence tokens (this idea is to be found already in scholastic
solutions). For the sake of historical accuracy, let us mention that in 1913
Lesniewski, later Tarski’s dissertation advisor, had already advanced an
indexical nominalistically inspired solutions of the Liar in his paper A
Critique of the Logical Principle of the Excluded Middle (see Betti 2004).

Besides the model-theoretic side, axiomatic investigations of truth and
related paradoxes have become increasingly important since the seminal
papers of Friedman and Sheard 1987, Feferman 1991. Since the year 2000,
this research thread has been intensively studied with various aims, from
proof theoretic analysis to philosophical discussion of minimalism (for a
survey of the varieties of truth theoretic systems and appropriate
references, see the entry on axiomatic theories of truth and the recent
monographs of Halbach 2011, Horsten 2011; see also the papers Feferman
2008, Fujimoto 2010, 2011 and 2012, Horsten and Leigh forthcoming,
Leigh and Rathjen 2010 and 2012, Leigh 2013, 2015a, 2015b, Enayat and
Visser 2015).

The axiomatic study of epistemic notions has greatly benefited from
application of techniques used for proving incompleteness and
indefinability results since the early sixties: they have yielded negative
results (Kaplan and Montague 1960, Montague 1963, Thomason 1980)
and established an interesting link with the Surprise test paradox. The
situation may have also been changed by the study of possible world
semantics for modal notions conceived as predicates in Halbach, Leitgeb
and Welch 2003. However this is open to debate and experimentation: for
instance it is argued in Halbach and Welch 2009 that the predicate
approach to necessity is a viable route—insofar as the expressive power is
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considered—provided one resorts to languages that involve both a truth
predicate and the necessity operator.

Also, a number of solutions have been proposed, which rely on the use of
paraconsistent logics (Priest) or substructural logics (see the entry
paraconsistent logic and Beall 2013 for a recent work relating classical
and paraconsistent theories, as well as the entry substructural logics and
Mares and Paoli 2014). The investigation of semantical and set-theoretic
paradoxes in infinite-valued logic—which was pioneered by Mow Shaw-
Kwei 1955 and Skolem in 1957—has received a new impulse with
contributions by Hajek, Shepherdson and Paris 2000 and Hajek 2005.
Typically, in these papers basic results from mathematical analysis are
applied (e.g. Brouwer’s fixed point theorem). It is worth mentioning that
Leitgeb 2008 has given a consistency proof for a probabilistic theory of
truth based upon unrestricted T-schema by making use of the Hahn-
Banach Theorem. Theories of naive truth—as based on the unrestricted
biconditional and on a logic without contraction—are to be found in the
literature, e.g see Cantini 2002 and Zardini 2011 (see also Bacon 2013 for
some related work). Ripley 2012, instead, presents an alternative approach
based on a non-transitive logical system. Besides tools from algebra and
analysis, logical investigations about paradoxes and truth in particular
have recently exploited ideas from graph theory (see Cook 2004, Rabern,
Rabern and Macauley 2013, Schindler and Beringer 2016).
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