
ESAIM: COCV 26 (2020) 99 ESAIM: Control, Optimisation and Calculus of Variations
https://doi.org/10.1051/cocv/2020023 www.esaim-cocv.org

SINGULAR EXTREMALS IN L1-OPTIMAL CONTROL PROBLEMS:

SUFFICIENT OPTIMALITY CONDITIONS∗
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Abstract. In this paper we are concerned with generalised L1-minimisation problems, i.e. Bolza
problems involving the absolute value of the control with a control-affine dynamics. We establish
sufficient conditions for the strong local optimality of extremals given by the concatenation of bang,
singular and inactive (zero) arcs. The sufficiency of such conditions is proved by means of Hamiltonian
methods. As a by-product of the result, we provide an explicit invariant formula for the second variation
along the singular arc.
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1. Introduction

L1-minimisation problems, that is, optimal control problems aiming to minimise the L1 norm of the control,
have shown to model quite effectively fuel consumption optimisation problems in engineering [7, 8, 26, 27] and
some systems appearing in neurobiology [5]. In a recent paper dealing with the problem of minimising the fuel
consumption of an academic vehicle [6], a generalised version of this problem is studied: the cost to be minimised
is the absolute work, modelled as the integral of the absolute value of the control, weighted by the absolute value
of a function dependent on the state (such kind of problems have been called generalised L1 optimal control
problems in [10]).

Besides the well known solutions given by concatenations of singular and bang arcs, generalised L1-optimal
control problems are known to present a new category of extremal arcs, in which the control is neither singular
nor bang, that is, its value is uniquely determined by Pontryagin Maximum Principle, but is not an extremum
point of the control set. In these arcs the control is identically zero, so they are commonly called zero arcs, zero
thrust arcs, inactivated arcs or cost arcs. The property of L1 minimisation of generating zero arcs is well known
and exploited in practical situations, see for instance [18].

The Pontryagin Maximum Principle, suitably generalised for non-smooth frameworks (see e.g. [14]), provides
a set of necessary conditions for the optimality of admissible trajectories. The aim of this paper is to give a
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set of sufficient conditions for the optimality of admissible trajectories that satisfy the Pontryagin Maximum
Principle and whose associated extremal contains bang, singular and inactivated arcs.

Before proceeding with further discussion, let us state the problem in detail. Let M be a smooth n-dimensional
manifold, ψ : M → R a smooth function, f0, f1 two smooth vector fields on M . Finally let T > 0 be fixed and
let q0, qT be two given points in M . Consider a Bolza optimal control problem of the following form:

minimise

∫ T

0

|u(t)ψ(ξ(t))| dt (1.1)

over all absolutely continuous trajectories that are Carathéodory solutions of the boundary value problem
(admissible trajectories) 

ξ̇(t) = (f0 + u(t)f1) ◦ ξ(t),
ξ(0) = q0, ξ(T ) = qT ,

u ∈ L∞([0, T ], [−1, 1]).

(1.2)

For a solution ξ̂ of the Cauchy problem (1.2), according to [3], we adopt the following notion of optimality.

Definition 1.1 (Strong local optimality). The trajectory ξ̂ is a strong local minimiser of problem (1.1)–(1.2)

if there exists a neighbourhood O of its graph in R ×M such that ξ̂ is a minimiser among the admissible
trajectories whose graphs are contained in O, independently of the values of the associated control function.
We say that ξ̂ is a strict strong local minimiser if it is the only minimising trajectory whose graph is in O.

Pontryagin Maximum Principle states that, if ξ̂ is locally optimal, then it must be an extremal trajectory,
i.e. the projection on the manifold M of the solution of a suitable Hamiltonian system defined on the cotangent
bundle T ∗M , see e.g. [1, 14]. If we limit ourselves to consider normal extremals only, then such Hamiltonian
system is determined by the values of the two Hamiltonian functions Φ±(`) = 〈` , f1(π`)〉 ± |ψ(π`)|, ` ∈ T ∗M ,
whose role is analogous to the one played by the switching functions in smooth control-affine optimal control
problems. In particular, when neither of the two functions vanishes, the maximised Hamiltonian is realised by
one and only one admissible control value, which, according to the sign of these two functions, is either ±1 or
0. In the first case, in analogy with the control-affine case, we say that we have a regular bang control, while in
the latter case we say that we have a zero or inactivated control; on the other hand, if either Φ+(`) or Φ−(`)
vanishes along a nontrivial arc of a Pontryagin extremal, then only the sign of the control is prescribed, and we
say that we have a singular control.

In [6] the authors consider a specific parameter-dependent problem fitting in the class of problem (1.1)–(1.2).
They show that, according to the values of the parameters, the optimal extremal trajectories are given by the
concatenations of bang-zero-bang arcs or of bang-singular-zero-bang arcs. Inspired by this result, we look for
sufficient optimality conditions for such extremals: in [9, 10], we focus on extremals made by a concatenation of
bang-zero-bang arcs; here we consider the case of a concatenation of bang-singular-zero-bang arcs and provide
an adequate set of sufficient conditions.

Our approach, successfully applied also for other classes of problems (see for instance [2, 4, 12, 20, 23, 25, 30])
relies on Hamiltonian methods. The main steps in these methods are the following:

- if the flow generated by the maximised Hamiltonian is well defined, and the maximised Hamiltonian is
at least C2, find a Lagrangian submanifold Λ1 of the cotangent bundle that projects injectively onto the
base manifold, and such that at each time t ∈ [0, T ] its image under the flow generated by the maximised

Hamiltonian projects one-to-one onto a neighbourhood of ξ̂(t) in the base manifold;
- thanks to the local invertibility of this flow, lift all admissible trajectories, with graph belonging to the

neighbourhood of the graph of the reference one, to Λ1;
- estimate the cost associated with every trajectory, by means of a line integral in Λ1.
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As long as this construction is possible – that is, as long as the image of the manifold via the flow generated
by the maximised Hamiltonian is invertible – it is possible to show that the reference trajectory is indeed a
local minimiser.

In the series of papers [4, 11, 20, 23, 28], the existence of a suitable manifold Λ1 is shown to be related to the
coerciveness of the second variation associated with some sub-problem of the original one. Indeed, the second
variation is written as an accessory linear-quadratic control problem on the tangent space; by the classical
theory of linear-quadratic systems (see e.g. [29], Thm. 2.6), if the second variation is coercive, then the image,
under the linearised flow, of the space of transversality conditions of the accessory problem projects injectively
onto the base manifold. A good candidate for the manifold Λ1 is thus given by the image of such manifold of
transversality conditions, under a suitably defined symplectic (or anti-symplectic) isomorphism.

We stress that one of the main strengths of this approach relies on the fact that all trajectories whose graph
is close to the reference one can be lifted to Λ1, regardless of the value of the associated control, thus yielding
optimality in the strong topology.

In the case of bang-bang extremals, the maximised Hamiltonian is not C2. Nevertheless, the Hamiltonian
methods described above can be applied with minor adjustments, see e.g. [4, 19–22]. When the extremal is
singular or is the concatenation of bang and singular arcs, then a more sophisticated construction is required.
In particular, it is no longer possible to use the flow associated with the maximised Hamiltonian of the control
system (see Sect. 5.1 for details). However, as observed for the first time in [28], Hamiltonian methods work
even if the maximised Hamiltonian is replaced by a suitable over-maximised Hamiltonian. In the present paper,
this construction is made possible thanks to a set of regularity assumptions (Asm. 3.1–3.9), holding along the
reference trajectory.

The problem under study presents another tough issue: indeed, we are dealing with a Bolza problem containing
a singular arc. As it happens, for instance, for singular extremals of the minimum-time problem or of a Mayer
problem, the second variation is degenerate, thus not coercive. This problem can be surmounted by means of
a Goh transformation, which provides a non-degenerate second variation, defined on a larger Hilbert space.
Moreover, since we are dealing with a Bolza problem, the construction of such second variation is particularly
elaborate and, up to the authors’ knowledge, this is the first time it is computed, at least in the invariant form
we are using.

The paper is organised as follows: in Section 2 we state the notations that we are going to use throughout
the paper; in Section 3 we state the first part of our assumptions. In Section 4 we define the extended second
variation. In Section 5, by using the regularity assumptions, we construct the over-maximised flow and in
Section 6 we prove that the projected over-maximised flow emanating from an appropriate Lagrangian manifold
is locally invertible. Finally, in Section 7 we state and prove the main result of the paper. The result is illustrated
in Section 8 with an example for which explicit analytical computations can be done. For the sake of readability,
some technical computations are postponed to the Appendices.

2. Notations

We denote with TM and with T ∗M the tangent bundle and the cotangent bundle to M , respectively. π
denotes the canonical projection of T ∗M on M ; the elements of T ∗M are denoted with `.

In the following, small letters f, g, k denote vector fields on the manifold M , and the corresponding capital
letters are used to denote the corresponding Hamiltonian lift, i.e. F (`) = 〈`, f(π`)〉. Given a vector field f
on M , the Lie derivative at a point q ∈ M of a smooth function ϕ : M → R with respect to f is denoted
with Lfϕ(q) = 〈dϕ(q), f(q)〉, and L2

fϕ(q) = Lf
(
Lfϕ

)
(q). The Lie bracket of two vector fields f, g is denoted as

commonly with [f, g]. In particular, for Lie brackets of indexed vector fields as f0, f1, we adopt the following
notations:

fij = [fi, fj ], fijk = [fi, fjk].

Analogously, Fij(`) = 〈`, fij(π`)〉 and Fijk(`) = 〈`, fijk(π`)〉.
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The symbol ς denotes the Poincaré-Cartan invariant on T ∗M , defined as ς` = ` ◦ π∗ ∀` ∈ T ∗M . The symbol
σ` = dς` denotes the canonical symplectic form on T ∗M . With each Hamiltonian function F we associate the
Hamiltonian vector field ~F on T ∗M defined by

〈dF (`) , ·〉 = σ`(·, ~F (`)).

In this paper, a special role is played by the switching time τ̂1 between the first bang arc and the singular one.
Thus, we shall always consider flows starting from time τ̂1, evolving backwards in time up to time t = 0 or
forward in time up to time t = T . Capital cursive letters are used for the Hamiltonian flows associated with
some Hamiltonian vector fields: for instance, Ft denotes the flow, from time τ̂1 to time t, associated with the
Hamiltonian vector field ~F .

Throughout the paper, the superscript ·̂ is used for objects related to the reference trajectory ξ̂. In particular,
û(t) denotes the control associated with ξ̂, f̂t the vector field f0 + û(t)f1 and Ŝt its flow, i.e. Ŝt(q) is the solution
at time t of the Cauchy problem {

ξ̇(t) = f̂t ◦ ξ(t),
ξ(τ̂1) = q.

Analogously, F̂t(`) = 〈` , f̂t(π`)〉 is the Hamiltonian associated with f̂t, and F̂t denotes its associated

Hamiltonian flow. Finally, we define the function ψ̂t : M → R as ψ̂t = ψ ◦ Ŝt.

3. Regularity assumptions

We consider an admissible trajectory ξ̂ of the control system (1.2) whose associated control û has the following
structure:

û(t) =


1 t ∈ (0, τ̂1),

ûS(t) ∈ (0, 1) t ∈ (τ̂1, τ̂2),

0 t ∈ (τ̂2, τ̂3),

−1 t ∈ (τ̂3, T ).

(3.1)

where 0 < τ̂1 < τ̂2 < τ̂3 < T . ξ̂ is called the reference trajectory. The times τ̂i, i = 1, 2, 3 are called (reference)

switching times and, analogously, the points q̂i = ξ̂(τ̂i) are called (reference) switching points.
This section is devoted to the statement of the necessary conditions for optimality and the discussion of the

regularity assumptions along the reference trajectory.

Assumption 3.1. Along the reference trajectory, the cost ψ does not vanish for t ∈ [τ̂1, τ̂2] and t = τ̂3. Without

loss of generality, we assume that ψ ◦ ξ̂|[τ̂1,τ̂2] > 0.

Assumption 3.2. For every t ∈ [0, T ] such that ψ(ξ̂(t)) = 0, it holds L ˙̂
ξ(t)

ψ(ξ̂(t)) 6= 0.

Assumptions 3.1–3.2 deal with the behaviour of the function ψ; in particular, a direct consequence of Assump-
tion 3.2 is that the zeroes of the cost function ψ along ξ̂ are isolated, thus finite. Since the zeroes of ψ are the
only non-smoothness points of the running cost, we can apply a classical version of PMP. Indeed, due to non-
smoothness, more general versions of PMP (see, e.g., [14], Thm. 22.2, [16]) would be required. Nevertheless,
thanks to Assumption 3.2, we can rearrange the optimal control problem into a hybrid control problem, as
defined in ([14], Sect. 22.5), setting the surface S = {(t, x, y) : ψ(x) = 0, y = x} as switching surface. The ana-
logue of the classical PMP for hybrid optimal control problems is the Hybrid Maximum Principle (see [31],
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Thm. 17.4.1 and [14], Thm. 22.26) which, under Assumption 3.2, reduces to the standard smooth version of
PMP, see [1]. For this reason, here below we refer to the classical notions of Pontryagin extremal and PMP.

Definition 3.3 (Pontryagin extremals). For every u ∈ [−1, 1] and for p0 ∈ {0, 1}, we consider the pre-
Hamiltonian function associated with the optimal control problem (1.1)–(1.2)

h(`, u) := F0(`) + uF1(`)− p0|uψ(π`)|,

and we define the maximised Hamiltonian as

Hmax(`) = max
u∈[−1,1]

h(`, u).

Let λ : [0, T ]→ T ∗M be an absolutely continuous curve such that ψ(πλ(t)) vanishes only for a finite number of
times 0 < t1 < . . . < tk < T . λ is called a Pontryagin extremal of problem (1.1)–(1.2), if there exist a constant
p0 ∈ {0, 1} and an admissible control u(t) (called extremal control) such that

(λ(t), p0) 6= 0, ∀ t ∈ [0, T ],

λ̇(t) = ~h(λ(t), u(t)), a.e. t ∈ [0, T ], (3.2a)

h(λ(t), u(t)) = Hmax(λ(t)), a.e. t ∈ [0, T ], (3.2b)

πλ(0) = q0, πλ(T ) = qT .

If p0 = 1, then λ is called a normal Pontryagin extremal, if p0 = 0 we say that λ is an abnormal Pontryagin
extremal.

As discussed in the Introduction, in the case of normal extremals, the Hamiltonian functions

Φ±(`) := F1(`)± |ψ(π`)|

play the same role as the switching functions do in control-affine problems. Indeed, if both Φ− and Φ+ are
non-zero along an extremal, then the extremal control is uniquely determined by equation (3.2b): in particular,
it is zero if Φ− and Φ+ have different signs, it is +1 if both are positive, and it is −1 if both are negative. If
only one between Φ− and Φ+ is zero, then PMP prescribes only the sign of the extremal control. The last case,
where both Φ− and Φ+ are zero, is highly degenerate and in this case equation (3.2b) gives no information
about the value of the extremal control. For these reasons, Φ− and Φ+ are called switching functions. Subarcs
of a Pontryagin extremal are thus classified according to the signs of the switching functions.

Definition 3.4. Let λ : [0, T ]→ T ∗M be a normal Pontryagin extremal for problem (1.1)-(1.2), and let I ⊂ [0, T ]
be an open interval.

If Φ−(λ(t))Φ+(λ(t)) > 0 for every t ∈ I, then λ|I is called a regular bang arc.
If Φ−(λ(t))Φ+(λ(t)) < 0 for every t ∈ I, then λ|I is called an inactivated or zero arc.
If Φ−(λ(t))Φ+(λ(t)) = 0 for every t ∈ I, then λ|I is called a singular arc.
In particular, if one between Φ−(λ(t)) and Φ+(λ(t)) is different from zero for every t ∈ I, then λ|I is a

non-degenerate singular arc. Else we call it degenerate.

Assumption 3.5. There exists a normal Pontryagin extremal λ̂ associated with the reference control û such
that πλ̂(t) = ξ̂(t) for every t ∈ [0, T ]. We assume that λ̂|[0,τ̂1) and λ̂|(τ̂3,T ] are regular bang arcs, that λ̂|(τ̂1,τ̂2) is

a non-degenerate1 singular arc, and that λ̂|(τ̂2,τ̂3) is an inactivated arc.

1We point out that degenerate singular arcs occur if and only if for some t ∈ (τ̂1, τ̂2) F1(λ(t)) = ψ(πλ(t)) = 0; for the extremal

λ̂ this situation is precluded by Assumption 3.1.
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Notation. We set ̂̀i = λ̂(τ̂i), for i = 0, 1, 2, 3, and ̂̀T = λ̂(T ).
Moreover, we define the following constants:

ai = sign
(
ψ(q̂i)

)
, i = 1, 2, 3.

Thanks to Assumption 3.1, it follows that a1 = a2 = 1.

Remark 3.6. We recall that, if the reference extremal is optimal, then it must satisfy PMP and the switching
functions must satisfy the mild version of the inequalities appearing in Definition 3.4; the only additional
requirements in Assumption 3.5 are the regularity of the arcs and the fact that the extremal is normal.

Remark 3.7. Assumption 3.1 ensures that, in a neighbourhood of λ̂([0, T ]), the switching surfaces {Φ+ = 0}
and {Φ− = 0} do not intersect each other. Together with the fact that the zeroes of ψ along ξ̂ are finite, this fact

guarantees that the Hamiltonian vector field associated with F̂t is well defined along the reference trajectory,
but for at most a finite number of times, that is, the switching times and the zeroes of ψ(πλ̂(t)).

Assumption 3.5 and equation (3.1) imply the following conditions on the sign of the switching functions along
the reference extremal:

Φ−(λ̂(t)) > 0 t ∈ [0, τ̂1), (3.3)

Φ−(λ̂(t)) = 0 t ∈ [τ̂1, τ̂2], (3.4)

Φ−(λ̂(t)) < 0 < Φ+(λ̂(t)) t ∈ (τ̂2, τ̂3), (3.5)

Φ+(λ̂(t)) < 0 t ∈ (τ̂3, T ]. (3.6)

Equations (3.3)–(3.6) yield a set of higher order necessary conditions. Indeed, combining equations (3.3)

and (3.4), we obtain that d
dtΦ
−(λ̂(t))|t=τ̂−1 ≤ 0, while (3.4) gives d

dtΦ
−(λ̂(t)) = d2

dt2 Φ−(λ̂(t)) = 0 for every

t ∈ (τ̂1, τ̂2). Explicit computations show that d
dtΦ−(λ̂(t))|t=τ̂±1 = {F0,Φ

−}(̂̀1). By continuity this implies that

d
dtΦ
−(λ̂(t))

∣∣∣
t=τ̂1

= 0, so that we must have d2

dt2 Φ−(λ̂(t))|t=τ̂−1 ≥ 0.

Analogously, from equations (3.4) and (3.5), we obtain that d2

dt2 Φ−(λ̂(t))|t=τ̂+
2
≤ 0.

At time τ̂3, Φ+(λ̂(t)) is differentiable and changes sign from positive to negative, thus d
dtΦ

+(λ̂(t))|t=τ̂3 ≤ 0.
The regularity assumptions at the switching points consist in a strengthening of the above inequalities.

Assumption 3.8 (Regularity at the switching points.).

(F001 + F101) (̂̀1) + a1Lf01ψ
(
q̂1

)
− a1Lf0+f1Lf0ψ

(
q̂1

)
=

d2

dt2
Φ−(λ̂(t))|t=τ̂−1 > 0

F001(̂̀2)− a2L
2
f0ψ
(
q̂2

)
=

d2

dt2
Φ−(λ̂(t))|t=τ̂+

2
< 0

r3 = F01(̂̀3) + a3Lf0ψ(q̂3) =
d

dt
Φ+(λ̂(t))|t=τ̂3 < 0.

A well-known second order necessary optimality condition concerning singular arcs is given by the Generalised
Legendre condition (see for instance [1], Thm. 20.16), which in our context reduces to

F101(λ̂(t)) + a1

(
Lf01ψ

(
ξ̂(t)

)
− Lf1Lf0ψ

(
ξ̂(t)

))
≥ 0.

We assume that the inequality here above holds in the strict form.
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Assumption 3.9 (Strong generalised Legendre Condition (SGLC)). For all t ∈ [τ̂1, τ̂2]

F101(λ̂(t)) + a1

(
Lf01ψ

(
ξ̂(t)

)
− Lf1Lf0ψ

(
ξ̂(t)

))
> 0. (3.7)

For the purpose of future computations, we introduce the following notation:

L(`) = F101(`) + a1

(
Lf01ψ

(
π`
)
− Lf1Lf0ψ

(
π`
))

` ∈ T ∗M,

so that equation (3.7) reads L(λ̂(t)) > 0, t ∈ [τ̂1, τ̂2].
Assumption 3.9 yields some geometric properties of two subsets of T ∗M which are crucial for our construction:

Σ− = {` ∈ T ∗M : Φ−(`) = 0},
S− = {` ∈ Σ− : F01(`)− Lf0ψ(π`) = 0}.

Indeed, thanks to Assumption 3.9, it is easy to see that, in a neighbourhood of λ̂([τ̂1, τ̂2]), Σ− is a codimension

one embedded submanifold of T ∗M . Moreover, Assumption 3.9 implies that ~Φ− is not tangent to S−, so that
S− is a codimension one embedded submanifold of Σ−. We finally notice that, for every ` ∈ S−, the tangent
space to Σ− at ` splits in the following direct sum

T`Σ
− = T`S

− ⊕ R~Φ−(`). (3.8)

We end the section with a technical assumption concerning again the zeroes of the running cost along the
reference trajectory. Indeed, as already stressed, the flow generated by the maximised Hamiltonian, appearing
in (3.2a)–(3.2b), depends on how many times the function ψ changes sign along the reference trajectory, as
each of these points bears a non-smoothness point. This issue has been accurately treated in [10], and the same
computations carried out there could extend with no modifications to the current problem. Thus, due to the
complexity introduced by the presence of a singular arc, and in order to simplify the presentation, we make the
following assumption.

Assumption 3.10. Along the first bang-arc, the singular and the last bang arc, the function ψ is positive.

Remark 3.11. We stress that this assumption does not cause any loss of generality; the result (Thm. 7.1)
holds true also if we drop it, provided that the other assumptions are satisfied and that the second variation
and the maximised flow are suitably computed, according to the rules given in [10].

4. The second variation

Following the approach initiated in [2], we write the second variation as an accessory problem, that is, an
LQ optimal control problem defined on the tangent space to M at q̂1.2 The admissible control functions of
the accessory problem are the admissible control variations of the original optimal control problem, that is,
all functions δu ∈ L∞([0, T ],R) such that û + δu is still an admissible control for problem (1.2); the set of
admissible control variations is then completed as a suitable subspace of the Hilbert space L2([0, T ],R) (see
[2], Rem. 6). However, facing the problem from the most general point of view, that is, considering all possible
admissible variations, is not only cumbersome, but possibly pointless: in many general cases, indeed, the space
of admissible variations is “too big”, so that the second variation cannot be coercive on it (see for instance
[24] for bang-singular concatenations and [12] for an example in the case of totally singular extremals). On
the other hand, in many cases ([4, 12, 23]) it has been proved that it is possible to properly reduce the set

2 In principle, the basepoint could be any point of the reference trajectory. The choice of q̂1 considerably simplifies the expression
of the second variation, as it permits to neglect variations along the first bang arc.
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of admissible variations, and still obtain sufficient conditions for optimality in terms of the coerciveness of the
second variation. The goal is then to find the “smallest” space of admissible variations such that the coerciveness
of the second variation on it still implies that the Hamiltonian flow is invertible.

In particular, in [4] it has been shown that, for bang-bang extremals, it is sufficient to consider only the
variations of the switching times. As it will be proved in the paper, it turns out that, for problem (1.1)–(1.2),
an appropriate set of admissible variations is constituted by the variation of the third switching time and the
variation of the control function along the singular arc.

Clearly, this reduction considerably simplifies the expression of the second variation. The rest of this section
is devoted to its construction.

It is well known that computing higher order derivatives on manifolds is a delicate task, as they are not
invariant under change of coordinates. To overcome this problem and obtain an intrinsic expression of the second
variation, we transform the original problem into a Mayer one and we pull-back the linearisation of the system
along the reference trajectory to the tangent space Tq̂1M . Setting ξ = (ξ0, ξ) ∈ R ×M , problem (1.1)–(1.2)
reads

minimise ξ0(T )− ξ0(0)

among all solutions of the control system
ξ̇0(t) = |u(t)ψ(ξ(t))|,
ξ̇(t) = (f0 + uf1) ◦ ξ(t),
ξ(0) = (0, q̂0), ξ(T ) ∈ R× {q̂T },
u ∈ [−1, 1].

(4.1)

It is immediate to see that the covector λ = (λ0, λ̂) ∈ R× T ∗M , with λ0(t) ≡ −1 satisfies normal PMP.

The reference flow from time τ̂1 associated with the system (4.1) is denoted as Ŝt, and is given by

Ŝt(c1, q) =

(
Ŝ0
t (c1, q)

Ŝt(q)

)
=

(
c1 +

∫ t
τ̂1
|û(s)ψ(Ŝs(q))|ds
Ŝt(q)

)
=

(
c1 +

∫ t
τ̂1
|û(s)ψ̂s(q))|ds
Ŝt(q)

)
.

Remark 4.1. Notice that Ŝ0
t does depend on c1, while its differential does not. In what follows, with some

abuse of notation, we write dŜ0
t (q) for the differential of q 7→ Ŝ0

t (c1, ·) at a point q.

Consider some τ3 ∈ (τ̂2, T ) and a measurable control function v : [τ̂1, τ̂2]→ (0, 1), and let ξ be the solution of
(4.1), starting from the point ξ(0) = (0, q̂0) associated with the control

u(t) =


1 t ∈ [0, τ̂1),

v(t) t ∈ (τ̂1, τ̂2),

0 t ∈ (τ̂2, τ3),

−1 t ∈ (τ3, T ].

We consider the piecewise-affine reparametrization of time ϕ : [0, T ]→ [0, T ] defined by

ϕ̇(t) =


1 t ∈ [0, τ̂2),
τ3−τ̂2
τ̂3−τ̂2 t ∈ (τ̂2, τ̂3),
T−τ3
T−τ̂3 t ∈ (τ̂3, T ],

ϕ(0) = 0,
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and we set ηt :=

(
η0
t

ηt

)
= Ŝ−1

t (ξ(ϕ(t))). Let γ0, γT : M → R be two smooth functions such that

dγ0(q̂0) = ̂̀
0, dγT (q̂T ) = −̂̀T ,

and let γ̂0 := γ0 ◦ Ŝ0, γ̂T := γT ◦ ŜT . Then, the cost can be written in terms of the pull-back trajectory ηt as

J(u) = Ŝ0
T (ηT )− Ŝ0

0(η0) + γ̂0(η0) + γ̂T (ηT ). (4.2)

Thanks to PMP, it is possible to show that the first variation of J evaluated at û is null (see Appendix A for
more details).

In order to compute the second variation of J , we introduce the pullbacks to time τ̂1 of the vector fields
governing the dynamics of ηt:

g1
t := Ŝ−1

t∗ f1 ◦ Ŝt, k3 := Ŝ−1
τ̂3∗f0 ◦ Ŝτ̂3 , k4 := Ŝ−1

τ̂3∗(f0 − f1) ◦ Ŝτ̂3 , k = k4 − k3 := −Ŝ−1
τ̂3∗f1 ◦ Ŝτ̂3 .

Setting ε := −(τ3 − τ̂3), the second variation of the optimal control problem is given by

J ′′[δv, ε]2 :=

∫ τ̂2

τ̂1

δv(s)Lδη(s)

(
ψ̂s + Lg1s

(
γ̂T + Ŝ0

T − Ŝ0
s

))
(q̂1)ds

− ε2

2
L2
k

(
γ̂T + Ŝ0

T − Ŝ0
τ̂2

)
(q̂1) +

ε2

2
L[k4,k3]

(
γ̂T + Ŝ0

T − Ŝ0
τ̂2

)
(q̂1)

− ε2

2
Lk4 ψ̂τ̂3(q̂1),

(4.3)

where δv ∈ L∞([τ̂1, τ̂2]) and δηt is the linearisation of ηt at u = û, and satisfies the control system

δ̇ηt =


0 t ∈ [0, τ̂1),

δv(t)g1
t (q̂1) t ∈ (τ̂1, τ̂2),

− ε
τ̂3−τ̂2 k3(q̂1) t ∈ (τ̂2, τ̂3),
ε

T−τ̂3 k4(q̂1) t ∈ (τ̂3, T ],

δη0 = 0,
δηT = 0.

(4.4)

The second variation (4.3) is degenerate, as the quadratic term in δv (Legendre term) is missing; to overcome
this issue, we perform a Goh transformation, that is, we integrate the control variation and we add an additional
variation ε0, in the same spirit of [23]:

w(t) :=

∫ τ̂2

t

δv(s)ds, t ∈ [τ̂1, τ̂2], ε0 := w(τ̂1).

We thus obtain the extended admissible variations as the triples δe := (ε0, ε, w) ∈ R×R×L2([τ̂1, τ̂2]) such that
the system 

ζ̇(t) = w(t)ġ1
t (q̂1),

ζ(τ̂1) = ε0f1(q̂1),

ζ(τ̂2) = −εk(q̂1)

(4.5)
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admits a solution, and the extended second variation as the quadratic form

J ′′e [δe]2 =
ε2

0

2
Lf1
(
ψ + Lf1

(
γ̂T + Ŝ0

T

))
(q̂1) +

1

2

∫ τ̂2

τ̂1

(
w2(s)R(s) + 2w(s)Lζ(s)A(s, q̂1)

)
ds

− ε2

2
Lk4 ψ̂τ̂3(q̂1)− ε2

2
L2
k

(
γ̂T + Ŝ0

T − Ŝ0
τ̂2

)
(q̂1) +

ε2

2
L[k4,k3]

(
γ̂T + Ŝ0

T − Ŝ0
τ̂2

)
(q̂1),

(4.6)

where we put

A(s, q) :=
(
Lġ1s

(
γ̂T + Ŝ0

T − Ŝ0
s

)
+ Lg0s ψ̂s

)
(q),

R(s) :=L[ġ1s ,g1s]
(
γ̂T + Ŝ0

T − Ŝ0
s

)
(q̂1) + Lġ1s

ψ̂s(q̂1)− Lg1sLg0s ψ̂s(q̂1).

Remark 4.2. We remark that R(s) = L(λ̂(s)), which is positive by Assumption 3.9.

We can now state our final assumption.

Assumption 4.3. The quadratic form J ′′e (4.6) is coercive on the space of admissible variations

W :=
{
δe = (ε0, ε, w) ∈ R× R× L2([τ̂1, τ̂2]) such that system (4.5) admits a solution

}
.

4.1. Consequences of coerciveness of J ′′e
Lemma 4.4. Assume that Assumption 4.3 holds true. Then f1(q̂1) 6= 0.

Proof. Assume by contradiction that f1(q̂1) = 0. Then δe :=
(
ε0 = 1, ε = 0, w ≡ 0

)
is a non-trivial admissible

variation and J ′′e [δe]2 = Lf1
(
ψ + Lf1

(
γ̂T + Ŝ0

T

))
(q̂1) = 0, since f1(q̂1) = 0. Thus we have a contradiction.

Lemma 4.5. Under Assumption 4.3, there exist a neighbourhood Uq̂1 of q̂1 in M and a smooth function
α : Uq̂1 → R such that

J ′′e [δe]2 =
ε2

0

2
L2
f1

(
α+ γ̂T + Ŝ0

T

)
(q̂1) +

1

2

∫ τ̂2

τ̂1

(
w2(s)R(s) + 2w(s)Lζ(s)A(s, q̂1)

)
ds

− ε2

2
Lk4 ψ̂τ̂3(q̂1)− ε2

2
L2
k

(
γ̂T + Ŝ0

T − Ŝ0
τ̂2

)
(q̂1) +

ε2

2
L[k4,k3]

(
γ̂T + Ŝ0

T − Ŝ0
τ̂2

)
(q̂1).

In particular, it holds

Lf1α
(
q
)

= ψ(q) ∀q ∈ Uq̂1 , dα(q̂1) = ̂̀
1.

Proof. Thanks to Lemma 4.4, we can choose local coordinates (y1, y2, . . . , yn) around q̂1 such that f1 ≡
∂

∂y1
in

a neighbourhood Uq̂1 of q̂1.

Let ̂̀1 =
(
p̂1, p̂2, . . . , p̂n

)
. Thus p̂1 = F1(̂̀1) = ψ(q̂1). Possibly shrinking Uq̂1 , let α : Uq̂1 → R be the solution

of the Cauchy problem 
∂α

∂y1
(y1, y2, . . . , yn) = ψ(y1, y2, . . . , yn),

α(0, y2, . . . , yn) =
∑n
j=2 p̂jyj .
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Then, by construction, dα(q̂1) =
(
ψ(q̂1), p̂2, . . . , p̂n

)
= ̂̀

1. The term Lf1ψ(q̂1) in J ′′e can thus be replaced by
L2
f1
α(q̂1), and this proves the claim.

We claim that the term L2
f1

(
α+ γ̂T + Ŝ0

T

)
(q̂1) in the expression for J ′′e can be replaced by D2

(
α + γ̂T +

Ŝ0
T

)
(q̂1)[f1(q̂1)]2. Indeed, by definition of γT , it holds dγT (q̂T ) = −̂̀T ; since, by (A.1), we have that ̂̀T =(̂̀

1 + dŜ0
T

)
Ŝ−1
T∗ , we obtain that dα(q̂1) = ̂̀

1 = −
(
dγ̂T + dŜ0

T

)
(q̂1), and we are done. We can thus write J ′′e on

W as

J ′′e [δe]2 =
1

2
D2
(
α+ γ̂T + Ŝ0

T

)
(q̂1)[ε0f1(q̂1)]2 +

1

2

∫ τ̂2

τ̂1

(
w2(s)R(s) + 2w(s)Lζ(s)A(s, q̂1)

)
ds

− ε2

2
Lk4 ψ̂τ̂3(q̂1)− ε2

2
L2
k

(
γ̂T + Ŝ0

T − Ŝ0
τ̂2

)
(q̂1) +

ε2

2
L[k4,k3]

(
γ̂T + Ŝ0

T − Ŝ0
τ̂2

)
(q̂1).

(4.7)

We now extend the space of admissible variations, in the following way: we remove the constraint on ζ(τ̂1)
and we consider the control system 

ζ̇(s) = w(s)ġ1
s(q̂1),

ζ(τ̂1) = δz ∈ Tq̂1M,

ζ(τ̂2) = −εk(q̂1).

(4.8)

The associated space of variations is thus defined as

W :=
{
δe = (δz, ε, w) ∈ Tq̂1M × R× L2([τ̂1, τ̂2]) such that system (4.8) admits a solution

}
.

Applying ([15], Thm. 11.6), we can easily verify that (4.7) defines a Legendre form on W . For s ∈ R+, we

define θ(y1, y2, . . . , yn) :=
s

2

∑n
j=2 y

2
j where (y1, y2, . . . yn) are the coordinates defined in the proof of Lemma

4.5. Applying ([15], Thm. 13.2), we obtain that, under Assumption 4.3 and if s is large enough, then the
quadratic form

J ′′[δe]2 := J ′′e [δe]2 +
1

2
D2θ[δz]2

is coercive on W .
We can write J ′′ explicitly as

J ′′[δe]2 =
1

2
D2
(
α+ θ + γ̂T + Ŝ0

T

)
(q̂1)[δz]2 +

1

2

∫ τ̂2

τ̂1

(
w2(s)R(s) + 2w(s)Lζ(s)A(s, q̂1)

)
ds

− ε2

2
Lk4 ψ̂τ̂3(q̂1)− ε2

2
L2
k

(
γ̂T + Ŝ0

T − Ŝ0
τ̂2

)
(q̂1) +

ε2

2
L[k4,k3]

(
γ̂T + Ŝ0

T − Ŝ0
τ̂2

)
(q̂1).

(4.9)

5. Construction of the over-maximised flow

As briefly mentioned in the Introduction, Hamiltonian methods to prove the optimality of an extremal need
two ingredients: a Lagrangian submanifold Λ1 of the cotangent bundle, containing a point of the reference
extremal, and a over-maximised Hamiltonian flow (that is, the flow associated with a Hamiltonian function
which is greater than or equal to Hmax, and which coincides with it along the reference extremal, at least up
to the first order); the optimality of the reference extremal is proved if, at each time t ∈ [0, T ], the image of Λ1

under the flow of the over-maximised Hamiltonian projects one-to-one onto a neighbourhood of ξ̂(t) in the base
manifold (see Sect. 7).



12 F.C. CHITTARO AND L. POGGIOLINI

This section is devoted to the construction of the over-maximised Hamiltonian and of its associated flow, that
we refer to as over-maximised flow. It is defined patching together some piecewise smooth Hamiltonian flows,
each one defined on a suitable neighbourhood of each arc. We stress that, to achieve this task, to coerciveness of
J ′′e is not needed; though, we extensively use Assumptions 3.1–3.10, which are assumed to hold true throughout
the whole section.

5.1. The over-maximised Hamiltonian near the singular arc

By definition, the singular arc evolves on the hypersurface Σ− = {Φ− = 0} and Φ+(λ̂(t)) > 0. Thus, in a

sufficiently small neighbourhood of λ̂([τ̂1, τ̂2]), the maximised Hamiltonian is given by

Hmax =

{
F0 + Φ− if Φ− ≥ 0,

F0 if Φ− ≤ 0.

Therefore, Hmax is continuous, but its associated Hamiltonian vector field is not well defined on Σ−: for every
smooth Hamiltonian v(t, `), every Hamiltonian of the form F0 + vΦ− coincides with Hmax on Σ−.

On the other hand, no Hamiltonian of the form F0 + vΦ− can be used in place of the maximised Hamiltonian:
indeed, by Assumption 3.9, for every t ∈ (τ̂1, τ̂2) and every U neighbourhood of λ̂(t) in Σ−, there exists some

` ∈ U such that F01(`) − Lf0ψ(π`) < 0. For any choice of v > 0, the flow of ~F0 + v~Φ− sends ` in the region
{Φ− < 0}, where F0 + vΦ− is no more the maximised Hamiltonian. Indeed, whatever the choice of v, the

Hamiltonian vector field ~F0 + v~Φ− is tangent to Σ only on S− = {` ∈ Σ− : F01(`)−Lf0ψ(π`) = 0}. We refer to
[23] for a detailed description of the phenomenon.

However, as proposed in [28], the flow associated with Hmax may be replaced by the flow of a suitable over-
maximised Hamiltonian tangent to Σ−, at least for t ∈ [τ̂1, τ̂2]. The construction of such a flow in a neighbourhood

of λ̂([τ̂1, τ̂2]) in Σ− relies on the definition of a C1 over-maximised Hamiltonian that agrees with the maximised
one at least up to the first order along the reference extremal, and whose Hamiltonian vector field is tangent to
Σ− (see [12, 23, 28, 30] for similar constructions).

In order to do so, following the steps of [11, 12], we substitute F0 with a suitable Hamiltonian H0 which is
constant along the integral lines of Φ−.

Lemma 5.1. There exist a neighbourhood U of λ̂([τ̂1, τ̂2]) in T ∗M and a smooth function ϑ : U → R such that(
F01 − Lf0ψ ◦ π

)
◦ exp

(
ϑ(`)~Φ−

)
(`) = 0 ∀` ∈ U ,

and, for any ` ∈ U ∩ S−,

〈dϑ(`) , (·)〉 = − 1

L(`)

(
〈dF01(`) , (·)〉 − Lπ∗(·)Lf0ψ

(
π`
))
. (5.1)

Proof. By Assumption 3.9, we can apply the implicit function theorem to the function (s, `) 7→
(
F01 − Lf0ψ ◦

π
)
◦ exp

(
s~Φ−

)
(`) at the point (0, λ̂(t)), and obtain the result.

Thanks to Lemma 5.1, we can define the following Hamiltonian H0 : U → R

H0(`) = F0 ◦ exp(ϑ(`)~Φ−)(`).

Proposition 5.2. The Hamiltonian H0 satisfies the following properties.

1. For every ` ∈ Σ− ∩ U , ~H0(`) is tangent to Σ− and is given by

~H0(`) = exp(−s~Φ−)∗ ~F0 ◦ exp(s~Φ−)(`)|s=ϑ(`). (5.2)
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In particular, it coincides with ~F0(`) if ` ∈ S− ∩ U .
2. Possibly shrinking U , H0(`) ≥ F0(`) for any ` ∈ Σ− ∩ U . Equality holds if and only if ` ∈ S−.
3. For every smooth function υ(t, `) : R × T ∗M → R, the Hamiltonian vector field associated with H0(`) +

υ(t, `)Φ−(`) is tangent to Σ−.

Proof. Claim 1 easily follows from the fact that 〈dF0 , ~Φ
−〉 = 0 on S−. Indeed, by construction, H0 is constant

along the integral lines of ~Φ−, so that 〈dΦ− , ~H0〉 = 〈dH0 , ~Φ
−〉 = 0, for any ` ∈ U , i.e. ~H0 is tangent to Σ−.

Equation (5.2) can be verified with simple computations.

Since ϑ = 0 on S−, by definition and equation (5.2) we have that H0 = F0 and ~H0 = ~F0 on S−. Thus the
differential of H0 − F0 is identically zero on S−, and, for any ` ∈ S− ∩ U , we can compute its second derivative:

D2(H0 − F0)(`)[δ`]2 = 2〈d (L~Φ−F0)(`) , δ`〉〈dϑ(`) , δ`〉+ L2
~Φ−
F0(`)〈dϑ(`) , δ`〉2

= −L2
~Φ−
F0(`)〈dϑ(`) , δ`〉2.

Noticing that L2
~Φ−
F0(`) = −L(`) and thanks to Assumption 3.9, we see that the expression here above is non

negative and it vanishes only if 〈dϑ(`) , δ`〉 = 0; equation (3.8) and the fact that 〈dϑ(`) , ~Φ−(`)〉 = −1 for
` ∈ Σ− ∩ U prove claim 2.

Since ~H0 is tangent to Σ−, then ~H0 + u~Φ− is tangent to Σ− too, for every u ∈ R. Let υ be a smooth function
on R× T ∗M . Then the Hamiltonian field associated with H0 + υ(t, `)Φ− is given by

~H0(`) + υ(t, `)~Φ− + Φ−(`)~υ(t, `),

and, by definition of Σ−, this completes the proof.

5.2. The over-maximised flow

Thanks to the regularity of the bang and zero arcs, for any t ∈ [0, τ̂1) ∪ (τ̂2, τ̂3) ∪ (τ̂3, T ], it is possible to find

a neighbourhood of λ̂(t) where Hmax and its associated vector field are unambiguously defined. As observed in
the previous section, this is no longer true for t ∈ [τ̂1, τ̂2]. On the other hand, thanks to Proposition 5.2, we
know that any over-maximised Hamiltonian of the form H0 + vΦ− may replace the maximised Hamiltonian in
a neighbourhood of the singular arc in Σ−.

Here below we show how to concatenate the flows of Hmax and of the over-maximised Hamiltonian, in order
to obtain a flow defined for all t ∈ [0, T ].

The first bang arc.
We first construct the over-maximised flow for t ∈ [0, τ̂1].

Proposition 5.2 guarantees that H0 ≥ F0 in a neighbourhood of λ̂([τ̂1, τ̂2]) contained in Σ− only. In other
words, if we want to use H0 to construct the over-maximised Hamiltonian, we have to be sure that, for t ∈ [τ̂1, τ̂2],
the image of the sub-manifold Λ1 under the over-maximised flow is in Σ−. For this reason, it is convenient to
start from τ̂1 and construct the flow integrating backward in time.

Fix some ε > 0 and consider a sufficiently small tubular neighbourhood U of λ̂((τ̂1 − ε, τ̂1 + ε)) in T ∗M .
The manifold Σ− separates U in two regions, one in which Φ− > 0 (and Hmax = F0 + Φ−), the other one in

which Φ− < 0 < Φ+ (and Hmax = F0), since ψ(q) 6= 0 in a neighbourhood of ξ̂(τ̂1); in particular, the first bang
arc is contained in the first region. On the other hand, by Assumption 3.9, the manifold S− separates U ∩ Σ−

into two regions, in which F01 − Lf0ψ ◦ π has different sign. Consider now a small neighbourhood of ̂̀1 in Σ−.

The trajectories obtained by integrating backward in time the flow generated by ~F0 + ~Φ−, starting at t = τ̂1
from a point ` satisfying F01(`) − Lf0ψ(π`) < 0, immediately leave Σ− and enter in the region {Φ− > 0}; in
particular, they evolve with the maximised flow and stay close to the reference extremal (if ` is sufficiently close

to ̂̀1). The same happens for trajectories starting from a point ` such that F01(`) − Lf0ψ(π`) = 0, thanks to
Assumption 3.8.
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On the contrary, the integral curves of ~F0 + ~Φ− with an initial condition ` satisfying F01(`)− Lf0ψ(π`) > 0

immediately enter into the region {Φ− < 0}, so that they are not integral curves of ~Hmax and may soon leave
U. To fix this issue, for initial conditions belonging to the region where F01(`) − Lf0ψ(π`) > 0, we substitute

the flow of ~F0 + ~Φ− with the one of ~H0 + ~Φ−, until the trajectories reach S−. This construction is explained in
Proposition 5.5 here below, whose proof relies on the following lemma.

Lemma 5.3. There exist a neighbourhood O1 of ̂̀1 in Σ− and a smooth function t1 : O1 → R satisfying t1(̂̀1) =
τ̂1 such that

(F01 − (Lf0ψ) ◦ π) ◦ exp
(
(t1(`)− τ̂1)( ~H0 + ~Φ−)

)
(`) = 0 ∀` ∈ O1.

Moreover, t1(`) R τ̂1 if and only if F01(`)− Lf0ψ(π`) Q 0.

Proof. The existence of the function t1 is a straightforward application of the implicit function theorem
to the function ϕ(t, `) = (F01 − (Lf0ψ) ◦ π) ◦ exp((t − τ̂1)( ~H0 + ~Φ−))(`) at (τ̂1, ̂̀1), which is possible since
∂
∂tϕ(t, `)|(τ̂1,̂̀1) > 0, by Assumption 3.8.

The sign of t1(`) − τ̂1 is determined by the fact that t1(`) = τ̂1 for every ` ∈ S− ∩ O1, and again by
Assumption 3.8.

We define the piecewise smooth function τ1 : O1 → R as

τ1(`) = min{t1(`), τ̂1},

and the flow H1 : [0, τ̂1]×O1 → T ∗M as

H1(t, `) =

{
exp

(
(t− τ̂1)( ~H0 + ~Φ−)

)
(`) t ∈ [τ1(`), τ̂1],

exp
(
(t− τ1(`))(~F0 + ~Φ−)

)
◦ exp

(
(τ1(`)− τ̂1)( ~H0 + ~Φ−)

)
(`) t ∈ [0, τ1(`)).

Remark 5.4. Clearly, if t1(¯̀) ≥ τ̂1 for some ¯̀, then H1(t, ¯̀) is the flow of ~F0 + ~Φ− for every t ∈ [0, τ̂1].

Proposition 5.5. The flow H1 defined above is C1. Moreover

Φ−(H1(t, `)) = 0 ∀t ∈ [τ1(`), τ̂1], Φ−(H1(t, `)) > 0 ∀t ∈ [0, τ1(`)). (5.3)

In particular (
πH1(t, ·)

)
∗|̂̀1 = Ŝt∗π∗ ∀t ≤ τ̂1. (5.4)

Proof. At every point (t, `) such that t 6= τ1(`), the flow is well defined and smooth. Therefore, to prove its
regularity on the whole [0, τ̂1] × O1, it suffices to verify the continuity of its derivatives at points of the form
(t, `) = (τ1(¯̀), ¯̀). In particular, we can distinguish two cases, that is, t1(¯̀) > τ̂1 and t1(¯̀) ≤ τ̂1. In the former

case, the flow coincides with exp((t− τ̂1)(~F0 + ~Φ−))(`) for every t ∈ [0, τ̂1] and for every ` in a neighbourhood
of ¯̀ in Σ−, thus it is C1.

If instead τ1(¯̀) ≤ τ̂1, then the flow starting from points ` in a neighbourhood of ¯̀ has different expressions
according to the sign of t − τ1(`). However, by straightforward computations, it is easy to prove that they
coincide as (t, `)→ (τ1(¯̀), ¯̀), for every ¯̀∈ O and that the first order partial derivatives are continuous.

Let us now prove equation (5.3). First of all, we recall that ∂
∂tΦ

−(H1(t, `))|t=τ1(`) = (F01 − (Lf0ψ) ◦ π)) ◦
H1(t, `)|t=τ1(`).
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If t1(`) > τ̂1, then τ1(`) = τ̂1 and, by Lemma 5.3, F01 − (Lf0ψ) ◦ π < 0, so that, if ` is close enough to ̂̀1,
equation (5.3) follows immediately from a first order Taylor expansion, with respect to the first variable, at
t = τ̂1.

Let us now consider the case in which t1(`) ≤ τ̂1. By construction, ~H0 + ~Φ− is tangent to Σ−, so that
Φ−(H1(t, `)) = 0 for t ∈ [τ1(`), τ̂1]. At t = τ1(`),H1(t, `) is in S−, that is, (F01− (Lf0ψ)◦π))◦H1(t, `)|t=τ1(`) = 0,
so that we must look at the second order Taylor expansion of t 7→ Φ−(H1(t, `)) at τ̂1. By Assumption 3.8, the

second order derivative of this map at (t, `) = (τ̂1, ̂̀1) is strictly positive, so that, by continuity, it is strictly

positive also at (τ1(`), `), for ` close enough to ̂̀1.

We can conclude that there exists a ε > 0 and a neighbourhood O1 of ̂̀1 in Σ− such that Φ−(H1(t, `)) > 0
for t ∈ (τ1(`)− ε, τ1(`)), for every ` ∈ O1. Possibly shrinking O1, we can conclude that the inequality is satisfied
for every t ∈ [0, τ1(`)).

The singular arc. We recall that for any t ∈ [τ̂1, τ̂2], the reference extremal λ̂ takes values in S−. Moreover,

thanks to Assumption 3.9 and since d2

dt2 Φ−(λ̂(t)) = 0 for any t ∈ (τ̂1, τ̂2), the reference control along the singular
arc can be computed in a feedback Hamiltonian form. More precisely

û(t) = −
F001(`)− L2

f0
ψ
(
π`
)

L(`)
|`=λ̂(t) ∀t ∈ (τ̂1, τ̂2).

In a neighbourhood of λ̂([τ̂1, τ̂2]) in S−, we thus define

ν(`) = −
F001(`)− L2

f0
ψ
(
π`
)

L(`)
.

We extend ν to a neighbourhood of λ̂([τ̂1, τ̂2]) in Σ− by setting it constant along the integral lines of ~Φ−, and
then to a full-measure neighbourhood of the range of the singular arc by setting it constant along the integral
lines of the Hamiltonian field associated with F01 − Lf0ψ3.

We set

K(`) = H0(`) + ν(`)Φ−(`),

and define the over-maximised flow on the interval [τ̂1, τ̂2] as the flow of ~K:

K(t, `) = exp((t− τ̂1) ~K)(`).

Proposition 5.6. The manifolds Σ− and S− are invariant under the action of the flow of K. Moreover, ~Φ−

is invariant with respect to the flow of K on Σ−, that is, for ` belonging to a small neighbourhood of λ̂([τ̂1, τ2])
in Σ−, it holds

K(t, `)∗~Φ
−(`) = ~Φ− ◦ K(t, `) ∀t ∈ [τ̂1, τ̂2].

This result is proved (in a more general version) in Proposition B.1.

The inactivated arc. The construction of the over-maximised flow on a right hand side neighbourhood of τ̂2
presents the same issues as its construction on [0, τ̂1], thus we overcome these difficulties likewise.

3Indeed, thanks to Assumption 3.9, T`(T
∗M) = T`Σ

− ⊕
−−−−−−−−−−−→
F01 − Lf0ψ ◦ π(`) for every ` ∈ Σ− in a neighbourhood of λ̂([τ̂1, τ̂2]).
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Lemma 5.7. Possibly shrinking O1 and setting O2 = K(τ̂2,O1), there exists a smooth function t2 : O2 → R
satisfying t2(̂̀2) = τ̂2 such that

(F01 − (Lf0ψ) ◦ π) ◦ exp((t2(`2)− τ̂2) ~H0)(`2) = 0 ∀`2 ∈ O2.

Moreover, t2(`2) R τ̂2 if and only if F01(`2)− Lf0ψ(π`2) R 0.

As above, we define the piecewise smooth function

τ2(`2) = max{t2(`2), τ̂2},

and the flow H3 for t ≥ τ̂2 as

H3(t, `) =

{
exp((t− τ̂2) ~H0)(`2) t ∈ [τ̂2, τ2(`2)],

exp((t− τ2(`2))~F0) ◦ exp((τ2(`2)− τ̂2) ~H0)(`2) t ∈ [τ2(`2), τ2(`2) + δ(`2))
(5.5)

where `2 = K(τ̂2, `) and δ(·) is a positive function that will be specified here below. The flow H3 enjoys the
same properties of H1, as stated in the following proposition.

Proposition 5.8. The flow H3 defined above is C1 and

Φ−(H3(t, `)) = 0 ∀t ∈ [τ̂2(`), τ2(`2)], Φ−(H3(t, `)) < 0 ∀t ∈ (τ2(`2), τ2(`2) + δ(`2)).

Moreover, for every t ∈ [τ̂2, τ̂2 + δ(̂̀2)) it holds(
πH3(t, ·)

)
∗|̂̀1 = exp

(
(t− τ̂2)f0

)
∗

(
πKτ̂2

)
∗|̂̀1 . (5.6)

We remark that, thanks to Assumption 3.1 and by continuity, Φ+(H3(t, `)) > 0 on [τ̂2, τ̂2 + δ(`2)).

The last bang arc. For t ≥ τ2(`2), F0 is the maximised Hamiltonian until its integral curves hit the switching
surface {Φ+ = 0}. To detect the hitting time, we solve the implicit equation

Φ+ ◦ exp
(
(t− τ2(`2))~F0

)
◦ exp

(
(τ2(`2)− τ̂2) ~H0

)
(`2) = 0, (5.7)

where we recall that `2 = K(τ̂2, `) ∈ O2. The derivative with respect to t of the left hand side of (5.7) equals r3
for (t, `2) = (τ̂3, ̂̀2); thanks to Assumption 3.8 and the implicit function theorem, we obtain that equation (5.7)

is satisfied if and only if (t, `2) = (τ3(`2), `2), where τ3 : O2 → R is a smooth function satisfying τ3(̂̀2) = τ̂3. In
addition, for every δ` ∈ T̂̀

2
(T ∗M), it holds

〈dτ3(̂̀2) , δ`〉 = −
σ̂̀

3

(
exp

(
(τ̂3 − τ̂2)~F0

)
∗δ`,

~Φ+
)

r3
. (5.8)

We choose δ(·) = τ3(·)− τ2(·) in equation (5.5), and we consider the following flow for t ∈ [τ̂2, T ]:

H3(t, `) =


exp

(
(t− τ̂2) ~H0

)
(`2) t ∈ [τ̂2, τ2(`2)]

exp
(
(t− τ2(`))~F0

)
◦ H3(τ2(`2), `2) t ∈ [τ2(`2), τ3(`2)]

exp
(
(t− τ3(`2))(~F0 − ~Φ+)

)
◦ H3(τ3(`2), `2) t ≥ τ3(`2).

Thanks to the regularity assumptions, H3 is an over-maximised flow for every t ∈ [τ̂2, T ].
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Finally, the over-maximised flow H : [0, T ]×O1 → T ∗M is defined as

H(t, `) =


H1(t, `) t ∈ [0, τ̂1],

K(t, `) t ∈ [τ̂1, τ̂2],

H3(t, `) t ∈ [τ̂2, T ].

Here below, we will also use the notations

Ht = H(t, ·), Kt = K(t, ·).

We remark that, for every t ∈ [0, T ], Ht is the Hamiltonian flow associated with the Hamiltonian

Ht(`) =



F0(`) + Φ−(`) t ∈ [0, τ1(`)],

H0(`) + Φ−(`) t ∈ [τ1(`), τ̂1],

K(`) t ∈ [τ̂1, τ̂2],

H0(`) t ∈ [τ̂2, τ2(`)],

F0(`) t ∈ [τ2(`), τ3(`)],

F0(`)− Φ+(`) t ∈ [τ3(`), T ].

6. Invertibility

In order to define a manifold Λ1 such that πHt : Λ1 → M is locally one-to-one for every t, we shall also
exploit the coerciveness of the extended second variation, i.e. Assumption 4.3. So, from now, we assume that
all the Assumptions 3.1–4.3 are satisfied. We define Λ1 by means of the functions α and θ appearing in (4.9):
namely, we consider the Lagrangian submanifold

Λ1 = {d(α+ θ)(q) : q ∈ Uq̂1}.

Remark 6.1. It is immediate to see that Λ1 ⊂ Σ− and that ~Φ−(`) ∈ T`Λ1 for every ` ∈ Λ1.

This section is devoted to the proof of the following result.

Proposition 6.2. For every t ∈ [0, T ], t 6= τ̂3, the flow πHt : Λ1 → M is a local diffeormorphism from a

neighbourhood of ̂̀1 onto a neighbourhood of ξ̂(t). πHτ̂3 : Λ1 → M is a locally invertible Lipschitz continuous
map with Lipschitz continuous inverse.

The proof is done in several steps: we consider separately the sub-intervals [0, τ̂1], [τ̂1, τ̂2] (illustrated in Fig. 1)
and [τ̂2, T ] (illustrated in Fig. 2).

Invertibility for t ∈ [0, τ̂1]. The invertibility for t ∈ [0, τ̂1] is a direct consequence of equation (5.4).

Invertibility for t ∈ [τ̂1, τ̂2]. In order to prove the claim, we introduce the auxiliary Hamiltonian

Ĥt = H0 + û(t)Φ−, t ∈ [τ̂1, τ̂2].

This new Hamiltonian shares some important features with K. In particular, Ĥt is an over-maximised Hamil-
tonian on Σ− too, and its Hamiltonian vector field is tangent to Σ−; we denote with Ĥt its flow from time τ̂1
to time t. The invertibility of πĤt|Λ1 is related to the invertibility of πKt|Λ1 , as the following result shows.

The proof uses the same arguments of ([23], Lem. 9); we sketch it in the appendix.

Lemma 6.3. For every t ∈ [τ̂1, τ̂2], the followings hold

1. Ĥt∗(T̂̀
1
Λ1) = Kt∗(T̂̀

1
Λ1).
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Figure 1. Invertibility for t ∈ [0, τ̂3): Ht(Λ1) projects diffeormorphically onto a neighbourhood

of ξ̂(t) for every t ∈ [0, τ̂3). Solid lines denote the bang arcs, dashed lines inactivated arcs, and
dotted lines singular arcs.

2. If ker
(
πĤt

)
∗|T ̂̀

1
Λ1

= 0, then ker
(
πKt

)
∗|T ̂̀

1
Λ1

= 0.

Taking advantage of Lemma 6.3, the invertibility of πĤt|Λ1 implies the one of πK̂t|Λ1 . On the other hand,

it turns out that Ĥt is directly linked to the Hamiltonian flow associated with the second variation (see details

here below); therefore, it is much easier to prove the invertibility of πĤt|Λ1 as a consequence of the coerciveness
of the second variation. Indeed, consider the subspace V ⊂W defined by

V :=
{
δe ∈W : ε = 0

}
.

Lemma 6.4. Assume that J ′′|V is coercive. Then ker
(
πĤt

)
∗|T ̂̀

1
Λ1

= 0 for any t ∈ [τ̂1, τ̂2].

Proof. We consider the LQ optimal control problem on Tq̂1M given by

min
δe∈V

J ′′[δe]2. (6.1)

The maximised Hamiltonian associated by PMP with this LQ problem is

H ′′t (δp, δz) =
1

2R(t)

(
〈δp, ġ1

t (q̂1)〉 − LδzA(t, q̂1)
)2

(δp, δz) ∈ T ∗q̂1M × Tq̂1M.

Since δe ∈ V , δz is free so that PMP applied to problem (6.1) gives the following transversality conditions at
the initial point

(δp, δz) ∈ L′′τ̂1 := {(δp, δz) : δz ∈ Tq̂1M, δp = −D2
(
θ + α+ γ̂T + Ŝ0

T

)
[δz, ·]}.

Denote with H′′t the Hamiltonian flow of H ′′t . In order to compare H′′t with Ĥt, we define the anti-symplectic
isomorphism ι : T ∗q̂1M × Tq̂1M → T̂̀

1
(T ∗M) as

ι(δp, δx) = −δp+ d
(
− Ŝ0

T − γ̂T
)
∗δx.
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Figure 2. Invertibility at t = τ̂3. L+ (respectively, L−) denotes the half space of all δ`2 ∈ T̂̀
2
Λ2

such that 〈dτ̂3(̂̀2), δ`2〉 ≥ 0 (respectively, ≤ 0). In purple, Hτ̂3∗L+; in yellow, Hτ̂3∗L−. These
semi-planes project without intersections on Tξ̂(τ̂3)M .

By definition, σ ◦ ι ⊗ ι = −σ̂, where σ̂ denotes the standard symplectic structure on T ∗q̂1M × Tq̂1M . It is
immediate to verify that

ιL′′τ̂1 = T̂̀
1
Λ1.

Moreover, by analogous computations to those in [11, 23], it is easy to prove that

H′′t = ι−1F̂−1
t∗ Ĥt∗ι t ∈ [τ̂1, τ̂2], (6.2)

which implies that

(πH′′t )
−1

= ι−1
(
πĤt

)−1

∗ Ŝt∗. (6.3)

On the other hand, ([29], Thm. 2.6) states that J ′′|V is coercive if and only if πH′′t : L′′τ̂1 → Tq̂1M is one

to one for every t ∈ [τ̂1, τ̂2], so that the coerciveness of J ′′|V implies that
(
πĤt

)
∗|T ̂̀

1
Λ1

is invertible for every

t ∈ [τ̂1, τ̂2].

Coupling Lemma 6.3 with Lemma 6.4, we obtain that, if J ′′|V is coercive, then (πKt)|Λ1
is invertible for

t ∈ [τ̂1, τ̂2].

Remark 6.5. Set Λ2 := Kτ̂2(Λ1). Since Λ2 is a Lagrangian submanifold of T ∗M which projects one to one onto
a neighbourhood of M , there exist a neighbourhood Uq̂2 of q̂2 and a smooth function α2 : Uq̂2 → R such that

dα2(q̂2) = ̂̀
2, Λ2 := Kτ̂2(Λ1) = {dα2(q) : q ∈ Uq̂2}.

Invertibility for t ∈ [τ̂2, T ]. Thanks to equation (5.6), we obtain that, if J ′′|V is coercive, then πHt|Λ1
is

locally invertible for every t < τ̂3.
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Let δ` ∈ T̂̀
1
Λ1, and set δ`2 = Kτ̂2∗δ`. The first order approximation of πHτ̂3 at ̂̀1, applied to δ`, is given by

{
exp

(
(τ̂3 − τ̂2)f0

)
∗π∗δ`2 if 〈dτ3(̂̀2) , δ`2〉 ≥ 0,

〈dτ3(̂̀2) , δ`2〉f1(q̂3) + exp
(
(τ̂3 − τ̂2)f0

)
∗π∗δ`2 if 〈dτ3(̂̀2) , δ`2〉 ≤ 0,

which, up to a pullback, can be written as

{
π∗δ`2 if 〈dτ3(̂̀2) , δ`2〉 ≥ 0,

π∗δ`2 − 〈dτ3(̂̀2) , δ`2〉k̃(q̂2) if 〈dτ3(̂̀2) , δ`2〉 ≤ 0,

where k̃ := Ŝτ̂2∗k is the pullback of −f1 from time τ̂3 to time τ̂2. Notice that, by Assumption 3.1, f1(q̂3) 6= 0,

so that k̃(q̂2) 6= 0.
By Clarke’s inverse function theorem [13], πHτ̂3 is invertible if for every a ∈ [0, 1] and for every δ`2 ∈ T̂̀

2
Λ2

it holds

π∗δ`2 − a〈dτ3(̂̀2) , δ`2〉k̃(q̂2) 6= 0. (6.4)

By contradiction, assume there exist some a ∈ [0, 1] and δ`2 ∈ T̂̀
2
Λ2, δ`2 6= 0, such that the left hand side of

(6.4) is zero. This implies that π∗δ`2 = ρk̃(q̂2), for some ρ 6= 0, so that

ρk̃(q̂2)− a〈dτ3(̂̀2) , δ`2〉k̃(q̂2) = 0,

which yields

1− a〈dτ3(̂̀2) , dα2∗k̃(q̂2)〉 = 0,

since δ`2 = ρdα2∗k̃(q̂2). Equivalently, using (5.8),

r3 + aσ̂̀
3

(
exp((τ̂3 − τ̂2)~F0)∗dα2∗k̃(q̂2), ~Φ+

)
= 0. (6.5)

By Assumption 3.8, the left hand side of (6.5) is negative for a = 0. If we show that it is negative also for a = 1,
then, by linearity, we get a contradiction and we are done. The last part of this section is devoted to prove that
this is a consequence of the coerciveness of the second variation on W .

We denote with the symbol Jb the bilinear form associated with J ′′. We recall that J ′′ is coercive on W
if and only if it is coercive both on V and on W ∩ V⊥, where V⊥ denotes the orthogonal complement to
V with respect to Jb. In order to compute V⊥, we introduce, for every δe = (δz, ε, w) ∈W , the trajectory
p : [τ̂1, τ̂2]→ T ∗q̂1M solution of the Cauchy problem

{
ṗ(t) = −w(t)L·A(t, q̂1),

p(τ̂1) = −D2(α+ θ + γ̂T + Ŝ0
T )(q̂1)[δz, ·].
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Let δ̃e = (δ̃z, ε̃, w̃) ∈W be another admissible variation; then Jb[δe, δ̃e] can be written as

Jb[δe, δ̃e] =
1

2
D2
(
θ + α+ γ̂T + Ŝ0

T

)
(q̂1)[δz, δ̃z]

+
1

2

∫ τ̂2

τ̂1

(
w2(t)w̃(t)R(t) + w(t)Lζ̃(t)A(t, q̂1) + w̃(t)Lζ(t)A(t, q̂1)

)
dt

+
εε̃

2

(
L[k4,k3]

(
γ̂T + Ŝ0

T − Ŝ0
τ̂2

)
− Lk4 ψ̂τ̂3(q̂1)− L2

k

(
γ̂T + Ŝ0

T − Ŝ0
τ̂2

)
(q̂1)

)
=

1

2
〈D2

(
θ + α+ γ̂T + Ŝ0

T

)
(q̂1)[δz, ·] + p(τ̂1), δ̃z〉 − 1

2
〈p(τ̂2), ζ̃(τ̂2)〉

+
1

2

∫ τ̂2

τ̂1

w̃(t)
(
w(t)R(t) + Lζ(t)A(t, q̂1) + 〈p(t), ġ1

t 〉
)

dt

+
εε̃

2

(
L[k4,k3]

(
γ̂T + Ŝ0

T − Ŝ0
τ̂2

)
− Lk4 ψ̂τ̂3(q̂1)− L2

k

(
γ̂T + Ŝ0

T − Ŝ0
τ̂2

)
(q̂1)

)
.

From the expression here above, we see that δe ∈ V⊥ if and only if

w(t)R(t) + Lζ(t)A(t, q̂1) + 〈p(t), ġ1
t 〉 = 0 ∀t ∈ [τ̂1, τ̂2], (6.6)

so that, for any δe ∈ V⊥, we get that

J ′′[δe]2 = −1

2
〈p(τ̂2), ζ(τ̂2)〉+

ε2

2

(
L[k4,k3]

(
γ̂T + Ŝ0

T − Ŝ0
τ̂2

)
− Lk4 ψ̂τ̂3(q̂1)− L2

k

(
γ̂T + Ŝ0

T − Ŝ0
τ̂2

)
(q̂1)

)
.

Remark 6.6. We stress that the solution (p(t), ζ(t)) of the Cauchy problem


ζ̇(t) = w(t)ġ1

t (q̂1),

ṗ(t) = −w(t)L(·)A(t, q̂1),

(p(τ̂1), ζ(τ̂1)) ∈ L′′τ̂1 ,

associated with the control w(·) that satisfies equation (6.6) is also the solution of the Hamiltonian system
associated with H ′′t with the same initial condition, that is

(p(t), ζ(t)) = H′′t (p(τ̂1), ζ(τ̂1)).

Remark that V⊥ is a 1-dimensional linear space: indeed, for every ε, ζ(τ2) = −εk(q̂1), so that δz is uniquely
determined as the backward solution of the linear system with control (6.6). By homogeneity, we can choose
δe ∈ V⊥ with ε = −1. Then J ′′|V⊥ is coercive if and only if

0 > 〈p(τ̂2) , ζ(τ̂2)〉 − L[k4,k3]

(
γ̂T + Ŝ0

T − Ŝ0
τ̂2

)
(q̂1) + Lk4 ψ̂τ̂3(q̂1) + L2

k

(
γ̂T + Ŝ0

T − Ŝ0
τ̂2

)
(q̂1)

= 〈p(τ̂2) , k(q̂1)〉+ r3 + Lk|ψ̂τ̂3 |(q̂1) + L2
k(γ̂T + Ŝ0

T − Ŝ0
τ̂2

)(q̂1), (6.7)

where the expression (6.7) is obtained applying (A.1) and the definition of γ̂T .
We now compute 〈p(τ̂2) , k(q̂1)〉 in terms of Hamiltonian flows. Consider the pair (δp, δz) ∈ L′′τ̂1 such that

πH′′τ̂2(δp, δz) = k(q̂1) (thanks to the invertibility of πH′′τ̂2 , it exists and it is unique), so that, by (6.3), we get
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(δp, δz) = ι−1(πĤτ̂2)−1
∗ Ŝτ̂2∗k(q̂1). Thanks to (6.2) we obtain

〈p(τ̂2) , k(q̂1)〉 = σ̂
(
H′′τ̂2(πH′′τ̂2)−1k(q̂1), (0, k(q̂1))

)
= −σ̂̀

1

(
F̂−1
τ̂2∗Ĥτ̂2∗ι(πH

′′
τ̂2

)−1k(q̂1),d
(
− γ̂T − Ŝ0

T

)
∗k(q̂1)

)
= −σ̂̀

1

(
F̂−1
τ̂2∗dα2∗k̃(q̂2),d

(
− γ̂T − Ŝ0

T

)
∗k(q̂1)

)
, (6.8)

where α2 is the function defined in Remark 6.5. Indeed, thanks to (6.3), we obtain that ι(πH′′τ̂2)−1k(q̂1) =

(πĤτ̂2)−1
∗ k̃(q̂2), so that ι(πH′′τ̂2)−1k(q̂1) ∈ T̂̀

1
Λ1 and

Ĥτ̂2∗ι(πH′′τ̂2)−1k(q̂1) ∈ Ĥτ̂2∗(T̂̀
1
Λ1) = Kτ̂2∗(T̂̀

1
Λ1) = T̂̀

2
Λ2.

By cumbersome but standard computations, F̂τ̂2∗d
(
− γ̂T − Ŝ0

T

)
∗k(q̂1) = d

(
(−γ̂T − Ŝ0

T + Ŝ0
τ̂2

) ◦ Ŝ−1
τ2

)
∗k̃(q̂2).

Equation (6.8) thus gives

〈p(τ̂2) , k(q̂1)〉 = −σ̂̀
2

(
dα2∗k̃(q̂2),d

(
(−γ̂T − Ŝ0

T + Ŝ0
τ̂2

) ◦ Ŝ−1
τ2

)
∗k̃(q̂2)

)
= −D2

(
α2 + (γ̂T + Ŝ0

T − Ŝ0
τ̂2

) ◦ Ŝ−1
τ̂2

)
[k̃(q̂2)]2.

Finally, computing the value of ̂̀2 by means of (A.1), we get

〈p(τ̂2), k(q̂1)〉+ L2
k(γ̂T + Ŝ0

T − Ŝ0
τ̂2

)(q̂1)

= −D2
(
α2 + (γ̂T + Ŝ0

T − Ŝ0
τ̂2

) ◦ Ŝ−1
τ̂2

)
[k̃(q̂2)]2 + L2

k̃

(
(γ̂T + Ŝ0

T − Ŝ0
τ̂2

) ◦ Ŝ−1
τ̂2

)(q̂2)

= −D2α2[k̃(q̂2)]2 − ̂̀2Dk̃(q̂2)k̃(q̂2) = −L2
k̃
α2(q̂2).

Plugging this equality in equation (6.7), we obtain that

r3 + Lk|ψ̂τ̂3 |(q̂1)− L2
k̃
α2(q̂2) < 0.

It now suffices to notice that

σ̂̀
3

(
exp((τ̂3 − τ̂2)~F0)∗dα2∗k̃(q̂2), ~Φ+

)
= σ̂̀

2

(
dα2∗k̃(q̂2), exp(−(τ̂3 − τ̂2)~F0)∗~Φ

+)
)

= −L2
k̃
α2(q̂2) + Lkψ̂τ̂3(q̂1),

to obtain that equation (6.5) holds true for a = 1, and we are done.

7. Main results

We now state the main result of the paper. This section is devoted to its proof.

Theorem 7.1. Let ξ̂ be an admissible trajectory for system (1.2) and satisfying Assumptions 3.1–4.3. Then ξ̂
is a strict strong local minimiser of problem (1.1)–(1.2).

The proof of the strong local optimality of the reference trajectory follows the same lines of ([10], Thm. 4.1)
(see also [30]), thus we are just recalling the main arguments. We shall instead provide all details for the proof
of the strictness part.
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Proof. We define on R× T ∗M the one-form ω = H∗t ς −Ht ◦ Htdt. Applying ([30], Lem. 3.3) we can prove that
ω is exact on [0, T ]× Λ1.

Let O ⊂ R ×M be a neighbourhood of the graph of ξ̂ such that πH : [0, T ] × Λ1 → O is invertible, with
piecewise C1 inverse. Consider an admissible trajectory ξ : [0, T ]→M of (1.2) whose graph is contained in O,
and call v(t) its associated control; set

`(t) = (πHt)−1(ξ(t)), λ(t) = Ht(`(t)).

We define the closed path γ : [0, 2T ]→ [0, T ]× Λ1 as

γ(t) =

{
(t, `(t)) t ∈ [0, T ],

(2T − t, ̂̀1) t ∈ [T, 2T ].

Integrating ω along γ, and recalling that Ht is an over-maximised Hamiltonian, we obtain that∫ T

0

|û(t)ψ(ξ̂(t))|dt ≤
∫ T

0

|v(t)ψ(ξ(t))|dt, (7.1)

that is, ξ̂ is a strong local minimiser.
Assume now that ξ̂ is not a strict minimiser, that is, there exists an admissible trajectory ξ with graph in O

for which equality holds in equation (7.1); this is equivalent to

〈λ(t), (f0 + v(t)f1)(ξ(t))〉 − |v(t)ψ(ξ(t))| = Ht(λ(t)) a.e. t ∈ [0, T ], (7.2)

that is, both 〈λ(t), (f0 + v(t)f1)(ξ(t))〉 − |v(t)ψ(ξ(t))| and Ht(λ(t)) coincide with Hmax(λ(t)). Since ξ(0) = ξ̂(0),
and by regularity of the first bang arc, then, for t small enough, h(λ(t), u) attains its maximum only for

u = û(t) = 1. This implies that v(t) = û(t) and ξ(t) = ξ̂(t) as long as Φ−(λ(t)) > 0, that is, for t ∈ [0, τ̂1).

Analogously, since ξ(T ) = ξ̂(T ), we can apply, backward in time, an analogous argument, and prove that
u(t) ≡ û(t) for t ∈ (τ̂2, T ] (see [10] for more details).

For t ∈ [τ̂1, τ̂2], equation (7.2) implies that λ(t) ∈ S−. Thus, since ~K is tangent to S− (see Prop. 5.6), then
`(t) ∈ S− too. We claim that there exists a function a : [τ̂1, τ̂2]→ R such that

˙̀(t) = −a(t)~Φ−(̂̀1). (7.3)

If so, since ˙̀(t) is tangent to S− and ~Φ− is transverse to S−, we obtain that a(t) ≡ 0 and ˙̀(t) ≡ 0 for t ∈ [τ̂1, τ̂2],

that is ξ(t) = πKt(̂̀1) = ξ̂(t), which completes the proof.
In order to prove (7.3), we first observe that

ξ̇(t) = π∗λ̇(t) = π∗
(
~K(λ(t)) +Kt∗ ˙̀(t)

)
. (7.4)

On the other hand, it is not difficult to see that, for every t ∈ [τ̂1, τ̂2], the function

Σ− ∩ T ∗ξ(t)M 3 ` 7→ K(`)− 〈`, f0(ξ(t)) + v(t)f1(ξ(t))〉+ |v(t)ψ(ξ(t))|

has a minimum at ` = λ(t); thus, its derivative along variations in Σ−∩T ∗ξ(t)M (that is, δp with 〈δp, f1(ξ(t))〉 = 0)

must be zero. This means that the derivative with respect to the vertical coordinates (i.e., the directions
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contained in T ∗ξ(t)M) must be parallel to f1(ξ(t)), which implies that

π∗ ~K(λ(t)) = f0(ξ(t)) + v(t)f1(ξ(t)) + a(t)f1(ξ(t)) = ξ̇(t) + a(t)f1(ξ(t)), (7.5)

for some real function a(·). Combining (7.4) with (7.5), we obtain that

(πKt)∗ ˙̀(t) + a(t)f1(ξ(t)) = 0.

Since (πKt)−1
∗ f1(ξ(t)) = ~Φ−(̂̀1), applying (πKt)−1

∗ to the equality here above we get the claim.

8. Example

In this section, we apply our result to the optimal control problem in R2

min
|u(·)|≤1

∫ T

0

|u(t)x2(t)| dt

subject to the control system 
ẋ1 = x2,

ẋ2 = u− ρx2,

x1(0) = 0, x2(0) = 0,

x1(T ) = X > 0, x2(T ) = 0,

where T , ρ and X are given positive constants. This problem, studied in [6], models the fuel consumption
minimisation problem for an academic electric vehicle moving in one horizontal direction with friction. The
authors prove that, if the final time T is larger than

Tlim =
1

ρ
log
(

(1 +
√

2)eρ
2X − 1 +

√
(1 +

√
2)eρ2X − 1)2 − 1

)
,

then the optimal control has the bang-singular-inactivated-bang structure described in equation (3.1). The
corresponding trajectories satisfy PMP in normal form, with adjoint covector p(t) = (p1(t), p2(t)), with p1(t) ≡
p0

1 for every t ∈ [0, T ]. In particular, the following relations hold

τ̂1 =
1

ρ
log
( 2

2− p0
1

)
, τ̂3 − τ̂2 =

1

ρ
log
(
1 +
√

2
)
, T − τ̂3 =

1

ρ
log
(p0

1 + 2(1 +
√

2)

2(1 +
√

2)

)
, (8.1)

and

ûS(t) ≡
√
ρp2(0) =

p0
1

2
= ρp2(τ̂1) ∀t ∈ [τ̂1, τ̂2]. (8.2)

Coupling equations (8.1) and (8.2), we deduce that p0
1 must be positive and smaller than 2. Finally, the authors

prove that along these extremals x2(t) is positive for every t ∈ (0, T ) and

x2(t) ≡ p2(t) =
p0

1

2ρ
∀t ∈ [τ̂1, τ̂2].
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Using the notations of our paper, the drift f0, the controlled vector field f1 and the cost ψ at a point
x = (x1, x2) ∈ R2 are respectively given by

f0(x) =

(
x2

−ρx2

)
, f1(x) =

(
0
1

)
, ψ(x) = x2. (8.3)

Thus, the associated Hamiltonian functions have the following expressions

F0(p,x) = p1x2 − ρp2x2, F1(p,x) = p2, Φ±(p,x) = p2 ± |x2|.

Here below, we prove that Assumptions 3.1–4.3 are met.

8.1. Regularity assumptions

Since x2(t) never vanishes in (0, T ), then Assumptions 3.1–3.2 and 3.10 are trivially satisfied. To verify that
also Assumption 3.5 holds true, we are left to prove that the bang and inactivated arcs are regular. In order to
complete this task, we compute the iterated Lie brackets of the vector fields f0 and f1:

f01(x) ≡
(
−1
ρ

)
, f101(x) ≡

(
0
0

)
adkf0f01(x) = ρkf01(x) ≡

(
−ρk
ρk+1

)
. (8.4)

Regularity of the first bang arc. We have to prove that Φ−(p(t),x(t)) > 0 for t ∈ [0, τ̂1). The claim follows
directly from the computations

Φ−(p(t),x(t)) =
e−ρt

4ρ

(
eρt(2− p0

1)− 2
)2

,

and equation (8.1).

Regularity along the inactivated arc. We must verify that p2(t)− x2(t) < 0 < p2(t) + x2(t) for t ∈ (τ̂2, τ̂3).
By computations

p2(t)± x2(t) =
p0

1

2ρ

(
− eρ(t−τ̂2) + 2± e−ρ(t−τ̂2)

)
.

The claim follows from equation (8.1).

Regularity along the last bang arc. A straightforward computation gives p2(t) + x2(t) ≤ 0 for t ∈ [τ̂3, T ],
where the equality holds if and only if t = τ̂3.

Regularity at the switching points (Asm. 3.8). At the first switching time t = τ̂1, Assumption 3.8 reads

0 <
(
F001 + F101 + Lf01ψ − Lf0+f1Lf0ψ

)
(̂̀1) = −ρp0

1 + ρ2p2(τ̂1) + ρ+ ρ(1− ρx2(τ̂1)) = ρ(2− p0
1),

which is verified thanks to equation (8.1).
At t = τ̂2, the regularity condition is

0 >
(
F001 − L2

f0ψ
)
(̂̀2) = −ρp0

1 + ρ2p2(τ̂2)− ρ2x2(τ̂2) = −ρp0
1,

which is trivially satisfied.
At t = τ̂3, the regularity condition reads

0 >
(
F01 − Lf0ψ

)
(̂̀3) = −p0

1 + ρp2(τ̂3) + ρx2(τ̂3) = −p0
1,
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which is verified.
Assumption 3.9 (SGLC). This Assumption is trivially satisfied, since

L(p,x) = F101(p,x) + Lf01ψ(x)− Lf1Lf0ψ(x)

= ρ− Lf1(−ρx2) = 2ρ > 0 ∀(p,x) ∈ T ∗R2.

8.2. Second variation

First of all, we compute the pull-back vector fields, by means of formula (C.1) and of equations (8.3)–(8.4).
We obtain the following expressions:

g1
t ≡ f1 +

eρ(t−τ̂1) − 1

ρ
f01, ġ1

t ≡ eρ(t−τ̂1)f01, t ∈ [τ̂1, τ̂2],

k3 = f0 − ûS
eρ(τ̂2−τ̂1) − 1

ρ
f01, k = −f1 −

eρ(τ̂3−τ̂1) − 1

ρ
f01 =

(
eρ(τ̂3−τ̂1)−1

ρ

−eρ(τ̂3−τ̂1)

)
.

Admissible variations The pullback system (4.5) assumes the form

{
ζ1(t) = −

∫ t
τ̂1
w(s)eρ(s−τ̂1)ds,

ζ2(t) = ε0 + ρ
∫ t
τ̂1
w(s)eρ(s−τ̂1)ds,

(8.5)

so that the space of extended admissible variation W can be identified with the following subspace of R ×
L2([τ̂1, τ̂2],R):

W =
{

(ε, w) :

∫ τ̂2

τ̂1

w(s)eρ(s−τ̂1)ds = ε
eρ(τ̂3−τ̂1) − 1

ρ

}
.

It is easy to see that Ŝ0
t is linear with respect to the state; since both ġ1

t and k are constant with respect
to the basepoint, we choose γ̂T as a linear function of the state, so that all second derivatives of the term
γ̂T + Ŝ0

T − Ŝ0
τ̂2

are zero. In particular, with this choice we obtain D2
(
α+ γ̂T + Ŝ0

T

)
[εf1]2 = ε2.

Keeping all these facts into account, the second variation reads

J ′′e [(ε, w)]2 = ε2(1 +
√

2ûS) +

∫ τ̂2

τ̂1

ρw2(t)− ρw(t)ζ2(t)e−ρ(t−τ̂1)dt. (8.6)

8.2.1. Coerciveness of the second variation

We recall that, given any subspace V ⊂ W, J ′′e is coercive on W if and only if it is coercive both V and V⊥,
V⊥ denoting the orthogonal complement of V in W with respect to the bilinear form associated with J ′′e . To
prove the coerciveness of (8.6), we choose

V =
{

(0, w) :

∫ τ̂2

τ̂1

w(s)eρ(s−τ̂1)ds = 0
}
.

Coerciveness on V. In order to prove the claim, we apply the characterization of coerciveness given in ([2],
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Lem. 5), that is, we study the LQ optimal control problem

min

∫ τ̂2

τ̂1

ρw2(t)− ρw(t)z2(t)e−ρ(t−τ̂1)dt

subject to {
ż(t) = w(t)eρ(t−τ̂1)f01,

z(τ̂1) = z(τ̂2) = 0,
w ∈ L2([τ̂1, τ̂2]) :

∫ τ̂2

τ̂1

w(t)eρ(t−τ̂1)dt = 0.

The maximised Hamiltonian G′′ associated with this problem is given by

G′′(p, z, t) =
1

4ρ

(
(ρp2 − p1)eρ(t−τ̂1) + ρz2e

−ρ(t−τ̂1)
)2
. (8.7)

The solutions of the Hamiltonian system associated with (8.7) are given by
z1(t) = ρ(a+ b(t− τ̂1))eρ(t−τ̂1),

z2(t) = (a+ b(t− τ̂1))eρ(t−τ̂1),

p1(t) ≡ p1(τ̂1),

p2(t) = p1(τ̂1)
ρ +

(
2b+a
ρ + b(t− τ̂1)

)
e−ρ(t−τ̂1),

for some real constants a, b. The boundary conditions z(τ̂1) = z(τ̂2) = 0 are satisfied only for a = b = 0, that is
z(t) ≡ 0. Thanks to ([2], Lem. 5), this implies that J ′′e is coercive on V.

Coerciveness on V⊥. First of all, we characterize V⊥. The bilinear form associated with J ′′e is given by the
formula

Jb[δe, δ̃e] = εε̃(1 +
√

2ûS) +
1

2

∫ τ̂2

τ̂1

2ρw(t)w̃(t)− ρ
(
w(t)ζ̃2(t) + w̃(t)ζ2(t)

)
e−ρ(t−τ̂1)dt, (8.8)

with δe, δ̃e ∈ W. Introducing p2(·) as the solution of the Cauchy problem{
ṗ2(t) = w(t)eρ(t−τ̂1),

p2(τ̂1) = 0,

equation (8.8) becomes

Jb[δe, δ̃e] = εε̃(1 +
√

2ûS)− ρζ̃2(τ̂2)p2(τ̂2) +
1

2

∫ τ̂2

τ̂1

ρw̃(t)
(

2w(t)− ζ2(t)e−ρ(t−τ̂1) + p2(t)e−ρ(t−τ̂1)
)

dt. (8.9)

It is immediate to see that an admissible variation δe belongs to V⊥ if and only if e−ρ(t−τ̂1)
(

2w(t) −

ζ2(t)e−ρ(t−τ̂1) +p2(t)e−ρ(t−τ̂1)
)

does not depend on t (indeed, the orthogonal complement to zero-mean functions

in L2([τ̂1, τ̂2]) is the space of constant functions); we thus set

Cε = e−ρ(t−τ̂1)
(

2w(t)− ζ2(t)e−ρ(t−τ̂1) + p2(t)e−ρ(t−τ̂1)
)
, (8.10)
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so that

J ′′[δe]2|V⊥ = ε2(1 +
√

2ûS)− ερp2(τ̂2)e(τ̂3−τ̂1) +
Cε
2
ε(e(τ̂3−τ̂1) − 1). (8.11)

From equation (8.10), combined with (8.5), we can deduce that w(·) is smooth. Differentiating (8.10) with
respect to t, we obtain

ẇ(t)e−ρ(t−τ̂1) − ρw(t)e−ρ(t−τ̂1) + ρζ2(t)e−2ρ(t−τ̂1) = 0. (8.12)

Multiplying (8.12) by e2ρ(t−τ̂1) and differentiating again, we obtain ẅ(t) = 0, i.e. w(·) is an affine function.
Plugging into the previous equations we obtain

Cε = ε
2
√

2 + ρ(τ̂2 − τ̂1)

ρ(τ̂2 − τ̂1)

and

p2(τ̂2) =
ε

ρ2(τ̂2 − τ̂1)

(
− e−ρ(τ̂2−τ̂1)

(
2
√

2 + (1 +
√

2)ρ(τ̂2 − τ̂1)
)

+ 2
√

2 + ρ(τ̂2 − τ̂1)
)
.

Substituting these expressions into (8.11), we obtain

J ′′[δe]2|V⊥ = ε2

(
2 +
√

2 +
2

ρ(τ̂2 − τ̂1)
+
√

2ûS

)
,

which is positive whenever ε 6= 0.

8.2.2. The over-maximised Hamiltonian

Although the expressions of the Hamiltonians H0 and K are not necessary to deduce the optimality of the
reference extremal, we provide their explicit formulas, to give an insight on their construction.

Since, along the extremal, x2 > 0, we do not use the absolute value in the expressions of Φ−. First of all,
we see that Σ− = {(p,x) : p2 − x2 = 0} and S− = {(p,x) : p2 = x2 and p1 = ρ(p2 + x2)}. Straightforward
computations yield

ϑ(p,x) =
p1

2ρ
− x2 + p2

2
, H0(p,x) =

1

4ρ

(
p1 − ρ(p2 − x2)

)2
.

In particular, we obtain that

H0(p,x)− F0(p,x) =
1

4ρ

(
(p1 − 2ρx2)2 + 4ρ2x2(p2 − x2)

)
.

This formula shows that H0 ≥ F0 only for (p,x) ∈ Σ−, with equality for (p,x) ∈ S−. Finally ν(p,x) =
p1

2
for

any (p,x) ∈ T ∗R2, so that

K(p,x) =
1

4ρ

(
p1 − ρ(p2 − x2)

)2
+
p1

2
(p2 − x2).
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9. Conclusions

In this paper, we develop the analysis of sufficient optimality conditions for generalised L1-optimal control
problems started in [10]. In particular, we consider the case in which the reference extremal contains a singular
arc. As already observed in the Introduction, this fact brings significant technical difficulties, in particular the
necessity of computing the second variation of a singular arc for a Bolza problem, which, to our knowledge, has
not been done before.

We believe that [10] and the current paper, altogether, provide a solid basis for the study of sufficient
optimality conditions for problems of the form (1.1)–(1.2): indeed, they give an insight of how to figure out
more complex cases (as the concatenation of several bang, singular and inactivated extremals).

Two only issues are left over: the possibility of bang-bang concatenations (here prevented by Asm. 3.1),
that, in our opinion, can be treated providing minor changes to the existing results, taking advantage of the
techniques developed, for instance, in [25]; the case of degenerate singular arcs, which, even if it is a non-generic
case, is nevertheless theoretically challenging. The authors are planning to consider this last situation.

Appendix A. Sketch of the computation of the
second variation

We first recall that the reference extremal λ̂, associated with the control (3.1), satisfies the following equation

λ̂(t) =
(̂̀

1 +

∫ t

τ̂1

|u(s)| d|ψ̂s|(q̂1)ds
)
◦ Ŝ−1

t∗ =
(̂̀

1 + dŜ0
t (q̂1)

)
◦ Ŝ−1

t∗ ∀t ∈ [0, T ]. (A.1)

Moreover the cost realised by the trajectory ξ associated with the control u can be written as J(u) =

Ŝ◦T (ηT )− Ŝ◦0 (η0) + γ̂T (ηT ) + γ̂0(η0), thanks to equation (4.2). Further, we notice that the variations δu = u− û
can be encoded in three terms, that is, the variation δv of the control along the singular arc, and the variations
ε3 = (τ3 − τ̂2)− (τ̂3 − τ̂2) and ε4 = (T − τ3)− (T − τ̂3) of the length of the third and fourth arc, related by the

constraint ε3 + ε4 = 0. In particular, there is no variation of the terms −Ŝ◦0 (η0) + γ̂0(η0). The second variation
J ′′[δu] is thus given by

∂2J

∂u2
=
∂2η0

T

∂u2
+
(

D2Ŝ0
T (q̂0) + D2γ̂T (q̂0)

)[∂ηT
∂u

]2

+ 〈dŜ0
T (q̂0) + dγ̂T (q̂0) ,

∂2ηT
∂u2

〉

where, for the differential of Ŝ0
t , we have used the notation established in Remark 4.1 and where the derivatives

with respect to u have to be intended as the derivatives with respect to the variables (v, ε3, ε4), which can be
computed using the equations

η0
T =

∫ τ̂2

τ̂1

(
(v(s)− û(s))ψ̂s(ηs)− Lη̇s Ŝ0

s (ηs)
)
ds−

∫ τ̂3

τ̂2

Lη̇s Ŝ
0
s (ηs)ds+

∫ T

τ̂3

( ε4

T − τ̂3
ψ̂s(ηs)− Lη̇s Ŝ0

s (ηs)
)

ds,

ηT = q̂1 +

∫ τ̂2

τ̂1

(v(s)− û(s))g1
s(ηs)ds+

∫ τ̂3

τ̂2

ε3

τ̂3 − τ̂2
k3(ηs)ds+

∫ T

τ̂3

ε4

T − τ̂3
k4(ηs)ds.

We first show that the first order approximation of J , evaluated at (v, ε3, ε4) = (û, 0, 0) is null, so that the

second variation is intrinsically well defined. We point out that, thanks to (A.1), dŜ0
T (q̂1) + dγ̂T (q̂1) = −̂̀1, so
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that

〈∂J
∂v
, δv(·)

〉
=
∂η0

T

∂v
δv(·)− 〈̂̀1 , ∂ηT

∂v
〉δv(·) =

∫ τ̂2

τ̂1

δv(s)
(
ψ̂s(q̂1)− Lg1s Ŝ

0
s (q̂1)

)
ds+

∫ τ̂2

τ̂1

δv(s)〈̂̀1 , g1
s(q̂1)〉ds

=

∫ τ̂2

τ̂1

δv(s)
(
ψ(ξ̂(s))− Lg1s Ŝ

0
s (q̂1)− F1(λ̂(s)) + Lg1s Ŝ

0
s (q̂1)

)
ds = 0.

Since only variations where ε4 = −ε3 are admissible, it suffices to show that
∂J

∂ε3
=

∂J

∂ε4
. Notice that

Lk4
(
Ŝ0
T − Ŝ0

τ̂2

)
(q̂1) = Lk4

(
Ŝ0
T − Ŝ0

τ̂3

)
(q̂1) =

∫ T

τ̂3

Lk4 ψ̂s(q̂1)ds = ψ̂T (q̂1)− ψ̂3(q̂1), (A.2)

since Ŝ0
τ̂2

= Ŝ0
τ̂3

and, for every s ∈ [τ̂3, T ], d
ds ψ̂s = Lk4 ψ̂s. Finally, we get

∂J

∂ε3
=
∂η0

T

∂ε3
+ 〈̂̀1 , ∂ηT

∂ε3
〉 = −Lk3 Ŝ0

τ̂2
(q̂1)− 〈̂̀1 , k3(q̂1)〉 = −Lk3 Ŝ0

τ̂3
(q̂1)− 〈̂̀1 , k3(q̂1)〉

∂J

∂ε4
=
∂η0

T

∂ε4
+ 〈̂̀1 , ∂ηT

∂ε4
〉 = −Lk4 Ŝ0

T (q̂1) + ψ̂T (q̂1)− 〈̂̀1 , k4(q̂1)〉 = −Lk4 Ŝ0
τ̂3

(q̂1) + ψ̂τ̂3(q̂1)− 〈̂̀1 , k4(q̂1)〉

so that

∂J

∂ε3
− ∂J

∂ε4
= Lk4−k3 Ŝ

0
τ̂3

(q̂1)− ψ̂τ̂3(q̂1)− 〈̂̀1 , (k4 − k3)(q̂1)〉

= Lk4−k3 Ŝ
0
τ̂3

(q̂1)− ψ̂τ̂3(q̂1)− 〈−DŜ0
τ̂3
Ŝ−1
τ̂3∗ + ̂̀3 , f1(q̂3)〉 = −Φ+(̂̀3) = 0.

Let us now compute the second variation. By some long computations, it is possible to obtain

J ′′[δv, ε3, ε4]2 :=

∫ τ̂2

τ̂1

∫ s

τ̂1

δv(s)δv(r)Lg1r

(
ψ̂s + Lg1s

(
γ̂T + Ŝ0

T − Ŝ0
s

))
(q̂1)drds

+ ε3

∫ τ̂2

τ̂1

δv(s)Lg1sLk3

(
γ̂T + Ŝ0

T − Ŝ0
τ̂2

)
(q̂1)ds+ ε4

∫ τ̂2

τ̂1

δv(s)Lg1s

(
|ψ̂T |+ Lk4 γ̂T

)
(q̂1)ds

+
ε2

3

2
L2
k3

(
γ̂T + Ŝ0

T − Ŝ0
τ̂2

)
(q̂1) +

ε2
4

2
Lk4

(
|ψ̂T |+ Lk4 γ̂T

)
(q̂1)

+ ε3ε4Lk3

(
|ψ̂τ̂3 |+ Lk4 γ̂T

)
(q̂1)

=

∫ τ̂2

τ̂1

δv(s)Lδηr

(
ψ̂s + Lg1s

(
γ̂T + Ŝ0

T − Ŝ0
s

))
(q̂1)ds

− εLδη(τ̂2)−δη(τ̂1)Lk3

(
γ̂T + Ŝ0

T − Ŝ0
τ̂2

)
(q̂1) + εLδη(τ̂2)−δη(τ̂1)

(
|ψ̂T |+ Lk4 γ̂T

)
(q̂1)ds

+
ε2

2
L2
k3

(
γ̂T + Ŝ0

T − Ŝ0
τ̂2

)
(q̂1) +

ε2

2
Lk4

(
|ψ̂T |+ Lk4 γ̂T

)
(q̂1)

− ε2Lk3

(
|ψ̂τ̂3 |+ Lk4 γ̂T

)
(q̂1),

(A.3)

where we set ε4 = −ε3 = ε. Integrating backward in time system (4.4), and applying the constraints, we see
that δητ̂2 − δητ̂1 = −εk(q̂1). Finally, plugging equation (A.2) into (A.3) we obtain equation (4.3).
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Appendix B. Some technical results and proofs

Proposition B.1. For every smooth function υ(t, `) : R × T ∗M → R, the Hamiltonian flow associated with

H0(`) + υ(t, `)Φ−(`) preserves ~Φ− on Σ−, that is, if Ft is the flow associated with H0(`) + υ(t, `)Φ−(`) from τ̂1
to time t, then

F−1
t∗
~Φ− ◦ Ft(`) = ~Φ−(`), ∀` ∈ O1. (B.1)

Proof. We notice that, for every ` ∈ Σ−,

∂

∂t
F−1
t∗
~Φ− ◦ Ft(`) = F−1

t∗ [ ~H0 + υ(t, ·)~Φ− + Φ−(·)~υ(t, ·), ~Φ−] ◦ Ft(`)

= F−1
t∗ [ ~H0, ~Φ

−] ◦ Ft(`),

since Φ−(Ft(`)) = 0.
Using equation (5.2), for every ` ∈ Σ− we have

[ ~H0, ~Φ
−](`) = [exp(−t~Φ−)∗ ~F0 ◦ exp(t(`)~Φ−)|t=ϑ(`), ~Φ

−]|`
= [exp(−t~Φ−)∗ ~F0 ◦ exp(t~Φ−), ~Φ−](`)|t=ϑ(`)

+
(
〈dϑ, ~Φ−〉[~F0, ~Φ

−]
)
(exp(ϑ(`)~Φ−))

=
(
1 + 〈dϑ, ~Φ−〉)[~F0, ~Φ

−]
)
|(exp(ϑ(`)~Φ−)),

which is null by (5.1).

Proof of Lemma 6.3

Set Gt = Ĥ−1
t ◦ Kt and notice that Gt(̂̀1) = ̂̀

1 for every t ∈ [τ̂1, τ̂2]. For every ` ∈ Σ−,

∂

∂t
Gt(`) =

(
(ν − û(t))Ĥt∗~Φ−

)
◦ Ĥt|Gt(`) =

(
ν(Ĥt ◦ Gt(`))− û(t)

)
~Φ−(Gt(`)),

thanks to Proposition B.1. Since ~Φ− is tangent to Λ1, we obtain that Gt(Λ1) ⊂ Λ1. Gt∗(T̂̀
1
Λ1) = T̂̀

1
Λ1 for every

t ∈ [τ̂1, τ̂2], that is, Ĥt∗(T̂̀
1
Λ1) = Kt∗(T̂̀

1
Λ1) and claim 1 is proved.

By simple computations, we can prove that Gt is the Hamiltonian flow associated with the Hamiltonian
Gt = (K − Ĥt) ◦ Ĥt. In particular, from the fact that dGt|̂̀

1
= 0, we obtain that

G′′t :=
1

2
D2Gt|̂̀

1
=

1

2

(
dΦ− ⊗ dν + dν ⊗ dΦ−

)
|λ̂(t)[Ĥt∗·]

2 = 〈dΦ−|λ̂(t), Ĥt∗·〉〈dν|λ̂(t), Ĥt∗·〉 (B.2)

is a well defined Hamiltonian function on T̂̀
1
(T ∗M), and that Gt∗ is the Hamiltonian flow associated with G′′t ,

see [17].

We now restrict ourselves to vectors δ` ∈ T̂̀
1
Σ−. By definition, and using the fact that 〈dΦ−|λ̂(t), Ĥt∗δ`〉 =

0, it follows that ~G′′t (δ`) = 〈dν|λ̂(t), Ĥt∗δ`〉
−−−−−−−−−−−−→
〈dΦ−|λ̂(t), Ĥt∗δ`〉. To compute this quantity, we set ϕ(δ`) =

〈dΦ−|λ̂(t), Ĥt∗δ`〉, and choose some vector X ∈ Tδ`(T̂̀
1
(T ∗M)) ' T̂̀

1
(T ∗M); then

σδ`(X, ~ϕ(δ`)) = 〈dϕ|δ`, X〉 = 〈dΦ−|λ̂(t), Ĥt∗X〉 = σλ̂(t)

(
Ĥt∗X, ~Φ−(Ĥt(̂̀1))

)
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= σ̂̀
1

(
X, Ĥ−1

t∗
~Φ−(Ĥt(̂̀1))

)
,

so that, by (B.1),

~G′′t (δ`) = 〈dν|λ̂(t) , Ĥt∗δ`〉~Φ
−(̂̀1). (B.3)

Let us now assume that ker(πĤt)∗|T ̂̀
1
Λ1

= 0 for some t ∈ [τ̂1, τ̂2].

Set λ(t) := Gt∗δ`, for some δ` ∈ T̂̀
1
Λ1. Thanks to (3.8), there exist a unique δ`S ∈ T̂̀

1
S− and a unique

a ∈ R such that δ` = δ`S + a~Φ−(̂̀1). From equation (B.3), we obtain that λ(t) = δ`S + µ(t)~Φ−(`1), for some
real function µ(·) satisfying µ(τ̂1) = a.

In particular, this implies that

Kt∗δ` = Kt∗δ`S + a~Φ−(λ̂(t)) = Ĥt∗
(
δ`S + µ(t)~Φ−(̂̀1)

)
.

Thus, if (πKt)∗δ` = 0, then (πĤt)∗
(
δ`S + µ(t)~Φ−(̂̀1)

)
= 0, which implies, by hypothesis, that δ`S +

µ(t)~Φ−(̂̀1) = 0, that is, δ`S = 0 and µ(t) = 0. By (B.2) µ(t) = a +
∫ t
τ̂1
〈dν|λ̂(s) , Ĥs∗δ`〉ds ≡ a since, by

construction, ν is constant along the integral lines of ~Φ−. Thus a = 0, so that claim 2 is proved. �

Appendix C. Useful formulas

In this section, we recall classical formulas of differential geometry that we extensively use throughout the
paper.

Let f, g be two vector fields on some manifold M . Then, for every t for which exp(tf) is defined, it holds

d

dt
exp(−tf)∗g ◦ exp(tf) = exp(−tf)∗[f, g] ◦ exp(tf). (C.1)

Let F,G : T ∗M → R be some Hamiltonian functions, and denote, as usual, with the script their flow from
some time t0. Then

L~FG = 〈dG, ~F 〉 = σ(~F , ~G), [~F , ~G] =
−−−−−→
σ(~F , ~G), F−1

t∗
~G|Ft(`) =

−−−−→
G ◦ Ft|`.
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