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Quantum state discrimination on reconfigurable noise-robust quantum networks
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A fundamental problem in quantum information processing is the discrimination among a set of quantum
states of a system. In this paper, we address this problem on an open quantum system described by a graph,
whose evolution is defined by a quantum stochastic walk. In particular, the structure of the graph mimics those
of neural networks, with the quantum states to discriminate encoded on input nodes and with the discrimination
obtained on the output nodes. We optimize the parameters of the network to obtain the highest probability of
correct discrimination. Numerical simulations show that after a transient time the probability of correct decision
approaches the theoretical optimal quantum limit. These results are confirmed analytically for small graphs.
Finally, we analyze the robustness and reconfigurability of the network for different set of quantum states and
show that this architecture can pave the way to experimental realizations of our protocol as well as novel quantum
generalizations of deep learning.
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I. INTRODUCTION

In the last decade, quantum stochastic walks (QSWs) have
been proposed as a model to generalize both quantum walks
and classical random walks [1]. Their formulation arises from
the need to extend quantum walks to open quantum systems,
with the aim of incorporating decoherence effects that are in-
evitably present in a real physical system. In fact, the formerly
proposed quantum version of random walks, i.e., the quantum
walk (QW) [2–6], has been defined by a unitary evolution of
the state, without taking into account incoherent effects. This
allows the walker’s position on a graph to be in a superposition
of states, a property that has been exploited to show that
QWs are universal for quantum computation [7–9] and that
they allow to design quantum algorithms with computational
advantages over classical algorithms [10–19].

In parallel to these results, there have been works showing
the beneficial impact of decoherence for dephasing-enhanced
transport in a variety of systems, in particular in light-
harvesting complexes [20–26]. This has motivated the study
of quantum walks with an environmental interaction, as is de-
scribed by QSWs. The QSW framework has been investigated
in the context of relaxing property [27–29] and propagation
speed [30,31], showing advantages for speed-up in learn-
ing algorithms [32], and enhancement of excitation transport
[33–37].
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The evolution of QSWs is defined by a Gorini-
Kossakowski-Sudarshan-Lindblad master equation [38–40],

dρ

dt
= −(1 − p)i[H, ρ] + p

∑
k

(
LkρL†

k − 1

2
{L†

k Lk, ρ}
)

,

(1)
where one assumes to work in units with h̄ = 1, H is the
Hamiltonian, {Lk} are the Lindblad operators, and both are
defined from the adjacency matrix describing the network of
nodes involved in the random walk. The smoothing parameter
p accounts for the amount of coherent evolution given from H
with respect to the irreversible evolution given by the Lindblad
operators, and it allows one to interpolate between a quantum
walk (p = 0) and a classical random walk (p = 1).

On the other side, quantum state discrimination has been
one of the first problems faced in quantum information the-
ory [41–48], but it is still a flourishing research field as
demonstrated from recent theoretical [49–54] and experimen-
tal works [55–60], also considered in relation to machine
learning approaches [61]. In its most general formulation, an
observer wants to guess the quantum state of a system that
is prepared in one of a set of feasible states, possibly by opti-
mizing the measurement operators to apply on the system. The
performance measure is the probability of correct detection

Pc =
M∑
n=1

pnTr[�nρ
(n)], (2)

where {ρ (n)} is the set of quantum states to discriminate,
n = 1, . . . ,M, {pn} their a priori probabilities, and {�n} the
measurement operators to estimate them.

In this work we consider the discrimination of quantum
states as a result of their time evolution. Our structure is
inspired by neural networks, with its evolution described by
a quantum stochastic walk. The connection between the im-
plementation of measurement operators (possibly to solve
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the discrimination problem) and quantum walks has been
investigated in recent works [62,63], but in these papers an
alternative formulation of quantum walks is used, and we
explicitly refer to a neural network structure for the quantum
system. We test different sets of quantum states and several
networks in order to understand the best topologies for the
discrimination problem.

The paper is organized as follows. In Sec. II we review the
formalism of quantum stochastic walks, and we introduce the
network model that describes the quantum system. We present
different topologies for the binary discrimination and for the
discrimination between M > 2 quantum states. In Sec. III we
formalize the discrimination problem, discussing in Sec. III A
the binary case and in Sec. III B the M-ary case. In Sec. IV
we report the conclusions and final discussions.

II. QUANTUM STOCHASTIC WALKS

In this section we introduce the QSW model that we here
apply to the discrimination problem.

Classical random walks, quantum walks, and quantum
stochastic walks are usually defined on an graph G, which is
defined by a pair G = (N , E ), with N being a set of elements
called nodes (or vertices) and E being a set of pairs of nodes
(Ni, N j ) representing arcs from Ni to N j . The pairs in E can
be summarized in the adjacency matrix A, with

Aj,i =
{

1, if (Ni, N j ) ∈ E
0, if (Ni, N j ) /∈ E . (3)

As a generalization, weighted graphs can have any real val-
ues Aj,i assigned to an arc. Also, in the case the adjacency
matrix is a symmetric matrix, i.e., Ai, j = Aj,i, the graph is
called undirected, otherwise the graph is said to be directed.
Undirected graphs have pairs (Ni, N j ) and (N j, Ni ) with the
same weight on them, and in this case the arcs are also called
edges or links.

The name random walk comes from the fact that a walker,
starting from an initial node and moving around randomly
according to the link connections, assumes a time-dependent
probability distribution that can be predicted with this frame-
work. In particular, in the case of an undirected graph with
equal weights on the edges, we can define the transition-
probability matrix T of the possible node transitions as T =
AD−1, where D is the diagonal degree matrix, with Di,i =∑

j A j,i representing the number of nodes connected to i. The
probability distribution of the node occupation, written as a
column vector �q(t ), is evaluated for a discrete time (t ) random
walk as

�q(t + 1) = T �q(t ) (4)

and for a continuous time random walk as

d �q
dt

= (T − I )�q . (5)

In the quantum scenario, the nodes are associated with the
elements of the site basis [34] (see Sec. II A for an exten-
sive description of the network). The evolution of the system
can be given by the Gorini-Kossakowski-Sudarshan-Lindblad
master equation (1), with both the Hamiltonian H and the
Lindblad operators {Li, j} depending on the adjacency matrix

defined on the graph. In some models of QSW [1,34], the
Hamiltonian operator H is defined from the adjacency matrix,
i.e., H = A, and with the Lindblad operators depending on the
transition matrix defined on the graph as Li, j = √

Ti, j |i〉〈 j|.
With this approach, optimizing the coefficients of a weighted
undirected adjacency matrix A fixes the Hamiltonian H and
the Lindblad operators via T = AD−1. Here we relax this as-
sumption, and, once the adjacency matrix defines the topology
of the network, we optimize H and T independently. More
precisely, the coefficients Ai, j are used to decide whether the
corresponding Hi, j and Ti, j will be optimized (independently)
or are set to zero. This approach physically corresponds to
optimize independently the hopping rates in H and the noise
rates in L. Of course, to define proper transition probabilities
the matrix T must satisfy a set of constraints,

0 � Ti, j � 1 ∀i, j,
∑

i

Ti, j = 1 ∀ j, (6)

while for a matter of simplicity and to reduce the amount
of parameters involved we take H to be any real symmetric
matrix, Hi, j = Hj,i, with zero entries on the diagonal.

Moreover, in the graph some nodes may have a particular
role. There is usually a starting node that identifies the initial
position of the walker. There might be also sink nodes, i.e.,
nodes that can irreversibly trap the received population. The
latter are connected to the rest of the network only through
an arc connecting a sinker node in the network to the sink,
preventing a transition in the reverse direction. In the QSW,
this is obtained with a Lindblad operator Ln = |n〉〈sn| for each
sink, which is added on the right side of Eq. (1),

M∑
n=1

�(2|n〉〈sn|ρ|sn〉〈n| − {|sn〉〈sn|, ρ}), (7)

with sn being the index of the node connected to the nth sink
|n〉, 1 � n � M, that is, |sn〉 is the sinker node of |n〉. Overall,
the master equation for the density operator ρ describing the
system reads

dρ

dt
= −(1 − p)i[H, ρ] + p

∑
i, j

Li, jρL†
i, j − 1

2
{L†

i, jLi, j, ρ}

+ �

M∑
n=1

2|n〉〈sn|ρ|sn〉〈n| − {|sn〉〈sn|, ρ}, (8)

and the population at the nth sink at time t = τ (corresponding
to the total evolution time) can be evaluated as

ρn,n(τ ) = 〈n|ρ(τ )|n〉 = 2�

∫ τ

0
ρsn,sn (t ) dt . (9)

From here on, we assume � = 1 since this parameter is just a
factor defining the timescale (�τ is dimensionless).

A. Network model

To define the topology of the graph we mimic the struc-
ture of neural networks [64–66]. The latter are described by
complex graphs where the nodes (resembling neurons) are
grouped into input, hidden, or output layers. Input nodes are
those where the data to be processed are set. Output nodes are
those containing the results of the desired task. Hidden nodes
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represent intermediate steps in the elaboration. Note that in
this work we use the term layers only to identify a cluster
of nodes, such that the parallelism with the neural networks
should be taken loosely.

In the quantum case a similar network could be physically
realized with an ensemble of two-level systems, one for each
node, and with a walker realized by a single quantum exciton
moving around. Each node is then associated to the state |i〉 =
|0 . . . 1 . . . 0〉, corresponding to have one excitation (|1〉) at the
ith node and |0〉 elsewhere.

Then we classify the quantum–network nodes into input,
intermediate, and output layers. For a M−N−O network we
mean that there are M input nodes, N intermediate, and O
output ones (see, for instance, Fig. 1). Multiple intermediate
layers may also be present; for instance, a 2–6–5–4 network
has two nodes in the input layer, six nodes in the first in-
termediate layer, five nodes in the second intermediate one,
and four output nodes. The input nodes are associated to
a subset of the Hilbert space, where we prepare the initial
quantum (pure or mixed) state of the system, initially in the
ground state (no excitons). The network will then evolve in
time according to Eq. (8). Note that in general the number of
input nodes M is not related to the number M of quantum
states to discriminate. By default, each node in a layer is fully
connected with all the nodes of the same layer and with all the
nodes of the following one. Only in the output layer is each
sink connected only from its sinker. We also consider different
topologies by reducing the connections between nodes within
the same layer. When we want to refer to a topology that is not
the default one, we use “r” to indicate that the connectivity
is reduced, i.e., some links are removed. The output nodes
are sink nodes where the population gets trapped. After the
time evolution of the network dynamic, we measure the sink
population to estimate the initial quantum state in the discrim-
ination problem (see Sec. III).

1. Models for binary discrimination

In the case of binary discrimination, we first consider the
2r−2r−2 model [see Fig. 1(a)]. This is probably the simplest
model one can imagine, with two input nodes connected to
two sinker nodes and two sinks, but with no links between
nodes of the same layer. Then we consider some of its variants
obtained adding some links, for instance, the 2−2r−2 model,
where the input nodes are connected among themselves, the
2r−2−2 model, with an additional link between the sinkers,
the 2−2−2 model, with both these links added, and a 2r−4−2
model, which has four intermediate nodes. By comparing the
performances of these models we analyze the role of the added
edges. In addition, we investigate the role of the intermediate
layers optimizing the 2r−2r− · · ·−2 model for an increasing
number of intermediate fully connected layers. This latter
model is represented in Fig. 1(b).

2. Models for M–ary discrimination

In the case of M-ary discrimination, we consider a setup
with the same number of quantum states to discriminate
as the input nodes, M = M, and one with a larger num-
ber of quantum state, i.e., with M > M. For instance, we
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FIG. 1. Examples of M−N−O network models: 2r−2r−2 (a),
2r−2r−2r−2 (b), 2r−4−4 (c), and 4r−4−4 (d). In each panel,
the left layer (blue) collects the input nodes and the right layer
(purple) the output nodes, and between (orange) the intermediate
nodes, which can be organized in multiple layers as in panel (b).
Directed edges refer to irreversible transfer of population, while plain
links indicate both coherent and incoherent transport. By default
the nodes of a layer are fully connected within themselves. We
indicate with r when the connectivity is reduced, i.e., some links
are removed.
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consider the 2−M−M, 2−Mr−M, and 2r−M−M mod-
els [see Fig. 1(c)] for M = 4 and M = 8. As in the binary
case, the reduction in the connectivity indicates the ab-
sence of links between nodes of the same layer. We also
consider Mr−Mr−M, Mr−M−M [see Fig. 1(d)] and
M−M−M models for M = 4.

III. QUANTUM STATE DISCRIMINATION

In this section we introduce the problem of quantum state
discrimination (for more details see reviews [45–48]).

Assume that a quantum system is prepared in a quantum
state drawn from a set of given states, represented by density
operators {ρ (m), 1 � m � M} in the Hilbert space H. The a
priori probabilities pm by which the quantum states are pre-
pared are also known: {pm, 1 � m � M}, ∑

m pm = 1. In the
discrimination problem, we search for the positive operator-
valued measurement (POVM) operators {�n, 1 � n � M}
satisfying

�n � 0,

M∑
n=1

�n = IH, (10)

that allow us to estimate the prepared state with the highest
probability of correct detection Pc, or equivalently, the lowest
probability of error Pe = 1 − Pc. In Eq. (10) the term IH rep-
resents the identity operator acting on the space of the density
matrices of the quantum system H.

If the quantum states {ρ (m)} span orthogonal subspaces, a
perfect discrimination is possible by appropriate measurement
operators and Pc = 1. If this is not the case, the outcome cor-
responding to the measurement operator �n may be correctly
recorded when the prepared quantum state is ρ (n), or it may
be wrongly recorded when the quantum state is ρ (m), m �= n,
leading to the probability of correct detection in Eq. (2).

The conditions for the optimal solution have been derived
by Holevo [42] and by Yuen, Kennedy, and Lax [43]. In the
most general scenario the problem can be solved numerically
via semidefinite programming [67], but, in the binary case
or if the set of quantum states exhibits symmetry features,
the optimization can be further carried on analytically to
better understand the structure of the measurement operators
[68–70], and possibly to find a closed form for the probability
of correct decision.

In the case of only two quantum states, the problem of
binary discrimination has been solved by Helstrom [41],
and the optimal probability of correct decision is known as
the Helstrom bound. If the quantum states are pure, ρ (1) =
|ψ (1)〉〈ψ (1)| and ρ (2) = |ψ (2)〉〈ψ (2)|, the Helstrom bound
reads

PHelstrom
c = 1

2 (1 +
√

1 − 4p1 p2|〈ψ (1)|ψ (2)〉|2). (11)

If instead ρ (1) and ρ (2) are mixed, the Helstrom bound can
be evaluated numerically [41]. When the discrimination is set
among M > 2 quantum states, the theoretical optimal proba-
bility of correct decision P∗

c is evaluated numerically, and it is
used as a reference for the performance of the network.

Note that in our setup we actually consider an equivalent
formulation of the problem, where instead of optimizing the
measurement operators we fix the measurement projectors

(on the population of the output nodes) and optimize the
evolution of the network. The optimization of the evolution
of the system concerns the coefficients of the Hamiltonian
and the Lindblad operators to obtain the best evolution from
the subspace of the input nodes, where the quantum states to
discriminate are prepared, to the subspace of the output nodes,
where the measurement is performed. For example, in the case
of the discrimination of two qubits the time evolution “rotates”
the quantum states such that the optimal projectors in the input
subspace are now aligned with the projectors on the output
subspace. In the discrimination of M > 2 qubits, the time
evolution acts on a larger Hilbert space where to apply the
M projectors corresponding to the sink node measurements
(see Sec. III B). The two problems are equivalent, and one can
interpret the optimized evolution with the measurement on the
output nodes as realizing the Naimark extension of the POVM
defined on the input nodes for the original discrimination
problem. To be more precise, to have a resolution of the iden-
tity as in Eq. (10) we formally need to include a projection on
the subspace outside the output nodes. This is necessary since
part of the population can be trapped in the network [24,34].
The outcome associated to this extra projector is considered
inconclusive for the discrimination.

We fix the measurement operators to be {�n = |n〉〈n|},
with n identifying the nth sink, 1 � n � M, which is asso-
ciated with the estimation of the input quantum state ρ (n). The
projector associated with the inconclusive output is �inc =
IH − ∑

n �n.
The probability of correct decision can then be written as

Pc =
M∑
n=1

pn Tr[�nρ
(n)(τ )] =

M∑
n=1

pn ρ (n)
n,n(τ )

= 2�

M∑
n=1

pn

∫ τ

0
ρ (n)

sn,sn
(t ) dt, (12)

where we have defined ρ
(m)
i, j (t ) as

ρ
(m)
i, j (t ) = 〈i|ρ (m)(t )| j〉. (13)

The optimization of the network coefficients has been per-
formed numerically using standard routines employing an
interior-point algorithm [71–74] to maximize the probability
of correct decision Pc.

In the case of the simple network 2r−2r−2 for the binary
discrimination, we further carry on the optimization analyt-
ically and solve the problem for p = 0 and p = 1. This has
given us some insights on how to interpret the behavior of
the performance as a function of p and τ . More details are
reported in Appendixes A–D.

A. Binary discrimination

We set up the discrimination problem with different pairs
of states, for different values of p ∈ [0, 1] and of the total
evolution time τ in Eqs. (8) and (9). For each pair (p, τ ) we
optimize H , T in Eqs. (6) and (8) assuming equal a priori
preparation probabilities of the states to get discriminated.

First, we consider a 2r−2r−2 model. We discrimi-
nate between two pure states that are symmetric with
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respect to |1〉,

|ψ (1)〉 = cos θ |1〉 + sin θ |2〉,
(14)

|ψ (2)〉 = cos θ |1〉 − sin θ |2〉,

and

|ψ (1′ )〉 = cos θ |1〉 + i sin θ |2〉,
(15)

|ψ (2′ )〉 = cos θ |1〉 − i sin θ |2〉,

with θ = π/8. The probability of correct decision Pc is shown
as a function of (p, τ ) in Figs. 2(a) and 2(b), with ρ (1) =
|ψ (1)〉〈ψ (1)|, ρ (2) = |ψ (2)〉〈ψ (2)| reported below each plot.
We also consider the discrimination between the pure state
|ψ (1)〉 [|ψ (1′ )〉] and a mixed state ρ (2) [ρ (2′ )] with the same
spherical coordinates (rx, ry, rz ) in the Bloch sphere repre-
sentation ρ (2) = (1 + rxσx + ryσy + rzσz )/2 but with a radius

r =
√

r2
x + r2

y + r2
z reduced to 0.5 (this value has been cho-

sen to be intermediate between that of a pure state and the
completely mixed state). The plots are shown in Figs. 2(c)
and 2(d). Then, we consider the discrimination between the
mixed quantum states ρ (1), ρ (2) [ρ (1′ ), ρ (2′ )] obtained from
|ψ (1)〉, |ψ (2)〉 [|ψ (1′ )〉, |ψ (2′ )〉] reducing both radii to 0.5. The
plots are shown in Figs. 2(e) and 2(f). Note that the quan-
tum states |ψ (1′ )〉, |ψ (2′ )〉, ρ (1′ ), ρ (2′ ) are simply obtained
by rotating |ψ (1)〉, |ψ (2)〉, ρ (1), ρ (2) in the Bloch sphere in
order to change the rx coordinates into the ry coordinates.
We find that for increasing values of τ the performance in-
creases. This can be interpreted by the fact that an initial
quantum state requires some time to reach the sinks. In ad-
dition, we can see an almost-constant negative slope in p for
a fixed τ , with the quantum walk (p = 0) outperforming the
general quantum stochastic walk with p > 0. We can also
notice that the performance seems to saturate asymptotically,
for any p, approaching the Helstrom bound for p = 0 in
panels (a), (c), and (e). Panels (b), (d), and (f) also show
a clear gap between the surface and the optimal theoretical
bound.

We have further investigated this behavior solving the
optimization problem analytically for p = 0 and p = 1.
We provide the expression for the optimal H, T in
Appendixes A–C, and we prove that for p = 0 asymptotically
we can reach the Helstrom bound, while for p = 1 we reach
the theoretical classical bound, that is, the Helstrom bound
evaluated on the quantum states with the coherences set to
zero.

Now we give a sketch of the solution in the particular
case p = 0 and the discrimination between the pure quantum
states (14), θ ∈ [0, π/2], on a 2r−2r−2 model. Assuming the
Hamiltonian in the form

H =

⎛
⎜⎝

0 0 h h
0 0 h −h
h h 0 0
h −h 0 0

⎞
⎟⎠, (16)

we can evaluate the time evolution of the node population
(more details are found in Appendix C) and the probability

of correct decision results

Pc(τ )=
∫ τ

0
ρ

(1)
3,3(t ) + ρ

(2)
4,4(t ) dt

= 1+ sin(2θ )

2

{
1−e−τ

[
z sinh (zτ )+ cosh (zτ ) − 1

z2
+1

]}
(17)

with z = √
1 − 8h2. The maximization of Pc(τ ) for a finite τ

requires the minimization of the term f (z) = [z sinh (zτ ) +
cosh (zτ ) − 1]/z2, which can be accomplished numerically.
In the asymptotic limit of τ → ∞ the term in the brackets
vanishes, and Pc(∞) equals the Helstrom bound evaluated on
|φ1〉, |φ2〉.

While in the case of the quantum states (14) the optimized
network approaches the optimal performance for p = 0 in the
asymptotic limit, this is not the case for any pair of quantum
states. In fact, the 2r−2r−2 model has an invariant subspace
[24] not connected to any sink. An invariant subspace of a
quantum system dynamics is a Hilbert subspace where the
dynamics is confined, i.e., span of the eigenstates of H that
are orthogonal to the output nodes. In the case of the 2r−2r−2
model, the invariant subspace is present for any p and includes
the y component of the state in the Bloch sphere, that is,
the ry component of the quantum state starts in this invariant
subspace, and its evolution remains trapped there. This means
that the problem is equivalent to discern the quantum states
after setting ry to zero, effectively projecting the quantum
states in the (σx, σz ) plane of the Bloch sphere (see Fig. 2,
right panels).

Second, we investigate the role of some links in the net-
work performance, by evaluating the performance of some
variants of the 2r−2r−2 model. For instance, we add a link
in the input layer (2−2r−2 model), a link in the intermediate
layer (2r−2−2 model), a link in both layers (2−2−2 model),
an intermediate layer (2r−2r−2r−2 model), and some in-
termediate nodes in the same layer (2r−4−2 model). We
compare the performances in Fig. 3, where we optimize the
discrimination between a pure state and a mixed state, both
with some ry coordinates,

ρ (1) = |ψ (1)〉〈ψ (1)|, |ψ (1)〉 = cos θ |1〉 + sin θe−iξ |2〉,

ρ (2) = 1 − r cos ξ sin 2θσx + r sin ξ sin 2θσy + r cos 2θσz

2
,

(18)

with θ = π/8, ξ = π/4, r = 0.5. These values have been
chosen to have both rx and ry coordinates, with an interme-
diate radius between 1 (corresponding to a pure state) and 0
(corresponding to the completely mixed state). The probabil-
ity of correct decision as a function of (p, τ ) has the same
general behavior of Fig. 2. For this reason, in Fig. 3 we plot
Pc for p = 0 as a function of τ for the different models, along
with the Helstrom bound. As in the previous comparison, the
performance increase in τ and the saturation threshold can
be clearly observed. Indeed, it is interesting to compare the
saturation value among the models. The models 2r−2r−2
and 2r−2r−2r−2 have similar performances, showing a gap
with the Helstrom bound in the asymptotic value. This is due
to the presence of invariant subspaces trapping the quantum
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FIG. 2. Optimized probability of correct decision with respect to (p, τ ) for the 2r−2r−2 model in the case of binary discrimination with
pure states (first row), a pure state and a mixed state (second row), and mixed states (third row). The quantum states, fully reported below, in
the cases (a), (c), and (e) have rx �= 0, ry = 0, while the cases (b), (d), and (f) have been rotated to have the ry coordinates in place of the rx

ones. The Helstrom bound is shown with a red dashed line, and with a dash-dotted orange line we evaluate the Helstrom bound on the same
quantum states after setting ry = 0. The color map is linear between blue and yellow and normalized between the minimum and the maximum
point in each plot. Following, we discriminate the quantum states:

(a)

(
0.8536 0.3536
0.3536 0.1464

)
vs

(
0.8536 −0.3536

−0.3536 0.1464

)
(b)

(
0.8536 −i0.3536
i0.3536 0.1464

)
vs

(
0.8536 i0.3536

−i0.3536 0.1464

)

(c)

(
0.8536 −0.3536

−0.3536 0.1464

)
vs

(
0.6768 0.1768
0.1768 0.3232

)
(d)

(
0.8536 i0.3536

−i0.3536 0.1464

)
vs

(
0.6768 −i0.1768
i0.1768 0.3232

)

(e)

(
0.6768 −0.1768

−0.1768 0.3232

)
vs

(
0.6768 0.1768
0.1768 0.3232

)
(f)

(
0.6768 −i0.1768
i0.1768 0.3232

)
vs

(
0.6768 i0.1768

−i0.1768 0.3232

)
.
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FIG. 3. Probability of correct detection Pc for different variants
of the 2r−2r−2 model as a function of τ for p = 0. The red dashed
line shows the Helstrom bound for mixed quantum states in Eq. (18).

state component corresponding to the ry coordinates. Inter-
estingly, the addition of a link in the input or intermediate
layer of models 2r−2−2 and 2−2r−2, despite breaking the
invariant subspaces, allow for an increase of the performance
but do not close the gap with the Helstrom bound. Finally, the
models 2−2−2 and 2r−4−2 approach the upper bound. This
is particularly interesting because it suggests that a reduced
topology in the input nodes could be compensated by an
increased number of intermediate nodes in a single layer.

We believe we cannot observe the beneficial impact of the
noise since the graphs we consider are too small and simple
where noise assisted transport is not present since interference
effects are neutralized from static disorder in the Hamiltonian
coefficients (see Refs. [24,33] and the references therein).

1. Robustness

Here we analyze the robustness of our discrimination
scheme in the case of noisy preparation of the quantum states,
a noisy configuration of the network, and an increasing num-
ber of intermediate layers.

In the former case, we optimize the 2−2−2 model as-
suming to discriminate the quantum states in Eq. (18) while
only a noisy preparation is actually available, for instance,
due to experimental imperfections in the preparation stage.
We prepare the network with the optimal setup, i.e., with the
optimal coefficients in H, L, but we input two random quan-
tum states ρ (1), ρ (2) by uniformly sampling θ, ξ , r around
their nominal value with a maximum 5% error. We run 104

simulations with this setup as a function of p for τ = 1, 10,
sampling new pairs of quantum states at each run. In Fig. 4 we
show that even with a noisy preparation of the quantum states,
for any p the performances remain close to the theoretical
values. Additionally, we focus on how the performance varies
as a function of the preparation error ranging from 0% to
100% for p = 0; see Fig. 5. We find that up to around a 5%
error the correct decision probability remains very close to the
Helstrom bound and decreases linearly with the preparation
error up to around 25%, before exponentially dropping down
below the random guess case (i.e., Pc = 0.5).

FIG. 4. Probability of correct decision Pc (blue region) around
the predicted performance (solid lines) with a noisy preparation of
the quantum states to discriminate (5% error). The red dashed line
shows the Helstrom bound. For each p and τ = 1, 10 we run 104

evaluations of Pc, each with a different pair of quantum states.

As a second robustness test, we consider a perfect prepara-
tion of the quantum states of Eq. (18) but a noisy setup of the
network coefficients. In this case, we focus on p = 0, 0.1 and
τ = 1, 10, and in each simulation we sample the coefficients
of the Hamiltonian H uniformly around the optimal values
with a given maximum percent error corresponding to a sort
of network static disorder. Figure 6 shows that indeed the
discriminatory network is robust against noisy preparations
of the network dynamics, due, for instance, to experimen-
tal imperfections. It is also interesting to compare the two
plots corresponding to the cases with p = 0 and p = 0.1.
The former case achieves asymptotically a better performance
with small network static disorder. The probability of correct
decision slowly decreases as a function of this error and

FIG. 5. Probability of correct decision Pc (blue region) as a func-
tion of the maximum percent error on the preparation of quantum
states, for p = 0 and τ = 1, 10. The continuous line shows the
average performance over 104 simulations. The black dash-dotted
line shows the threshold corresponding to a random guess (0.5). The
red dashed line shows the Helstrom bound.
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(a)

(b)

FIG. 6. Probability of correct decision Pc (blue region) for a
network prepared in a noisy configuration of its Hamiltonian coef-
ficients Hi, j , as a function of its network static disorder percentage,
for p = 0 (a), p = 0.1 (b) with τ = 1, τ = 10. The solid lines show
the average performance over 104 runs. The black dash-dotted line
shows the threshold corresponding to a random guess (0.5). The red
dashed line shows the Helstrom bound.

only at around a 50% error it approaches the random guess
limit. However, the p = 0.1 case has a more robust perfor-
mance with respect to this disorder, with the performance
range crossing the threshold of random guess at around 80%.
Towards an experimental implementation of our protocol, it
could be beneficial to consider p = 0.1, slightly sacrificing
the performances in favor of a more robust discrimination.

As a third robustness test we study whether the probability
of correct decision improves adding or removing more inter-
mediate layers. With p = 0 we consider the models 2r−2r−2
and 2r−2−2 with 1, 2, 4, 8, and 16 intermediate layers, and
we plot the performance for different evolution times in Fig. 7.
The two models, which have been tested with the quantum
states of Fig. 2(d), present a lowering of the performance
with the increase of the intermediate layers. This could be

(a)

(b)

FIG. 7. Probability of correct decision between quantum states of
Fig. 2(d) in the model 2r−2r− · · · −2 (a) and model 2r−2− · · · −2
(b) as a function of the number of intermediate layers, for τ ∈
{0.1, 1, 10, 100}. The (red) dashed line shows the Helstrom bound.

explained with the fact that as intermediate layers are added,
the network requires more time to move the quantum states
from the input nodes to the output nodes. However, while the
increase of layers does not affect the asymptotic performance
of model 2r−2r−2, which keeps the gap with the Helstrom
bound, in the model 2r−2−2 as soon as we add a second
intermediate layer the performance approaches the optimal
one. The increase in the connectivity is also beneficial at
intermediate time τ , with the performance of the latter model
being greater already for τ = 1.

B. M-ary discrimination

We now consider the generalization of our scheme to the
discrimination of M quantum states. In particular, we investi-
gate whether the number of nodes M in the input layer poses
limitations in the distinguishability of the quantum states. In
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(a)

(b)

FIG. 8. Probability of correct detection Pc of pure qubits (19)
for M = 4 (a) and M = 8 (b) as a function of time τ for different
variants of a 2−M−M model.

general, M and M are not related, meaning that it could be
M < M, M = M, or M > M.

As a first case, we consider the discrimination of the M
pure qubits (M = 2),

|ψ (m)〉 = |1〉 + ei2π m
M |2〉√

2
, m = 1, . . . ,M, (19)

with M = 4, 8. In the Bloch sphere representation, these
quantum states are equally spaced along the equator defined
by the Tr[ρσz] = 0 plane, and because of this symmetry they
are often used to test discrimination protocols [41,75].

We consider the models 2r−Mr−M, 2r−M−M and
2−M−M, whose performance are reported in Fig. 8, where
we plot only the behavior for p = 0 since the trend with
respect to p and τ is similar to the binary case. In this figure we
just focus on understanding whether the topology asymptoti-
cally closes the gap with the optimal bound P∗

c = 1 − 2/M,
which has been reported, for instance, in Ref. [41].

There is, however, a fundamental difference here with
respect to the binary case. While in the latter the optimal mea-
surement operators are projectors, here the optimal ones are
given by POVM. We can realize these POVM via projectors in

FIG. 9. Probability of correct detection Pc for M = 4 as a func-
tion of time τ for different variants from a 4−4−4 model. The
quantum states to discriminate are a mixture of a pure state and the
completely mixed state with a factor α, 1 − α as in Eq. (20), with
α = 0.3 (a) and α = 0.7 (b).

an extended Hilbert space using the Naimark theorem [41,75–
77], meaning that the optimal network will try to implement
such extended projectors via its dynamics and the measure-
ment on the sink nodes. We find that 2−M−M is the most
general model and has the highest performance, approach-
ing asymptotically the optimal P∗

c . Interestingly, the model
2r−M−M share the same behavior, while for 2r−Mr−M
the performances are clearly lower.

As a second case, we consider the discrimination with
M = M. We define the initial quantum states as a linear
combination of pure states and the completely mixed state,

ρ (m) = α|ϕm〉〈ϕm| + (1 − α)
I

M , m = 1, . . . ,M, (20)

with |ϕm〉 being the mth state in the mutually unbiased basis
of the input nodes,

|ϕm〉 = 1√
M

M∑
k=1

e−i 2πmk
M |k〉, (21)
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where |k〉 is the quantum state associated with the kth in-
put node. For α = 1 it leads to discrimination of the pure
orthogonal states |k〉. On the other hand, α = 0 means that
ρ (m) = I/M for all m, resulting in a completely random esti-
mation with P∗

c = 1/M. With an intermediate value of α we
want to simulate a noisy preparation of the states (21). We
consider α = 0.3 and α = 0.7, and we show the performance
for different variants of the model 4−4−4 in Fig. 9. The
behavior of the probability of correct detection as a function of
p and τ is similar to the binary case. In the case of the model
4−4−4 we approach asymptotically the optimal theoretical
bound for p = 0, while for the models 4r−4−4 and 4r−4r−4
there is a gap which is more or less emphasized depending on
the value of α.

IV. CONCLUSIONS

In this work we have applied the formalism of quantum
stochastic walks on configurable networks to the problem of
quantum state discrimination, inspired by the neural network
approach for deep learning of classical information as images
In particular, the input nodes encode the quantum states to
discriminate, while the output nodes are used to guess the right
answer.

We test the discrimination of binary and M-ary set of
quantum states with multiple topologies, optimizing the co-
efficients of the Hamiltonian and the Lindblad operators to
obtain the maximum probability of correct detection. The
reconfigurability of the network architecture allows us to op-
timally discriminate numerous sets of quantum states. We
observe that the general trend of the performances is to in-
crease with the total evolution time τ , while for a fixed τ the
best performances are obtained lowering p. Notice that we are
not observing any beneficial noise effects probably because
the considered networks are very small and not homogeneous
(not equal Hamiltonian and noise terms). In many cases with
a pure quantum walk (p = 0) we can asymptotically approach
the optimal theoretical performance. When this happens, the
optimized dynamics realize the Naimark extension (on the
whole quantum system) of the optimal POVM for the discrim-
ination. In some cases there is a gap between the theoretical
and the asymptotic performance for two reasons, i.e., the
lack of node connectivity, which prevents the realization of
the optimal POVM, or the presence of an invariant subspace
trapping a portion of the quantum states to discriminate, which
prevents this component from reaching the output nodes.

The role of the connectivity between nodes is highlighted
in the Fig 3, where we have tested variations of a simple
network by adding and removing links in the input and in-
termediate layer, and in Fig 7, where we have added more
intermediate layers. Overall, the increase in the connectivity
of the intermediate layer (or layers) leads to greater perfor-
mances, possibly closing the gap with the Helstrom bound.

We have also analyzed the robustness of the optimized
network with respect to the preparation of quantum states
and the setup of the optimal coefficients of the Hamiltonian
and Lindblad operators. Indeed, the architecture is very robust
with respect to noise on both stages, as shown in Figs. 4 and 5.
This analysis is promising for an experimental realization of
the protocol, where imperfections in the preparation apparatus

or in the network would be mitigated by the robustness of the
architecture.

Therefore, we believe our results may represent further
steps towards quantum implementations of machine learn-
ing protocols, for instance, to solve classification problem.
Further studies will address the model applicability beyond
discrimination problems, with larger networks, and using ex-
perimental benchmarks on photonics-based architectures and
in cold atom platforms.
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APPENDIX A: VECTORIZATION
OF THE MASTER EQUATION

In the following Appendixes we analytically evaluate and
optimize the time evolution of the quantum system. This
allows us to get a better insight on the performance of the
optimization and to explain the asymptotic behavior in the
small topologies.

We start by recalling the master equation that describes the
evolution of a stochastic quantum walk on a graph connected
to some sinks,

ρ̇ = − (1 − p)i[H, ρ] + p
∑
i, j

Li, jρL†
i, j − 1

2
{L†

i, jLi, j, ρ}

+ �

M∑
n=1

2|n〉〈sn|ρ|sn〉〈n| − {|sn〉〈sn|, ρ}. (A1)

Equation (A1) defines a system of linear ordinary differen-
tial equations on the entries of the density matrix ρ (x)

m,n =
〈m|ρ (x)|n〉. This conversion can easily be seen by applying the
vectorization operation (by columns) on the members of (A1),
exploiting the linear algebra property [78]

vec[ABC] = (CT ⊗ A)vec[B], (A2)

where A, B,C are matrices with appropriate size. With the
substitution Li, j = √

Ti, j |i〉〈 j| we obtain

vec[ρ̇] =
[

− (1 − p)i(I ⊗ H − HT ⊗ I ) (A3)

+ p
∑
i, j

Ti, j |i〉〈 j| ⊗ |i〉〈 j| (A4)

− p
∑
i, j

Ti, j
1

2
(I ⊗ | j〉〈 j| + | j〉〈 j| ⊗ I ) (A5)

+�
∑

n

2|n〉〈sn| ⊗ |n〉〈sn| (A6)

− I ⊗ |n〉〈n| − |n〉〈n| ⊗ I

]
vec[ρ] (A7)

= L̃ vec[ρ], (A8)

043011-10



QUANTUM STATE DISCRIMINATION … PHYSICAL REVIEW RESEARCH 2, 043011 (2020)

where L̃ is the matrix that collects all the terms in the square
brackets.

The items of the density matrix are collected in a (column)
vector, i.e., vec[ρ] = [ρ1,1ρ1,2 . . . ρm,n . . .]T , one can apply an
invertible transformation v = P vec[ρ] that separates the real
and imaginary part of the off-diagonal entries, ρm,n = am,n +
ibm,n with m �= n, also rearranging the order of the items by
putting the diagonal term first. This decomposition allows us
to rewrite Eq. (A8) in terms of r as

v̇ = (PL̃P−1)(P vec[ρ]) = L v. (A9)

APPENDIX B: INVARIANT SUBSPACES

In what follows we assume a 2r−2r−2 model, and we
keep track of only the entries of ρ corresponding to input and
intermediate nodes since the population on the sinks can be
evaluated from Eq. (9). We define the Hamiltonian as

H =

⎛
⎜⎝

0 0 h1 h2

0 0 h3 h4

h1 h3 0 0
h2 h4 0 0

⎞
⎟⎠, hk ∈ R (B1)

and the transition matrix as

T =

⎛
⎜⎝

0 0 t1 t2
0 0 1 − t1 1 − t2
t3 t4 0 0

1 − t3 1 − t4 0 0

⎞
⎟⎠, 0 � tk � 1.

(B2)
Rearranging the items of ρ into v (see Appendix A)

shows us that the matrix L is block diagonal. This is
due to the fact that we have assumed the coefficients of
H and T to be real numbers. This allows us to separate
the system of differential equations into two subsystems
that evolve independently, one involving the variables
{ρ1,1, ρ2,2, ρ3,3, ρ4,4, a1,2, a3,4, b1,3, b1,4, b2,3, b2,4},
and the other one involving the variables
{a1,3, a1,4, a2,3, a2,4, b1,2, b3,4} (see Appendix A for
their definitions), which are the following:

ρ̇1,1 = −2h1(1 − p)b1,3 − 2h2(1 − p)b1,4

+ p(t1ρ3,3 + t2ρ4,4) − pρ1,1,

ρ̇2,2 = −2h3(1 − p)b2,3 − 2h4(1 − p)b2,4

+ p[(1 − t1)ρ3,3 + (1 − t2)ρ4,4] − pρ2,2,

ρ̇3,3 = 2h1(1 − p)b1,3 + 2h3(1 − p)b2,3

+ p(t3ρ1,1 + t4ρ2,2) − (2 + p)ρ3,3,

ρ̇4,4 = 2h2(1 − p)b1,4 + 2h4(1 − p)b2,4

+ p[(1 − t3)ρ1,1 + (1 − t4)ρ2,2] − (p + 2)ρ4,4,

ȧ1,2 = −(1 − p)(h3b1,3 + h4b1,4 + h1b2,3 + h2b2,4)

− pa1,2,

ḃ1,3 = (1 − p)[h3a1,2 − h2a3,4 − h1(ρ3,3 − ρ1,1)]

− (p + 1)b1,3,

ḃ1,4 = (1 − p)[h4a1,2 − h1a3,4 − h2(ρ4,4 − ρ1,1)]

− (p + 1)b1,4,

ḃ2,3 = (1 − p)[h1a1,2 − h4a3,4 + h3(ρ2,2 − ρ3,3)]

− (p + 1)b2,3,

ḃ2,4 = (1 − p)[h2a1,2 − h3a3,4 + h4(ρ2,2 − ρ4,4)]

− (p + 1)b2,4,

ȧ3,4 = (1 − p)(h2b1,3 + h1b1,4 + h4b2,3 + h3b2,4)

− (p + 2)a3,4, (B3)

and

ȧ1,3 = −(1 − p)(h3b1,2 + h2b3,4) − (p + 1)a1,3,

ȧ1,4 = −(1 − p)(h4b1,2 − h1b3,4) − (p + 1)a1,4,

ȧ2,3 = (1 − p)(h1b1,2 − h4b3,4) − (p + 1)a2,3,

ȧ2,4 = (1 − p)(h2b1,2 + h3b3,4) − (p + 1)a2,4,

ḃ1,2 = (1 − p)(h3a1,3 + h4a1,4 − h1a2,3 − h2a2,4)

− pb1,2,

ḃ3,4 = (1 − p)(h2a1,3 − h1a1,4 + h4a2,3 − h3a2,4)

− (p + 2)b3,4. (B4)

In the first subsystem of differential equations the sinker
nodes appear, but none of them are present in the second
subsystem. This means that even if both subsystems may have
a not-null initial value in the variables ρ1,1, ρ2,2, a1,2, b1,2,
only the components ρ1,1, ρ2,2, a1,2 may end up in the sink.
The component b1,2 of the initial state, which corresponds to
the ry coordinates, will not contribute to the sink population,
regardless of the entries in H, T, p. Potential differences
in this component between the initial quantum states, which
could help the discrimination, will not be visible at the sinks,
effectively reducing the probability of correct decision. The
value of b1,2 of the initial quantum state is hence irrelevant
to the discrimination performed on the sink nodes, and the
problem is equivalent to discriminating the quantum states
with this entry set to zero. In the literature, this phenomenon
is explained in terms of invariant subspaces [24,25], that is,
a subspace that prevents the dynamics to escape from the
network. When this invariant subspace does not contain any
sink, and it is initialized by the quantum states, it reduces
the probability of correct detection since its time evolution is
irrelevant for the discrimination.

Note that the presence of the invariant subspace is due
to the topology of the 2r−2r−2 model. The model 2−2−2
instead shows a greater connectivity between the nodes and
does not exhibit the separation of the ordinary differential
equation system into two subsystems that generate the invari-
ant subspace.

APPENDIX C: SOLUTION OF THE MASTER
EQUATION FOR p = 0

In this Appendix we solve the discrimination problem with
p = 0 in the case of equal probable pure states. Since p = 0,
there are no Lindblad operators in the master equation ex-
cept the sink terms, i.e., vanishing terms (A4) and (A5), and
the solution can be obtained by finding the optimal value of
h1, h2, h3, h4.
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Since the term b1,2 does not contribute to the discrimina-
tion, we will ignore the system of differential equations (B4)
of the invariant subspace and focus on the other system of
differential equations, (B3). We can then restrict our attention
to the discrimination of pure states, such as

|ψ (1)〉 =
(

cos(α)

sin(α)

)
, |ψ (2)〉 =

(
cos(β )

sin(β )

)
,

α �= β ∈
[

0,
π

2

]
, (C1)

which have no ry = 〈ψ (x)|σy|ψ (x)〉 coordinates.
It is convenient to apply a rotation to the quantum states in

order to highlight the symmetry of the problem. By applying
the unitary

U =
(

cos
(

α+β

2

)
sin

(
α+β

2

)
− sin

(
α+β

2

)
cos

(
α+β

2

)
)

, (C2)

we obtain

|φ(1)〉 = U |ψ (1)〉 =
(

cos(θ )
sin(θ )

)
, (C3)

|φ(2)〉 = U |ψ (2)〉 =
(

cos(θ )
− sin(θ )

)
(C4)

with θ = (α − β )/2.
We can then proceed to solve the discrimination problem

on |φ(1)〉, |φ(2)〉. From its solution H∗(θ ) we can recover the
solution of the original problem as H∗(α, β ) = U †H∗(θ )U .

We also assume that the optimal solution H∗ verifies h1 =
h, h2 = h, h3 = h, h4 = −h,

H∗(p=0) =

⎛
⎜⎝

0 0 h h
0 0 h −h
h h 0 0
h −h 0 0

⎞
⎟⎠. (C5)

We will shortly see that under this ansatz we can optimize h
such that for τ going to infinity we reach the Helstrom bound.

Under these assumptions, the system of differential equa-
tion (B3) separates into two subsystems with disjoint vari-
ables. For instance, ρ3,3, s = b1,3 + b2,3, p = ρ1,1 + ρ2,2 +
2a1,2 form the following system of differential equations:

ρ̇3,3 = −2 ρ3,3 + 2h s,

ṡ = −2h ρ3,3 − s + h p, (C6)

ṗ = −4h s.

The same system holds for the variables ρ4,4, d = b1,4 −
b2,4, m = ρ1,1 + ρ2,2 − 2a1,2 in place of ρ3,3, s, p respec-
tively. In matrix form,

ẇ =
⎡
⎣ −2 2h 0

−2h −1 h
0 −4h 0

⎤
⎦ w (C7)

with w = [ρ3,3 s p]T or w = [ρ4,4 d m]T .

A fundamental set of solutions for the system (C7) can be
arranged in a matrix as

W (t ) = e−t

⎛
⎝2h (1 − 4h2 + z)e−zt (1 − 4h2 − z)ezt

1 2h(1 + z)e−zt 2h(1 − z)ezt

4h 8h2e−zt 8h2ezt

⎞
⎠

(C8)
with z = √

1 − 8h2. The Wronskian reads Det[W (t )] =
−16h2(1 − 8h2)3/2e−3t .

The initial conditions for (C7) are

ρ3,3(0) = 0,

s(0) = b1,3(0) + b2,3(0) = 0,

p(0) = ρ1,1(0) + ρ2,2(0) + 2a1,2(0)

= 1 + (−1)x sin(2θ ), (C9)

with x = 0, 1 denoting the initial quantum state. Similarly, we
have

ρ4,4(0) = 0,

d (0) = b1,4(0) − b2,4(0) = 0,

m(0) = ρ1,1(0) + ρ2,2(0) − 2a1,2(0)

= 1 − (−1)x sin(2θ ). (C10)

In particular, defining ρ (x)
n,n(t ) = Tr[�nρ

(x)(t )], ρ (x)(0) =
|φ(x)〉〈φ(x)|, x = 1, 2, we obtain

ρ
(x)
3,3(t ) = 4h2e−t sinh2

(
1
2 zt

)
z2

[1 + (−1)x sin(2θ )], (C11)

ρ
(x)
4,4(t ) = 4h2e−t sinh2

(
1
2 zt

)
z2

[1 − (−1)x sin(2θ )]. (C12)

To solve the discrimination problem, we need to maximize
the probability of correct decision. This can be written as

P(p=0)
c (τ ) =

∫ τ

0
ρ

(1)
3,3(t ) + ρ

(2)
4,4(t ) dt

= 1 + sin(2θ )

2

×
{

1−e−τ

[
z sinh (zτ ) + cosh (zτ ) − 1

z2
+1

]}
.

(C13)

It is clear that in order to maximize P(p=0)
c (τ ) we need to min-

imize the term f (z) = [z sinh (zτ ) + cosh (zτ ) − 1]/z2, z =√
1 − 8h2. Unfortunately, this transcendental real function in

the complex variable z cannot be minimized analytically, and
we need to resort to numerical methods. Graphically, we can
see that the global minimum is located in the region where
1 − 8h2 < 0, meaning that z is a pure imaginary number.
Writing z = iξ/τ , the function to minimize becomes f (ξ ) =
τ [ sin ξ

ξ
+ τ

1−cos ξ

ξ 2 ]. Both f1(ξ ) = sin(ξ )/ξ and f2(ξ ) = [1 −
cos(ξ )]/ξ 2 are oscillating functions with the global point of
minimum corresponding to the first local minimum, and the
same holds for f (ξ ), with the point of minimum located close
to those of f1(ξ ) or f2(ξ ) depending on τ (see Fig. 10).

The asymptotic probability of correct decision is obtained
from (C13) for τ → ∞. In this case the term in brackets van-
ished, and we obtain the Helstrom bound (11) independently
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FIG. 10. Plot of the term f (ξ )/τ to minimize (blue line, circle
markers), along with the terms f1(ξ ) (orange line, triangular markers)
and f2(ξ ) (green line, square markers). Both f1(ξ ) and f2(ξ ) are
oscillating functions with the point of minimum corresponding to
the first local minimum. The global minimum of f (ξ ) is between
these two minimum, close to the minimum of f1(ξ ) for τ ≈ 0, or the
minimum of f2(ξ ) for τ � 1. The total evolution time is τ = 5.

of the value h, as long as the optimal Hamiltonian operator
verifies (C5).

APPENDIX D: SOLUTION OF THE MASTER
EQUATION FOR p = 1

In this Appendix we solve the discrimination problem
with p = 1. In this case, the Hamiltonian operator no longer
contributes to the evolution of the quantum system since the
term (A3) vanishes. We obtain hence a classical random walk,
which can be optimized for the entries of T ,

T =

⎛
⎜⎜⎜⎝

0 0 1
2 + d1

1
2 − d2

0 0 1
2 − d1

1
2 + d2

1
2 + d3

1
2 − d4 0 0

1
2 − d3

1
2 + d4 0 0

⎞
⎟⎟⎟⎠. (D1)

On the variables dk it holds the constraints

−1/2 � dk � 1/2, k = 1, . . . , 4. (D2)

With p = 1, not only does the system of differential equa-
tions separate into the subsystems (B3) and (B4), but the
coherence components ai, j, bi, j also evolve independently
while the diagonal terms form the coupled system

v̇ =

⎡
⎢⎢⎢⎣

−1 0 1
2 + d1

1
2 − d2

0 −1 1
2 − d1

1
2 + d2

1
2 + d3

1
2 − d4 −3 0

1
2 − d3

1
2 + d4 0 −3

⎤
⎥⎥⎥⎦ v (D3)

with v = [ρ1,1, ρ2,2, ρ3,3, ρ4,4]T . As in the case p = 0, we
can evaluate the fundamental set of solutions and the Wron-
skian of the system. The initial conditions for the system (D3)

FIG. 11. Probability P(p=1)
c (τ ) as a function of d1 + d2 and d3 +

d4 in the case of �ρ2 − �ρ1 = 0.5, τ = 5. The black lines are
contour lines, and the maximum is obtained for d1 + d2 = d3 + d4 =
sgn(�ρ2 − �ρ1). The same behavior is exhibited for all τ , with
the surface being flatter for τ ≈ 0, while for τ → ∞ the surface is
practically indistinguishable form the plotted one.

are defined from the diagonal entries of the initial states ρ1 and
ρ2. We then obtain the solutions ρ

(1)
3,3(t ) and ρ

(2)
4,4(t ) reported

in Eqs. (D6) and (D7), with the corresponding probability of
correct decision evaluated in Eq. (D8). As we can see, this

probability depends on �ρ2 − �ρ1, �ρx = ρ
(1)
1,1(0)−ρ

(2)
2,2(0)

2 , as
well as s12 = d1 + d2 and s34 = d3 + d4. Notice the symmetry
in d1, d2 [d3, d4]. We can maximize P(p=1)

c (τ ) with respect to
d1 + d2 and d3 + d4 (see Fig. 11), and the optimal solution
is d1 + d2 = d3 + d4 = sgn(�ρ2 − �ρ1) obtained for d1 =
d2 = d3 = d4 = 1

2 sgn(�ρ2 − �ρ1). For instance, in the case
of �ρ2 > �ρ1, the resulting optimal matrix T ∗ reads

T ∗ =

⎛
⎜⎝

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞
⎟⎠ . (D4)

Asymptotically, for τ → ∞ the optimal probability of cor-
rect decision becomes

P∗(p=1)
c (∞) = 1 + |�ρ2 − �ρ1|

2
, (D5)

which coincides with the Helstrom bound for the discrimi-
nation of the quantum states ρ (1,class.) and ρ (2,class.), obtained
from ρ (1), ρ (2) by removing the coherences, effectively turn-
ing a quantum state into a classical one:

ρ
(x)
3,3(t ) = e−2t

{
(d3 + d4)[d1 − d2 + (d1 + d2)(d3 − d4)] sinh[

√
1 + (d1 + d2)(d3 + d4) t]

2[1 − (d1 + d2)(d3 + d4)]
√

1 + (d1 + d2)(d3 + d4)

+ [1 + (1 − 2d2)d3 − (1 + 2d2)d4] sinh(
√

2 t )

2
√

2[1 − (d1 + d2)(d3 + d4)]
+ (d3 + d4) sinh[

√
1 + (d1 + d2)(d3 + d4) t]√

1 + (d1 + d2)(d3 + d4)
�ρx

}
, (D6)
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ρ
(x)
4,4(t ) = e−2t

{
− (d3 + d4)[d1 − d2 + (d1 + d2)(d3 − d4)] sinh[

√
1 + (d1 + d2)(d3 + d4) t]

2(1 − (d1 + d2)(d3 + d4))
√

1 + (d1 + d2)(d3 + d4)

+ [1 − (1 + 2d1)d3 + (1 − 2d1)d4] sinh(
√

2 t )

2
√

2[1 − (d1 + d2)(d3 + d4)]
+ (d3 + d4) sinh[

√
1 + (d1 + d2)(d3 + d4) t]√

1 + (d1 + d2)(d3 + d4)
�ρx

}
, (D7)

P(p=1)
c (τ ) = 1

2
+ (

√
2 − 1)e−(2+√

2)τ − (
√

2 + 1)e−(2−√
2)τ

4
+ (d3 + d4)(�ρ2 − �ρ1)

3 − (d1 + d2)(d3 + d4)

+ (d3 + d4)(�ρ2 − �ρ1)√
1 + (d1 + d2)(d3 + d4)

{
e−[2+√

1+(d1+d2 )(d3+d4 )]τ

√
1 + (d1 + d2)(d3 + d4) + 2

+ e−[2−√
1+(d1+d2 )(d3+d4 )]τ

√
1 + (d1 + d2)(d3 + d4) − 2

}
. (D8)
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