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Abstract: Nature has evolved several molecular machineries to promote the formation at
physiological conditions of inorganic materials, which would otherwise be formed in extreme
conditions. The molecular determinants of this process have been established over the last decade,
identifying a strong role of electrostatics in the first steps of the precipitation. However, no conclusive,
structure-based evidence has been provided so far. In this manuscript, we test the binding of lysozyme
with silica and titania potential precursors. In contrast with the absence of structural information about
the interaction with the silica precursor, we observe the interaction with a mononuclear titanium(IV)
species, which is found to occur in a region rich of positive charges.
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1. Introduction

The formation of inorganic oxides usually proceeds under harsh chemical conditions
of extreme pH and high temperatures [1,2]. However, biological systems have evolved a
vast array of machineries to promote the formation of inorganic oxides under conditions
compatible with life (neutral pH and room temperature) [3,4]. Some of them are specific for
one oxide (e.g., silica) but show competence towards formation of other oxides as well [5,6].
In 2006, Luckarift et al. [7] demonstrated that lysozyme is able to template the formation of
silica and titania nanoparticles from the aqueous solutions of their precursors. From this
seminal paper, other applications demonstrating the tunability of this preparation method
have appeared in the literature [8], opening “de facto” a totally new field in nanotechnology
(see references [9-14] and references therein). The potential applications of these composites
are many, from cosmetics [15] to photocatalysis applications [6,8].

Proteins and biomolecules that template the formation of silica and titania tend to be
polycationic [16-30], and this appears to point towards a role for the electrostatics of the
interaction of the protein with the precursors. However, no structural evidence has been
provided so far. In this manuscript, we explore the interaction of silica and titania precursor
with lysozyme using X-ray crystallography.
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2. Materials and Methods
2.1. Crystallization, Data Collection, and Structure Solution

Hen-Egg White Lysozyme (HEWL) has been purchased from Sigma-Aldrich (Milan,
Italy) and used without any further purification.

Crystals of HEWL were obtained in hanging drop by adding an aliquot of 2 uL of
protein solution (0.5 mol/dm? Tris-HCl, 8 mg/mL HEWL, pH 8.5) to 2 pL of reservoir
buffer (0.5 mol/dm? Tris-HCI, 0.7 mol/dm? NaCl, pH 8.5) and stored at 4 °C. The protein
concentration in the sample was 8 mg/mL.

The crystals were afterwards soaked in tetraoxosilicic(IV) acid and titanium(IV)
bis(ammonium lactato)dihydroxide (TiBALDH) solution, in different concentrations (20—
100 mmol/dm? in buffer at pH 8.5 for both precursors and 1.7 mol/dm? for TIBALDH only)
for 5 days. The dataset was collected in-house, using a BRUKER (Milan, Italy) D8 Venture
diffractometer equipped with a PHOTON II detector, at 100 K; the crystal used for data
collection were cryo-cooled using 25% ethylene glycol in the mother liquor. The crystal is
diffracted up to 1.8 A resolution; it belongs to space group P43212 with one molecule in the
asymmetric unit, a solvent content of about 50%, and a mosaicity of 0.3°. The data were
processed keeping Friedel mates separate using the program XDS [31], reduced and scaled
using XSCALE [31], and amplitudes were calculated using XDSCONYV [31]. The structure
was solved using the molecular replacement technique and showed the presence of one
molecule in the asymmetric unit; the successful model used was 2W1X. The successful
orientation and translation of the molecule within the crystallographic unit cell was
determined with MOLREP [32]. The refinement was carried out using PHENIX [33],
applying TLS restraints and using anisotropic B-factors for Na, Cl, and Ti only. In between
the refinement cycles, the model was subjected to manual rebuilding using COOT [34].
Water molecules have been added using the standard procedures within the ARP/WARP
[35] suite. The quality of the refined structure was assessed using the program
MOLPROBITY [36]. Data processing and refinement statistics are shown in Table 1.
Coordinates and structure factors have been deposited at the PDB under the accession
code 7A70.

Table 1. Data collection and refinement statistics.

Diffraction source BRUKER D8 Venture
Wavelength (A) 1.541
Temperature (K) 100

Detector PHOTON II
Crystal-detector distance (mm) 50
Oscillation range (°) 0.5
Total rotation range (°) 360
Exposure time/image (s) 30
Space group P45212
a, b, c(A) 78.1,78.1,37.3
Mosaicity (°) 0.3
Resolution range (A) 50.00-1.80 (1.91-1.80)
Total reflections 274,135 (24,437)
Unique reflections 20,052 (2909)
Completeness (%) 97.8 (89)
CC1/2 99.9 (45.1)
I/(ol) 16.1 (1.7)
Rumerge T 0.12 (0.91)
Wilson B factor (A2) 29.9
Rcryst/Rfreei (%) 196/256
Protein atoms 1001
Water molecules 82
Ligand atoms 13
RMSD bond lengths (A) 0.010
RMSD bond angles (°) 1.950
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where Ii(hkl) is the mean intensity of the i-th observation of symmetry-related reflections
hkl.
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where Faic is the calculated protein structure factor from the atomic model (Riee was
calculated with a randomly selected 5% of the reflections).

2.2. DFT Calculations

The structure of Ti(OH)s+ was taken from the present structure and subjected to
refinement at the DFT level of theory, with the B3LYP functional [37-40], using Ahlrichs
polarized basis set def2-TZVP [41,42] and Grimme’s dispersion correction D3 [43,44]. The
resolution of identity approximation [45,46] was employed with auxiliary basis set def2-
TZVP/] in order to speed up the calculations. CPCM implicit solvent (water) was used [47].
All calculations were carried out using the ORCA 4.2.1 quantum chemistry package [48,49].

3. Results and Discussion

The aim of the present study is to find structural evidence of interaction between
inorganic precursors and HEWL in the initial steps of bioinspired oxide formation and is
framed on a wider research that aims at elucidating the structure-activity relations in
bioinspired preparation of inorganic oxides [27,29,50-52].

We performed an NMR titration with the precursor under the conditions that are
used for the bioinspired mineralization, as described in reference [7].

For tetraoxosilicic(IV) acid, the only apparent perturbation at the highest precursor
concentration is a 5% decrease in the signal intensity, with no detectable shift alteration
(Figure S1). The superposition of the spectra in the absence and presence of
tetraoxosilicic(IV) acid shows no significant differences.

For TiBALDH, shifts in the signals of residues 101-110 can be observed (Figure S2),
but this area is known to be susceptible to variations in response to minor changes in the
experimental conditions such as pH, ionic strength, etc. [53,54] and are often unresolved
in some crystal forms as well [55,56]. Given that the pH has decreased from 8.5 to 5.1
during the addition, these results cannot be interpreted reliably.

HEWL is not only the prototypical templating molecule in bioinspired mineralization
of silica and titania [7] but also particularly suitable for an X-ray crystallographic
characterization, i.e., it easily crystallizes in a variety of conditions. (there are as many as
871 HEWL entries in the PDB as of September 2020, with 26 deposited in 2020) and
because the quality of the crystals is usually high enough to allow for high-resolution in-
house data collections.

The crystallization conditions were chosen to respect the pH at which the
polymerization occurs (8.5) and to minimize the number of additives.

Soaking with the tetraoxosilicic(IV) acid solution (buffered at pH 8.5) resulted in fast
disruption of the crystals, proportional to the concentration of tetraoxosilicic(IV) acid
added to the drop. At the concentrations that are compatible with the crystals, no
conclusive evidence of the presence of silicon species in the crystals can be found. The
situation is markedly different for the titania precursor, as higher concentrations of the
precursor do not disrupt the crystal order.

TiBALDH as a precursor for bioinspired titania synthesis is routinely employed
because it is reported to be water-soluble and stable at neutral pH and ambient conditions
[5-7,57-60]. TIBALDH solutions contain several species that are in equilibrium among
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themselves and with TiO, including mononuclear species. At neutral or slightly basic pH,
mononuclear hydrated titanium species also include Ti(OH)4[5,61-64].

Soaking with buffered solutions at moderate concentrations of TIBALDH (20-100
mmol/dm?) did not cause alterations in the resulted crystal structures that indeed did not
reveal a clear presence of titanium species. This was not fully expected because there is a
report of a clear binding of a titanium species to the same crystal form of lysozyme (PDB
entry: 6G5C) [65]. However, a very careful inspection of this entry casts doubts in terms
of the presence of titanium (a putative TiO: species in this case) for at least three reasons:
the first one is that the supposed position of titanium perfectly corresponds to the position
of a chloride ion in all lysozyme structure belonging to the same space group. The second
one is the shape of the 2F.-F. density of the putative titanium that is perfectly spherical
and fits way better with the chloride ion. The third one is that mononuclear TiO:z species
do not exist as such in solution [61,66].

For this reason, the last attempt was to perform a soaking with 2 uL of 50% w/w Ti-
BALDH solution (1.69 mol/dm?, pH 8, subject to change upon the hydrolysis of the com-
ponents). At variance with tetraoxosilicic(IV) acid and lower concentrations of TiBALDH,
this did not cause a complete disruption of the crystals but slightly decreased the maxi-
mum resolution reached by these crystals. The data obtained with this last sample had a
maximum resolution achievable of 1.8 A instead of the typical 1.4-1.5 A in the same dif-
fractometer. Nevertheless, despite the lower resolution, the quality of the data remains
very good and this has indeed allowed what is presented hereafter.

Considering the crystallization conditions, the only atoms which could have anoma-
lous effect at the diffractometer wavelength are sulfur, chlorine, and titanium, with the
last being the one with the largest expected value. For this reason, the data were processed
keeping the Friedel mates separate with the hope to have some useful hints through
anomalous difference maps.

In fact, these maps contoured at 3.0 o value show clear peaks for all sulfur atoms and
for the expected chloride atoms but, interestingly, they also show a peak in an unexpected
position, which we interpreted as the hydrolyzed titanium compound in the form of
Ti(OH)u.

There are several reasons that led us to assess the presence of titanium with an occu-
pancy of about 0.7:

(i) the presence of an anomalous signal is slightly higher than those attributed to sulfurs
and chlorides;

(ii) the shape of the 2Fo-Fc density is clearly not spherical as one would expect for chlo-
ride ion but rather tetrahedral as shown in Figure 1, and this becomes even more
apparent when slightly lowering its contour value;

(iii) the Ti-O distances refine well at about 1.9 A, which is in agreement with the theoret-
ical value expected for such bond;

(iv) the Fo-Fc density in that position is absent at +3.0 o contour;

(v) the B-factor values for the refined atoms of the titanium moiety have values coherent
with those of the other labile or loosely bound atoms in the structure;

(vi) the comparison with several other lysozyme structures with the same space group
shows that no density is present in the position that we attributed to the mononuclear
titanium species.
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Figure 1. Cross-eye stereo representation of the electron density detail of the mononuclear titanium species and its envi-

are represented as red spheres. In blue is the 2Fo-Fc contoured at 1.2 o level, and in yellow is

the anomalous difference map contoured at 3.0 o value.

With this result at hand, we have re-examined the data collected on the crystal soaked
with 100 mmol/dm? TiBALDH solution. These data show, ex post, a weaker but clear anoma-
lous signal in the same position where we have identified titanium in the crystal soaked with
the pure ligand.

The position and the binding mode of the ligand suggests that its presence is likely to be
an artifact due to the crystal packing and to its very high concentration. In fact, the titanium
compound is placed in the region between two symmetry-related molecules and has no direct
chemical interaction with any of the protein atoms. It is held in place by hydrogen bond inter-
actions with two well-defined water molecules that are, in turn, in close interaction with the
protein (one with the backbone amide of Glu7 and the other one with the sidechain of Argl4
of a symmetry mate). The pattern is completed by two more interactions with two more labile
water molecules, one of which interacts with the backbone amide of Cysé6.

However, even if this interaction mode would be impossible if the protein was free in
solution, it allows us to observe experimentally that the titanium species is mainly surrounded
by positively charged residues. An electrochemical analysis of mononuclear titanium(IV) spe-
cies present in aqueous solution as a function of the pH indicates that the species Ti(OH)4 is
prevailing at the working pH [61], and a simple DFT calculation in implicit solvent indicates
that the oxygen atoms can have up to 0.87 e partial charge, which can easily account for a
preference for forming hydrogen bonds as acceptor.

A plausible explanation for this fact could be the very high concentration of titanium(IV).
This could cause the diffusion of Ti(OH): at a higher rate in the solvent channels, until the
complex reaches a narrower channel where it forcibly stopped because of steric hindrance and
charge accumulation (as illustrated in Figure 2).
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Figure 2. Surface representation (calculated with PyMOL APBS plugin) of the environment in which the titanium species
is found, colored by electrostatic potential showing chloride ions in green and sodium in purple.

At this point, the ligand can establish favorable interactions with water molecules
that are kept in position by strong interactions with the charged amino acid residues
around. This could, in turn, explain why the interactions that it establishes are not specif-
ically targeted to some protein residues.

It is also possible to speculate that the strongly positive environment in which the
mononuclear titanium(IV) species is found makes it easier a further proton dissociation
from the hydroxyl groups. This speculation could be supported by the interaction with a
water molecule (watl1, Figure 3), which, in fact, establishes strong hydrogen bonds with
Arg14 and with one of the hydroxyl groups of the titanium species. Since Argl4 is posi-
tively charged, then it must be the negative side of watl1 dipole to be responsible for the
interaction with arginine, whereas the positive side of the water dipole interacts with the
oxygen of one hydroxyl groups of the titanium, where the oxygens have a rather large
negative partial charge.

Figure 3. Detail of the two hydrogen bonds stabilizing the position of the titanium species through two water molecules
represented as red spheres. Distances are expressed in A. The 2FoFc map is contoured at 1.0 o level.
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4. Conclusions

The interest in bioinspired materials preparation notwithstanding, the interaction be-
tween the precursor of inorganic oxides and polycationic biological macromolecules has
resulted elusive so far.

In this work, we tested the binding of lysozyme with silica and titania potential pre-
cursors. The silica precursor does not show any interaction with lysozyme in NMR exper-
iments and causes the disruption of the protein crystals impeding X-ray diffraction stud-
ies. The situation is markedly different for the titania precursor. NMR spectra provide, in
fact, detectable shifts but they cannot assess the binding beyond any reasonable doubt
and, on the other side, the addition of TIBALDH to the crystals does not disrupt them,
allowing for good resolution data collection. In this manuscript, we thus provide the first
structure-based experimental evidence that among the possible mononuclear titanium
species considered in the literature [62], Ti(OH)4 does interact with lysozyme before pre-
cipitation starts and that the interaction is electrostatic in nature. The interaction appears,
in line with expectation, to be directed in an area where several arginine residues are pre-
sent but, unexpectedly, appears to be mediated by an intervening water molecule; in fact,
during its diffusion into the crystal, the titanium(IV) species happens to be trapped in a
solvent channel created by symmetry mate molecules, because of steric hindrance and
charge accumulation in the channel. This interaction is likely not occurring as such in so-
lution under the usually applied reaction conditions. Nevertheless, our observation is a
clear structure-based evidence of the existence of electrostatic interactions between the
protein and one mononuclear titanium(IV) species and can be a proxy of those interactions
that drive the initial steps of the oxide formation. We thus expect that this result will be a
relevant starting point for detailed (e.g., computational [67-69]) studies of the structural
basis of the bioinspired titania precipitation.

Supplementary Materials: The following are available online at www.mdpi.com/2218-
273X/11/1/43/s1, Figure S1: 'TH NMR spectra of lysozyme titration with tetraoxosilicic(IV) acid, Fig-
ure 52: TH NMR spectra of lysozyme titration with TIBALDH. References [70,71] are refered to in
Supplementary Materials.
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