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Introduction

Best rank-k approximation for matrices

This thesis is motivated by questions as the following classical one:

Question 1. Among all real n1 × n2 matrices of rank at most k, which one is
closest to an assigned real matrix U?

If not specified, in this thesis we adopt a coordinate-free notation, since most
of the objects and properties presented are invariant with respect to a certain
group action. For example, any real n1 × n2 matrix may be thought as an
element of the tensor product V R := V R

1 ⊗ V R
2 of two real vector spaces V R

1 and
V R

2 of dimensions n1 and n2, respectively.

The rank of a matrix U ∈ V R, denoted by rk(U), is the minimum positive
integer k such that U can be written as the sum of k decomposable matrices in V R,
namely matrices of the form v1⊗ v2 for some vectors vj ∈ V R

j , j ∈ {1, 2}. Having
fixed coordinate systems in V R

1 and V R
2 , the number rk(U) coincides with the more

classical notion of rank, namely the maximum number of linearly independent
rows or columns of the array of format n1 × n2 associated to U . In particular,
the array associated to a rank-one matrix is of the form v1v

T
2 for some column

arrays vj ∈ Rnj , j ∈ {1, 2}.

For the moment, XR denotes the set of matrices in V R of rank at most one.
Note that XR is a real cone through the origin in V R. In general, a subset Z ⊂ Kn
(usually K = R or K = C) is a cone when z ∈ Z implies λz ∈ Z for all λ ∈ K.
For this reason, XR may be regarded as a subset of the projective space P(V R) as
well. Hopefully without leading to confusion, we often use the same notation for
a projective subset Z ⊂ P(Kn) and for its associated cone Z ⊂ Kn.

The set XR is among the most deeply known varieties in Algebraic Geometry.
Indeed, it is the affine cone of the image of the Segre embedding

Seg : P(V R
1 )× P(V R

2 )→ P(V R), Seg([v1], [v2]) := [v1 ⊗ v2]. (0.0.1)

ix
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Instead the set of matrices in V R of rank at most 1 ≤ k ≤ min{n1, n2} is the
affine cone of the subset ⋃

P1,...,Pk∈XR

〈P1, . . . , Pk〉 ⊂ V R, (0.0.2)

where 〈P1, . . . , Pk〉 denotes the projective subspace generated by the points P1 =
[v1],. . . ,Pk = [vk]. The Zariski closure of the set introduced in (0.0.2) coincides
with the known k-th secant variety of the projective variety XR and is denoted
by σk(XR). Actually, in this case the set in (0.0.2) is already closed, hence it is
equal to σk(XR). Topologically speaking, this means that if a matrix U ∈ V R is
the limit of a sequence of matrices of rank k, then U has rank at most k as well.
In the next section, we provide an example in which this property is not true any
more for tensors.

Note that there is a sequence of inclusions (assuming n1 ≤ n2)

{0} ⊂ XR = σ1(XR) ⊂ σ2(XR) ⊂ · · · ⊂ σn1(XR) = V R.

In particular, for all 1 ≤ k ≤ n1 − 1, the singular locus of σk(XR) is precisely
σk−1(XR). Since σk(XR) are all projective varieties, they are cut out by homo-
geneous polynomials. The way for obtaining them is suggested by the intuition:
indeed, the condition for a matrix U = (uij) ∈ V R to have rank at most k is
expressed algebraically by requiring all its minors of order k+ 1 to vanish. More-
over, the projective codimension and the degree of σk(XR) are respectively (see
[HT])

codim(σk(XR)) = (n1 − k)(n2 − k), deg(σk(XR)) =

n1−1−k∏
j=0

(
n2+j
k

)(
k+j
k

) .
Let us go back to Question 1, which can be reformulated as follows.

Question 2. Which are the critical points A ∈ σk(XR) of the distance function
from a fixed matrix U ∈ V R to the affine variety σk(XR)?

The expression “distance function” in Question 2 establishes that a distance in
V R has been already defined. In other words, we need to fix an inner product qR

on V R. The associated quadratic form, denoted by qR as well, induces a squared
distance function

δR : V R × V R → R, δR(A,B) := qR(A−B). (0.0.3)

In addition, if we fix a matrix U ∈ V R in one of the two arguments of δR, then we
obtain the squared distance function from U defined by δR

U (A) := δR(U,A) for all
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A ∈ V R. A classical inner product over V R is defined as follows. First, we assume
that both V R

1 and V R
2 are equipped with inner products qR

1 and qR
2, respectively.

Afterwards, we define the inner product of two decomposable matrices x1 ⊗ x2

and y1 ⊗ y2 as
qR
F (x1 ⊗ x2, y1 ⊗ y2) := qR

1(x1, y1)qR
2(x2, y2) (0.0.4)

and then we extend the definition to the whole vector space V R, using the fact that
decomposable matrices span V R. The most remarkable property of the squared
distance δR

F induced by the inner product qR
F already defined is its invariance with

respect to the group SO(V R
1 ) × SO(V R

2 ). Postponing a rigorous definition to the
next chapters, this means that the distance δR

F is compatible with the action by
rotations on V R of the subgroup SO(V R

1 )× SO(V R
2 ) ⊂ SO(V R).

Given a matrix U ∈ V R, a critical point of δR
F,U is a smooth point A ∈ σk(XR)

such that
qR
F (U −A,B) = 0 ∀B ∈ TA(σk(XR)), (0.0.5)

where TA(σk(XR)) denotes the tangent space of σk(XR) at A. In general, tangent
spaces of secant varieties of projective varieties are described through the

Theorem 0.0.1 (Terracini Lemma). Let Z ⊂ PnK be an irreducible variety. If
char(K) = 0, then

Tz(σk(Z)) = 〈Tz1(Z), . . . , Tzk(Z)〉

for all z in an open subset of σk(Z), z1,. . . ,zk ∈ Z, z ∈ 〈z1, . . . , zk〉.

Thanks to the previous theorem, we need to compute only the tangent spaces
of the smooth varietyXR. More precisely, given a rank-one matrixA = ξ⊗η ∈ XR,
we have the identity

TA(XR) = 〈v1 ⊗ η + ξ ⊗ v2 | v1 ∈ V R
1 , v2 ∈ V R

2 〉. (0.0.6)

Indeed, any curve A(t) := ξ(t) ⊗ η(t) over XR with A(0) := A has derivative at
t = 0 defined by A′(0) = ξ′(0)⊗η+ξ⊗η′(0). Since the vectors ξ′(0) and η′(0) are
arbitrary, we get the identity (0.0.6). Therefore, by Theorem 0.0.1, the tangent
space of σk(XR) at the smooth point A = ξ1 ⊗ η1 + · · ·+ ξk ⊗ ηk ∈ σk(XR) is

TA(σk(XR)) =

〈
k∑
j=1

v(1)

j ⊗ ηj + ξj ⊗ v(2)

j

∣∣∣ v(l)

j ∈ V
R
l ∀j

〉
. (0.0.7)

Hence, the condition for A = ξ1⊗η1 +· · ·+ξk⊗ηk to be critical for δR
F,U restricted

to σk(XR) is

qR
F

U −A, k∑
j=1

v(1)

j ⊗ ηj + ξj ⊗ v(2)

j

 = 0 (0.0.8)
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for all v(l)

j ∈ V R
l , and all 1 ≤ j ≤ k. Throughout the thesis, we indicate with [n]

the set {1, . . . , n} for all integers n ≥ 1.

Theorem 0.0.2 (Singular Value Decomposition). Any matrix U ∈ V R may be
written as

U =

n1∑
j=1

σj
(
u(1)

j ⊗ u
(2)

j

)
, (0.0.9)

where σ1 ≥ · · · ≥ σn1
are nonnegative real numbers, while {u(1)

1 , . . . , u(1)
n1
} and

{u(2)

1 , . . . , u(2)
n2
} are orthonormal bases of V R

1 and V R
2 , respectively. The decompo-

sition (0.0.9) is called Singular Value Decomposition (SVD) of U . The numbers
σj are called singular values of U , while for all j ∈ [n1], the pair (u(1)

j , u
(2)

j ) is a
singular vector pair of U . If the singular values are all distinct, then all singular
vector pairs are unique up to a simultaneous change of sign.

Now assume that (0.0.9) is a SVD of the matrix U . Define

UJ :=
∑
j∈J

σj(u
(1)

j ⊗ u
(2)

j ) (0.0.10)

for all J ⊂ [n1]. Then

qR
F

(
U − UJ ,

∑
s∈J

v(1)

s ⊗ u(2)

s + u(1)

s ⊗ v(2)

s

)
=

= qR
F

∑
j /∈J

σj(u
(1)

j ⊗ u
(2)

j ),
∑
s∈J

v(1)

s ⊗ u(2)

s + u(1)

s ⊗ v(2)

s

 =

=
∑
j /∈J

∑
s∈J

σj
[
qR
1(u(1)

j , v
(1)

s )qR
2(u(2)

j , u
(2)

s ) + qR
1(u(1)

j , u
(1)

s )qR
2(u(2)

j , v
(2)

s )
]
,

and the last expression is zero since qR
1(u(1)

j , u
(1)
s ) = qR

2(u(2)

j , u
(2)
s ) = 0 for all j /∈ J

and s ∈ J . This means that the matrix UJ defined above is a critical point of the
distance function δR

F,U on σk(XR). Moreover, one can prove that every critical
point must be of this form. Indeed, we have the following result.

Theorem 0.0.3 (Eckart-Young). Consider a matrix U ∈ V R and its SVD as
in (0.0.9). Let 1 ≤ k ≤ rk(U). Then all the critical points on σk(XR) of the
distance function δR

F,U (induced by the orthogonally invariant quadratic form qR
F

in V R) are of the form UJ in (0.0.10) for all subsets J ⊂ [rk(U)] of cardinality k.
If the nonzero singular values of U are distinct then the number of critical points
is
(

rk(U)
k

)
.
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As a corollary of Theorem 0.0.3, one may verify from the definition of SVD
that the the distance between U and a critical point UJ ∈ σk(XR) is

qR
F (U − UJ) =

∑
j /∈J

σ2
j . (0.0.11)

In particular, a global minimizer of δR
F,U is obtained choosing J = [k], and the

corresponding minimum is σ2
k+1 + · · · + σ2

n1
. This is often called a best rank-k

approximation of the matrix U .
Theorem 0.0.3 gives a complete answer to Question 2, at least when the chosen

inner product over V R is the one introduced in (0.0.4). In the next chapters,
we will see that, choosing a “sufficiently good” inner product qR on V R (in a
sense made clearer throughout the thesis), the number of critical points of the
associated function δR

U could be still determined a priori, even though critical
points are much harder to compute.

In our applications and examples, we always assume that Vj = Rnj and that qR
j

is the standard Euclidean inner product, for all j ∈ {1, 2}. Then, the orthogonally
invariant inner product qR

F introduced via the identities in (0.0.4) has the more
familiar expression

qR
F (U,A) = tr(UTA) ∀U = (uij), A = (aij) ∈ Rn1 ⊗ Rn2 .

In particular, it coincides with the well-known Frobenius inner product on Rn1 ⊗
Rn2 , which justifies the notation qR

F . The number tr(UTA) is the trace of UTA.
In this coordinate-based setting, the SVD of U written in (0.0.9) has the

matricial expression
U = U1ΣUT

2 . (0.0.12)

On one hand, U1 and U2 are the orthogonal matrices whose columns are formed
by vectors u(1)

j and u(2)

j , respectively. On the other hand, the matrix Σ has zero
values at the entries (i, j) with i 6= j and its diagonal entries are the singular
values of U .

In addition, all the critical points on σk(XR) of δR
F,U are given by

U1ΣJU
T

2 , ΣJ :=
∑
j∈J

Σj ∀J ⊂ [rk(U)], (0.0.13)

where Σj is the n1 × n2 matrix whose (j, j)-th element is σj , while all the other
entries of Σj are zero.

The Eckart-Joung Theorem does not provide only a method for solving Ques-
tion 2. Starting from the definition of singular value and identity (0.0.12), one
verifies that

Uu(2)

j = σju
(1)

j and UTu(1)

j = σju
(2)

j ∀j ∈ [n1].
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In particular, the squared singular values σ2
i are the eigenvalues of both the

symmetric matrices UUT and UTU . That is, the singular values of U are the
roots of the characteristic polynomial of UUT

det(UUT − ε2In1
) = 0, (0.0.14)

where In1 is the identity matrix of order n1. Note that the polynomial at the
left-hand side of equation (0.0.14) is homogeneous of degree 2n1 in the ring of
polynomials in the entries of U and ε and with real coefficients.

Changing our perspective, if we fix ε ≥ 0, equation (0.0.14) describes an affine
hypersurface in V R. Can we describe its points?

The answer can be found again looking at the Eckart-Joung Theorem. Mo-
tivated by identity (0.0.11) when k + 1 = rk(U) = n1, one may interpret the
hypersurface defined by equation (0.0.14) as the locus of matrices U ∈ V R ad-
mitting a best rank-(n1 − 1) approximation of length ε. In other words, we are
describing the so-called ε-offset of the variety σn1−1(XR).

More in general, one might describe the ε-offset of σk(XR) for all k ∈ [n1] via
the singular values of U , but there are only two cases in which we get a “nice”
formula: the above-mentioned case k = n1 − 1, and the case k = 1, which we are
going to explain.

To this aim, we need to make another observation. Let U ∈ V R be a matrix
of full rank and let U{1} + · · ·+U{n1} be its SVD. Applying identity (0.0.11) for
some J ⊂ [n1] with |J | = k and for its complement [n1] \ J , we can derive a
simple, but substantial, identity involving two squared distances: one between U
and a critical point UJ of δR

F,U on σk(XR), the other between U and the associated
critical point U[n1]\J of δR

F,U on σn1−k(XR), namely

qR
F (U − UJ) + qR

F (UJ) = qR
F (U[n1]\J) + qR

F (UJ) = qR
F (U). (0.0.15)

When k = 1, J = {j} for some j ∈ [n1] and qR
F (UJ) = σ2

j . On one hand, we
have that qR

F (UJ) is a root of the characteristic polynomial introduced in (0.0.14).
On the other hand, qR

F (U − UJ) is a root of the polynomial

det
[
UUT − (qR

F (U)− λ2)In1

]
= 0. (0.0.16)

In a similar fashion of equation (0.0.14), equation (0.0.16) describes the λ-offset
of the variety σ1(XR) = XR. Thus we found an easy way to switch between
the family of offsets of either σn1−1(XR) or XR. More in general, simply from
identity (0.0.15) one could determine the equation of any offset of σk(XR) from
the corresponding equations of the offsets of σn1−k(XR).

In fact, this nice relation is not just a coincidence. Indeed, it turns out that
σn1−k(XR) is the dual affine cone of σk(XR) (see Definition 1.3.1).



From matrices to tensors xv

0

UJ

U − UJ

U

σn1−k(XR)

σk(XR)

Figure 1: The matrices U , UJ ∈ σk(XR) and U − UJ ∈ σn1−k(XR).

Summing up, in Questions 1 and 2 we considered the problem of computing
the best rank-k approximation of a real rectangular matrix. The answer comes
from the celebrated Eckart-Joung Theorem, which uses the Singular Value De-
composition of a matrix. In a slightly wider perspective, this theorem allows us
to compute the family of offset hypersurfaces of all determinantal varieties, and
to derive a nice duality property.

From matrices to tensors

Motivated by the results stated above, mathematicians tried to understand if the
best rank-k approximation problem for matrices might be restated and solved for
tensors of any format as well.

Given nonnegative integers 1 ≤ n1 ≤ · · · ≤ nd, a real tensor of format n1 ×
· · · × nd is any element of the tensor product

V R := V R
1 ⊗ · · · ⊗ V R

d

of d real vector spaces V R
1 , . . . , V

R
d of dimensions n1, . . . , nd, respectively. Our

choice is to omit the dependence from n := (n1, . . . , nd) in the notation of V R.
This dependence is made clearer from the context in the single chapters and
examples. In coordinates, a tensor T ∈ V R is indicated by an n-dimensional
array of real numbers (Ti1···id), where ij ∈ [nj ] for all j ∈ [d].

A tensor T ∈ V R is decomposable (or is a rank-one tensor) if T = v1⊗ · · ·⊗ vd
for some vectors vj ∈ V R

j for all j ∈ [d]. Keeping in mind the matrix intuition,
the rank of a tensor T ∈ V R, denoted by rk(T ), is the minimum positive integer
k such that T can be written as the sum of k decomposable tensors of V R.
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In this section, we denote by XR
d the affine cone of tensors in V R of rank at

most one. This is known as the affine cone of the image of the Segre embedding

Segd :

d∏
j=1

P(V R
j )→ P(V R), Segd([v1], . . . , [vd]) := [v1 ⊗ · · · ⊗ vd]. (0.0.17)

For brevity, we do not indicate explicitly the dependence from n in the notation
for both Segd and XR

d as well. For d = 2, we have that Seg2 = Seg and XR
2 = XR

as in the previous section.
Mimicking (0.0.2) in the matrix case, the set of tensors of rank at most k is

the union of all linear spans of k points of the projective variety XR. We show
through an example extracted from [Lan, §2.4.5] that in this case this union is
not closed. Suppose that d = 3 and consider the tensor

T = v1 ⊗ v2 ⊗ w3 + v1 ⊗ w2 ⊗ v3 + w1 ⊗ v2 ⊗ v3 ∈ V R.

As the presentation of T suggests, rk(T ) ≤ 3. One can verify that actually
rk(T ) = 3, but T can be written as the limit of a sequence of tensors of rank at
most two:

T = lim
ε→0

1

ε
[(v1 + εw1)⊗ (v2 + εw2)⊗ (v3 + εw3)− v1 ⊗ v2 ⊗ v3].

This example suggests to introduce the border rank of a tensor T ∈ V R, denoted
by rk(T ), as the minimum k such that T belongs to the k-secant variety σk(XR

d).
Note that rk(T ) ≥ rk(T ). Equality holds in the case of matrices (d = 2), but the
above example tells us that the inequality might be strict even for d = 3.

Unlike the case of matrices, finding the generators for the ideal of σk(XR
d)

is a very hard task. When k = 1, the usual way to compute equations for
σ1(XR

d) = XR
d is by following this idea: a tensor T ∈ V R is decomposable if and

only if it can be written as

T = vj ⊗ Tj , vj ∈ V R
j , Tj ∈ ⊗i 6=jV R

j (0.0.18)

for all j ∈ [d]. Now T written in (0.0.18) is a rank-one matrix, hence all its
2× 2 minors must vanish. In this way, one obtains all the equations for XR

d and
observes that the ideal of XR is generated by quadrics. This approach is no longer
useful for computing the equations of the higher order secant varieties of XR

d.

Let us equip the tensor space V R with the most natural inner product. First,
suppose that qR

j is an arbitrary inner product on V R
j , for all j ∈ [d]. The Frobenius

inner product of two decomposable tensors x1⊗· · ·⊗xd and y1⊗· · ·⊗yd is defined
as

qR
F (x1 ⊗ · · · ⊗ xd, y1 ⊗ · · · ⊗ yd) := qR

1(x1, y1) · · · qR
d(xd, yd), (0.0.19)
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and is extended to V R by linearity. If we assume for all j ∈ [d] that V R
j = Rnj

and that qR
j is the standard Euclidean inner product, then

qR
F (T,U) =

∑
i1,...,id

Ti1,...,idUi1,...,id (0.0.20)

for all T = (Ti1,...,id) and U = (Ui1,...,id) in Rn1 ⊗· · ·⊗Rnd . The induced squared
distance function is again δR

F (U, T ) := qR
F (U − T ) for all U, T ∈ V R. Moreover,

the squared distance function from a tensor U ∈ V R is δR
F,U (A) := δR

F (U,A) for
all A ∈ V R.

Consider the following restatement of Question 2 in this generalized setting,
at least in the case k = 1.

Question 3. Given a tensor U ∈ V R, find all critical points of the distance
function δR

F,U over the Segre product XR
d.

In the previous section, we naively did not care much about possible non-real
solutions of Question 2: indeed, every real matrix admits only real singular values
and singular vector pairs. This is no longer true for higher format real tensors. In
fact, the following result includes a generalization of singular values and singular
vector pairs for real tensors, which might be non-real. If so, they are discarded
when trying to find a real solution of Question 3. We refer to critical points of
δR
F,U on XR

d simply as decomposable critical tensors.

In the statement below, we consider the complexifications Vj := V R
j ⊗ C,

V := V R⊗C and the complex algebraic variety Xd := XC
d (defined by the common

complex zeros of the generators of the ideal of XR
d). In addition, the distance

function δR
F,U is extended to a complex-valued function δF,U : Xd → C, which is

not a Hermitian inner product. This approach is followed in general throughout
the thesis: indeed, even if δF,U has the meaning of a distance function only over
the reals, the complex critical points of δF,U are necessary to depict all the metric
information about the real variety XR

d. For example, an important is being played
by the isotropic tensors of V , which are all tensors T ∈ V such that qF (T ) = 0.

Theorem 0.0.4 (Lim, Qi). Given a real tensor U ∈ V R, the non-isotropic decom-
posable critical tensors for U correspond to tensors σ(x1 ⊗ · · · ⊗ xd) ∈

∏
j∈[d] Vj

such that qj(xj) = 1 for all j ∈ [d] and

qF (U, x1 ⊗ · · · ⊗ xj−1 ⊗_⊗ xj+1 ⊗ · · · ⊗ xd) = σ · qj(xj ,_) ∀j ∈ [d] (0.0.21)

for some σ ∈ C, called singular value of U . The corresponding d-ple (x1, . . . , xd)
is called singular vector d-ple for U .
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Note that both sides of relation (0.0.21) correspond to linear operators on Vj .
In applications, more precisely when qF is expressed as in (0.0.20), the system
(0.0.21) may be rewritten as

U · (x1 ⊗ · · · ⊗ xj−1 ⊗ xj+1 ⊗ · · · ⊗ xd) = σxj ∀j ∈ [d], (0.0.22)

where at the left-hand side the dot means tensor contraction.
The best rank-one approximation problem stated in Question 3 is solved by

the following result.

Theorem 0.0.5 (Lim). Let U ∈ V R. Then U always admits real singular values
and real singular vector d-ples. In particular, if σ̃ is a singular value of U such
that σ̃2 is maximum, and if (x̃1, . . . , x̃d) is a singular d-ple associated with σ̃,
then σ̃(x̃1 ⊗ . . .⊗ x̃d) is the best rank-one approximation of U .

Anyway, there are various considerations left about the singular values and
the singular vector d-ples of a tensor. The first question one could formulate is:
how many possible distinct singular values can a tensor have? How many of them
can be real?

We already know that every matrix U ∈ V R = Rn1 ⊗ Rn2 admits n1 real
nonnegative singular values, counted with multiplicity. For higher dimensional
tensors, we need to distinguish between the problems of either computing all the
singular values of a tensor, or restricting only to the real ones.

If we are in the first case, there is a positive result which actually counts
the number of critical decomposable tensors for an (eventually non-real) U ∈ V .
There is a reasonable price to pay, as well as many results in Algebraic Geometry:
indeed, this number is constant for “almost all choices” of U ∈ V , or for a general
U ∈ V , meaning out of some Zariski closed set of V .

Theorem 0.0.6 (Friedland, Ottaviani). Let U ∈ V R be general. Then U admits
c(n) distinct singular values. The integer c(n) is the coefficient in the monomial
hn1−1

1 · · ·hnd−1
d in the polynomial

d∏
i=1

ĥnii − h
ni
i

ĥi − hi
, ĥi :=

∑
j 6=i

hj . (0.0.23)

With a little effort, one might verify that amazingly c(n1, n2) = n1, thus
recovering the matrix case. We explore further details of formula (0.0.23) and
some other related formulas in Chapters 2 and 5.

The second problem is even more complicated than the first. Geometrically
speaking, there exists a certain hypersurface of V R which divides the space V R

into “chambers”. In each of these regions, the number of real singular values,
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counted with multiplicity, is constant. In this thesis, we deal with the problem
of counting the number of real critical points of the distance function from a real
algebraic variety in relatively easier cases.

Next, we might discuss how to compute the ε-offset of the Segre product Xd,
and of its corresponding dual affine cone X∨d ⊂ V . In the case of matrices, the
solution was quite straightforward thanks to the “characteristic polynomial trick”
of equation (0.0.14).

For higher dimensional tensors, in general what we can do is replacing the
characteristic polynomial in (0.0.14) with the unique generator (up to scalars) of
the ideal

IU ∩ C[Ui1,...,id , σ], (0.0.24)

where
IU ⊂ C[xj,1, . . . , xj,nj , Ui1,...,id , σ] (0.0.25)

is the ideal generated by the equations in (0.0.21) together with the conditions
qj(xj) = 1 for all j ∈ [d]. The fact that the ideal in (0.0.24) is principal is
explained in a more general setting in Section 4.1.

Example 0.0.7. Let us examine an example for d = 3 and n1 = n2 = n3 = 2.
For a tensor U = (Uijk) ∈ R2 ⊗ R2 ⊗ R2, the singular vector triple system in
(0.0.22) becomes 

U · x2 ⊗ x3 = σx1

U · x1 ⊗ x3 = σx2

U · x1 ⊗ x2 = σx3 ,

together with the conditions x2
j,1+x2

j,2 = 1 for all j ∈ [3]. By the formula (0.0.23),
a general tensor U admits six critical decomposable tensors σ(x1⊗x2⊗x3). They
are described by the ideal IU in (0.0.25). Eliminating the variables xj,1, xj,2
(1 ≤ j ≤ 3) from IU produces a principal ideal. Its unique generator, up to sign,
has the form

f(Uijk, σ
2) =

6∑
j=0

cj(U)σ2j , (0.0.26)

where cj(U) is a homogeneous polynomial in the entries Uijk of degree 20−2j for
all 0 ≤ j ≤ 6. It turns out that, for every nonnegative value σ ≥ 0, the equation
f(Uijk, σ

2) = 0 defines the σ-offset of X∨3 . Again we might replace the variable
σ2 with the expression qF (U) − ε2. Then the equation f(Uijk, qF (U) − ε2) = 0
defines the ε-offset of X3, as we wanted.

Let us look more closely at the polynomial f(Uijk, σ
2). The first thing to

observe is that degε2 [f(Uijk, σ
2)] = 6, namely the expected number of singular
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values of U . In particular, the highest coefficient c6(U) has degree eight and is
the product of the following four quadratic polynomials:

θ1(U) = (U111 − U122 − U212 − U221)2 + (U112 + U121 + U211 − U222)2,

θ2(U) = (U111 − U122 + U212 + U221)2 + (U112 + U121 − U211 + U222)2,

θ3(U) = (U111 + U122 − U212 + U221)2 + (U112 − U121 + U211 + U222)2,

θ4(U) = (U111 + U122 + U212 − U221)2 + (U112 − U121 − U211 − U222)2.

Moreover, the variety V(θ1 · · · θ4) ⊂ P(V ) ∼= P7
C coincides with the dual Segre

embedding of the product Q1 ×Q2 ×Q3 of the isotropic quadrics

Q1 = Q2 = Q3 = {[1,
√
−1], [1,−

√
−1]} ⊂ P1

C .

Geometrically speaking, Seg3(Q1 × Q2 × Q3) ⊂ P(V ) may be thought as the
six vertex “cube” of decomposable tensors of the form x1 ⊗ x2 ⊗ x3, where xj =
(1,±

√
−1) for all j ∈ [3]. Each polynomial θj(U) defines a pair of conjugate

hyperplanes dual to a pair of conjugate vertices of [Seg3(Q1 ×Q2 ×Q3)]∨.
This fact marks a first important difference between matrices and tensors: the

existence of a positive degree leading coefficient in the equation of the ε-offset of
X∨d , or in other words, the non-integrality of the function δF,U over X∨d . Instead,
the lowest coefficient c0(U) can be written in the form

c0(U) = Det(U)2 · g(U). (0.0.27)

On one hand, the polynomial Det(U) defines the dual Segre product X∨3 and is
called the hyperdeterminant of U , somehow generalizing the notion of determinant
of a square matrix. Its development is

Det =

[
det

(
U111 U122

U211 U222

)
+ det

(
U121 U112

U221 U212

)]2

− 4 det

(
U111 U112

U211 U212

)
det

(
U121 U122

U221 U222

)
.

(0.0.28)

On the other hand, the polynomial g(U) is the product of the following three
quartic forms:

g1(U) = det
[(
U (1)

1 +
√
−1U (2)

1

) (
U (1)

1 −
√
−1U (2)

1

)]
,

g2(U) = det
[(
U (1)

2 +
√
−1U (2)

2

) (
U (1)

2 −
√
−1U (2)

2

)]
,

g3(U) = det
[(
U (1)

3 +
√
−1U (2)

3

) (
U (1)

3 −
√
−1U (2)

3

)]
.

(0.0.29)

The three factors g1(U), g2(U) and g3(U) of g(U) represent three quartic hyper-
surfaces in P7

C . Each of them is the union of two conjugate quadric hypersurfaces.
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In turn, the singular locus of each of these quadric hypersurfaces has dimension
three and meets the Segre product X3 in a quadric surface. Finally, these six
quadric surfaces may be interpreted as the two dimensional “faces” of the cube
Seg3(Q1 ×Q2 ×Q3) of totally isotropic rank-one tensors, as Figure 2 suggests.
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Figure 2: The slices U (1)

j and U (2)

j appearing in gj(U).

The results of Example 0.0.7 outline the core of this thesis. We investigate
more on the “non-integrality” of the distance function δF,U for tensors, using the
Frobenius inner product. In particular, we determine the zero loci of the lowest
and the highest coefficient of the generator of the ideal in (0.0.24). Moreover,
in the case of a “hypercube format” tensor, namely for n1 = · · · = nd = n for
some n ≥ 1, we compute all the exponents of the factors appearing in the above-
mentioned coefficient. This leads to the following closed formula for the product
of the singular values of a general tensor U ∈ V .

Theorem 0.0.8. Let n ≥ 1, d ≥ 2, and n = (n, . . . , n). For all subsets J ⊂ [d],
we define

Xd,J := Segd(Y1 × · · · × Yd) ⊂ P(V1 ⊗ · · · ⊗ Vd), (0.0.30)

where Yj := Qj if j ∈ J and Yj := P(Vj) otherwise. Moreover, we define fd,J to
be the equation of X∨d,J , when it is a hypersurface, otherwise fd,J := 1. For J = ∅
the polynomial fd := fd,∅ coincides with the hyperdeterminant of a tensor.

1. (Theorem 5.0.5) Assume that the linear system Sd defined in Remark 5.3.19
has maximal rank. Pick a tensor U ∈ V1 ⊗ · · · ⊗ Vd. If U admits the
maximum number c(n) (see Theorem 0.0.6) of singular values, counted with
multiplicity (hypothesis verified for a general U), their squared product has
the following rational expression:

(σ1 · · ·σc(n))
2 =

d∏
j=0

gj(U)2−j , gj :=
∏
|J|=j

fd,J ∀ 0 ≤ j ≤ d. (0.0.31)
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2. (Proposition 5.3.18) When d ∈ {2, 3, 4}, the system Sd has maximal rank
and the product formula (0.0.31) is true for all n ≥ 2:

(σ1 · · ·σc(n))
2 =


g0(U)2 = det(U)2 for d = 2

g0(U)2g1(U)
g3(U) for d = 3

g0(U)2g1(U)
g3(U)g4(U)2 for d = 4 .

3. (Proposition 5.4.4) In the binary case n = 2, the linear system Sd has
maximal rank d− 1 and the formula (0.0.31) is true for any d ≥ 1.

The proof of Theorem 0.0.8 in the case n = 2 is the core of the single-authored
paper [Sod]. When n ≥ 3, so far the assumption on Sd has been checked for all
positive integers n and d less than 100. The right-hand side of (0.0.31) should
be interpreted as the ratio between the lowest and the highest coefficient of the
analogous of the polynomial in (0.0.26), which for all σ ≥ 0 describes the σ-offset
of X∨d . Note that the exponents on the right-hand side of (0.0.31) may be positive
or negative so that the product of the singular values has a rational expression.
When d = 2, formula (0.0.31) simply recovers the fact that the product of the
singular values of a square matrix is equal to its determinant.

The distance from a real algebraic variety

Questions 1, 2 and 3 and all its related problems are all instances of a very general
question:

Given a data point u and an algebraic variety XR in a real n-dimensional
Euclidean space (V R, qR), which is the closest point x ∈ XR to u? How many
critical points does δR

u admit for a general data point u? What are the main
properties of the ε-offset of XR with respect to the metric qR?

This problem is very natural in Real Algebraic Geometry. In the first two
sections, we concentrated on the distance from the varieties of matrices of rank
at most k as well as tensors of rank one.

The road map to study the distance from a real algebraic variety is essentially
the same that we took previously. The squared distance function in exam is again

δR
u : XR → R, δR

u(x) := qR(u− x)

and the critical values of δR
u are attained at the smooth points x ∈ XR such

that the gradient ∇qR(u− x) is orthogonal to the tangent space Tx(XR). For the
standard Euclidean distance, ∇qR(u−x) = 2(u−x). Of course, even if the original
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problem is set over the reals, we need to consider the complex variety X = XC

and extend the quadratic form qR to a complex-valued function q : X → C, which
is not a Hermitian inner product. Algebraically speaking, critical points of δu are
obtained requiring the rank of the augmented Jacobian matrix(

∇q(u− x)
Jac(f)(x)

)
to be strictly lower than c + 1, where c is the codimension of X and (f) =
(f1, . . . , fs) is the ideal of X. In other words, all minors of size c+ 1 of the above
matrix must vanish simultaneously.

Clearly, we have to get rid of the singular points of X, where the previous
condition is satisfied trivially. Algebraically, this is achieved by saturating the
previously obtained ideal with respect to the ideal of the singular locus of X.
We may call the resulting ideal as the critical ideal of X, and we denote it by
Icrit(X).

As we show in detail in Chapter 4, for a general choice of data point u ∈ V ,
the ideal I(X) in C[x1, . . . , xn] is zero-dimensional and consists of all (complex)
critical points x ∈ X of the function δu. Their number, namely the degree of
Icrit(X), is constant on a Zariski open subset of V and is called the Euclidean
distance degree of X. It is denoted by EDdegree(X). It was introduced by
Draisma, Horobeţ, Ottaviani, Sturmfels and Thomas in [DHOST].

For example, the ED degree of the determinantal variety σk(X) of matrices
of rank at most k is

(
n1

k

)
by Theorem 0.0.3. Or the ED degree of the variety Xd

of rank-one tensors is expressed by the Friedland-Ottaviani formula (0.0.23).

On the other hand, if we restrict to the real part V R, there exists a hypersur-
face, called Euclidean Distance discriminant (ED discriminant) of X and denoted
by ΣX , that divides the space V R into chambers. If we let u ∈ V R vary in each
one of these chambers, the number of critical points of δR

u is constant. The first
example of this phenomenon is provided by the ED discriminant of the ellipse
XR : 4x2

1 + x2
2 − 1 = 0 ⊂ R2:

ΣX : 64x6
1 + 48x4

1x
2
2 + 12x2

1x
4
2 + x6

2 − 432x4
1

+ 756x2
1x

2
2 − 27x4

2 + 972x2
1 + 243x2

2 − 729 = 0.

For plane curves, the ED discriminant ΣX is usually called the evolute of XR

and has the property that the tangent lines to ΣX correspond to the normal lines
to XR.

It turns out that the ideal

Icrit(X) + (ε2 − q(u− x)) ⊂ C[x1, . . . , xn, u1, . . . , un, ε]
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Figure 3: The evolute ΣX of the ellipse XR divides R2 into two chambers. If the
data point u is picked in the internal chamber, then the number of critical points
of δR

u is four. Otherwise, it is two.

defines a variety of dimension n. Its projection (by elimination of the variables
xi, in a similar fashion of Example 0.0.7 where the xi’s correspond to the entries
of the given tensor U) in C[u1, . . . , un, ε] is generated by a single polynomial in
ε2. In a joint work with Ottaviani [OS], we denote this generator (defined up to
a scalar factor) by EDpolyX,u(ε2) and we call it Euclidean Distance polynomial
(ED polynomial) of X at u (see Definition 4.1.3). For any u ∈ V R, EDpolyX,u(ε2)
has among its roots the distance from u to XR. In addition, for any fixed real
value ε ≥ 0, the equation

EDpolyX,u(ε2) = 0

defines the hypersurface of all data u ∈ V R having distance ε from XR, namely
the ε-offset of XR. The ε2-degree of EDpolyX,u(ε2) coincides with the Euclidean
Distance degree of X (see Theorem 4.2.2).

The ED polynomial of a real algebraic variety is undoubtedly the most im-
portant tool of this thesis. Indeed, a relevant part of this thesis is devoted to the
study of its main properties. Here we briefly outline the main ones.

First, we show that the ED polynomial of an affine cone X and of its dual
affine cone X∨ are linked by the following formula which enhances [DHOST,
Theorem 5.2]:
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Theorem (Theorem 4.2.8). Let X ⊂ V be an affine cone and X∨ its dual in V .
Then

EDpolyX,u(ε2) = EDpolyX∨,u(q(u)− ε2).

The last identity was essentially applied in (0.0.15) and for rank-one tensors,
and its meaning is that projective duality corresponds to variable reflection for
the ED polynomial.

Next, we focus on the extreme coefficients of EDpolyX,u(ε2). Here, transver-
sality between X and the isotropic quadric Q plays a crucial role. In particular, it
is sufficient to prove that the highest coefficient of the ED polynomial is a scalar,
as the following result states.

Theorem (Corollary 4.3.7). Let X ⊂ P(V ) be a projective variety. If X is
transversal to Q, according to Definition 4.3.3 then for any data point u ∈ V

EDpolyX,u(ε2) =

d∑
j=0

pj(u)ε2j ,

where d = EDdegree(X) and pj(u) is a homogeneous polynomial in the coordi-
nates of u of degree 2d− 2j. In particular, pd(u) = pd ∈ C, deg(p0) = 2d and the
ED polynomial of X is an integral algebraic function.

In the other direction, the lowest coefficient of the ED polynomial describes
the data points u ∈ V having “distance zero” from X. If we restrict to the real
points, we essentially recover the variety XR, plus another possible locus of real
data points. But if we allow non-real solutions, there is always a hypersurface of
isotropic vectors having “distance zero” from X.

Theorem (Theorem 4.4.6). Let X ⊂ V be an affine cone such that X∪X∨ 6⊂ Q.
Then the locus of zeros u ∈ V of EDpolyX,u(0) is

X ∪ (X∨ ∩Q)∨.

In particular, at least one between X and (X∨ ∩Q)∨ is a hypersurface.

The last result describes set-theoretically the vanishing locus of the lowest
coefficient EDpolyX,u(0). With a stronger assumption, we can determine also
“scheme-theoretically” the condition for a data point u ∈ V to have distance zero
from X. In other words, we give a more precise description of the lowest term of
the ED polynomial, with reasonable transversality assumptions.

Theorem (Theorem 4.4.12). Let X ⊂ P(V ) be an irreducible variety and suppose
that X and X∨ are transversal to Q. Let u ∈ V be a data point.



xxvi Introduction

1. If codim(X) ≥ 2, then (X∨ ∩Q)∨ is a hypersurface and

EDpolyX,u(0) = g

up to a scalar factor, where g is the equation of (X∨ ∩ Q)∨. Moreover
X ⊂ (X∨ ∩Q)∨.

2. If X is a hypersurface, then

EDpolyX,u(0) = f2g

up to a scalar factor, where f is the equation of X and g is either the
constant 1 if X is a hyperplane, or the equation of (X∨ ∩Q)∨.

Structure of the thesis

In this introduction, we have chosen to regard the best rank-k approximation
problem only for nonsymmetric tensors. Actually, in this thesis we consider
tensors with partial symmetry as well, starting from symmetric tensors.

After the preliminary Chapter 1, in Chapter 2 we introduce the basic tools of
Spectral Theory of symmetric tensors, which is useful for the problem of symmet-
ric tensor approximation. On one hand, we recall the definition of E-eigenvector
and E-eigenvalue of a symmetric tensor. On the other hand, we introduce the
notion of E-characteristic polynomial of a symmetric tensor, which is defined as
the multivariate resultant of a certain homogeneous polynomial system. The
rest of the chapter is devoted to the study of the extreme coefficients of the E-
characteristic polynomial of a symmetric tensor. The results of this chapter are
based on the single-authored paper [Sod18]. In particular, the main result is The-
orem 2.0.2, which provides a rational formula for the product of the E-eigenvalues
of a symmetric tensor. This formula is generalized later in Theorem 5.0.5. In
the last part of the chapter, we investigate binary symmetric tensors, called also
binary forms, and we derive a formula for the E-characteristic polynomial of a
harmonic binary form, which points out that the E-eigenvalues of a real harmonic
binary form are all real.

Nevertheless, we want to separate the study of symmetric tensors from the
general case of partially symmetric tensors because the proof of Theorem 2.0.2
uses resultant theory, which we do not consider for the rest of the thesis.

In Chapter 3 we remain in the context of symmetric tensors, and we focus on
harmonic symmetric tensors. The main results in this direction are Proposition
3.0.3 and Theorem 3.0.4, which describe completely all the elements of the space
HdC3 of harmonic ternary forms of degree d which are stable or semistable under
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the action of the complex orthogonal group SO(3,C). Thanks to the SO(3,C)-
equivariant harmonic decomposition of the space SdC3, these results allow us to
give sufficient conditions of stability and semistability in the whole space SdC3.
Afterwards, we produce an example of a real harmonic ternary form with non-real
E-eigenvalues.

In Chapter 4 we change our perspective. This chapter intends to frame the
previous ones in the general setting of Real Algebraic Geometry of Data as well
as setting up the necessary tools used in the final Chapter 5. After stating the
problem of computing the distance from a real algebraic variety, the core of this
chapter is devoted to the main properties of the ED polynomial of a real algebraic
variety. The main results are based on the joint paper with Ottaviani [OS].

Finally, we come back to tensors again. The main results of this thesis are
collected in Chapter 5. There we study the ED polynomial of a Segre-Veronese
variety, whose roots are the singular values of a partially symmetric tensor. First,
we describe completely the vanishing loci of the highest and lowest coefficient of
the ED polynomial of such a variety. Second, when restricting to tensors of
hypercube format, we compute the multiplicities of the factors appearing in the
lowest and highest coefficients. The main result is the above-cited Theorem 5.0.5.
Part of this chapter achieves the single-authored paper [Sod], where the product
formula is proved for binary tensors.





Chapter 1
Preliminaries

This chapter might be viewed as a toolkit for the development of the thesis. In
what follows, we aim at giving a compact exposition of the main definitions and
already known results that will be applied in the next chapters.

In the first part, we set up the notation and stress the notion of orthogonality
that we adopt. Then we recall the definition of the most important invariant
for this thesis, the Euclidean Distance degree of an algebraic variety X in any
complexified Euclidean space (V, q), starting from irreducible affine varieties.

When X is an affine cone, we may read it projectively. In this context, we
are allowed to introduce a notion of dual affine cone X∨ of X. Armed with this
definition, we recall a result in [DHOST] which states that the ED degrees of a
projective variety and its dual variety coincide.

If additionally, the variety considered is transversal to the isotropic quadric
Q associated with the quadratic form q, then its ED degree is expressed as the
sum of the polar classes of the variety. For this reason and for their applications
in Chapters 2, 4 and 5, we dedicate Section 1.5 to the construction of the polar
classes of a projective variety.

Also, in Section 1.7 we furnish a basic introduction to the Chern classes of
a projective variety: indeed, Chern classes may be computed via polar classes,
and vice-versa. Moreover, the ED degree formula in Theorem 5.1.1, stated in the
nonsymmetric case in Theorem 0.0.6, is derived basically from the computation
of the top Chern class of a certain vector bundle over a Segre-Veronese product
of projective spaces.

1.1 Orthogonality vs polarity in Euclidean space

As suggested in the introduction, up to different notation, our ambient space is
a real n-dimensional Euclidean space (V R, qR). In most cases, we suppose that

1
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x1, . . . , xn is a system of coordinates of V R. Moreover, the quadratic form qR

has the expression qR(x) = xTAx for some positive definite real n × n matrix
A = A(qR). Up to a linear change of coordinates, we assume that A is the
identity matrix In, namely qR(x) =

∑n
i=1 x

2
i . By abuse of notation, we denote

with the same letter the quadratic form qR and its associated bilinear form, in
other words we have qR(x, x) = qR(x).

Finally, we define V := V R ⊗ C and the function q : V → C by q(x) :=
xTAx, where A is the symmetric matrix associated to the quadratic form qR. In
particular, q is not induced by a Hermitian inner product on V . The wider space
V admits nonzero vectors x such that q(x) = 0, called isotropic vectors. The
quadratic equation q(x) = 0 defines the isotropic quadric Q ⊂ V , whose only real
point is the origin. The quadric Q has no real points in the projective setting.

Now let us look at V as an affine chart of PnC = P(V ⊕ C) = V ∪H∞, where
H∞ ∼= P(V ) is the hyperplane at infinity of V . In coordinates, we introduce a new
variable x0 and hence H∞ has equation x0 = 0. Every vector x = (x1, . . . , xn) ∈
V corresponds to the point [(1, x)] = [(1, x1, . . . , xn)] ∈ PnC . In the following,
we indicate by 〈x〉 the point [(0, x)] ∈ H∞. For each affine variety X ⊂ V , we
denote by X the closure of X in the Zariski topology of PnC . Moreover, we define
X∞ := X ∩H∞. In particular, the points at infinity of Q fill the smooth quadric
Q∞ ⊂ H∞.

Summing up, from the lines above we see that every choice of a quadratic
form qR in V R produces a unique projective quadric Q∞ = V(q) ⊂ H∞. This
approach is very useful for understanding better the notion of orthogonality in
V . Indeed, orthogonality in V corresponds essentially to polarity in H∞, with
respect to the definition below (see [Pie15, §4]).

Definition 1.1.1. Let Q∞ be a smooth quadric in H∞. Then it induces a
polarity, classically called a reciprocity, between points and hyperplanes in H∞.
The polar hyperplane P⊥ of a point P ∈ H∞ is the linear span of the points
on Q∞ such that the tangent hyperplane to Q at that point contains P . In
coordinates, q = q(x1, . . . , xn) induces an isomorphism

ϕq : H∞ → (H∞)∗ = {hyperplanes of H∞}
P = [p1, . . . , pn] 7→ P⊥ :

∑n
i=1 pi

∂q
∂xi

= 0

If W ⊂ H∞ is a subspace of dimension r, then we can associate to W the dual
space of ϕq(W ), which is a subspace of H∞ of dimension n − r − 1. We denote
this subspace by W⊥.

Therefore, given an affine space L ⊂ V and a point u ∈ V , the orthogonal
space to L passing through u is constructed as follows: we consider L∞ ⊂ H∞
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P

P⊥

Q∞

Figure 1.1: A point P ∈ H∞ and its polar hyperplane P⊥.

and we associate to it the subspace (L∞)⊥ via the polarity ϕq of Definition 1.1.1.
Hence the desired orthogonal space is

u+ L⊥ := 〈[(u, 1)], (L∞)⊥〉 ∩ V.

1.2 The ED degree of an algebraic variety

Now we have all the necessary metric information to proceed. We fix a radical
ideal I(XR) := 〈f1, . . . , fs〉 ⊂ R[x1, . . . , xn] and we let XR ⊂ V R be the real zero
locus of I(XR). In other words, XR is a real algebraic variety in V R. We denote
by X ⊂ V the complex zero locus of I(X) := 〈f1, . . . , fs〉 ⊂ C[x1, . . . , xn]. We
indicate by Jac(f) = Jac(f1, . . . , fs) the s × n Jacobian matrix, whose entry in
row i and column j is the partial derivative ∂fi/∂xj . The ideal of the singular
locus Xsing of X is defined by

I(Xsing) := I(X) + 〈c× c minors of Jac(f)〉,

where c is the codimension of X.

Our aim is to pick a data point u ∈ V (usually in V R) and look for the
critical points x ∈ X of the squared distance function δu : X → C. They are
attained at smooth points x ∈ X such that the vector u − x is in the normal
space NxX := (TxX)⊥, according to Definition 1.1.1. We stress that both NxX
and TxX are linear spaces in V . The corresponding affine spaces passing through
x are denoted by x+NxX and x+ TxX, respectively.

Algebraically speaking, x ∈ Xsm is a critical point of δu if the gradient ∇q at
u− x lives in the row space of the jacobian matrix Jac(f) of X at x. When q is
the standard Euclidean metric, ∇q(u− x) = 2(u− x). An indicative example is
depicted in Figure 1.2. This constructions suggests to define an ideal, called the
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critical ideal of X, as (see the formula (2.1) [DHOST])

Icrit(X) :=

(
I(X) +

〈
(c+ 1)× (c+ 1)−minors of

(
∇q(u− x)
Jac(f)(x)

)〉)
: I(Xsing)∞.

(1.2.1)
The critical ideal Icrit(X) lives in the polynomial ring C[x1, . . . , xn, u1, . . . , un]
and defines an affine variety in V ×V . The geometrical idea behind this property
is that we are letting the data point u vary in V , hence its coordinate should be
treated as indeterminates independent from the xi’s.

Figure 1.2: The cardioid XR : (x2
1 +x2

2−2x1)2−4(x2
1 +x2

2) = 0 and a point u ∈ R2

admitting three normal lines to XR.

Definition 1.2.1. The variety in V × V defined by the critical ideal Icrit(X) is
called ED correspondence of X and is denoted by E(X).

More precisely, the ED correspondence may be described as

E(X) = {(x, u) ∈ X × V | x ∈ Xsm, x critical point of δu}.

Now consider the diagram below:

E(X)

X V

π1 π2 (1.2.2)

The two maps π1 and π2 are the projections onto the two factors of X × V .
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Theorem 1.2.2. [DHOST, Theorem 4.1] The ED correspondence E(X) of an
irreducible variety X ⊂ V of codimension c is an irreducible variety of dimension
n inside V ×V . The projection π1 is an affine vector bundle of rank c over Xsm.
Over general data points u ∈ V , the second projection π2 has finite fibers π−1

2 (u)
of constant cardinality.

Given a data point u ∈ V , we have that

π−1
2 (u) ∼= {x ∈ Xsm | x critical point of δu},

hence the cardinality |π−1
2 (u)| counts the number of critical points of δu.

Definition 1.2.3. Let X ⊂ V be an irreducible variety. The cardinality of the
general fiber of π2 is called ED degree of X and is denoted by EDdegree(X).

Remark 1.2.4. On one hand, the singular points of X are not taken into ac-
count when defining the critical ideal of X, namely the invariant EDdegree(X)
counts only smooth local minima, maxima and saddle points on X of the squared
distance function δu. Indeed, the squared distance function δu : X → C cannot
be differentiated at the singular points of X.

On the other hand, the singular points of X might be local minima, maxima
or saddle points of δu. For example, let X be the cuspidal cubic of equation
x3

1 − x2
2 = 0. It turns out that the cusp (0, 0) is a global minimum of δu for any

data point u contained in the light blue region showed in Figure 1.3. This region
is known as the Voronoi cell of X at (0, 0). Its boundary is the quartic curve

∂Vor(0,0)X : 27y4 + 128x3 + 72xy2 + 32x2 + y2 + 2x = 0.

More generally, the Voronoi cell of X at the point x ∈ X is the set of all u ∈ V
such that x is the closest point to u on X. A detailed study of the Voronoi cells
of algebraic varieties and of their algebraic boundaries is done in [CRSW].

By Theorem 1.2.2, the ED degree of an algebraic variety is, in fact, an alge-
braic invariant of X, and somehow measures the algebraic complexity of com-
puting the distance from X. Note that we started by considering a real affine
variety XR, but the notion of ED degree is related to complex algebraic varieties.
In particular, we can compute the ED degree of the isotropic quadric Q.

Proposition 1.2.5. Let Q ⊂ V be the isotropic quadric defined by the quadratic
form q. Then EDdegree(Q) = 0.

Proof. By construction, EDdegree(Q) counts the number of critical points of δu
on Q for a general point u ∈ V , or rather, the number of normal spaces to Q that
can be drawn from u.
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Figure 1.3: The Voronoi cell Vor(0,0)X of the cuspidal cubic X : x3
1 − x2

2 = 0 at
the origin. As shown on the right, the real locus of Vor(0,0)X contains the real
locus of the evolute ΣX of X. If we draw a circumference centered at a point u
between the green and the blue curve, we see that the origin is closer to u than
any critical point of δR

u.

Note that, if x ∈ Q and x 6= 0, then x is a smooth point of Q and TxQ is
the subspace of vectors v ∈ V such that q(x, v) = 0. At infinity, we have that
(TxQ)∞ coincides with T〈x〉(Q∞) ⊂ H∞. By Definition 1.1.1, the polar subspace
to T〈x〉(Q∞) is the point 〈x〉. This means that, moving back in V , the normal
space NxQ is the line spanned by the vector x. In particular, NxQ ⊂ TxQ or,
affinely, x+NxQ ⊂ x+ TxQ.

Summing up, it is immediate that, if x is a critical point of δu, then necessarily
the vector u − x must be proportional to x. In particular, u − x ∈ Q, hence
u ∈ Q. This contradicts the fact that u is general in V . From this we conclude
that EDdegree(Q) = 0.

The following lemma is an immediate property coming from the definition of
ED degree.

Lemma 1.2.6. Let X ⊂ V be an irreducible affine variety and let v ∈ V . Then
EDdegree(v + X) = EDdegree(X), namely the ED degree is invariant under
translation in V .

The simplest affine varieties to consider are the affine subspaces of V . We
compute their ED degree in the following proposition.
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Proposition 1.2.7. Let L ⊂ V be an affine subspace. If L is transversal to Q
out of the origin, then EDdegree(L) = 1. Otherwise EDdegree(L) = 0.

Proof. Applying Lemma 1.2.6, we can assume that L ⊂ V is a linear space.
Assume first that L is not transversal to Q away from the origin. Then

there exists y ∈ Q, y 6= 0 such that the linear span between TyQ and L does
not generate V , namely L ⊂ TyQ. Going at infinity, we have the inclusion
L∞ ⊂ (TyQ)∞ = T〈y〉(Q∞).

Consider the linear system L of hyperplanes in H∞ supported by L∞. For
each element W ∈ L, W⊥ is a point in T〈y〉(Q∞). The union of all these points
generates the polar subspace (L∞)⊥, which is contained in T〈y〉(Q∞). Going back
to V , from the above argument we conclude that the orthogonal space L⊥ to L
must be contained in TyQ as L itself.

Now pick a general point u ∈ V . If there exists a critical point x ∈ L for δu,
then u − x ∈ L⊥ ⊂ TyQ. In particular, q(y, u − x) = 0. Since x ∈ L ⊂ TyQ,
q(y, x) = 0 as well. Therefore u ∈ TyQ, but this contradicts the generality
assumption on u. The contradiction comes from the assumption that there exists
such a critical point x ∈ L. From this we conclude that EDdegree(L) = 0.

Otherwise L is transversal to Q. In this case, the orthogonal space L⊥ is
such that V = L ⊕ L⊥. In particular, L⊥ defines the orthogonal projection
πL⊥ : V → L onto L. For each data point u ∈ V , the point πL⊥(u) is the unique
critical point for δu on L. In particular, EDdegree(L) = 1.

Example 1.2.8. In the vector space C2 equipped with the Euclidean quadratic
form q = x2

1 +x2
2, we let L be the line of equation x1 +

√
−1x2 = 0. In particular,

L is generated by the vector (1,
√
−1) and L⊥ = L. Consider a point u =

(u1, u2) ∈ C2 and assume that there exist x ∈ L, x = λ(1,
√
−1), such that u− x

is orthogonal to (1,
√
−1). The equation q((u1 − λ, u2 −

√
−1), (1,

√
−1)) = 0

simplifies to u1 +
√
−1u2 = 0, namely u ∈ L⊥. This implies that EDdegree(L) =

0. The result is the one expected since L is contained in the isotropic quadric
Q ⊂ C2.

Remark 1.2.9. If L ⊂ V is the complexification of a real affine space LR ⊂ V R

such that LR 6= {0}, then automatically L is transversal to Q out of the origin.
In particular, EDdegree(L) = 1 by Proposition 1.2.7.

In the following, we always consider an affine variety X not contained in the
isotropic quadric Q. This is related to the following fact, which is the second part
of [DHOST, Theorem 4.1].

Proposition 1.2.10. Given an irreducible variety X ⊂ V , if TxX ∩NxX = {0}
at some point x ∈ Xsm, then π2 is a dominant map and EDdegree(X) is positive.
In particular, if X admits at least one real smooth point, then EDdegree(X) > 0.
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Example 1.2.11. In the following M2 code [GS], the ED degree of a plane curve
in X ⊂ C2 is displayed by the command degree IsatX. When X is the cardioid
whose real points are depicted in Figure 1.2, one may verify with the code below
that EDdegree(X) = 3. Note that all the three critical points in Figure 1.2 are
real. We show in Figure 1.4 that some of the critical points might be non-real
depending on the data point chosen.

R = QQ[x_1,x_2,u_1,u_2];
IX = ideal((x_1^2+x_2^2-2*x_1)^2-4*(x_1^2+x_2^2));
ISingX = IX+minors(codim IX,compress transpose jacobian IX);
jacX = matrix{{u_1-x_1,u_2-x_2}}||(compress transpose jacobian IX);
IcritX = minors((codim IX)+1, jacX);
IsatX = saturate(IX+J,ISingX);
codim IsatX, degree IsatX

Let us look again at the projection π2 in (1.2.2). The branch locus of π2

corresponds to the closure of the set of data points u ∈ V for which there are
fewer than EDdegree(X) complex critical points of δu. This fact leads to the
following definition.

Definition 1.2.12. The branch locus of π2 defines an affine variety ΣX ⊂ V ,
which we call the ED discriminant of X and we indicate with ΣX .

In most cases, the ED discriminant is a hypersurface of V , by the Nagata-
Zariski Purity Theorem (see [Zar, Nag]). The reason for this name appears when
restricting to the real space V R. In this case, the real part of the ED discriminant
ΣXR := (ΣX)R divides the vector space V R into chambers. If we let the real data
point u vary in one of these chambers, then the number of real critical points of
δR
u is constant. In particular, when u is approaching ΣXR , either two real critical
points of δR

u or two non-real conjugate critical points of δu are collapsing together.
This is visualized in Figure 1.4 in the case of the ED discriminant of the ellipse
XR : x2

1 + 4x2
2− 4 = 0. Or, looking back at Remark 1.2.4, the ED discriminant of

the cuspidal cubic X : x3
1 − x2

2 = 0 is the quartic curve

ΣX : 6561y4 + 18432x3 + 15552xy2 + 6144x2 + 288y2 + 512x = 0

which separates the region of real data points providing two real critical points
(to the right of ΣX) from the region of real data points providing no real critical
points (to the left of ΣX) (see the right image of Figure 1.3).

In the next section, we focus on affine cones on V , namely projective varieties
X ⊂ P(V ). As a quick preview, we mention a formula by Trifogli for the degree
of ΣX in a special case.
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Figure 1.4: On the left, a data point u admitting two critical points for δR
u, while

the other two are complex-conjugate. On the right, u goes in the internal region
of the evolute ΣXR and acquires two more critical points for δR

u.

Theorem 1.2.13 (Trifogli). If X is a general hypersurface of degree d in P(V )
then

deg(ΣX) = d(n− 1)(d− 1)n−1 + 2d(d− 1)
(d− 1)n−1 − 1

d− 2
.

For instance, when n = 2 the above formula tells us that the degree of the
ED discriminant of a general projective plane curve C of degree d is

deg(ΣC) = 3d(d− 1).

The ED discriminant ΣCR of a real affine plane curve CR ⊂ R2 coincides with
the curve classically known as the evolute of CR. To see this, we recall that
the evolute of CR is by definition the envelope of the normal lines to CR. More
generally, the evolute is an instance of what is called an envelope of a family of
curves in R2: in our case, the family of all normal lines to CR. By construction, the
envelope is tangent to each element of the family at some point. More specifically,
the evolute ΣCR is tangent to each normal line to CR at some point. In other
words, if we pick a point u ∈ R2 and we want to draw all normal lines to CR

passing through u, then it is equivalent to drawing all tangent lines to ΣCR passing
through u. Since the number of normal lines exiting from u is equal to the number
of real critical points of δR

u, and two normal lines collapse together when u ∈ ΣCR ,
then the evolute ΣCR coincides with the real part of the ED discriminant of C.

Keeping in mind the above description, it is straightforward to notice that
if two critical points of δR

u coincide, then their corresponding normal lines to CR

coincide as well. The converse is not true since there exist distinct pairs of critical
points (x1, x2) of δR

u such that their associated normal lines to CR coincide. This
happens when the curve CR has a bottleneck between the two points x1 and x2.
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More generally, a bottleneck of a smooth algebraic variety X ⊂ V is a pair of
distinct points (x1, x2) ∈ X such that the normal spaces at x1 and x2 contain the
line spanned by x and y. As the previous definition suggests, the determination
of all bottlenecks of a variety X is closely related to the computation of the ED
degree of X. It turns out that the number of (complex) bottlenecks of a variety
X is, in fact, another invariant of X and is called the bottleneck degree of X. In
practice, the bottleneck degree of X measures the complexity of computing all
bottlenecks of X. In this thesis, we do not enter into the details of this important
invariant. An excellent reference for the bottlenecks and the bottleneck degree
of an algebraic variety is [DEW].

Remark 1.2.14. The only property that we want to observe and that descends
almost immediately from the definition of bottleneck of a plane curve is the
following: given a curve CR ⊂ R2, a pair (x1, x2) ∈ CR is a bottleneck of CR if
and only if the common normal line joining x1 and x2 is bitangent to the envelope
ΣCR . Figure 1.5 confirms this fact when CR is the lemniscata of equation

(x2
1 + x2

2)2 − 2(x2
1 − x2

2) = 0

and its evolute is the sextic curve

ΣCR : 729x6
1 + 729x4

1x
2
2 − 729x2

1x
4
2 − 729x6

2 − 1944x4
1+

+ 1944x2
1x

2
2 − 1944x4

2 + 1728x2
1 − 1728x2

2 − 512 = 0.

1.3 ED degree for affine cones and duality

In this section, X represents an affine cone (through the origin) in V , meaning
that if x ∈ X, then λx ∈ X for all λ ∈ C. As we anticipated in the introduction,
for affine cones we consider the following notion of duality.

Definition 1.3.1. Let X be an irreducible affine cone in a Euclidean space (V, q).
The dual affine cone of X is

X∨ :=
⋃

x∈Xsm

NxX ⊂ V,

where NxX := (TxX)⊥ is the normal space at x ∈ X defined via the polarity
map ϕq of Definition 1.1.1. If X is a non-reduced variety, then X∨ is the empty
set.

The last relation requires a few clarifications. Given a real Euclidean space
(V R, qR), the inner product qR induces a natural isomorphism between V R and the
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Figure 1.5: For the lemniscata C ⊂ C2 whose real part is depicted above, we get
that there are six real bottlenecks, which correspond to three pairs of real points
with coinciding normal lines. This number has been computed with a M2 code
inspired by [DEW, §1.1], where we have removed the singular locus of C.

dual vector space V R∗ := {l : V R → R | l is linear}, which takes a vector v ∈ V R

and associates it to the linear map w 7→ q(v, w). This isomorphism is natural,
namely, it does not depend on the orthonormal basis of V R chosen. Therefore, in
the following, we always identify any vector space with its dual.

We remark that Definition 1.3.1 is equivalent to the standard definition of
the dual of a projective variety as in [Tev, Definition 1.1]. The variety X∨ is an
irreducible affine cone as well. Note that ifX is a linear subspace, thenX∨ = X⊥,
the orthogonal subspace with respect to q.

Following the assumptions on X of the preceding section, we always consider
affine cones X such their respective dual affine cones X∨ are not contained in
the isotropic quadric Q.

A slightly different approach to define the dual affine cone of X comes with
the following definition.

Definition 1.3.2. Let X ⊂ V be an irreducible affine cone. The conormal
variety of X is the correspondence

N (X) := {(x, y) ∈ V × V | x ∈ Xsm and y ∈ NxX}.

The ideal of the conormal variety in C[x1, . . . , xn, y1, . . . , yn] is

N(X) :=

(
I(X) +

〈
(c+ 1)× (c+ 1)−minors of

(
y

J(f)

)〉)
: I(Xsing)∞.
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It is known that, if X ⊂ V is an irreducible affine cone, then N (X) is irreducible
in V × V and has dimension n− 1. One might consider the diagram

N (X)

X V

π1 π2 (1.3.1)

and verify that the projection of N (X) onto the second factor V is precisely the
dual affine cone X∨. The well-known Biduality Theorem (see [GKZ, Chapter 1])
states thatN (X) equalsN (X∨) up to swapping the two factors. The consequence
is that (X∨)∨ = X. For this reason, we write N (X,X∨) for N (X) and N(X,X∨)
for N(X).

The conormal variety N (X,X∨) plays a crucial role in the proof of the fol-
lowing important result, which we will apply several times in the next chapters.

Theorem 1.3.3. [DHOST, Theorem 5.2] Let X ⊂ V be an irreducible affine
cone and u ∈ V a general data point. The map

ϕu : V → V
x 7→ u− x (1.3.2)

gives a bijection from the critical points of δu on X to the critical points of δu
on X∨. Consequently, EDdegree(X) = EDdegree(X∨). If we restrict to the real
points, the map is proximity-reversing: the closer a real critical point x ∈ X is
to the data point u ∈ V R, the further u− x ∈ X∨ is from u.

x

u− x

u

X∨

X

Figure 1.6: The bijection between critical points of δu on X and on its dual X∨.

Proof. Let u ∈ V be a general point. If x ∈ X is a critical point of δu, then
u − x ∈ NxX. In turn, this implies that the pair (x, u − x) belongs to the
conormal variety N (X,X∨). By the generality of u, u− x is a smooth point on
X∨. In addition, the Biduality Theorem implies that x = u−(u−x) ∈ Nu−x(X∨),
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namely u − x is a critical point of δu on X∨. In particular, the map ϕu defined
in (1.3.2) sends critical points of δu on X into critical points of δu on X∨. Since
the above argument may be repeated with X∨ in place of X, this map ϕu is in
fact a bijection between the two mentioned sets of critical points.

Now observe that, since X and X∨ are affine cones, the vectors x and u− x
above are orthogonal, hence the Pythagorean Theorem tells us that q(u − x) +
q(x) = q(u). In particular, this means that ϕu is proximity-reversing.

It is clear that the conormal variety N (X,X∨) and the ED correspondences
E(X) and E(X∨) are closely related. Indeed, there is another correspondence
that somehow rules all three. It is introduced in the next definition.

Definition 1.3.4. Let X ⊂ V be an irreducible affine cone. The joint ED
correspondence of X and X∨ is

E(X,X∨) := {(x, u− x, u) ∈ Vx × Vy × Vu | x ∈ Xsm and u− x ∈ NxX}

= {(u− y, y, u) ∈ Vx × Vy × Vu | y ∈ X∨sm and u− y ∈ NxX∨}

Now we might consider the three projections of E(X,X∨) onto either one of
the three product spaces Vx×Vu, Vy ×Vu and Vx×Vy. In the first two cases, we
recover the ED correspondence E(X) and E(X∨), respectively. In the last case, we
get the conormal variety N (X,X∨). The affine variety E(X,X∨) is irreduible of
dimension n, since E(X) has these properties. The projection E(X,X∨)→ E(X)
is birational with inverse (x, u) 7→ (x, u− x, u).

Every affine cone X ⊂ V may be associated to a projective variety in P(V ).
With a little abuse of notation, we denote this variety by X as well. Moreover,
we define the ED degree of a projective variety in P(V ) as the ED degree of the
corresponding affine cone in V .

It turns out that the notions of ED correspondence, joint ED correspondence
have a projective counterpart. We state their definition and an analogue of
Theorem 1.2.2 for completeness. Consider the map

ϕ : (V \ {0})× V → P(V )× V
(x, u) 7→ ([x], u)

Definition 1.3.5. The closure of ϕ(EX ∩ [(V \ {0})× V ]) is called the projective
ED correspondence of X, and it is denoted by PE(X).

Similarly to (1.2.2) we might consider the following diagram of projections
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involving the ED correspondence PE(X):

PE(X)

X V

π1 π2 (1.3.3)

Theorem 1.3.6. [DHOST, Theorem 4.4] Let X ⊂ P(V ) be an irreducible variety
not contained in the isotropic quadric Q. Then the projective ED correspondence
PE(X) of X is an n-dimensional irreducible variety in P(V )× V . Its projection
onto X is a vector bundle over Xsm \Q of rank c+ 1. The fiber over general data
points u of its projection onto V are finite of cardinality equal to EDdegree(X).

Mimicking to the case of the projective ED correspondence, we define

ϕ : (V \ {0})× (V \ {0})× V → P(V )× P(V )× V
(x, y, u) 7→ ([x], [y], u)

Definition 1.3.7. The closure of

ϕ {E(X,X∨) ∩ [(V \ {0})× (V \ {0})× V ]}

is called the projective joint ED correspondence of X, and it is denoted by
PE(X,X∨).

When X ⊂ V is an affine cone, we could derive nice formulas for EDdegree(X)
involving several important intrinsic invariants of Algebraic Geometry like polar
classes, Chern classes (for smooth varieties) and Chern-Mather classes (for sin-
gular varieties). We recall a very short summary of these invariants in the next
sections, together with the main results which include them in the ED degree
philosophy.

1.4 The Chow ring of a projective variety

In this brief section, we outline the definition and some basic facts related to the
Chow groups and the Chow ring of a projective variety. It is a necessary step
towards the definition of the polar classes and the Chern classes of a projective
variety. All the necessary material is taken from [Ful, Chapter 8]. Following the
idea of the previous sections, we adopt a coordinate-free approach and consider
a projective space P(V ) for some complex n-dimensional vector space V .
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Let X ⊂ P(V ) be a smooth, irreducible projective variety of dimension
dim(X) = m. For all d ≥ 0, we denote by Zd(X) the free abelian group generated
by d-cocycles of X (or (m− d)-cycles of X), namely formal linear combinations

α =
∑

αiVi

with integer coefficients of d-codimensional irreducible subvarieties Vi ⊂ X. A
d-cocycle α ∈ Zd(X) is principal if it is of the form α = div(f), where f is a
rational function on a subvariety Y of codimension d− 1 in X. Two d-cocycles α
and β are rationally equivalent if α−β is a sum of principal d-cocycles. Rational
equivalence is an equivalence relation in Zd(X) and is denoted by ∼.

Definition 1.4.1. The d-th Chow group Ad(X) is the quotient group Zd(X)/∼.

For example, it turns out that the first Chow group A1(X) coincides with
the Picard group of X (see [Ful, Chapter 2, §1]). In particular, consider the case
X = P(V ). Then A1(P(V )) = Pic(P(V )) ∼= Z, and its generator is the class of a
hyperplane, denoted by H.

Consider the direct sum A∗(X) :=
⊕

i≥0A
i(X), which is clearly an abelian

group with respect to the addition of rational equivalence classes of cycles. One
might turn A∗(X) into a graded ring by defining a suitable product

Ad(X)×Ae(X)→ Ad+e(X).

Let V and W be two irreducible subvarieties of codimensions d and e in X,
respectively. If V and W intersect transversally (for a discussion of the precise
meaning of transversality we refer, for example, to [Sch]), their intersection V ∩W
is a subvariety of codimension d+e in X. Otherwise, if V andW do not intersect
transversally, the smoothness of X allows us to replace V with another cocycle
α =

∑
αiVi on X which is rationally equivalent to V and which intersects W

transversally. This property is classically known as the Moving Lemma (see [Ful,
Chapter 11, §4]). Moreover, one may verify that the two subvarieties V ∩W and
α ∩W are rationally equivalent as well.

Definition 1.4.2. The intersection product of two rational equivalence classes
[V ] ∈ Ad(X) and [W ] ∈ Ae(X) of irreducible subvarieties V and W in X is

[V ][W ] := [α ∩W ] =
[∑

αi(Vi ∩W )
]
∈ Ad+e(X),

where α is any d-cocycle in X which is rationally equivalent to V and which
meets W transversally.

Proposition 1.4.3. [Ful, Proposition 8.3] The group A∗(X) equipped with the
intersection product is a graded ring and is called the Chow ring (or intersection
ring) of X.
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Example 1.4.4. Going back to the example X = P(V ), for all d ≥ 0, the d-
th Chow group of P(V ) is Ad(P(V )) = (Hd) ∼= Z, where Hd is the class of a
linear space of codimension d, namely the product of d 1-codimensional general
hyperplanes of P(V ). In particular, Hn−1 denotes the class of a point, so it
has empty intersection with a general hyperplane. In other words, Hn = 0
and therefore the n-th Chow goup of P(V ) is An(P(V )) = 0. Moreover, Hn =
0 is the only relation involving H. Summing up, the Chow ring of P(V ) is
A∗(P(V )) ∼= Z[H]/(Hn). In particular, if Y ⊂ P(V ) is an irreducible subvariety
of codimension d, then its rational equivalence class [Y ] ∈ Ad(P(V )) is given
by cHd. The coefficient c corresponds to the number of points of intersection
between Y and a general linear subspace of P(V ) of dimension d. In other words,
c is equal to the degree of Y .

Example 1.4.5. Let X ⊂ P(V ) ∼= Pm−1 and Y ⊂ P(W ) ∼= Pn−1 be two smooth
projective varieties and consider their product X × Y embedded in P(V ⊗W ).
There exists a homomorphism of rings A∗(X) ⊗ A∗(Y ) → A∗(X × Y ) which
preserves the grading of the Chow rings involved. When X = P(V ) and Y =
P(W ), then A∗(P(V )) ⊗ A∗(P(W )) ∼= A∗(P(V ) × P(W )). From this fact and
Example 1.4.4, one can derive that

A∗(P(V )× P(W )) ∼=
Z[s, t]

(sm, tn)
,

where s and t correspond to the pullbacks of the hyperplane classes of P(V ) and
P(W ) via the two projections of P(V )× P(W ) onto the factors P(V ) and P(W ),
respectively. In particular, the rational equivalence class [Z] ∈ Ad(X × Y ) of an
irreducible subvariety Z ⊂ X × Y of codimension d may be written as

[Z] = c0s
d + c1s

d−1t+ · · ·+ cdt
d,

where the vector of coefficients (c0, . . . , cd) is known as the multidegree of Z in
X × Y .

1.5 Polar classes of projective varieties

Let V be an n-dimensional complex vector space and let X ⊂ V be an irreducible
affine cone, namely X ⊂ P(V ) as an irreducible projective variety. The main tool
of this section is the conormal variety N (X,X∨) introduced in Definition 1.3.2.
One may verify that N (X,X∨) is an irreducible subvariety of codimension n in
P(V ) × P(V ). Applying the facts outlined in Section 1.4, we may consider the
rational equivalence class [N (X,X∨)] ∈ A∗(P(V ) × P(V )). Following Example
1.4.5, we have that

A∗(P(V )× P(V )) ∼=
Z[s, t]

(sn, tn)
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and
[N (X,X∨)] = δ0s

n−1t+ · · ·+ δn−2st
n−1 (1.5.1)

for some nonnegative integers δi = δi(X). Geometrically speaking, δj(X) counts
the number of intersections between N (X,X∨) and a subvariety of the form
L×M ⊂ P(V )×P(V ), where L andM are linear subspaces of P(V ) of dimensions
n− 1− j and j + 1, respectively.

Actually, the coefficients δj(X) may be introduced in a more formal way using
the Gauss map of a projective variety. For completeness, we briefly outline this
second approach, which is nicely explained in [Pie15].

We denote byG(k+1, V ) = G(k,P(V )) theGrassmannian of (k+1)-dimensional
vector subspaces of V , namely of k-dimensional projective subspaces of P(V ). Let
j ≥ 0 and Lj ⊂ P(V ) be a linear space of codimension k − (j − 2). Define

Σ(Lj) := {M ∈ G(k + 1, V ) | dim(M ∩ Lj) ≥ j − 1}.

Actually, Σ(Lj) is an example of a Schubert variety (see [GH, Chapter 1, §5]).

Example 1.5.1. Assume that V ∼= C3 and that k = 1. Then G(2, V ) is the dual
space P(V )∨. If we let L1 be a general point of P(V ), then necessarily j = 1 and

Σ(L1) = {M ∈ P(V )∨ | dim(M ∩ L1) ≥ 0} = {lines in P(V ) containing L1}.

Having fixed k, if L and L′ are two linear spaces of codimension k − (j − 2)
in P(V ), it turns out that the corresponding subvarieties Σ(L) and Σ(L′) are
projectively equivalent, hence their rational equivalence classes are equal. So we
denote simply by Σj the variety Σ(Lj).

Now consider a projective variety X of dimension m in P(V ). The Gauss map
associated to X is the rational map

γX : X 99K G(m+ 1, V )
x 7−→ TxX

(1.5.2)

which is defined over the smooth points of X.

Definition 1.5.2. The j-th polar variety associated to X ⊂ P(V ) is

Pj(X) := γ−1
X (Σj) = {x ∈ X | dim(TxX ∩ Lj) ≥ j − 1}.

It turns out that the degree of Pj(X) is precisely the coefficient δn−2−j(X)
introduced in (1.5.1). In the literature, the integers δn−2−j(X) are ofter regarded
as the polar classes (or polar ranks) of X, representing the whole rational equiv-
alence classes of the Pj(X)’s.
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Example 1.5.3. For example, let V ∼= C3 and X be a smooth conic in P(V ).
For j = 0, one could see easily from Definition 1.5.2 that P0(X) = X, hence
δ1(X) = deg(X) = 2. Instead for j we have

P1(X) = {x ∈ X | TxX passes through a general point u ∈ P(V )} = {x1, x2},

where x1 and x2 are depicted in Figure 1.7. Hence, δ0(X) = 2. Note that, dually

u

Xx1

x2

Tx1X

Tx2X

Figure 1.7: The first polar variety of a plane conic.

speaking, the general point u corresponds to a general line which intersects X∨
in the two points representing the tangent lines Tx1

X and Tx2
X. In other words,

δ0(X) = 2 corresponds to the degree of the conic X∨.

Actually, what happens in Example 1.5.3 is true for any irreducible projective
variety X ⊂ P(V ). On one hand, δ0(X) = deg(X∨) if X∨ is a hypersurface.
On the other hand, δn−2(X) = deg(X). This is confirmed by the interpretation
given after relation (1.5.1): the invariant δ0(X) counts the points of intersection
between N (X,X∨) and a general subvariety P(V )×M , where M is a line. This,
in turn, is the number of points of intersections between X∨ and the line M ,
namely deg(X∨). More in general, we have following result.

Theorem 1.5.4. [Hol, Theorem 3.4] If δj(X) = 0 for all j < l and δl(X) 6= 0,
then dim(X∨) = n− 2− l and δl(X) = deg(X∨).

One of the reasons why the polar classes of a projective variety X ⊂ P(V ) are
important for our upcoming computations lies in the following important result.

Theorem 1.5.5. [DHOST, Theorem 5.4] If N (X,X∨) does not intersect the
diagonal ∆(P(V )) ⊂ P(V )× P(V ), then

EDdegree(X) = δ0(X) + · · ·+ δn−2(X).

Hence, for example the ED degree of the smooth conic X of Example 1.5.3
(with respect to an isotropic quadric Q such that N (X,X∨) satisfies the hypoth-
esis of Theorem 1.5.5) is EDdegree(X) = δ0(X)+δ1(X) = 4, somehow confirming
the right picture in Figure 1.4.
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In Proposition 4.4.8 we furnish a sufficient condition for N (X,X∨) not to
intersect ∆(P(V )), in terms of Whitney stratifications of X (see Definition 4.3.3).
For example, the hypothesis of Theorem 1.5.5 is satisfied when X∩Q is a smooth
variety disjoint from the singular locus of X.

The polar classes of X are projective invariants of X, and are closely related
to another family of invariants associated to vector bundles on X, the so-called
Chern classes of smooth projective varieties. When we say “Chern classes of X”
we mean the Chern classes of the tangent bundle T X → X (see Definition 1.6.6).
In Section 1.7, we provide a rough introduction to Chern classes of holomorphic
vector bundles in the easiest possible way.

1.6 Overview of holomorphic vector bundles

Before introducing Chern classes, we recall the notion of a holomorphic vector
bundle and state some useful properties. The main references used are [EH,
Chapter 5] and [GH, Chapter 0, §5]. For brevity, after the next definition, we
avoid repeating the word “holomorphic” to address a vector bundle.

Definition 1.6.1. Let E and M be complex manifolds. A holomorphic vec-
tor bundle π : E → M consists of a family {Ex}x∈M of complex vector spaces
parametrized by M such that

1. E :=
⋃
x∈M Ex,

2. The projection π : E →M taking Ex to x is holomorphic, and

3. For every x0 ∈ M , there exists an open set U in M containing x0 and a
biholomorphic map

ϕU : π−1(U) −→ U × Ck

taking the vector space Ex isomorphically onto {x} × Ck for each x ∈ U .
The map ϕU is called a (holomorphic) trivialization of E over U .

The dimension of the fibers Ex of E is called the rank of E. In particular, a
rank-one vector bundle is called a line bundle. For any pair of trivializations ϕUα
and ϕUβ , the map

gαβ : Uα ∩ Uβ −→ GL(Ck), gαβ(x) := (ϕUα ◦ ϕ−1
Uβ

) |{x}×Ck

is holomorphic. The maps gαβ are called transition functions for E relative to
the trivializations ϕUα , ϕUβ . The transition functions of E satisfy the relations

gαβ(x) · gβα(x) = Id for all x ∈ Uα ∩ Uβ
gαβ(x) · gβγ(x) · gγα(x) = Id for all x ∈ Uα ∩ Uβ ∩ Uγ .
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Conversely, every open cover U = {Uα} of M with holomorphic maps gαβ : Uα ∩
Uβ → GL(Ck) satisfying the two above identities yields a unique vector bundle
E →M with transition functions {gαβ}.

Given vector bundles E → M and F → M , F is a subbundle of E (and we
write F ⊂ E) if Fx ⊂ Ex for all x ∈ M and F is a submanifold of E. If F ⊂ E,
we can define the quotient bundle E/F given by (E/F )x := Ex/Fx.

Given a holomorphic map f : M → N between complex manifolds and a vector
bundle E → N , we define the pullback bundle f∗E by setting (f∗E)x = Ef(x).

A (holomorphic) morphism of vector bundles E → M and F → M is a
holomorphic map f : E → F such that f(Ex) ⊂ Fx and fx := f |Ex : Ex → Fx is
linear.

If f : E → F is a morphism of vector bundles over M , then

Ker(f) :=
⋃
x∈M

Ker(fx) ⊂ E, Im(f) :=
⋃
x∈M

Im(fx) ⊂ F

are subbundles of E and F , respectively if and only if the maps fx all have the
same rank.

Two vector bundles E → M and F → M are isomorphic if there exists a
morphism of vector bundles f : E → F such that fx is an isomorphism for all
x ∈M .

The first example of a vector bundle over M of rank k is the product bundle
M × Ck, also called trivial bundle. More in general, a vector bundle E → M of
rank k is trivial if it is isomorphic to M × Ck.

If (E, gαβ) and (F, hαβ) are vector bundles overM of rank k and l respectively,
we can construct many interesting vector bundles over M like

1. the direct sum (or Whitney sum) (E ⊕ F, jαβ), where (E ⊕ F )x := Ex ⊕ Fx
and

jαβ(x) :=

(
gαβ(x) 0

0 hαβ(x)

)
∈ GL(Ck ⊕ Cl),

2. the tensor product (E ⊗ F, jαβ), where (E ⊗ F )x := Ex ⊗ Fx and

jαβ(x) := gαβ(x)⊗ hαβ(x) ∈ GL(Ck ⊗ Cl),

3. the dual (E∨, jαβ), where E∨x := (Ex)∨ and jαβ(x) := [gTαβ(x)]−1 ∈ GL(Ck),

4. the r-th exterior power (∧rE, jαβ), where (∧rE)x := ∧r(Ex) and

jαβ(x) := ∧rgαβ(x) ∈ GL(∧rCk).
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In particular, (∧kE, jαβ) is a line bundle with transition functions

jαβ(x) := det(gαβ(x)) ∈ C∗

and is called the determinant bundle of E.

From the constructions listed above and the basic operations of inclusion,
quotient, and pullback, one may build other useful vector bundles. For example,
given vector bundles E → M and F → M , it turns out that the vector bundle
F ⊗ E∨ is isomorphic to another interesting vector bundle over M , namely the
Hom-bundle Hom(E,F ), whose fibers are (Hom(E,F ))x := Hom(Ex, Fx) for all
x ∈M .

Definition 1.6.2. A (holomorphic) section of a vector bundle E → M over
U ⊂ M is a holomorphic map σ : U → E such that σ(x) ∈ Ex for all x ∈ U . A
global section of a vector bundle E → M is a section defined over all of M . A
vector bundle E →M is globally generated if there exist global sections σ1, . . . , σr
such that the vectors σ1(x), . . . , σr(x) span Ex for all x ∈M .

In the following, we denote by OM the sheaf of holomorphic functions of the
complex manifold M . For every open subset U ⊂ M , OM (U) = Γ(U,OM ) is
the ring of regular functions on U . For a detailed introduction to sheaves on
manifolds, we refer to [GH, Chapter 0, §3].

Definition 1.6.3. For a vector bundle E →M and an open subset U ⊂M , the
sections of M over U form an OM (U)-module which defines locally a presheaf
over M . One may verify that this presheaf is, in fact, a sheaf of OM -modules
and is called the sheaf of sections of E →M .

In particular, OM corresponds to the sheaf of sections of the trivial line bundle
M×C→M . For a positive integer k, the direct sum of k copies of OM is defined
as OM (U)⊕k for all U ⊂ M . It is indicated by O⊕kM . More generally, an OM -
module is free (locally free) of rank k if it is isomorphic (locally isomorphic) to
O⊕kM .

The following result yields a useful dictionary between vector bundles over a
complex manifold M and locally free OM -modules.

Proposition 1.6.4. The set of vector bundles of rank k over a complex manifold
M and the set of locally free OM -modules of rank k are in bijection. The bijection
is defined by sending a vector bundle E →M to its sheaf of sections.

Motivated by the previous result, in the following we denote with the same
symbol E both a vector bundle over M and its associated sheaf of sections.

We make a further consideration before introducing the degeneracy loci of a
vector bundle morphism.
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Remark 1.6.5. Let M be a compact complex manifold and let F be an OM -
module. Then there is a one to one correspondence between morphisms of sheaves
ϕ : OM → F and global sections of F , namely elements of Γ(M,F).

In fact, let ϕ : OM → F be a morphism of sheaves. Then for every open subset
U ⊂ M we have a homomorphism of OM (U)-modules ϕU : OM (U) → F(U). In
particular for U = M we have the homomorphism ϕM : Γ(M,OM ) → Γ(M,F).
Since M is compact, every holomorphic function M → C is constant. In other
words, Γ(M,OM ) ∼= C. This implies that ϕM determines and is determined by
the image of 1 ∈ C in Γ(M,F).

Conversely, let σ ∈ Γ(M,F) be a global section of F and define the ring
homomorphism ϕM : C → Γ(M,F) such that ϕM (1) := σ. Then for every open
subset U ⊂M we can define a ring homomorphism ϕU : Γ(U,OM )→ Γ(U,F) in
order to make the following diagram commute:

Γ(M,OM ) Γ(M,F)

Γ(U,OM ) Γ(U,F).

Here the vertical arrows are the restriction maps respectively of OM and F . This
gives rise to a morphism of sheaves ϕ : OM → F .

As a corollary of last remark, we obtain that there is a one to one correspon-
dence between morphisms ϕ : O⊕rM → F and sets {σ1, . . . , σr} of global sections
of F .

Our prototype for a smooth manifold is the projective space P(V ) associated
to an n-dimensional complex vector space V . We briefly list the first mostly used
vector bundles on P(V ):

1. The trivial line bundle P(V ) × L, where L is a one dimensional complex
vector space, is indicated by O := OP(V ). Therefore, any trivial bundle
E → P(V ) of rank r is of the form E = O⊕r = O ⊗ Cr.

2. the tautological line bundle on P(V ) is the subbundle of F , usually indicated
by O(−1) := OP(V )(−1), such that, for each point x = [v] ∈ P(V ), the fiber
O(−1)x is the line spanned by v.

3. The hyperplane bundle of P(V ) is the dual O(−1)∨ of the tautological bun-
dle and is usually denoted by O(1).

4. For d > 0, we define the line bundle O(d) := O(1)⊗d. Analogously, for
d < 0 we define O(d) := O(−d)∨.
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Analogously, one might consider a smooth projective variety X ⊂ P(V ) and
define the vector bundles X × L and OX(d) for all d ∈ Z. Clearly one might
consider the above vector bundles as “bricks” for constructing other vector bundles
on X. Besides the above-mentioned vector bundles, it is not easy to construct
higher-rank vector bundles on X.

Actually, there is another vector bundle which we can associate naturally to
X, the tangent bundle T X → X. Let {Ui}i be a finite open covering of X
given by charts ϕi : U → ϕi(Ui) ⊂ Cm, where m = dim(X). For example, when
X = P(V ), one might consider the standard open covering P(V ) =

⋃n
i=1 Ui,

where
Ui := {[x1, . . . , xn] ∈ P(V ) | xi 6= 0} ∀i ∈ [n]

and the charts ϕi : Ui → Cn defined as

ϕi ([x1, . . . , xn]) :=

(
x1

xi
, . . . ,

x̂i
xi
, . . . ,

xn
xi

)
.

Definition 1.6.6. The Jacobian of the transition maps ϕij = ϕi ◦ϕ−1
j : ϕj(Ui ∩

Uj) ∼= ϕi(Ui ∩ Uj) is the matrix

J(ϕij)(ϕj(x))
.
=

(
∂kϕij
∂xl

(ϕj(x))

)
k,l

.

The tangent bundle of X is the vector bundle T X of rank m = dim(X) given by
the transition functions

gij(x)
.
= J(ϕij)(ϕj(x)).

The cotangent bundle of X is the dual of T X and is denoted by ΩX .

The above definition is independent of the open covering {Ui}i and the charts
{ϕi}i chosen.

Proposition 1.6.7 (Euler sequence). On P(V ) there exists a natural short exact
sequence of vector bundles

0 −→ O −→ O(1)⊗ V −→ T P(V ) −→ 0. (1.6.1)

Proof. From the definition of tautological line bundle O(−1) we get a short exact
sequence

0→ O(−1)→ O⊗ V → Q→ 0,

where Q is the quotient bundle of rank n. Tensoring with O(1) we get the
sequence

0→ O → O(1)⊗ V → Q(1)→ 0.
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Now let us examine the action σ : GL(V ) × P(V ) → P(V ) of GL(V ) on P(V )
defined by σ(g, [v]) := [g(v)]. This action induces, for every [v] ∈ P(V ), the map

σ[v] : GL(V )→ P(V ), σ[v](g) := σ(g, [v]) = [g(v)] ∀g ∈ GL(V ).

The differential at g = Id of σ[v] is the surjective linear map

Dσ[v] : TIdGL(V ) = gl(V )→ T[v]P(V ), Dσ[v](g) := g(v) ∀g ∈ gl(V ).

Then we have

T[v]P(V ) ∼=
gl(V )

ker(Dσ[v])
=

gl(V )

{g | g(v) ∈ 〈v〉}
∼= Hom

(
〈v〉, V
〈v〉

)
=

= Hom(O(−1)v,Qv) ∼= Qv ⊗O(1)v = [Q⊗O(1)]v = Q(1)v.

Therefore Q(1) ∼= T P(V ), concluding the proof.

It turns out that, if Y is a projective subvariety of X, then there is a canonical
injection T Y ⊂ T X |Y , where T X |Y denotes the restriction to Y of the tangent
bundle of X. This gives rise to the definition of another important vector bundle
on Y ⊂ X.

Definition 1.6.8. Let Y be a projective subvariety of X. The normal bundle
of Y in X, denoted by NY/X → Y , is the cokernel of the natural injection
T Y ⊂ T X |Y . Moreover, the following is a short exact sequence of vector bundles
on Y , called normal bundle sequence of Y :

0 −→ T Y −→ T X |Y−→ NY/X −→ 0. (1.6.2)

The above short exact sequence is used in Example 1.7.4 in the case of a
hypersurface X ⊂ P(V ).

1.7 Chern classes of smooth projective varieties

There are various motivations and ways to define Chern classes. The original
approach to Chern as well as other characteristic classes came from algebraic
topology in the 1930s. Nevertheless, Chern’s approach in the influential paper
[Che] was different and used differential geometry. During his valuable collabora-
tion with Weil in the 1940s, they proved that the differential and the topological
approaches are equivalent.

A more axiomatic approach to Chern classes was given by Grothendieck in
[Gro]. The description of Chern classes that we follow is based on degeneracy
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loci of holomorphic vector bundle morphisms and requires further reasonable
assumptions that are satisfied in all our forthcoming applications.

Let X be a smooth, irreducible projective variety in P(V ) and let E → X be
a vector bundle of rank e. One could associate to E a list of classes cj ∈ Aj(X),
for all 1 ≤ j ≤ e, the so called Chern classes of E. Of particular relevance
is the top Chern class ctop(E) = ce(E). When e = dim(X), then ctop(E) ∈
Adim(X)(X), so it is a 0-cycle, or a sum of classes of points. Since rational
equivalence preserves the sum of the cofficients of a 0-cycle, we can associate to
ctop(E) an integer, called the top Chern number of E. The total Chern class of
E is c(E) := 1 + c1(E) + · · ·+ ctop(E).

Above all the properties of Chern classes, basically, there are two formal rules
(or rather “axioms”, following Grothendieck’s approach) that Chern classes must
satisfy and which allow us to start with some basic computations. On one hand,
if L → X is a line bundle and D is a Cartier divisor such that L = O(D), then
c(L) = 1 +D, namely c1(L) is the rational equivalence class of D. On the other
hand, if we consider any short exact sequence

0 −→ A −→ B −→ C −→ 0

of vector bundles on X, the Whitney sum property states that c(B) = c(A)c(C).
In particular, the total Chern class of a direct sum of bundles is the product of
the total Chern classes of the summands.

Example 1.7.1 (Chern classes of the tangent bundle to P(V )). It turns out
that every line bundle on P(V ) is of the form O(d) = OP(V )(d) for some d ∈ Z.
The Cartier divisor associated to this line bundle is dH, where H is again the
class of a hyperplane in P(V ). In particular, we have that c1(O(d)) = dH and
c(O(d)) = 1 + dH. More in general, considering the direct sum O(d)⊕O(e), we
have

c(O(d)⊕O(e)) = c(O(d))c(O(e)) = (1 + dH)(1 + eH) = 1 + (d+ e)H + deH2.

These facts, joint with the Euler sequence in (1.6.1), allow us to compute the
total Chern class of T P(V ). Indeed, from (1.6.1) we get

c(OP(V ))c(T P(V )) = c(OP(V )(1)⊗ V ).

On the left-hand side we have c(OP(V )) = c(OP(V )(0)) = 1 + 0H = 1, whereas
on the right-hand side c(OP(V )(1)⊗ V ) = (1 +H)n. Therefore, we conclude that
c(T P(V )) = (1 + H)n. In particular, since rk(T P(V )) = n − 1, the top Chern
number of T P(V ) is n.
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Actually, Chern classes can be constructed geometrically using degeneracy
loci of vector bundle morphisms associated to E, when E is globally generated
(this hypothesis is satisfied by the vector bundles considered in this thesis).

So let E → X be a globally generated vector bundle of rank e ≤ dim(X).
Fix r general global sections σ1, . . . , σr ∈ Γ(X,E), where r ≤ e. Equivalently,
by Remark 1.6.5, let ϕ : O⊕rX → E be a general morphism, where here we are
considering E as the sheaf of sections of the vector bundle E → X.

Observe that for every x ∈ X the map ϕx is, in fact, a linear map between
vector spaces. Therefore, ϕ can be interpreted as a family of linear maps between
vector spaces. In other words, for every x ∈ X we get vectors σ1(x), . . . , σr(x) in
the fiber Ex. Since we are assuming that the ϕ is general, we might expect that
the σi(x)’s to be linearly independent for almost all x ∈M .

Definition 1.7.2. For all j ≤ r, the j-th degeneracy locus of ϕ is

Dj(ϕ) := {x ∈ X | rk(ϕx) ≤ j}.

In particular, the (r − 1)-th degeneracy locus D(ϕ) := Dr−1(ϕ) is the locus of
points x at which the linear map ϕx does not have full rank.

Note that the set Di(ϕ) has a natural structure of subscheme of X defined
by the ideal generated by the minors of ϕ of order i + 1. From this fact one
may conclude for example that D(ϕ) has codimension e − r + 1 in X, namely
D(ϕ) ∈ Ae−r+1(X).

For our purposes, the next Theorem may be regarded as a definition of the
Chern classes of a vector bundle E → X, provided that E is globally generated.

Theorem 1.7.3. [Ful, Example 14.4.3] For a globally generated vector bundle
E → X of rank e, and a general morphism ϕ : O⊕rX → E with r ≤ e, the cycle
D(ϕ) is rationally equivalent to ce−r+1(E).

In particular, if ϕ′ : O⊕rX → E is another such general morphism, then the
cycles D(ϕ) and D(ϕ′) are rationally equivalent.

Example 1.7.4 (Chern classes of projective hypersurfaces). Let X be a pro-
jective hypersurface of degree d in P(V ). Then X may be interpreted as the
degeneracy locus D(ϕ) of a morphism ϕ : OP(V ) → OP(V )(d), namely of a global
section s of the line bundle OP(V )(d). In particular, X belongs to the class
c1(OP(V )(d)) = dH, where H is the class of a hyperplane in P(V ). We denote by
h the restriction of H to X, namely h = c1(OX(1)).

In this case, the short exact sequence in (1.6.2) becomes

0 −→ T X −→ T P(V ) |X−→ NX/P(V ) −→ 0.
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Note that NX/P(V ) is in fact a line bundle on X, since X is a hypersurface.
Moreover, it turns out that NX/P(V ) = OX(d) (see for example [Huy, Proposition
2.4.7]). Then, from the Whitney sum property we have that

c(T X)c(OX(d)) = c(T P(V ) |X),

where c(T P(V ) |X) = (1 + h)n following Example 1.7.1 and c(OX(d)) = 1 + dh.
Therefore the total Chern class of X (that is, the total Chern class of T X) is

c(T X) =
(1 + h)n

1 + dh
=

n−2∑
i,j=0

(
n

i

)
(−d)jhi+j =

n−2∑
s=0

[
s∑
i=0

(
n

i

)
(−d)s−i

]
hs. (1.7.1)

In particular, since deg(hn−2) = deg(X) = d, the degree of ctop(T X) is

deg(ctop(T X)) = deg(cn−2(T X)) = d

n−2∑
i=0

(
n

i

)
(−d)n−2−i

and coincides with the topological Euler characteristic of X, by the Gauss-Bonnet
formula (see for example [Huy, p. 235]).

1.8 ED degree formulas in terms of Chern and
Chern-Mather classes

The main result recovered in Theorem 1.5.5 is a formula, based on polar classes,
for the ED degree of a projective variety X ⊂ P(V ) which is somehow transversal
to the isotropic quadric Q.

In the previous section, we recovered the computation of the Chern classes
ci(X) = ci(T X) of a smooth projective variety X ⊂ P(V ) of dimension m. It
turns out that these invariants are related with the polar classes δi(X) by the
following formula (see [Hol]):

δi(X) =

m−i∑
j=0

(−1)j
(
m+ 1− j
i+ 1

)
cj(X) · hm−j ∀ 0 ≤ i ≤ n− 2, (1.8.1)

where h = c1(OX(1)) is the hyperplane class.

The last identities lead to the following important result, which is an alter-
native formulation of the Catanese-Trifogli formula for the ED degree of X (see
[CT, p. 6026]).
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Theorem 1.8.1. [DHOST, Theorem 5.8] Let X be a smooth irreducible variety of
dimension m in P(V ), and suppose that X is transversal to the isotropic quadric
Q. Then

EDdegree(X) =

m∑
i=0

(−1)i(2m+1−i − 1)ci(X) · hm−i,

where h = c1(OX(1)) is the hyperplane class.

The last result or its original formulation by Catanese and Trifogli is useful
to determine the EDdegree of a smooth variety X ⊂ P(V ), at least when its
Chern classes are enough easy to compute. For example, one might derive the
ED degree of a general hypersurface in P(V ).

Proposition 1.8.2. For all n ≥ 2 define the integer

N :=

{
2(n− 1) if d = 2

d (d−1)n−1−1
d−2 if d ≥ 3.

(1.8.2)

If the hypersurface X ⊂ P(V ) of degree d is general, then EDdegree(X) = N .

The above result is a special case of [DHOST, Corollary 2.10]. For example, a
general plane curve C ⊂ P2

C has EDdegree(C) = d2 and a general surface S ⊂ P3
C

has EDdegree(S) = d(d2 − d+ 1).

Remaining in the case of a projective hypersurface X ⊂ P(V ), things get
more difficult if we allow X to have isolated singularities. Recalling from [Dol,
§1.2.3] that µ(X,x) is the Milnor number of an isolated singularity x ∈ X (more
in general, of a complete intersection variety X ⊂ P(V )), we have the following
ED degree formula.

Proposition 1.8.3. [Pie15, p. 146] Let X ⊂ P(V ) be a hypersurface of degree
d with only isolated singularities. For any point x ∈ Xsing, let

e(X,x) := µ(X,x) + µ(H ∩X,x),

where H is a general hyperplane section of X containing x. Then

EDdegree(X) = N −
∑

x∈Xsing

e(X,x), (1.8.3)

where the integer N was defined in (1.8.2).

It is known (see [Dol, Example 1.2.3]) that if x ∈ X is a singular point of type
Ak, then

µ(X,x) = k, µ(H ∩X,x) = 1.
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This gives the formula of the ED degree of a hypersurface with s singularities of
type Ak1

, . . . , Aks

EDdegree(X) = N − (k1 + 1)− · · · − (ks + 1).

In particular, if we consider a plane curve C ⊂ P2
C of degree d with with δ ordinary

nodes and κ ordinary cusps, the ED degree of C is

EDdegree(C) = d2 − 2δ − 3κ. (1.8.4)

Proposition 1.8.3 is the first example recalled of an ED degree formula related
to non-smooth projective varieties. In this wider perspective, the Chern classes
of smooth projective varieties are replaced by the so-called Chern-Mather classes,
introduced by MacPherson in [Mac74]. Another excellent introduction to Chern-
Mather classes is furnished by Aluffi in [Alu18].

Roughly speaking, Chern-Mather classes are constructed as follows. Let X ⊂
P(V ) be a projective variety of dimension m and consider the Gauss map γX
defined in (1.5.2). The Nash blow-up of X is the closure X̃ of the image of γX .
It comes equipped with a proper map ν : X̃ → X.

Now let U → G(m + 1, V ) be the universal bundle over the Grassmannian
G(m + 1, V ), where U := {(v,W ) ∈ V × G(m + 1, V ) | v ∈ W}. In particular,
rk(U) = m+ 1. Similarly as in the proof of Proposition 1.6.7, the vector bundle
U gives a short exact sequence

0→ U → O ⊗ V → Q→ 0,

where Q denotes again the quotient bundle. Then rk(Q) = n−k−1 and Q⊗U∨
is isomorphic to the tangent bundle T G(m+ 1, V ).

Since X̃ is a smooth variety, we can consider the Chern classes of the restric-
tion to X̃ of the universal bundle U and, in turn, their push-forward to X with
respect to the map ν. The resulting classes are called the Chern-Mather classes
of X and are denoted as cMi (X). They agree with Chern classes if X is smooth.

Aluffi proves in [Alu18] the following generalization of Theorem 1.8.1. Below
we use a slightly different convention than in [Alu18]. Indeed, for us cMi (X) is the
component of dimension m− i (as with standard Chern classes), while in Aluffi’s
paper it is the component of dimension i.

Theorem 1.8.4. [Alu18, Proposition 2.9] Let X be an irreducible variety of
dimension m in P(V ), and suppose that X is transversal to the isotropic quadric
Q. Then

EDdegree(Y ) =

m∑
i=0

(−1)i
(
2m+1−i − 1

)
cMi (Y ) · hm−i. (1.8.5)
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The polar classes δi(X) of a non-smooth projective variety X ⊂ P(V ) may be
written in terms of Chern-Mather classes as well, thus generalizing the classical
formula in (1.8.1). This generalization is due to Piene ([Pie88, Theorem 3] and
[Pie78]), see also [Alu18, Proposition 3.13]:

δi(X) =

m−i∑
j=0

(−1)j
(
m+ 1− j
i+ 1

)
cMj (X) · hm−j ∀ 0 ≤ i ≤ n− 2. (1.8.6)

The integer at the right-hand side of (1.8.6) is always nonnegative. For example,
when δ0(X) 6= 0, then X∨ is a hypersurface (see Theorem 1.5.4) of degree

deg(X∨) = δ0(X) =

m∑
j=0

(−1)j (m+ 1− j) cMj (X) · hm−j . (1.8.7)



Chapter 2
The distance from the variety
of rank-one symmetric tensors

In the introduction, we focused on the best rank-one approximation problem for
rectangular matrices as well as higher-order format tensors, with respect to the
Frobenius inner product. The key result, for matrices, is the Eckart-Joung Theo-
rem which uses the SVD of a matrix. The tensor counterpart is due to Lim and
is reported in Theorem 0.0.5. It is based on singular values and singular vector
tuples of tensors. In particular, we intentionally did not consider tensors with
(partial) symmetry.

Actually, we may think of the Eckart-Joung Theorem as a generalization of
the classical Spectral Theorem, which is related to real symmetric matrices. This
important result tells us that, given a symmetric bilinear operator f ∈ S2V R,
then f admits n real eigenvectors u1, . . . , un ∈ V R forming an orthonormal basis
of V R, and n associated real eigenvalues λ1, . . . , λn, not necessarily distinct. Each
eigenvector-eigenvalue pair (uj , λj) is a solution of the equation

f(u) = λu⇐⇒ (f − λId)(u) = 0, (2.0.1)

where Id denotes the identity operator in S2V R. In particular, each eigenvalue
λj is such that the operator f − λj Id is not invertible. If we call Af and I the
symmetric matrices associated to the operators f and Id, respectively, we have
that each λj is a root of the characteristic polynomial

ψAf (λ) := det(Af − λI). (2.0.2)

The Spectral Theorem tells us more. If we let U = (u1| · · · |un) be the or-
thogonal matrix formed by the normalized eigenvectors of f , and we let D =

31
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diag(λ1, . . . , λn) be the matrix whose diagonal elements are the eigenvalues of f ,
then Af admits the spectral decomposition

Af = UDUT = λ1u
2
1 + · · ·+ λnu

2
n. (2.0.3)

Moreover, assume that S2V R is equipped with the restriction of the Frobenius
inner product qR

F introduced in (0.0.4) for matrices and later generalized to higher
format tensors in (0.0.19). This makes (S2V R, qR

F ) a real Euclidean space. Then
all rank-one symmetric matrices which are critical points of the function δR

Af

defined as in (0.0.3) with respect to the inner product qR
F are of the form

X = UDiU
T = λiu

2
i , Di := diag(0, . . . , λi, . . . , 0). (2.0.4)

What is more, the closest rank-one symmetric matrix to Af corresponds to the
largest eigenvalue of f in absolute value, as the following relation suggests:

qR
F (Af − λiu2

i )− qR
F (Af − λj u2

j ) = λ2
i − λ2

j ∀1 ≤ i, j ≤ n.

The goal of this chapter is basically to replay the above itinerary in the space
of real symmetric tensors of degree d ≥ 3. If (V R, qR) is, as usual, an n-dimensional
real Euclidean space, the d-th symmetric power SdV R ⊂ V R⊗d describes all the
symmetric tensors of degree d over V R. The set of all real symmetric tensors of
(symmetric) rank one is the affine cone of the d-th Veronese embedding of V R.
In this chapter, we indicate this affine cone with XR

(d). We equip the space SdV R

with the restriction qR
F of the Frobenius inner product over V R⊗d induced by

qR. As pointed out in the introduction, for our investigations we need to extend
the Euclidean space (V R, qR) to its complexification (V, q). This, in turn, yields
an extension from the real Euclidean space (SdV R, qR

F ) to the complex space
(SdV, qF ). A precise definition of qF is furnished in Section 2.1. The variety
defined by the common complex zeros of the elements in I(XR

(d)) is denoted by
X(d).

In the assumption given above, for a given real symmetric tensor f ∈ SdV R,
one could study the critical points on XR

(d) of the squared distance function
δR
F,f (g) := qR

F (f − g). By a result of Lim and Qi, these, in turn, are defined
in terms of the so-called E-eigenvectors and E-eigenvalues of f . E-eigenvectors
and E-eigenvalues of symmetric tensors may be regarded as the cornerstone of
the Spectral Theory of symmetric tensors. Their definition is clearly inspired by
the normalized eigenvalues and eigenvectors of a symmetric matrix (d = 2). As a
matter of fact, one might frame E-eigenvectors and E-eigenvalues as the symmet-
ric counterpart of the singular vector d-ples and singular values of a nonsymmetric
tensor in V R⊗d, which we presented in Theorem 0.0.4. In Section 2.1 we recall
the definition of E-eigenvectors and E-eigenvalues and their main properties.
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The other main character of this chapter is the E-characteristic polynomial
ψf (λ) of a symmetric tensor f ∈ SdV , which generalizes well the notion of
characteristic polynomial ψf (λ) = det(f − λIn) of a symmetric matrix f ∈ S2V .
It is defined in Section 2.2. The E-eigenvalues of f ∈ SdV are roots of ψf , but
the converse is true only for regular symmetric tensors (see Definition 2.2.6 and
[Qi07, Theorem 4]). In particular, for a general symmetric tensor f ∈ SdV ,
the degree of ψf (λ) is equal to the number of (distinct) E-eigenvalues of f , and
corresponds to the ED degree of X ⊂ SdV (introduced in general in Definition
1.2.3) with respect to the isotropic quadric QF := V(qF ). The computation of
this number is due to Cartwright and Sturmfels and is reported below.

Theorem 2.0.1. [CS, Theorem 5.5] For all n ≥ 2, define the integer N := n for
d = 2, whereas N := ((d − 1)n − 1)/(d − 2) for d ≥ 3. Every symmetric tensor
f ∈ SdV has at most N distinct E-eigenvalues when d is even, and at most N
pairs (λ,−λ) of distinct E-eigenvalues when d is odd. This bound is attained for
general symmetric tensors. In particular, EDdegree(X) = N with respect to the
isotropic quadric QF .

This fact was previously conjectured in [NQWW] and is confirmed by Friedland-
Ottaviani formula in Theorem 5.1.1 (see also [OO]). However, this result had
already essentially been known in complex dynamics due to Fornæss and Sibony,
who in [FS] discuss global questions of iteration of rational maps in higher di-
mension.

Our main contributions in this chapter are related especially to the study of
the coefficients of ψf (λ). In the following, Q̃ denotes the Veronese embedding
in P(SdV ) of the isotropic quadric Q := V(q) ⊂ P(V ), whereas ∆Q̃(f) is the
Q̃-discriminant of f , namely the equation of Q̃∨, when it is a hypersurface (see
Section 2.1). We show that the highest coefficient of ψf (λ), when it has maximum
degree, is the (d−2)-th power (respectively the ((d−2)/2)-th power) when d is odd
(respectively when d is even) of ∆Q̃(f). This fact, together with a known formula
for the lowest coefficient of ψf (λ), leads to a closed formula for the product of the
E-eigenvalues of f when ψf has maximum degree, which generalizes the fact that
the determinant of a symmetric matrix is equal to the product of its eigenvalues.

Theorem 2.0.2. [Sod18, Main Theorem] Let f ∈ SdV R be a real symmetric
tensor of degree d ≥ 2. If f admits the maximum number N = EDdegree(X)
of E-eigenvalues (counted with multiplicity) defined in Theorem 2.0.1, then their
product is

λ1 · · ·λN = ±
Res

(
1
d∇f

)
∆Q̃(f)

d−2
2

. (2.0.5)
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Theorem 2.0.2 is the main result of this chapter and its proof is developed in
Section 2.3. We note (see Lemma 2.3.10) that the assumption of Theorem 2.0.2
is satisfied for a general f , and it corresponds geometrically to the fact that the
hypersurface V(f) ⊂ P(V ) is transversal to the isotropic quadric Q (see Remark
2.3.11). We stress that the polynomial Res

(
1
d∇f

)
appearing in the numerator of

(2.0.5) is equal to the classical discriminant ∆d(f) of f times a constant factor.
For the definition of discriminant of a homogeneous polynomial and a relation
between Res

(
1
d∇f

)
and ∆d(f) we refer to Section 2.2. Moreover, the product of

the E-eigenvalues of f is a priori equal to the right-hand side of (2.0.5) times a
constant factor depending only on n and d. Using the definitions of resultant and
Q̃-discriminant, we prove via Lemma 2.3.1 that this constant factor is (in absolute
value) 1 by specializing to the family of scaled Fermat polynomials. However, the
identity (2.0.5) is given up to sign since the definition of E-eigenvalue has this
sign ambiguity.

The combination of Theorem 2.0.1 and Theorem 2.0.2 shows that the degree
of the E-characteristic polynomial ψf is equal to N (or 2N , depending on d even
or odd), whereas it is smaller than the “expected” one exactly when f admits at
least an isotropic eigenvector. This in particular motivated our research on the
geometric meaning of the vanishing of the leading coefficient of ψf . Therefore
Theorem 2.0.2 describes that, if the coefficients of f annihilate the polynomial
∆Q̃(f), then some of the E-eigenvalues of f have gone “to infinity”: in practice,
f admits at least an isotropic eigenvector whose corresponding eigenvalue does
not appear as a root of the E-characteristic polynomial ψf . We stress that both
numerator and denominator in (2.0.5) are orthogonal invariants of f , namely
polynomials in the coefficients of f that are invariant under the orthonormal
linear changes of coordinates in f .

The results presented in this chapter will be generalized later in Chapter 5 in
the context of partially symmetric tensors, including the case of nonsymmetric
tensors presented in Theorem 0.0.8. Nevertheless, we chose to separate the case
of symmetric tensors from all the other ones. The main reason is that, unlike
all the other cases, some of the proofs are based on the theory of resultants of a
homogeneous polynomial system, which we summarize in Section 2.2.

2.1 E-eigenvalues and E-eigenvectors
of symmetric tensors

In this section we recall the main properties of E-eigenvectors and E- eigenvalues
of symmetric tensors. We start by setting our notation more in detail. Let V R be
an n-dimensional real vector space. Given an integer d ≥ 2, the tensor product
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V R⊗d of d copies of V R describes all real tensors of format n×d, or tensors of order
d on V R. An excellent reference for spaces of tensors and the algebraic geometry
related to them is [Lan]. Consider the projection operator πS : V R⊗d → V R⊗d

defined on decomposable elements by

πS(x1 ⊗ · · · ⊗ xd) =
1

d!

∑
σ∈Sd

xσ(1) ⊗ · · · ⊗ xσ(d),

where Sd is the group of permutations of d elements. The map πS is in fact a
projection, since π2

S(T ) = πS(T ) for all T ∈ V R⊗d.

Definition 2.1.1. The symmetric product of d vectors x1,. . . ,xd is the vector
x1 · · ·xd := πS(x1 ⊗ · · · ⊗ xd) ∈ V R⊗d. The image πS(V R⊗d) is called the d-
th symmetric power of V R and it is denoted by SdV R. Its elements are called
symmetric tensors of order d on V R.

Actually, if we want to consider real tensors of order d on V R as d-linear
maps V R×d → R, we should consider the tensor product (V R∗)⊗d, where V R∗ :=
{f : V R → R | f is linear} is the dual vector space of V R. In particular, the
space SdV R∗ corresponds to the space of symmetric d-linear maps on V R, namely
d-linear maps f : V R×d → R such that, for all x1, . . . , xd ∈ V R,

f(xσ(1), . . . , xσ(d)) = f(x1, . . . , xd)

for every permutation σ ∈ Sd.
In fact, there is another interpretation of SdV R∗ as the space of degree d

homogeneous polynomial functions on V R. In other words, given a multilinear
map f ∈ SdV R∗, the map sending x ∈ V R to f(x, . . . , x) ∈ R is polynomial
and homogeneous of degree d. Thus, having fixed a basis (x1, . . . , xn) of V R,
a symmetric tensor f ∈ SdV R∗ may be seen simply as a d-dimensional array
f = (ci1···id)1≤ij≤n of real numbers which are symmetric under permutations of
the indices. The corresponding homogeneous polynomial of degree d is

f =

n∑
i1,...,id=1

ci1···idxi1 · · ·xid .

Actually, we adopt a different notation and write f as

f =
∑
|α|=d

(
d

α

)
fαx

α, (2.1.1)

where α = (α1, . . . , αn) ∈ Zn≥0, |α| := α1 + · · · + αn, xα := xα1
1 · · ·xαnn and(

d
α

)
:= d!

α1!···αn! is the multinomial coefficient. In particular, we suppose that
(fα)α is a system of coordinates for SdV R.
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As we show throughout this chapter, the advantage of treating symmetric
tensors as homogeneous polynomials (or forms) is that we can associate with
every f ∈ SdV R∗ a projective hypersurface Xf := V(f) ⊂ P(V R) of degree d.
Geometrically speaking, it is obtained as a hyperplane section ofXR

(d), here viewed
as a projective variety in P(SdV R∗).

Remark 2.1.2. In the following, we fix a positive definite symmetric bilinear
form qR on V R. This assumption allows us to identify the two vector spaces
V R and V R∗ . Therefore, if not specified, we always deal with V R⊗d as well as
SdV R even if its elements are viewed as (symmetric) multilinear maps or, in the
symmetric case, homogeneous polynomials. Indeed, our aim is to focus more on
the metric properties of SdV R∗.

Definition 2.1.3. A symmetric tensor f ∈ SdV R has (real) symmetric rank one
if f = ld for some linear form l = ξ1x1 + · · ·+ ξnxn ∈ V R. Symmetric tensors of
rank one fill the affine cone XR

(d) of the image of the d-th Veronese embedding of
P(V R)

vd : P(V R) ↪→ P(SdV R), vd([l]) := [ld].

More in general, the (real) symmetric rank of f ∈ SdV R is the smallest positive
integer r such that f = ld1 + · · ·+ ldr for some linear forms lj ∈ V R.

We remark that, in a slightly wider perspective, the variety vd(P(V R)) is the
restriction to P(SdV R) of the Segre embedding of d copies of P(V R) introduced in
its full generality in (0.0.17).

In the introduction of this chapter, we set the Frobenius inner product as the
Euclidean structure over the space SdV R. How does it work explicitly?

In a coordinate-free way, the Frobenius inner product qR
F of two symmetric

tensors of rank one ld and l̃d is

qR
F (ld, l̃d) := qR(l, l̃)d, (2.1.2)

where qR is a fixed inner product on V R. If we consider two symmetric products
of linear forms f = l1 · · · ld and g = l̃1 · · · l̃d, then

qR
F (f, g) =

1

d!

∑
σ∈Sd

qR(l1, l̃σ(1)) · · · qR(ld, l̃σ(d)).

More generally, if we consider two symmetric tensors f = (fα)α and g = (gα)α
written as in (2.1.1), and if we assume that the basis (x1, . . . , xn) of V R is or-
thonormal, it turns out that

qR
F (f, g) =

∑
|α|=d

(
d

α

)
fαgα .
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Thus in particular the squared Frobenius norm of f = (fα)α ∈ SdV R is

qR
F (f) = qR

F (f, f) =
∑
|α|=d

(
d

α

)
f2
α . (2.1.3)

Definition 2.1.4. Let f ∈ SdV R and consider the function δR
F,f : XR

(d) → R
defined by δR

F,f (xd) := qR
F (f − xd) for all x ∈ V R. Then a critical rank-one

symmetric tensor for f is a critical point xd ∈ XR
(d) of δR

F,f .

The notions of E-eigenvalue and E-eigenvector of a symmetric tensor were
proposed independently by Lek-Heng Lim and Liqun Qi in [Lim, Qi05] in the
more general setting of n-dimensional tensors of order d on V , namely elements
of V ⊗d. There are different types of eigenvectors and eigenvalues in the literature,
see [CS, HHLQ, NQWW, Qi07, QL].

Definition 2.1.5. Given a symmetric tensor f ∈ SdV , a nonzero vector x ∈ V
such that q(x) = 1 is called an E-eigenvector of f (where the “E” stands for
“Euclidean”) if there exists λ ∈ C such that x is a solution of the equation

qF (f, xd−1 ·_) = λq(x,_) (2.1.4)

The scalar λ corresponding to x is called an E-eigenvalue of f , while the pair
(λ, x) is called an E-eigenpair of f . The corresponding power xd ∈ SdV is called
an E-eigentensor of f . In particular, for even order d, (λ, x) is an E-eigenpair of
f if and only if (λ,−x) is so; for odd order d, (λ, x) is an E-eigenpair of f if and
only if (−λ,−x) is so.

If x ∈ V is a solution of (2.1.4) such that q(x) = 0, we call x an isotropic
eigenvector of f .

An E-eigenvalue λ of f ∈ SdV R is called a Z-eigenvalue of f if it has a real
E-eigenvector x. In this case, the corresponding E-eigenvector x is called a Z-
eigenvector of f associated with λ.

By an eigenvector of f we mean any solution of equation (2.1.4), whether it
has unit norm or not.

Note that both sides of relation (2.1.4) correspond to linear operators on V .
If we assume that q is defined as q(x) = x2

1 + · · ·+ x2
n, we can rewrite the system

(2.1.4) as
1

d
∇f(x) = λx, (2.1.5)

where ∇f is the gradient of the corresponding homogeneous polynomial. The
factor 1/d appearing in (2.1.5) follows the notation in [Qi05] conformed to the
symmetric case.



38 Chapter 2. The distance from the variety of rank-one symmetric tensors

Observe that, if (λ, x) satisfies (2.1.4), then (αd−2λ, αx) satisfies (2.1.4) for
any nonzero α ∈ C. This is why we impose the additional quadratic equation
q(x) = 1 in Definition 2.1.5.

At this point, it is important to stress how different is the behavior of sym-
metric tensors of order d ≥ 3 compared with symmetric matrices (d = 2). First
of all, Definition 2.1.5 agrees with the standard definition of normalized eigen-
value and normalized eigenvector of a symmetric matrix. Instead, if we consider
nonsymmetric square matrices, then the notion of E-eigenvector excludes the
nonzero complex eigenvectors x such that q(x) = 0. In addition, despite the
case of symmetric matrices, there exist real symmetric tensors of order d ≥ 3
admitting non-real E-eigenvalues. An example is shown below.

Example 2.1.6. Assume that n = 2, d = 5 and consider the symmetric tensor

f(x1, x2) = x5
1 + x5

2,

written as a binary form of degree five. Assuming that q(x1, x2) = x2
1 + x2

2, the
system analogous to (2.1.5), together with the normalization condition, is

x4
1 = λx1

x4
2 = λx2

x2
1 + x2

2 = 1

Let θ = e
2
3π
√
−1 be a third root of unity. It is not difficult to verify that x =

(θ/
√

1 + θ2, 1/
√

1 + θ2) is a non-real E-eigenvector of f with corresponding E-
eigenvalue λ =

√
−1. The binary form f is an instance of a Fermat polynomial,

which are treated in detail in Lemma 2.3.1.

The absence of non-real eigenvalues and eigenvectors is just one of the prop-
erties of symmetric matrices that fail for symmetric tensors of higher degree.
Nevertheless, a positive result is the following:

Theorem 2.1.7. [QL, Theorem 2.18] Consider a symmetric tensor f ∈ SdV R.
Then f always has Z-eigenvalues.

Z-eigenvalues are important since they are the fundamental tool for determin-
ing the best rank-one approximation of a real symmetric tensor. A remarkable
fact observed in [Lim, Qi05] is that the Z-eigenvectors of f ∈ SdV R correspond
to the critical points of the function f : V R → R restricted on the affine variety
{x ∈ V R | q(x) = 1}. Hence, if q(x) = x2

1 + · · · + x2
n, the Z-eigenvectors of f are

the normalized real solutions x, in orthonormal coordinates, of:

rank
(
∇f(x)
x

)
≤ 1.
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Theorem 2.1.8 (Lim, variational principle). Suppose that f ∈ SdV R. The crit-
ical rank-one symmetric tensors for f are exactly of the form xd, where x is an
eigenvector of f . Moreover, if λ∗ is a Z-eigenvalue of f such that |λ∗| is maxi-
mum, and if x∗ is a Z-eigenvector associated with λ∗, then λ∗xd∗ is a best rank-one
approximation of f .

This interpretation is used by Draisma, Ottaviani and Tocino in [DOT], where
they deal more in general with the best rank-k approximation problem for tensors.

Let us examine again Definition 2.1.5. Another consequence is the following
property, where we are assuming (without loss of generality) that the complex
form q is induced by the standard inner product qR(x1, . . . , xn) = x2

1 + · · · + x2
n

on V R.

Proposition 2.1.9. Let f ∈ SdV . If (λ, x) is an E-eigenpair of f , then λ = f(x).

Proof. Apply the operator q(_, x) on both sides of equation (2.1.4). Then we
have

q

(
1

d
∇f(x), x

)
= q(λx, x).

Using Euler’s identity, the left hand side of last identity is equal to f(x), whereas
by linearity and the fact that q(x) = 1 the right-hand side is equal to λ.

Note that, as a consequence of the previous result, every Z-eigenvalue of
f ∈ SdV R is a real E-eigenvalue, but a real E-eigenvalue is not necessarily a
Z-eigenvalue.

So far we did not mention another important property of E-eigenvalues, which
somehow motivated Definition 2.1.5. We are talking about their invariance with
respect to an orthonormal linear change of coordinates in V . More precisely, the
set of automorphisms A ∈ Aut(V ) that preserve the bilinear product q(_,_), i.e.,
such that q(Ax,Ay) = q(x, y) for all x, y ∈ V , forms the orthogonal group O(V )
and is a subgroup of Aut(V ). The special orthogonal group SO(V ) is defined as
the set of all A in O(V ) with determinant 1. An SO(V )-invariant (or orthogonal
invariant) for f ∈ SdV is a polynomial in the coefficients of f that does not vary
under the action of SO(V ) on the coefficients of f , where the above-mentioned
action is the one induced by the linear action of SO(V ) on the coordinates of
V . We will treat in more detail this topic in Chapter 3. The main result is the
following.

Theorem 2.1.10. [Qi07, Theorem 1] Given f ∈ SdV , the set of the E-eigenvalues
of f is a SO(V )-invariant of f .
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2.2 The E-characteristic polynomial
of a symmetric tensor

In this section, we study a fundamental tool for computing the E-eigenvalues of a
symmetric tensor, namely its E-characteristic polynomial. Actually, the definition
of E-characteristic polynomial needs the knowledge of the resultant of a set of m
homogeneous polynomials in m variables (see [CLO, GKZ]). It is introduced via
the following proposition.

Proposition 2.2.1. Let f1, . . . , fm be m homogeneous polynomials of positive
degrees d1, . . . , dm respectively in the variables z1, . . . , zm. Then there is a unique
polynomial Res(f1, . . . , fm) over Z in the coefficients of f1, . . . , fm such that

i) Res(f1, . . . , fm) = 0 if and only if the system f1 = · · · = fm = 0 has a
solution in Pm−1

C .

ii) Res
(

1
d∇f

)
= (a1 · · · am)(d−1)m−1

, where f(z1, . . . , zm) = a1z
d
1 + · · ·+amzdm,

a1, . . . , am ∈ C, is the scaled Fermat polynomial.

iii) Res(f1, . . . , fm) is irreducible, even when regarded as a polynomial over C
in the coefficients of f1, . . . , fm.

The normalization assumption of ii) coincides with the classical definition
made in [CLO, Chapter 3, Theorem 2.3 and Theorem 3.5] and in [GKZ, p. 427].

The degree of the resultant is known in general.

Proposition 2.2.2. Res(f1, . . . , fm) is a homogeneous polynomial of degree
∏
j 6=i dj

with respect to the coefficients of fi for all i ∈ [m]. Hence the total degree of
Res(f1, . . . , fm) is

deg Res(f1, . . . , fm) =

m∑
i=1

d1 · · · di−1di+1 · · · dm.

In particular, when all the forms f1, . . . , fm have the same degree d, the resultant
has degree dm−1 in the coefficients of each fi, namely deg Res(f1, . . . , fm) =
mdm−1.

The notion of resultant is closely related to the classical notion of discriminant
of a homogeneous polynomial of degree d inm variables. An excellent reference for
the theory of resultants and discriminants is [GKZ]. The problem of computing
the discriminant of a homogeneous polynomial is a particular case of a more
general geometric problem, that is, finding the equations of the dual X∨ of an
irreducible projective variety X ⊂ P(V ) (see [GKZ, Hol, Tev]), which in this
thesis was introduced in Definition 1.3.1.
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As we outlined in (1.3.1), the dual variety X∨ is obtained as the image of the
conormal variety N (X,X∨) via the projection onto V = V ∗ and is an irreducible
variety. Moreover, since dim(N (X,X∨)) = n−2, it follows that dim(X∨) ≤ n−2
and we expect that in “typical” cases X∨ is a hypersurface.

Definition 2.2.3. Let X ⊂ P(V ) be a projective variety. If X∨ is a hypersurface,
then it is defined by the vanishing of a homogeneous polynomial, denoted by ∆X

and called the X-discriminant. We assume the X-discriminant to have relatively
prime integer coefficients: in this way, ∆X is defined up to sign. If X∨ is not a
hypersurface, then we set ∆X := 1.

If X ⊂ P(V ) is an irreducible variety such that X∨ is a hypersurface, then
∆X is an irreducible homogeneous polynomial over the complex numbers. When
X is the Veronese variety X(d) introduced in Definition 2.1.3, then it is known
that, for all d > 1, X∨(d) is a hypersurface and its equation coincides, up to a
constant factor, with the discriminant ∆d(h) of a homogeneous polynomial h of
degree d in n variables.

Now we have all the necessary tools to introduce the E-characteristic poly-
nomial of a symmetric tensor. If not otherwise specified, we assume that q(x) =
x2

1 + · · ·+ x2
n is the complex form associated with the standard Euclidean inner

product in V R.

Definition 2.2.4. Given f ∈ SdV , when d is even the E-characteristic polyno-
mial ψf of f is defined by ψf (λ) := Res(Fλ), where λ ∈ C and Res(Fλ) is the
resultant of the n-dimensional vector

Fλ(x) :=
1

d
∇f(x)− λq(x)

d−2
2 x. (2.2.1)

When d is odd, the E-characteristic polynomial is defined as ψf (λ) := Res(Gλ),
where Res(Gλ) is the resultant of the (n+ 1)-dimensional vector

Gλ(x0, x) :=

(
x2

0 − q(x)
1
d∇f(x)− λxd−2

0 x

)
. (2.2.2)

For d = 2, the E-characteristic polynomial agrees with the characteristic
polynomial ψAf (λ) of a symmetric matrix Af viewed in (2.0.2). In this case, the
roots of ψAf are all the eigenvalues of f , and if the coefficients of f are real, then
the roots of ψAf are all real by the Spectral Theorem. Moreover, the leading
coefficient of ψAf is 1, implying that its constant term is equal to the product of
the eigenvalues of f , that is the determinant of Af .

The interesting fact is that this happens only for d = 2: as we show throughout
this chapter, given f ∈ SdV with d > 2, then some of the roots of the E-
characteristic polynomial ψf may not be real even though the coefficients of f
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are real. However, there exist symmetric tensors with only real E-eigenvalues,
as shown by Maccioni in [Mac] and Kozhasov in [Koz]. Moreover, the leading
coefficient of ψf is a homogeneous polynomial over Z in the coefficients of f with
a positive degree for d > 2.

Theorem 2.1.10 states that the symmetric functions of the E-eigenvalues of f
are orthogonal invariants of f , giving rise to the following corollary (see [LQZ,
Theorem 3.3]):

Corollary 2.2.5. Given f ∈ SdV , all the coefficients of the E-characteristic
polynomial ψf are SO(V )-invariants of f .

Given f ∈ SdV , we observe that if d is even there exists a nonzero constant
c ∈ Z such that

ψf (λ) := Res(Fλ(x)) = c ·∆d

(
f(x)− λq(x)

d
2

)
, (2.2.3)

where the n-dimensional vector Fλ(x) was introduced in (2.2.1) (see again [GKZ,
Proposition XIII, 1.7]). On the other hand, a relation equivalent to (2.2.3) is no
longer possible for odd d: in (2.2.2), an additional variable x0 is required to make
the polynomial ψf well-defined.

In the study of the E-characteristic polynomial ψf , a crucial role is played by
a family of particular symmetric tensors, the ones admitting at least a singular
point on the isotropic quadric Q.

Definition 2.2.6. A symmetric tensor f ∈ SdV is irregular if there exists a
nonzero vector x ∈ V such that q(x) = 0 and ∇f(x) = 0. Otherwise f is called
regular.

Clearly, any symmetric matrix (d = 2) corresponds to a regular symmetric
tensor. Instead for d ≥ 3 there exists symmetric tensors that are not regular.

Example 2.2.7. Assume that n = 2, d = 4 and consider the quartic binary form
f(x1, x2) = (x2

1 + x2
2)2. Then the condition ∇f(x) = 0 becomes{

x1(x2
1 + x2

2) = 0

x2(x2
1 + x2

2) = 0 .

Since the vectors (1,
√
−1) and (1,−

√
−1) are isotropic solutions of the previous

system, then f is not regular. Note that, in this example, every vector x ∈ V
such that q(x) = 1 is an E-eigenvector of f with eigenvalue λ = 1 (see [OT,
Lemma 3.7]).
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The first general property about irregular symmetric tensors is that, when
d > 2, their E-characteristic polynomial is identically zero.

Proposition 2.2.8. Given f ∈ SdV with d > 2, if f is irregular then ψf is the
zero polynomial.

Proof. Suppose that f is irregular. Then, by Definition 2.2.6 there exists a
nonzero vector x ∈ V such that q(x) = 0 and ∇f(x) = 0. Looking at Def-
inition 2.2.4, this implies that, for even d > 2, x is a solution of the system
Fλ(x) = 0 for all λ ∈ C, whereas for odd d > 2, the pair (0, x) is a solution of
the system Gλ(x0, x) = 0 for all λ ∈ C. By resultant theory, this means that
ψf (λ) = 0 for all λ ∈ C, namely ψf is identically zero.

Remark 2.2.9. The statement of Proposition 2.2.8 is no longer true for d = 2.
In fact, for d = 2 and any n ≥ 1 there exist irregular symmetric tensors f ∈ SdV
such that ψf is not identically zero. For example, the polynomial f(x) = (x1 +√
−1x2)2 + x2

3 + · · · + x2
n is irregular because the vector (1,

√
−1, 0, . . . , 0) is a

solution of ∇f(x) = 0, whereas one can easily check that ψf (λ) = λ2(1− λ)n−2,
hence it is not identically zero.

The notion of regularity of a symmetric tensor plays a crucial role in the
following result.

Theorem 2.2.10. Suppose that d ≥ 3. Given f ∈ SdV , every E-eigenvalue of
f is a root of the E-characteristic polynomial ψf . If f is regular, then every root
of ψf is an E-eigenvalue of f .

Proof. For completeness we recover and adapt the proofs in [Qi07, Theorem 4]
and in [QL, Theorem 2.23]. Suppose that x ∈ V is an E-eigenvector of f and λ ∈
C is the E-eigenvalue associated with λ. Then looking at Definition 2.2.4, when d
is even we get that x and −x are nonzero solutions of the system Fλ(x) = 0; when
d is odd, (1, x) and (−1,−x) are nonzero solutions of the system Gλ(x0, x) = 0.
Therefore λ is a root of ψf by Proposition 2.2.1.

On the other hand, suppose that f is regular and let λ ∈ C be a root of ψf .
By Definition 2.2.4 and Proposition 2.2.1, when d is even there exists a nonzero
vector x ∈ V such that Fλ(x) = 0 for that λ; when d is odd, there exists a nonzero
vector x ∈ V and x0 ∈ C such that Gλ(x0, x) = 0 for that λ. If q(x) = 0, both
Fλ(x) = 0 and Gλ(x0, x) = 0 yield the condition ∇f(x) = 0, which cannot be
satisfied because of the regularity of f . Hence q(x) 6= 0 and we define x̃ := x/q(x).
Therefore, when d is even the equation (2.1.4) is satisfied by (λ, x̃) and (λ,−x̃),
while for odd d it is satisfied by (λ, x̃) and (−λ,−x̃). This implies that λ is an
E-eigenvalue of f .
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Example 2.2.11. Let us consider the case in which d is even and f = q(x)
d
2 .

Then equation (2.1.4) becomes q(x)
d−2

2 x = λx: this means, if d = 2, that every
nonzero vector x ∈ V such that q(x) = 1 is an E-eigenvector of f with E-
eigenvalue λ = 1 (and in fact the E-characteristic polynomial of f is ψf (λ) =
(λ − 1)n). Instead for d > 2 every nonzero vector x ∈ V such that q(x) = 1 is
an E-eigenvector of f with corresponding E-eigenvalue λ = 1, and every nonzero
vector x ∈ V such that q(x) = 0 is an isotropic eigenvector of f . In particular f
is irregular for d > 2, and in fact in this case the E-characteristic polynomial of
f is identically zero by Proposition 2.2.8.

The greatest difference among eigenvectors of a symmetric matrix and eigen-
vectors of a symmetric tensor of degree d > 2 is related to the presence or not of
isotropic eigenvectors. Suppose that f ∈ SdV admits an isotropic eigenvector x
and let P := [x] be the corresponding point of the isotropic quadric Q ⊂ P(V ).
In the same fashion of Proposition 2.1.9, this time we have that f(x) = 0, that is,
P ∈ Xf . As we show in Section 2.3, equation (2.1.4) acquires a new interesting
meaning: the isotropic eigenvectors of f are all the nonzero vectors x such that
[x] =: P ∈ Xf ∩ Q and P is singular for Xf (and hence f is irregular) or P is
smooth for Xf and Xf is tangent to Q at P .

We study more in detail the coefficients of the E-characteristic polynomial of
a symmetric tensor. Given a general f ∈ SdV , from Theorem 2.0.1 and Theorem
2.2.10 we have that deg(ψf ) ≤ N for even d, where N is the integer defined in
Theorem 2.0.1. Thus ψf can be written as

ψf (λ) =

N∑
j=0

cjλ
j , (2.2.4)

where for all 0 ≤ j ≤ N the coefficient cj = cj(n, d) is a homogeneous polynomial
in the coefficents of f . Otherwise if d is odd and (λ, x) is an E-eigenpair of f ,
then (−λ,−x) is an E-eigenpair of f as well. This means that for odd d the
E-characteristic polynomial ψf has maximum degree N in λ2 and in particular
it contains only even power terms of λ. Hence ψf can be written explicitly as

ψf (λ) =

N∑
j=0

c2jλ
2j . (2.2.5)

Now we focus on the constant term of the E-characteristic polynomial ψf . In
particular we recover the fact that, when nonzero, the constant term of ψf is a
power of Res

(
1
d∇f

)
times a constant factor.



2.2. The E-characteristic polynomial of a symmetric tensor 45

Theorem 2.2.12. [LQZ, Theorem 3.5] Let f ∈ SdV . Then for even d we have
that

c0 = c · Res

(
1

d
∇f
)
, (2.2.6)

while for odd d we have that

c0 = c · Res

(
1

d
∇f
)2

(2.2.7)

for some constant c ∈ Z depending on n and d.

Proof. The relations (2.2.6) and (2.2.7) are trivially satisfied when f is irregular
(compare with Proposition 2.2.8), so we can assume f regular. When d is even,
from relation (2.2.1) we have that

c0 = ψf (0) = Res(Fλ)|{λ=0} = c · Res(F0) = c · Res

(
1

d
∇f
)

for some constant c = c(n, d) ∈ Z.
Now suppose that d is odd. From relation (2.2.2) we have that

c0 = ψf (0) = Res(Gλ)|{λ=0} = c · Res(G0), G0(x0, x) =

(
x2

0 − q(x)
1
d∇f(x)

)
for some constant c = c(n, d) ∈ Z. In order to prove relation (2.2.7), it is sufficient
to prove that

Res(G0) = Res

(
1

d
∇f
)2

. (2.2.8)

First of all, we prove that the system{
x2

0 − q(x) = 0
1
d∇f(x) = 0

(2.2.9)

has a nonzero solution if and only if Res
(

1
d∇f

)
= 0. Let (x0, x) be a nonzero

solution of (2.2.9). In particular, x is a nonzero solution of ∇f(x) = 0. Thus,
Res

(
1
d∇f

)
= 0. On the other hand, suppose that Res

(
1
d∇f

)
= 0. Then∇f(x) =

0 admits a nonzero solution x and (q(x)
1
2 , x) is a nonzero solution of (2.2.9).

Hence the equations Res(G0) = 0 and Res
(

1
d∇f

)
= 0 define the same variety.

By definition Res
(

1
d∇f

)
is an irreducible polynomial over Z in the coefficients of

f . Therefore

Res(G0) = Res

(
1

d
∇f
)k
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for some positive integer k. Since the polynomial x2
0 − q(x) is quadratic, from

Proposition 2.2.2 we have that Res(G0) is a homogeneous polynomial in the
coefficients of ∂f/∂x1, . . . , ∂f/∂xn of degree 2(d−1)n−1. On the other hand, the
degree of Res

(
1
d∇f

)k is k(d − 1)n−1. Therefore relation (2.2.9) is satisfied only
if k = 2. This completes the proof.

We apply the following result when we study the degree of the leading coef-
ficient and of the constant term of ψf , viewed as polynomials in the coefficients
of f (see [LQZ, Proposition 3.6]).

Proposition 2.2.13. Consider f ∈ SdV and let ψf be its E-characteristic poly-
nomial written as in (2.2.4), (2.2.5).

i) When d is even, ci is a homogeneous polynomial in the coefficients of f with
degree n(d− 1)n−1 − i. In particular deg(cN ) = n(d− 1)n−1 −N =: ϕn(d),
where N is the integer defined in Theorem 2.0.1. In particular ϕn(2) = 0
for all n ≥ 2.

ii) When d is odd, c2i is a homogeneous polynomial in the entries of f with
degree 2n(d − 1)n−1 − 2i. In particular deg(c2N ) = 2n(d − 1)n−1 − 2N =
2ϕn(d).

Remark 2.2.14. It can be easily shown that the polynomial ϕn(d) defined in
Proposition 2.2.13 is a strictly increasing function in the variable d. This fact,
together with Proposition 2.2.13, implies that cN (respectively c2N ) has positive
degree in the coefficients of f for all n ≥ 2 and d > 2.

We have this natural question: is there a geometric meaning for the vanishing
of the leading coefficient of ψf? The answer is positive and is stated in Proposition
2.3.9.

2.3 The product of the E-eigenvalues
of a symmetric tensor

In this section we give the proof of Theorem 2.0.2. The proof starts with an
example: in fact, the next lemma studies the product of the E-eigenvalues of a
particular class of symmetric tensors, the scaled Fermat polynomials

f(x1, . . . , xn) = a1x
d
1 + · · ·+ anx

d
n, a1, . . . , an ∈ C. (2.3.1)

This result is important to prove the identity (2.0.5) up to sign in the statement
of Theorem 2.0.2.



2.3. The product of the E-eigenvalues of a symmetric tensor 47

Lemma 2.3.1. Let d ≥ 2 and suppose that f is the scaled Fermat polynomial in
(2.3.1). The product λ1 · · ·λN of the E-eigenvalues of f , where N is the number
defined in Theorem 2.0.1, can be written as

λ1 · · ·λN =
Res

(
1
d∇f

)
h
d−2

2

, (2.3.2)

where h = h(a1, . . . , an) is a homogeneous polynomial of degree 2ϕn(d)/(d−2) and
the polynomial ϕn(d) was defined in Proposition 2.2.13. Moreover, the leading
term of h with respect to the lexicographic term order is monic and it is equal to

LTLex(h) =

n∏
s=1

a
2

(d−1)n−1−(d−1)s−1

d−2
s .

Proof. In this case, rewriting the number N of E-eigenvalues as

N =

n∑
j=1

(
n

j

)
(d− 2)j−1,

the binomial
(
n
j

)
denotes the number of E-eigenvalues for f whose corresponding

E-eigenvectors have exactly j nonzero coordinates, while the factor (d − 2)j−1

corresponds to the number of (j − 1)-arrangements (allowing repetitions) of the
elements of {0, 1, . . . , d− 3}, for all j ∈ [n].

Let x = (x1, . . . , xn), with q(x) = 1 be an E-eigenvector of f . We have

aix
d−1
i = λxi ∀ i ∈ [n]. (2.3.3)

Suppose that exactly j coordinates of x are nonzero, call them xk1 , . . . , xkj with
indices 1 ≤ k1 < · · · < kj ≤ n. Moreover, we write ai = ξd−2

i for all i ∈ [n].
Looking at (2.3.3), if xi 6= 0 we obtain that λ = aix

d−2
i = (ξixi)

d−2 for all
i ∈ [n]. Moreover, considering (2.3.3) with respect to the indices i1 < i2, we get
the relations ai1x

d−1
i1

= λxi1 , ai2x
d−1
i2

= λxi2 , from which we obtain the equation

xi1xi2

d−3∏
k=0

(ξi1xi1 − εkξi2xi2) = 0,

where ε is a (d− 2)-th root of unity. This means that, for any indices i1 < i2 it
could be that xi1 = 0, xi2 = 0 or ξi1xi1 = εkξi2xi2 for some k ∈ {0, 1, . . . , d− 3}.
Therefore the coordinates of x, when nonzero, can be always written as

xkl =

(
1

q(x)

) 1
2

ξk1 · · · ξ̂kl · · · ξkjεαkl ,
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where αkl ∈ {0, 1, . . . , d− 3} for all l ∈ [j]. Since |ε| = 1, we can assume αk1
= 0.

In addition to this, the squared norm of x can be written as

q(x) = ξ2
k2
· · · ξ2

kj +

j∑
l=2

ξ2
k1
· · · ξ̂2

kl
· · · ξ2

kjε
2αkl

and the E-eigenvalue corresponding to x is

λ = (ξklxkl)
d−2 =

(
1

q(x)

) d−2
2

ak1
· · · akj .

From this argument we obtain that the product of the E-eigenvalues of the scaled
Fermat polynomial f is equal to

λ1 · · ·λN =
g

h
d−2

2

,

where g = g(a1, . . . , an) and h = h(a1, . . . , an) are equal respectively to

g :=

n∏
j=1

∏
1≤k1<···<kj≤n

d−3∏
αk2

,...,αkj=0

ak1
· · · akj , (2.3.4)

h :=

n∏
j=1

∏
1≤k1<···<kj≤n

d−3∏
αk2

,...,αkj=0

(
ξ2
k2
· · · ξ2

kj +

j∑
l=2

ξ2
k1
· · · ξ̂2

kl
· · · ξ2

kjε
2αkl

)
.

(2.3.5)

Now consider in particular the polynomial g defined in (2.3.4). We have that

g =

n∏
j=1

∏
1≤k1<···<kj≤n

(ak1 · · · akj )(d−2)j−1

=

n∏
j=1

(a1 · · · an)(
n−1
j−1)(d−2)j−1

= (a1 · · · an)(d−1)n−1

,

where the last polynomial coincides exactly with Res
(

1
d∇f

)
by Proposition 2.2.1.

On the other hand, having fixed Lex as term order in Z[a1, . . . , an], the leading
term of h is equal to

LTLex(h) =

n∏
j=2

∏
1≤k1<···<kj≤n

d−3∏
αk2

,...,αkj=0

ξ2
k1
· · · ξ2

kj−1
ε2αkj

=

n∏
j=2

∏
1≤k1<···<kj≤n

(ξ2
k1
· · · ξ2

kj−1
)(d−2)j−1

.
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Observe that in the last product (with j fixed) the factors ξ2(d−2)j−1

1 , . . . , ξ
2(d−2)j−1

j−1

appear
(
n−1
j−1

)
times, while ξ2(d−2)j−1

s appears
(
n−1
j−1

)
−
(
s−1
j−1

)
times for j ≤ s ≤ n.

Hence (assuming
(
a
b

)
= 0 for a < b)

LTLex(h) =

n∏
j=2

n∏
s=1

ξ
2[(n−1

j−1)−(s−1
j−1)](d−2)j−1

s

=

n∏
s=1

ξ
2[(d−1)n−1−(d−1)s−1]
s

=

n∏
s=1

a
2

(d−1)n−1−(d−1)s−1

d−2
s .

Remark 2.3.2. Observe that in Lemma 2.3.1 the degree of LTLex(h), that is
the total degree of h, is

2

d− 2

n∑
s=1

[(d− 1)n−1 − (d− 1)s−1] =
2

d− 2

[
n(d− 1)n−1 − (d− 1)n − 1

d− 2

]
=

2

d− 2
ϕn(d),

where ϕn(d) was introduced in Proposition 2.2.13 and d ≥ 3. This value is the
one expected as shown in the sequel.

Now consider the variety Q̃ = vd(Q), namely the Veronese embedding in
P(SdV ) of the isotropic quadricQ ⊂ P(V ). In particular, Q̃ is a smooth projective
variety, hence we can introduce the Chern classes of Q̃ in order to compute its
polar classes δi(Q̃), according to the relations (1.8.1).

Lemma 2.3.3. In the hypotheses above, δ0(Q̃) = 2
∑n−2
k=0 αkd

k, where

αk := (k + 1)

n−2−k∑
j=0

(
n

j

)
(−1)j2n−2−k−j . (2.3.6)

Proof. First of all we compute the Chern polynomial of the tangent bundle T Q,
for brevity indicated with c(Q) (this computation was performed in Example
1.7.4):

c(Q) =
(1 + h)n

1 + 2h
=

n−2∑
i,j=0

(
n

i

)
(−2)jhi+j =

n−2∑
s=0

(
s∑
i=0

(
n

i

)
(−2)s−i

)
hs,
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where h = c1(OQ(1)). Then we compute the polar class δ0(Q̃) using an equivalent
formulation of (1.8.1) withm = n−2 and [Tev, Theorem 7.2], taking into account
that Q̃ = vd(Q).

δ0(Q̃) =

n−2∑
k=0

(−1)n−2−k(k + 1) deg(cn−2−k(Q̃))

=

n−2∑
k=0

(−1)n−1−k(k + 1) deg

n−2−k∑
j=0

(
n

j

)
(−2)n−2−k−j

hn−2−k(dh)k


=

n−2∑
k=0

(k + 1) deg

n−2−k∑
j=0

(
n

j

)
(−1)j2n−2−k−j

 dkhn−2


= 2

n−2∑
k=0

(k + 1)

n−2−k∑
j=0

(
n

j

)
(−1)j2n−2−k−j

 dk.
In the following technical Lemma, we rewrite the polynomial ϕn(d) defined

in Proposition 2.2.13 in a useful way for the sequel.

Lemma 2.3.4. Let ϕn(d) be the polynomial defined in Proposition 2.2.13. Then
ϕn(d) = (d− 2)

∑n−2
k=0 βkd

k, where

βk := (k + 1)

n−2−k∑
l=0

(
k + l + 1

l

)
(−1)l. (2.3.7)

Proof. With a bit of work, the polynomial ϕn(d) can be rewritten as

ϕn(d) = (d− 2)

n−2∑
k=0

(k + 1)(d− 1)k = (d− 2)

n−2∑
k=0

βkd
k,

where

βk =

n−2∑
i=k

(i+ 1)

(
i

k

)
(−1)i−k

=

n−2−k∑
l=0

(l + k + 1)

(
l + k

k

)
(−1)l

=

n−2−k∑
l=0

[
l(l + k)!

l!k!
+

(k + 1)(l + k)!

l!k!

]
(−1)l
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= (k + 1)

n−2−k∑
l=0

[(
k + l

k + 1

)
+

(
k + l

k

)]
(−1)l

= (k + 1)

n−2−k∑
l=0

(
k + l + 1

l

)
(−1)l.

Now we prove that the degree of the leading coefficient of ψf is a multiple of
the polar class δ0(Q̃) computed in Lemma 2.3.3.

Proposition 2.3.5. For any n ≥ 2 and for any 0 ≤ k ≤ n − 2, αk = βk. In
particular,

ϕn(d) =
d− 2

2
δ0(Q̃). (2.3.8)

Proof. From the identities (2.3.6) and (2.3.7) we see that both αk and βk are
multiples of k + 1. In particular, we have to prove that

n−2−k∑
j=0

(
n

j

)
(−1)j2n−2−k−j =

n−2−k∑
j=0

(
k + j + 1

j

)
(−1)j . (2.3.9)

The proof is by induction on n. If n = 2, both the sides of the equality are equal
to 1. Suppose now that the equality is true at the n-th step. At the (n + 1)-th
step, the right-hand side of the equality is

n−1−k∑
j=0

(
k + j + 1

j

)
(−1)j =

n−2−k∑
j=0

(
k + j + 1

j

)
(−1)j + (−1)n−1−k

(
n

n− k

)
,

while the left-hand side at the (n+ 1)-th step is equal to

n−1−k∑
j=0

(
n+ 1

j

)
(−1)j2n−1−k−j =

= 2n−1−k +

n−1−k∑
j=1

(
n+ 1

j

)
(−1)j2n−1−k−j

= 2n−1−k +

n−1−k∑
j=1

[(
n

j

)
+

(
n

j − 1

)]
(−1)j2n−1−k−j

=

n−1−k∑
j=0

(
n

j

)
(−1)j2n−1−k−j +

n−1−k∑
j=1

(
n

j − 1

)
(−1)j2n−1−k−j
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= 2

n−2−k∑
j=0

(
n

j

)
(−1)j2n−2−k−j + (−1)n−1−k

(
n

n− k

)
+

+

n−2−k∑
j=0

(
n

j

)
(−1)j+12n−2−k−j

=

n−2−k∑
j=0

(
n

j

)
(−1)j2n−2−k−j + (−1)n−1−k

(
n

n− 1− k

)

By applying the induction hypothesis we conclude the proof of (2.3.9).

Remark 2.3.6. Matteo Gallet suggested an alternative proof of the identity
(2.3.9), applying the so-called “Zeilberger’s Algorithm” (see [Zei90, Zei91]). For
example, using the Mathematica package HolonomicFunctions, developed by
Cristoph Koutschan (see [Kou]), the code

Annihilator[Sum[Binomial[n,j]*(-1)^j*2^(n-2-k-j),{j,0,n-2-k}],{S[k],S[n]}]
Annihilator[Sum[Binomial[k+j+1,j]*(-1)^j,{j,0,n-2-k}],{S[k],S[n]}]

provides the operators that annihilate the left-hand and right-hand side in (2.3.9),
respectively, thus showing that (2.3.9) holds true.

Corollary 2.3.7. Consider the isotropic quadric Q ⊂ P(V ) and its Veronese
embedding Q̃ ⊂ P(SdV ) with the same notations as before. Then Q̃∨ is a hyper-
surface of P(SdV ) of degree deg(Q̃∨) = δ0(Q̃).

Proof. From Remark 2.2.14 and Proposition 2.3.5 we have that δ0(Q̃) is a positive
integer for all n ≥ 2 and d > 2. Applying Theorem 1.5.4 we conclude the
proof.

Summing up, there is an explicit formula for the degree of the leading coeffi-
cient of ψf in terms of the degree of the dual variety of Q embedded in P(SdV )
via the Veronese map, stated in the following corollary.

Corollary 2.3.8. Given f ∈ SdV , if f is general then

deg(cN ) =
d− 2

2
deg(Q̃∨)

when d is even, while
deg(c2N ) = (d− 2) deg(Q̃∨)

when d is odd.
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In the following, we prove that the leading coefficient of ψf is a power of
the discriminant ∆Q̃(f), where the exponent was obtained in Corollary 2.3.8.
The next two lemmas clarify the geometrical meaning of the vanishing of the
polynomial cN (respectively c2N ).

Lemma 2.3.9. Assume that d > 2 and let f ∈ SdV . Then the leading coefficient
of ψf vanishes if and only if the system{

1
d∇f(x) = λx
q(x) = 0 ,

(2.3.10)

called deficit system in [LQZ], has a nontrivial solution.

Proof. If f is irregular, from Definition 2.2.6 we have that the system (2.3.10)
has a nontrivial solution when λ = 0, while from Proposition 2.2.8 we have that
ψf is identically zero.

Suppose instead that f is regular. By Theorem 2.2.10 the roots of ψf are
exactly the E-eigenvalues of f and for even d we have deg(ψf ) ≤ N , whereas
for odd d deg(ψf ) ≤ 2N . However, we know by Theorem 2.0.1 that a general
f has N distinct E-eigenvalues when d is even, and N pairs (λ,−λ) of distinct
E-eigenvalues when d is odd, which means that ψf would have exactly N distinct
roots when d is even, and 2N distinct roots when d is odd. On the other hand, E-
eigenvalues are the normalized solutions x of equation (2.1.4), and by definition
ψf is the resultant of the homogeneization of the system whose equations are
(2.1.4) and the condition q(x) = 1. The solutions at infinity of this system are
precisely the solution of the system (2.3.10). Hence a symmetric tensor f such
that ψf has not the maximum degree provides a nontrivial solution of the system
(2.3.10), or equivalently admits an isotropic eigenvector.

Lemma 2.3.10. Given f ∈ SdV , the system (2.3.10) has a nontrivial solution
if and only if the coefficients of f annihilate the polynomial ∆Q̃(f), namely f is
represented by a point of Q̃∨.

Proof. Suppose that x is a solution of (2.3.10). By regularity of f we have that
λ 6= 0. Moreover, P = [x] is a smooth point of f , and f is tangent to Q at P .
This means that f , thought as a point of P(SdV ), belongs to Q̃∨, namely its
coefficients annihilate the polynomial ∆Q̃(f). The converse is true by reversing
the implications.

Remark 2.3.11. One could ask if the condition on f to have the maximum
number of E-eigenvalues imposed in Theorem 2.0.2 has a geometric counterpart.
For example, this condition is not the same as requiring Xf to be regular: al-
though any symmetric tensor f having the maximum number of E-eigenvalues
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is necessarily regular, there exist regular symmetric tensors f admitting at least
one isotropic eigenvector. The right property to consider is revealed by Lemma
2.3.10, which shows that f ∈ SdV admits an isotropic eigenvector if and only if
the hypersurface Xf and the isotropic quadric Q are tangent. This means that
the condition on f in Theorem 2.0.2 is satisfied if and only if Xf is transversal
to Q.

Remark 2.3.11 is even more interesting when considering the following result
(see [Alu00, Claim 3.2]):

Proposition 2.3.12. If two smooth hypersurfaces of degree d1, d2 in projective
space are tangent along a positive dimensional set, then d1 = d2.

An immediate consequence of Proposition 2.3.12 is the following

Corollary 2.3.13. Given f ∈ SdV with d > 2, if Xf is smooth then f has
always a finite number of isotropic eigenvectors.

Aiming at explaining better Lemma 2.3.10, below we give an example of a
symmetric tensor f admitting an isotropic eigenvector, with a study of the tan-
gency between the varietyXf and the isotropic quadric Q. Moreover, we compute
explicitly the E-characteristic polynomial ψf and observe that deg(ψf ) < N .

Example 2.3.14 (A plane cubic admitting an isotropic eigenvector). First of all,
we recall that due to Theorem 2.0.1, a general ternary form has N = d2 − d+ 1
E-eigenvalues. Consider the cubic ternary form

f(x1, x2, x3) = 342
√
−1x3

1 − 522
√
−1x1x

2
2 − 389

√
−1x2

1x3

+ 79
√
−1x2

2x3 − 474
√
−1x1x

2
3 + 95

√
−1x3

3

− 773x2
1x2 + 191x3

2 − 48x1x2x3 + 175x2x
2
3.

It can be easily verified that the vector x = (0, 1,−
√
−1) is an isotropic eigenvec-

tor of f . In particular the projective curve Xf is tangent to the isotropic quadric
Q at [x] ∈ P2, and the common tangent line has equation x2 −

√
−1x3 = 0. In

order to represent graphically this situation, we consider the change of coordi-
nates

z1 = −
√
−1x1, z2 = x2 +

√
−1x3, z3 = x2 −

√
−1x3.

In the zi’s the quadric Q (the red curve in the affine representation of Figure
2.1) has equation z2

1 − z2z3 = 0. The image of the isotropic eigenvector x is
z = (0, 2, 0), while the image of the projective curve Xf (the blue curve in Figure
2.1) is the projective curve of equation

g(z1, z2, z3) = 342z3
1 + 581z2

1z2 + 192z2
1z3 + 498z1z2z3

+ 139z2
2z3 + 24z1z

2
3 + 48z2z

2
3 + 4z3

3 .
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Figure 2.1: The isotropic quadric Q and the plane cubic Xf in the affine plane
z2 = 2. They are not transversal at the origin.

The presence of an isotropic eigenvector can be detected by computing explicitly
the E-characteristic polynomial of f as well. In order to compute ψf (λ) we
used the following Macaulay2 code [GS] (for the package Resultants see [Sta]),
taking into account Definition 2.2.4 modified according to the given change of
coordinates:

loadPackage "Resultants"; KK=QQ[t]; R=KK[z_0..z_3];
f=342*z_1^3+581*z_1^2*z_2+192*z_1^2*z_3+498*z_1*z_2*z_3+139*z_2^2*z_3+
24*z_1*z_3^2+48*z_2*z_3^2+4*z_3^3;
F_0=z_0^2-(-z_1^2+z_2*z_3);
F_1=diff(z_1,f)/3+t*z_0*z_1;
F_2=diff(z_2,f)/3+diff(z_3,f)/3-t*z_0*(z_2+z_3)/2;
F_3=diff(z_2,f)/3-diff(z_3,f)/3+t*z_0*(z_2-z_3)/2;
Echarpoly=resultant({F_0,F_1,F_2,F_3}, Algorithm=>"Macaulay");
factor Echarpoly

The output of factor Echarpoly is

ψg(λ) = 22405379203945800000λ12

+ 1737672597491537284396875λ10

+ 45686609440492531312122181875λ8

+ 538619871002221271247213134552625λ6

+ 2746031584320556852962647720783548350λ4

+ 2137752598886514957981090279414043391031λ2

+ 13843807659909379464027427753236120270069196.
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Since a general cubic ternary form has seven E-eigenvalues, we expect that the
degree of ψf is fourteen, but in this case deg(ψf ) = 12. This confirms that f has
one isotropic eigenvector and six E-eigenvectors (counted with multiplicity) up
to sign.

Returning to the proof of Theorem 2.0.2, an immediate consequence of Corol-
lary 2.3.8 and Lemmas 2.3.9 and 2.3.10 is the following formula for the leading
coefficient of the E-characteristic polynomial of a symmetric tensor.

Theorem 2.3.15. Given f ∈ SdV and d > 2, if f does not admit isotropic
eigenvectors, then

cN = e ·∆Q̃(f)
d−2

2 (2.3.11)

when d is even, while
c2N = e ·∆Q̃(f)d−2 (2.3.12)

when d is odd, for some integer constant e = e(n, d).

Proof. Applying Lemma 2.3.9 and Lemma 2.3.10 we obtain that the varieties
{cN = 0} and {∆Q̃(f) = 0} coincide. The proof for the case n = 2 is postponed
to Section 2.4, where we treat more in detail binary forms. If n > 2, then Q̃ is an
irreducible hypersurface and the variety Q̃∨ is irreducible as well. Corollary 2.3.7
tells us that Q̃∨ is in fact a hypersurface. Hence, for even d, cN = e · ∆Q̃(f)j ,
whereas for odd d we have c2N = e · ∆Q̃(f)k for some integer constant e =

e(n, d) and positive integers j, k. Moreover, from Corollary 2.3.8 we have that
j = (d− 2)/2 and k = d− 2.

Proof of Theorem 2.0.2. Theorems 2.2.12 and 2.3.15 describe respectively the
constant term c0 and the leading coefficient cN (or c2N ) of the E-characteristic
polynomial ψf of a general symmetric tensor f , up to a constant integer factor.
Moreover, the product of the E-eigenvalues of f is c0/cN (respectively c0/c2N ).
If we restrict to the class of scaled Fermat polynomials, as in Lemma 2.3.1, we
notice that the integers c and e of Theorems 2.2.12 and 2.3.15 have to coincide,
for the leading term of the denominator in (2.3.2) is monic and by definition
∆Q̃(f) has relatively prime integer coefficients. This concludes the proof.

2.4 The case of binary symmetric tensors

In this final section, we focus on the case of binary forms (n = 2) and complete the
proof of Theorem 2.0.2, recovering the results of Li, Qi and Zhang in [LQZ]. In
particular, we show that in this particular case equation (2.0.5) can be rewritten
more explicitly. Here any element of SdV is represented by a binary form
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f(x1, x2) =

d∑
j=0

(
d

j

)
ajx

d−j
1 xj2 , a0, . . . , ad ∈ C. (2.4.1)

According to Theorem 2.0.1, a general binary form f of degree d admits N = d
E-eigenvectors. As one can easily see from relation (2.1.4), the E-eigenvectors of
f are the normalized solutions (x1, x2) of the equation D(f) = 0, where the
discriminant operator D is

D(f) := x1
∂f

∂x2
− x2

∂f

∂x1
. (2.4.2)

The operator D is well-known and its properties are collected in [Mac].

We are interested in the E-characteristic polynomial ψf of a regular binary
form f . We know that deg(ψf ) = d in the even case, while deg(ψf ) = 2d in the
odd case. A remarkable formula for the leading coefficient of the E-characteristic
polynomial of a 2-dimensional tensor of order d is given in [LQZ]. We show that
this formula can be simplified a lot in the symmetric case.

Following the argument used in [LQZ], the isotropic eigenvectors of f are the
solutions of the following simplified version of the system (2.3.10):

∑d
j=1

(
d−1
j−1

)
aj−1x

d−j
1 xj−1

2 = λx1∑d
j=1

(
d−1
j−1

)
ajx

d−j
1 xj−1

2 = λx2

x2
1 + x2

2 = 0 .

(2.4.3)

We observe that all the nontrivial solutions (x1, x2) of (2.4.3) are nonzero multi-
ples of (1,

√
−1) or (1,−

√
−1). Substituting (1,

√
−1) to (2.4.3) and eliminating

λ we obtain the condition

d∑
j=0

(
d

j

)
aj
√
−1

j
= 0. (2.4.4)

In the same manner, considering instead the vector (1,−
√
−1) we obtain the

condition
d∑
j=0

(
d

j

)
aj(−

√
−1)j = 0. (2.4.5)

Therefore, if the binary form f has at least one isotropic eigenvector, then the
product of the left-hand sides of equations (2.4.4) and (2.4.5) vanishes. On the
other hand, if this product is zero, then (1,

√
−1) or (1,−

√
−1) is a solution of

the system (2.4.3) and is in turn an isotropic eigenvector of f .
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We observe that the left-hand sides in (2.4.4) and (2.4.5) have an interesting
interpretation. Consider the linear change of coordinates defined by the equations

x1 = γ11z1 + γ12z2, x2 = γ21z1 + γ22z2.

Applying this change of coordinates, the binary form f(x1, x2) is transformed
into the binary form f̃(z1, z2) in the new variables z1, z2 defined by

f̃(z1, z2) =

d∑
j=0

(
d

j

)
aj(γ11z1 + γ12z2)d−j(γ21z1 + γ22z2)j =

d∑
j=0

(
d

j

)
ãjz

d−j
1 zj2,

where (see [Stu, Proposition 3.6.1])

ãj =

d∑
k=0

 min(k,d−j)∑
l=max(0,k−j)

(
d− j
l

)(
j

k − l

)
γl11γ

k−l
12 γd−j−l21 γj−k+l

22

 ak (2.4.6)

for all 0 ≤ j ≤ d. Let us introduce the new coordinates

z1 = −
√
−1

2
(x1 +

√
−1x2), z2 = −

√
−1

2
(x1 −

√
−1x2).

The inverse change of coordinates has equations

x1 =
√
−1(z1 + z2), x2 = z1 − z2.

With this choice, applying formula (2.4.6) the coefficients ãj of the transformed
binary form f̃(z1, z2) are

ãj =

d∑
k=0

 min(k,d−j)∑
l=max(0,k−j)

(
d− j
l

)(
j

k − l

)√
−1

2(j+l)−k

 ak
for all 0 ≤ j ≤ d. In particular the extreme coefficients become

ã0 =

d∑
j=0

(
d

j

)
aj
√
−1

j
, ãd = (−1)d

d∑
j=0

(
d

j

)
aj(−

√
−1)j .

Therefore, if we define b0 := ã0 and bd := (−1)dãd, then the left-hand sides of
equations (2.4.4) and (2.4.5) are equal to b0 and bd, respectively. Moreover, we
observe that the product b0bd has integer coefficients even though some of the
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coefficients of b0 and bd have nonzero imaginary part: in fact we see that

b0bd =

d∑
j,k=0

(
d

j

)(
d

k

)
ajak(−1)j

√
−1

j+k

=

2d∑
s=0

 max(s,d)∑
j=min(0,s−d)

(
d

j

)(
d

s− j

)
ajas−j(−1)j

√−1
s
,

(2.4.7)

where in the last relation all summands corresponding to odd indices s vanish.
Since the coefficient of a2

0 in the expression of b0bd is 1, we conclude that b0bd =

∆Q̃(f) up to sign. In particular Q̃∨ = {b0bd = 0}: in fact in this case Q̃ is the
union of two distinct points (more precisely, the classes of the rank-one symmetric
tensors (x1 +

√
−1x2)d and (x1 −

√
−1x2)d), while the variety Q̃∨ is the quadric

union of the hyperplanes {b0 = 0}, {bd = 0}. In particular, the hyperplane
{b0 = 0} parametrizes the binary forms having (1,

√
−1) as isotropic eigenvector,

while {bd = 0} parametrizes the binary forms having (1,−
√
−1) as isotropic

eigenvector.
Regarding the leading coefficient of the E-characteristic polynomial ψf , the

previous argument suggests that it must coincide with cbi0b
j
d for some c = c(d) ∈

Z. Since ψf is a polynomial in the indeterminates a0, . . . , ad with integer coeffi-
cients, it follows that i = j. Hence, for even d, cd = e∆Q̃(f)p, whereas for odd d
we have c2d = e∆Q̃(f)q for some e = e(d) ∈ Z and positive integers p, q. From
Corollary 2.3.8 we have that p = (d − 2)/2 and q = d − 2, thus completing the
proof of Theorem 2.3.15 in the case n = 2.

Remark 2.4.1. If we specialize to the class of scaled Fermat binary forms

f(x1, x2) = αxd1 + βxd2, α, β ∈ C,

from relation (2.4.7) we confirm the statement of Lemma 2.3.1 by observing that

∆Q̃(f) = α2 + (1 + (−1)d)
√
−1

d
αβ + β2.

Example 2.4.2 (E-characteristic polynomial of a binary cubic form). In this
computational example we derive symbolically the E-characteristic polynomial
of the cubic binary form

f(x1, x2) = a0x
3
1 + 3a1x

2
1x2 + 3a2x1x

2
2 + a3x

3
2.

The Macaulay2 code used is



60 Chapter 2. The distance from the variety of rank-one symmetric tensors

restart
loadPackage "Resultants"; d=3; KK=QQ[a_0..a_d,t]; R=KK[x_0,x_1,x_2];
f=sum(d+1,j->binomial(d,j)*a_j*x_1^(d-j)*x_2^j);
F_0=x_0^2-x_1^2-x_2^2;
F_1=diff(x_1,f)/d-t*x_0^(d-2)*x_1;
F_2=diff(x_2,f)/d-t*x_0^(d-2)*x_2;
Echarpoly=resultant({F_0,F_1,F_2}, Algorithm=>"Macaulay");
factor Echarpoly

The output obtained is

ψf (λ2) = −(a2
0 + 9a2

1 − 6a0a2 + 9a2
2 − 6a1a3 + a2

3)λ6

+ (a4
0 + 12a2

0a
2
1 + 24a4

1 − 6a3
0a2 − 12a0a

2
1a2 + 9a2

0a
2
2 + 45a2

1a
2
2

− 8a0a
3
2 + 24a4

2 − 6a2
0a1a3 − 8a3

1a3 − 12a0a1a2a3 − 12a1a
2
2a3

+ 3a2
0a

2
3 + 9a2

1a
2
3 − 6a0a2a

2
3 + 12a2

2a
2
3 − 6a1a

3
3 + a4

3)λ4

− 2(8a6
1 − 24a0a

4
1a2 + 21a2

0a
2
1a

2
2 + 6a4

1a
2
2 − 4a3

0a
3
2 − 15a0a

2
1a

3
2 + 12a2

0a
4
2

+ 6a2
1a

4
2 + 8a6

2 + 4a2
0a

3
1a3 − 6a3

0a1a2a3 − 6a2
0a1a

2
2a3 − 15a3

1a
2
2a3

− 24a1a
4
2a3 + a4

0a
2
3 + 6a2

0a
2
1a

2
3 + 12a4

1a
2
3 − 3a3

0a2a
2
3 − 6a0a

2
1a2a

2
3 + 6a2

0a
2
2a

2
3

+ 21a2
1a

2
2a

2
3 + 4a0a

3
2a

2
3 − 3a2

0a1a
3
3 − 4a3

1a
3
3 − 6a0a1a2a

3
3 + a2

0a
4
3)λ2

+ (3a2
1a

2
2 − 4a0a

3
2 − 4a3

1a3 + 6a0a1a2a3 − a2
0a

2
3)2

Note in particular that the lowest coefficient of ψf is the square of the discriminant
of f , whereas the highest coefficient agrees with formula (2.4.7). Moreover, the
λ2-discriminant of ψf may be written, up to scalars, as

∆λ2

[
ψf (λ2)

]
= (a2

0 + 9a2
1 − 6a0a2 + 9a2

2 − 6a1a3 + a2
3) g2

1 g
3
2 ,

On one hand, as pointed out in Proposition 4.2.4, the hypersurface cut out by the
polynomial g1(f) corresponds to the bisector hypersurface B(X(3), X(3)), namely
the locus of binary cubic forms admitting two distinct critical rank-one symmetric
binary cubics at the same distance from f . The expression of g1 in coordinates
is the following (see also Figure 2.2):

g1(f) = 2a0a
3
1 − 3a2

0a1a2 + 3a3
1a2 − 6a0a1a

2
2 − 3a1a

3
2 + a3

0a3 + 3a0a
2
1a3

+ 6a2
1a2a3 − 3a0a

2
2a3 − 2a3

2a3 + 3a1a2a
2
3 − a0a

3
3 .

On the other hand, the hypersurface cut out by the polynomial g2(f) corresponds
to the ED discriminant ΣX(3)

, namely the locus of binary cubic forms having two
coinciding critical rank-one symmetric binary cubics. The expression of g2 in
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Figure 2.2: The bisector hypersurface B(X(3), X(3)) of the rational normal curve
X(3) ⊂ P3

C in the affine chart a3 = 1.

coordinates is the following (see also Figure 2.3):

g2(f) = 4a2
0a

2
1 + 32a4

1 − 4a3
0a2 − 52a0a

2
1a2 + 24a2

0a
2
2 + 61a2

1a
2
2 − 48a0a

3
2

+ 32a4
2 − 4a2

0a1a3 − 48a3
1a3 + 34a0a1a2a3 − 52a1a

2
2a3 + a2

0a
2
3

+ 24a2
1a

2
3 − 4a0a2a

2
3 + 4a2

2a
2
3 − 4a1a

3
3 .

We conclude this chapter focusing on complex harmonic binary forms. Let
∆: SdV → Sd−2V denote the Laplace operator defined in coordinates by

∆f(x1, . . . , xn) :=
∂2f

∂x2
1

+ · · ·+ ∂2f

∂x2
n

.

Definition 2.4.3. The subspace in SdV of complex harmonic forms in n inde-
terminates is

HdV := ker(∆) ⊂ SdV.
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Figure 2.3: The ED discriminant ΣX(3)
of the rational normal curve X(3) ⊂ P3

C

in the affine chart a3 = 1.

With an induction argument one may prove that the map ∆ is surjective,
thus implying that

dim(HdV ) = dim(SdV )− dim(Sd−2V ) =

(
d+ n− 1

n− 1

)
−
(
d+ n− 3

n− 1

)
. (2.4.8)

Hence, in our case n = 2 we have that dim(HdV ) = 2. In particular, if x1 and x2

denote the linear forms associated to the vectors (1, 0) and (0, 1) of V , we define
the linear forms z1 = x1 +

√
−1x2 and z2 = x1 −

√
−1x2. One may verify that

zd1 and zd2 belong to HdV and are linearly independent, hence they form a basis
of HdV . Then any complex harmonic binary form g ∈ SdV can be written as

g = azd1 + bzd2 , [a, b] ∈ P1
C . (2.4.9)

We prove the following result.

Proposition 2.4.4. Consider g as in (2.4.9). Then its characteristic polynomial
is equal to (up to a scalar factor)

ψf (λ) = (4ab− λ2)
d
2
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for even d and
ψf (λ) = (4ab− λ2)d

for odd d.

Proof. Developing the identity (2.4.9), we have that

g = azd1 + bzd2 = a(x1 +
√
−1x2)d + b(x1 −

√
−1x2)d

Then the gradient of g with respect to the variables x1 and x2 is

∂g

∂x1
= d(azd−1

1 + bzd−1
2 ),

∂g

∂x2
=
√
−1d(azd−1

1 − bzd−1
2 ).

We compute the E-eigenvectors x = (x1, x2) ∈ V of g via the system (2.1.5).
They correspond to the normalized solutions of the equation D(g) = 0, where D
is the discriminant operator defined in (2.4.2):

1

d
D(g) = x2(azd−1

1 + bzd−1
2 )−

√
−1x1(azd−1

1 − bzd−1
2 ) = −

√
−1 (azd1 − bzd2).

More precisely, the equation D(g) = 0 simplifies to

a(x1 +
√
−1x2)d − b(x1 −

√
−1x2)d = 0.

The left hand side of the last equation can be factorized as

a(x1 +
√
−1x2)d − b(x1 −

√
−1x2)d =

d−1∏
j=0

[ξ(x1 +
√
−1x2)− εjη(x1 −

√
−1x2)]

=

d−1∏
j=0

[(ξ − εjη)x1 +
√
−1 (ξ + εjη)x2]

where ξd = a and ηd = b. Hence the eigenvectors are

vj =
(
−
√
−1 (ξ + εjη), ξ − εjη

)
, j ∈ {0, . . . , d− 1}.

In addition, the norm of vj is equal to

q(vj)
1
2 =

√
−(ξ + εjη)2 + (ξ − εjη)2 =

√
−4εjξη = 2

√
−1
√
εjξη.

Summing up, the E-eigenvectors of g are (call them vj again)

vj =
1

2
√
−1
√
εjξη

(
−
√
−1 (ξ + εjη), ξ − εjη

)
, j ∈ {0, . . . , d− 1}. (2.4.10)
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In this case, the system (2.1.5) becomes

1

d

∂g

∂x
= λx,

1

d

∂g

∂y
= λy.

If we substitute the coordinates of vj in (2.4.10) in the first equation (substituting
in the second equation would lead to the same result), then we get the identity

a

(
−εjη√
εjξη

)d−1

+ b

(
−ξ√
εjξη

)d−1

= − ξ + εjη

2
√
εjξη

λ.

Solving for λ the last equation gives an expression for the E-eigenvalues of g:

λ = (−1)d−22
(aεj(d−1)ηd−1 + bξd−1)εjξη√

ab(ξ + εjη)

= (−1)d−22
ab(ξ + εjη)√
ab(ξ + εjη)

= (−1)d−22
√
ab

In the original variables x1 and x2, a complex harmonic binary form h ∈ HdV
may be written as

h(x1, x2) =

d∑
i=0

(
d

i

)
aix

d−i
1 xi2, ai =

{
(−1)

i
2 ξ if i is even

(−1)
i−1

2 η if i is odd
(2.4.11)

for some [ξ, η] ∈ P1
C

Example 2.4.5. For d = 4, a general harmonic binary form is

f = ξx4
1 + 4ηx3

1x2 − 6ξx2
1x

2
2 − 4ηx1x

3
2 + ξx4

2, [ξ, η] ∈ P1
C .

The analogous statement to Proposition 2.4.4 is the following.

Corollary 2.4.6. Consider f as in (2.4.11). Then its E-characteristic polyno-
mial is equal to (up to a scalar factor)

ψf (λ) = (ξ2 + η2 − λ2)
d
2

if d is even and
ψf (λ) = (ξ2 + η2 − λ2)d

if d is odd.

The last corollary yields another interesting fact.
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Corollary 2.4.7. Every E-eigenvalue of a real harmonic binary form g ∈ HdV R

is a Z-eigenvalue.

The last corollary does not generalize to real harmonic forms in more than
two variables. Indeed, we show in Example 3.5.9 that there exist real harmonic
ternary forms which admit non-real E-eigenvalues, starting from the case d = 3.





Chapter 3
On the orthogonal stability
of binary and ternary forms

In Chapter 2 we outlined the main properties of the Euclidean eigenvalues and
eigenvectors of a degree d symmetric tensor f ∈ SdV on some complex vector
space V = V R ⊗ C, where (V R, qR) is our usual starting real Euclidean space of
dimension n. Moreover, we stressed two facts

1. In Theorem 2.2.10, we reported that the roots of the E-characteristic poly-
nomial ψf (λ) of a regular symmetric tensor f ∈ SdV correspond to the
E-eigenvalues of f .

2. In Remark 2.3.11 we observed that a symmetric tensor f ∈ SdV admits the
maximum number of E-eigenvalues, counted with multiplicity, if and only
if the hypersurface Xf ⊂ P(V ) defined by f is transversal to the isotropic
Q ⊂ P(V ) defined via the quadratic function q : V → C associated, in turn,
with the quadratic form qR on V R. Moreover, transversality between Xf

and Q is not related to the regularity of f .

Transversality between a projective variety X ⊂ P(V ) and the isotropic
quadric Q plays an important role in this chapter as well as in the forthcom-
ing ones. Moreover, here we want to stress another property shared by the
E-eigenvalues of f ∈ SdV and the coefficients of the E-characteristic polynomial
ψf (λ), namely their invariance with respect to the complex special orthogonal
group SO(V ) (see Theorem 2.1.10 and Corollary 2.2.5).

We recall that the complex orthogonal group O(V ) is the subgroup of GL(V )
of invertible linear operators of V that preserve a fixed bilinear form: in our case,
the bilinear form q : V × V → C associated to the inner product qR on V R. For
the rest of the chapter, we assume that q(x, y) =

∑n
i=1 xiyi is the bilinear form

associated to the standard Euclidean inner product in V R = Rn. The group O(V )

67
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is, in fact, an example of a matrix Lie group and has two connected components.
The component of O(V ) containing the identity IdV is precisely the complex
special orthogonal group SO(V ).

By our assumption, in the following we adopt the notations GL(V ) = GL(n,C),
O(V ) = O(n,C), SO(V ) = SO(n,C) and similarly for the other known matrix
Lie groups on V . In particular, SO(n,C) is the subgroup of complex matrices
A of size n such that ATA = I and det(A) = 1. Note that the matrix Lie
groups O(n,C) and SO(n,C) are different from the unitary group U(n) and the
special unitary group SU(n). The last two are defined analogously to O(n,C)
and SO(n,C), but with respect to a Hermitian inner product on Cn. Note that
the bilinear form q fixed is symmetric rather than conjugate-symmetric. Our
main references for the theory about matrix Lie groups, matrix Lie algebras and
representation theory are [Hal, FH].

The space SdCn is a GL(n,C)-module via the representation

ρd : GL(n,C)→ GL(SdCn), ρd(g)(f(x)) := f(g−1(x)) (3.0.1)

for all f ∈ SdCn and all g ∈ GL(n,C). In this chapter, the elements of P(SdCn)
are called forms of degree d in n variables. Our aim is to investigate the action of
the subgroup SO(n,C) on P(SdCn). In particular, a very hard task in Geometric
Invariant Theory is the computation of all stable and semistable elements of
P(SdCn) for the action of SO(n,C). For the notion of semistability and stability
with respect to the action of an algebraic group G on a projective variety X, we
refer to Section 3.1. All the necessary material is provided essentially from [LeP].

The theory of stable and semistable binary forms (n = 2) with respect to the
action of the special linear group SL(2,C) (that is, the subgroup of GL(2,C) of
complex 2×2 matrices with determinant 1) as well as the group SO(2,C) has been
extensively studied since the XIX century. In Section 3.2 we report the classical
result by Hilbert in this direction, which uses the well-known Hilbert-Mumford
criterion stated in Theorem 3.1.6.

The core of this chapter deals with the action of the complex orthogonal group
SO(3,C) on the space SdC3 of complex ternary forms. In order to give conditions
for stability and semistability on SdC3, a crucial role is played by the space of
harmonic ternary forms HdC3 ⊂ SdC3, introduced in Definition 2.4.3. It has
dimension 2d+ 1 by formula (2.4.8). This space is important since every form in
SdC3 admits a unique harmonic decomposition, as stated below.

Theorem 3.0.1. Let q ∈ S2C3 be the quadratic form q(x) = x2
1 +x2

2 +x2
3 fixed by

the group SO(3,C). The space SdC3 admits the following SO(3,C)-equivariant



69

decomposition

SdC3 =

b d2 c⊕
k=0

qkHd−2kC3,

that is, every polynomial f ∈ SdC3 admits a unique harmonic decomposition

f =

{
fd + qfd−2 + · · ·+ q

d
2 f0 for even d

fd + qfd−2 + · · ·+ q
d−1

2 f1 for odd d

where we call fd−2k ∈ Hd−2kC3 the harmonic form associated to f of degree
d− 2k, for all 0 ≤ k ≤ bd2c.

The harmonic decomposition stated above allows us to give the following
stability condition.

Proposition 3.0.2. Let f ∈ SdC3 be a ternary form and consider its unique
harmonic decomposition as in Theorem 3.0.1. Then f is stable (semistable) with
respect to SO(3,C) if at least one of the harmonic forms fd−2k associated to f is
stable (semistable) with respect to SO(3,C).

A relevant part of this chapter is devoted to the study of the SO(3,C)-stability
and semistability in the space HdC3 of harmonic ternary forms. In this direction,
we provide a necessary and sufficient stability condition in the following Propo-
sition 3.0.3 and Theorem 3.0.4. In their proofs, we consider essentially three
relevant facts:

1. There exists an isomorphism between the Lie algebras sl(2,C) and so(3,C)
of the groups SL(2,C) and SO(3,C).

2. All the irreducible SL(2,C)-modules are of the form SkC2 for some k ≥ 1.

3. The space HdC3 ⊂ SdC3 of complex harmonic ternary forms, introduced
in Definition 2.4.3, is an irreducible SO(3,C)-module of dimension 2d+ 1.

Summing up all these pieces of information, there is an SL(2,C)-equivariant
isomorphism between the spaces HdC3 and S2dC2. Therefore, we can use the
well-known semistability theory of binary forms of degree 2d to understand its
counterpart in HdC3.

The first characterization of stable and semistable complex harmonic ternary
forms with respect to the action of SO(3,C) is furnished by the next proposition.

Proposition 3.0.3. Let h ∈ HdC3 be a harmonic ternary form and denote with
Xh its associated curve in P2

C. Denote with Q the quadric fixed by the group
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SO(3,C). Then h is non-stable (non-semistable) with respect to SO(3,C) if and
only if its associated divisor Xh ∩Q on Q may be written in the form

Xh ∩Q = kP +D

for some k ≥ d (k ≥ d+ 1), where D is a divisor of degree 2d− k on Q.

Figure 3.1: From left to right, an affine picture of a non-stable and a non-
semistable harmonic plane quintic. We have |Xh ∩ Q| = 10. In the first case,
Xh ∩Q = 5P +D, whereas in the second case Xh ∩Q = 6P +D.

Last proposition leaves us the following problem: which harmonic ternary
forms h ∈ HdC3 determine a plane curve Xh such that Xh ∩Q is a divisor on Q
of the form kP +D for some k ≥ d?

The main result of this chapter answers this question. In the following state-
ment, for any integer m ≥ 0 and any curve X ⊂ P2

C with ideal I(X) = (f), we
indicate with mX the divisor on P2

C whose ideal is generated by the polynomial
fm. Moreover, we denote by CTPX the tangent cone of X at the point P ∈ X.
This notion and the related notion of multiplicity of a point are recalled in Sec-
tion 3.5. When not specified, the stability and semistability of either an element
of HdC3 or an element of S2dC2 are considered with respect to either SO(3,C)
or SL(2,C).

Theorem 3.0.4. Let h ∈ HdC3 be a harmonic ternary form. Then

1. If d is even, h is non-stable if and only if there exists P ∈ Q and an integer
k ≥ d

2 such that P is a k-ple point for Xh and d
2TPQ ⊂ CTPXh. Moreover,

h is non-semistable if and only if it is non-stable and ϕ2d(h) = 0, where
ϕ2d ∈ S2HdC3 is the SO(3,C)-invariant corresponding to the SL(2,C)-
invariant in S2S2dC2 defined in (3.5.7).
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2. If d is odd, h is non-stable if and only if there exists P ∈ Q and an integer
k ≥ d+1

2 such that P is a k-ple point for Xh. In particular d−1
2 TPQ ⊂

CTPXh. Moreover, h is non-semistable if and only if it is non-stable and
ϕ2d(h) = 0.

In particular, if h is non-semistable, then Xh is reducible in the form Xh = LXh′ ,
where the line L and the curve Xh′ are tangent to Q in a common point, and
h′ ∈ Hd−1C3 is non-stable.

As we can observe from the statement of the last theorem, the multiplicity of
roots of binary forms is somehow related to the multiplicity of the correspond-
ing harmonic curve at a certain isotropic point. When this multiplicity is large
enough, the curve turns out to be non-semistable and is forced to split into a line
and a non-stable harmonic curve of one degree less. For example, the non-stable
plane quintic Xh on the left in Figure 3.1 is such that P is a triple point for Xh

and the double line 2TPQ is contained in the tangent cone CTPXh. Moreover,
the non-semistable quintic Xh on the right is the union of TPQ and a non-stable
plane quartic. After the proof of Theorem 3.0.4, we provide concrete examples
of non-stable and non-semistable harmonic ternary forms in small degrees.

3.1 Semistability and stability criteria

Roughly speaking, the necessary ingredients needed to talk about stability and
semistability in this chapter are basically two: a linear algebraic group G acting
on a projective variety X.

The group GL(n,C) of complex invertible matrices of order n is naturally an
affine algebraic variety. In the following, a linear algebraic group is any Zariski
closed subgroup of GL(n,C). In particular, all the groups mentioned in the in-
troduction of this chapter are linear algebraic groups. Their structure of reduced
algebraic variety is the one induced by GL(n,C). If G denotes a linear algebraic
group, the map G→ G sending an element g to its inverse g−1 is an isomorphism
of algebraic varieties. Moreover, since the variety G is non-reduced, the open
subset of smooth points is nonempty and invariant under translation. In other
words, G is smooth.

Definition 3.1.1. Consider a projective algebraic variety X. We say that G acts
on X if there exists a morphism σ : G×X → X such that

1. for all g ∈ G, the morphism σ(g,_) : X → X sending any x ∈ X to
g.x := σ(g, x) ∈ X is an automorphism of X,

2. the map sending any g ∈ G to the automorphism X → X already defined
is a group homomorphism.



72 Chapter 3. On the orthogonal stability of binary and ternary forms

Moreover, the image G.x := {σ(g, x) | g ∈ G} is called the orbit of x ∈ X under
the action of G.

Let ψ : G×X → X ×X be the morphism sending any pair (g, x) ∈ G×X to
(g.x, x) ∈ X ×X. We say that the action of G on X is proper if the morphism ψ
is proper (see [Har, Chapter 2, §4]). If G acts on the projective varieties X and
Y and ϕ : X → Y is a morphism of projective varieties, then ϕ is G-equivariant
if the following diagram commutes:

G×X X

G× Y Y,

where the horizontal arrows are the actions of G on X and Y , while the vertical
arrows are equal to the product map IdG × ϕ.

Now we briefly recover the essential ingredients of representation theory needed
for this chapter. For further details, we refer to [FH]. For our purposes, V is a
finite-dimensional complex vector space. For a given linear algebraic group G,
then V is a G-module if there exists a finite-dimensional representation ρ : G →
GL(V ). A G-module V is simple if the representation ρ is irreducible, mean-
ing that all proper G-invariant vector subspaces of V are trivial. Moreover, V
is semi-simple if ρ is totally reducible, namely it is a direct sum of irreducible
representations. All these notions are necessary to introduce the next important
definition.

Definition 3.1.2. A linear algebraic group G is linearly reductive if all finite
dimensional G-modules V are semi-simple.

Basically, all the examples of linear algebraic groups appearing in this chapter
are linearly reductive. For further details we refer to [LeP, Section 6.2].

We move directly to the most important definitions used in this chapter.
Let X ⊂ P(V ) be a projective algebraic variety for some n-dimensional com-
plex vector space V . Suppose that G is a linearly reductive group acting on
X. We denote by S = S(X) the homogeneous coordinate ring of X. Then
S ∼= C[x1, . . . , xn]/I for some homogeneous ideal I ⊂ C[x1, . . . , xn]. One might
consider the subring SG ⊂ S of the elements that are G-invariant. It turns out
that AG is finitely generated, and the inclusion SG ↪→ S yields a rational map
X = Proj(S) 99K Proj(SG) of projective algebraic varieties.

Definition 3.1.3. A point x ∈ X is semistable under the action of G if there
exists a homogeneous G-invariant polynomial with strictly positive degree which
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does not vanish at x. Otherwise, such a point is said to be non-semistable for
the action of G.

The locus of semistable points of X is indicated with Xss. In particular, the
variety X\Xss corresponds to the locus of common zeros of the elements in SG of
positive degree. Therefore the restriction Xss → Proj(SG) becomes a morphism.

For the moment, we call C(X) the affine cone of the projective variety X. We
recall the following result without proof.

Lemma 3.1.4. A point x ∈ X is non-semistable under the action of G if and
only if it is the image of a point p ∈ C(X) \ {0} such that 0 ∈ G.p.

The second important notion to define is the following.

Definition 3.1.5. A point x ∈ X is said to be stable under the action of G if it
is semistable and if the orbit map G→ Xss sending g ∈ G to g.x is proper. The
locus of semistable points of X is indicated with Xs.

The next tool we introduce is a fundamental criterion to compute the semistable
or stable points of the action of a linearly reductive algebraic group G on a pro-
jective variety X. Until the end of this paragraph, the symbol C∗ denotes a
one-parameter subgroup of G. Of course, the action of a one-parameter sub-
group C∗ on X is defined by restricting the action of G.

Theorem 3.1.6 (Hilbert-Mumford). Let G be a linearly reductive group acting
on a projective algebraic variety X. A point x ∈ X is semistable (stable) if and
only if it is semistable (stable) for the action induced by every one parameter
subgroup C∗ ⊂ G.

The above statement is essentially [LeP, Theorem 6.5.3]. We also mention a
simplified proof of Theorem 3.1.6, valid only over C, which uses elementary linear
algebra results [Sur].

3.2 Stability criteria for binary forms

In this section we focus on the case of V = C2 (n = 2) and we choose X =
P(SdC2), with d ≥ 2, as our projective variety. The next classical result by
Hilbert determines all semistable and stable elements of X under the action
of SL(2,C), using the already mentioned Hilbert-Mumford criterion stated in
Theorem 3.1.6.

Theorem 3.2.1 (Hilbert). A binary form f ∈ P(SdC2) is semistable (stable) for
the action of SL(2,C) if and only if every root of f has multiplicity ≤ d

2 (< d
2 ).



74 Chapter 3. On the orthogonal stability of binary and ternary forms

Remark 3.2.2. Note the difference in the previous result between the even and
the odd case: in the odd case, the conditions ≤ d

2 and < d
2 coincide, namely a

binary form of odd degree is semistable if and only if it is stable.

Sketch of the proof. Consider a one parameter subgroup C∗ ⊂ SL(2,C). We can
choose coordinates (z1, z2) for C2 such that

C∗ =

{(
t 0
0 1

t

)
| t ∈ C∗

}
.

Then C∗ acts on C2 by sending (z1, z2) to (tz1,
1
t z2). The induced action σ : C∗×

P(SdC2)→ P(SdC2) is defined by

σ(g, (a0, . . . , ad)) = (tda0, t
d−2a1, . . . , t

2−dad−1, t
−dad),

for all g ∈ C∗, where the vector a = (a0, . . . , ad) identifies the binary form

f =

d∑
j=0

(
d

j

)
ajz

d−j
1 zj2 ∈ SdC2.

Then it is almost immediate to see that 0 ∈ C∗.a if and only if ak = · · · = a2k = 0
for d = 2k or ak+1 = · · · = a2k+1 = 0 for d = 2k + 1. Therefore, applying
Theorem 3.1.6, the set of non-semistable binary forms is

X \Xss =

f = zk+1
k−1∑
j=0

(
2k

j

)
ajz

k−1−jwj | [a0, . . . , ak−1] ∈ Pk−1
C


for d = 2k, whereas

X \Xss =

f = zk+1
k∑
j=0

(
2k + 1

j

)
ajz

k−jwj | [a0, . . . , ak] ∈ PkC


for d = 2k + 1. In particular, for d = 2k we have that the multiplicity of z is at
least k + 1 > k = d

2 , and similarly for d = 2k + 1 the multiplicity of z is at least
k + 1 > k + 1

2 = d
2 .

Example 3.2.3. Consider for example the case d = 3. By Theorem 3.2.1, the
semistable (or stable, by Remark 3.2.2) cubic binary forms are exactly the ones
having three distinct roots. To determine geometrically which are these forms,
we consider the projective space X = P(S3C2) ∼= P3

C parametrizing all the cubic
binary forms. The rational normal curve C3 ⊂ X parametrizes the cubic binary
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forms of rank one, namely the forms f = (λx1 +µx2)3. Moreover, the tangential
surface of C3, denoted by TC3, is the locus of cubic binary forms having at least
a double root. Hence the locus of semistable cubic binary forms is precisely
X \ TC3. In addition to this, we observe that TC3 = V (∆), where ∆ is the
cubic discriminant. We recall that ∆ is the only one generator for the algebra of
invariants for SL(V ) acting on X.

Another linearly reductive group which acts on P(SdC2) is the special orthog-
onal group SO(2,C). The analogous result to Theorem 3.2.1 is the following.

Theorem 3.2.4. A binary form f ∈ P(SdC2) is semistable (stable) for the action
of SO(2,C) if and only if the isotropic roots of f have multiplicity ≤ d

2 (< d
2 ).

We consider two explanatory examples of the last result.

Example 3.2.5 (Cubic binary forms). Consider the case d = 3, hence X =
P(S3C2). Denote with L1, L2 the lines tangent to C3 in z3

1 and z3
2 respectively,

where z1 = x1 +
√
−1x2 and z2 = x1−

√
−1x2 are the two isotropic linear forms

of C2 (see Figure 3.2). Then L1 and L2 are the loci of cubic forms having z2
1 and

z2
2 as a factor, respectively. In particular we have that z2

1z2 ∈ L1, z1z
2
2 ∈ L2 and

additionally L1 ∩ L2 = ∅. Hence the locus of semistable points with respect to
the action of SO(2,C) is Xss = X \ (L1 ∪ L2).

C3

z31

z32
L1

L2

z21z2

z1z22

P3
C

Figure 3.2: The locus of non-semistable cubics for SO(2,C).

Example 3.2.6 (Quartic binary forms). Now consider the case d = 4. Denote
with L1, L2 the lines tangent to the rational normal quartic C4 at the points
z4

1 and z4
2 , respectively. In addition, let π1 and π2 be the osculating planes to

C4 at z4
1 and z4

2 , respectively (see Figure 3.3). On one hand, L1 and L2 are the
loci of quartic forms having z3

1 and z3
2 as a factor, respectively. On the other
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hand, π1 and π2 are the loci of quartic forms having z2
1 and z2

2 as a factor,
respectively. In particular, L1 ⊂ π1 and L2 ⊂ π2. We remark that z3

1z2 ∈ π1,
z1z

3
2 ∈ π2, and π1 ∩ π2 = {z2

1z
2
2}. Then the loci of semistable and stable points

of X with respect to the action of SO(2,C) are respectively Xss = X \ (L1 ∪L2)
and Xs = X \ (π1 ∪ π2).

C4

z41
z42

L1

L2

z31z2

z1z32

z21z
2
2

P4
C

π1 π2

Figure 3.3: The loci of non-stable and non-semistable quartics for SO(2,C).

In general, we have the following result.

Proposition 3.2.7. Let X = P(SdC2) and denote by Cd the rational normal
curve of degree d in X. Call z1 and z2 the two isotropic linear forms of C2.

1. Suppose that d = 2k. Let L1 and L2 be the projective subspaces of X that
parametrize the binary forms of degree d having zk+1 and wk+1 as a factor,
respectively. Moreover, denote by π1 and π2 the projective subspaces of X
that parametrize the binary forms of degree d having zk and wk as a factor,
respectively. Then dim(L1) = dim(L2) = k−1, dim(π1) = dim(π2) = k and
the loci of semistable and stable points of X under the action of SO(2,C)
on X are respectively

Xss = X \ (L1 ∪ L2), Xs = X \ (π1 ∪ π2).

2. Suppose that d = 2k+1. Let L1 and L2 be the projective subspaces of X that
parametrize the binary forms of degree d having zk+1 and wk+1 as a factor,
respectively. Then dim(L1) = dim(L2) = k and the locus of semistable
(equivalently, stable) points of X under the action of SO(2,C) on X is

Xss = Xs = X \ (L1 ∪ L2).
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3.3 An orthogonal stability criterion
for harmonic ternary forms

In the previous section we considered the action of the complex special linear
group SL(2,C) as well as the complex special orthogonal group SO(2,C) on the
projective space P(SdC2) of (classes of) complex binary forms of degree d.

The aim of this section is to prove Proposition 3.0.3. First, we need to explain
the three facts outlined in the preamble, before the statement of Proposition 3.0.3.

The Lie algebra sl(2,C) of SL(2,C) corresponds to the space of 2×2 complex
matrices with trace zero. It has dimension three with the basis

H =

(
1 0
0 −1

)
, X =

(
0 1
0 0

)
, Y =

(
0 0
1 0

)
. (3.3.1)

The basis elements have the following relations with respect to the Lie bracket:

[H,X] = 2X, [H,Y ] = −2Y, [X,Y ] = H.

On the other hand, the Lie algebra so(3,C) of SO(3,C) is the space of 3× 3
complex matrices A satisfying AT = −A. It is three dimensional and a basis of
so(3,C) is given by

F1 =

0 0 0
0 0 −1
0 1 0

 , F2 =

 0 0 1
0 0 0
−1 0 0

 , F3 =

0 −1 0
1 0 0
0 0 0

 .

The linear map φ : sl(2,C)→ so(3,C) such that

φ(H) = −2
√
−1F1, φ(X) = F2 −

√
−1F3, φ(Y ) = F2 +

√
−1F3 (3.3.2)

is a Lie algebra isomorphism. At the level of Lie groups, we have the following
result.

Lemma 3.3.1. [Hal, Lemma 4.30] There exists a Lie group homomorphism

Φ: SL(2,C)→ SO(3,C)

such that

1. Φ is surjective,

2. ker(Φ) = {Id,−Id}, and

3. the associated Lie algebra homomorphism is the map φ : sl(2,C)→ so(3,C)
defined in (3.3.2).
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Now consider the space SkC2 of (classes of) complex binary forms of degree k.
It is a (2k+ 1)-dimensional SL(2,C)-module via the restriction to SL(2,C) of the
representation ρk defined in (3.0.1), which we call here Πk. The associated Lie
algebra representation πk : sl(2,C)→ gl(SkC2) is such that for all g ∈ sl(2,C)

πk(A) =
d

dt
Πk(etA)

∣∣∣∣
t=0

. (3.3.3)

Applying the above identity to the vector z = (z1, z2) ∈ C2 we obtain that

πk(A)f(z) =
d

dt
f(e−tAz)

∣∣∣∣
t=0

.

Let z(t) be a curve in C2 defined as z(t) = e−tAz. In particular, z(0) = z. We
can write z(t) = (z1(t), z2(t)) and by the chain rule

πk(A)f =
∂f

∂z1

dz1

dt

∣∣∣∣
t=0

+
∂f

∂z2

dz2

dt

∣∣∣∣
t=0

.

However dz
dt

∣∣
t=0

= −Az, so we obtain the formula

πk(A)f = −(A11z1 +A12z2)
∂f

∂z1
− (A21z1 +A22z2)

∂f

∂z2
. (3.3.4)

As one might foresee from the first lines of this section, the representations
πk are very important for the whole development of this chapter. Indeed, they
are “good” representations of sl(2,C) (see [Hal, Theorem 4.9]).

Theorem 3.3.2. For each integer k ≥ 0, the representation πk of sl(2,C) is irre-
ducible. Moreover, if π is an irreducible representation of sl(2,C) with dimension
k + 1, then π is equivalent to the representation πk described before.

At this point, we might carry all the information provided so far to the Lie
algebra so(3,C), via the isomorphism φ defined in (3.3.2).

The space SdC3 of (classes of) complex ternary forms is an SO(3,C)-module
via the restriction to SO(3,C) of the representation ρd defined in (3.0.1), which
we keep calling ρd.

Since sl(2,C) and so(3,C) are isomorphic Lie algebras, they have essentially
the same representations. More specifically, if π is a representation of sl(2,C),
then π◦φ−1 is a representation for so(3,C), and every representation of so(3,C) is
of this form. In particular, the irreducible representations of so(3,C) are precisely
of the form σk := πk ◦φ−1. This fact holds true at the level of Lie groups as well,
at least for even k.
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Proposition 3.3.3. [Hal, Proposition 4.29] Let σk = πk ◦ φ−1 be the irreducible
representation of so(3,C) for some k ≥ 1. If k is even, then there is a represen-
tation Σk of SO(3,C) such that Σk(eA) = eσk(A) for all A ∈ so(3,C). If k is odd,
then there is no such representation of SO(3,C).

The third ingredient is the space of harmonic ternary forms HdC3 ⊂ SdC3,
introduced in Definition 2.4.3 as well as in the preamble of this chapter. Consider
the representation (HdC3, ρd) of SO(3,C) (see for example [Ste, Lemma 4.1,
Section 4.4]).

Theorem 3.3.4. For every d ≥ 1, the representation (HdC3, ρd) of SO(3,C) is
irreducible. Therefore, HdC3 is a simple SO(3,C)-module. In addition, every
simple SO(3,C)-module is equivalent to HdC3 for some d ≥ 1.

Summing up all the properties given in this section, by Schur’s Lemma we
conclude that

Theorem 3.3.5. There exists an SL(2,C)-equivariant isomorphism

ϕ : HdC3 −→ S2dC2.

This result implies, thanks to the results outlined in the previous lines of this
section, that for each d ≥ 1 we can read HdC3 as an irreducible SL(2,C) module
of dimension 2d+ 1. Therefore, we can transfer all the SL(2,C)-stability theory
of S2dC2 to describe all stable and semistable elements of HdC3 with respect to
the group SO(3,C).

Proof of Proposition 3.0.3. Let h be a complex harmonic ternary form. Since Xh

is a curve of degree d in P2
C , it intersects the isotropic quadric Q in 2d points,

counted with multiplicity. In particular, Xh ∩Q is a divisor of degree 2d in Q.
Observe that, thanks to Theorem 3.0.1, if h1 and h2 are not proportional

forms in HdC3, they give different divisors on Q. This is not true if f1 and f2

are not proportional forms in SdC3: indeed, given a harmonic form h ∈ HdC3

and two not proportional forms g1 and g2 in Sd−2C3, the forms f1 = h1 + qg1

and f2 = h2 + qg2 are not proportional but yield the same divisor on Q, since

Xf1 ∩Q = Xh ∩Q = Xf2 ∩Q.

The divisor Xh ∩ Q corresponds to a divisor on the projective line P1
C , namely

to the equivalence class of a binary form f ∈ S2dC2. The statement follows by
considering the stability and semistability criterion of Theorem 3.2.1.

We make a couple of comments about Proposition 3.0.3. The case d = 1
is trivial: indeed, every line in P1

C is harmonic and is non-stable, while all lines
tangent to Q are non-semistable.

The first nontrivial case is d = 2:
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1. By Proposition 3.0.3, a harmonic ternary form h ∈ S2C3 is non-stable if
Xh ∩Q = 2P +D, with |D| = 2. How do we achieve such a divisor? If Xh

is a smooth conic, then necessarily Xh is tangent to Q at some point. Now
consider two linear forms a and b vanishing at the point P = [p] ∈ Q and
their corresponding lines La and Lb. The tangent line TPQ is the locus of
points P ′ = [p′] such that q(p, p′) = 0. The singular conic Cab = La ∪Lb is
harmonic if and only if ∆(ab) = 0. By the relation

∆(ab) = ∆a+ 2q(∇a,∇b) + ∆b,

this is equivalent to the requirement q(∇a,∇b) = 0. This condition, to-
gether with the condition P ∈ La∩Lb, yields either La = TPQ or Lb = TPQ.
This can be verified easily by looking at the dual space P2

C (see Figure 3.4):
on one hand, the lines La and Lb correspond to points in P2

C , each one of
them belongs to the polar line (with respect to Q∨) of the other. On the
other hand, the line P contains the points La and Lb, and P is tangent to
Q∨ at the point TPQ. This forces either La or Lb to coincide with TPQ.

Q∨

La

Lb

P  
Q∨

La

Lb ≡ TPQ

P

Figure 3.4: The non-stable singular harmonic plane conic Cab = La∪Lb in (P2
C)∨.

2. Finally, a harmonic ternary form h ∈ H2C3 is non-semistable if either
Xh ∩ Q = 3P + P ′ for some points P 6= P ′ or Xh ∩ Q = 4P . The first
case is achieved by the conic L ∪ TPQ, where L is a line passing through
P ∈ Q distinct from the tangent line TPQ. The second case is achieved by
the double line 2TPQ for some P ∈ Q.

3.4 A dictionary between harmonic ternary forms
and binary forms

As one might foresee, the geometrical description of Proposition 3.0.3 is difficult
in general. To give a more detailed characterization of stable and semistable
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elements of HdC3, we need to introduce suitable bases of HdC3 and S2dC2 and
give a coordinate-based description of the SL(2,C)-equivariant isomorphism ϕ of
Theorem 3.3.5.

Consider the basis element H ∈ sl(2,C) introduced in (3.3.1) and apply to it
the representation πk via the relation (3.3.4): we get

πk(H) = −z1
∂

∂z1
+ z2

∂

∂z2
.

Applying πk(H) to the monomial zj1z
k−j
2 ∈ SkC2 we get the identity

πk(H)(zj1z
k−j
2 ) = (k − 2j)zj1z

k−j
2 .

This means that zj1z
k−j
2 is an eigenvector of πk(H) with corresponding eigenvalue

k − 2j, for all 0 ≤ j ≤ k. Therefore, the linear operator πk(H) is diagonalizable.

Applying again formula (3.3.4) to the other basis elementsX and Y of sl(2,C),
we get the identities

πk(X) = −z2
∂

∂z1
, πk(Y ) = −z1

∂

∂z2
.

Applying πk(X) and πk(Y ) to zj1z
k−j
2 ∈ SkC2 we obtain that

πk(X)(zj1z
k−j
2 ) = −jzj−1

1 zk−j+1
2 , πk(Y )(zj1z

k−j
2 ) = (j − k)zj+1

1 zk−j−1
2 .

Hence the operators πk(X) and πk(Y ) somehow move from one eigenvector of
πk(H) to the previous or the next one. This is why they are also called lowering
and rising operators.

Now assume that k = 2d for some integer d ≥ 1. Which are the linear opera-
tors in GL(HdC3) corresponding respectively to π2d(H), π2d(X) and π2d(Y )? By
Proposition 3.3.3, every (2d+1)-dimensional irreducible representation of so(3,C)
is of the form σ2d = π2d ◦ φ−1, where φ is the isomorphism between sl(2,C) and
so(3,C). Then looking at the relations in (3.3.2) we get

π2d(H) = σ2d(φ(H)) = 2
√
−1

(
−x3

∂

∂x2
+ x2

∂

∂x3

)
,

π2d(X) = σ2d(φ(X)) = −(
√
−1x2 + x3)

∂

∂x1
+
√
−1x1

∂

∂x2
+ x1

∂

∂x3
,

π2d(Y ) = σ2d(φ(Y )) = (
√
−1x2 − x3)

∂

∂x1
−
√
−1x1

∂

∂x2
+ x1

∂

∂x3
.
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Therefore, we can construct a basis of eigenvectors for HdC3 as for S2dC2, by
finding an eigenvector of π2d(H) and then by lowering or rising it using the op-
erators π2d(Y ) and π2d(X). In particular, we observe that applying the operator
π2d(H) to the form (x2 −

√
−1x3)d ∈ HdC3 we get

π2d(H)[(x2 −
√
−1x3)d] = 2d(x2 −

√
−1x3)d,

that is, (x2−
√
−1x3)d is an eigenvector of π2d(H) with eigenvalue 2d. Moreover,

π2d(X)(x2 −
√
−1x3)d = 0.

This means that the other eigenvectors of π2d(H) are obtained applying repeat-
edly to (x2 −

√
−1x3)d the lowering operator π2d(Y ) until we obtain, at the

(2d+ 1)-th iteration, the zero vector:

π2d(Y )(x2 −
√
−1x3)d = −2

√
−1dx1(x2 −

√
−1x3)d−1

π2d(Y )2(x2 −
√
−1x3)d = 2d(x2 +

√
−1x3)(x2 −

√
−1x3)d−1

− 4d(d− 1)x2
1(x2 −

√
−1x3)d−2

π2d(Y )3(x2 −
√
−1x3)d = · · ·

(3.4.1)

In this way, we obtained a concrete “dictionary” between the spaces HdC3 and
S2dC2. The following proposition gives a concrete expression for the eigenvectors
of π2d(H).

Proposition 3.4.1. Define vj := π2d(Y )j(x2 −
√
−1x3)d for all 0 ≤ j ≤ 2d.

Then

v2k =

k∑
s=0

αk,sDd,k+sA
d−k−sBk−sC2s (3.4.2)

for all 1 ≤ k ≤ d, whereas

v2k+1 =

k−1∑
s=0

[αk,s + 2(s+ 1)αk,s+1]Dd,k+1+sA
d−k−1−sBk−sC2s+1 (3.4.3)

for all 1 ≤ k ≤ d− 1, where

A = (x2 −
√
−1x3), B = 2(x2 +

√
−1x3), C = −2

√
−1x1,

Dm,n =

{
m!

(m−n)! n ≤ m
0 n > m

(3.4.4)

and the coefficients αk,s have the following recursive definition:

αk,s =


0 for k < 0 and s > k

1 for k = s = 0

αk−1,s−1 + (4s+ 1)αk−1,s + 2(s+ 1)(2s+ 1)αk−1,s+1 otherwise.
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Proof. The proof is by induction on k. Consider the three polynomials A, B and
C defined in (3.4.4). From the definition of π2d(Y ) in (3.4.1) we get that

v0 = Ad, v1 = π2d(Y )(Ad) = dAd−1C,

hence the formulas (3.4.2) and (3.4.3) are true for k = 0.

Now consider the polynomial ApBqCr for p, r ≥ 1 and q ≥ 0 and apply to
this polynomial the operator π2d(Y ):

(x2 +
√
−1x3)

∂

∂x1
(ApBqCr) = −

√
−1 rApBq+1Cr−1

−x1

(
∂

∂x2
+
√
−1

∂

∂x3

)
(ApBqCr) = −

√
−1pAp−1BqCr+1.

Hence

π2d(Y )(ApBqCr) = rApBq+1Cr−1 + pAp−1BqCr+1 ∀p, r ≥ 1, q ≥ 0. (3.4.5)

Assume that the relation (3.4.2) for v2k is true. From relation (3.4.5) we observe
that the summand of index s in the expression for v2k+1 depends on the sum-
mands indexed by s and s + 1 in the expression for v2k. So the idea is to apply
the operator π2d(Y ) to these two summands, using relation (3.4.5). We get that

π2d(Y )(αk,sDd,k+sA
d−k−sBk−sC2s

+ αk,s+1Dd,k+s+1A
d−k−(s+1)Bk−(s+1)C2(s+1)) =

= 2sαk,sDd,k+sA
d−k−sBk−s+1C2s−1

+ (d− k − s)αk,sDd,k+sA
d−k−1−sBk−sC2s+1

+ 2(s+ 1)αk,s+1Dd,k+1+sA
d−k−1−sBk−sC2s+1

+ (d− k − s− 1)αk,s+1Dd,k+1+sA
d−k−s−2Bk−s−1C2s+3

= αk,sDd,k+1+(s−1)2[(s− 1) + 1]Ad−k−1−(s−1)Bk−(s−1)C2(s−1)+1

+ [αk,s + 2(s+ 1)αk,s+1]Dd,k+s+1A
d−k−1−sBk−sC2s+1

+ αk,s+1Dd,k+1+(s+1)A
d−k−1−(s+1)Bk−(s+1)C2(s+1)+1.

In particular the second summand of the last polynomial is precisely the summand
of index s in the expression for v2k+1. This argument can be repeated for every
summand of v2k+1, proving that formula (3.4.3) is true.

Now we prove that the formula (3.4.2) is true as well. Assume again that
(3.4.2) is true at the step k. To compute the polynomial v2(k+1), observe that
the summand of index s in the expression for v2(k+1) depends on the summands
indexed by s − 1, s and s + 1 in the expression for v2k. Hence we apply the
operator π2d(Y )2 to these three summands, using relation (3.4.5). We get that
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for s− 1:

π2d(Y )2(αk,s−1Dd,k+s−1A
d−k−(s−1)Bk−(s−1)C2(s−1)) =

= π2d(Y )
[
2(s− 1)αk,s−1Dd,k+s−1A

d−k−(s−1)Bk−s+2C2s−3
]

+ π2d(Y )
[
αk,s−1Dd,k+sA

d−k−sBk−(s−1)C2s−1
]

= 2(s− 1)(2s− 3)αk,s−1Dd,k+(s−1)A
d−k−(s−1)Bk−s+3C2s−4

+ 2(s− 1)(d− k − s+ 1)αk,s−1Dd,k+(s−1)A
d−k−sBk−s+2C2(s−1)

+ (2s− 1)αk,s−1Dd,k+sA
d−k−sBk−s+2C2(s−1)

+ (d− k − s)αk,s−1Dd,k+sA
d−k−1−sBk−(s−1)C2s

= Cs−1 + other terms

for s:

π2d(Y )2(αk,sDd,k+sA
d−k−sBk−sC2s) =

= π2d(Y )(2sαk,sDd,k+sA
d−k−sBk−s+1C2s−1)

+ π2d(Y )(αk,sDd,k+s+1A
d−k−1−sBk−sC2s+1)

= 2s(2s− 1)αk,sDd,k+sA
d−k−sBk−s+2C2s−2

+ 2s(d− k − s)αk,sDd,k+sA
d−k−s−1Bk−s+1C2s

+ (2s+ 1)αk,sDd,k+s+1A
d−k−1−sBk−s+1C2s

+ (d− k − 1− s)αk,sDd,k+s+1A
d−k−2−sBk−sC2s+2

= Cs + other terms

for s+ 1:

π2d(Y )2(αk,s+1Dd,k+s+1A
d−k−(s+1)Bk−(s+1)C2(s+1)) =

= π2d(Y )
[
2(s+ 1)αk,s+1Dd,k+s+1A

d−k−(s+1)Bk−sC2s+1
]

+ π2d(Y )
[
αk,s+1Dd,k+s+2A

d−k−s−2Bk−(s+1)C2s+3
]

= 2(s+ 1)(2s+ 1)αk,s+1Dd,k+s+1A
d−k−(s+1)Bk−s+1C2s

+ 2(s+ 1)(d− k − s− 1)αk,s+1Dd,k+s+1A
d−k−s−2Bk−sC2s+2

+ (2s+ 3)αk,s+1Dd,k+s+2A
d−k−s−2Bk−sC2s+2

+ (d− k − s− 2)αk,s+1Dd,k+s+2A
d−k−s−3Bk−(s+1)C2s+4

= Cs+1 + other terms,
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where

Cs−1 = αk,s−1Dd,k+1+sA
d−(k+1)−sBk+1−sC2s

Cs = (4s+ 1)αk,sDd,k+1+sA
d−(k+1)−sBk+1−sC2s

Cs+1 = 2(s+ 1)(2s+ 1)αk,s+1Dd,k+1+sA
d−(k+1)−sBk+1−sC2s.

Finally we obtain that

Cs−1 + Cs + Cs+1 = αk+1,sDd,k+1+sA
d−(k+1)−sBk+1−sC2s,

where
αk+1,s = αk,s−1 + (4s+ 1)αk,s + 2(s+ 1)(2s+ 1)αk,s+1.

This completes the proof.

Remark 3.4.2. We write now more explicitly which are the middle and the two
last eigenvectors:

vd =


∑ d

2
s=0 α d

2 ,s
Dd, d2 +s(AB)

d
2−sC2s for even d

∑ d−3
2

s=0

[
α d−1

2 ,s + 2(s+ 1)α d−1
2 ,s+1

]
Dd, d+1

2 +s(AB)
d−1

2 −sC2s+1 for odd d

v2d−1 = (αd−1,0 + 2αd−1,1)d!Bd−1C

v2d = αd,0d!Bd

In the following, we consider the bases

{vj | 0 ≤ j ≤ 2d},
{(

2d

j

)
z2d−j

1 zj2

∣∣∣ j = 0, . . . , 2d

}
for HdC3 and S2dC2, respectively. With these choices of bases, the isomorphism
ϕ : S2dC2 → HdC3 of Theorem 3.3.5 is represented by the diagonal matrix

diag

(
(−1)j

j!

∣∣∣ 0 ≤ j ≤ 2d

)
. (3.4.6)

3.5 Geometrical description of the stability
for harmonic ternary forms

In this section, we implement the machinery created in the previous sections.
In particular, in Proposition 3.4.1 we derived explicitly a good basis {vj}j of
eigenvectors of the irreducible SO(3,C)-module HdC3. Using the equivalence
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with the irreducible SL(2,C)-module S2dC2 and Hilbert’s Theorem 3.2.1, we are
ready to describe geometrically all the stable and semistable harmonic plane
cubics under the action of SO(3,C), thus proving Theorem 3.0.4.

Let h ∈ HdC3 and consider its associated curve Xh in P2
C . As anticipated by

Proposition 3.0.3, the crucial part of the proof of Theorem 3.0.4 deals with the
study of the intersection betweenXh and the isotropic quadric Q : x2

1+x2
2+x2

3 = 0
in P2

C . Below we recall some basic facts about the multiplicity of a point on a
hypersurface in PnC . A detailed treatise on this subject may be found for example
in [Mum, Chapter 5].

For every form h ∈ SdCn ∼= C[x1, . . . , xn]d and every multi-index β =
(β1, . . . , βn) with βj ≥ 0 for all 1 ≤ jn, we adopt the notations |β| := β1+· · ·+βn,
β! := β1! · · ·βn!, xβ := xβ1

1 · · ·xβnn and

∂|β|h

∂xβ
(P ) :=

∂|β|h

∂xβ1

1 · · · ∂x
βn
n

(P ) ∀P ∈ PnC .

Fix a point P ∈ Xh, say P = [y1, . . . , yn]. Any line passing through P is of the
form L = PR for some point R = [z1, . . . , zn] ∈ PnC . In particular

L =
{

[x] ∈ PnC | xi = λyi + µzi ∀i ∈ {1, . . . , n} for some [λ, µ] ∈ P1
C

}
.

Consider the Taylor expansion of h̃(λ, µ) := h(λy1 + µz1, . . . , λyn + µzn) in a
neighbourhood of P , that is at µ = 0 (the notation used below takes into account
Schwarz’ Theorem):

h̃(λ, µ) =

d∑
m=0

1

m!

∂mh̃

∂µm
(λ, 0)µm

=

d∑
m=0

1

m!

 m∑
|β|=0

m!

β!

∂mh

∂xβ
(λP )zβ

µm
=

d∑
m=0

1

m!

 m∑
|β|=0

m!

β!

∂mh

∂xβ
(P )zβ

λd−mµm.
(3.5.1)

From this Taylor expansion we obtain that

IP (Xh, L) = m∗ ⇐⇒ µm∗ |h̃ and µm∗+1 -h̃,

where IP (Xh, L) is the intersection multiplicity between Xh and L at P . Now
suppose that the coordinates zi of R are general and consider the polynomial

hm,P =
1

m!

m∑
|β|=0

m!

β!

∂mh

∂xβ
(P )zβ , (3.5.2)
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namely the coefficient of λd−mµm in (3.5.1).

Definition 3.5.1. The multiplicity of P for Xh is

mP (Xh) = min{IP (Xh, L) | L is a line passing through P}.

In other words, the point P has multiplicity m for Xh (or is an m-ple point of Xh)
if hm,P is not identically zero and every partial derivative of h of order smaller
than m is zero. Moreover, the hypersurface defined by the equation hm,P = 0 is
called the tangent cone of Xh at P and is denoted by CTPXh. The tangent cone
of Xh at P is the union of the lines tangent to Xh at P . If mP (Xh) = 1, then
Xh is smooth at P and CTPXh coincides with the tangent space TPXh.

As pointed out in the end of Section 3.4, any harmonic form h ∈ HdC3 may
be written as

h =

2d∑
j=0

(−1)j

j!
ajvj (3.5.3)

for some complex coefficients a0, . . . , a2d. Fix the isotropic point P = [0, 1,−
√
−1].

From the expressions of the polynomials vj in (3.4.2) and in (3.4.3), we obtain
immediately that vj(P ) = 0 for j 6= 2d and v2d(P ) = 22dαd,0d!. Hence, using
(3.5.2) we get

h0,P = h(P ) =
22dαd,0d!

(2d)!
a2d.

In particular P ∈ Xh if and only if a2d = 0.

Our goal is to obtain a closed expression of the polynomials hm,P : as we
show in a while, they are fundamental to study the stability and semistability of
harmonic ternary forms. In the next technical lemma, we start by computing all
the partial derivatives of h of order m, using the formulas obtained in Proposition
3.4.1.

Lemma 3.5.2. Let h as in (3.5.3) and P = [0, 1,−
√
−1]. Then

∂mh

∂xβ
(P ) = (−1)β3

d!β1!2γ̄
√
−1 β1+β3

γ̄!
Am,β1aγ̄

for every multi-index β = (β1, β2, β3) with |β| = m, where γ̄ = 2(d−m) +β1 and

Am,β1 =

{
α γ̄

2 ,
β1
2

if β1 is even

α γ̄−1
2 ,

β1−1
2

+ (β1 + 1)α γ̄−1
2 ,

β1+1
2

if β1 is odd.
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Proof. From the definition of h we have that

∂mh

∂xβ
(P ) =

2d∑
j=0

(−1)j

j!
aj
∂mvj
∂xβ

(P ).

Suppose that β1 is even. Then ∂mvj
∂xβ

(P ) = 0 for every odd index j, by the formula
for vj in (3.4.3). Moreover, looking at the formulas in (3.4.2), we see that the
only possible nonzero value of ∂mvj

∂xβ
(P ), with even j, comes from the summand

with j = β1

2 . Hence

∂mvj
∂xβ

(P ) =
∂m

∂xβ

(
α j

2 ,
β1
2
D
d,
β1+j

2
Ad−

β1+j
2 B

j−β1
2 Cβ1

)∣∣∣
P

= β1!(−2
√
−1 )β1α j

2 ,
β1
2
D
d,
β1+j

2

∂m−β1

∂xm−β1−β3

2 ∂xβ3

3

(
Ad−

β1+j
2 B

j−β1
2

)∣∣∣
P
.

From last equality and the fact that A(P ) = 0 we see that

∂m−β1

∂xm−β1−β3

2 ∂xβ3

3

(
Ad−

β1+j
2 B

j−β1
2

)∣∣∣
P

= 0

when the exponent of A, namely d− β1+j
2 , is not equal to m− β1. In turn, this

happens when j 6= 2(d−m) + β1 = γ̄. Otherwise if j = γ̄, then

∂m−β1

∂xm−β1−β3

2 ∂xβ3

3

(
Am−β1Bd−m

)∣∣
P

= 22(d−m) ∂m

∂xm−β1−β3

2 ∂xβ3

3

(
Am−β1

)∣∣
P

= (m− β1)!(−
√
−1 )β322(d−m).

Summing up, we obtain that

∂mh

∂xβ
(P ) =

(−1)γ̄

γ̄!
aγ̄
∂mvγ̄
∂xβ

(P )

=
(−1)γ̄

γ̄!
aγ̄β1!(−2

√
−1 )β1α γ̄

2 ,
β1
2
Dd,d−m+β1(m− β1)!(−

√
−1 )β322(d−m)

= (−1)β3
d!β1!2γ̄

√
−1 β1+β3

γ̄!
α γ̄

2 ,
β1
2
aγ̄ .

If β1 is odd, a similar computation produces the following identity:

∂mh

∂xβ
(P ) = (−1)β3

d!β1!2γ̄
√
−1 β1+β3

γ̄!

[
α γ̄−1

2 ,
β1−1

2
+ (β1 + 1)α γ̄−1

2 ,
β1+1

2

]
aγ̄ .
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Lemma 3.5.3. Let h and P as before. Then for every 0 ≤ m ≤ d,

hm,P =
d!

(2d−m)!

m∑
β1=0

(
2d−m
γ̄

)
2γ̄Am,β1aγ̄(

√
−1x1)β1(x2 −

√
−1x3)m−β1 .

Proof. Applying the definition of hm,P and using the relation m!
β! =

(
m
β1

)(
m−β1

β3

)
,

we have

hm,P =
1

m!

∑
|β|=m

m!

β!

∂mh

∂xβ
(P )xβ

=
1

m!

m∑
β1=0

(
m

β1

)
xβ1

1

m−β1∑
β3=0

(
m− β1

β3

)
∂mh

∂xβ
(P )xβ2

2 xβ3

3 .

By Lemma 3.5.2, the last polynomial is equal to

=
1

m!

m∑
β1=0

(
m

β1

)
xβ1

1

m−β1∑
β3=0

(
m− β1

β3

)
(−1)β3

d!β1!2γ̄
√
−1 β1+β3

γ̄!
Am,β1aγ̄x

β2

2 xβ3

3

=
d!

m!

m∑
β1=0

(
m

β1

)
β1!2γ̄

γ̄!
Am,β1aγ̄(

√
−1x1)β1

m−β1∑
β3=0

(
m− β1

β3

)
xβ2

2 (−
√
−1x3)β3

=
d!

m!

m∑
β1=0

(
m

β1

)
β1!2γ̄

γ̄!
Am,β1

aγ̄(
√
−1x1)β1(x2 −

√
−1x3)m−β1

= d!

m∑
β1=0

2γ̄

(m− β1)!γ̄!
Am,β1aγ̄(

√
−1x1)β1(x2 −

√
−1x3)m−β1

=
d!

(2d−m)!

m∑
β1=0

(
2d−m
γ̄

)
2γ̄Am,β1

aγ̄(
√
−1x1)β1(x2 −

√
−1x3)m−β1 .

The relevant fact from Lemma 3.5.3 is that the expression of hm,P involves
the coefficients aγ̄ = a2(d−m)+β1

for β1 = 0, . . . ,m, namely the coefficients in
{a2d−2m, . . . , a2d−m}. In particular, for m = 0 the polynomial h0,P = H(P )
involves only the coefficient m2d. For m = 1, h1,P involves the coefficients m2d−2

and m2d−1. For m = 2, h2,P involves the coefficients m2d−4, m2d−3 and m2d−2,
and so on.

Remark 3.5.4. Imposing the conditions a2(d−m+1)+β1
= 0 for every 0 ≤ β1 ≤

m − 1, that is, imposing hm−1,P to be the zero polynomial, simplifies a lot the
expression for hm,P . Indeed, the only nonzero coefficients remaining in hm,P are



90 Chapter 3. On the orthogonal stability of binary and ternary forms

a2d−2m and a2d−2m+1. More explicitly, the expression for hm,P in Lemma 3.5.3
simplifies as

hm,P =
d!22(d−m)(x2 −

√
−1x3)m−1

(2(d−m))!(m− 1)!

[
Am,0
m

a2(d−m)(x2 −
√
−1x3)

+
2Am,1

2(d−m) + 1
a2(d−m)+1

√
−1x1

]
.

(3.5.4)

In other words, if we have already supposed that hm′,P = 0 for every m′ < m
(namely that P is a m-ple point of Xh), then the condition hm,P = 0 is obtained
by requiring only two more vanishing coefficients.

Carrying on this “degree by degree” computation of the Taylor expansion of
h at P , we get the following corollary.

Corollary 3.5.5. Let h be as before and P = [0, 1,−
√
−1]. Then

1. if d is even and P is a d
2 -ple point of Xh, then

h d
2 ,P

=
2d+1(
d−2

2

)
!
(x2 −

√
−1x3)

d−2
2

[
A d

2 ,0

d
ad(x2 −

√
−1x3) +

A d
2 ,1

d+ 1
ad+1

√
−1x1

]
.

2. if d is odd and P is a d+1
2 -ple point of Xh, then

h d+1
2 ,P =

2d(x2 −
√
−1x3)

d−1
2

(d− 1)
(
d−1

2

)
!

[
A d+1

2 ,0

d+ 1
ad−1(x2 −

√
−1x3) +

A d+1
2 ,1

d
ad
√
−1x1

]
.

The previous corollary allows us to proceed in the proof of Theorem 3.0.4.

Proof of Theorem 3.0.4. Consider a harmonic ternary form h ∈ HdC3, written
as in (3.5.3). In particular, the binary form

f =

2d∑
j=0

(
2d

j

)
ajz

2d−j
1 zj2

is such that ϕ(f) = h, where ϕ is the equivariant isomorphism of Theorem 3.3.5
defined explicitly in (3.4.6).

Suppose that h is non-stable. This means, in turn, that f is non-stable, and
by Theorem 3.2.1 a general non-stable binary form of degree 2d has a root of
multiplicity m ≥ d. We can assume that zd1 |f or, equivalently, that

ad+1 = · · · = a2d = 0. (3.5.5)

Consider the point P = [0, 1,−
√
−1] ∈ P2

C . By Remark 3.5.4 and Corollary 3.5.5,
we have that
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1. if d is even, the conditions ad+2 = · · · = a2d = 0 in (3.5.5) imply that
P is a (d/2)-ple point of Xh, while the condition ad+1 = 0 implies that
d
2TPQ ⊂ CTPXh.

2. if d is odd, the conditions (3.5.5) imply that P is a [(d+ 1)/2]-ple point of
Xh, and in particular d−1

2 TPQ ⊂ CTPXh.

Now suppose that h is non-semistable. Then the corresponding binary form f
is non-semistable, and again by Theorem 3.2.1 a general non-semistable binary
form of degree 2d has a root of multiplicity m ≥ d + 1. We can assume that
zd+1

1 |f or, equivalently, that

ad = · · · = a2d = 0. (3.5.6)

By Definition 3.1.3, every SL(2,C)-invariant of f of positive degree vanishes. In
particular, the quadratic SL(2,C)-invariant

(f, f)2d := (2d!)2
2d∑
j=0

(−1)j
(

2d

j

)
aja2d−j (3.5.7)

vanishes. We denote the corresponding SO(3,C)-invariant by ϕ2d. Therefore, by
the conditions (3.5.6) and (3.5.7), any non-semistable harmonic ternary form h
is non-stable and is such that ϕ2d(h) = 0.

On the other hand, suppose that d is even and that there exists P ∈ H∩Q and
an integer m ≥ d/2 such that P is an m-ple point for Xh and d

2TPQ ⊂ CTPXh.
Then we can assume that P = [0, 1,−

√
−1] and again applying Remark 3.5.4

and Corollary 3.5.5 we obtain the conditions (3.5.5). Using the ismorphism ϕ in
(3.4.6), we see that zd1 |f , hence f is non-stable. In turn, this implies that h is
non-stable. Moreover, looking at (3.5.7), in this case ϕ2d(h) = 0 if and only if
ad = 0, and this implies that zd+1

1 |f , namely the binary form f associated to h
is non-semistable, and thus h is non-semistable as well.

Otherwise d is odd. Suppose that there exists P ∈ Xh ∩ Q and an integer
m ≥ (d+ 1)/2 such that P is an m-ple point for Xh. A similar argument implies
that h is non-stable, and the additional condition ϕ2d(h) = 0 provides the non-
semistability of h.

For the last part of the statement, if we look at the expressions in (3.4.2)
and (3.4.3) for the eigenvectors vj , we get that any non-semistable harmonic
ternary form h is reducible: in fact, we have that ad = · · · = a2d = 0, while the
polynomials v0, . . . , vd−1 have z2 −

√
−1 z3 as a common factor and TPQ : z2 −√

−1 z3 = 0. In particular, Xh = TPQ ∪ Xh′ , where h′ is a harmonic ternary
form of degree d− 1.
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Repeating the same argument to h′, we can conclude that, for even d, P is
a (d/2)-ple point for Xh′ , whereas for odd d we have that P is a [(d − 1)/2]-ple
point for Xh′ and d−1

2 TPQ ⊂ CTPXh. Thus Xh′ is tangent to Q at P and h′ is
non-stable.

In the following, we consider two explanatory examples of Theorem 3.0.4 for
d ∈ {3, 4}.

Example 3.5.6 (Harmonic plane cubics, d = 3). A general harmonic ternary
cubic can be written as

f(x1, x2, x3) =

6∑
j=0

ajvj , (3.5.8)

where the polynomials vj are the eigenvectors obtained in (3.4.2) and in (3.4.3),
with rescaled coefficients for simplicity:

v0 = (x2 −
√
−1x3)3

v1 = x1(x2 −
√
−1x3)2

v2 = (x2 +
√
−1x3)(x2 −

√
−1x3)2 − 4x2

1(x2 −
√
−1x3)

v3 = 2x3
1 − 3x1(x2

2 + x2
3)

v4 = (x2 −
√
−1x3)(x2 +

√
−1x3)2 − 4x2

1(x2 +
√
−1x3)

v5 = x1(x2 +
√
−1x3)2

v6 = (x2 +
√
−1x3)3

(3.5.9)

To visualize some examples, we consider the change of coordinates

z1 = −
√
−1x1, z2 = x2 +

√
−1x3, z3 = x2 −

√
−1x3.

In the zi’s the isotropic quadric Q (the red curve in Figure 3.5) has equation
z2

1 − z2z3 = 0. In Figure 3.5 we considered the coordinates z1 = x, z2 = 2 and
z3 = y.

Starting from the picture at the top-left corner of Figure 3.5, we consider five
different harmonic plane cubics C1, . . . , C5 defined by the polynomials h1, . . . , h5,
respectively. They are written explicitly in (3.5.10). In particular, h1 is a general
linear combination as in (3.5.8). Then h2 is obtained by setting a6 = 0, while
the other coefficients aj are randomly chosen. In particular, the curve C2 passes
through the origin (0, 0) corresponding to P = [0, 1,−

√
−1]. Going further, h3

is obtained by setting a5 = a6 = 0, and the other coefficients aj are randomly
chosen. In particular, the curve C3 is tangent to Q at (0, 0). The two last
pictures of Figure 3.5 are the most interesting in relation to Theorem 3.0.4.
Indeed, in the second to last picture, C4 is singular at (0, 0). In particular, TPQ
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Figure 3.5: Examples of harmonic plane cubics in the affine plane z2 = 2. The
last two pictures represent a non-stable and a non-semistable harmonic plane
cubic.

is tangent to C4. By Theorem 3.0.4, C4 is non-stable. Finally, in the last picture
C5 is reducible in the form C5 = LC, where the line L : y = 0 and the conic
C : 18x2 − 3xy− 2y2 + 9y = 0 are tangent to Q at the origin. By Theorem 3.0.4,
this means that C5 is non-semistable, namely it is non-stable and its norm is
zero.

h1 = 9x3 + 18x2y + 3xy2 − y3 − 8x2 + 27xy + 9y2 + 10x− 4y + 12

h2 = 6x3 − 4x2y − 8xy2 + 5y3 + 8x2 + 18xy − 2y2 − 12x+ 4y

h3 = 16x3 + 16x2y + 9xy2 − y3 + 32x2 + 48xy + 8y2 + 16y

h4 = 8x3 − 32x2y + 6xy2 + y3 + 24xy − 16y2

h5 = y(18x2 − 3xy − 2y2 + 9y)

(3.5.10)

Example 3.5.7. Let us examine the first nontrivial case in even degree, that is
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d = 4. The basis vectors vj , j = 0, . . . , 8 for H4C3 are explicitly

v0 = (x2 −
√
−1x3)4

v1 = x1(x2 −
√
−1x3)3

v2 = (x2 −
√
−1x3)2(6x2

1 − x2
2 − x2

3)

v3 = x1(x2 −
√
−1x3)(4x2

1 − 3x2
2 − 3x2

3)

v4 = 8x4
1 + 3(x2

2 + x2
3)(−8x2

1 + x2
2 + x2

3)

v5 = x1(x2 +
√
−1x3)(4x2

1 − 3x2
2 − 3x2

3)

v6 = (x2 +
√
−1x3)2(6x2

1 − x2
2 − x2

3)

v7 = x1(x2 +
√
−1x3)3

v8 = (x2 +
√
−1x3)4.

(3.5.11)

Starting from the picture at the top-left corner of Figure 3.6, we consider six
different harmonic plane cubics D1, . . . , D5 defined by the polynomials p1, . . . , p6,
respectively. They are written explicitly in (3.5.12). In particular, p1 is a general
linear combination as in (3.5.8). Then p2 is obtained by setting a8 = 0, while
the other coefficients aj are randomly chosen. In particular, the curve D2 passes
through the origin (0, 0). Going further, p3 is obtained by setting a7 = a8 = 0,
and the other coefficients aj are randomly chosen. In particular, the curve D3

is tangent to Q at (0, 0). The more coefficients aj we set to zero, the more
“singular” the curve Dj becomes at the origin. Eventually, we have the two last
pictures of Figure 3.6. In the second to last picture, D5 is singular at the origin
and 2TPQ ⊂ CTPD5. By Theorem 3.0.4, D5 is non-stable. Finally, in the last
picture D6 is reducible in the form D6 = LD, where the line L : y = 0 and the
cubicD : 20x3+24x2y−3xy2+2y3+30xy+8y2 = 0 are tangent to Q at the origin,
and D is non-stable. By Theorem 3.0.4, this means that D6 is non-semistable.

p1 = 8x4 − 12x3y − 54x2y2 − 2xy3 + 5y4 − 32x3 + 48x2y − 18xy2

− 18y3 + 192x2 − 48xy + 12y2 + 40x+ 64y + 96

p2 = 40x4 − 24x3y + 5xy3 + 8y4 − 64x3 + 240x2y

− 36xy2 + 24x2 − 96xy + 60y2 − 80x+ 8y

p3 = 48x4 + 40x3y + 36x2y2 + 9xy3 + 8y4 + 288x2y

+ 60xy2 + 12y3 − 216x2 + 72y2 − 72y

p4 = 8x4 − 6x3y − 12x2y2 + 3xy3 − 4y4 − 20x3

+ 48x2y − 9xy2 − 4y3 − 30xy + 12y2

p5 = 72x4 + 48x2y2 − 9xy3 − 6y4 + 432x2y + 16y3 + 108y2

p6 = y(20x3 + 24x2y − 3xy2 + 2y3 + 30xy + 8y2)

(3.5.12)
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Figure 3.6: Examples of harmonic plane quartics in the affine plane z2 = 2. The
last two pictures represent a non-stable and a non-semistable harmonic plane
quartic.

An immediate consequence of Theorem 3.0.4 finds an application in the theory
of E-characteristic polynomials outlined in Chapter 2.

Corollary 3.5.8. Let h ∈ HdC3 be a complex harmonic ternary form of degree
d written as

h =

2d∑
j=0

bjvj ,

where the polynomials vj are written in (3.4.2) and in (3.4.3). Then

1. if b2d−1 = b2d = 0, then h admits an isotropic eigenvector, by Remark
2.3.11,

2. if additionally b2d−2 = 0, then h is irregular and therefore its E-characteristic
polynomial ψh(λ) is identically zero, by Proposition 2.2.8.

Example 3.5.9 (A real harmonic ternary cubic with non-real E-eigenvalues).
Consider the space HdR3 of real harmonic ternary cubics. In particular, the
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following linear combination

h = b1(v0 + v6) + b2(v1 + v5) + b3(v2 + v4) + b4v3, bj ∈ R,

where the polynomials vj are written in (3.5.9), is a polynomial in HdR3, since
each polynomial vj is the complex-conjugate of v6−j .

Choosing random values for the coefficients bj , and computing the E-characteristic
polynomial of h, one might quickly check numerically that there exists real har-
monic ternary cubics admitting non-real E-eigenvalues. Here is an example with
b1 = 99, b2 = 44, b3 = 86 and b4 = −30:

h = −60x3
1 + 344x2

1x2 + 134x1x
2
2 + 13x3

2 + 46x1x
2
3 − 383x2x

2
3

The E-characteristic polynomial ψh(λ) has the expected degree deg(ψh(λ)) = 14,
namely degree seven in λ2. Its roots are the following:

2448.93
−2448.93
270.306
−270.306

14.0615
√
−1

−14.0615
√
−1

20.0813
√
−1

−20.0813
√
−1

102.249
√
−1

−102.249
√
−1

−291.514 + 135.21
√
−1

−291.514− 135.21
√
−1

291.514 + 135.21
√
−1

291.514− 135.21
√
−1





Chapter 4
The ED polynomial
of an algebraic variety

In Chapter 1 we introduced the ED degree of an algebraic variety X in a complex
vector space V = V R ⊗ C. This invariant has been introduced for answering the
following question.

What is the number of critical points on X of the squared distance function
δu : X → C for a general point u ∈ V ?

In problems like finding the best rank-one approximation of a symmetric tensor
mentioned in Chapter 2, it is also important the value of the distance, and if the
value δu(x) for a critical point x ∈ X satisfies some algebraic relation depending
on the coordinates of u. How can we relate the results in Chapter 2 to this
slightly different approach? A partial answer was given in the Introduction for
rectangular matrices as well as higher format tensors, but it may be replayed for
symmetric tensors.

For a given real symmetric tensor f ∈ SdV R, we assume that (λ, x) is a Z-
eigenpair for f . From Chapter 2, we learned that the symmetric tensor λxd is
critical for δF,f when restricted to the affine cone X(d) of the image of the d-
th Veronese embedding of P(V ). The squared E-eigenvalue λ2 is a root of the
E-characteristic polynomial ψf (λ), for odd d, or of the product ψf (λ)ψf (−λ),
for even d. In addition, the value qF (f − λxd) is critical for δF,f on X(d). An
immediate consequence of Theorem 1.3.3 is the identity

qF (f − λxd) + qF (λxd) = qF (f), (4.0.1)

where qF (λxd) = λ2. Summing up these facts and taking into account that
f − λxd belongs to the dual affine cone X∨(d) of X(d), the conclusion is that

97



98 Chapter 4. The ED polynomial of an algebraic variety

ψf (λ) = 0 or ψf (λ)ψf (−λ) = 0 may be interpreted as the equation of the λ-
offset of X∨(d), namely the affine hypersurface of symmetric tensors in SdV having
distance λ form X∨(d).

And what about the λ-offset of X(d)? By simply looking at the identity
(4.0.1) and remembering Theorem 1.3.3, the equation of the ε-offset of X(d) is
obtained setting to zero the E-characteristic polynomial ψf (λ) (or the product
ψf (λ)ψf (−λ)) evaluated at λ2 = qF (f)−ε2. Actually, this “Pyhtagorean duality”
is stated more generally in Theorem 4.2.8.

In this chapter, we deal exactly with these “ε-offset hypersurfaces” of algebraic
varieties X ⊂ V . This topic is indeed classical. For example, Salmon studied in
[Sal, §373, ex. 3] the offsets of affine conics and called them parallel curves. He
considered the distance parameter ε as a variable and observed that the parallel
curve of a parabola drops degree with respect to a general conic.

Salmon’s computation uses invariant theory of pencils of conics. Here we give
an analogous example in R3 to highlight the contents of this chapter. Let C ⊂ P2

R

be the projective conic of equation 4x2
1 + x2

2 − x2
3 = 0, which we regard as an

affine cone in R3. Let u = (u1, u2, u3) ∈ R3 be a data point. Denote by MC the
4× 4 symmetric matrix of C and by MS the matrix of the sphere

S = S(u, ε) : (x1 − u1)2 + (x2 − u2)2 + (x3 − u3)2 − ε2 = 0.

The point (x1, x2, x3) ∈ C is critical for δu if and only if S is tangent to C. By a
well-known result of Cayley, C∩S is not smooth if and only if the determinant of
the matrixMC+µMS has at least two coincident roots. Therefore, the nontrivial
factor of ∆µ [det(MC + µMS)], where the operator ∆µ computes the discriminant
with respect to the variable µ, provides the equation of the ε-offset of C.

In this thesis, the alredy obtained polynomial is called the ED polynomial
of C at u. We write this polynomial as EDpolyC,u(ε2), highlighting that the
variable ε appears squared. This notation was introduced in the joint work with
Ottaviani [OS], which is the core of this chapter. In our example, the expression
for EDpolyC,u(ε2) is

EDpolyC,u(ε2) = 900ε8 − 60(64u2
1 + 5u2

2 + 21u2
3)ε6

+ (6016u4
1 + 2960u2

1u
2
2 − 275u4

2 + 3312u2
1u

2
3 − 810u2

2u
2
3 + 621u4

3)ε4

− 2(2048u6
1 + 2208u4

1u
2
2 + 540u2

1u
4
2 − 25u6

2 + 1184u4
1u

2
3 − 224u2

1u
2
2u

2
3

+ 185u4
2u

2
3 + 324u2

1u
4
3 − 207u2

2u
4
3 + 63u6

3)ε2

+ (4u2
1 + u2

2 − u2
3)2(64u4

1 + 80u2
1u

2
2 + 25u4

2 + 48u2
1u

2
3 − 30u2

2u
2
3 + 9u4

3).

More in general, the ED polynomial of an algebraic variety X is computed via
elimination of variables from the ideal of the so-called offset correspondence of X,
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for this example see also Example 4.1.4. All the details are explained in Section
4.1, while its first properties are listed in Section 4.2. Note that EDpolyC,u(ε2)
has degree four in ε2. This agrees with the fact that C, wiewed in the complex
space C3, is transversal to the isotropic quadric Q : x2

1 + x2
2 + x2

3 = 0, implying
EDdegree(C) = 4 by Proposition 1.8.2. More in general, Horobeţ and Weinstein
showed that, if X is a variety in V , then the ε2-degree of EDpolyX,u(ε2) equals
EDdegree(X) (see Theorem 4.2.2). Hence, they linked the subject about offset
hypersurfaces to ED degree. The ε-offsets of an algebraic variety have several
engineering applications, starting from geometric modeling techniques. They
also establish an interesting link between Algebraic Geometry and Architectural
Geometry: for instance, rational curves and surfaces with rational offsets possess
various applications in Computer-Aided Manufacturing (see [PAHK, Chapter
10]). Farouki and Neff studied algebraic properties of the ε-offset in the setting
of plane curves.

In Section 4.3, we analyze the highest coefficient of the ED polynomial of
an algebraic variety X. Coming back to the ED polynomial of C, note that
its highest coefficient does not depend on the data point u. In particular, the
algebraic function δu : C → C is integral, meaning geometrically that no branch
goes to infinity. This fact holds whenever the algebraic variety X is transversal
to Q, as stated in Proposition 4.3.4. Note that in this chapter the transversality
assumptions are considered with respect to Definition 4.3.3, which uses the notion
of Whitney stratification of a variety.

Finally, in Section 4.4 we consider the lowest coefficient EDpolyX,u(0), which
somehow describes the variety of data points having distance zero to the variety
X. In our example, observe that EDpolyC,u(0) is the product of the square of
the equation of C times a quartic polynomial. Indeed, this polynomial is the
equation of (C∨ ∩ Q)∨, and its projective real locus is empty. In general, the
interpretation is that, when restricting to V R, the points having distance zero
from the real locus of X are essentially the points of XR. Anyway, the complex
points u ∈ V such that q(u − x) = 0 for some critical point x ∈ X for δu fill
an entire hypersurface in V . When X is not a hypersurface, then (X∨ ∩Q)∨ is,
and its equation is exactly EDpolyX,u(0) = 0. All these facts lead in general to
Theorem 4.4.12, which can be applied for projective varieties. The core of the
proof of this result applies the identity in Theorem 4.4.10, which in turn needs
Aluffi’s formula (1.8.4) for the ED degree as well as Piene’s formulas (1.8.6) and
(1.8.7) for the polar varieties of a singular projective variety.

4.1 Definition of the ED polynomial

The notation used in this chapter agrees with Section 1.1. In Section 1.2 we
recalled the definition of the ED degree of an affine algebraic variety X in a
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complex vector space. This important definition uses the ED correspondence
E(X) of X, introduced in Definition 1.2.1.

A nice geometrical description of the ε-offset hypersurface of X is furnished
by Horobeţ and Weinstein in [HW]. For a complex number ε, we define the
ε-hyperball centered at u ∈ V as

V(δu − ε2) := {y ∈ V | δu(y) = ε2}. (4.1.1)

Note that ε-hyperball centered at u ∈ V is the usual sphere in Cn only when δu is
defined via the standard Euclidean quadratic form qR on Rn. Taking into account
our assumptions on qR, in general it is a smooth affine quadric hypersurface in
V . For example, in the complex vector space SdV of degree d symmetric tensors
f = (fα)|α|=d equipped with the Frobenius quadratic form qF , the ε-hyperball
centered at f is not a sphere (see relation (2.1.3)).

Suppose that x ∈ Xsm is a critical point of δu. Then trivially x ∈ V(δu−δu(x))
and the ±

√
δu(x)-hyperball centered at u intersects X non-transversally. This

leads to the following definition.

Definition 4.1.1. [HW, Definition 2.1] The ε-offset hypersurface of X is defined
to be the union of the centers of ε-hyperballs that intersect the variety X non-
transversally at some point x ∈ X. Equivalently the ε-offset hypersurface is the
envelope of a family of ε-hyperballs centered on the variety. For a fixed ε we
denote the ε-offset hypersurface by Oε(X).

The geometrical description given above suggests also the following definition.

Definition 4.1.2. For a fixed ε ∈ C, the ε-offset correspondence of X is

OεE(X) := E(X) ∩ V(δ(·) − ε2),

where the ED correspondence E(X) was introduced in Definition 1.2.1 and the
hypersurface V(δ(·)−ε2) ⊂ V ×V consists of all pairs (x, u) such that δu(x) = ε2.

Analogously to (1.2.2), we might consider the diagram

OεE(X)

X V

π̃1 π̃2 (4.1.2)

Then the ε-offset hypersurface of X is

Oε(X) = π̃2(OεE(X)) ⊂ V.

We recall that the ED correspondence E(X) is an affine variety in V × V of
dimension n. Since the general pair (x, u) ∈ E(X) is such that δu(x) 6= ε2, we
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Figure 4.1: A critical point x ∈ X for the distance function δu on the “three
leaved clover” X : (x2

1 +x2
2)3 +3x2

1x2−x3
2 = 0 and the

√
δu(x)-hyperball centered

at u.

have that OεE(X) has dimension n−1 in V ×V . Moreover, the second projection
π̃2 is finite-to-one, hence the dimension of π̃2(OεE(X)) is n− 1 as well. This fact
essentially motivates the name ε-offset hypersurface of X.

How do we get the equation of Oε(X)? The ideal of E(X) is the critical ideal
Icrit(X) introduced in (1.2.1). Therefore, the ideal of OεE(X) is

I(OεE(X)) = Icrit(X) + (δu − ε2) ⊂ C[x1, . . . , xn, u1, . . . , un].

Finally, the projection onto the second factor π2 corresponds algebraically to
elimination of the variables of x ∈ X. Hence the ideal of Oε(X) is

I(Oε(X)) = I(OεE(X)) ∩ C[u1, . . . , un].

Actually, in this chapter we suppose that ε is a variable as well as the coordinates
of u. Therefore, we assume that I(Oε(X)) lives in the larger ring C[u1, . . . , un, ε].
The unique generator of this ideal is the main object of this chapter.

Definition 4.1.3. Up to a scalar factor, we denote the generator of I(Oε(X)) by
EDpolyX,u(ε2) and we call it the Euclidean Distance polynomial (ED polynomial)
of X at u.
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Note that, if the variety X is the complex zero locus of a real variety XR, then
the elimination procedure that produces the ideal I(Oε(X)) gives EDpolyX,u(ε2)
with real coefficients.

Example 4.1.4. According to Definition 4.1.3, the following M2 code computes
the ED polynomial of the affine cone C ⊂ R3 discussed in the preamble of this
chapter, with respect to u = (u1, u2, u3) ∈ R3. It may be adapted to any affine
variety in a complex vector space V .

R = QQ[x_1,x_2,x_3,u_1,u_2,u_3,e];
IX = ideal(4*x_1^2+x_2^2-x_3^2);
ISingX = IX+minors(codim IX,compress transpose jacobian IX);
jacX = matrix{{u_1-x_1,u_2-x_2,u_3-x_3}}||
(compress transpose jacobian IX);
IcritX = saturate(IX+minors((codim IX)+1, jacX), ISingX);
IoffsetX = IcritX+ideal(sum(3,j->(u_(j+1)-x_(j+1))^2)-e^2);
EDpolyX = (eliminate({x_1,x_2,x_3},IoffsetX))_0

In Definition 1.2.12, we introduced the ED discriminant ΣX as the branch lo-
cus of the second projection in (1.2.2). Analogously, here we consider the second
projection π̃2 in (4.1.2). For a general ε ∈ C, the branch locus Bε(X,X) of π̃2 is
generically a hypersurface inside Oε(X), by the Nagata-Zariski Purity Theorem
[Zar, Nag]. Since Oε(X) is in turn a hypersurface in V , then Bε(X,X) is a codi-
mension two variety in V . More precisely, the variety Bε(X,X) is populated by
all data points u ∈ Oε(X) such that either {(x1, u), (x2, u)} ⊂ OεE(X) for some
smooth critical points x1 6= x2 of δu on X, or (x, u) ∈ OεE(X) with multiplicity
two for some smooth critical point x of δu on X.

Definition 4.1.5. The bisector hypersurface of X is the closure of the union of
all branch loci of π̃2:

B(X,X) :=
⋃
ε∈C

Bε(X,X).

For instance, in Example 2.4.2 we computed the bisector hypersurface of the
rational normal curve X(3). Moreover, the red curve in Figure 4.2 corresponds
to the bisector curve of X : x3

1 − x2 = 0. Finally, we determine in (5.4.13) the
equation of the bisector hypersurface of X3

∼= Seg3(P1
C × P1

C × P1
C).

4.2 First properties of the ED polynomial

The following proposition states that the distance function is a root of the ED
polynomial. It is a consequence of Lemma 1.2.2 and Definition 4.1.3.
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Proposition 4.2.1. For general u ∈ V , the roots of EDpolyX,u(ε2) are precisely
of the form ε2 = δu(x), where x is a critical point of the squared distance function
δu on Xsm. In particular the distance ε from the real locus XR to a data point
u ∈ V R is a root of EDpolyX,u(ε2). Moreover EDpolyX,u(0) = 0 for all u ∈ XR.

Introducing the ED polynomial EDpolyX,u(ε2), we stressed that ε is seen as a
variable as well as the coordinates of the data point u. Hence, a natural question
is to compute the ε2-degree of EDpolyX,u(ε2).

Theorem 4.2.2. [HW, Theorem 2.9] For a general u ∈ V , the ε2-degree of
EDpolyX,u(ε2) coincides with the ED degree of X.

Proof. Observe that a fixed general point u ∈ V is an element of the ε-offset
hypersurface Oε(X) for precisely two times ED degree many distinct ε. This is
because u has N = EDdegree(X) many critical points to X, say x1, . . . , xN and
then the corresponding offset hypersurfaces that include u are the ones where

ε ∈
{
±
√
δu(x1), . . . ,±

√
δu(xN )

}
.

This is equivalent to EDpolyX,u(ε2) having exactly two times N many roots, and
the roots are precisely ±

√
δu(xi) for i ∈ [N ] by Proposition 4.2.1.

The ED polynomial behaves well under the union of varieties, as shown by
the following proposition.

Proposition 4.2.3. Assume X = X1 ∪ · · · ∪Xr for some integer r ≥ 0, where
Xi ⊂ V is a reduced variety for every i ∈ {1, . . . , r} and Xi 6= Xj for every i 6= j.
Then

EDpolyX,u(ε2) =

r∏
i=1

EDpolyXi,u(ε2).

Proof. For general u ∈ V , the variety of the critical ideal Icrit(X) in V with
respect to X is the union of the varieties Icrit(Xi). The conclusion follows by
Lemma 4.2.1.

As we pointed out in Section 1.2, for an affine variety X ⊂ V , the number of
complex-valued critical points of δu remains constant as the data point u varies
in V , and this number is equal to EDdegree(X). On the other hand, the number
of real-valued critical points of δu is constant on the connected components of
the complement of the ED discriminant ΣX (see Definition 1.2.12). In particu-
lar, if u is close to ΣX , then two distinct real (or complex conjugate) roots of
EDpolyX,u(ε2) tend to coincide. This fact implies the following natural result,
which appears essentially in [HW, Proposition 2.13], where the discriminant of
the ED polynomial was called offset discriminant.
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Proposition 4.2.4. Given an affine variety X ⊂ V , let f and g be the equations
of the ED discriminant ΣX and of the bisector hypersurface B(X,X), respectively.
Define

∆X(u) := ∆ε2EDpolyX,u(ε2)

to be the discriminant of the ED polynomial of X at u. Then f(u) g(u) divides
∆X(u). In particular, if X is symmetric to a finite number s of affine hyperplanes
L1, . . . , Ls of equations l1, . . . , ls, then

L1 ∪ · · · ∪ Ls ⊂ B(X,X),

namely the product l1(u) · · · ls(u) divides g(u).

Proof. By definitions 1.2.12 and 4.1.5 of ED discriminant and bisector hypersur-
face, any point u ∈ ΣX ∪ B(X,X) satisfies ∆X(u) = 0, since two roots in ε2

coincide, by Proposition 4.2.1. Let u ∈ Li and let x ∈ Xsm \ Li be a critical
point of the distance function δu (there exists at least one). Call y the reflection
of x with respect to Li. In particular, y ∈ X as well and y is again a critical
point of δu. Since δu(x) = δu(y), we have that u ∈ B(X,X), hence it is a zero of
∆X(u).

Remark 4.2.5. If X ⊂ V is symmetric to an infinite number of affine hyper-
planes of V , then there exist p ∈ V and r ∈ C such that the hyperplanes of
symmetry of X are exactly the ones containing p and X is the sphere centered
in p of radius r. In this special case, ∆X(u) coincides with the equation of ΣX ,
which in turn is the sphere centered in p of radius zero.

Example 4.2.6. We provide a couple of examples related to Proposition 4.2.4.
First, Salmon remarks in [Sal, §372 ex. 3] that whenX is an ellipse with symmetry
axes L1, L2, with the notation of Proposition 4.2.4, then

∆X(u) = (l1l2)2f3,

of total degree 22. On one hand, the union L1 ∪ L2 forms the bisector curve
B(X,X). On the other hand, the curve cut out by f is a sextic Lamé curve and
corresponds to the evolute of the ellipse depicted in Figure 3.

A concrete example of an affine curve without symmetry axes is furnished in
Figure 4.2, where X : x3

1 − x2 = 0 and

∆X(u) = h2f3.

Again, the curve cut out by f is the evolute

ΣX : 8748x1x
5
2 + 9375x4

1 + 20250x2
1x

2
2 − 729x4

2 − 4800x1x2 + 256 = 0 ,
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whereas the curve cut out by h is the bisector curve

B(X,X) : 216x3
1x

5
2 + 3125x6

1 + 1125x4
1x

2
2 + 27x2

1x
4
2 + 27x6

2

+ 400x3
1x2 + 144x1x

3
2 − 48x2

1 − 16x2
2 = 0 .

Figure 4.2: The two components ΣX and B(X,X) of the zero locus of
∆ε2EDpolyX,u(ε2).

Note that in these computations as well as in Example 2.4.2 and in (5.4.12),
the equations of B(X,X) and ΣX appear in the expression of ∆X(u) with expo-
nents two and three, respectively. It should be interesting to compute in general
the exponents occurring in the factorization of ∆(u).

The principal results of this chapter regard affine cones X with the origin as
the vertex. In this case I(X) is homogeneous and moreover, all coefficients of
EDpolyX,u(ε2) are homogeneous in the variables of u.

Definition 4.2.7. Let Z ⊂ P(V ) be a projective variety. The ED polynomial of
Z is by definition the ED polynomial of its affine cone of Z in V .

As we underlined in Section 1.3, for affine cones there is a notion of duality.
By Theorem 1.3.3, the ED degrees of an affine cone X and of its dual affine cone
X∨, both interpreted as varieties in V , coincide. This nice geometric property
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has a natural algebraic counterpart in the study of the ED polynomial of X,
stated in the following proposition.

Theorem 4.2.8. Let X ⊂ V be an affine cone and X∨ its dual in V . Then

EDpolyX,u(ε2) = EDpolyX∨,u(q(u)− ε2).

Proof. Fix a data point u ∈ V and let x be a critical point of δu on X. Then, by
Proposition 4.2.1, ε2

1 = q(u− x) is a root of EDpolyX,u(ε2). Applying Theorem
1.3.3, u − x is a critical point of δu on X∨. Hence again by Proposition 4.2.1,
ε2

2 = q(x) is a root of EDpolyX∨,u. Moreover, by the Pythagorean Theorem we
have the equality q(u) = ε2

1 + ε2
2, thus giving the desired result.

When X is a hypersurface transversal to Q (to be defined in Definition 4.3.3),
after Theorem 4.4.12, the last result allows to write explicitly the equation of X∨
from EDpolyX,u(ε2).

An immediate consequence of Theorems 1.3.3 and 4.2.8 is the equality between
the discriminants of the ED polynomials of an affine cone X and its associated
dual affine cone X∨.

Corollary 4.2.9. Let X ⊂ V be an affine cone and X∨ its dual in V . Then

∆X(u) = ∆X∨(u),

where ∆X(u) was defined in Proposition 4.2.4. In particular, the ED discrimi-
nants ΣX and ΣX∨ coincide, as well as the bisector hypersurfaces B(X,X) and
B(X∨, X∨).

A special case occurs by adding a hyperplane “at infinity” at the affine space V ,
which in Section 1.1 was denoted byH∞. In particular, V ∪H∞ ∼= P(C⊕V ) ∼= PnC ,
with coordinates x0, x1, . . . , xn, and H∞ : x0 = 0.

We know from [DHOST, Section 6] that in general the ED degree of an affine
variety X ⊂ V is not preserved under the operation of projective closure. Here
we stress that the ED degree of X is computed with respect to the quadratic
form q, whereas the quadratic form q(x) := x2

0 + x2
1 + · · · + x2

n is the one used
to compute the ED degree of the projective closure X in V ∪ H∞. Note that
there are infinitely many possible choices of quadratic forms on PnC that restrict
to q on V . This is one of the reasons why EDdegree(X) and EDdegree(X) are
not related in general. Actually, this fact is even clearer when comparing the
ED polynomial of X with respect to the ED polynomial of X, as shown in the
following example (see also Example 4.3.6).
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Figure 4.3: The example of the hyperbola X.

Example 4.2.10. Consider the hyperbola X : 4x2
1 − 9x2

2 − 1 = 0 in Figure 4.3.
Given a data point u = (u1, u2) ∈ C2, one can verify that

EDpolyX,u(0) = (4u2
1−9u2

2−1)2(1296u4
1+2592u2

1u
2
2+1296u4

2−936u2
1+936u2

2+169).

The second factor of the above polynomial is the product of the four pairwise
conjugate lines tangent to X and meeting Q∞ = {[0, 1,

√
−1], [0, 1,−

√
−1]} at

infinity. This fact is clarified after Proposition 4.4.2. On the other hand, we
consider the projective closure X : 4x2

1 − 9x2
2 − x2

0 = 0 of X and we compute its
ED polynomial with respect to the point u = [1, u1, u2]. Now we obtain that

EDpolyX,u(0) = (4u2
1−9u2

2−1)2(1024u4
1+2880u2

1u
2
2+2025u4

2−832u2
1+1170u2

2+169).

Note that the second factor of EDpolyX,u(0) corresponds to the dual variety of
X
∨ ∩ Q which is the union of four pairwise conjugate lines different from its

corresponding ones in EDpolyX,u(0) (see Corollary 4.4.6).
In order to display all these lines, we consider the change of coordinates of

equations z1 = −
√
−1x1, z2 = x2 +

√
−1x3, z3 = x2 −

√
−1x3. Then the image

of X is the ellipse of equation 13z2
1 − 10z1z2 + 13z2

2 − 4 = 0. On one hand,
the points A,B,C,D in Figure 4.3 generate the four lines corresponding to the
second factor of EDpolyX,u(0). Note that in the new coordinates the lines meeting
the points [0, 1,

√
−1] and [0, 1,−

√
−1] at infinity are the horizontal and vertical

lines respectively. On the other hand, the union of the four lines generated by
E,F,G,H correspond to the second factor of EDpolyX,u(0).

A positive result is that, under some reasonable transversality assumptions,
EDdegree(X) and EDdegree(X) can be related. In particular, in [DHOST,
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Lemma 6.7] it is shown a bijection between the critical points of the distance
function from the origin (0, . . . , 0) on X and the critical points of the distance
function from u0 := (1, 0, . . . , 0) on X. This property has a natural interpretation
in terms of ED polynomial, as the following result suggests.

Proposition 4.2.11. Assume that EDdegree(X) = EDdegree(X) = r and that
there are r critical points of δ0 on X which satisfy q(x) 6= −1. Then, up to scalars,

EDpolyX,0(ε2) = (1 + ε2)r · EDpolyX,u0

(
ε2

1 + ε2

)
.

Proof. By [DHOST, Lemma 6.7], the map

x 7→
(

1

1 + q(x)
,

1

1 + q(x)
x

)
is a bijection between the critical points of δ0 on X and the critical points of δu0

on X \X∞. Define r = EDdegree(X) and let x1, . . . , xr be the critical points of δ0
onX. By Proposition 4.2.1, the roots of EDpolyX,0(ε2) are ε2

i = q(xi−0) = q(xi),
i ∈ {1, . . . , r}. Let x̃i ∈ X be the critical point of δu0

corresponding to xi for all
i ∈ {1, . . . , r}. Hence ε̃2

i = q(x̃i − u0) is a root of EDpolyX,u0
(ε̃2) for every i.

Then by hypothesis we have

EDpolyX,0(ε2) = c·(ε2−ε2
1) · · · (ε2−ε2

r), EDpolyX,u0
(ε̃2) = c̃·(ε̃2−ε̃2

1) · · · (ε̃2−ε̃2
r)

for some scalars c and c̃. Moreover, the following equalities hold true:

ε̃2
i = q(x̃i − u0) = q

(
1

1 + q(xi)
− 1,

1

1 + q(xi)
xi

)
=

ε2
i

1 + ε2
i

, i ∈ {1, . . . , r}.

From this it follows that
r∏
i=1

(ε̃2 − ε̃2
i ) =

r∏
i=1

(
ε2

1 + ε2
− ε2

i

1 + ε2
i

)
=

=

r∏
i=1

ε2 − ε2
i

(1 + ε2)(1 + ε2
i )

=
c′

(1 + ε2)r

r∏
i=1

(ε2 − ε2
i ),

where c′ =
∏r
i=1(1 + ε2

i ). From the last chain of equalities, we obtain the desired
identity.

Another reasonable property of the ED polynomial is its behavior under the
isometry group Isom(V ), where an isometry is the composition of a translation
and an element of the orthogonal group O(V ) introduced at the end of Section
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2.1. Fix g ∈ Isom(V ) and consider the transformed variety gX := {gx | x ∈ X}
of X. Then the identity

EDdegree(gX) = EDdegree(X)

holds true. For any data point u ∈ V and any critical point x for δu we have
that g · x ∈ gX is a critical point for δg·u. Moreover, we have the identity
q(g ·u−g ·x) = q(u−x). The immediate consequence in terms of ED polynomial
is that

EDpolygX,u(ε2) = EDpolyX,g−1u(ε2).

In the projective setting, we can reduce to the subgroup of isometries that fix the
origin, which is precisely O(V ).

Proposition 4.2.12.

1. Let X ⊂ V be an affine variety. Let G ⊂ Isom(V ) be a group that leaves X
invariant. Then the coefficients of EDpolyX,u are G-invariant.

2. Let X ⊂ P(V ) be a projective variety. Let G ⊂ O(V ) be a group that leaves
X invariant. Then the coefficients of EDpolyX,u are G-invariant.

Proof. The proof is the same in both cases. Let g ∈ G. Since q(u − x) =
q (g · u− g · x), the critical values of δu coincide with the critical values of δg·u.

Now consider the uniform scaling in V with scale factor c ∈ C. Calling cX
the scaling of X, for any data point u ∈ V and any critical point x for δu we have
that cx ∈ cX is a critical point for δcu. Moreover, q(cu − cx) = c2q(u − x) and
this implies that

EDpolycX,u(c2ε2) = EDpolyX,c−1u(ε2).

Remark 4.2.13. There are many meaningful examples with such a G-action. If
X is the affine cone of rank-one symmetric tensors in SdV introduced in Definition
2.1.3, the group G = O(V ) works. If X = Xµ is the affine cone of decomposable
partially symmetric tensors in SµV = Sµ1V1⊗· · ·⊗SµsVr introduced in Chapter
5, the group G = O(V1) × . . . × O(Vs) works. In these examples, X and the
isotropic quadric Q are not transversal. It should be interesting to study the
intersection between X and Q when a positive dimensional group G ⊂ O(V ) acts
on X.

All the mentioned properties of the ED polynomial are general. Now we start
considering specific types of varieties. The simplest varieties to consider are affine
subspaces of V .
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Proposition 4.2.14 (The ED polynomial of an affine subspace). Let L ⊂ V R be
an affine subspace and let πL⊥ be the orthogonal projection onto L⊥. Then for
any data point u ∈ V the ED polynomial of L is

EDpolyL,u(ε2) = ε2 − q (πL⊥(u)) .

Proof. By Proposition 1.2.7 and Remark 1.2.9, the only critical point of δu from
L is πL(u), hence EDdegree(L) = 1. The statement follows by the identity
πL⊥(u) = u− πL(u), see also [DHOST, Example 2.2].

Remark 4.2.15. Proposition 4.2.14 extends to complex subspaces L such that
L∞ is transversal to Q∞.

The case of linear subspaces (that is, affine subspaces containing the origin)
is simpler and it is contained in next Corollary. This is generalized to any variety
in Theorem 4.4.12.

Corollary 4.2.16 (The ED polynomial of a linear subspace). Let L ⊂ V be a
linear subspace transversal to Q (this is always the case if L is the complexification
of a real subspace).

1. If codim(L) ≥ 2, then the dual projective variety of L⊥ ∩Q is the quadric
hypersurface cut out by a polynomial g and

EDpolyL,u(t2) = t2 − g(u).

2. If L is the hyperplane cut out by a polynomial f , then

EDpolyL,u(t2) = t2 − f2(u).

Proof. In the following, we interpret L, L⊥ and Q as projective varieties of P(V ).
It is straightforward to check that the dual variety of L⊥ ∩Q is the join between
L and L⊥∩Q (see Definition 4.4.1), which is a quadric cone with vertex L, having
equation q (πL⊥(u)). If L is a hyperplane then L⊥ ∩Q = ∅ and the quadric cone
has rank one.

Example 4.2.17. For example, if L ⊂ C2 is a point, then the quadric ZL cut
out by q (πL⊥(u)) is the circumference centered in L of radius zero, namely the
union of the lines joining L and the points of Q∞ (the dashed lines in Figure
4.4), where in this case Q∞ = I ∪ J , I = [1,

√
−1, 0], J = [1,−

√
−1, 0].

More in general, the quadric ZL has a nontrivial description. We refer to
Section 4.4 for a complete study of the lowest term of the ED polynomial of an
affine variety. Anyway, when restricting to the real points of V , the quadric ZL
restricts to L.
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I
Q

H∞

L
J

Figure 4.4: The dashed lines above form the quadric ZL when L ⊂ C2 is a point.

Example 4.2.18 (The ED polynomial of an affine conic). Let u = (u1, u2) ∈ C2

be a data point. A general affine conic C ⊂ C2 has equation

C : ax2
1 + bx1x2 + cx2

2 + dx1 + ex2 + f = 0.

The ED polynomial of C at u may be written in the form

EDpolyC,u(ε2) = c4ε
8 + c3ε

6 + c2ε
4 + c1ε

2 + c0.

Note that this polynomial contains only even powers of ε and has degree four in ε2,
according to the fact that the general plane conic C is such that EDdegree(C) = 4,
by Proposition 1.8.2. In particular, we display the two extreme coefficients of
EDpolyC,u:

c4 = (b2 − 4ac)2[(a− c)2 + b2],

c0 = (au2
1 + bu1u2 + cu2

2 + du1 + eu2 + f)2g(u1, u2).

Note that the first factor of c0 is the square of the equation of C. Let us con-
centrate on the factor g(u1, u2). As explained in more generality in Proposition
4.4.2, the locus of zeros of g is the union of the four lines tangent to C and passing
through the points of Q∞ = {[0, 1,

√
−1], [0, 1,−

√
−1]}. We denote these lines

by L+
1 , L

+
2 , L

−
1 , L

−
2 , where

L+
1 ∩ L

+
2 = [0, 1,

√
−1], L−1 ∩ L

−
2 = [0, 1,−

√
−1].

The foci of the conic C are by definition the four pairwise intersections L+
1 ∩L

−
1 ,

L+
1 ∩ L

−
2 , L

+
2 ∩ L

−
1 and L+

2 ∩ L
−
2 . If C is either an ellipse or a hyperbola, then

C has two real foci. Otherwise if C is either a parabola or a circumference, then
C has only one real focus. In the case of a circumference, the only real focus
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coincides with the center. In particular, there exist real solutions of the equation
c0 = 0 outside the real conic CR (see also Remark 4.4.4).

Now consider the highest coefficients c4. If both of the two factors in c4 do
not vanish, then either C is an ellipse or an hyperbola, respectively when b2−4ac
is positive or negative. Moreover, b2 − 4ac = 0 if and only if C is a parabola,
whereas (a− c)2 + b2 = 0 if and only if (over R) C is a circumference:

1. If C is a parabola then EDdegree(C) = 3. Rewriting the equation of C as
(ax1 + bx2)2 + cx1 + dx2 + e = 0, we get that EDpolyC,u(ε2) has degree 3
in ε2 and its leading coefficient is −16(bc − ad)2(a2 + b2)3. In particular,
the condition bc− ad = 0 forces C to be the union of two distinct parallel
lines.

2. If C is a circumference, then EDdegree(C) = 2. Rewriting the equation of
C as (x1 − a)2 + (x2 − b)2 − r2 = 0, we get that EDpolyC,u(ε2) has degree
2 in ε2. In particular, it factors as

EDpolyC,u(ε2) = [(x1−a)2+(x2−b)2−(ε+r)2][(x1−a)2+(x2−b)2−(ε−r)2].

4.3 The highest coefficient of the ED polynomial

In this section, we study the leading term of the ED polynomial of an affine (re-
spectively, projective) variety X. We show that with transversality assumptions
the leading term is scalar, in other terms the ED polynomial may be written as
a monic polynomial, see Proposition 4.3.4 (resp. Corollary 4.3.7). In algebraic
terms, this implies that the ED polynomial is an integral algebraic function.

We recall from [VdW, Section 100] that an algebraic function

f(t, u) =

d∑
k=0

tkpk(u)

is called integral if the leading coefficient pd(u) is constant. The branches of a
integral algebraic function are well-defined everywhere. Otherwise, if pd(u) = 0,
then one branch goes to infinity.

To express transversality, we need to recall the Whitney stratification of an
algebraic variety. The following definitions are recalled from [Nic, Section 4.2].

Definition 4.3.1. Let X,Y ⊂ V be two disjoint smooth quasi-projective vari-
eties. We say that the pair (X,Y ) satisfies the Whitney regularity condition (a)
at x0 ∈ X ∩ Y if, for any sequence yn ∈ Y such that

1. yn → x0,
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2. the sequence of tangent spaces TynY converges to the subspace T ,

we have Tx0
X ⊂ T . The pair (X,Y ) is said to satisfy the Whitney regularity

condition (a) along X, if it satisfies this condition at any x ∈ X ∩ Y .

Definition 4.3.2. Suppose X is a subset of V . A stratification of X is an
increasing, finite filtration

F−1 = ∅ ⊂ F0 ⊂ F1 ⊂ · · · ⊂ Fm = X

satisfying the following properties:

1. Fk is closed in X for all k.

2. For every k ∈ {1, . . . ,m} the set Xk = Fk \ Fk−1 is a smooth mani-
fold of dimension k with finitely many connected components called the
k-dimensional strata of the stratification.

3. (The frontier condition) For every k ∈ {1, . . . ,m} we have Xk \Xk ⊂ Fk−1.

The stratification is said to satisfy the Whitney condition (a) if, for every 0 ≤
j < k ≤ m, the pair (Xj , Xk) satisfies Whitney’s regularity condition (a) along
Xj . Note that if X is smooth then the trivial stratification ∅ ⊂ X satisfies the
Whitney condition (a).

We recall (see [PP]) that any affine (or projective) variety admits a Whitney
stratification, satisfying condition (a) and a stronger condition (b) that we do
not use explicitly in this chapter.

Definition 4.3.3. We say that a variety X is transversal to a smooth variety Y
(in the applications we have Y = Q) when there exists a Whitney stratification
of X such that each stratum is transversal to Y .

If X is smooth and the schematic intersection X ∩ Y is smooth, then X is
transversal to Y according to Definition 4.3.3.

If each stratum of a Whitney stratification of X is transversal to a smooth
variety Y , then by [PP, Lemma 1.2] this stratification induces a Whitney strati-
fication of X ∩ Y .

Proposition 4.3.4. Let X ⊂ V be an affine variety. If X∞ is transversal to
Q∞ (according to Definition 4.3.3), then the ED polynomial of X is an integral
algebraic function.

Proof. This proof uses the interpretation of duality as polarity with respect to the
isotropic quadric Q∞, hence for more details about the subject and the notation
we refer to Section 1.1.
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If the ED polynomial is not an integral algebraic function, then there is a
point u ∈ V that annihilates the leading coefficient of EDpolyX,u. We get a
sequence {uk} ⊂ V such that uk → u and a corresponding sequence {xk} ⊂ X
of critical points for δuk such that EDpolyX,uk(ε2

k) = 0 when ε2
k = q(xk − uk)

diverges. In particular we have that < uk − xk >∈
[
(TxkX)∞

]⊥ for all k, where
the dual is taken in the projective subspace H∞. Up to subsequences, we may
assume that

lim
k→∞

〈xk〉 =: 〈x〉 ∈ X∞, for some x ∈ V. (4.3.1)

We may assume there are two different strata X1 and X2 of X such that
xk ∈ X1 for all k and 〈x〉 ∈ X2. In the topology of the compact space X =
X ∪ X∞ we still have xk → 〈x〉 ∈ X∞, more precisely in P(C ⊕ V ) we have
[(1, xk)] → [(0, x)]. We may assume (up to subsequences) that {TxkX1} has a
limit. Hence by Whitney condition (a) we have T〈x〉X2 ⊂ limk→∞ TxkX1. From
this and from (4.3.1) we have immediately that

〈x〉 ∈ T〈x〉(X2)∞ ⊂ lim
k→∞

(TxkX1)∞. (4.3.2)

Since {xk} diverges we get

〈x〉 = lim
k→∞

〈u− xk〉 = lim
k→∞

〈uk − xk〉.

By construction, we have that 〈uk − xk〉 ∈ [(TxkX1)∞]
⊥ for all k. This fact and

relation (4.3.1) imply that

〈x〉 = lim
k→∞

〈uk − xk〉 ∈ lim
k→∞

[(TxkX1)∞]
⊥ ⊂

[
lim
k→∞

(TxkX1)∞

]⊥
.

In particular 〈x〉 ∈ [limk→∞(TxkX1)∞] ∩ [limk→∞(TxkX1)∞]
⊥, hence 〈x〉 ∈ Q∞.

We now show that T〈x〉 (X2 ∩H∞) ⊂ T〈x〉Q∞, where

T〈x〉Q∞ = {〈y〉 ∈ H∞ | q(〈x〉, 〈y〉) = 0}.

Pick a nonzero vector v ∈ V such that 〈v〉 ∈ T〈x〉 (X2 ∩H∞). We claim that
q(〈x〉, 〈v〉) = 0, where q is the quadratic form in H∞ = P(V ), which is the
quadratic form defined on V .

Indeed, pick a sequence 〈vk〉 → 〈v〉, where 〈vk〉 ∈ (TxkX1)∞. Since q(uk −
xk, vk) = 0 for all k, at the limit we get q(〈x〉, 〈v〉) = 0. This contradicts the
transversality between X∞ and Q∞, as we wanted.
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Remark 4.3.5. The transversality conditions stated in Proposition 4.3.4 are suf-
ficient for the integrality of the distance function, but not necessary: for example,
the parabola studied in Example 4.2.18 is in general transversal to Q∞, but not
transversal to H∞. Nevertheless, its ED polynomial is monic.

On the other hand, the cardioid studied in Example 4.3.6 is singular at Q∞
(and consequently is not transversal to H∞), and its ED polynomial has a leading
coefficient of positive degree. It should be interesting to find general necessary
conditions for the integrality of the distance function.

Example 4.3.6. Let C ⊂ R2 be the real affine cardioid of equation (x2
1 + x2

2 −
2x1)2 − 4(x2

1 + x2
2) = 0. It has a cusp at the origin and at the isotropic points

at H∞. Hence, according to the formula (1.8.4), EDdegree(C) = 16− 3× 3 = 7.
On the other hand, EDdegree(C) = 3: the drop is caused essentially by the non-
transversality with Q∞. Computing the ED polynomial of C, one may observe
that its leading coefficient is (x1 − 1)2 + x2

2, namely one branch of the distance
function diverges when the chosen data point is u = (1, 0). It is interesting to
note that the projective embedding of (1, 0) is the meeting point of the three
tangent cones at the three cusps of C. Moreover, the cardioid C is the trace left
by a point, initially at the origin, on the perimeter of a circle of radius 1 that is
rolling around the circle centered in (1, 0) of the same radius. In Figure 4.5 we
see that the ED discriminants ΣC and ΣC are dramatically different. While the
real part of ΣC is again a cardioid, the real part of ΣC divides the plane into four
connected components, one of them is shown in the detail on the right of Figure
4.5.

Corollary 4.3.7. Let X ⊂ P(V ) be a projective variety. If X is transversal to
Q, according to Definition 4.3.3 then for any data point u ∈ V

EDpolyX,u(ε2) =

d∑
j=0

pj(u)ε2j ,

where d = EDdegree(X) and pj(u) is a homogeneous polynomial in the coordi-
nates of u of degree 2d− 2j. In particular, pd(u) = pd ∈ C, deg(p0) = 2d and the
ED polynomial of X is an integral algebraic function.

Proof. For affine cones, the assumption that X is transversal to Q is equivalent
to X∞ transversal to Q∞.

Another consequence of Proposition 4.3.4 and Theorem 4.2.2, valid for pro-
jective varieties, is the following.

Corollary 4.3.8. Let X ⊂ P(V ) be a projective variety. If X is transversal to
Q, according to Definition 4.3.3 then the degree of the ε-offset of X is

deg(Oε(X)) = 2EDdegree(X).
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Figure 4.5: The cardioid C with its ED discriminant ΣC and the restriction to
the affine plane of the ED discriminant ΣC of its projectivization C. A detail of
ΣC on the right.

4.4 The lowest coefficient of the ED polynomial

In the last section, we gave some geometric conditions on X that affect the shape
of its ED polynomial. In particular, we have obtained some useful pieces of
information about the degrees of the coefficients of EDpolyX,u for a general data
point u ∈ V . In this section, we aim to describe completely the locus of points
u ∈ V such that the lowest term of the ED polynomial of X at u vanishes. First,
we recall a definition.

Definition 4.4.1. Let X,Y ∈ P(V ) be two disjoint projective varieties. The
union

J(X,Y ) =
⋃

x∈X, y∈Y
〈x, y〉 ⊂ P(V )

of the lines joining points of X to points of Y is again a projective variety (see
[Har, Example 6.17]) and is called the join of X and Y . Note that J(X, ∅) = X.

Proposition 4.4.2. Consider an affine variety X ⊂ V . Given any point p ∈
Xsm, we define JX,p := J(p, [(TpX)∞]

⊥ ∩Q∞) ⊂ V ∪H∞ = P(V ⊕C). Then the
zero locus u ∈ V of EDpolyX,u(0) is JX ∩ V , where

JX :=
⋃

p∈Xsm

JX,p ⊂ V ∪H∞ .
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Proof. The variety [(TpX)∞]
⊥ ∩Q∞ ⊂ H∞ parametrizes all the directions in V

corresponding to isotropic vectors w such that w ∈ NpX. In particular, for all
p ∈ Xsm, the variety JX,p is the union of the lines passing from p and generated
by isotropic vectors w such that w ∈ NpX.

Now pick a point u ∈ JX ∩ V . Then u is a limit of points uk, such that there
exist pk ∈ Xsm with uk ∈ JX,pk . Hence uk = pk + wk for some vector wk ∈ V
whose direction belongs to [(TpkX)∞]

⊥∩Q∞. In particular q (wk) = q(uk−pk) =
0 and wk ∈ NpkX, that is, pk is a critical point on X of the squared distance
function δuk . In particular, uk is a zero of EDpolyX,u(0), hence u is a zero of
EDpolyX,u(0) as we wanted.

Conversely, let u ∈ V be a general zero of EDpolyX,u(0). Then there exist
p ∈ Xsm such that u − p ∈ NpX and 0 = q(u − p). Define w = u − p. Then
the direction corresponding to w, when nonzero, is represented by a point of
[(TpX)∞]

⊥∩Q∞, namely u ∈ JX,p ⊂ JX∩V . When w = 0, we have u = p ∈ JX,p.
Conclusion follows by taking closures.

Example 4.4.3. The simplest case is when V is 2-dimensional. Let C be an
affine plane curve which is transversal with the isotropic quadric at infinity. In
this case, Q∞ = {[0, 1,

√
−1], [0, 1,−

√
−1]}.

Looking at Proposition 4.4.2, for any p ∈ Csm, we have JC,p 6= ∅ if and only
if TpC = p+ 〈v〉 with v ∈ {(1,

√
−1), (1,−

√
−1)}. In other words, the zero locus

of EDpolyC,u(0) is the union of C and of the tangent lines to C meeting Q∞.

Remark 4.4.4. As showed in Example 4.2.18, the real foci of a real conic CR

are zeros of the lowest coefficient of the ED polynomial of C. Therefore, given a
real affine variety XR ⊂ V R, the hypersurface JX ∩ V might contain real points
which do not necessarily belong to XR. The reason is that there could exist real
data points u admitting (non real) critical points x for the function δu such that
q(u − x) = 0. This is essentially the price to pay for describing the distance
function with algebraic tools and, above all, for allowing non real solutions to the
problem. For a concrete example, let CR be the real ellipse of equation

x2
1

a2
+
x2

2

b2
− 1 = 0, a ≥ b > 0.

The two foci of CR are u± = (±c, 0), where c2 = a2 − b2. On one hand, the only
real critical points of δu+ and δu− on CR are the points (±a, 0). On the other
hand, with straightforward computations one verifies that the non real points
z± =

(
a2

c ,±
√
−1 b

2

c

)
are critical for δu+ on C, as well as w± =

(
−a

2

c ,±
√
−1 b

2

c

)
are critical for δu− on C. Note that, for instance Tz±C : x1±

√
−1x2− c = 0 and

coincides with the normal space Nz±C, with u+ − z± ∈ Nz±C. In addition, we
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have that q(u+ − z±) = q(u− − w±) = 0, thus confirming the fact that u± are
real points of JC ∩ V .

Proposition 4.4.5. Let X ⊂ V be an irreducible cone. Then

JX ∩ V = X ∪ (X∨ ∩Q)∨.

Proof. For the proof of this statement, we stress the hidden assumptionX∪X∨ 6⊂
Q, which was given in Chapter 1.

Suppose that there exists a point p ∈ Xsm such that u ∈ JX,p. If u = p, then
in particular u ∈ X. If u 6= p, then u − p is a nonzero element of X∨ ∩ Q. We
show that necessarily u ∈ (X∨ ∩Q)∨ when (X∨ ∩Q)∨ is nonempty.

By definition, we have that (X∨ ∩Q)∨ = S, where

S =
⋃

z∈(X∨∩Q)sm

Nz(X
∨ ∩Q).

If X∨ ∩ Q is non-reduced, then (X∨ ∩ Q)∨ = ∅ and by taking closures we have
trivially that JX ∩V ⊂ X ∪ (X∨ ∩Q)∨. Hence suppose that X∨ ∩Q is a reduced
variety. On one hand, by construction p is critical for δu on X. On the other
hand, since u is general, u− p is critical for δu on X∨ by Theorem 1.3.3.

In order to prove that u ∈ (X∨∩Q)∨, it remains to show that u ∈ Nu−p(X∨∩
Q). Indeed, pick a vector y ∈ Tu−p(X∨) such that 〈y, u− p〉 = 0. The condition
that u− p is critical for δu implies that p is orthogonal to any tangent vector to
X∨ at u− p, so we have 〈y, p〉 = 0. Then

〈y, u〉 = 〈y, u− p〉+ 〈y, p〉 = 0 + 0 = 0,

thus proving our claim. By taking closures we get

JX ∩ V ⊂ X ∪ (X∨ ∩Q)∨.

On the other hand, suppose that u ∈ X∪(X∨∩Q)∨. If (X∨∩Q)∨ = ∅, then u ∈ X
and clearly u ∈ JX . Now assume that (X∨ ∩ Q)∨ is nonempty and that u ∈ S.
Then there exists a smooth z ∈ X∨∩Q such that u ∈ Nz(X∨∩Q). In particular,
z is critical for δu on X∨. By Theorem 1.3.3, u− z is critical for δu on X. This
means that z is an element of [(Tu−zX)∞]

⊥∩Q∞. In particular, u ∈ JX,u−z. By
taking the Zariski closure, we have that X ∪ (X∨ ∩Q)∨ ⊂ JX ∩ V .

Corollary 4.4.6. Let X ⊂ V be an affine cone such that X ∪ X∨ 6⊂ Q. Then
the locus of zeros u ∈ V of EDpolyX,u(0) is

X ∪ (X∨ ∩Q)∨.

In particular, at least one between X and (X∨ ∩Q)∨ is a hypersurface.
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Corollary 4.4.7. Let X ⊂ V be an affine cone such that X∪X∨ 6⊂ Q. If X∨∩Q
is a non-reduced variety, then necessarily X is a hypersurface.

In the following, we show an improvement of Corollary 4.4.6 applying the
theory of Chern-Mather classes. The price to pay is an additional transversality
assumption.

Let Y ⊂ P(V ) be an irreducible projective variety and consider its conormal
variety introduced in Definition 1.3.2. As Theorem 1.5.5 states, if N (Y, Y ∨) does
not intersect the diagonal ∆(P(V )) ⊂ P(V ) × P(V ), then the ED degree of Y is
equal to the sum of its polar classes.

A sufficient condition for N (Y, Y ∨) not to intersect ∆(P(V )) is furnished in
the following result.

Proposition 4.4.8. Assume that Y ∨ (or Y ) is transversal to Q, according to
definition 4.3.3. Then N (Y, Y ∨) does not intersect ∆(P(V )).

Proof. By Biduality Theorem it is enough to prove the result for Y ∨. Suppose
that (y, y) ∈ N (Y, Y ∨) for some y ∈ Y . By Definition 1.3.2 and by hypothesis,
there exists a sequence of vectors (yi, xi) and pairs (Y1, Y2), (Y ′1 , Y

′
2) satisfying

the Whitney regularity condition (a) along Y and Y ∨ respectively such that

1. (yi, xi)→ (y, y),

2. yi ∈ Y1, xi ∈ Y ′1 ∩NyiY1 for all i, and

3. y ∈ Y2 ∩ Y ′2 .

In particular, point (2) says that q(yi, xi) = 0 for all i, hence taking the limit we
find y ∈ Q.

Now take a vector v ∈ TyY ′2 . We show that v ∈ TyQ, obtaining that TyY ′2 ⊂
TyQ, and thus contradicting the transversality assumption. By the Whitney
condition (a) we have that TyY ′2 ⊂ limi→∞ TxiY

′
1 . This means that there exists

a sequence {vi} with vi ∈ TxiY ′1 for all i such that vi → v. From point (2) we
have yi ∈ NxiY ′1 for all i, hence q(yi, vi) = 0 for all i. Finally taking the limit we
have q(y, v) = 0, that is v ∈ TyQ.

In the following, we assume the hypothesis of Proposition 4.4.8. Theorem
1.5.5 allows us to express the ED degree of Y in terms of Chern-Mather classes
cMj (Y ) via Aluffi’s formula in Theorem 1.8.4. Indeed, the polar classes δj(Y ) of
Y are determined by the Chern-Mather classes of Y via the formulas (1.8.6).

In particular, we aim to apply (1.8.7) in the case when Y = X∨ ∩ Q, once
we know the Chern-Mather classes of X∨ ∩ Q. Since X∨ ∩ Q is a divisor in
X∨ with normal bundle O(2), these can be computed by a result of Pragacz
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and Parusinski in [PP]. We need the assumption that X∨ is transversal to Q,
according to Definition 4.3.3.

Denote by cM(Y ) =
∑
i c

M
i (Y ) the total Chern-Mather class of Y . The equa-

tion displayed in three lines just after [PP, Lemma 1.2] shows that

cM(X∨ ∩Q) =
1

1 + 2h

∑
i≥0

2h · cMi (X∨), (4.4.1)

hence

cMj (X∨ ∩Q) · hm−1−j = 2

j∑
i=0

(−1)j−i2j−icMi (X∨) · hm−i. (4.4.2)

Lemma 4.4.9. The following identity holds true:

2m+1−i − 1 = (m+ 1− i) +

m∑
j=i

(m− j)2j−i.

Proof. Using the identities (r 6= 1)

m∑
k=s

rk =
rs − rm+1

1− r
and

m∑
k=1

krk−1 =
1− rm+1

(1− r)2
− (m+ 1)rm

1− r
,

we have that

m∑
j=i

(m− j)2j−i =
1

2i

m m∑
j=i

2j − 2

m∑
j=i

j2j−1


=

2m+1 − (m+ 2− i)2i

2i

= 2m+1−i − (m+ 2− i),

thus getting the desired identity.

Theorem 4.4.10. Assume that X∨ is transversal to Q, according to definition
4.3.3. If X is not a hypersurface, then

2EDdegree(X) = 2EDdegree(X∨) = deg((X∨ ∩Q)∨). (4.4.3)

Otherwise if X is a hypersurface, then

2EDdegree(X) = 2EDdegree(X∨) = 2 deg(X) + deg((X∨ ∩Q)∨). (4.4.4)

In particular, (X∨ ∩Q)∨ has always even degree.
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Proof. If X is not a hypersurface, then (X∨∩Q)∨ is a hypersurface by Corollary
4.4.6. Hence we can apply the identity (1.8.7) and we obtain that (here m =
dim(X∨))

deg((X∨ ∩Q)∨) =

m−1∑
j=0

(−1)j (m− j) cMj (X∨ ∩Q)hm−1−j

=

m∑
j=0

(−1)j (m− j) cMj (X∨ ∩Q)hm−1−j

(∗) = 2

m∑
j=0

(−1)j (m− j)

[
j∑
i=0

(−1)j−i2j−icMi (X∨) · hm−i
]

= 2

m∑
i=0

(−1)icMi (X∨)hm−i

 m∑
j=i

(m− j)2j−i


= 2

m∑
i=0

(−1)i(2m+1−i − 1)cMi (X∨) · hm−i

− 2

m∑
i=0

(−1)i(m+ 1− i)cMi (X∨) · hm−i,

(4.4.5)

where in (∗) we used (4.4.2) and in the last equality we applied Lemma 4.4.9. In
the last expression obtained, since X∨ is transversal to Q, by (1.8.5) the first term
coincides with 2EDdegree(X∨) = 2EDdegree(X), whereas by (1.8.7) the second
term is equal to 2δ0(X∨), which vanishes because X is not a hypersurface. Hence
the identity (4.4.3) is satisfied.

Now assume that X is a hypersurface. The expression in the first line of
(4.4.5) is exactly the polar class δ0(X∨∩Q). The computation (4.4.5) shows that
the same expression is equal to

2EDdegree(X)− 2δ0(X∨) = 2

n−2∑
j=1

δj(X
∨),

by Theorem 1.5.5. If this expression vanishes we get δj(X∨) = 0 for j ≥ 1, which
is equivalent to δj(X) = 0 for j ≤ n−3. Hence the defect codim(X∨)−1 is n−2
and X∨ is a point in P(V ), namely X is a hyperplane in P(V ). In particular,
X∨ ∩ Q is empty and therefore (X∨ ∩ Q)∨ = P(V ). In conclusion, the identity
(4.4.4) is satisfied.

Otherwise if δ0(X∨ ∩ Q) 6= 0, since in this case 0 6= δ0(X∨) = deg(X), the
identity (4.4.4) is satisfied as well.
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One may wonder if Theorem 4.4.10 remains true without transversality as-
sumptions. The case of symmetric tensors studied in Chapter 2, as well as the
case of partially symmetric tensors in Chapter 5, answer in negative. Already the
binary cubic case gives a counterexample, as shown in Example 2.4.2. Indeed,
for (partially symmetric) tensors the degree of X∨ is greater than the ED degree
of X, the opposite of the general case.

Corollary 4.4.11. Let X∨ be a positive dimensional variety which is transversal
to a smooth quadric Q, according to Definition 4.3.3. Then (X∨ ∩ Q)∨ is a
hypersurface.

Proof. The computation (4.4.5) shows that

δ0(X∨ ∩Q) = 2EDdegree(X)− 2δ0(X∨).

If (X∨∩Q)∨ is not a hypersurface, we get δ0(X∨∩Q) = 0, hence δj(X∨) = 0 for
all j ≥ 1, namely δj(X) = 0 for all j ≤ n − 3. Hence the defect codim(X∨) − 1
is n− 3 and X∨ is zero dimensional.

In the projective case, Theorem 4.4.10 leads us to a more precise description
of the lowest term of the ED polynomial, with reasonable transversality assump-
tions. In particular, the factor corresponding to (X∨∩Q)∨ is always present when
X is not a hyperplane. If X is a hypersurface, an additional factor corresponding
to X appears.

Theorem 4.4.12. Let X ⊂ P(V ) be an irreducible variety and suppose that X
and X∨ are transversal to Q. Let u ∈ V be a data point.

1. If codim(X) ≥ 2, then (X∨ ∩Q)∨ is a hypersurface and

EDpolyX,u(0) = g

up to a scalar factor, where g is the equation of (X∨ ∩ Q)∨. Moreover
X ⊂ (X∨ ∩Q)∨.

2. If X is a hypersurface, then

EDpolyX,u(0) = f2g

up to a scalar factor, where f is the equation of X and g is either the
constant 1 if X is a hyperplane, or the equation of (X∨ ∩Q)∨.

Proof. First, assume that codim(X) ≥ 2. On one hand, by Corollary 4.4.6 we
have that (X∨∩Q)∨ is a hypersurface, hence EDpolyX,u(0) = gk for some positive
integers k. In particular,

deg(EDpolyX,u(0)) = k deg(g).
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On the other hand, comparing degrees by Theorem 4.4.10 we get k = 1. The
inclusion follows again from Corollary 4.4.6.

Now assume that X is a hypersurface. If X is a hyperplane, the statement
follows by Corollary 4.2.16. Otherwise deg(X) ≥ 2 and therefore X∨ is positive
dimensional, thus implying that (X∨∩Q)∨ is a hypersurface by Corollary 4.4.11.

On one hand, by Corollary 4.4.6 we have that EDpolyX,u(0) = fhgk for some
positive integers h and k, hence

deg(EDpolyX,u(0)) = hdeg(f) + k deg(g).

On the other hand, by Corollary 4.3.7 and Theorem 4.4.10 we have that h ≥ 2
and deg(EDpolyX,u(0)) = 2 deg(f) + deg(g).

The hypotheses of Theorem 4.4.12 are reasonable and agree with the principal
results in the ED degree-philosophy. Anyway, in the most important examples
studied in this thesis, related to varieties of tensors with the Frobenius quadratic
form, these hypotheses are not satisfied. A positive result is that we can relax
the assumptions of transversality at least for computing the exact multiplicity of
the equation of X in EDpolyX,u(0), when X is a hypersurface.

Proposition 4.4.13. Let X ⊂ P(V ) be an irreducible projective hypersurface.
Then the equation of X appears with multiplicity two in EDpolyX,u(0).

Proof. Quadric hypersurfaces of P(V ) that are transversal to X and X∨ form
a dense open subset U ⊂ P(S2V ). In particular, Q is the limit of a sequence
{Qj} ⊂ U . Let EDpoly

(j)
X,u(ε2) be the ED polynomial of X at u ∈ V with respect

to te quadric Qj , for all j. By Theorem 4.4.12, for all j we have

EDpoly
(j)
Y,y(0) = f2 · gj ,

where gj is the equation of (X∨ ∩ Qj)∨. Moreover, by Corollary 4.4.6 we know
that EDpolyX,u(0) = fα · gβ for some nonnegative integers α and β, where g is
the equation of (X∨ ∩Q)∨. In particular,

fα · gβ · h = EDpolyX,u(0) · h = lim
j→∞

EDpoly
(j)
X,u(0) = lim

j→∞
f2 · gj = f2 · lim

j→∞
gj ,

for some homogeneous polynomial h, possibly a scalar. In particular, α ≥ 2.

We show that actually α = 2. If α ≥ 3, then f divides limj→∞ gj , that is, f
divides g or f divides h. It remains to show that f cannot divide g. In particular,
our claim is that codimR[(X∨ ∩Q)∨] ≥ 2.

Consider a smooth point z ∈ X∨ ∩ Q and the corresponding normal space
Sz := Nz(X

∨∩Q). Assume that l1, . . . , lr are the linear polynomials defining Sz.



124 Chapter 4. The ED polynomial of an algebraic variety

We denote by Sz the variety defined by l̄1, . . . , l̄r, where the bar means complex
conjugation. If z ∈ Sz, then q(z− z̄, y) = 0 for all y ∈ Tz(X∨ ∩Q). In particular,
q(z̄, z) = q(z̄, z) − q(z, z) = q(z̄ − z, z) = 0, contradiction. This implies that
Sz 6= Sz and, in turn, that codimR(Sz) ≥ 2. The claim follows by Definition
1.3.1.



Chapter 5
The ED polynomial
of a Segre-Veronese variety

In Chapter 2, we studied the E-characteristic polynomial ψf (λ) of a symmetric
tensor f ∈ SdV . As pointed out in the preamble of Chapter 4, the polynomial
ψf (λ) is useful for determining the equation of the λ-offset hypersurface of the
affine cone X∨(d), where X(d) is the affine cone of the image of the d-th Veronese
embedding of P(V ) of Definition 2.1.3. Now that we have in mind the general
theory on ED polynomials of Chapter 4, we derive the following conclusion.

Corollary 5.0.1 (Lim, Qi). Consider a symmetric tensor f in the space SdV .
The ED polynomial of X∨(d) with respect to the isotropic quadric QF is

EDpolyX∨
(d)
,f (λ2) =

{
ψf (λ)ψf (−λ) if d is even
ψf (λ) if d is odd.

Note that in this case the variety X(d) ∩ QF is non-reduced of multiplicity
d. This non-transversality is confirmed by the fact that the identity of Theorem
4.4.10 cannot hold, since the integer deg(X∨(d)) − EDdegree(X∨(d)) vanishes for
d = 2 and is positive when d > 2 for all n ≥ 2, as pointed out in the end of
Section 2.2.14.

The case d = 2 deals with real symmetric matrices. For any symmetric matrix
u ∈ S2V , we have the identity

EDpolyX∨
(d)
,u(λ2) = ψu(λ)ψu(−λ) = det(U − λIn) det(U + λIn), (5.0.1)

In particular, the lowest term of EDpolyX∨
(d)
,u is the square of det(u).

In the Introduction, we already considered a similar problem in the vector
space V1 ⊗ V2 of n1 × n2 rectangular matrices (n1 ≤ n2). Here X = X2 is the

125
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Segre product introduced in (0.0.1), and QF is the isotropic quadric defined by
the Frobenius inner product defined via the relations in (0.0.4). In this setting,
for any matrix u ∈ V1 ⊗ V2 we have the identity

EDpolyX∨,u(σ2) = det(uuT − σ2In1). (5.0.2)

Here, the roots σ2 of EDpolyX∨,u(σ2) are the squared singular values of u.

The two cases resumed above are instances of a much harder problem: study-
ing the ED polynomial of X∨, where X is the affine cone of rank-one partially
symmetric tensors of a prescribed format.

We outline more rigorously our problem. Given a vector of dimensions n =
(n1, . . . , ns) and a vector of degrees µ = (µ1, . . . , µs), our ambient vector space
is the tensor product

SµV R := Sµ1V R
1 ⊗ · · · ⊗ SµsV R

s

where the symmetric power of a vector space was defined in 2.1.1. The vectors in
SµV R are addressed simply as (real) partially symmetric tensors. Their format
is clear from the context and it is specified only if necessary in the forthcoming
examples.

Similarly to Chapter 2, we want to fix a reasonable square distance function
δR
µ,u : SµV R → R from u ∈ SµV R and restrict it to a certain “target variety”
ZR, looking for the critical points of δR

µ,u on ZR. To this aim, we consider the
complexification SµV := (SµV R)⊗C = Sµ(V R⊗C), the complex variety Z := ZC

and the function δµ,u : SµV → C restricted to Z.
Our natural choice for ZR is the affine cone XR

µ of partially symmetric tensors
in SµV R of rank at most one, namely the affine cone of the image of the Segre
-Veronese embedding

Segµ :

s∏
j=1

P(V R
j )→ P(SµV R), Segµ([v1], . . . , [vs]) := [vµ1

1 ⊗ · · · ⊗ vµss ]. (5.0.3)

For brevity, we do not indicate the dependence from n in the notations of XR
µ and

Segµ. If µ = (1, . . . , 1) =: 1s, we recover the Segre variety XR
s := XR

1s introduced
in (0.0.17). If s = 1, we have µ = (d) and we get the Veronese variety XR

(d) of
Definition 2.1.3.

Now consider s arbitrary inner products qR
1, . . . , q

R
s on the spaces V R

1 , . . . , V
R
s .

In applications, qR
j is simply the standard Euclidean inner product on V R

j . The
Frobenius inner product on SµV R is defined, for partially symmetric tensors of
rank one, to be

qR
F,µ(xµ1

1 ⊗ · · · ⊗ xµss , y
µ1

1 ⊗ · · · ⊗ yµss ) := qR
1(x1, y1)µ1 · · · qR

s(xs, ys)
µs
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for all xj , yj ∈ V R
j and all j ∈ [s], and is extended to SµV R by linearity, similarly

to (2.1.2). The squared Frobenius distance function from a fixed u ∈ SµV R is

δR
F,µ,u(x) := qR

F,µ(u− x)

for all x ∈ SµV R. Note that δR
F,µ,u is the only distance function on SµV R com-

patible with the group embedding SO(V R
1 )× · · · × SO(V R

s ) ⊂ SO(SµV R).

Definition 5.0.2. A critical (partially symmetric) tensor for u ∈ SµV is defined
to be any critical point x ∈ Xµ for the function δF,µ,u.

The isotropic quadic in SµV is QF,µ := V(qF,µ). A partially symmetric tensor
u ∈ SµV is isotropic if u ∈ QF,µ.

Theorem 5.0.3 (Lim, Qi). Given a partially symmetric tensor u ∈ SµV , the
non-isotropic critical tensors for u correspond to tensors σx = σ(xµ1

1 ⊗· · ·⊗xµss ) ∈
SµV such that qj(xj) = 1 for all j ∈ [s] and

qF,µ(u, xµ1

1 ⊗ · · · ⊗ x
µj−1
j ·_⊗ · · · ⊗ xµss ) = σqj(xj ,_), 1 ≤ j ≤ s, (5.0.4)

for some σ ∈ C, called (partially simmetric) singular value of u. The corre-
sponding s-ple (x1, . . . , xs) is called (partially symmetric) singular vector s-ple
for u. Moreover, we call (partially symmetric) singular tensor for u any partially
symmetric tensor written as σ(xµ1

1 ⊗ · · · ⊗ xµss ), where (x1, . . . , xs) and σ are a
singular s-ple and a singular value for u, respectively.

When s = 1, the system (5.0.4), together with the normalization assumptions,
corresponds to the E-eigenpair system in (2.1.4).

Summing up, in this chapter we compute the ED polynomial of the dual affine
cone X∨µ ⊂ SµV , with respect to the isotropic quadric QF,µ. As pointed out in
Section 5.1, the roots of the ED polynomial ofX∨µ at u ∈ SµV are the squared sin-
gular values of u. Secondly, we report in Theorem 5.1.1 the Friedland-Ottaviani
formula for the ED degree of Xµ with respect to QF,µ, which corresponds, via
Theorem 4.2.2, to the ε2-degree of EDpolyX∨µ ,u(ε2). An independent formulation
of Theorem 4.2.2 was given by Aluffi and Harris in [AH]. We underline that their
computation does not apply the Catanese-Trifogli formula of Theorem 1.8.1, since
Xµ is not transversal to QF,µ. Indeed, we show that the ED polynomial has a
nontrivial highest coefficient.

Definition 5.0.4. For all J ⊂ [s] := {1, . . . , s}, we define

Xµ,J := Segµ(Y1 × · · · × Ys) ⊂ P(SµV ), (5.0.5)

where Yj := Qj := V(qj) if j ∈ J and Yj := P(V ) otherwise. Moreover, we define
fµ,J to be the equation of the dual variety of Xµ,J , when it is a hypersurface,
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otherwise fµ,J := 1. When µ = 1s, we use the notation fs,J := f1s,J . Generally,
fµ := fµ,∅ is the equation of the dual variety of Xµ = Xµ,∅ when it is a hypersur-
face, usually called µ-discriminant of a partially symmetric tensor. For µ = 1s

the µ-discriminant is known as the hyperdeterminant of a tensor in V1⊗ · · · ⊗Vs,
whereas for s = 1 and µ = (d) the µ-discriminant is addressed simply as the
discriminant of a symmetric tensor.

Section 5.2 keeps dealing with partially symmetric tensors of any format.
First, we use Corollary 4.4.6 to determine the vanishing locus of EDpolyX∨µ ,u(0).
Moreover, in Proposition 5.2.6 we describe the set of partially symmetric tensors
that fail to have the maximum number of singular values, that is the vanishing
locus of the highest coefficient of EDpolyX∨µ ,u(ε2).

Afterwards, the results stated in Section 5.3 are related to the current research
and encourage further investigations on this topic. Our main goal would be to
generalize Theorem 2.0.2 in the context of partially symmetric tensors of any for-
mat. A first answer was given in [Sod] in the special case of partially symmetric
binary tensors. Actually, the argument used in [Sod] may be generalized to par-
tially symmetric tensors with hypercube format, that is when n1 = · · · = ns = n
and V1 = · · · = Vs. Applying the results on the lowest coefficient of ED polyno-
mials in Chapter 4 and the inspiring work by Oeding [Oed] on symmetrizations
of the discriminant of a partially symmetric tensor, we determine an explicit ex-
pression, involving powers of the polynomials fµ,J , for the highest coefficient of
the ED polynomial of the dual variety of Xµ. This leads to the following closed
formula for the product of the singular values of a general partially symmetric
tensor t ∈ SµV , which generalizes Theorem 2.0.2 in the context of symmetric
tensors.

Theorem 5.0.5. 1. Assume that the linear system Sd introduced in Remark
5.3.19 has maximal rank. Let µ = (µ1, . . . , µs) be a partition of an integer
d ≥ 1. If the partially symmetric tensor u ∈ SµV admits the maximum
number N = EDdegree(Xµ) of singular values, counted with multiplicity
(hypothesis verified for a general u), their squared product is

(σ1 · · ·σN )2 =
∏
J⊂[s]

fµ,J(u)2−
∑
k∈J µk . (5.0.6)

2. (Theorem 2.0.2) In the symmetric case µ = (d), the product formula (5.0.6)
is true for any n ≥ 2:

(σ1 · · ·σN )2 =
f(d)(u)2

f(d),{1}(u)d−2
.
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3. (Proposition 5.3.18) When d ∈ {2, 3, 4}, the system Sd has maximal rank
and the product formula (5.0.6) is true for all µ ` d and all n ≥ 2.

4. (Proposition 5.4.4) In the binary case n = 2, the system Sd has maximal
rank d− 1 and the product formula (5.0.6) is true for any d ≥ 1.

We stress that, for n ≥ 3 and µ 6= (d), the previous theorem has been proved
so far for small values of n and d. Indeed, we need to show that the linear system
Sd = Sd(n), defined in Remark 5.3.19, has the maximal possible rank. So far,
this has been checked for all positive integers n and d less than 100, using the
software Macaulay2. For arbitrary large n and d, this check depends on nontrivial
binomial inequalities.

The right-hand side of (5.0.6) should be interpreted as the ratio between the
lowest and the highest coefficient of the ED polynomial of X∨µ at u ∈ SµV .
Depending on the sign of their exponent, the polynomials fµ,J appear in the
numerator or the denominator of this ratio, otherwise, they do not appear at all
if their exponent is zero. The nonsymmetric case µ = 1d was stated in Theorem
0.0.8.

The binary case (n = 2) considered in Section 5.4 reveals many interesting
aspects. In Proposition 5.4.6 we show that for tensors of binary format, the
polynomial fµ,J admits a sum of squares (SOS) decomposition for every nonempty
subset J ⊂ [s]. In particular, fµ,J(u) > 0 for any nonzero real partially symmetric
binary tensor u. This fact confirms the following known result.

Proposition 5.0.6. [Lim, Proposition 2] If the dual variety of Xµ is a hyper-
surface, then 0 is a singular value of u ∈ SµV R if and only if fµ(u) = 0.

Finally, we pick a general 2 × 2 × 2 tensor u and we compute simbolically
all the coefficients of EDpolyX∨3 ,u(ε2), and the equation of the ED discriminant
ΣX∨3 , in terms of SO(V )3-invariants. This is useful for studying more in detail
the 6 = 3! singular values of u, even when u is partially symmetric. Note that in
this case the formula in (5.0.6) or in (0.0.31) simplifies as

(σ1 · · ·σ6)2 =
g2

0 g1

g3

g0 = f3, g1 = f3,{1} f3,{2} f3,{3}, g2 = 1, g3 = f3,{1,2,3}.

5.1 The distance from a Segre-Veronese variety

We follow and generalize the notation adopted for symmetric tensors in (2.1.1).
For each space Vj , we set an orthonormal system of coordinates {xj,1, . . . , xj,nj}.
Every partially symmetric tensor u ∈ SµV may be written as an s-homogeneous
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polynomial of s-degree µ, namely as a polynomial which is homogeneous of degree
µj in the variables of Vj for all j ∈ [s]:

u =
∑
|αj |=µj
j∈[s]

 s∏
j=1

(
µj
αj

)
x
αj
j

uα1···αs ,

where αj = (αj,1, . . . , αj,nj ) ∈ Znj≥0, |αj | :=
∑nj
k=1 αj,k, x

αj
j := x

αj,1
j,1 · · ·x

αj,nj
j,nj

and(
µj
αj

)
:=

µj !
αj,1!···αj,nj ! is the multinomial coefficient, for all j ∈ [s]. In particular, we

suppose that (uα1···αs) is as a system of coordinates for SµV .
Then, the squared Frobenius norm of u = (uα1···αs) ∈ SµV is

qF,µ(u) =
∑
|αj |=µj
j∈[s]

 s∏
j=1

(
µj
αj

)u2
α1···αs . (5.1.1)

Note that the preceding identity gives also the equation of the isotropic quadric
QF,µ as a smooth quadric hypersurface in SµV .

In this section, we show two equivalent approaches for computing the ED
polynomial of the dual variety of a Segre-Veronese variety Xµ at a given tensor
u ∈ SµV . The first way follows the original setting about the ED polynomial of
an algebraic variety explained in Chapter 4, and uses the Pythagorean Theorem.
The second one applies directly Theorem 5.0.3.

We recall that the polynomial EDpolyXµ,u(ε2) was defined in general in
4.1.3. For any fixed ε ∈ C, the variety defined in SµV R by the vanishing of
EDpolyXµ,u(ε2) coincides with the ε-offset hypersurface of XR

µ. Here we suppose
that u ∈ SµV is fixed and that ε ∈ C is a variable, hence we view EDpolyXµ,t(ε

2)
as a univariate polynomial.

The first property of EDpolyXµ,t(ε
2) that we mention deals with its ε2-degree.

In Theorem 0.0.6 we recalled Friedland-Ottaviani formula for the ED degree of
Xµ in the nonsymmetric case µ = 1s, where Xs = X1s . Below we furnish their
formula in its full generality.

Theorem 5.1.1 (Friedland, Ottaviani). The ED degree of Xµ ⊂ SµV equals the
coefficient of the monomial hn1−1

1 · · ·hns−1
s in the polynomial

s∏
i=1

ĥnii − h
ni
i

ĥi − hi
, ĥi :=

 s∑
j=1

µjhj

− hi.
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Sketch of the proof. For simplicity, we give an idea of the proof in the nonsym-
metric case µ = 1s. We denote for brevity by Π the product P(V1)× · · · × P(Vs).
In particular, Xs = Segs(Π). For every j ∈ [s], we call πj the projection of Π
onto the j-th factor. Moreover, for all j ∈ [s] we define the quotient bundle on
P(Vj) as

Qj :=
O⊕njj

Oj(−1)
=

O⊕njP(Vj)

OP(Vj)(−1)
.

Now consider the pullbacks

π∗jO
⊕nj
j , π∗jOj(−1), π∗jOj(1), π∗jQj ,

which represent vector bundles on Π. In particular, we have the short exact
sequence

0→ π∗jOj(−1)→ π∗jO
⊕nj
j → π∗jQj → 0.

If we tensorize the above sequence with respect to the vector bundle
⊗

i 6=j π
∗
iOi(1),

we get another short exact sequence as

0→

⊗
i6=j

π∗iOi(1)

⊗ π∗jOj(−1)→

⊗
i6=j

π∗iOi(1)

⊗ π∗jO⊕njj → Rj → 0.

(5.1.2)
where we defined the vector bundle on Xµ

Rj :=

⊗
i 6=j

π∗iOi(1)

⊗ π∗jQj .
Finally, we define

R :=

s⊕
j=1

Rj .

As explained in [FO], the vector bundle R on Xµ is the right one for studying
the number of critical points of the squared distance function δF,µ,u on Xµ. For
every i ∈ [s] we consider the hyperplane class hi := c1(π∗iOi(1)). In particular,

c(R) =

s∏
j=1

c(Rj) ∈ A∗(Xµ) ∼=
Z[h1, . . . , hs]

(hn1
1 , . . . , hnss )

.

Since rk(R) = dim(Xµ), it follows that the top Chern class of R is of the form

ctop(R) = c

s∏
i=1

hni−1
i



132 Chapter 5. The ED polynomial of a Segre-Veronese variety

for some positive integer c, which turns out to be equal to EDdegree(X). In order
to determine c, we consider the above sequence (5.1.2) and by the Whitney sum
property (see Section 1.7) we have that

c(Rj) =
c
[(⊗

i 6=j π
∗
iOi(1)

)
⊗ π∗jO

⊕nj
j

]
c
[(⊗

i 6=j π
∗
iOi(1)

)
⊗ π∗jOj(−1)

]
=

(
1 +

∑
i 6=j hi

)nj
1− hj +

∑
i6=j hi

=

[
nj∑
k=0

(
nj
k

)
ĥkj

]∑
k≥0

(hj − ĥj)k
 ,

where we defined ĥj :=
∑
i6=j hi. Expanding the last expression and multiplying

over j, we thus obtain the desired coefficient c in ctop(R).

Corollary 5.1.2. Assume that n1 = · · · = ns = 2 and consider the vector
µ = (µ1, . . . , µs). Then

EDdegree(Xµ) = s!µ1 · · ·µs.

Proof. According to Theorem 5.1.1, the ED degree of Xµ equals the coefficient
of the monomial h1 · · ·hs in the polynomial

s∏
i=1

(ĥi + hi) =

s∏
i=1

 s∑
j=1

µjhj

− hi + hi

 = (µ1h1 + · · ·+ µshs)
s,

and the coefficient of h1 · · ·hs in the last expression is precisely s!µ1 · · ·µs.

The following is an immediate consequence of Proposition 4.2.1 and describes
which are the roots of the ED polynomial of Xµ.

Proposition 5.1.3. For a general u ∈ SµV , the roots of EDpolyXµ,u(ε2) are
precisely of the form ε2 = qF,µ(u − z), where z is a critical tensor of rank one
for u on Xµ. In particular, the distance ε from XR

µ to u ∈ SµV R is a root of
EDpolyXµ,u(ε2). Moreover u ∈ SµV R satisfies EDpolyXµ,u(0) = 0 if and only if
u ∈ XR

µ.

Anyway, this is not the end of our construction. Indeed, as anticipated in the
introduction, we consider the ED polynomial of the dual variety of Xµ, rather
than the ED polynomial of the variety Xµ itself. The passage between the ED
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polynomial of Xµ and the ED polynomial of X∨µ is just a variable reflection, by
Theorem 4.2.8. Hence, for any u ∈ SµV ,

EDpolyXµ,u(ε2) = EDpolyX∨µ ,u(qF,µ(u)− ε2). (5.1.3)

The next result clarifies the reason why we concentrate on ED polynomials of
dual varieties of Segre-Veronese varieties.

Proposition 5.1.4. For any partially symmetric tensor u ∈ SµV and any sin-
gular tensor σx ∈ SµV for u, we have EDpolyX∨µ ,u(σ2) = 0.

Proof. By Proposition 5.1.3, the roots of EDpolyXµ,u(ε2) are of the form ε2 =
qF,µ(u−z), where z is a critical binary tensor of rank one for u on Xµ. Moreover,
by Theorem 5.0.3 the non-isotropic critical tensors of rank one for u correspond
to the singular tensors for u. Then, consider a singular tensor σx for u. The root
qF,µ(u− σx) of EDpolyXµ,u(ε2) corresponds, via Theorem 4.2.8, with the root

qF,µ(u)− qF,µ(u− σx) = 2qF,µ(u, σx)− qF,µ(σx) = 2σqF,µ(u, x)− σ2 = σ2,

of EDpolyX∨µ ,u(ε2) (see Figure 5.1), where we used the fact that σ = qF,µ(u, x) for
any singular tensor σx for u, which is a direct consequence of equation (5.0.4).

0

σx

u− σx

u

X∨µ

Xµ

Figure 5.1: Singular tensors σx ∈ Xµ and critical points u − σx ∈ X∨µ for
the distance function δF,µ,u on X∨µ are in correspondence via the Pythagorean
Theorem.

Remark 5.1.5. The converse of Proposition 5.1.4 is true only for general ten-
sors. Indeed, there exist tensors u ∈ SµV such that some of the roots of
EDpolyX∨µ ,u(ε2) do not correspond to singular values of u. In the symmetric
case (s = 1, µ = (d)), this phenomenon is studied in detail for example in [Qi07,
Theorem 4] and in [LQZ].
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Remark 5.1.6. On one hand, one may verify from (5.1.3) that

EDpolyXµ,u(ε2) = EDpolyX∨µ ,u(qF,µ(u)− ε2)

=

N∑
k=0

(−1)k

 N∑
j=k

(
j

k

)
qF,µ(u)j−kaj(u)

 ε2k.
(5.1.4)

Hence the highest terms of EDpolyXµ,u(ε2) and EDpolyX∨µ ,u(qF,µ(u) − ε2) are
equal to aN (u) up to sign, where N = EDdegree(Xµ). On the other hand, the
corresponding lowest terms are not proportional.

Summing up, a first way to compute the ED polynomial of X∨µ at u ∈ SµV
is by applying Definition 4.1.3 together with the identity (5.1.3). The following
Macaulay2 code computes the ED polynomial of X∨µ in the case s = 1, n1 = 2,
µ = (d), namely when Xµ is the rational normal curve of degree d ≥ 2.

R = QQ[z_0..z_d, c_0..c_d, e];
RatNormCurve = minors(2, matrix{toList(z_0..z_(d-1)), toList(z_1..z_d)});
Jac = compress transpose jacobian RatNormCurve;
M = matrix{apply(d+1, j-> binomial(d, j)*(z_j-c_j))};
It = saturate(RatNormCurve + minors(d, M||Jac), ideal(toList(z_0..z_d)));
Hyperball = ideal(sum(d+1, j-> binomial(d,j)*z_j^2)-e^2);
EDpoly = (eliminate(toList(z_0..z_d), It+Hyperball))_0;

The output EDpoly is the ED polynomial of the dual variety of RatNormCurve
because we are taking into account (5.1.3) in the definition of Hyperball. Indeed,
the usual relation qF,µ(u−z)−ε2 is replaced by qF,µ(z)−ε2 (see the definition in
(4.1.1)). Moreover, we stress that the metric qF,µ used in SdV is the one defined
in equation (5.1.1). With this choice, the ED polynomial EDpoly of X∨(d) has
degree d = EDdegree(X(d)) in e^2.

Unfortunately, with this approach, the symbolic computation of the ED poly-
nomial is very hard also in the symmetric case µ = (d) for small values of d.
The main reason lies in the computation of the critical ideal Icrit(Xµ). Actually,
Theorem 5.0.3 and Proposition 5.1.4 provide a slightly more effective way for
computing EDpolyX∨µ ,u(ε2), described in the following corollary.

Corollary 5.1.7. Given a general partially symmetric tensor u = (uα1···αs) ∈
SµV , define J ⊂ C[{xj,1, xj,nj}, {uα1···αs}, ε] to be the ideal generated by all the
relations in equation (5.0.4), when restricted to SµV . Then

(J + 〈qj(xj)− 1 | 1 ≤ j ≤ s〉) ∩ C[uα1···αs , ε] =
(

EDpolyX∨µ ,u(ε2)
)
.
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Below we give a second and more efficient Macaulay2 code for computing the
ED polynomial of X∨µ in the case s = 1, n1 = 2, µ = (d), with the alternative
approach stated in Corollary 5.1.7 (note the similarity with the code in Example
2.4.2 for d = 3):

R = QQ[x_0, x_1, a_0..a_d, e];
u = sum(d+1, j-> binomial(d,j)*a_j*x_0^(d-j)*x_1^j);
I = ideal(first entries((1/d)*diff(matrix{{x_0, x_1}}, u)-
e*matrix{{x_0, x_1}}));
EDpoly = (eliminate({x_0, x_1},I + ideal(x_0^2+x_1^2-1)))_0;

Note that in this case equations (5.0.4) simplify as in (2.1.4), which in turn
correspond to the system (2.1.5), where we interpret t as a binary form of degree
d. For more details about the output of the above code we refer to Section 5.4.
The case of the ED polynomial of the dual of the rational normal curve of degree
d is studied in Chapter 2 in the context of Veronese varieties.

5.2 On the zero loci of the extreme coefficients

In this and the following sections, we focus on the lowest and highest coefficients
of the ED polynomial of X∨µ at a given partially symmetric tensor u ∈ SµV .

A crucial role is played by the varieties Xµ,J , which were introduced in Def-
inition 5.0.4. First, we investigate the dimension of their respective dual affine
cones.

Lemma 5.2.1. The variety X∨µ,J is a hypersurface in P(SµV ) if and only if

2(nj − 1) ≤ dim(Xµ,J) = n1 + · · ·+ ns − s− |J | (5.2.1)

for all indices j /∈ J such that µj = 1.

Proof. Considering a slight modification of [GKZ, Chapter 1, Corollary 5.10],
the dual affine cone X∨µ,J is a hypersurface if and only if the following system of
inequalities is satisfied:

dim(Q̃j) + codim(Q̃∨j )− 1 ≤ dim(Xµ,J) ∀j ∈ J
dim(X(µj)) + codim(X∨(µj))− 1 ≤ dim(Xµ,J) ∀j /∈ J,

(5.2.2)

On one hand, the first set of inequalities is related to the variety Q̃j , which is
the µj-th Veronese embedding into P(SµjVj) of the isotropic quadric Qj ⊂ P(Vj).
On the other hand, the second set of inequalities is related to the variety X(µj),
namely the µj-th Veronese embedding of P(Vj) into P(SµjVj).
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Through the computations made in Lemma 2.3.3 and Corollary 2.3.7, we
verified that Q̃∨j is a hypersurface for all µj ≥ 1. Hence for all j ∈ J the
corresponding inequality in (5.2.2) becomes

nj − 2 ≤ dim(Xµ,J) = n1 + · · ·+ ns − s− |J |,

which is trivially satisfied.
Now consider the second set of inequalities in (5.2.2). Note that dim(X(µj)) =

dim(P(Vj)) = nj−1 for all j. If µj > 1, then X∨(µj) is a hypersurface in P(SµjVj),
hence the corresponding inequality in (5.2.2) becomes nj−1 ≤ dim(Xµ,J), which
is trivially satisfied. Otherwise µj = 1 and X∨(µj) = P(Vj)

∨ = ∅. Therefore,
we have that codim(P(Vj)

∨) = nj and the corresponding inequality in (5.2.2)
coincides with (5.2.1).

Lemma 5.2.2. Assume n1 = · · · = ns = n, Vj = V and Qj = Q for all j.
Consider a subset J ⊂ [s]. Then X∨µ,J is a hypersurface unless

1. n = 2, |J | = s− 1 and µj = 1 for all j 6∈ J ,

2. n ≥ 3, (s, |J |) ∈ {(1, 0), (2, 1)} and µj = 1 for all j 6∈ J .
Proof. Without loss of generality, we may assume J = [l] ⊂ [s] with 0 ≤ l ≤ s. If
l = s, then J = [s] and the inequalities in (5.2.1) are vacuously satisfied, hence
X∨µ,J is a hypersurface. So in the following we assume l < s.

By Lemma 5.2.1, we need to verify that l ≤ (s− 2)(n− 1) for all j /∈ J such
that µj = 1. In particular, note that the preceding inequality is independent of
j, hence in the following, we assume that µj = 1 for some j /∈ J .

If n = 2, we are left with the inequality l ≤ s− 2. In particular, in this case
X∨µ,J is not a hypersurface if and only if l = s − 1. Note that this is the case
Xµ,[s−1] = Segµ(Q×(s−1) × P(V )) with µ = (µ1, . . . , µs−1, 1).

Now suppose that n ≥ 3. If s = 1, then by our assumptions J = ∅ and the
inequality l ≤ (s− 2)(n− 1) becomes n ≤ 1, which is not satisfied. Indeed, this
is the trivial case X1,∅ = P(V ), and P(V )∨ = ∅. If s = 2, then the inequality
l ≤ (s−2)(n−1) is not satisfied for (s, l) = (2, 1). Finally if s ≥ 3, the inequality
l ≤ (s− 2)(n− 1) is satisfied for all n ≥ 3.

The vanishing locus of the lowest coefficient a0(u) = EDpolyX∨µ ,u(0) is com-
pletely described in the following result, which descends immediately from Corol-
lary 4.4.6 and Proposition 4.4.13.

Corollary 5.2.3. The set of tensors u ∈ SµV which admit a partially symmetric
critical tensor of rank one z such that qF,µ(u− z) = 0 is

V(a0) = X∨µ ∪ (Xµ ∩QF,µ)∨. (5.2.3)

Moreover, if X∨µ is a hypersurface, its equation fµ has multiplicity two in a0.
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Observe that an immediate consequence of Lemma 5.2.2 is that X∨µ = X∨µ,∅
is always a hypersurface except for the trivial case s = 1, µ1 = 1.

Now we take a closer look at the other component (Xµ ∩ QF,µ)∨ in (5.2.3).
By definition, the affine cone of the variety Xµ ∩ QF,µ, which we keep calling
Xµ ∩QF,µ, is isomorphic to

{(x1, . . . , xs) ∈ V1 × · · · × Vs | qF,µ(xµ1

1 ⊗ · · · ⊗ xµss ) = 0}.

Define

Yµ,j := {(x1, . . . , xs) ∈ V1 × · · · × Vs | qj(xj) = 0} ∀j ∈ [s].

Then clearly Xµ ∩QF,µ ∼= Yµ,1 ∪ · · · ∪ Yµ,s.

Lemma 5.2.4. For all j ∈ [s], we have (Yµ,j)red ∼= Xµ,{j}, where (Yµ,j)red
denotes the reduced locus of Yµ,j. Moreover if µj > 1, then Y ∨µ,j = ∅.

Proof. It follows immediately by the definition of Yµ,j that its reduced locus is
isomorphic to Xµ,{j}. Consider any j ∈ [s] and x = xµ1

1 ⊗ · · · ⊗ xµss ∈ Yµ,j . On
one hand, x ∈ QF,µ and the tangent space TxQF,µ is the hyperplane filled by all
tensors u such that qF,µ(x, u) = 0. On the other hand, x ∈ Xµ and the tangent
space of Xµ at x is

TxXµ =
〈
x, v1x

µ1−1
1 ⊗ · · · ⊗ xµss , . . . , x

µ1

1 ⊗ · · · ⊗ vsxµs−1
s | vk ∈ Vk ∀k ∈ [s]

〉
.

For any k ∈ [s] we pick a nonzero vector vk ∈ Vk and we consider the partially
symmetric tensor

xµ1

1 ⊗ · · · ⊗ vkx
µk−1
k ⊗ · · · ⊗ xµss ∈ TxXµ.

Then we get the relation

qF,µ(x, xµ1

1 ⊗ · · · ⊗ vkx
µk−1
k ⊗ · · · ⊗ xµss ) =

= q1(x1)µ1 · · · qk(vk, xk) · qk(xk)µk−1 · · · qs(xs)µs

for all k ∈ [s]. In particular, qF,µ(x, xµ1

1 ⊗ · · · ⊗ vkx
µk−1
k ⊗ · · · ⊗ xµss ) = 0 for all

k 6= j. Now assume k = j. If µj = 1, then for a general vj we get q(xj , vj) 6= 0
and in turn

qF,µ(x, xµ1

1 ⊗ · · · ⊗ vjx
µj−1
j ⊗ · · · ⊗ xµss ) 6= 0.

This implies that the general point x ∈ Yµ,j is smooth if µj = 1. Otherwise if
µ1 > 1, then

qF,µ(x, xµ1

1 ⊗ · · · ⊗ vjx
µj−1
j ⊗ · · ·xµss ) = 0.

This means that TxXµ ⊂ TxQF,µ, and every point x ∈ Yµ,j is not smooth.
Therefore, by the definition of dual variety we have that Y ∨µ,j = ∅ if µj > 1.
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An immediate consequence of Lemma 5.2.4 is the identity

(Xµ ∩QF,µ)∨ =
⋃

j∈[s] : µj=1

X∨µ,{j}. (5.2.4)

Remark 5.2.5. Consider the identity (5.2.4) in the case µ = 1s. In particular,
we have that (calling QF,s := QF,1s)

(Xs ∩QF,s)∨ =

s⋃
j=1

X∨s,{j},

where

Xs,{j} = P(V1)× · · · × P(Vj−1)×Qj × P(Vj+1)× · · · × P(Vs)

for all j ∈ [s]. By Lemma 5.2.1, the dual affine cone X∨s,{j} is a hypersurface if
and only if

2(nk − 1) ≤ n1 + · · ·+ ns − s− 1 ∀k ∈ [s], k 6= j.

On the contrary, X∨s,{j} is not a hypersurface if and only if there exists k ∈ [s],
k 6= j such that

2(nk − 1) ≥ n1 + · · ·+ ns − s.

Without loss of generality, assume that n1 ≥ · · · ≥ ns. Suppose that (Xs∩QF,s)∨
is not a hypersurface. In particular, X∨s,{1} and X∨s,{2} are not hypersurfaces.
These facts give the inequalities

n2 ≥ n1 +

s∑
j=3

(nj − 1), n1 ≥ n2 +

s∑
j=3

(nj − 1),

namely

n1 ≥ n2 +

s∑
j=3

(nj − 1) ≥ n1 + 2

s∑
j=3

(nj − 1).

Therefore
∑s
j=3(nj − 1) = 0, namely n3 = · · · = ns = 1 and n1 = n2.

The conclusion of this remark is the following: if (Xs ∩QF,s)∨ is not a hyper-
surface, then s = 2 and n1 = n2, so we are in the square matrix case. Neverthe-
less, here X∨2 is the hypersurface defined by the determinant. In particular, the
polynomial EDpolyX∨s ,u(0) admits an extra coefficient (different from f2

s ) unless
we are in the matrix case. This marks another big difference between the matrix
case and all the other possible tensor formats.
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In the second part of this section, we are interested in giving a complete de-
scription of the vanishing locus of the highest coefficient aN (u) of EDpolyX∨µ ,u(σ).
In the following proof, we use the notations introduced in Section 1.1.

Proposition 5.2.6. The following inclusion holds true:

V(aN ) ⊂
⋃

j : µj>1

X∨µ,{j} ∪
⋃
|J|>1

X∨µ,J .

Proof. For any nonzero partially symmetric binary tensor u ∈ SµV , we indicate
by 〈u〉 ∈ H∞ the line spanned by u. Now assume that aN (u) = 0. From
this fact, from Corollary 4.3.7 and (5.1.4), there exists a sequence {uk} ⊂ SµV
such that uk → u and two corresponding sequences {fk} ⊂ X∨µ and {uk −
fk} ⊂ Xµ of critical points for δF,µ,uk on X∨µ and Xµ, respectively, such that
EDpolyX∨µ ,uk(ε2

k) = 0 and EDpolyXµ,uk(η2
k) = 0 when ε2

k = qF,µ(fk − uk) and
η2
k = qF,µ(fk) diverge simultaneously (see Figure 5.2). In particular, we have that

〈uk−fk〉 ∈ [(TfkX
∨
µ )∞]⊥ = (NfkX

∨
µ )∞, 〈fk〉 ∈ [(Tuk−fkXµ)∞]⊥ = (Nuk−fkXµ)∞

for all k, where the external duals are taken in the projective subspace H∞. Up

0

uk − fk

fk

uk

X∨µ

Xµ

Figure 5.2: The sequences {fk} ⊂ X∨µ and {uk − fk} ⊂ Xµ.

to subsequences, we may assume that

lim
k→∞

〈fk〉 =: 〈f〉 ∈ (Xµ)∨∞, for some f ∈ SµV. (5.2.5)

In the topology of the compact space Xµ = Xµ∪ (Xµ)∞ we still have fk → 〈f〉 ∈
(Xµ)∨∞, more precisely in P(C⊕V ) we have [(1, fk)]→ [(0, f)]. Consequently, we
have that

lim
k→∞

〈uk − fk〉 = 〈u− f〉 ∈ (Xµ)∞.

Repeating the argument of Proposition 4.3.4, one verifies that
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(i) qF,µ(〈u− f〉) = 0, namely 〈u− f〉 ∈ (QF,µ)∞, where in this case qF,µ is the
quadratic form defined in H∞.

(ii) T〈u−f〉(Xµ)∞ ⊂ T〈u−f〉(QF,µ)∞.

Remembering that u−f is a decomposable tensor, then 〈u−f〉 = [xµ1

1 ⊗· · ·⊗xµss ]
for some vectors xi ∈ Vi. By (i), necessarily qj(xj) = 0 for some j, say j = 1.
Now there are two possible cases to study.

If µ1 = 1, then we may suppose that q1(x1) = 0. The inclusion in (ii) implies
that for any 〈v〉 ∈ T〈u−f〉(Xµ)∞, we have qF,µ(〈v〉, 〈u − f〉) = 0, where in this
case qF,µ(·, ·) is the bilinear form on SµV restricted to H∞. More explicitly, we
may write

v =

s∑
i=1

x1 ⊗ · · · ⊗ xµi−1

i−1 ⊗ ξi · x
µi−1
i ⊗ xµi+1

i+1 ⊗ · · · ⊗ x
µs
s

for some ξi ∈ Vi for all i ∈ [s]. Then

0 = qF,µ(〈v〉, 〈u− f〉)

=

s∑
i=1

qF,µ([x1 ⊗ · · · ⊗ xµi−1

i−1 ⊗ ξi · x
µi−1
i ⊗ xµi+1

i+1 ⊗ · · · ⊗ x
µs
s ], [xµ1

1 ⊗ · · · ⊗ xµss ])

=

s∑
i=1

q1(x1) · · · qi−1(xi−1)µi−1 · qi(ξi, xi) · qi(xi)µi−1 · qi+1(xi+1)µi+1 · · · qs(xs)µs .

By our assumption q1(x1) = 0. Then necessarily we get the identity

q1(ξ1, x1) · q2(x2)µ2 · · · qs(xs)µs = 0.

Taking v sufficiently general, we may suppose that q1(ξ1, x1) 6= 0. Therefore
there exists at least one more index i 6= 1 such that qi(xi) = 0. In particular
u− f ∈ Xµ,J , where J = {j ∈ [s] | qj(xj) = 0}.

Otherwise µ1 > 1, then u − f ∈ Xµ,{1}, otherwise u − f ∈ Xµ,J for some
J ⊂ [s] such that |J | > 1.

Now assume that µ1 = 1 (the proof in the case µ1 > 1 is the same). We show
that necessarily t ∈ X∨µ,J . By definition, X∨µ,J = Sµ,J , where

Sµ,J =
⋃

x∈(Xµ,J )sm

NxXµ,J .

Now suppose that y ∈ Tu−fXµ,J . By the previous claims, qF,µ(y, u− f) = 0. On
the other hand, we have qF,µ(y, f) = 0, since Xµ and X∨µ are affine cones. Then

qF,µ(y, u) = q̃(y, u− f) + q̃(y, f) = 0 + 0 = 0.

This means that u ∈ Sµ,J , hence u ∈ X∨µ,J .
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Proposition 5.2.6 gives the following piece of information: if a partially sym-
metric tensor u ∈ SµV does not admit the expected number of critical points,
then it must have a critical point with a precise isotropic structure.

5.3 The product of the singular values of a tensor

For all J ⊂ [s], we recall that fµ,J denotes the equation of X∨µ,J , when it is
a hypersurface. Otherwise, we set fµ,J := 1. Moreover, we use the notation
fµ := fµ,∅. For brevity, we define θµ,J := deg(fµ,J) and θµ := deg(fµ).

In Lemma 5.2.2 we determined the conditions for the variety X∨µ,J to be a
hypersurface or not. When X∨µ,J is a hypersurface, its degree (that is, θµ,J)
coincides with the polar class δ0(Xµ,J) introduced in Section 1.5. In turn, since
Xµ,J is a smooth variety, the invariant δ0(Xµ,J) may be written in terms of the
Chern classes ofXµ,J via the formulas in (1.8.1) for i = 0. Settingm = m(µ, J) =
dim(Xµ,J) for brevity, we have

δ0(Xµ,J) =

m∑
k=0

(−1)k(m+ 1− k)ck(Xµ,J) · hm−k, (5.3.1)

where h = c1(OXµ,J (1)) is the hyperplane class.

Our goal is to write explicitly the Chern classes ck(Xµ,J). Let H̃j be the
hyperplane class of P(Vj) and denote with h̃j the restriction of H̃j to the variety
Yj . In particular, recalling that Xµ,J = Segµ(Y1× · · · × Ys) (see Definition 5.0.4)
we have the relations

h̃
nj−χJ (j)
j = 0 for all j ∈ [s],

where χJ is the characteristic function of the subset J . Keeping in mind all these
relations, we have that

c(Xµ,J) =

s∏
j=1

c(Yj) =

s∏
j=1

(
nj−1∑
i=0

ci(Yj)

)
=

s∏
j=1

(
nj−1∑
i=0

γi(Yj)h̃
i
j

)

=

m∑
k=0

∑
|β|=k

(
s∏
l=1

γβl(Yl)

)
h̃β

 =

m∑
k=0

∑
|β|=k

γβh̃
β ,

where h̃β = h̃β1

1 · · · h̃βss and using (1.7.1) we have

γβl(Yl) =

{∑βl
i=0

(
nl
i

)
(−2)βl−i if l ∈ J(

nl
βl

)
if l /∈ J.

, γβ = γβ(Xµ,J) :=

s∏
l=1

γβl(Yl).
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Therefore, the k-th Chern class of Xµ,J is

ck(Xµ,J) =
∑
|β|=k

γβh̃
β ∀ 0 ≤ k ≤ m.

Then, taking into account the Segre-Veronese embedding Segµ, we have that
h = µ1h̃1 + · · ·+ µsh̃s, hence the power hm−k in equation (5.3.1) becomes

hm−k = (µ1h̃1 + · · ·+ µsh̃s)
m−k =

∑
|ω|=m−k

(
m− k
ω

)
µωh̃ω.

Summing up, the product ck(Xµ,J) · hm−k in (5.3.1) may be written as

ck(Xµ,J) · hm−k =
∑
|β|=k

γβh̃
β ·

∑
|ω|=m−k

(
m− k
ω

)
µωh̃ω

= (m− k)!

∑
|β|=k

ηβγβµ
n−β−χJ

 h̃m (5.3.2)

where we observed that, for every k, the product h̃β · h̃ω is nonzero if and only
if β + ω = n − 1s − χJ (namely βl + ωl = nl − 1 − χJ(l) for all l ∈ [s]) and
consequently that |β + ω| = |n− 1s − χJ | = m. Moreover, we defined

ηβ :=

{
1

(n−1s−β−χJ )! =
∏s
l=1

1
(nl−1−βl−χJ (l))! if nl − βl − χJ(l) ≥ 1 ∀ l ∈ [s]

0 otherwise.

Finally we observe that, from the definition of Xµ,J , we have deg(h̃m) = 2|J|.
Merging together formulas (5.3.1) and (5.3.2) we get the following result

Proposition 5.3.1. If X∨µ,J is a hypersurface, then its degree is

θµ,J = 2|J|
m∑
k=0

(−1)k(m+ 1− k)!
∑
|β|=k

ηβγβµ
n−1s−β−χJ . (5.3.3)

We consider two explicit examples of the above formula, which are useful for
example in Remark 5.3.19. See also Corollary 5.4.1 for a simplified version of
(5.3.3) in the binary case.

Example 5.3.2. Consider the case s = 2, n1 = n2 = n and the vector of degrees
µ = (µ1, µ2). The degree of the dual affine cone of Xµ,{1} = Segµ(Q× P(V )) is

θµ,{1} = 2

2n−3∑
k=0

(−1)k(2n−2−k)!
∑

β1≤n−2
β2≤n−1
|β|=k

[∑β1

l=0

(
n
l

)
(−2)β1−l

] (
n
β2

)
(n− β1 − 2)!(n− 1− β2)!

µn−β1−2
1 µn−1−β2

2 .
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Example 5.3.3. Consider the case s = 3, n1 = n2 = n3 = n and the vector
of degrees µ = (µ1, µ2, µ3). Below we compute the degrees of the dual affine
cones of Xµ,{1} = Segµ(Q× P(V )× P(V )) and Xµ,{1,2} = Segµ(Q×Q× P(V )),
respectively:

θµ,{1} = 2 ·
3n−4∑
s=0

(−1)s(3n− 3− s)! ·

·
∑

β1≤n−2
β2,β3≤n−1
|β|=k

∑β1
l=0

(
n
l

)
(−2)β1−l

(n− β1 − 2)!

[
3∏
i=2

(
n
βi

)
(n− βi − 1)!

]
µn−13−β−χ{1} ,

θµ,{1,2} = 4 ·
3n−5∑
s=0

(−1)s(3n− 4− s)! ·

·
∑

β1,β2≤n−2
β3≤n−1
|β|=k

[
2∏
i=1

∑βi
l=0

(
n
l

)
(−2)βi−l

(n− βi − 2)!

] (
n
β3

)
µn−13−β−χ{1,2}

(n− β3 − 1)!
.

For the rest of the chapter, we assume that n1 = · · · = ns = n. Moreover,
without loss of generality, we may identify all vector spaces Vj = V as well as the
quadratic forms qj = q and the corresponding isotropic quadrics Qj = Q.

From now on, we consider an integer d and all degree vectors µ = (µ1, . . . , µs)
such that |µ| = d, namely all partitions µ of d. We use the symbol µ ` d to
denote any partition of d. The two trivial partitions are µ = (1, . . . , 1) (d times),
denoted by µ = 1d, and the symmetric partition µ = (d).

Proposition 5.2.6 carries the following fact: if aN = gβ1

1 · · · gβrr is the irre-
ducible factorization of the highest coefficient aN of EDpolyX∨µ ,u(ε2), then the
gk’s are either proportional to fµ,{j} for some 1 ≤ j ≤ s such that µj > 1, or
to fµ,J for some J ⊂ [s] such that |J | > 1. In particular, we may write, up to
scalars,

aN (u) =
∏

j : µj>1

fµ,{j}(u)αµ,{j} ·
∏
|J|>1

fµ,J(u)αµ,J , αµ,J ≥ 0. (5.3.4)

Moreover, from Lemma 5.2.3 we have that, up to scalars,

a0(u) = fµ(u)2 ·
∏

j : µj=1

fµ,{j}(u)−αµ,{j} , αµ,{j} ≤ 0 when µj = 1. (5.3.5)

The reason for the negative sign in the notation of the integers αµ,J in (5.3.5)
is clarified in the proof of Theorem 5.0.5. When µ = 1d, we observe that
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EDpolyX∨d ,u(ε2) is invariant under the action of the symmetric group Σd on the
entries of u = (ui1···id). More precisely, we use the notation

αd,j := α1d,J for all J ⊂ [d]. (5.3.6)

A nontrivial task is showing what are the exponents αµ,J appearing in the
expressions of aN and a0. Actually, Corollary 5.3.13 simplifies a lot our problem,
stating that αµ,J ∈ {αd,1, . . . , αd,d} for all µ ` d and all J ⊂ [s]. In order to
determine the exponents αµ,J , we consider the following list of linear conditions
whose coefficients are the degrees θµ,J , which descend from relations (5.3.4),
(5.3.5) and the identity deg(aN ) + 2N = deg(a0), where we already know from
Corollary 5.2.3 that αµ,∅ = αµ = −2:∑

J⊂[s]

αµ,Jθµ,J + 2N = 0 for all µ ` d. (5.3.7)

The main idea of the proof of Corollary 5.3.13 is related to partial symmetriza-
tions of the ED polynomial of X∨d . To this aim, we recall some definitions and
preliminary results.

Definition 5.3.4. Let µ = (µ1, . . . , µs) be a partition of d. A symmetrization of
µ is any partition λ = (λ1, . . . , λr) of d with

λj = µij,1 + · · ·+ µij,lj for all 1 ≤ j ≤ r, (5.3.8)

where µ = (µi1,1 , . . . , µi1,l1 , . . . , µir,1 , . . . , µir,lr ) after a possible permutation. We
write λ ≺ µ to indicate that λ is a symmetrization of µ. We stress that different
choices of µi appearing in different sums (5.3.8) yield different symmetrizations
of µ, even if some of the µi are equal.

Given two partitions λ = (λ1, . . . , λr) and µ = (µ1, . . . , µs) such that λ ≺ µ,
we may consider the inclusion SλV ⊂ SµV . Since the group GL(V ) is linearly
reductive (see Definition 3.1.2), SµV is a GL(V )-module and SλV is a submodule
of SµV , there exists a unique GL(V )-invariant complement to SλV in SµV ,
denoted by Wλ,µ (see [LeP, Lemma 6.2.2]). We have a natural projection

πλ,µ : P(SµV ) 99K P(SλV )

from Wλ,µ, whose definition on decomposable elements is

πλ,µ

(
[a
µi1,1
i1,1

⊗ · · · ⊗ a
µi1,t1
i1,t1

⊗ · · · ⊗ a
µis,1
is,1

⊗ · · · ⊗ aµit,tsit,ts
]
)

:=

:= [a
µi1,1
i1,1
· · · a

µi1,t1
i1,t1

⊗ · · · ⊗ a
µis,1
is,1
· · · aµit,tsit,ts

].
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The projection πλ,µ induces another projection P(Se(SµV )) 99K P(Se(SλV )),
which we keep calling πλ,µ. The λ-symmetrization of a degree e homogeneous
polynomial f ∈ Se(SµV ) is the image πλ,µ(f) under the map already defined.

The case µ ` d, λ = (d) ` d is studied in detail by Oeding in [Oed]. Here we
write πµ := π(d),µ for brevity. We consider the projections

ChowµP(V ) := πµ(Xµ) ⊂ P(SdV ), (5.3.9)

classically known as multiple root loci of P(SdV ). They are filled by (classes of)
symmetric tensors of the form lµ1

1 · · · lµss for some linear forms l1, . . . , ls. When
µ = (d), the corresponding multiple root locus is the Veronese variety X(d).
Oeding derived the following striking factorization formula for the µ-discriminant
fµ in terms of equations of dual multiple loci.

Theorem 5.3.5. [Oed, Theorem 1.2] Let µ ` d ≥ 2, and let V be a complex
vector space of dimension n with n ≥ 1. Then

X∨µ ∩ P(SdV ∗) =
⋃
γ≺µ

[ChowγP(V )]∨.

In particular,
πµ(fµ) =

∏
γ≺µ

ΦMγ,µ
γ,n ,

where Φγ,n is the equation of [ChowγP(V )]∨ when it is a hypersurface in P(SdV ∗),
and the multiplicity Mγ,µ is the number of partitions µ such that γ is a sym-
metrization of µ.

A more general result by Holweck and Oeding which we apply is the following.

Theorem 5.3.6. [HO, Theorem 2.2] Let X ⊂ P(V ) and Y ⊂ P(A) be algebraic
varieties with V = A ⊕ B. If for each smooth point [y] ∈ Y there is a smooth
point [x] ∈ X such that πB(TxX) ⊂ TyY (where in the inclusion X and Y are
seen as affine cones), then

Y ∨ ⊂ X∨ ∩ P(A∗).

Moreover if X∨ and Y ∨ are hypersurfaces defined respectively by polynomials f
and g and, for every general point [h] ∈ Y ∨, H = V(h), viewed as a hyperplane
in P(V ), is a point of multiplicity m of X∨, then gm divides πB(f).

The following result an almost immediate consequence of Theorem 5.3.5 and
is an instance of Theorem 5.3.6. It relates the λ-symmetrization of the µ-
discriminant (the equation of X∨µ ), where λ ≺ µ are two partitions of d.
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Proposition 5.3.7. Let λ ≺ µ be two partitions of d. Then

X∨λ ⊂ X∨µ ∩ P(SλV ).

Moreover, fλ is a factor of multiplicity one in πWλ,µ(fµ).

Proof. By Theorem 5.3.5, we have the inclusions X∨(d) ⊂ X∨µ ∩ P(SdV ) and
X∨(d) ⊂ X∨λ ∩ P(SdV ). We stress that, taking into account Definition 1.3.1,
we are identifying P((SµV/SdV )⊥) with SdV and by abuse of notation write
X∨(d) ⊂ X∨µ ∩ P(SdV ). Again by Theorem 5.3.5, the discriminant f(d) is a factor
of multiplicity one in both the polynomials π(d),µ(fµ) and π(d),λ(fλ).

Remark 5.3.8. Fix a partition µ ` d and a vector space SµV . As a completion
of the remark in Definition 5.3.4, we stress that distinct symmetrizations λ1 6= λ2

of µ yield isomorphic but distinct subspaces Sλ1V 6= Sλ2V and, in turn, distinct
(but isomorphic) varieties Xλ1

and Xλ2
, even if λ1 = λ2 as partitions of d.

For example, when we write X(2,1) ⊂ X(1,1,1) we do take into account which
components of µ = (1, 1, 1) we are summing to get λ = (2, 1). Nevertheless, we
choose to omit this assumption in our notation. In terms of projections πλ,µ,
different symmetrizations λ1 6= λ2 of µ yield different maps πλ1,µ 6= πλ2,µ.

The following key fact shows how the previous result shifts from dual Segre
-Veronese varieties to their respective ED polynomials.

Proposition 5.3.9. Let λ ≺ µ be two partitions of d and let u ∈ SλV . Then the
ED polynomial of X∨λ at u divides with multiplicity one the λ-symmetrization of
the ED polynomial of X∨µ at u.

Proof. Let u ∈ SλV and let x ∈ Xλ ⊂ Xµ be a λ-symmetric singular tensor for
u. We show that x is also a µ-symmetric singular tensor for u. According to the
decomposition SµV = SλV ⊕Wλ,µ, the tangent space of Xµ at x decomposes in
a good way as TxXµ = TxXλ ⊕W for some subspace W ⊂ Wλ,µ. In particular,
any tangent vector of Xµ at x may be written in a unique way as y = yλ +w for
some yλ ∈ TxXλ and w ∈W . Then we have

qF,µ(u− x, y) = qF,µ(u− x, yλ) + qF,µ(u− x,w) = 0 + 0 = 0

for all y ∈ TxXµ. Thanks to Proposition 5.1.4, this fact means, at the level of
ED polynomials, that there exists an integer β ≥ 0 such that

EDpolyX∨µ ,u(ε2) = [EDpolyX∨λ ,u(ε2)]β · h,

and EDpolyX∨λ ,u(ε2) is not a factor of h. By Lemma 5.2.3, the equations of X∨µ
and X∨λ , namely fµ and fλ, appear with multiplicity 2 in the lowest terms of
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EDpolyX∨µ ,u(ε2) and EDpolyX∨λ ,u(ε2). Moreover, by Proposition 5.3.7, fλ is a
factor of multiplicity one in πλ,µ(fµ). This implies that β = 1.

Definition 5.3.10. Let µ = (µ1, . . . , µs) ` d. Consider a subset of indices
J ⊂ [s]. We say that a partition λ = (λ1, . . . , λr) ≺ µ is compatible with J if for
all 1 ≤ j ≤ r we may write

λj = µij,1 + · · ·+ µij,lj

and the subset of indices Iλ,j := {ij,1, . . . , ij,lj} is either contained in J or in
[s] \ J . Moreover, we define Jλ := {j ∈ [r] | Iλ,j ⊂ J}.

Example 5.3.11. Let µ = (µ1, . . . , µs) ` d. Consider a nonempty subset J =
{p1, . . . , pn} ⊂ [s] and its complement [s] \ J = {q1, . . . , qs−n}. Then any of the
following partitions λ ≺ µ, which we use in Corollary 5.3.13 and Lemmas 5.3.15
and 5.3.17, is compatible with J :

1. λ = (d) = (µ1 + · · ·+ µs) if J = [s],

2. λ = (λ1, λ2) = (µp1
+ · · ·+ µpn , µq1 + · · ·+ µqs−n),

3. λ = (λ1, λ2, λ3) = (µp1
+ · · ·+ µpn−1

, µpn , µq1 + · · ·+ µqs−n),

4. λ = (λ1, λ2, λ3) = (µp1 + · · ·+ µpn , µq1 + · · ·+ µqs−n−1 , µqs−n).

Definition 5.3.10 is useful for introducing the following variation of Proposition
5.3.7.

Proposition 5.3.12. Let µ = (µ1, . . . , µs) be a partition of d. Consider a subset
of indices J ⊂ [s] and a partition λ = (λ1, · · · , λr) ≺ µ compatible with J . If
X∨µ,J is a hypersurface, then X∨λ,Jλ is a hypersurface too, and

X∨λ,Jλ ⊂ X
∨
µ,J ∩ P(SλV ). (5.3.10)

Moreover, fλ,Jλ is a factor of multiplicity one in πλ,µ(fµ,J).

Proof. In the first part, we derive the inclusion (5.3.10) by applying Theorem
5.3.6. Since the partition λ is compatible with J , we conclude immediately from
Definition 5.3.10 that Xλ,Jλ ⊂ Xµ,J ∩P(SλV ). Observe that Xµ,J and Xλ,Jλ are
smooth varieties. Pick any point y = yλ1

1 ⊗ · · · ⊗ yλrr ∈ Xλ,Jλ . First of all, we
have π−1

λ,µ(y) = {x}, where x = xµ1

1 ⊗ · · · ⊗xµss ∈ Xµ,J is such that xi = yj for all
i ∈ Iλ,j and for all j ∈ [s]. Secondly, we show that the projection πλ,µ(TxXµ,J)
of the tangent space of Xµ,J at x is contained in TyXλ,Jλ . By definition,

TxXµ,J =
〈
x, xµ1

1 ⊗ · · · vix
µi−1
i ⊗ · · · ⊗ xµss

∣∣∣ vi ∈ TxiQ if i ∈ J , vi ∈ V if i /∈ J
〉
.
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If i ∈ J , then xµ1

1 ⊗ · · · vix
µi−1
i ⊗ · · · ⊗ xµss = x and we already showed that

πλ,µ(x) = y ∈ TyXλ,Jλ . Now assume that j /∈ J . Then

πλ,µ(xµ1

1 ⊗ · · · vix
µi−1
i ⊗ · · · ⊗ xµss ) = yλ1

1 ⊗ · · · ⊗ viy
λj−1
j ⊗ · · · ⊗ yλrr ∈ TyXλ,Jλ ,

where the index j is such that i ∈ Iλ,j . Hence πλ,µ(TxXµ,J) ⊂ TyXλ,Jλ as we
wanted. Therefore the inclusion (5.3.10) follows by Theorem 5.3.6.

Now suppose by absurd that X∨λ,Jλ is not a hypersurface. Then necessarily
|Jλ| = r − 1 and λk = 1 for k /∈ Jλ, by Lemma 5.2.2. By Definition 5.3.10, we
have that |J | = s− 1 and µj = 1 for all j /∈ J , that is, X∨µ,J is not a hypersurface
by Lemma 5.2.2, a contradiction.

Finally we assume that X∨µ,J is a hypersurface and we verify that the equation
fλ,Jλ of X∨λ,Jλ appears with multiplicity one in πλ,µ(fµ,J). We mimick the argu-
ment used by Oeding in the second proof of [Oed, Lemma 5.1]. Let h be a general
vector in X∨λ,Jλ . In particular, h is a smooth point of X∨λ,Jλ , so there is exactly
one point y ∈ Xλ,Jλ such that h ∈ NyXλ,Jλ . By the previous part of the proof, we
know that π−1

λ,µ(y) = {x} for some x ∈ Xµ,J and that h ∈ NxXµ,J , where we are
considering the inclusion h ∈ SλV ⊂ SµV . If X∨λ,Jλ had multiplicity greater than
one in X∨µ,J∩P(SλV ), there would be a point x̃ ∈ Xµ,J , distinct from x, such that
h ∈ Nx̃Xλ,Jλ . Again the first part of the proof would imply that ỹ := πλ,µ(x̃) is
distinct from y and that h ∈ NỹXλ,Jλ . But then h ∈ NyXλ,Jλ ∩ NỹXλ,Jλ , and
this contradicts the fact that h is smooth on X∨λ,Jλ .

Propositions 5.3.9 and 5.3.12 yield the following useful corollary for the proof
of Theorem 5.0.5.

Corollary 5.3.13. Let µ = (µ1, . . . , µs) be a partition of d. Then

αµ,J = αd,
∑
j∈J µj

for all J ⊂ [s], where the integers αµ,J were defined in (5.3.4) and in (5.3.5),
whereas the integers αd,j were defined in (5.3.6).

Proof. Let K ⊂ [d] such that |K| =
∑
j∈J µj . By Proposition 5.3.12, fµ,J is a

factor of multiplicity one in πµ,1d(fd,K). Moreover, given any tensor u ∈ SµV ,
by Proposition 5.3.9 the ED polynomial of X∨µ at u divides the ED polynomial of
X∨d at u with multiplicity one. Therefore, the exponents of fd,K and fµ,J , which
are respectively αd,|K| = αd,

∑
j∈J µj

and αµ,J , must coincide.

Thanks to Corollary (5.3.13) and the identities in (5.3.7), one might consider
the linear system ∑

J⊂[s]

αd,
∑
j∈J µj

θµ,J + 2N = 0 ∀µ ` d (5.3.11)
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in the variables αd,1, . . . , αd,d, and show that the system (5.3.11) admits the
unique solution

(αd,1, . . . , αd,d) = (−1, 0, 1, . . . , d− 2). (5.3.12)

Note that the system (5.3.11) has d variables and as many equations as the num-
ber of partitions µ ` d, which is considerably larger than d in general. Actually,
it turns out that many equations are linearly dependent.

After initializing the system (5.3.11) on the mathematical software Macaulay2,
we verified that it admits the unique solution (5.3.12) for small values of n (say,
n < 100). Modulo this issue, we are ready to conclude the proof of Theorem
5.0.5.

Proof of Theorem 5.0.5. Let d ≥ 1 be an integer and let µ = (µ1, . . . , µs) be a
partition of d. We only need to show that the highest coefficient aN = aN (u)
and the lowest coefficient a0 = a0(u) of the ED polynomial of X∨µ at u ∈ SµV
are respectively

aN =
∏

j : µj>1

f
µj−2

µ,{j} ·
∏
|J|>1

f
∑
k∈J µk−2

µ,J , a0 = f2
µ ·

∏
j : µj=1

fµ,{j}. (5.3.13)

By Corollary 5.3.13, for every nonempty subset J ⊂ [s], the exponent of fµ,J
is αµ,J = αd,

∑
k∈J µk

. Moreover, by (5.3.12), we have that

αd,
∑
k∈J µk

=
∑
k∈J

µk − 2,

thus completing the proof.

In the last part of this section, we extract a system Sd of d equations from
(5.3.11). In our computations, we observed (for small values of n) that Sd is of
full rank when n > 2, whereas is of rank d−1 for n = 2. Actually, the case n = 2
is completely described in Section 5.4, where we show in Proposition 5.4.4 that
the system Sd admits essentially the unique solution (5.3.12).

The first equation to add in Sd corresponds to the trivial partition µ = (d),
as explained in the following result.

Corollary 5.3.14. For any partition µ = (µ1, . . . , µs) ` d, we have the relation

αµ,[s] = α(d),{1} = αd,d = d− 2. (5.3.14)

Proof. The proof is a direct application of Theorem 2.0.2. On one hand, the
highest coefficient of EDpolyX∨

(d)
,u(ε2) is

aN (u) = ∆Q̃(u)d−2,
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where ∆Q̃(u) = f(d),{1}(u) is the equation of the dual of the d-th Veronese em-
bedding into P(SdV ) of Q ⊂ V . On the other hand, the lowest coefficient is

a0(u) = ∆d(u)2,

where ∆d(u) = f(d) is the discriminant of the form u.

Actually, the last corollary solves the first problem of determining the expo-
nent αd,d of fµ,[s], for any partition µ = (µ1, . . . , µs) ` d. The next two technical
lemmas furnish a bunch of linear conditions involving the remaining exponents
αd,j , to be added in the system Sd.

Lemma 5.3.15. Let d ≥ 2 and consider the partition µ = (k, d − k) ` d for all
1 ≤ k ≤ bd/2c. Then for all 1 ≤ k ≤ bd/2c we have the relation

θµ,{1}αd,k + θµ,{2}αd,d−k + θµ,[2]αd,d = 2(θµ −N). (5.3.15)

Proof. There are essentially three cases to discuss:

1. Assume d = 2. Then µ = (1, 1) and we have

EDpolyX∨µ ,u(ε2) = det(εI − u) det(εI + u).

Then aN (u) = 1 and fµ(u) = det(u) is the determinant of the n×n matrix
representing u. In particular, we get θµ,{1} = θµ,{2} = 0 and α2,2 = 0,
yielding the identity 2N = 2θµ, which corresponds to (5.3.15) in this very
special case.

2. Now assume d > 2 and k = 1, hence µ = (1, d− 1). From Lemma 5.2.2 we
have that X∨µ,{2} is not a hypersurface, therefore fµ,{2} = 1 and θµ,{2} = 0.
By Corollary 5.3.13 we have that αµ,[2] = αd,d, whereas αµ,{1} = αd,1.
Therefore equations (5.3.4) and (5.3.5) become respectively

aN (t) = f
αd,d
µ,[2] , a0(t) = f2

µ · f
−αd,1
µ,{1} .

Equation (5.3.7) yields the identity

θµ,{1}αd,1 + θµ,[2]αd,d = 2(θµ −N). (5.3.16)

Hence we get relation (5.3.15) for k = 1.

3. Finally we consider the case d > 2 and 2 ≤ k ≤ bd/2c. Equations (5.3.4)
and (5.3.5) become respectively

aN (t) = f
αµ,[2]

µ,[2] · f
αµ,{1}
µ,{1} · f

αµ,{2}
µ,{2} , a0(t) = f2

µ.

Again by Corollary 5.3.13 we have that αµ,[2] = αd,d, while αµ,{1} = αd,k
and αµ,{2} = αd,d−k. Then relation (5.3.15) follows by (5.3.7) after applying
Theorem 5.4.2 and Corollary 5.4.1.
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Corollary 5.3.16. For all n ≥ 2 and d ≥ 1, we have that αd,1 = −1. In
particular, for all µ ` d, the lowest coefficient of EDpolyX∨µ ,u(ε2) is

a0(u) = fµ(u)2 ·
∏

j : µj=1

fµ,{j}(u).

Therefore, the ε-offset of X∨µ , with respect to the squared distance function δF,µ,
is a hypersurface of degree

deg(Oε(X)) = 2 deg(fµ) +
∑

j : µj=1

deg(fµ,{j}).

Proof. We know from Corollary 5.3.14 that αd,d = d−2 for all n ≥ 2 and all d ≥ 1.
Then equation (5.3.16) is linear in the only variable αd,1. Similarly to Remark
2.3.6, one may check that αd,1 = −1 is the solution of the above-mentioned
equation. The rest of the statement follows from identity (5.3.5).

Lemma 5.3.17. Let d ≥ 3 and consider the partition µ = (k, d − k − 1, 1) ` d
for all 1 ≤ k ≤ bd−1

2 c. Then for all 1 ≤ k ≤ bd−1
2 c we have the relation

θµ,{3}αd,1 + θµ,{1}αd,k + θµ,{1,3}αd,k+1 + θµ,{2}αd,d−k−1

+ θµ,{2,3}αd,d−k + θµ,{1,2}αd,d−1 + θµ,[3]αd,d = 2(θµ −N)
(5.3.17)

Proof. We discuss three cases in this proof as well:

1. We start by considering the case d = 3, hence µ = (1, 1, 1). By Corollary
5.3.13 we have

αµ,{j} = α3,1 ∀1 ≤ j ≤ 3, αµ,{i,j} = α3,2 ∀1 ≤ i 6= j ≤ 3, αµ,[3] = α3,3.

The highest coefficient aN = aN (u) and the lowest coefficient a0 = a0(u) of
EDpolyX∨µ ,u(ε2) become respectively

aN = f
α3,3

µ,[3] ·
(
fµ,{1,2}fµ,{1,3}fµ,{2,3}

)α3,2

a0 = f2
µ ·
(
fµ,{1}fµ,{2}fµ,{3}

)−α3,1
.

In particular, we get the identity (5.3.17) in this special case. We refer the
reader to Section 5.4 for a detailed treatise on this specific example.

2. Now we suppose that d > 3 and that k = 1, hence µ = (1, d − 2, 1). By
Corollary 5.3.13 we have that

αµ,{1} = αµ,{3} = αd,1, αµ,{2} = αd,d−2

αµ,{1,2} = αµ,{2,3} = αd,d−1, αµ,{1,3} = αd,2
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and αµ,[3] = αd,d. The highest coefficient aN and the lowest coefficient a0

of EDpolyX∨µ ,u(ε2) become respectively

aN = f
αd,d
µ,[3] ·

(
fµ,{1,2}fµ,{2,3}

)αd,d−1 f
αd,2
µ,{1,3} · f

αd,d−2

µ,{2}

a0 = f2
µ ·
(
fµ,{1}fµ,{3}

)−αd,1 .
Putting all these facts together, we get equation (5.3.17) in this case.

3. Finally we suppose that d > 3 and that 2 ≤ k ≤ bd−1
2 c. By Corollary 5.3.13

we derive the identities

αµ,{1} = αd,k, αµ,{2} = αd,d−k−1, αµ,{3} = αd,1

αµ,{1,2} = αd,d−1, αµ,{1,3} = αd,k+1, αµ,{2,3} = αd,d−k

and αµ,[3] = αd,d. The highest coefficient aN and the lowest coefficient a0

become respectively

aN = f
αd,d
µ,[3] · f

αd,k+1

µ,{1,3} · f
αd,d−k
µ,{2,3} · f

αd,k
µ,{1} · f

αd,d−k−1

µ,{2} , a0 = f2
µ · f

−αd,1
µ,{3} .

Summing up, we obtain equation (5.3.17).

The next proposition verifies the product formula (5.0.6) for all tensors of
format n×d with d ∈ {2, 3, 4}, possibly with partial symmetry.

Proposition 5.3.18 (Product formula for d ∈ {3, 4}). When d ∈ {2, 3, 4}, the
product formula (5.0.6) is true for all µ ` d and all n ≥ 2.

Proof. The case d = 2 corresponds to the trivial case of n× n matrices, possibly
symmetric if µ = (2). The first nontrivial case is d = 3. In this case, the
unknown exponents are α3,1, α3,2 and α3,3. By Corollaries 5.3.14 and 5.3.16 we
have α3,3 = 1 and α3,1 = −1, respectively. To conclude, we consider the relation
(5.3.17) for k = 1, namely

−3θ3,{1} + 3θ3,{1,2}α3,2 + θ3,[3] = 2 [θ3 − EDdegree(X3)] .

With an analogous check to Remark 2.3.6, one verifies that necessarily α3,2 = 0.
Now suppose that d = 4. The unknown exponents are α4,1, α4,2, α4,3 and α4,4.

Again Corollaries 5.3.14 and 5.3.16 yield α4,4 = 2 and α4,1 = −1, respectively.
Consider the relation (5.3.15) for k = 2, namely

θ(2,2),{1}α4,2 + θ(2,2),[2] = θ(2,2) − EDdegree(X(2,2)).

Solving for α4,2 we get that α4,2 = 0. Finally, we consider the relation (5.3.17)
for k = 1, which simplifies as

θ(1,2,1),{1,2}α4,3 + θ(1,2,1),[3] = θ(1,2,1) + θ(1,2,1),{1} − EDdegree(X(1,2,1)).

Solving for α4,3, one verifies that α4,3 = 1.
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Remark 5.3.19. Define Sd to be the linear system formed by equations (5.3.14),
(5.3.15) and (5.3.17). In particular, Sd has 1 + bd2c + bd−1

2 c = d equations in d
unknowns αd,1, . . . , αd,d. As we observed in Proposition 5.3.18, when d ∈ {2, 3, 4}
the linear system Sd is solved via substitution, since at every step we obtain a
linear equation in only one variable. Things become more complicated for d ≥ 5,
where a more detailed study of the matrix of coefficients of Sd is required.

In order to distinguish between all different partitions, for the moment we
rename all partitions in Lemmas 5.3.15 and 5.3.17 as

µ(1)(k) := (k, d− k) ` d, µ(2)(k) := (k, d− k − 1, 1) ` d.

Observe that, when n = 1, no equation in Sd involves the unknown αd,d−1,
hence the rank of the matrix of coefficients of Sd is at most d−1. The geometrical
reason is that, for any partition µ = (µ1, . . . , µs) ` d, with µ1 ≥ · · · ≥ µs, the only
subset J ⊂ [s] such that αµ,J = αd,d−1 is J = [s−1], by Corollary 5.3.13. Indeed,
by Lemma 5.2.2, the corresponding dual variety X∨µ,J is not a hypersurface, thus
fµ,J = 1 and the exponent αd,d−1 remains undetermined. To be consistent with
the higher dimensional results, we define αd,d−1 := d− 3.

After substituting in (5.3.14), (5.3.15) and (5.3.17), we see that the vector
(αd,1, . . . , αd,d) = (−1, 0, 1, . . . , d− 2) is a solution of Sd.

It remains to show that the matrix of coefficients of Sd is of maximal rank d (or
d−1 when n = 2). First of all, we observe that all equations coming from (5.3.15)
are pairwise linearly independent. The same holds for the set of equations coming
from (5.3.15). Moreover, any equation coming from either (5.3.15) or (5.3.17) is
linearly independent with (5.3.14). It may happen that the k-th equation in
(5.3.17) is a linear combination of the k-th and (k + 1)-th equations in (5.3.15).
This happens only if the maximal minors of the submatrix

Md,k =

θµ(1)(k),{1} 0 0 θµ(1)(k),{2}
0 θµ(1)(k+1),{1} θµ(1)(k+1),{2} 0

θµ(2)(k),{1} θµ(2)(k),{1,3} θµ(2)(k),{2} θµ(2)(k),{2,3}


obtained extracting the coefficients of αk, αk+1, αd−k−1 and αd−k from the three
mentioned equations, vanish simultaneously. We verified for small values of n
that this is impossible for 1 ≤ k ≤ bd−1

2 c. In particular, this could be checked
easily for n = 2, as showed in Proposition 5.4.4. The entries of the matrixMd,k

can be computed applying the formulas in Examples 5.3.2 and 5.3.3.

5.4 The case of binary tensors

Throughout this section, we set n = 2, hence we concentrate on tensors of binary
format. In the first part of this section, we derive degree formulas and we show
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in Proposition 5.4.4 that the linear system Sd defined in Remark 5.3.19 admits
a unique solution. Afterwards, we show a sum of square property related to the
equations fµ,J of the dual affine cones Xµ,J . We conclude the section studying
in detail the case of a 2× 2× 2 tensor.

In Proposition 5.3.1, we compute the degree θµ,J of X∨µ,J in full generality.
However, that formula simplifies a lot in the binary setting. In the following, we
define ej(p1, . . . , ps) =

∑
1≤k1<···<kj≤s pk1

· · · pkj to be the elementary symmetric
polynomial of degree j.

Corollary 5.4.1. For any subset J ⊂ [s], let µ(J) ` d−
∑
j∈J µj be the partition

whose summands are all the µk such that k ∈ [s] \ J . In particular, µ(∅) = µ.
Then

θµ,J = 2|J|
s−|J|∑
i=0

(−2)s−|J|−i(i+ 1)!ei(µ(J)). (5.4.1)

Proof. In the notations of equation (5.3.3), we have respectively m = s − |J |,
βj = 0 if j ∈ J , otherwise 0 ≤ βj ≤ 1 if j /∈ J . Then

θµ,J = 2|J|
s−|J|∑
k=0

(−1)k(s− |J |+ 1− k)!
∑
|β|=k

ηβ

∏
j /∈J

(
2

βj

)
µ

1−βj
j


= 2|J|

s−|J|∑
k=0

(−1)k(s− |J |+ 1− k)!2kes−|J|−k(µ(J))

= 2|J|
s−|J|∑
i=0

(−2)s−|J|−i(i+ 1)!ei(µ(J)).

where in the last passage we used the change of indices i = s− |J | − k.

When J = ∅, we recover the degree of the so-called µ-discriminant of a binary
tensor (see [GKZ, XIII, Theorem 2.4]).

Theorem 5.4.2. Let d ≥ 1 and suppose that µ = (µ1, . . . , µs) ` d. Then

θµ =

s∑
i=0

(−2)s−i(i+ 1)!ei(µ). (5.4.2)

Note that in the nonsymmetric case µ = 1d, we have ei(1d) =
(
d
i

)
for all

0 ≤ i ≤ d. Hence we recover the degree θd := θ1d of the hyperdeterminant of a
d-dimensional binary tensor:

θd =

d∑
i=0

(−2)d−i
(
d

i

)
(i+ 1)!. (5.4.3)
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Now we take a closer look at the relations obtained in Lemmas 5.3.15 and
5.3.17. In the binary case, we used the simplified formula in Corollary 5.4.1
to compute them more explicitly and show in Proposition 5.4.4 that the linear
system Sd defined in Remark 5.3.19 is of rank d− 1.

Proposition 5.4.3. The equations in Sd coming from (5.3.15) simplify to

(d− k − 1)αd,k + (k − 1)αd,d−k + αd,d = 2(k(d− k)− d+ 1). (5.4.4)

for all 1 ≤ k ≤ bd2c. Instead, the equations coming from (5.3.17) become respec-
tively

(d− k − 1)αd,k + 2(d− k − 2)αd,k+1 + kαd,d−k−1

+ 2(k − 1)αd,d−k + 2αd,d = 2(3k(d− k − 1)− 2d+ 3)
(5.4.5)

for all 1 ≤ k ≤ bd−1
2 c.

Proof. We perform an explicit computation for the first set of equations. The
proof is similar for the other set of equations. So consider the partition µ =
(k, d− k) ` d. We apply formula (5.4.1) in this special case:

θµ =

2∑
i=0

(−2)2−i(i+ 1)!ei(µ) = 4− 4d+ 6k(d− k),

θµ,{1} = 2

1∑
i=0

(−2)1−i(i+ 1)!ei(d− k) = 4(d− k − 1),

θµ,{2} = 2

1∑
i=0

(−2)1−i(i+ 1)!ei(k) = 4(k − 1),

θµ,[2] = 4 .

Moreover, by Corollary 5.1.2 we have that N = EDdegree(Xµ) = 2k(d−k). Sub-
stituting the preceding relations and simplifying we obtain the relations (5.4.4).

Proposition 5.4.4. The linear system Sd defined by equations (5.3.14), (5.4.4)
and (5.4.5) admits the unique solution (αd,1, . . . , αd,d) = (−1, 0, 1, . . . , d − 2),
provided that αd,d−1 := d− 3.

Proof. After substituting in (5.3.14), (5.4.4) and (5.4.5), we see that the vector
(αd,1, . . . , αd,d) = (−1, 0, 1, . . . , d− 2) is a solution of Sd.

It remains to show that the matrix of coefficients of Sd is of maximal rank
d−1. By Remark 5.3.19, we need to check that the maximal minors of the matrix
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Md,k do not vanish simultaneously for all 1 ≤ k ≤ bd−1
2 c. In this case, the matrix

Md,k becomes

Md,k =

d− k − 1 0 0 k − 1
0 d− k − 2 k 0

d− k − 1 2(d− k − 2) k 2(k − 1)


and the maximal minorsm(j1,j2,j3)

d,k obtained picking the columns j1, j2, j3 ofMd,k

are respectively

m
(1,2,3)
d,k = −k (d− k − 2) (d− k − 1) , m

(1,3,4)
d,k = (k − 1) (d− k − 2) (d− k − 1) ,

m
(1,2,4)
d,k = k (k − 1) (d− k − 1) , m

(2,3,4)
d,k = −k (k − 1) (d− k − 2) .

From the above identities we see that the four maximal minors of Md,k do not
vanish simultaneously for all 1 ≤ k ≤ bd−1

2 c.

An immediate consequence of Theorem 5.0.5 is that, for any partition µ ` d,
we may write an identity involving the ED degree of Xµ and the degrees of the
varieties X∨µ,J , as pointed out below.

Corollary 5.4.5. Consider a partition µ = (µ1, . . . , µs) ` d. Let µ(J) be the
partition defined in Corollary 5.4.1 for all J ⊂ [s]. Recalling that the degrees of
the µ-discriminant θµ and of the hyperdeterminant θj are defined in (5.4.2) and
(5.4.3), respectively, then

EDdegree(Xµ) = s!µ1 · · ·µs =
∑
J⊂[s]

2|J|−1

(
2−

∑
k∈J

µk

)
θµ(J),

EDdegree(Xd) = d! =

d∑
j=0

(
d

j

)
(2− j)2j−1θd−j .

In this section, we investigate also the non-negativity of the various factors
fµ,J appearing in the extreme coefficients of EDpolyX∨µ ,u(ε2). Actually, they are
(products of) SOS polynomials. This fact is useful for the considerations about
tensors of format 2× 2× 2 made in Proposition 5.4.9.

Proposition 5.4.6. Let J ⊂ [s], J 6= ∅. If J = [s], then fµ,J is the product of d
SOS polynomials. If J 6= [s], then fµ,J is an SOS polynomial. In particular, fµ,J
is a nonnegative polynomial for all J 6= ∅.
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Proof. For J = [s], the statement follows since X∨µ,J ⊂ P(V ⊗d) is the union of d
pairwise conjugate hyperplanes. Now let µ = 1d and J = {1}. More explicitly,

X∨d,{1} =
[
Segd([(1,

√
−1)]× P(V )×(d−1))

]∨
∪
[
Segd([(1,−

√
−1)]× P(V )×(d−1))

]∨
⊂ P(V ⊗d).

(5.4.6)

Thus X∨d,{1} is isomorphic to two copies of X∨d−1 ⊂ P(V ⊗(d−1)). By Lemma 5.2.2,
the varieties X∨d,{1} and X∨d−1 are hypersurfaces when d ≥ 3. If {ai1···id} and
{bj2···jd} are homogeneous coordinates for P(V ⊗d) and P(V ⊗(d−1)) respectively,
the equations of the two components of X∨d,{1} in (5.4.6) are

f+
d−1({aj1···jd}) := fd−1({bj2···jd}) {bj2···jd = a0i2···id+

√
−1 a1i2···id}

,

f−d−1({aj1···jd}) := fd−1({bj2···jd}) {bj2···jd = a0i2···id−
√
−1 a1i2···id}

.
(5.4.7)

In particular, f+
d−1 and f−d−1 are conjugate polynomials and their product is the

equation fd,{1} of X∨d,{1}. Therefore fd,{1} is the sum of two squared polynomials.
In the same fashion, we show that fd,{1,2} = f+

d,{2} · f
−
d,{2}, where the factors

f+
d,{2} and f−d,{2} are defined as in (5.4.7). Therefore, fd,{1,2} is again a sum of
two squared polynomials. More in general, the iteration of this argument shows
that, possibly after a permutation of the indices, the polynomial fd,J is a sum of
two squared polynomials for any subset J ⊂ [d].

Now consider a partition µ = (µ1, . . . , µs) ` d and a nonempty subset J ⊂ [s].
On one hand, By Proposition 5.3.12 there exists a subset J̃ ⊂ [d] with |J̃ | =∑
j∈J µj such that fµ,J divides πµ,1d(fd,J̃) with multiplicity one. On the other

hand, the first part of the proof implies that fd,J̃ = h2
1+h2

2 for some homogeneous
polynomials h1 and h2.

Summing up, there exist two homogeneous polynomials h′1 and h′2 such that
h′1 ±

√
−1h′2 divides πµ,1d(h1 ±

√
−1h2) with multiplicity one and

fµ,J = h′21 + h′22 = (h′1 +
√
−1h′2)(h′1 −

√
−1h′2).

Problem 5.4.7. In particular, Proposition 5.4.6 tells us that, at least in the
binary case, if (Xµ ∩QF,µ)∨ is a hypersurface, then its equation is an SOS poly-
nomial. We consider concrete examples in Remark 5.4.8 and in the last part of
this section dealing with binary tensors of format 2× 2× 2.

Looking at Remark 5.2.5, we observed that the variety (Xµ ∩QF,µ)∨, in the
case µ = 1s is always a hypersurface (with several irreducible components), unless
s = 2 and n1 = n2. In particular, it is a hypersurface when s = 2 and n1 < n2.
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This is indeed the case of non-square matrices, where the determinant is not
defined, namely X∨2 is not a hypersurface. As pointed out in (5.0.2), the lowest
coefficient of EDpolyX∨2 ,u(0) is equal to det(uuT ), which is in fact the equation
of X∨2,{2} by Lemma 5.2.1. What is more, the polynomial det(uuT ) is an SOS
polynomial by the classical Cauchy-Binet formula.

Beyond the study of varieties of rank-one tensors, we considered the variety
(X∨∩Q)∨ appearing in Corollary 4.4.6 in various examples (say, projective curves
and surfaces) and verified (with the help of the Macaulay2 package "SOS") that,
when it is a hypersurface, its equation admits an SOS decomposition. It would be
interesting to solve the following problem suggested by Bernd Sturmfels: assum-
ing that (X∨ ∩Q)∨ is a hypersurface, is its equation a nonnegative polynomial?
If so, is it an SOS polynomial?

Remark 5.4.8. Looking closely at the polynomials defined in (5.4.7), one may
see that for all d ≥ 3 and for all j ∈ [d], the polynomial fd,{j} is written as

fd,{j}(u) = Det
(
u

(1)
j +

√
−1u

(2)
j

)
·Det

(
u

(1)
j −

√
−1u

(2)
j

)
, (5.4.8)

where u(1)
j and u(2)

j are the tensors in V ⊗(d−1) obtained considering in u the slices
{ui1···id} with ij = 1 and ij = 2, respectively. The cases d = 3 and d = 4 are
depicted in Figures 2 and 5.3, respectively.

u
(2)
1

u
(1)
1

u
(1)
2 u

(2)
2

u
(1)
3

u
(2)
3

u
(1)
4

u
(2)
4

Figure 5.3: The slices u(1)
j and u(2)

j appearing in the computation of f4,{j}.

As pointed out in the proof of Proposition 5.4.6, formula (5.4.8) may be
generalized to any polynomial fd,J 6= 1. For example, below we interpret the
equation f4,{1,2} of X∨4,{1,2} in terms of the tensors u(rs)

{1,2} ∈ V ⊗V , with r, s ∈ [2],
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obtained extracting from u the slices {ursij} highlighted in Figure 5.4.

f4,{1,2}(u) = det
{[(

u
(11)
{1,2} +

√
−1u

(21)
{1,2}

)
+
√
−1
(
u

(12)
{1,2} +

√
−1u

(22)
{1,2}

)]
[(
u

(11)
{1,2} +

√
−1u

(21)
{1,2}

)
−
√
−1
(
u

(12)
{1,2} +

√
−1u

(22)
{1,2}

)]}
· det

{[(
u

(11)
{1,2} −

√
−1u

(21)
{1,2}

)
+
√
−1
(
u

(12)
{1,2} −

√
−1u

(22)
{1,2}

)]
[(
u

(11)
{1,2} −

√
−1u

(21)
{1,2}

)
−
√
−1
(
u

(12)
{1,2} −

√
−1u

(22)
{1,2}

)]}
.

2112

1112

2212

2222

1212

1222

1122

2122

1111

1221

1211

1121

2211

2111

2221

2121

u
(11)

{1,2}

u
(22)

{1,2}

u
(21)

{1,2}

u
(12)

{1,2}

Figure 5.4: The slices f (rs)
{1,2} appearing in the expression of f4,{1,2}(u).

We conclude this chapter by studying in detail the ED polynomial of the
variety X∨3 at a given tensor of format 2× 2× 2.

More in general, we recall that, thanks to Proposition 4.2.12, the coefficients
of EDpolyX∨,u(ε2) are SO(V )d-invariants. Indeed we are interested in computing
a minimal generating set for the invariant ring S(V ⊗d)SO(V )d .

As in the previous sections, q is the standard Euclidean scalar product. We
fix xj,1, xj,2 as coordinates for the j-th copy of V in V ⊗d. Then, the associated
quadratic form q is in coordinates x2

j,1 + x2
j,2 for all j ∈ [d].

Now consider the change of coordinates

zj,1 = xj,1 +
√
−1xj,2, zj,2 = xj,1 −

√
−1xj,2.

In these new coordinates, the expression for the quadratic form q on the j-th copy
of V in V ⊗d becomes zj,1zj,2. Moreover, each binary tensor u = (ui1···id) ∈ V ⊗d
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may be written as

u =
∑

(i1,...,id)∈{1,2}d
ui1···idx1,i1 · · ·xd,id =

∑
(i1,...,id)∈{1,2}d

ti1···idz1,i1 · · · zd,id ,

for some coefficients ti1···id depending on the old set of coordinates {ui1···id} via
the following relations:

ti1···id =
∑

(j1,...,jd)∈{1,2}d

[√
−1

∑d
l=1 jl(−1)

∑d
l=1(1−il)jl

]
uj1···jd .

One may verify by direct computation that, for all (i1, . . . , id) ∈ {1, 2}d, the
complex conjugate of ti1···id is tk1···kd , where kl = 1− il.

The new system of coordinates is more effective for computing invariants with
respect to SO(V )d. Indeed, the torus SO(V )d ∼= (C∗)d = (C \ {0})d acts on V ⊗d
by rescaling each coordinate ti1···id as shown below:

ti1···id 7→
d∏
j=1

ξ
(−1)ij

j ti1···id ,

for some (ξ1, . . . , ξd) ∈ (C∗)d.
Using [Stu, Algorithm 1.4.5], we computed a minimal generating set of invari-

ants of S(V ⊗d)SO(V )d , a least for small values of d. Focusing on the case d = 3,
we get that

S(V ⊗d)SO(V )d ∼= C[ti1···id ]SO(V )d ∼= C[θ1, θ2, θ3, θ4, ϕ1, ϕ2],

where the θj ’s are four real invariants of degree two, whereas ϕ1 and ϕ2 are two
non-real mutually conjugate invariants of degree four:

θ1 = t1,1,1t2,2,2, θ2 = t1,1,2t2,2,1, θ3 = t1,2,1t2,1,2, θ4 = t1,2,2t2,1,1,

ϕ1 = t1,1,2t1,2,1t2,1,1t2,2,2, ϕ2 = t1,1,1t1,2,2t2,1,2t2,2,1.
(5.4.9)

In addition, the only relation among them is θ1θ2θ3θ4 − ϕ1ϕ2 = 0. Since we are
dealing with real binary tensors, the coefficients of the ED polynomial of X∨µ at
u are all real polynomials in the entries {ui1···id} of u. Indeed, they are elements
of R[θ1, θ2, θ3, θ4, ϕ], where

ϕ :=
ϕ1 + ϕ2

2
. (5.4.10)
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In the old set of coordinates {ui1···id}, these invariants become respectively

θ1 = (u111 − u122 − u212 − u221)2 + (u112 + u121 + u211 − u222)2,

θ2 = (u111 − u122 + u212 + u221)2 + (u112 + u121 − u211 + u222)2,

θ3 = (u111 + u122 − u212 + u221)2 + (u112 − u121 + u211 + u222)2,

θ4 = (u111 + u122 + u212 − u221)2 + (u112 − u121 − u211 − u222)2,

ϕ = u4
111 + 2u2

111u
2
112 + u4

112 + 2u2
111u

2
121 − 2u2

112u
2
121 + u4

121

+ 8u111u112u121u122 − 2u2
111u

2
122 + 2u2

112u
2
122 + 2u2

121u
2
122 + u4

122

+ 2u2
111u

2
211 − 2u2

112u
2
211 − 2u2

121u
2
211 − 6u2

122u
2
211 + u4

211

+ 8u111u112u211u212 + 8u121u122u211u212 − 2u2
111u

2
212 + 2u2

112u
2
212

− 6u2
121u

2
212 − 2u2

122u
2
212 + 2u2

211u
2
212 + u4

212 + 8u111u121u211u221

+ 8u112u122u211u221 + 8u112u121u212u221 − 8u111u122u212u221

− 2u2
111u

2
221 − 6u2

112u
2
221 + 2u2

121u
2
221 − 2u2

122u
2
221 + 2u2

211u
2
221

− 2u2
212u

2
221 + u4

221 − 8u112u121u211u222 + 8u111u122u211u222

+ 8u111u121u212u222 + 8u112u122u212u222 + 8u111u112u221u222

+ 8u121u122u221u222 + 8u211u212u221u222 − 6u2
111u

2
222 − 2u2

112u
2
222

− 2u2
121u

2
222 + 2u2

122u
2
222 − 2u2

211u
2
222 + 2u2

212u
2
222 + 2u2

221u
2
222 + u4

222.

(5.4.11)

The geometrical properties of the extreme coefficients of the ED polynomial of
X∨3 ⊂ P(V ⊗3) ∼= P7 at u ∈ V ⊗3 were previously described in Example 0.0.7. We
recall that EDdegree(X3) = 6, hence EDpolyX∨3 ,u(ε2) is written as

EDpolyX∨3 ,u(ε2) = a6(u)ε12 + a5(u)ε10 + · · ·+ a0(u).

We determined symbolically all the coefficients of EDpolyX∨3 ,u(ε2) with respect
to the generators θ1, . . . , θ4, ϕ. In particular, deg(aj) = 2(10 − j) for all 0 ≤
j ≤ 6. For example, the coefficient a5(u) is relevant since the ratio a5(u)/a6(u)
corresponds to the sum of the squares of the singular values of u, thanks to
Proposition 5.1.4. We observed that the coefficients aj(u) may be written in a
more concise way using the following symmetric polynomials of the four quadratic
invariants θ1, . . . , θ4:

e1(θ1, θ2, θ3, θ4) = θ1 + θ2 + θ3 + θ4,

e2(θ1, θ2, θ3, θ4) = θ1θ2 + θ1θ3 + θ1θ4 + θ2θ3 + θ2θ4 + θ3θ4,

e3(θ1, θ2, θ3, θ4) = θ1θ2θ3 + θ1θ2θ4 + θ1θ3θ4 + θ2θ3θ4,

e4(θ1, θ2, θ3, θ4) = θ1θ2θ3θ4.
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The coefficients aj(u) are displayed below:

a6(u) = e4,

a5(u) =

(
1

2

)3

(e3ϕ− 3e1e4) ,

a4(u) =

(
1

2

)8[
4e2ϕ

2 − 2 (5e1e3 + 24e4)ϕ+ 15e21e4 − 12e2e4 + e23
]
,

a3(u) =

(
1

2

)10[
2e1ϕ

3 − 2 (2e1e2 + 11e3)ϕ
2 +

(
5e21e3 + 30e1e4 − 4e2e3

)
ϕ

−5e31e4 + 12e1e2e4 − e1e
2
3 − 18e3e4

]
,

a2(u) =

(
1

2

)16[
16ϕ4 − 8

(
3e21 + 20e2

)
ϕ3 + 8

(
3e21e2 + 18e1e3 − 4e22 + 60e4

)
ϕ2

− 4
(
5e31e3 + 18e21e4 − 12e1e2e3 − 24e2e4 + 44e23

)
ϕ

+15e41e4 − 72e21e2e4 + 6e21e
2
3 + 144e1e3e4 + 48e22e4 − 8e2e

2
3 − 432e24

]
,

a1(u) =

(
1

2

)19[
−160e1ϕ

4 + 4
(
3e31 + 4e1e2 + 88e3

)
ϕ3

− 4
(
2e31e2 + 3e21e3 − 8e1e

2
2 − 24e1e4 + 52e2e3

)
ϕ2

+
(
5e41e3 − 12e31e4 − 24e21e2e3 + 48e1e2e4 + 80e1e

2
3 + 16e22e3 − 288e3e4

)
ϕ

−3e51e4 + 24e31e2e4 − 2e31e
2
3 − 36e21e3e4 − 48e1e

2
2e4 + 8e1e2e

2
3 + 144e2e3e4 − 32e33

]
,

a0(u) = Det(u)2g1(u),

where the hyperdeterminant Det(u) and the polynomial g1(u) are expressed as

g1(u) =

(
1

2

)12 [
−8ϕ3 + 4e2ϕ

2 − 2(e1e3 − 4e4)ϕ+ e2
1e4 − 4e2e4 + e2

3

]
,

Det(u) =

(
1

2

)6

(−8ϕ− e2
1 + 4e2).

A classical expression for the hyperdeterminant Det of a 2 × 2 × 2 tensor was
showed in (0.0.28).

Using the coefficients above, we computed symbolically the ε2-discriminant
of EDpolyX∨3 ,u(ε2), denoted with ∆X∨3

(u). We know from Corollary 4.2.9 that
∆X∨3

= ∆X3
. For the moment, let f(u) and b(u) be the equations of the

ED discriminant ΣX∨3 = ΣX3 and of the bisector hypersurface B(X∨3 , X
∨
3 ) =

B(X3, X3), respectively. We know from Proposition 4.2.4 that f(u) and b(u)
divide EDpolyX∨3 ,u(ε2). Then we verified that

∆X∨3
= e4 f

3b2, (5.4.12)



5.4. The case of binary tensors 163

where, taking into account relation (5.4.10),

b(u) = (ϕ1 − ϕ2)
∏
i<j

(θi − θj) (5.4.13)

f(u) = 8ϕ9 − 3
(
9e2

1 − 20e2

)
ϕ8 − 24

(
9e1e3 − 4e2

2 − 12e4

)
ϕ7

− 4
(
54e2

1e4 − 54e1e2e3 + 16e3
2 − 252e2e4 + 159e2

3

)
ϕ6

+ 24
(
9e1e3e4 − 24e2

2e4 + 7e2e
2
3 + 90e2

4

)
ϕ5

− 6
(
81e2

1e
2
4 − 72e1e2e3e4 + 45e1e

3
3 − 8e2

2e
2
3 + 468e2e

2
4 − 246e2

3e4

)
ϕ4

+ 24
(
81e1e3e

2
4 + 36e2

2e
2
4 − 42e2e

2
3e4 + 7e4

3 − 324e3
4

)
ϕ3

− 12
(
54e1e2e3e

2
4 − 27e1e

3
3e4 + e2e

4
3 − 324e2e

3
4 + 135e2

3e
2
4

)
ϕ2

− 72e4

(
27e1e3e

2
4 − 9e2e

2
3e4 + 2e4

3 − 81e3
4

)
ϕ

+ 729e2
1e

4
4 − 54e1e

3
3e

2
4 + e6

3 − 2916e2e
4
4 + 972e2

3e
3
4.

In particular, the ED discriminant of X3 cut out by f(u) is an irreducible hy-
persurface of degree 36 in P7

C , whereas the polynomial b(u), which defines set-
theoretically the bisector hypersurface B(X3, X3) (see Definition 4.1.5), has de-
gree 16. Note also that the exponents appearing in (5.4.12) confirm the compu-
tations made in Example 4.2.6.

In the following, we assume that u ∈ V ⊗3 is µ-symmetric for µ ∈ {(2, 1), (3)}.
Among the six critical binary tensors for u on X3, EDdegree(Xµ) of them are µ-
symmetric. Below we describe the critical binary tensors that belong to X3 \Xµ.

Proposition 5.4.9. (1) Let µ = (2, 1) and let u ∈ SµV be general. Then
u admits four critical binary tensors on Xµ. The remaining two critical
binary tensors are x⊗ y⊗ z and y⊗x⊗ z for some x, y, z ∈ V . If u is real,
the common singular value of the two critical points on X \Xµ is real.

(2) Let µ = (3) and let u ∈ SµV be general. Then u admits three critical binary
tensors on Xµ. The remaining three critical binary tensors are x ⊗ x ⊗ y,
x⊗y⊗x and y⊗x⊗x for some x, y ∈ V . If u is real, the common singular
value of the three critical points on X \Xµ is real.

Proof. By Proposition 5.3.9, EDpolyX∨µ ,u(ε2) divides EDpolyX∨3 ,u(ε2) with multi-
plicity one when u ∈ SµV . Let us discuss part (1). Then u admits EDdegree(Xµ) =
4 (see (5.1.2)) critical binary tensors corresponding to four singular vector triples
(xj , xj , yj) for some xj , yj ∈ V , j ∈ [4]. Moreover, for any singular vector triple
(x, y, z) for u with singular value σ and x 6= y, the permutation (y, x, z) is again
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a singular vector triple for u, and shares the same singular value σ. Hence, there
is a linear polynomial h(ε2) such that

EDpolyX∨3 ,u(ε2) = EDpolyX∨µ ,u(ε2) · h(ε2)2.

In conclusion, apart from the µ-symmetric singular vector tuples, there is
room left only for one more nonsymmetric singular vector triple (x, y, z) and its
permutation (y, x, z). Moreover, if u ∈ SµV R, the root of the linear polynomial
h(ε2) must be real.

Now let us look at part (2). Then u admits EDdegree(X(3)) = 3 (see (5.1.2))
critical binary tensors corresponding to three singular vector triples (xj , xj , xj)
for some xj ∈ V , j ∈ [3]. With a similar argument of part (1), we observe that
there is a linear polynomial h̃(ε2) such that

EDpolyX∨3 ,u(ε2) = EDpolyX∨µ ,u(ε2) · h′(ε2)3.

We recall that the polynomial EDpolyX∨µ ,u(ε2) was computed symbolically in
Example 2.4.2. In conclusion, apart from the µ-symmetric singular vector tuples,
there is room left only for one more nonsymmetric singular vector triple of the
form (x, x, y) for some x, y ∈ V , together with its permutations (x, y, x) and
(y, x, x). Moreover, if u has real entries, the root of h′(ε2) must be real.

Remark 5.4.10. Let us examine Proposition 5.4.9(1). In this case the invariants
θ2 and θ3 introduced in (5.4.11) coincide. This implies that the highest coefficient
a6 = θ1θ2θ3θ4 of EDpolyX∨3 ,u(ε2) splits into two factors θ1θ4 and θ2θ3 = θ2

2, which
correspond to the highest coefficients of EDpolyX∨µ ,u(ε2) and h(ε2)2, respectively.
About the lowest coefficient a0, from (0.0.29) we see that in this case the polyno-
mials f3,{1} and f3,{3} coincide. Indeed, the lowest coefficients of EDpolyX∨µ ,u(ε2)

and h(ε2)2 are respectively Det2 ·f3,{2} and f3,{1} ·f3,{3} = f2
3,{1}. More precisely,

Det = fµ and f3,{2} = fµ,{2}. We computed symbolically the ED polynomial of
X∨3 at a µ-symmetric tensor u. In particular,

h(ε2) = 16θ2ε
2 − θ1θ2 − θ2θ4 + 2ϕ,

where ϕ was defined in (5.4.10). In addition, a consequence of Proposition 5.4.6
is that, up to sign multiplication, the highest and lowest coefficients of h(ε2) are
SOS polynomials. In particular, the root of h(ε2) may be written as

16ε2 =
θ1θ2 + θ2θ4 − 2ϕ

θ2

=
(c01c10 − c11c20 − c00c11 + c10c21)2 + (c00c21 − c01c20)2

(c00 + c20)2 + (c01 + c21)2
,
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where we are using µ-symmetric variables {cij} defined analogously to the begin-
ning of Section 5.1.

Now take into account Proposition 5.4.9(2). Looking at their definition in
(5.4.11), in this case the invariants θ2, θ3 and θ4 coincide. Indeed the highest coef-
ficient a6 = θ1θ2θ3θ4 of EDpolyX∨3 ,u(ε2) splits into two factors θ1 and θ2θ3θ4 = θ3

2,
which correspond to the highest coefficients of EDpolyX∨µ ,u(ε2) and h′(ε2)3, re-
spectively. About the lowest coefficient a0, from (0.0.29) we see that in this case
the polynomials f3,{1}, f3,{2} and f3,{3} coincide. Indeed, the lowest coefficients of
EDpolyX∨µ ,u(ε2) and h′(ε2)3 are respectively Det2 and f3,{1}·f3,{2}·f3,{3} = f3

3,{1}.
More precisely, Det = fµ. Moreover, in this case

h′(ε2) = 16θ2ε
2 − θ1θ2 − θ2

2 + 2ϕ

and the root of h′(ε2) may be expressed as (using the coordinates {cj} of the
symmetric tensor t)

16ε2 =
θ1θ2 + θ2

2 − 2ϕ

θ2
=

(c21 − c22 − c0c2 + c1c3)2 + (c0c3 − c1c2)2

(c0 + c2)2 + (c1 + c3)2
.

Remark 5.4.11. More generally, one may verify that for any partition µ ` d
and for a general symmetric tensor u ∈ SdV (not necessarily a binary tensor),
the polynomial EDpolyX∨µ ,u(ε2) is divided by EDpolyX∨

(d)
,u(ε2) and by other

factors. We observed that there is a precise relation between the factors of
EDpolyX∨µ ,u(ε2) and the dual multiple root loci [ChowλP(V )]∨ (see (5.3.9)) for
all λ ≺ µ, that somehow shifts the work by Oeding [Oed] from symmetrizations
of µ-discriminants to symmetrizations of their respective ED polynomials. This
fact encourages another line of research on the ED polynomials of varieties of
tensors.
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