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Abstract

For the Generalized Plane Stress (GPS) problem in linear elastic-
ity, we obtain an optimal stability estimate of logarithmic type for the
inverse problem of determining smooth cavities inside a thin isotropic
cylinder from a single boundary measurement of traction and dis-
placement. The result is obtained by reformulating the GPS problem
as a Kirchhoff-Love plate-like problem in terms of the Airy’s func-
tion, and by using the strong unique continuation at the boundary for
a Kirchhoff-Love plate operator under homogeneous Dirichlet condi-
tions, which has been recently obtained in [A-R-V].
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1 Introduction

In this paper we consider the inverse problem of detecting cavities inside
a thin isotropic elastic plate Ω ×

(
−h

2
, h
2

)
, where the middle plane Ω is a

bounded domain in R2 and h is the constant thickness, subject to a single
experiment consisting in applying in-plane boundary loads and measuring the
induced displacement at the boundary. Practical applications concern the use
of non-destructive techniques for the identification of possible defects, such
as cavities, inside the plate.

The static equilibrium of the plate is described in terms of the classical
Generalized Plane Stress (GPS) problem, which allows to reformulate the
original three dimensional problem in a two dimensional setting [S]. More
precisely, denoting by D×

(
−h

2
, h
2

)
the cavity, with D a possibly disconnected

subset of Ω, the in-plane displacement field a = a1e1 + a2e2, solution to the
GPS problem, satisfies the following two-dimensional Neumann boundary
value problem (α, β = 1, 2)





Nαβ,β = 0, in Ω \D,

Nαβnβ = N̂α, on ∂Ω,

Nαβnβ = 0, on ∂D,

Nαβ = Eh
1−ν2

((1− ν)ǫαβ + ν(ǫγγ)δαβ) , in Ω \D,

ǫαβ = 1
2
(aα,β + aβ,α), in Ω \D.

(1.1)

(1.2)

(1.3)

(1.4)

(1.5)

Here, N̂ = N̂1e1+ N̂2e2 is the in-plane load field applied to ∂Ω satisfying the
compatibility condition

(1.6)

∫

∂Ω

N̂ · r = 0, for every r ∈ R2,

where R2 is the linear space of infinitesimal two-dimensional rigid displace-
ments. Here, E = E(x) and ν = ν(x) are the Young’s modulus and the
Poisson’s coefficient of the material, respectively. Under suitable strong con-
vexity assumptions on the elastic tensor of the material (see Section 3 for de-

tails), and assuming N̂ ∈ H− 1
2 (∂Ω,R2), problem (1.1)–(1.6) admits a unique

solution a ∈ H1(Ω \D,R2) satisfying the normalization conditions

(1.7)

∫

Ω\D

a = 0,

∫

Ω\D

(∇a−∇Ta) = 0,

and such that ‖a‖H1(Ω\D) ≤ C‖N̂‖
H−

1
2 (∂Ω,R2)

.

In this work we face the inverse problem of determining the cavity D

from a single pair of Cauchy data {a, N̂} given on ∂Ω. More precisely, we
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are interested to obtain quantitative stability estimates, which are useful
to control the effect that possible errors on the measurements have on the
results of reconstruction procedures. The arbitrariness of the normalization
conditions (1.7), which are related to the non-uniqueness of the solution
to the direct problem (1.1)–(1.6), leads to the following formulation of the
stability issue: given two solutions a(i) ∈ H1(Ω,R2), i = 1, 2, to the direct
problem (1.1)–(1.6) with D = Di, satisfying, for some ε > 0,

(1.8) min
r∈R2

‖a(1) − a(2) − r‖L2(Σ,R2) ≤ ε,

to control the Hausdorff distance dH(D1, D2) in terms of ε when ε goes to
zero, where Σ is an open subset of ∂Ω.

Assuming D ∈ C6,α, 0 < α ≤ 1, we prove

(1.9) dH(D1, D2) ≤ C| log ε|−η,

where C > 0 and η > 0 are constants only depending on the a priori data. We
refer to Theorem 3.1 for a precise statement. Let us notice that, in view of the
counterexamples obtained in the simpler context of electrical conductivity
(see, for instance, [Al], [Ma], [DiC-R]), we can infer the optimality of the
stability estimate (1.9).

The general scheme of our proof is inspired to the seminal paper [Al-Be-Ro-Ve],
which established the first optimal logarithmic estimate for the determina-
tion of unknown boundaries in electrostatics. The key tool in [Al-Be-Ro-Ve]
was, among others, the polynomial vanishing rate for solutions to the sec-
ond order elliptic equation of electrostatics, satisfying either homogeneous
Dirichlet or homogeneous Neumann boundary conditions, ensured by a dou-
bling inequality at the boundary established in [A-E]. Aiming at obtaining a
strong unique continuation property at the boundary (SUCB) for solutions to
the GPS elliptic system, in this paper we have exploited the two dimensional
character of the problem (1.1)–(1.6) by using the classical Airy’s transforma-
tion, which (locally) reduces the GPS system with homogeneous Neumann
boundary conditions to a scalar fourth order Kirchhoff-Love plate’s equation
under homogeneous Dirichlet boundary conditions. This reformulation al-
lows us to use the finite vanishing rate at the boundary for homogeneous
Dirichlet boundary conditions recently obtained in [A-R-V] in the form of
a three spheres inequality at the boundary with optimal exponent, and in
[M-R-V3] in the form of a doubling inequality at the boundary.

It is worth noticing that the present approach, here applied to the GPS
problem, allows also to cover the analogous inverse problem of detecting
cavities in a two-dimensional elastic body made by inhomogeneous Lamé
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material, thus improving the log− log stability result previously obtained in
[M-R]. An optimal log-type estimate in dimension three remains a challeng-
ing open problem. Let us mention that the Airy’s transformation has been
used in [L-U-W] to prove global identifiability of the viscosity in an incom-
pressible fluid governed by the Stokes and the Navier-Stokes equations in the
plane by using boundary measurements.

The paper is organized as follows. Notation is presented in Section 2.
Section 3 contains the formulation of the inverse problem and the statement
of our stability result. The Airy’s transformation is illustrated in Section 4.
The proof of the main result, given in Section 5, is based on a series of auxil-
iary propositions concerning Lipschitz propagation of smallness (Proposition
5.1), finite vanishing rate in the interior (Proposition 5.2), finite vanishing
rate at the boundary (Proposition 5.3), stability estimate from Cauchy data
(Proposition 5.4). Finally, for the sake of completeness, in Section 6 we recall
a derivation of the GPS problem from the corresponding three dimensional
elasticity problem for a thin plate subject to in-plane boundary loads.

2 Notation

Let P = (x1(P ), x2(P )) be a point of R2. We shall denote by Br(P ) the
disk in R2 of radius r and center P and by Ra,b(P ) the rectangle of center
P and sides parallel to the coordinate axes, of length 2a and 2b, namely
Ra,b(P ) = {x = (x1, x2) | |x1 − x1(P )| < a, |x2 − x2(P )| < b}.

Definition 2.1. (Ck,α regularity) Let Ω be a bounded domain in R2. Given
k, α, with k ∈ N, 0 < α ≤ 1, we say that a portion S of ∂Ω is of class Ck,α with
constants r0, M0 > 0, if, for any P ∈ S, there exists a rigid transformation
of coordinates under which we have P = 0 and

Ω ∩ Rr0,2M0r0 = {x ∈ Rr0,2M0r0 | x2 > g(x1)},

where g is a Ck,α function on [−r0, r0] satisfying

g(0) = g′(0) = 0,

‖g‖Ck,α([−r0,r0]) ≤M0r0,

where

‖g‖Ck,α([−r0,r0]) =
k∑

i=0

ri0 sup
[−r0,r0]

|g(i)|+ rk+α
0 |g|k,α,

|g|k,α = sup
t,s∈[−r0,r0]

t6=s

{
|g(k)(t)− g(k)(s)|

|t− s|α

}
.
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We use the convention to normalize all norms in such a way that their
terms are dimensionally homogeneous and coincide with the standard defi-
nition when the dimensional parameter equals one. For instance,

‖f‖H1(Ω) = r−1
0

(∫

Ω

f 2 + r20

∫

Ω

|∇f |2
) 1

2

,

and so on for boundary and trace norms.
Given a bounded domain Ω in R2 such that ∂Ω is of class Ck,α, with

k ≥ 1, we consider as positive the orientation of the boundary induced by
the outer unit normal n in the following sense. Given a point P ∈ ∂Ω, let
us denote by τ = τ(P ) the unit tangent at the boundary in P obtained by
applying to n a counterclockwise rotation of angle π

2
, that is

(2.1) τ = e3 × n,

where × denotes the vector product in R3 and {e1, e2, e3} is the canonical
basis in R3.

Given any connected component C of ∂Ω and fixed a point P0 ∈ C, let
us define as positive the orientation of C associated to an arclength param-
eterization ψ(s) = (x1(s), x2(s)), s ∈ [0, l(C)], such that ψ(0) = P0 and
ψ′(s) = τ(ψ(s)). Here l(C) denotes the length of C.

Throughout the paper, we denote by w,α, α = 1, 2, w,s, and w,n the
derivatives of a function w with respect to the xα variable, to the arclength
s and to the normal direction n, respectively, and similarly for higher order
derivatives.

We denote by Mn the space of n×n real valued matrices and by L(X, Y )
the space of bounded linear operators between Banach spaces X and Y .

Given A, B ∈ Mn and K ∈ L(Mn,Mn), we use the following notation:

(2.2) (KA)ij =
n∑

k,l=1

KijklAkl,

(2.3) A · B =

n∑

i,j=1

AijBij ,

(2.4) |A| = (A ·A)
1
2 ,

(2.5) Â =
1

2
(A+ AT ).
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We denote by In the n× n identity matrix, and by tr(A) the trace of A.
When n = 2, we replace the Latin indexes with Greek ones.
The linear space of the infinitesimal rigid displacements, for n = 2, 3, is

defined as

(2.6) Rn =
{
r(x) = c+Wx, c ∈ Rn, W ∈ Mn, W +W T = 0

}
.

3 Inverse problem and main result

i) A priori information on the geometry.
Let Ω be a bounded domain in R2 and let us assume that the cavity D

is an open subset compactly contained in Ω, such that

(3.1) Ω \D is connected.

Moreover, let us assume that, given positive numbers r0,M0,M1, withM0 ≥
1
2
, we have

(3.2) diam(Ω) ≤M1r0,

(3.3) dist(D, ∂Ω) ≥ 2M0r0,

(3.4) ∂Ω is of class C1,α with constants r0,M0,

(3.5) ∂D is of class C6,α with constants r0,M0,

with α such that 0 < α ≤ 1.
Let us denote by Σ the open portion of ∂Ω where measurements are taken.

We assume that there exists P0 ∈ Σ such that

(3.6) ∂Ω ∩ Rr0,2M0r0(P0) ⊂ Σ,

and

(3.7) Σ is of class C2,α with constants r0,M0.

Let us notice that, without loss of generality, we have chosen M0 ≥
1
2
to

ensure that Br0(P ) ⊂ Rr0,2M0r0(P ) for every P ∈ ∂Ω.

ii) A priori information on the Neumann boundary data.
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We assume that

(3.8) N̂ ∈ H− 1
2 (∂Ω,R2), N̂ 6≡ 0,

(3.9)

∫

∂Ω

N̂ · r = 0, for every r ∈ R2,

(3.10) supp(N̂) ⊂⊂ Σ,

and that, for a given constant F > 0,

(3.11)
‖N̂‖

H−

1
2 (∂Ω,R2)

‖N̂‖H−1(∂Ω,R2)

≤ F,

iii) A priori information on the elasticity tensor.
The constitutive equation (1.4) can be written as

(3.12) Nαβ(x) = Cαβγδ(x)ǫγδ,

where the elasticity tensor C = (Cαβγδ) is defined as

(3.13) C(x)A =
Eh

1− ν2(x)
((1− ν(x))Â + ν(tr(A))I2),

for every 2 × 2 matrix A, where the Young’s modulus E and the Poisson’s
coefficient ν are given in terms of the Lamé moduli as follows

(3.14) E(x) =
µ(x)(2µ(x) + 3λ(x))

µ(x) + λ(x)
, ν(x) =

λ(x)

2(µ(x) + λ(x))
.

On the Lamé coefficients µ = µ(x), λ = λ(x), µ : Ω → R, λ : Ω → R, we
assume

(3.15) µ(x) ≥ α0, 2µ(x) + 3λ(x) ≥ γ0, in Ω,

for positive constants α0 and γ0.
The above assumptions ensure that C satisfies the minor and major sym-

metries
(3.16)
Cαβγδ = Cβαγδ = Cαβδγ , Cαβγδ = Cγδαβ , for every α, β, γ, δ = 1, 2, in Ω,

and that it is strongly convex in Ω, precisely

(3.17) CA · A ≥ hξ0|A|
2, in Ω,
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for every 2× 2 symmetric matrix A, where ξ0 = min{2α0, γ0} (see [M-R-V1,
Lemma 3.5] for details). Moreover, E(x) > 0 and −1 < ν(x) < 1

2
in Ω.

We further assume that

(3.18) ‖λ‖C4(Ω), ‖µ‖C4(Ω) ≤ Λ0,

for some positive constant Λ0.
We note that the equilibrium problem (1.1)–(1.5) can be written in com-

pact form as




div (C∇a) = 0, in Ω \D,

(C∇a)n = N̂, on ∂Ω,

(C∇a)n = 0, on ∂D.

(3.19)

(3.20)

(3.21)

The weak formulation of (3.19)–(3.21) consists in finding a = a(x) ∈ H1(Ω \
D) satisfying

(3.22)

∫

Ω\D

C∇a · ∇v =

∫

∂Ω

N̂ · v, for every v ∈ H1(Ω \D).

Under our assumptions, there exists a unique solution to (3.22) up to addition
of a rigid displacement. In order to select a single solution, we shall assume
the normalization conditions

(3.23)

∫

Ω\D

a = 0,

∫

Ω\D

(∇a−∇Ta) = 0,

which imply the following stability estimate for the direct problem (3.19)–
(3.21)

(3.24) ‖a‖H1(Ω\D) ≤ Cr0‖N̂‖
H−

1
2 (∂Ω,R2)

,

where C > 0 is a constant only depending on h, α0, γ0, M0 and M1.
In what follows, we shall refer to the set of constants h, α0, γ0, Λ0, α,

M0, M1 and F as the a priori data.

Theorem 3.1 (Stability result). Let Ω be a domain satisfying (3.2), (3.4)
and let Σ be an open portion of ∂Ω satisfying (3.6)–(3.7). Let the elasticity
tensor C = C(x) ∈ L(M2,M2) given by (3.13), with Lamé moduli λ = λ(x),

µ = µ(x) satisfying (3.15) and (3.18). Let N̂ ∈ H− 1
2 (∂Ω,R2), N̂ 6≡ 0,

satisfying (3.9)–(3.11). Let Di, i = 1, 2, be two open subsets of Ω satisfying
(3.1), (3.3), (3.5), and let a(i) ∈ H1(Ω \ Di,R

2) be the solution to (3.19)–
(3.21), satisfying (3.23), when D = Di, i = 1, 2. If, given ε > 0, we have

(3.25) min
r∈R2

‖a(1) − a(2) − r‖L2(Σ,R2) ≤ r0ε,
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then we have

(3.26) dH(D1, D2) ≤ Cr0

∣∣∣∣∣∣
log


 ε

‖N̂‖
H−

1
2 (∂Ω,R2)



∣∣∣∣∣∣

−η

,

where C, η, C > 0, η > 0, only depend on the a priori data.

Remark 3.2. Let us notice that, as it will be clear from the proof, the above
stability result holds true also when the domain Ω contains a finite number of
connected cavities D(j), j = 1, . . . , J , such that ∂D(j) ∈ C6,α with constants
r0, M0, and dist(∂D(j), ∂D(k)) ≥ r0, for j 6= k.

4 Airy’s transformation

It is known that the boundary value problem in plane linear elasticity can
be formulated in terms of an equivalent Kirchhoff-Love plate-like problem
involving a scalar-valued function called Airy’s function. Although this ar-
gument is well established, see, for instance, [G] and [Fic], for reader conve-
nience in what follows we recall the essential points of the analysis.

For the sake of completeness, we consider a mixed boundary value prob-
lem, in order to describe the transformation of both Dirichlet and Neumann
boundary conditions. Let a = a1e1 + a2e2, a ∈ H1(U ,R2), be the solution to
the GPS problem





Nαβ,β = 0, in U ,

Nαβnβ = N̂α, on ∂tU ,

aα = âα, on ∂uU ,

Nαβ = Eh
1−ν2

((1− ν)ǫαβ + ν(ǫγγ)δαβ) , in U ,

ǫαβ = 1
2
(aα,β + aβ,α), in U ,

(4.1)

(4.2)

(4.3)

(4.4)

(4.5)

where N̂ ∈ H−1/2(∂tU ,R
2) and â ∈ H1/2(∂uU ,R

2) are given Neumann and
Dirichlet data, respectively. Here, ∂uU , ∂tU are two disjoint connected open
subsets of ∂U , with ∂U = ∂uU ∪ ∂tU .

The equilibrium equations (4.1), and the simply connectness of U , ensure
the existence of a single-valued function ϕ = ϕ(x1, x2), ϕ ∈ H2(U), such that

(4.6) Nαβ = eαγeβδϕ,γδ,

where the matrix eαγ is defined as follows: e11 = e22 = 0, e12 = 1, e21 = −1;
see [Ai]. We recall that, by construction, the function ϕ and its first par-
tial derivatives ϕ,1, ϕ,2 are uniquely determined up to an additive arbitrary
constant.
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It is convenient to introduce the strain functions Kαβ , α, β = 1, 2, asso-
ciated to the infinitesimal strain ǫαβ :

(4.7) Kαβ = eδαeγβǫδγ , α, β = 1, 2.

By inverting the constitutive equation (4.4), we get

(4.8) ǫαβ =
1 + ν

Eh
Nαβ −

ν

Eh
(Nγγ)δαβ,

and using (4.6) we obtain

(4.9) ǫαβ =
1 + ν

Eh
eαγeβδϕ,γδ −

ν

Eh
(ϕ,γγ)δαβ.

Inserting this expression of ǫαβ into (4.7), we have

(4.10) Kαβ = Lαβγδϕ,γδ,

where the Cartesian components Lαβγδ of the fourth order tensor L are

(4.11) Lαβγδ =
1 + ν

Eh
δαγδβδ −

ν

Eh
δαβδγδ.

The strain ǫαβ obviously satisfies the well-known two-dimensional Saint-
Venant compatibility equation

(4.12) ǫ11,22 + ǫ22,11 − 2ǫ12,12 = 0, in U .

Inverting (4.7), we have

(4.13) ǫαβ = eαγeβδKγδ,

and the equation (4.12), written in terms of Kγδ, becomes

(4.14) div (div (L∇2ϕ)) = 0, in U ,

or, more explicitly,

(4.15) ∆2ϕ+ 2Eh∇

(
1

Eh

)
· ∇(∆ϕ)− Eh∆

( ν

Eh

)
∆ϕ+

+ Eh∇2

(
1 + ν

Eh

)
· ∇2ϕ = 0, in U .

The above partial differential equation expresses the form assumed by the
field equation (4.1) in terms of the Airy’s function ϕ.
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We now consider the transformation of the Neumann boundary condition
(4.2) on ∂tU . By (4.6), the condition on ∂tU can be written as

(4.16) eαγeβδϕ,γδnβ = N̂α,

that is, recalling that τδ = eβδnβ on ∂U ,

(4.17) (ϕ,1),s = −N̂2, (ϕ,2),s = N̂1, on ∂tU ,

where s is an arc length parametrization on ∂U . By integrating the above
equations with respect to s, from P0 ∈ ∂tU to P ∈ ∂tU , with s(P0) = 0 and
s(P ) = s, the gradient of ϕ on ∂tU can be determined up to an additive
constant vector c = c1e1 + c2e2, namely

(4.18) ∇ϕ(s) = c+ ĝ(s), on ∂tU ,

where ĝ(s) = ĝ1(s)e1 + ĝ2(s)e2, ĝ1(s) = −
∫ s

0
N̂2(ξ)dξ, ĝ2(s) =

∫ s

0
N̂1(ξ)dξ. It

follows that the normal derivative of ϕ on ∂tU is prescribed in terms of the
Neumann data N̂ , that is,

(4.19) ϕ,n = (c+ ĝ(s)) · n, on ∂tU ,

whereas, integrating once more (4.18) from P0 to P , we have

(4.20) ϕ(s) = C + Ĝ(s), on ∂tU ,

where C = ϕ(0) =constant, and Ĝ(s) =
∫ s

0
(c + ĝ(ξ)) · τ(ξ)dξ. We notice

that it is always possible to select the two arbitrary constants occurring in
the construction of ∇ϕ such that c1 = c2 = 0 (see, for example, [S] for

details). In particular, if the Neumann data N̂ vanishes on ∂tU , then we
can also choose the third constant C = 0, so that ϕ(s) = 0 on ∂tU . In this
case, the homogeneous Neumann boundary conditions for the GPS problem
are transformed into the homogeneous Dirichlet boundary conditions for the
Airy’s function:

(4.21) ϕ = 0, ϕ,n = 0, on ∂tU .

The determination of the boundary conditions satisfied by ϕ on ∂uU is less
obvious, since the corresponding boundary conditions in the original two-
dimensional elasticity problem are not explicitly expressed in terms of the
Airy’s function or its derivatives. In dealing with this boundary condition, we
need to assume C1,1-regularity for ∂U . We adopt a variational-like approach.
Without loss of generality, we can assume ∂uU = ∂U .
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Let ϕ̃, ϕ̃ : U → R, be a C∞-test function, and define the associated Airy
stress field

(4.22) Ñαβ = eαγeβδϕ̃,γδ, in U ,

which obviously satisfies the equilibrium equations

(4.23) Ñαβ,β = 0, in U .

Multiplying (4.23) by the displacement field a = a1e1 + a2e2 solution to
(4.1)–(4.5), and integrating by parts, we obtain

(4.24)

∫

U

ϕ̃,γδKγδ =

∫

∂U

Ñαβnβâα.

We first work on the integral of the left hand side of (4.24). After two
integrations by parts, we obtain

(4.25)

∫

U

ϕ̃,γδKγδ =

∫

U

Kγδ,γδϕ̃+

∫

∂U

ϕ̃,γKγδnδ −

∫

∂U

ϕ̃Kγδ,δnγ .

We elaborate the second integral I on the right hand side of the above equa-
tion in terms of the local coordinates. Recalling that τα = eβαnβ on ∂U and
ϕ̃,α = nαϕ̃,n + ταϕ̃,s on ∂U , α, β = 1, 2, we have

(4.26) I =

∫

∂U

(ϕ̃,nKnn + ϕ̃,sKτn),

where, to simplify the notation, we have introduced on ∂U the two functions

(4.27) Knn = Kγδnδnγ , Knτ = Kγδnδτγ(= Kτn).

Since ∂U is of C1,1-class, integrating by parts the second term in (4.26) gives

(4.28) I =

∫

∂U

(ϕ̃,nKnn − ϕ̃Kτn,s).

Therefore, the left hand side of (4.24) takes the form

(4.29)

∫

U

ϕ̃,γδKγδ =

∫

U

Kγδ,γδϕ̃+

∫

∂U

(Knnϕ̃,n − (Kγδ,δnγ +Kτn,s)ϕ̃).

We next elaborate the integral appearing on the right hand side of (4.24). Let
us introduce the boundary displacement functions associated to the Dirichlet
data â:

(4.30) Ûγ = eαγ âα, on ∂U .

12



Passing to local coordinates, after an integration by parts, we have

(4.31)

∫

∂U

Ñαβnβ âα =

∫

∂U

ϕ̃,γδτδÛγ =

∫

∂U

(ϕ̃,γ),sÛγ = −

∫

∂U

ϕ̃,γÛγ,s.

Expressing again ∇ϕ̃ in terms of local coordinates, and integrating by parts,
by the regularity of ∂U we obtain

(4.32)

∫

∂U

Ñαβnβ âα =

∫

∂U

(−ϕ̃nÛγ,snγ + ϕ̃(τγÛγ,s),s).

Finally, by rewriting (4.24) using (4.29) and (4.32), the strain functions Kγδ

satisfy the condition
(4.33)∫

U

Kγδ,γδϕ̃+

∫

∂U

(Knn + Ûγ,snγ)ϕ̃,n −

∫

∂U

(Kγδ,δnγ +Kτn,s + (τγÛγ,s),s)ϕ̃ = 0,

for every ϕ̃ ∈ C∞(U). By the arbitrariness of the test function ϕ̃, and of
the traces of ϕ̃ and ϕ̃,n on ∂U , we determine the conditions satisfied by Kγδ,
namely, the field equation

(4.34) Kγδ,γδ = 0, in U ,

which coincides with (4.14), and the two boundary conditions

(4.35) Knn = −Ûγ,snγ, on ∂U ,

(4.36) Kγδ,δnγ +Kτn,s = −(τγÛγ,s),s, on ∂U .

The above equations (4.34) and (4.35), (4.36) are known as compatibility field
equation and compatibility boundary conditions for the strain functions Kγδ,

respectively. In conclusion, under the assumption N̂ = 0 on ∂tU , the two-
dimensional elasticity problem (4.1)–(4.5) can be formulated in terms of the
Airy’s function as follows:





Kγδ,γδ = 0, in U ,

ϕ = 0, on ∂tU ,
∂ϕ
∂n

= 0, on ∂tU ,

Kαβnαnβ = −Ûγ,snγ , on ∂uU ,

Kαβ,βnα + (Kαβnβτα),s = −(τγÛγ,s),s, on ∂uU ,

Kαβ = 1
Eh

((1 + ν)ϕ,αβ − ν(∆ϕ)δαβ) , in U .

(4.37)

(4.38)

(4.39)

(4.40)

(4.41)

(4.42)
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There is an important analogy connected with the above boundary value
problem. Equations (4.37)–(4.42) describe the conditions satisfied by the
transversal displacement ϕ = ϕ(x1, x2) of the middle surface U of a Kirchhoff-
Love thin elastic plate made by isotropic material. The plate is clamped on
∂tU , and subject to a couple field M̂ = M̂τn + M̂nτ assigned on ∂uU , with
M̂n = −Ûγ,snγ and M̂τ = τγÛγ,s, see, for example, [M-R-V1]. Within this
analogy, the strain functions Kαβ = Kαβ(x1, x2) play the role of the bending
moments (for α = β) and the twisting moments (for α 6= β) of the plate at
(x1, x2) ∈ Ω (per unit length), and the bending stiffness of the plate is equal
to (Eh)−1.

Let us observe that the geometry of the inverse problem here considered,
that is U = Ω \D does not ensure the existence of a globally defined Airy’s
function, since the hypotheses of simple connectedness is missing. For this
reason, in the following Section 5 we shall make use of local Airy’s func-
tions, defined either in interior discs (see the proof of Proposition 5.2) or in
neighbourhoods of the boundary of the cavity (see the proof of Proposition
5.3).

Proposition 4.1. Under the above notation and assumptions, we have

(4.43)
(1− |ν|)2

E2h2
|∇2ϕ|2 ≤ |∇̂a|2 ≤

(1 + |ν|)2

E2h2
|∇2ϕ|2

Proof. By (4.6), we have N11 = ϕ,22, N22 = ϕ,11, N12 = N21 = −ϕ,12, so that

(4.44) |∇2ϕ|2 =

2∑

α,β=1

N2
αβ .

By (4.8), we have ǫ11 = 1
Eh
N11 −

ν
Eh
N22, ǫ22 = 1

Eh
N22 −

ν
Eh
N11, ǫ12 =

ǫ21 =
1+ν
Eh
N12, so that

(4.45)

|∇̂a|2 =

2∑

α,β=1

ǫ2αβ =
1

(Eh)2
{(1 + ν2)(N2

11 +N2
22) + 2(1 + ν)2N2

12 − 4νN11N22}.

Let us estimate the term −4νN11N22 by using the elementary inequalities

(4.46) ± 2N11N22 ≤ N2
11 +N2

22.

I) Estimate from below.
i) 0 < ν < 1

2
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If N11N22 < 0, then −4νN11N22 > 0, whereas if N11N22 ≥ 0, then, by
(4.46), −4νN11N22 ≥ −2ν(N2

11 +N2
22). Since −2ν(N2

11 +N2
22) ≤ 0, we have,

independently of the sign of N11N22,

(4.47) − 4νN11N22 ≥ −2ν(N2
11 +N2

22).

ii) ν = 0
In this case,

(4.48) − 4νN11N22 = 0.

iii) −1 < ν < 0 (⇔ 0 < −ν < 1)
If N11N22 ≥ 0, then −4νN11N22 ≥ 0, whereas if N11N22 < 0, then, by

(4.46), −4νN11N22 ≥ 2ν(N2
11 + N2

22). Since 2ν(N2
11 + N2

22) ≤ 0, we have,
independently of the sign of N11N22,

(4.49) − 4νN11N22 ≥ 2ν(N2
11 +N2

22).

Therefore, collecting together the three cases, we have

(4.50) − 4νN11N22 ≥ −2|ν|(N2
11 +N2

22).

From (4.45) and (4.50), we have

(4.51) |∇̂a|2 ≥
1

(Eh)2
{(1 + |ν|2 − 2|ν|)(N2

11 +N2
22) + 2(1 + ν)2N2

12} ≥

≥
(1− |ν|)2

E2h2

2∑

α,β=1

N2
αβ =

(1− |ν|)2

E2h2
|∇2ϕ|2.

II) Estimate from above.
By distinguishing the three cases as above, we get similarly

(4.52) − 4νN11N22 ≤ 2|ν|(N2
11 +N2

22).

From (4.45) and (4.52), we get the right hand side of (4.43).
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5 Proof of the main result

Proposition 5.1 (Lipschitz Propagation of Smallness). Let Ω be a domain
satisfying (3.2), (3.4). Let D be an open subset of Ω satisfying (3.1), (3.3),
(3.5). Let a ∈ H1(Ω \ D,R2) be the solution to (3.19)–(3.21), satisfying
(3.23). Let the elasticity tensor C = C(x) ∈ L(M2,M2) given by (3.13),
with Lamé moduli λ = λ(x), µ = µ(x) satisfying (3.15) and (3.18). Let

N̂ ∈ H− 1
2 (∂Ω,R2), N̂ 6≡ 0, satisfying (3.9)–(3.11). Then, there exists s > 1,

only depending on α0, γ0, Λ0 and M0, such that for every ρ > 0 and every
x̄ ∈ (Ω \D)sρ, we have

(5.1)

∫

Bρ(x̄)

|∇̂a|2 ≥
Cr20

exp

[
A
(

r0
ρ

)B
]‖N̂‖2

H−

1
2 (∂Ω,R2)

,

where A, B, C > 0 are positive constants only depending on α0, γ0, Λ0, M0,
M1 and F .

Proof. The proof follows by merging the Lipschitz Propagation of Smallness
estimate (3.5) contained in [M-R, Proposition 3.1], Korn inequalities (see, for
instance, [Fr], [A-M-R]), trace inequalities ([L-M]) and equivalence relations

for the H− 1
2 and H−1-norms of the Neumann data N̂ (see (3.9)–(3.10) in

[M-R, Remark 3.4]).

Proposition 5.2 (Finite Vanishing Rate in the Interior). Under the hypothe-
ses of Proposition 5.1, there exist c̃0 <

1
2
and C > 0, only depending on α0,

γ0 and Λ0, such that, for every r ∈ (0, r0) and for every x̄ ∈ Ω \D such that
Br̄(x̄) ⊂ Ω \D, and for every r1 < c̃0r̄, we have

(5.2)

∫

Br1(x̄)

|∇̂a|2 ≥ C
(r1
r̄

)τ0
∫

Br̄(x̄)

|∇̂a|2,

where τ0 ≥ 1 only depends on α0, γ0, Λ0, M0, M1,
r0
r̄
and F .

Proof. We can introduce in Br̄(x̄) a locally defined Airy’s function ϕ as-
sociated to the solution a. The proof follows by adapting the arguments
in the proof of the analogous Proposition 3.5 in [M-R-V2] which applies to
Kirchhoff-Love plate equation. The main difference consists in estimating the
L2 norms of ϕ and |∇ϕ| appearing in (3.21) of [M-R-V2] in terms of the L2

norm of |∇2ϕ| and using (4.43), the stability estimate (3.24) and Proposition
5.1.
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Proposition 5.3 (Finite Vanishing Rate at the Boundary). Under the hy-
potheses of Proposition 5.1, there exist c̄0 <

1
2
and C > 0, only depending on

α0, γ0, Λ0, M0, α, such that, for every x̄ ∈ ∂D and for every r1 < c̄0r0, we
have

(5.3)

∫

Br1 (x̄)∩(Ω\D)

|∇̂a|2 ≥ C

(
r1

r0

)τ ∫

Br0 (x̄)∩(Ω\D)

|∇̂a|2,

where τ ≥ 1 only depends on α0, γ0, Λ0, M0, α, M1 and F .

Proof. Let us consider the Airy’s function ϕ associated to the solution a and
defined in Rr0,2M0r0(x̄)∩Ω\D, which satisfies the partial differential equation

(5.4) div (div (L∇2ϕ)) = 0, in Rr0,2M0r0(x̄) ∩ Ω \D,

or, equivalently,

(5.5) ∆2ϕ+ 2Eh∇

(
1

Eh

)
· ∇(∆ϕ)− Eh∆

( ν

Eh

)
∆ϕ+

+ Eh∇2

(
1 + ν

Eh

)
· ∇2ϕ = 0, in Rr0,2M0r0(x̄) ∩ Ω \D,

and the homogeneous Dirichlet conditions

(5.6) ϕ = ϕ,n = 0, on ∂D ∩ Rr0,2M0r0(x̄).

Let us notice that, under our assumptions, the fourth order tensor L satisfies
the strong convexity condition

(5.7) LA · A ≥
1

5hΛ0
|A|2, in Ω,

for every 2 × 2 symmetric matrix A. We also notice that the coefficients
of the terms involving second and third-order derivatives of ϕ in (5.5) are
of class C2 and C3 in Rr0,2M0r0(x̄) ∩ Ω \D, respectively, with corresponding
C2 and C3-norm bounded by a constant only depending on h, α0, γ0 and
Λ0. Therefore, we can apply the results obtained in [A-R-V]. Precisely, by
Corollary 2.3 in [A-R-V], there exist c < 1, only depending on M0 and α,
and C > 1, only depending on α0, γ0, Λ0, M0 and α, such that, for every
r1 < r2 < cr0, we have

(5.8)

∫

Br1 (x̄)∩(Ω\D)

ϕ2 ≥ C

(
r1

r0

) logB

log
cr0
r2

∫

Br0 (x)∩(Ω\D)

ϕ2,
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where B > 1 is given by

(5.9) B = C

(
r0

r2

)C
∫
Br0 (x̄)∩(Ω\D)

ϕ2

∫
Br2 (x̄)∩(Ω\D)

ϕ2
.

Let us choose r2 = c0r0, with c0 = c
2
. We need to estimate the quantity B.

By applying Poincaré inequality (see, for instance, [A-M-R, Example 4.4])
and (4.43), we have

(5.10)

∫

Br0 (x̄)∩(Ω\D)

ϕ2 ≤ Cr40

∫

Br0 (x̄)∩(Ω\D)

|∇2ϕ|2 = Cr40

∫

Br0 (x̄)∩(Ω\D)

|∇̂a|2

where C > 0 only depends on α0, γ0, Λ0, M0 and α. Moreover, by applying
Lemma 4.7 in [A-R-V] and (4.43), and recalling the choice of r2, we have
(5.11)∫

Br2 (x̄)∩(Ω\D)

ϕ2 ≥ Cr42

∫

B r2
2
(x̄)∩(Ω\D)

|∇2ϕ|2 = Cr40

∫

B cr0
4

(x̄)∩(Ω\D)

|∇̂a|2.

By (5.10)–(5.11), using the stability estimate of the direct problem (3.24)
and Proposition 5.1, we can estimate B ≤ C, with C only depending on α0,
γ0, Λ0, M0, α, M1 and F . By using again Poincaré inequality, Lemma 4.7 in
[A-R-V] and (4.43), we obtain the thesis.

From now on, we shall denote by G the connected component of Ω \
(D1 ∪D2) such that Σ ⊂ ∂G.

Proposition 5.4 (Stability Estimate of Continuation from Cauchy Data).
Under the hypotheses of Theorem 3.1, we have

(5.12)

∫

(Ω\G)\D1

|∇̂a(1)|2 ≤ r20‖N̂‖2
H−

1
2 (∂Ω,R2)

ω


 ε

‖N̂‖
H−

1
2 (∂Ω,R2)


 ,

(5.13)

∫

(Ω\G)\D2

|∇̂a(2)|2 ≤ r20‖N̂‖2
H−

1
2 (∂Ω,R2)

ω


 ε

‖N̂‖
H−

1
2 (∂Ω,R2)


 ,

where ω is an increasing continuous function on [0,∞) which satisfies

(5.14) ω(t) ≤ C(log | log t|)−
1
2 , for every t < e−1,

with C > 0 only depending on α0, γ0, Λ0, M0, α and M1. Moreover,
there exists d0 > 0, with d0

r0
only depending on M0 and α, such that if

dH(Ω \D1,Ω \D2) ≤ d0 then (5.12)–(5.13) hold with ω given by

(5.15) ω(t) ≤ C| log t|−σ, for every t < 1,

where σ > 0 and C > 0 only depend on α0, γ0, Λ0, M0, α, M1.
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Proof. The proof can be easily obtained by adapting the proof of the anal-
ogous estimates contained in Proposition 3.5 and Proposition 3.6 in [M-R].
The only difference consists in replacing the auxiliary function w = a(1)−a(2)

with w = a(1) − a(2) − r, where r ∈ R2 is the minimizer of problem (3.25),

and noticing that ∇̂r = 0.

Proof of Theorem 3.1. It is convenient to introduce the following auxiliary
distances:

(5.16) d = dH(Ω \D1,Ω \D2),

(5.17) dm = max

{
max
x∈∂D1

dist(x,Ω \D2), max
x∈∂D2

dist(x,Ω \D1)

}
.

Let η > 0 such that

(5.18) max
i=1,2

∫

(Ω\G)\Di

|∇̂a(i)|2 ≤ η.

Step 1. Let us assume η ≤ r20‖N̂‖2
H−1/2(∂Ω,R2)

. We have

(5.19) dm ≤ Cr0


 η

r20‖N̂‖2
H−1/2(∂Ω,R2)




1
τ

,

where τ has been introduced in Proposition 5.3 and C is a positive constant
only depending on the a priori data.

Proof. Without loss of generality, let x0 ∈ ∂D1 such that

(5.20) dist(x0,Ω \D2) = dm > 0.

Since Bdm(x0) ⊂ D2 ⊂ Ω \ G, we have

(5.21) Bdm(x0) ∩ (Ω \D1) ⊂ (Ω \ G) \D1

and then, by (5.18),

(5.22)

∫

Bdm (x0)∩(Ω\D1)

|∇̂a(1)|2 ≤ η.

Let us distinguish two cases. First, let

(5.23) dm < c0r0,

19



where c0 is the positive constant appearing in Proposition 5.3. By applying
this proposition, we have

(5.24) η ≥ C

(
dm

r0

)τ ∫

Br0 (x0)∩(Ω\D1)

|∇̂a(1)|2,

where C > 0 is a positive constant only depending on α0, γ0, Λ0, α, M0, M1

and F .
By Proposition 5.1, we have

(5.25) η ≥ C

(
dm

r0

)τ

r20‖N̂‖2H−1/2(∂Ω,R2),

where C > 0 is a positive constant only depending on α0, γ0, Λ0, α, M0, M1,
F , from which we can estimate dm, obtaining (5.19).

As second case, let

(5.26) dm ≥ c0r0.

By starting again from (5.22), applying Proposition 5.1 and recalling dm ≤
M1r0, we have

(5.27) dm ≤ Cr0


 η

r20‖N̂‖2
H−1/2(∂Ω,R2)


 ,

where C > 0 is a positive constant only depending on α0, γ0, Λ0, M0, M1,
F . Since we have assumed η ≤ r20‖N̂‖2

H−1/2(∂Ω,R2)
, also in this case we obtain

(5.19).

Step 2. Let us assume η ≤ r20‖N̂‖2
H−1/2(∂Ω,R2)

. We have

(5.28) d ≤ Cr0


 η

r20‖N̂‖2
H−1/2(∂Ω,R2)




1
τ1

,

with τ1 = max{τ, τ0} and C > 0 only depends on α0, γ0, Λ0, α, M0, M1 and
F .

Proof. We may assume that d > 0 and there exists y0 ∈ Ω \D1 such that

(5.29) dist(y0,Ω \D2) = d.
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Since d > 0, we have y0 ∈ D2 \D1. Let

(5.30) h = dist(y0, ∂D1),

possibly h = 0.
There are three cases to consider:
i) h ≤ d

2
;

ii) h > d
2
, h ≤ d0

2
;

iii) h > d
2
, h > d0

2
.

Here the number d0, 0 < d0 < r0, is such that d0
r0

only depends on M0, and it
is the same constant appearing in Proposition 5.4. In particular, Proposition
3.6 in [Al-Be-Ro-Ve] shows that there exists an absolute constant C > 0 such
that if d ≤ d0, then d ≤ Cdm.

Case i).
By definition, there exists z0 ∈ ∂D1 such that |z0 − y0| = h. By applying

the triangle inequality, we get dist
(
z0,Ω \D2

)
≥ d

2
. Since, by definition,

dist
(
z0,Ω \D2

)
≤ dm, we obtain d ≤ 2dm.

Case ii).
It turns out that d < d0 and then, by the above recalled property, again

we have that d ≤ Cdm, for an absolute constant C.

Case iii).

Let h̃ = min{h, r0}. We obviously have that Bh̃(y0) ⊂ Ω \ D1 and
Bd(y0) ⊂ D2. Let us set

d1 = min

{
d

2
,
c̃0d0

4

}
,

where c̃0 is the positive constant appearing in Proposition 5.2. Since d1 < d

and d1 < h̃, we have thatBd1(y0) ⊂ D2\D1 and therefore η ≥
∫
Bd1

(y0)
|∇̂a(1)|2.

Since d0
2
< h̃, B d0

2

(y0) ⊂ Ω\D1 so that we can apply Proposition 5.2 with

r1 = d1, r = d0
2
, obtaining η ≥ C

(
2d1
d0

)τ0 ∫
B d0

2

(y0)
|∇̂a(1)|2, with C > 0 only

depending on α0, γ0, Λ0, M0, M1 and F . Next, by Proposition 5.1, recalling
that d0

r0
only depends on M0, we derive that

d1 ≤ Cr0


 η

r20‖M̂‖2
H−1/2(∂Ω,R2)




1
τ0

,
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where C > 0 only depends on α0, γ0, Λ0,M0,M1 and F . For η small enough,
d1 <

c̃0d0
4
, so that d1 =

d
2
and

d ≤ Cr0


 η

r20‖M̂‖2
H−1/2(∂Ω,R2)




1
τ0

,

where C > 0 only depends on α0, γ0, Λ0, M0, M1 and F . Collecting the
three cases, the thesis follows.

Step 3. We have

(5.31) dH(D1, D2) ≤
√
1 +M2

0 d.

Proof. The proof is based on purely geometrical arguments, we refer to
[M-R-V2, Proof of Theorem 3.1, Step 3].

Conclusion. By Proposition 5.4,

(5.32) d ≤ Cr0


log

∣∣∣∣∣∣
log


 ε

‖N̂‖2
H−1/2(∂Ω,R2)



∣∣∣∣∣∣




− 1
2τ1

,

with τ1 ≥ 1 and C > 0 only depends on α0, γ0, Λ0, α, M0, M1 and F . By
this first rough estimate, there exists ε0 > 0, only depending on on α0, γ0,
Λ0, α, M0, M1 and F , such that, if ε ≤ ε0, then d ≤ d0. Therefore, we can
apply the second statement of Proposition 5.4, obtaining the thesis.

6 Generalized Plane Stress problem

In this section we derive the Generalized Plane Stress (GPS) problem for the
statical equilibrium of a thin elastic plate under in-plane boundary loads.
Our analysis follows the classical approach of the theory of structures, ac-
cording to the original idea introduced by Filon [Fil]. Alternative, more
formal derivations have been proposed to justify the GPS problem. The in-
terested reader can refer, among others, to the contributions [C-D], [A-B-P]
and [P].

Let U be a bounded domain in R2, and consider the cylinder C = U ×(
−h

2
, h
2

)
with middle plane U×{x3 = 0} (which we will simply denote by U in

what follows) and thickness h. Here, {O, x1, x2, x3} is a Cartesian coordinate
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system, with origin O belonging to the plane x3 = 0 and axis x3 orthogonal
to U . Such cylinder is called plate if h is small with respect to the linear
dimensions of U , e.g., h << diam(U).

Let us suppose that the faces U×{x3 = ±h
2
} of the plate are free of applied

loads, and all external surface forces acting on the lateral surface ∂U×
(
−h

2
, h
2

)

lie in planes parallel to the middle plane U , and are independent of x3. We
shall further assume that body forces vanish in C. The plate is assumed to be
made by linearly elastic isotropic material, with Lamé moduli independent of
the x3-coordinate, e.g., λ = λ(x1, x2), µ = µ(x1, x2) for every (x1, x2, 0) ∈ U .
Moreover, let λ, µ ∈ C0,1(U) and such that µ ≥ α0, 2µ+ 3λ ≥ γ0 in U , with
α0, γ0 positive constants.

Under the above assumptions, the problem of elastostatics consists in
finding a displacement u solution to





Tij,j = 0, in C,

Ti3 = 0, on U × {x3 = ±h
2
},

Tαβnβ = t̂α, on ∂U ×
(
−h

2
, h
2

)
,

T3βnβ = 0, on ∂U ×
(
−h

2
, h
2

)
,

Tij = 2µEij + λ(Ekk)δij , in C,

Eij =
1
2
(ui,j + uj,i) , in C,

(6.1)

(6.2)

(6.3)

(6.4)

(6.5)

(6.6)

where the force field t̂ = (t̂1, t̂2, 0), with t̂α = t̂α(x1, x2), α = 1, 2, assigned on
∂U ×

(
−h

2
, h
2

)
satisfies the compatibility conditions

(6.7)

∫

∂U×(−h
2
,h
2 )
t̂ = 0,

∫

∂U×(−h
2
,h
2 )
x× t̂ = 0,

see, for example, [G, §45]. The above boundary value problem is called plane
problem of elastostatics. It is known that, under our assumptions and for
t̂α ∈ H− 1

2 (∂U ,R2), α = 1, 2, there exists a solution u ∈ H1(C,R3) which
is unique up to an infinitesimal rigid displacement r(x) = a + b × x, with
a, b ∈ R3 constant vectors.

We now formulate the Generalized Plane Stress (GPS) problem associ-
ated to (6.1)–(6.6). The GPS problem is a two-dimensional boundary value
problem formulated in terms of the thickness averages of u, E and T , under
the a priori assumption

(6.8) T33 = 0, in C.

For a physically plausible justification of the above assumption under the
hypothesis of small h, we refer to [S, §67] and to the paper [Fil] by Filon,
who first derived the GPS problem.
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Given a function f : C → R3, f ∈ H1(C), let us define the function

f̃ : C → R3 as follows:




f̃1(x1, x2, x3) = f1(x1, x2,−x3),

f̃2(x1, x2, x3) = f2(x1, x2,−x3),

f̃3(x1, x2, x3) = −f3(x1, x2,−x3).

(6.9)

(6.10)

(6.11)

By definition of the plane problem, if u is a solution to (6.1)–(6.6), then also
ũ is a solution of the same problem. Moreover, (u− ũ) is a solution to (6.1)–
(6.6) with t̂ = 0 and, therefore, (u− ũ) ∈ R3. Noticing that (u1 − ũ1)|x3=0 =
(u2 − ũ2)|x3=0 = 0, we have u − ũ = a3e3 + (b1e1 + b2e2) ×

∑3
i=1 xiei, with

a3, b1, b2 ∈ R. Now, it is easy to see that, choosing r′ ∈ R3 as r
′ =

∑3
i=1 a

′
iei+∑3

i=1 b
′
iei×

∑3
i=1 xiei, with a

′
3 = −a3

2
, b′1 = − b1

2
, b′2 = − b2

2
, the solution u+ r′

to (6.1)–(6.6) satisfies the condition u+r′ = ˜(u+ r′), for every a′1, a
′
2, b

′
3 ∈ R.

We next introduce the thickness average f of a function f : C → R3,
f : U → R, defined as

(6.12) f(x1, x2) =
1

h

∫ h
2

−h
2

f(x1, x2, x3)dx3.

Taking into account that the thickness average of an x3-odd function is
zero, and the x3-derivative of an x3-even function is x3-odd, for every point
(x1, x2) ∈ U we have





u3 = Eα3 = Tα3 = 0, α = 1, 2,

Eαβ = 1
2
(uα,β + uβ,α) , α, β = 1, 2,

T αβ = 2µEαβ + λ(Eγγ + E33)δαβ , α, β = 1, 2,

T 33 = 2µE33 + λ(Eγγ + E33),

(6.13)

(6.14)

(6.15)

(6.16)

where the solution u + r′ is denoted by u. Using the a priori assumption
(6.8) in (6.16), the function E33 can be expressed in terms of Eγγ , and the
two-dimensional constitutive equation can be written as

(6.17) T αβ = 2µEαβ + λ∗Eγγδαβ,

with

(6.18) λ∗ =
2µλ

λ+ 2µ
.

Integrating on the thickness in (6.1)–(6.6), and neglecting those equations
which yield to identities, we obtain the averaged equations of equilibrium
and the corresponding boundary conditions, and u ∈ H1(U ,R2) is a solution
to
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



T αβ,β = 0, in U ,

T αβnβ = t̂α, on ∂U ,

T αβ = 2µEαβ + λ∗(Eγγ)δαβ, in U ,

Eαβ = 1
2
(uα,β + uβ,α) , in U ,

(6.19)

(6.20)

(6.21)

(6.22)

where the force field t̂ = t̂1e1 + t̂2e2 applied on ∂U satisfies the compatibility
conditions

(6.23)

∫

∂U

t̂ = 0,

∫

∂U

x× t̂ = 0.

Let us notice that the constitutive equation (6.21) can be written as

(6.24) T αβ =
E

1− ν2

(
(1− ν)Eαβ + ν(Eγγ)δαβ

)
,

with

(6.25) µ =
E

2(1 + ν)
, λ =

νE

(1 + ν)(1− 2ν)
,

where E, ν are the Young’s modulus and the Poisson’s coefficient of the
material, respectively. Finally, by defining
(6.26)

aα = uα, ǫαβ = Eαβ = ∇̂a, Nαβ = hT αβ , N̂α = ht̂α, α, β = 1, 2,

we obtain the GPS problem




Nαβ,β = 0, in U ,

Nαβnβ = N̂α, on ∂U ,

Nαβ = Eh
1−ν2

((1− ν)ǫαβ + ν(ǫγγ)δαβ) , in U ,

ǫαβ = 1
2
(aα,β + aβ,α), in U ,

(6.27)

(6.28)

(6.29)

(6.30)

with

(6.31)

∫

∂U

N̂ · r = 0, for every r ∈ R2.
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