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1.1 THE ROLE OF IRON-SULFUR CLUSTERS IN HUMAN CELLS 

 
Billions of years ago organisms evolved using various systems to protect 

themselves through anaerobic and aerobic atmosphere. Iron sulfur clusters (ISCs) are one 

of the oldest cofactors known in biology and these clusters have been proposed to have had 

a critical role in the formation of early metabolic pathways used by primitive organisms1. 

To maintain these cofactors after transformation of the atmosphere into an oxidative and 

aerobic one (which does not support the formation, neither the stability of ISCs) the 

organisms evolved a whole set of proteins to coordinate a safe, efficient and specific 

biogenesis of these metal cofactors.  Indeed, metabolism in nowadays living organisms is 

strictly dependent on a large share of enzymes which coordinate metal ions in their active 

site, not only to carry out their functions, but also to maintain tertiary/quaternary structures 

and to mediate protein-protein interactions2,3. ISCs versatile chemical properties have 

fostered their pervasive use in all organisms to execute an impressive number of reactions 

in fundamental cellular processes such as respiration, photosynthesis, metabolism and 

nitrogen fixation4. Eukariotic organisms feature complex and quite sophisticated 

mechanisms conserved from Saccharomyces cerevisiae to humans, which regulate metals 

homeostasis and trafficking between and inside living cells. Each individual essential metal 

has specific and very selective transport systems, i.e. shuttle proteins called chaperones, 

that ensure proper metal delivery to target apoproteins5,6. The amount of readily available 

metal ions in the cell, in the form of free aquo-complexes or labily bound to small 

molecules, is highly controlled and maintained in low concentration, or, in some instances, 

approximately to zero7,8. Otherwise, it is possible that improper biogenesis of ISCAs and 

presence of free metal ions may produce highly toxic reactive oxygen species (ROS)9.  

The iron ion of the ISC clusters is typically coordinated by the sulfur of protein-bound 

cysteine residues or by the nitrogen of histidine residues, but in rare cases other amino acid 

residues or cofactors such as S-adenosylmethionine (SAM) or Glutathione (GSH) are used 

as coordinating ligands10. These cofactors are composed of iron and inorganic sulfur, most 

frequently found in a rhombic [2Fe-2S] and a cubane [4Fe-4S] cluster forms. The first ones 

are present in enzymes such as mammalian ferrochetalase, in mitochondrial respiratory 

complexes I and II, in ferredoxins and Rieske proteins and are involved in electron transfer 

reactions, participate in catalytic and regulatory processes11. The tetranuclear [4Fe-4S] 

clusters have essential roles in several metabolic pathways, e.g. mitochondrial aconitase of 

the tricarboxylic acid cycle (TCA). In addition, [4Fe-4S] proteins have been found to 
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function as sensors, as in the bacterial FNR and IscR protein, and in mammalian IRP1, 

which regulates cytosolic iron metabolism in mammalian cells12,13. Recently, the redox 

switch in the oxidation state of [4Fe-4S] clusters was also found to modulate the DNA-

binding affinity of enzymes that processing DNA, such as glycosylases, helicases and 

primases14,15. In mammalian cells, Fe-S clusters are synthesized in both mitochondria and 

the cytosol, in contrast to yeast, in which it is asserted that de novo Fe-S cluster biogenesis 

occurs solely in mitochondria16. 

 

1.2 MITOCHONDRIAL IRON SULFUR TARGET PROTEINS  
 

Mitochondria are the major iron-consuming subcellular organelles. The metal is imported 

into mitochondria by mitoferrin and is subsequently assembled into Fe-S clusters or heme 

groups17. The main function of this organelle is linked to energy production via ATP 

synthesis, converting glucose to carbon dioxide. ATP molecules can be produced via three 

main pathways in mitochondria: the glycolysis, the citric acid cycle/oxidative 

phosphorylation, and beta-oxidation. The first two are components of the process known 

as cellular respiration, the third is the catabolic metabolism of fatty acids. As energy farm, 

mitochondria require transition metal ions or cofactors for many physiological aspects and 

for this purpose, Fe-S clusters are highly conserved due to their ability to donate or accept 

single electrons (Tab. 1) 18.  These electrons create an essential flow in the last part of the 

cellular respiration, by which ATP is produced. For example, in mitochondrial complex I, 

seven Fe-S clusters form a wire-like pathway, along which electrons ascend with gradually 

increasing reduction potentials. Thus, the ability of Fe-S clusters to maintain low reduction 

potentials (i.e. low affinity for electrons) facilitates efficient capture of chemical energy 

from NADH as electrons move progressively through respiratory chain complexes19. Some 

proteins or protein complexes can contain more than one cluster. Respiratory complex II, 

involved in electron transfer chain, contains a [2Fe-2S], a [3Fe-4S] and a [4Fe-4S] cluster20.  

The mitochondrial request of iron and its transport inside the organelles is a crucial step; 

once iron is transported into the mitochondrion it can then be used for heme synthesis, ISC 

synthesis, or stored in mitochondrial ferritin (Ftmt). As already said, it is essential that 

mitochondrial iron is maintained in a safe form to prevent oxidative damage, due to the fact 

that mitochondria are a major source of cytotoxic ROS21.  



 
1-Introduction 

 4 

Table 1. The (Fe-S) clusters proteins play a central role in different processes 
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Function  Type of Cluster  Protein  

Electron transfer 
 

  

  [2Fe-2S] Ferredoxins 

  [3Fe-4S]   

  [4Fe-4S] 

High-potential 

iron–sulfur 

      

Catalysis of a nonredox reaction [4Fe-4S] Aconitase 

      

Catalysis of redox reactions [4Fe-4S] Sulfite reductase 

      

Stabilization of protein structure for 

DNA repair [4Fe-4S] 

Endonuclease III, 

MutY 

      

Sensing and regulation:     

(i) Oxygen sensors: loss of [4Fe-4S]   

original cluster and of [4Fe-4S]/[2Fe-2S]   

Activity [4Fe-4S]/[3Fe-3S] Aconitase 

      

(ii) Sensor of O2   and NO:     

redox-regulated control [2Fe-2S] SoxR protein 

of transcription     

      

(iii) Iron sensor: posttranscriptional [4Fe-4S] 

 Iron regulatory 

protein 

regulation   aconitase 

      

Redox-mediated generation [4Fe-4S] Biotin synthase 

of free radicals   
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1.3 STRUCTURE OF THE FES CLUSTERS  

The simplest form of a Fe-S protein contains one iron coordinated by four protein ligands. 

The most common ligand is cysteine, as iron has a high affinity for thiolate groups, 

followed by histidines and aspartates. The most frequently found clusters in nature are 

[2Fe-2S], [3Fe-4S] and [4Fe-4S] (Fig. 1). More complex clusters derive from metal 

substitutions and fusions of the simpler clusters22. Fe-S clusters can exist in different 

oxidation states, which are related to the total formal oxidation state of the iron (Fe2+or Fe3+) 

and sulphides (S2-) ions present, without taking into consideration the coordinating ligands. 

The cluster oxidation states are referred to as the oxidised or the reduced form of the Fe-S 

cluster. Apart from a few exceptions, the all-ferrous and all-ferric states of an Fe-S cluster 

are not present in nature. In general, only two oxidation states differing by a single electron 

are taken by the clusters [2Fe-2S] (2+/ 1+), [4Fe-4S] low potential (2+/ 1+) and [4Fe-4S] 

high potential (3+/ 2+). For some of the [3Fe-4S]1+/0clusters a third all-ferrous state is 

naturally occurring (2-)11.  Overall, any type of cluster exchanges one electron only.   

Fe-S clusters cover a wide range of redox potentials from around -0.6 to +0.45 V. This 

makes them excellent electron donors or acceptors3. Some enzymes even contain several 

Fe-S clusters, which serve as an “electric wire” through the enzyme. One example is 

fumarate reductase, which contains three Fe-S clusters with a typical spacing of 10-14 Å. 

The electrons are transferred from the membrane-bound menaquinone to cytosolic 

fumarate by electron hopping between the clusters.  

 

 

Figure 1. Ligand geometries and arrangement of iron and sulfide ions in clusters. 
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1.4 BIOGENESIS OF ISCS AND MITOCHONDRIAL ISC ASSEMBLY 

MACHINERY 

 
Despite the chemical simplicity of Fe-S clusters, their biosynthesis is rather complex and 

requires more than two dozen components in eukaryotes16. Notably, in mammalian cells, 

accumulating evidence suggested that several key Fe-S cluster biogenesis proteins are 

present not only in mitochondria but also in cytosolic and/or nuclear compartments, 

whereas their yeast counterparts are alleged to reside only in mitochondria (with the 

exception of cysteine desulfurase)23. 

The most extensive studies available on iron sulfur cluster biogenesis were focused on 

bacteria (Escherichia coli  and  Azetobacter vinelandii ) and yeast  Saccharomyces 

cerevisiae. Three different systems were identified for the biogenesis of bacterial Fe-S 

proteins: the NIF system, for specific maturation of nitrogenase in azototrophic bacteria; 

the ISC assembly and the SUF systems, for the generation of housekeeping Fe-S proteins 

under normal and oxidative-stress conditions, respectively. The first studies to establish the 

details about the Fe-S cluster biosynthesis pathways in eukaryotes were performed on S. 

cerevisiae as model organism. Recent investigations in human cell culture and other model 

systems have shown that the process is highly conserved from yeast to human. In general 

Fe-S proteins are synthesized in their apo-state and obtain their ISC cofactor from a 

dedicated pathways and protein machineries. Three distinct protein machineries are 

required in the (non-plant) eukaryotic cells for the biogenesis of the Fe-S clusters and their 

insertion into apo proteins (Fig. 2): 

• the ISC assembly machinery located in mitochondria (inherited from 

bacteria during evolution); 

• the ISC export machinery located in the mitochondrial inter membrane 

space; 

•  the cytosolic ISC assembly (CIA) machinery, located in the cytosol. 

 

The ISC export and CIA machineries are specifically involved in the maturation of 

cytosolic and nuclear ISC proteins, whereas the mitochondrial ISC assembly machinery is 

required for the generation of all cellular Fe-S proteins24–26. The mitochondrial ISC 

assembly and export systems, in addition to their function in extra-mitochondrial Fe-S 

protein maturation, are crucially involved in the regulation of cellular iron homeostasis. 

Eukaryotic cells apparently use the efficiency of mitochondrial Fe-S protein assembly as 
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an important sensor of the intracellular iron status27,28. This regulatory task of the 

mitochondrial ISC system is present in yeast, fungi, and vertebrates, but the mechanisms 

used for regulating iron homeostasis in these organisms are radically different, i.e. 

transcriptional in yeast-fungi and post-transcriptional in higher eukaryotes. In both cases, 

nuclear or cytosolic Fe-S proteins are implicated in this regulatory task and need the 

mitochondrial ISC systems for their own maturation. 

 

 

 

 
 

Figure 2. Schematic representation of ISC assembly in eukaryotic cell 
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1.4.1 MITOCHONDRIAL ISC ASSEMBLY MACHINERY 
 

The mitochondrial ISC assembly machinery, which was inherited from the bacterial 

endosymbiont during evolution, encompasses 17 known proteins16. The mitochondrial 

machinery (Fig. 3), isn’t only needed for the generation of mitochondrial Fe-S proteins, but 

has a role also in the maturation of cytosolic and nuclear Fe-S proteins, many of which 

perform essential cellular functions29. The biogenesis process inside mitochondria can be 

divided into three major functional steps: (i) the de novo assembly of a [2Fe–2S] cluster on 

the scaffold protein, ISCU, (ii) cluster transfer  from ISCU to glutaredoxin 5 (GLRX5) 

followed by of its delivery to mitochondrial [2Fe–2S] proteins, and (iii) the synthesis of 

[4Fe–4S] clusters followed by their target-specific insertion into recipient apoproteins (Fig 

3). The mitochondrial components required for Fe-S cluster formation in higher organisms 

are similar to the bacterial ISC proteins and apparently were inherited from a prokaryotic 

progenitor30. To accomplish de novo cluster formation on the scaffold protein ISCU, 

sources of iron and sulfur are needed. The sulfur required for this process is provided by 

conversion of cysteine to alanine by the desulfurase complex, NFS1–ISD11, in human 

cells31. Additionally, the sulfur has to be reduced to sulphide in order to be combined with 

ferrous iron (Fe2+) to form a [2Fe–2S] cluster on ISCU. This task is accomplished by the 

electron transfer chain composed by a ferredoxin and ferredoxin reductase, which receives 

the electron from NADH32,33. Ferrous iron is imported into the mitochondrion by the 

intermembrane transporters Mitoferrin1/2 (Mrfn1/2),and is delivered to the scaffold by 

Frataxin, which was shown to interact with yeast IscU in vivo and in vitro in an iron-

stimulated fashion34. In the second step, the Fe-S cluster is released from the scaffold 

protein to the monothiol glutaredoxin GLRX5, an event that is mediated by a dedicated 

chaperone system. Here, the [2Fe–2S] cluster can be directly handed over to [2Fe–2S] 

target proteins. In the third step, the [2Fe–2S] is converted into [4Fe–4S] cluster by the 

ISCA1-ISCA2 complex and transferred to the late acting factors of the pathway, i.e. NFU1. 

In the final step NFU1 lead the cluster to target apo proteins, such as lipoate synthase 

(LIAS)35,36. Mitochondrial and cytosolic Fe-S cluster protein maturation strictly depends on 

the function of the ISC machinery, which drives the cluster formation from mitochondria 

to the cytoplasm through the ISC export machinery, within the  cytosolic Fe-S cluster 

pathways.  
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Figure 3. Mitochondrial ISC assembly machinery components and pathway. 

 

 

1.5 HUMAN DISEASES ISC RELATED 

 
I previously summarized that numerous proteins require Fe-S clusters as cofactors to 

become functionally active in a wide range of activities, from electron transport to DNA 

repair. Defective Fe-S cluster synthesis not only affects activities of many iron-sulfur 

enzymes, such as aconitase and succinate dehydrogenase, but also alters the regulation of 

cellular iron homeostasis, causing both mitochondrial iron overload and cytosolic iron 

deficiency. Thus, defects in the iron-sulfur cluster biogenesis pathway could underlie many 

human diseases. Studies on patients largely contributed to the identification and 

clarification of the biochemistry underlying mammalian Fe–S cluster biogenesis. The most 

common inherited iron-related disorder is Friedreich’s ataxia, caused by a triplet expansion 

in intron 1 of the frataxin gene24,26. The severity of the phenotype caused by Friedreich’s 

ataxia correlates with the length of this triplet expansion. Frataxin is located in 

mitochondria and the related disorder is characterised by accumulation of iron within the 

mitochondria and by Fe-S cluster protein deficiency. The disease causes slow progressive 

degeneration of the nervous system leading to an inability of voluntary muscle movement 

(ataxia) and compromises the heart conditions 37. 
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The recent discovery of one patient exhibiting recurrent myoglobinuria and slowly 

progressive muscle weakness augmented the number of diseases associated to altered Fe–

S cluster biogenesis. The adolescent onset myopathy in a daughter from a consanguineous 

family is caused by a homozygous missense mutation in the first codon of the FDX1L gene 

encoding mitochondrial ferredoxin 2 (FDX2) protein. The mutation disrupts the ATG 

translation initiation site, resulting in undetectable protein levels of FDX2 in muscle and 

fibroblasts. The patient displayed severely decreased activity levels of the Fe–S cluster-

containing respiratory chain complexes I, II and III as well as of aconitase and PDH 

complex. The malfunction of GLRX5 was found in a patient who had microcytic anemia. 

In GLRX5-deficient cells, ISC biosynthesis was impaired which lead to high activity of 

IRP1, increased levels of IRP2, cytosolic iron depletion, and mitochondrial iron overload38. 

A myopathy with exercise intolerance, intracellular iron overload, and deficiencies in 

succinate dehydrogenase and aconitase activity were connected with the splicing mutation 

in the gene encoding the central component of the ISC assembly machinery in mitochondria 

– the scaffold protein ISCU39.  

 

 

1.5.1 MULTIPLE MITOCHONDRIAL DYSFUCTION SYNDROME (MMDS) 
 

Multiple mitochondrial dysfunctions syndromes (MMDSs) have recently emerged as a 

group of mitochondrial diseases that are inherited in an autosomal recessive manner. 

Six different types of MMDSs have been described so far. Clinical and biochemical 

investigations on patients revealed that symptoms are related to single point mutations 

in NFU1, BOLA3, IBA57, ISCA1 or ISCA2 genes. All these proteins are involved in the 

late steps of iron sulfur cluster biogenesis, and studies of MMDSs suggested that the 

transfer of ISCs to secondary carriers represents a mechanism for specifically delivering 

Fe-S cofactors to subsets of recipients, which may explain the distinctive phenotypes 

associated with the different disease gene mutations (Tab. 2). 

Multiple mitochondrial dysfunctions syndromes are characterized by general 

impairment of mitochondria. The signs and symptoms of this severe disease begin early 

in life, and affected individuals usually do not live past infancy. Typically, the patients 

present brain dysfunction (encephalopathy), which can contribute to weak muscle tone 

(hypotonia), seizures, and delayed development of mental and movement abilities 

(psychomotor delay). These infants often have difficulties in growing and gaining 
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weight at the expected rate (failure to thrive). Most affected babies have a buildup of 

lactic acid in the body (lactic acidosis), which can be life-threatening. Careful 

phenotyping of humans with problems caused by defects in Fe-S cluster biogenesis 

should help to clarify aspects of the pathway, particularly those regarding how target 

Fe-S proteins are identified, that have remained elusive in studies of bacteria and yeast 

model systems. Determining why these diseases affect some tissues, but not others, is 

an important challenge that will probably be resolved by detailed studies of molecular 

pathophysiology. Insights into the pathophysiology of these diseases depends on 

gaining a better understanding of Fe-S cluster biogenesis and its regulation in 

eukaryotic cells, particularly in mitochondria.  
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Disease Affected gene 
(protein) 

Affected 
process 

1) Fe/S diseases associated with mitochondrial iron accumulation 

1.1.) Friedreich's ataxia (FRDA) FXN (Frataxin) Core ISC 
assembly 

1.2.) Hereditary Myopathy with Lactic acidosis 
(HML) 

ISCU Core ISC 
assembly 

1.3.) Mitochondrial muscle myopathy with 
deficiency of ferredoxin 2 

FDX1L (ferredoxin 2) Core ISC 
assembly 

1.4.) Combined oxidative phosphorylation 
defect with ISD11 deficiency 

LYRM4 (ISD11) Core ISC 
assembly 

1.5.) Sideroblastic anemias 
  

 1.5.1.) Inherited sideroblastic anemias 
  

 1.5.1.1.) Sideroblastic anemia with deficiency of 
glutaredoxin 5 

GLRX5(Glutaredoxin 
5) 

Cluster transfer 

 1.5.1.2.) X-linked sideroblastic anemia with 
cerebellar ataxia (XLSA/A) 

ABCB7 ISC export 

 1.5.2.) Acquired sideroblastic anemias 
  

 1.5.2.1.) Refractory anemia with ring 
sideroblasts (RARS) 

ABCB7  ISC export 

 1.5.2.2.) Refractory anemia with ring 
sideroblasts and isodicentric (X)(q13) 
chromosome 

ABCB7  ISC export 

2) Fe/S diseases without mitochondrial iron accumulation 

2.1.) Multiple mitochondrial dysfunction 
syndromes 

  

 2.1.1.) Juvenile encephalomyopathy with 
deficiency of IBA57 (MMDS3) 

IBA57 [4Fe–4S] 
assembly 

 2.1.2.) Multiple mitochondrial dysfunction 
syndrome with functional NFU1 deficiency 
(MMDS1) 

NFU1 [4Fe–4S] 
assembly 

 2.1.3.) Multiple mitochondrial dysfunction 
syndrome with functional BOLA3 deficiency 
(MMDS2) 

BOLA3 [4Fe–4S] 
assembly 

2.2.) Mitochondrial encephalomyopathy with 
deficiency of IND1 

NUBPL (IND1) Complex I 
assembly 

3) Variant erythropoietic protoporphyria with 
abnormal expression of mitoferrin 1 

SLC25A37(Mitoferrin 
1, MFRN1) 

Mitochondrial 
iron import 

 

Table 2. Human proteins associated with Fe-S disease 
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1.6 CYTOSOLIC AND MITOCHONDRIAL NFU1 PROTEIN 

 

In 2003 the group of Tracy A. Rouault showed that human NFU1 is able to assemble a 

labile [4Fe-4S] cluster coordinated by two NFU1 monomers via a highly conserved C-

terminal CXXC motif 40. In agreement with the plant and bacterial data available at the 

time, it was suggested that NFU1 could act as a scaffold for the [4Fe-4S] clusters. 

Analyses of human genomic DNA and transcripts indicated that an alternative mRNA 

splicing results in translation of two NFU1 isoforms with distinct subcellular 

localizations. Isoform I of NFU1 is localized in the mitochondria, while isoform II 

remains in the cytosol. The mitochondrial isoform looses the first 58 residues at the N-

terminus, because, as mitochondrial targeting sequence, it is processed by peptidases 

(Fig.4). In vivo studies showed that human NFU1 is required for the proper assembly 

of a subset of mitochondrial [4Fe-4S] proteins, which include components of 

respiratory complexes I and II, and lipoyl synthase41,42. A recent structural 

characterization of a construct of human NFU1 showed that the apo protein is 

monomeric in solution and adopts a dumbbell-shaped structure with well-structured N- 

and C-domains connected by a linker (Fig4), and that chemically reconstituted 

mitochondrial NFU1 binds a [4Fe-4S] cluster43. In 2011 two groups reported on patients 

carrying mutations in the NFU1 gene41,42,44. In the first case a non-sense mutation 

resulted in abnormal mRNA splicing and complete loss of the protein, while in the 

second, a G-C point mutation led to glycine- to-cysteine change just next to the active-

site (CXXC) of NFU1. Affected individuals were born on time with no evident 

symptoms, but fast developed severe developmental retardation, brain abnormalities 

and pulmonary hypertension, eventually leading to death from about 3 months to one 

year after birth (MMDS1). The biochemical analyses of these patients showed a 

phenotype similar to that observed in BOLA3-mutant patients (MMDS3), with normal 

activities of aconitase but massive decrease in complexes I and II activities 45. 

Additionally, strong defects in lipoic acid-containing proteins, pyruvate dehydrogenase 

(PDH), and a-ketoglutarate dehydrogenase (KGDH), together with hyperglycinemia 

and an increase in organic ketoacids were detected. This phenotype was explained by a 

defect of the Fe-S cluster-containing protein lipoate synthase. RNAi-depletion of NFU1 

in human cell cultures gave the same phenotype as that observed in patients, pointing 

to a role of NFU1 in the assembly of complex Fe-S proteins (respiratory complexes I 



 
1-Introduction 

 14 

and II and lipoate synthase containing eight, three or two Fe-S clusters, respectively)28. 

Despite the progresses made in the analyses of human patients, little is still known about 

exact role of NFU1 protein in Fe-S cluster biogenesis and possibly other processes in 

the cell.  

 

Figure 4. Human NFU1 sequence and 3D solution structure of the N-terminal (PDB ID 
2LTM) and C-terminal (PDB ID 2M5O) domains, green and blue respectively.  
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1.7 MITOCHONDRIAL BOLA3 PROTEIN 

 
In eukaryotes, after the [2Fe-2S] cluster is assembled on a scaffold protein in mitochondria, 

the cluster is released to monothiol glutaredoxin 5 (GLRX5), which mediates its transfer to 

several target proteins46. In this frame BolA-like proteins, which are generally grouped into 

three functionally divergent subfamilies designated BolA1-, BolA2-, and BolA3-like 

proteins, have recently emerged as novel players 22,47. The BolA-like protein family is 

widely conserved from prokaryotes to eukaryotes and includes the eponymous member of 

the family, namely E. coli BolA. Bacterial BolA1 is a putative transcriptional regulator that 

plays a role in stress response via control of genes involved in the maintenance of cell 

morphology. Unlike BolA1 proteins, BolA2- and BolA3-like proteins are found 

exclusively in eukaryotes48. In S. cerevisiae, S. pombe, and H. sapiens BolA1 and BolA3 

proteins are located in the mitochondria, while BolA2 in the cytosol. Similarly to S. 

cerevisiae BolA3, human BOLA3 is located in the mitochondria and mutation in the gene 

expressing this protein, is associated with multiple mitochondrial dysfunction syndrome 2 

(MMDS2)41. Another link for BOLA3 to mitochondrial Fe-S protein biogenesis is provided 

by the fact that BOLA3 interacts with monothiol glutaredoxins (GLRX5) forming a [2Fe-

2S] cluster heterodimer, that play a critical role in Fe-S protein biogenesis50. On the other 

hand, the interaction between yeast NFU1 and BOLA3 homologues was not experimentally 

observed in mitochondrial lysates and not clearly identified in pulldown experiments45. 

Thus, while the BOLA3 behavior in the first stage of iron sulfur cluster biogenesis has been 

described in detail, how BOLA3 may facilitate [4Fe-4S] cluster dissociation and transfer 

from NFU1 to apo target proteins remains unclear.  
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1.8 AIMS AND TOPICS OF THE RESEARCH 

 
Within my PhD studies, I addressed some structural and functional aspects of human 

metalloproteins involved in iron-sulfur cluster (ISC) biogenesis. Previous work allowed to 

divide the maturation pathway of mitochondrial Fe-S proteins into three distinct major 

steps. The general function of many ISC assembly machinery components involved in those 

steps is quite well described in the literature. However, mechanistic details of several steps 

of the Fe-S clusters assembly are not yet described at the molecular level 16. Hence, the 

aims of my work focused on a better understanding of the late steps of the Fe-S cluster 

biogenesis, after its synthesis and before insertion into target apo-proteins. During the three 

years of my PhD program, I focused my attention on the expression, purification and 

characterization of mitochondrial human proteins that have been implicated in iron 

metabolism but whose functions, at the beginning of my PhD, were still not clearly defined. 

I characterized these proteins at a structural and biochemical level, as well as investigated 

their interactions with partner proteins. The results obtained by these studies contributed to 

define the mitochondrial Fe-S protein maturation pathways at atomic level. It has been 

already demonstrated that one protein from the BOLAs family, BOLA3, can interact with 

GLRX5, forming a [2Fe-2S]-bridged heterodimeric complex, but no information was 

available on the possible protein partners. Furthermore, the [4Fe-4S] cluster formation and 

delivery remained not defined. Mutations in genes encoding proteins involved in ISC 

maturation, such as NFU1, BOLA3, ISCA2 and IBA57, have been related to MMDSs. In 

particular, BOLA3 and NFU1 deficiency causes MMDS types 2 and 3, resulting in the 

reduced functionality of the respiratory complexes I and II as well as of lipoic acid-

dependent enzymes. Similar clinical and biochemical phenotypes in patients with mutations 

in the late acting factor protein (NFU1), suggested a functional correlation between the two 

proteins in the late step of the mitochondrial Fe-S protein maturation, even if detailed 

biochemical investigations of their molecular role in mitochondria have not been reported 

yet. MMDS5 has recently been described in a clinical case report of patients carrying a 

mutation in ISCA1, but with no further analysis. 

In my PhD studies, I characterized [4Fe-4S] NFU1 and how the [2Fe-2S] GLRX5/BOLA3 

complex cooperates in the assembly of the [4Fe-4S] cluster on NFU1. Lately, the work was 

focused on the in vitro interaction and cluster transfer between NFU1 and ISCA1/ISCA2 

complex. The current prevailing model, largely based on studies in S. cerevisiae, proposes 

that NFU1 receives a [4Fe-4S] cluster assembled on the ISCAs proteins system and then 
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transfers it to selected apo target proteins with the assistance of BOLA3. Based on this 

model, we detailed the molecular interactions between the [4Fe-4S] ISCA2 dimer or/and 

the ISCA1/ISCA2 complex with NFU1, all involved in [4Fe-4S] cluster transfer to targets 

enzymes. Finally, I characterized an heterozygous variant of BOLA3 gene, not previously 

analyzed (c.176G>A, p.Cys59Tyr)51. This mutation is associated with a novel phenotype 

of MMDS2. The  tyrosine substitution affects an highly conserved amino acid, the p. Cys59 

residue, that has been identified as one of the two Fe/S cluster ligands in BOLA3. It is 

possible that the tyrosine substitution at p. Cys59 results in a protein with partial activity, 

imparting a milder phenotype, also considering the functional association with the [2Fe-

2S] GLRX5 in vivo and in vitro.  
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The late-acting steps of the ISC assembly machinery are responsible for [4Fe-4S] cluster 

assembly, trafficking and insertion into mitochondrial target Fe-S proteins1,2. The first 

studies on the mitochondrial [4Fe-4S] cluster assembly showed that two human proteins 

ISCA1and ISCA2 are required for this process. In vitro data confirmed that ISCA1 and 

ISCA2 form a heterodimer, which, by accepting two [2Fe-2S] clusters from the protein 

partner GLRX5, are able to assemble a [4Fe-4S] cluster3,4. The following step in the ISC 

assembly machinery consists on the transfer and insertion of the [4Fe-4S] cluster formed 

on the ISCA1-ISCA2 complex into mitochondrial target Fe-S proteins with the help of 

specific ISC targeting factors. Three proteins have been involved in this step. The ISC 

targeting factors, NFU1 and IND1, have been implicated in receiving the cluster from 

ISCAs complex to mature specific mitochondrial target proteins5–7. The third targeting 

factor, BOLA3, was proposed to function in a NFU1-mediated [4Fe-4S] cluster transfer to 

mitochondrial target proteins8. However, the interaction between NFU1 and BOLA3 was 

not clearly detected in vivo9. On the contrary, the interaction between BOLA3 and GLRX5 

has been well documented by in vivo and in vitro studies10,11. 

The open question is how and whether GLRX5 performs function in the late phase of the 

ISC assembly machinery once complexed with BOLA3, such as [2Fe-2S] cluster 

trafficking and/or insertion processes. In the first work (A pathway for assembling [4Fe-

4S]2+ clusters in mitochondrial iron-sulfur protein biogenesis) we shed light on this 

question, showing that two [2Fe-2S]2+ GLRX5-BOLA3 molecules are able to transfer their 

clusters to apo NFU1 by forming a [4Fe-4S]2+ cluster on  dimeric NFU1. Our data showed 

that the mechanism of cluster transfer and assembly from [2Fe-2S]2+ GLRX5-BOLA3 to 

NFU1 brings directly to the formation of [4Fe-4S]2+ NFU1 without the accumulation of 

[2Fe-2S]-bound intermediates, in agreement with a strong preference of NFU1 to bind a 

[4Fe-4S] cluster with respect to a [2Fe-2S] cluster. The [2Fe-2S]2+ GLRX5-BOLA3 hetero-

complex could operate specifically in the assembly of a [4Fe-4S] cluster on NFU1 and this 

mechanism might be alternative to the pathway involving the [4Fe-4S] cluster transfer from 

the ISCA1-ISCA2 complex to NFU1. Recently, proteomic studies demonstrate that human 

ISCA1 interact with NFU112, while yeast NFU1 interacts with both yeast ISCA1 and 

ISCA28. The second work (ISCA1 orchestrates ISCA2 and NFU1 in the maturation of 

mitochondrial [4Fe-4S] proteins) provides a molecular model for the interaction between 

ISCA1 and NFU1. In addition, we describe the sequence of events that, acting from ISCA1-

ISCA2 to NFU1, assemble the [4Fe-4S] clusters. We showed that ISCA1 is the key player 
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for the [4Fe-4S] protein maturation process being able indeed to interact either individually 

with ISCA2 or NFU1 or with both proteins in a ternary complex. In the latter case, ISCA1 

works as a mediator between the two no interacting proteins ISCA2 and NFU1. The ISCA1-

ISCA2 complex-bound [4Fe-4S]2+ cluster is not donated to NFU1 and dimeric [4Fe-4S]2+ 

NFU1 is not formed. On the contrary, the cluster is translocated within the ternary ISCA1-

ISCA2-NFU1 complex from a bridged ISCA1-ISCA2 coordination to a bridged ISCA1-

NFU1 one, thus being ISCA2 no more involved in cluster binding.  In the third work 

(Impact of CYS59TYR variant on the activity of BOLA3 in the Fe/S cluster 

biogenesis) we studied a novel mutant of BOLA3, causing the MMDS25,13. In particular, 

BOLA3 deficiency results in decreased functions of respiratory complexes I and II, as well 

as lipoic acid-dependent enzymes such as pyruvate dehydrogenase (PDH), 2-ketoglutarate 

dehydrogenase (KGDH), and glycine cleavage system (GCS). Here, we used solution NMR 

spectroscopy to investigate the structural differences underlying the functional mechanism 

of a novel mutation BOLA3 in which the residue implicated in the cluster binding with 

GLRX5, the Cys59, is substituted with a Tyrosine. Interestingly, the mutation results in a 

different phenotype compared to the known progression of MMDS214. In the case of the 

Cys to Tyr mutation, the patient initially showed all the pathological symptoms, but, after 

the initial condition, the disease led to a milder phenotype, until the complete recovery of 

the pathology at the age of 8. We found that the BOLA3 Cys59Tyr structure and the binding 

interface with its physiological partner, GLRX5, is not markedly perturbed by the mutation. 
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During its late steps, the mitochondrial iron–sulfur cluster (ISC) assembly
machinery leads to the formation of [4Fe-4S] clusters. In vivo studies
revealed that several proteins are implicated in the biosynthesis and traf-
ficking of [4Fe-4S] clusters in mitochondria. However, they do not provide
a clear picture into how these proteins cooperate. Here, we showed that
three late-acting components of the mitochondrial ISC assembly machinery
(GLRX5, BOLA3, and NFU1) are part of a ISC assembly pathway lead-
ing to the synthesis of a [4Fe-4S]2+ cluster on NFU1. We showed that the
[2Fe-2S]2+ GLRX5-BOLA3 complex transfers its cluster to monomeric apo
NFU1 to form, in the presence of a reductant, a [4Fe-4S]2+ cluster bound
to dimeric NFU1. The cluster formation on NFU1 does not occur with
[2Fe-2S]2+ GLRX5, and thus, the [4Fe-4S] cluster assembly pathway is acti-
vated only in the presence of BOLA3. These results define NFU1 as an
‘assembler’ of [4Fe-4S] clusters, that is, a protein able of converting two
[2Fe-2S]2+ clusters into a [4Fe-4S]2+ cluster. Finally, we found that the
[4Fe-4S]2+ cluster bound to NFU1 has a coordination site which is easily
accessible to sulfur-containing ligands, as is typically observed in metal-
lochaperones. This finding supports a role for NFU1 in promoting rapid
and controlled cluster-exchange reaction.

Introduction

Mitochondria play a key role in the maturation of
iron–sulfur (Fe-S) proteins [1,2]. Within mitochondria,
the biosynthesis of Fe-S clusters and their insertion
into mitochondrial apo target proteins is assisted by at
least 17 proteins forming the mitochondrial iron–sulfur
cluster (ISC) assembly machinery [2]. In this

machinery, [4Fe-4S] clusters are formed by a specific
system, including ISCA1 and ISCA2 proteins, that
generate a [4Fe-4S] cluster by coupling two [2Fe-2S]
clusters [1,2]. The [4Fe-4S] clusters are then transferred
to apo target proteins with the assistance of the so-
called ISC targeting factors. One of these factors is the

Abbreviations

BMRB, biological magnetic resonance bank; Fe-S, iron–sulfur; GSH, reduced glutathione; HADDOCK, high ambiguity-driven protein–protein
docking; HSQC, heteronuclear single quantum coherence; IPTG, isopropyl b-D-1-thiogalactopyranoside; ISC, iron–sulfur cluster; LB, Luria–
Bertani; NOE, nuclear overhauser effect; OD, optical density; R1, longitudinal relaxation rate; R2, transverse relaxation rate; SAXS, small-

angle X-ray scattering; SEC-MALS, size exclusion chromatography combined with multiangle light scattering; TCEP, tris (2-carboxyethyl)

phosphine.
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universally present NFU1 protein [3]. NFU1 was ini-
tially thought to be an alternative scaffold to ISCU
[4,5], a protein de novo assembling Fe-S clusters [6].
Other studies supported a model that NFU1 works in
a late step of the mitochondrial ISC assembly machin-
ery transferring a [4Fe-4S] cluster to selected apo tar-
get proteins [7,8]. The current prevailing model, largely
based on studies in Saccharomyces cerevisiae [8], pro-
poses that NFU1 receives a [4Fe-4S] cluster assembled
on the ISCAs system and then transfers it to selected
apo target proteins with the assistance of BOLA3,
another protein of the mitochondrial ISC assembly
machinery. This model was supported by the observa-
tion of an interaction of yeast NFU1 homologue with
both yeast ISCAs homologues and with [4Fe-4S] target
proteins, and of an interaction of yeast BOLA3 homo-
logue with the same target proteins of yeast NFU1
homologue [8]. However, the interaction between yeast
NFU1 and BOLA3 homologues was not experimen-
tally observed in mitochondrial lysates and not clearly
identified in pull-down experiments, being proposed to
be transient [8]. Thus, whether and how BOLA3 may
facilitate [4Fe-4S] cluster dissociation and transfer from
NFU1 to apo target proteins is still unclear. On the
other hand, BOLA3 has been found to form a stable
dimeric hetero-complex with GLRX5 [9,10], a monoth-
iol glutaredoxin-related component of the mitochon-
drial ISC assembly machinery that operates upstream in
the machinery receiving a [2Fe-2S]2+ cluster assembled
on the ISCU scaffold protein [11]. The hetero-dimeric
GLRX5-BOLA3 complex is formed both as apo and
having a bridged [2Fe-2S]2+ cluster. The [2Fe-2S]2+

GLRX5-BOLA3 hetero-dimeric complex is preferen-
tially formed as hetero-complex with respect to homo-
dimeric [2Fe-2S]2+ GLRX5 [9,10]. The proposed func-
tional role of the [2Fe-2S]2+ GLRX5-BOLA3 complex is
that of transferring the cluster to apo acceptor(s),
although the target(s) need(s) to be identified [10].

While BOLA3 sequence analysis with sorting pro-
grams [12,13] uniquely identifies only a mitochondrial
isoform, analyses of genomic DNA, transcripts, and
translation products indicate that alternative splicing
of a common pre-mRNA results in the synthesis of
two NFU1 human isoforms with distinct subcellular
localizations [5]. Isoform I of NFU1 is localized in the
mitochondria and, once processed by mitochondrial
processing peptidases has a mature form with a molec-
ular mass of ~ 22 kDa (mNFU1, hereafter), whereas
isoform II is present in the cytosol and the nucleus
having a molecular mass of ~ 26 kDa [5]. The mito-
chondrial targeting sequence in mNFU1 is composed
by the first 58 residues at the N terminus of the pro-
tein [14]. Human mNFU1 is required for the proper

assembly of a subset of mitochondrial [4Fe-4S] pro-
teins, which include components of respiratory com-
plexes I and II, and lipoyl synthase [4,7,15]. A recent
structural characterization of a construct of human
NFU1 42-residue longer at the N terminus than
mNFU1 sequence (42-NFU1 hereafter) showed that
the apo protein is monomeric in solution and adopts a
dumbbell-shaped structure with well-structured N- and
C-domains connected by a linker [16]. It has been also
shown that chemically Fe-S cluster reconstituted 42-
NFU1 binds a [4Fe-4S] cluster [16]. Combined NMR
and small-angle X-ray scattering (SAXS) data showed
that the holo form is constituted by a trimer of dimers,
each containing a [4Fe-4S] cluster [16]. Three N-do-
mains are involved in the formation of a tripartite
interface, while two conserved cysteines in the C-do-
main ligate a [4Fe-4S] cluster to form a dimer by
bridging two C-domains.

With the aim of characterizing the molecular func-
tion of GLRX5, BOLA3, and mNFU1 in the mito-
chondrial ISC assembly machinery, we have here first
characterized the structure of the holo form of
mNFU1 and its interaction with BOLA3 and then
investigated the interaction between apo mNFU1 and
[2Fe-2S] GLRX5-BOLA3 or [2Fe-2S] GLRX5.

Results

Mitochondrial human NFU1 dimerizes to bind a
[4Fe-4S] cluster

The mitochondrial isoform of human NFU1 has a
mature state with a molecular mass of ~ 22 kDa, pro-
duced after the removal of a N-terminal mitochondrial
targeting sequence of 58 residues (mNFU1, hereafter)
[5,14]. mNFU1 was isolated from Escherichia coli cells
in the apo form (see Materials and methods for details).
Analytical size exclusion chromatography combined
with multiangle light scattering (SEC-MALS) per-
formed on apo mNFU1 showed the presence of a
major species eluting with a molar mass of at
~ 22 kDa, corresponding to the monomeric form and
of a minor species eluting with a molar mass of 47 kDa
(Fig. 1A), which corresponds to a homo-dimeric form
of mNFU1. The monomeric and dimeric forms are in
equilibrium, whose position almost completely shifts to
the monomer upon the increase of the ionic strength to
150 mM NaCl (Fig. 1B). In agreement with this, the
reorientational correlation time, estimated from the
average 15N transverse relaxation rate (R2)/longitudinal
relaxation rate (R1) ratios of backbone NHs (Fig. 1C),
decreased from 13.5 ! 0.90 ns to 11.8 ! 0.92 ns by
addition of 150 mM NaCl. The Brownian rotational
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correlation time value of 10.11 ns calculated for a
24 kDa spherical particle surrounded by a single layer
of water [17] is consistent with a globular shape for the
~ 22 kDa mNFU1 molecule, but the present data does
not conclusively exclude that some flexibility between
the two domains is present. Indeed, eleven backbone
NHs of the residues connecting the two domains (i.e.,
EETPSGEAGSEE, named flexible linker hereafter)
show fast backbone motions in the ns-ps time scale
experiencing very low or negative heteronuclear 15N
[1H] nuclear overhauser effect (NOEs; Fig. 1C). This
behavior is typical of highly unstructured and flexible
regions and suggests the possible presence of domain-
domain flexibility. To investigate whether the two
domains interact with each other, we have produced
the single N- and C-domains. SEC-MALS data showed
that the apo form of the C-domain is fully monomeric
in solution, while the N-domain showed the presence of
a major species eluting with a molar mass of ~ 11 kDa,
corresponding to the monomer, and of a minor species
eluting with a molar mass of ~ 23 kDa corresponding
to the dimer (Fig. 1B). The 1H-15N heteronuclear single
quantum coherence (HSQC) spectra of the N- and C-
domains were compared with that of the full-length
protein in the presence of 5 mM reduced DTT, to avoid
disulfide-linked dimerization as previously observed
under oxidizing conditions [16]. Chemical shifts
changes were observed on the two a-helices of the C-
domain and on the short a-helix, the 310-helix, and the
C terminus of the N-domain (Fig. 2A,B). The flexible
linker is required for determining this interaction since,
by mixing at 1 : 1 ratio the two single N- and C-do-
mains that do not contain residues 156–161 of the lin-
ker, no chemical shifts were observed. In summary, the

data indicate that the two domains in the apo mNFU1
monomer, although connected by a flexible linker, are
not fully independent. Docking N-domain and C-do-
main by high ambiguity-driven protein–protein docking
(HADDOCK) [18,19] based on chemical shift perturba-
tion data produced a top-scoring cluster of 41 struc-
tures out of 200 calculated with a RMSD, from the
lowest-energy structure, of 1.1 ! 0.8 Å and a HAD-
DOCK score of "80.0 ! 1.6 (Table 1). The obtained
structural model mimics a closed conformational state
of monomeric apo mNFU1, but other possible confor-
mations describing the dynamics of the two domains of
monomeric mNFU1 are likely present in solution. The
best structure, shown in Fig. 2C, indicates that the two
domains interact through a hydrophobic patch and a
charged patch. These interactions orient the two
domains so that the conserved metal-binding CXXC
motif, located in the C-domain of mNFU1, is fully
exposed to the solvent and can thus be involved in clus-
ter binding (Fig. 2C).

The UV-visible absorption spectrum of the chemi-
cally Fe-S cluster reconstituted mNFU1 ([4Fe-4S]2+

mNFU1, hereafter, Fig. 3A) showed the presence of a
broadband centered at ~ 410 nm, as previously
reported [5], which typically dominates the absorption
spectra of biological [4Fe-4S]2+ clusters [6]. The CD
spectrum of [4Fe-4S]2+ mNFU1 (Fig. 3B) in the UV-
visible region is very weak and featureless, which is
also characteristic of biological [4Fe-4S]2+ clusters [20].
Moreover, the extinction coefficient at 410 nm of
8.3 mM

"1#cm"1, based on the mNFU1 monomeric
concentration, is consistent with one [4Fe-4S]2+ cluster
per mNFU1 dimer [21]. The C-domain of mNFU1
was also chemically Fe-S cluster reconstituted but, in

60 80 100 120 140 160 180 200 220 240
0

1

2

R 1
 (s

–1
)

60 80 100 120 140 160 180 200 220 240
0
5

10
15
20

R 2
 (s

–1
)

60 80 100 120 140 160 180 200 220 240
–2
–1
0
1

15
N{

1 H}
 N

O
Es

Residue number12 13 14 15 16 17 18 19

m
ol

ar
 m

as
s 

(g
.m

ol
–1

)

Volume (mL)

0.0

2.0×10 4

4.0×10 4

6.0×10 4

8.0×10 4

1.0×10 5
22 kDa

47 kDa

12 13 14 15 16 17 18 19
0

20

40

60

80

100

120

140

m
Au

Volume (mL)

11 kDa
23 kDa

A B C
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all tested conditions, no more than ~ 50% of [4Fe-4S]2+

loaded mNFU1 was obtained, demonstrating that the
N-domain is essential to obtain a quantitative cluster
binding on the C-domain. 15N heteronuclear NMR
relaxation measurements on [4Fe-4S]2+ mNFU1
(Fig. 3C) provided a reorientational correlation time of
15.1 ! 1.2 ns, increased with respect to the value of
11.8 ns estimated for apo mNFU1, in agreement with
protein dimerization. The heteronuclear 15N[1H] NOEs
of the flexible linker are still negative in [4Fe-4S]2+

mNFU1, indicating that the linker conserves its flexibil-
ity in the holo form (Fig. 3C). The comparison of the
1H-15N HSQC spectrum of [4Fe-4S]2+ mNFU1 with
that of apo mNFU1 revealed that the Fe-S cluster bind-
ing led to large chemical shift perturbations and signifi-
cant line broadening (Fig. 4A). Only one set of peaks
for each residue was observed in the 1H-15N HSQC
spectrum of [4Fe-4S]2+ mNFU1, as it occurs in the
1H-15N HSQC spectrum of apo mNFU1 (Fig. 4A), indi-
cating the presence of a symmetric holo dimer. Chemical

shift perturbations were observed on both N- and C-do-
mains. Specifically, while the N-domain shows only
chemical shift changes, the C-domain shows also line
broadening effects beyond detection for eleven back-
bone NHs of the region containing the conserved
CXXC motif. These broadening effects are a conse-
quence of the binding of the paramagnetic [4Fe-4S] clus-
ter to the cysteines of the CXXC motif. The peaks of the
N-domain in the 1H-15N HSQC spectrum of [4Fe-4S]2+

mNFU1 do not match with those of the single N-do-
main of mNFU1, suggesting that the N-domain is not
fully independent to move in solution in [4Fe-4S]2+

mNFU1 (Fig. 4B). In summary, these data indicate that
the cluster is bridged between two C-domains in the
symmetric dimer and is coordinated by two CXXC
motifs from each subunit of the dimer. On the contrary,
the N-domain is not directly involved in cluster binding
and the chemical shift changes observed on its residues
upon cluster binding reflect a change of the intramolec-
ular contacts between the N- and C-domains.
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The paramagnetic 1D 1H NMR spectrum of [4Fe-
4S]2+ mNFU1 showed the presence of two close hyper-
fine-shifted signals at 20.2 and 19.5 p.p.m. and one at
12.7 p.p.m. (Fig. 4Ca), all showing an anti-Curie tem-
perature dependence. The chemical shift values of
these signals, their anti-Curie temperature dependence,
and their linewidths are typical of bCH2 signals of Cys
residues bound to a [4Fe-4S]2+ cluster with an S = 0
electronic ground state, with the paramagnetism aris-
ing from excited states of the electron spin ladder, par-
tially populated at room temperature [22]. By adding
5 mM reduced glutathione (GSH) to [4Fe-4S]2+

mNFU1, the 1D 1H paramagnetic NMR spectrum

changes showing the presence of three further hyper-
fine-shifted signals at 15.5, 13.5, and 11.3 p.p.m.
(Fig. 4Cb), indicating that GSH modifies the coordina-
tion environment, possibly acting as a ligand with its
Cys residue. Nevertheless, GSH does not fully replace
the Cys protein ligand since the three signals at 20.2,
19.5, 12.7 p.p.m. are still present (Fig. 4Cb). A mixture
of at least two [4Fe-4S]2+ species is present, most likely
one derived from all protein-derived Cys protein
ligands and the other from a GSH ligand and three
protein-derived Cys ligands. Analyzing the interaction
between apo mNFU1 and GSH through 1H-15N
HSQC experiments, it appears that the chemical shifts
of the backbone NH signals of Cys 213, Ser 215, Ser
216, Ile 217, Ile 218, Leu 220, that include and sur-
round the CXXC motif, change upon the addition of
GSH (Fig. 5A). The solution NMR structure of the C-
domain of mNFU1 in its apo form [16] showed that
Cys 213 ligand is more solvent-exposed than the other
cysteine ligand, that is, Cys 210 (Fig. 5B). Our NMR
data thus indicate that GSH interacts with the region
close to the solvent-exposed Cys 213, suggesting that
this cysteine is the ligand preferentially displaced by
GSH in [4Fe-4S]2+ mNFU1 (Fig. 5B). Upon addition
of 5 mM DTT to the 5 mM GSH/[4Fe-4S]2+ mNFU1
mixture, the 1D 1H paramagnetic NMR spectrum
showed further changes. The three signals at 20.2,
19.5, 12.7 p.p.m. of the DTT- and GSH-free protein
as well as the three signals of the GSH-bound form
disappeared, and three new signals at 20.3, 14.5, and
13.6 p.p.m. appear, all displaying an anti-Curie tem-
perature dependence (Fig. 4Cc). The size and the anti-
Curie temperature dependence of the chemical shifts of
these signals indicate that a [4Fe-4S]2+ cluster with an
S = 0 electronic ground state is still bound to mNFU1
in the presence of DTT, but the change observed in

Table 1. Statistics of the HADDOCK docking run for the first three

best-scoring clusters by docking N-domain and C-domain of

mNFU1

Cluster 1 Cluster 2 Cluster 3

HADDOCK

score

!80.0 " 1.6 !65.8 " 5.2 !55.4 " 2.0

Cluster size 41 18 49

RMSD from

the overall

lowest-energy

structure

1.1 " 0.8 5.7 " 0.7 4.7 " 1.3

Van der Waals

energy

!26.4 " 4.4 !21.3 " 4.8 !16.2 " 2.4

Electrostatic

energy

!240.7 " 49.1 !184.3 " 30.0 !133.2 " 25.8

Desolvation

energy

!9.9 " 6.3 !8.5 " 5.1 13.1 " 4.5

Restraints

violation

energy

44.6 " 16.6 9.1 " 1.88 4.5 " 2.03

Buried surface

area

911.1 " 47.4 900.5 " 63.2 721.6 " 49.4

Z-score !2.0 !0.8 0.1
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Fig. 3. UV-visible absorption spectroscopy and backbone dynamics on chemically reconstituted [4Fe-4S]2+ mNFU1. UV-visible (A) and CD-

visible (B) spectra of [4Fe-4S]2+ mNFU1 in 50 mM phosphate buffer pH 7.0, 5 mM DTT, 150 mM NaCl. (C) 15N R1, R2 and heteronuclear 15N
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NaCl. The cyan bars represent proline residues. The residues whose NHs are not detected or too broad to be analyzed are not shown. UV-

vis, CD, and NMR relaxation experiments were repeated three times.
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their pattern indicates a modified cluster coordination,
where DTT acts as a cluster ligand and fully displaces
GSH from coordination. In agreement with this inter-
pretation of the NMR data, the paramagnetic 1D 1H
NMR spectrum of [4Fe-4S]2+ mNFU1 acquired in the
presence of 5 mM DTT alone (i.e., sample never trea-
ted with GSH) is perfectly superimposable with that
acquired in the presence of 5 mM GSH and 5 mM

DTT (Fig. 4Cd), confirming that DTT fully displaced
GSH in the coordination sphere of the cluster.

The 1H-15N HSQC spectra acquired on [4Fe-4S]2+

mNFU1 in the presence of DTT (or GSH) are also
different from that of DTT-free (or GSH-free) [4Fe-
4S]2+ mNFU1 but the observed resonances do not
have the chemical shifts of apo mNFU1 (Fig. 6A).
This result agrees with the model that GSH and DTT
are unable to displace a mNFU1 molecule from the
holo dimer to form a monomeric [4Fe-4S]2+ mNFU1
species where two GSH or DTT molecules bind to the
cluster. In such a case, the appearance of peaks

corresponding to an apo mNFU1 molecule released
from the holo dimer would be indeed expected in the
1H-15N HSQC spectrum of the DTT (or GSH)/[4Fe-
4S]2+ mNFU1 mixture. Finally, 1D 1H paramagnetic
or 1H-15N HSQC NMR spectra (Figs 6B and 5A),
acquired on [4Fe-4S]2+ mNFU1 treated first with GSH
(or DTT) or and then passed on a PD-10 desalting
column, are the same as that of the GSH-free (or
DTT-free) [4Fe-4S]2+ mNFU1, indicating that the
DTT and GSH molecules initially bound to the cluster
are then removed from the cluster coordination, due
to an equilibrium between GSH/DTT-bound holo pro-
tein and free GSH/DTT holo protein.

BOLA3 drives the [4Fe-4S] cluster assembly on
mNFU1

Considering the proposed model that a mNFU1-
BOLA3 complex mediates the transfer of a [4Fe-4S]
cluster from ISCA complex to apo target proteins [8],
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/ppm d

c

b

a

14151617181920212223 1δ( H)/p.p.m1324
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Fig. 4. NMR characterization of [4Fe-4S]2+ mNFU1. (A) Overlay of 1H-15N HSQC spectra of apo (blue) and [4Fe-4S]2+ (green) mNFU1,

acquired at 298 K in 50 mM phosphate buffer pH 7.0, 5 mM DTT, 150 mM NaCl. (B) Overlay of 1H-15N HSQC spectra of [4Fe-4S]2+ mNFU1

(green) and of the N-domain of mNFU1 (black), acquired at 298 K in 50 mM phosphate buffer pH 7.0, 5 mM DTT, 150 mM NaCl. (C) 1D 1H

NMR spectra tailored for the detection of hyperfine-shifted signals of [4Fe-4S]2+ mNFU1 were acquired at 298 K in 50 mM phosphate buffer

pH 7.0, 150 mM NaCl (a), and upon sequential additions of 5 mM GSH (b) and 5 mM DTT to the same protein sample (c), and of [4Fe-4S]2+

mNFU1 acquired in the presence of 5 mM DTT alone. NMR experiments were repeated three times.

Fig. 5. Monitoring the interaction between GSH and apo mNFU1 by NMR. (A) Overlay of 1H-15N HSQC spectra of apo 15N-labeled mNFU1,

acquired at 298 K in 50 mM phosphate buffer pH 7.0, 150 mM NaCl, in the absence (black) and in the presence of increasing concentrations

of GSH up to 7 mM (from black to violet). The final mixture was exchanged in the original buffer in the absence of GSH (cyan). (B) Mapping

the chemical shift changes (shown in green) on the C-domain of mNFU1 (PDB ID 2M5O) occurring upon the interaction between apo

mNFU1 and GSH. NMR experiments were repeated three times. The model shown in panel 5B was rendered with UCSF Chimera.
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we have investigated, by NMR, UV-visible and CD
spectroscopy, the potential interaction between
BOLA3 and mNFU1. NMR titration experiments on
15N-labeled samples showed that apo NFU1 does not
interact with BOLA3 (Fig. 7A,B). To characterize the
potential interaction between BOLA3 and mNFU1 in
the presence of a Fe-S cluster, we have performed a
chemical reconstitution with iron and sulfide ions on a
mixture composed by apo mNFU1 and BOLA3 in
various experimental conditions (see Experimental Sec-
tion for details) and spectroscopically characterized it.
In all cases, the UV-visible and CD spectra are essen-
tially identical to the spectra of [4Fe-4S]2+ mNFU1
(Fig. 8A,B), suggesting that BOLA3 does not modify
the Fe-S cluster nuclearity. Consistently, the 1H 1D
paramagnetic NMR spectrum of the chemically recon-
stituted mixture is typical of that of [4Fe-4S]2+

mNFU1 (Fig. 8C), indicating that BOLA3 does not
contribute to the cluster binding. Comparison of the
1H-15N HSQC NMR spectra of the chemically recon-
stituted mixture with those of the isolated proteins
showed that the two proteins do not interact each
other since no significant chemical shift changes
occurred and that only a [4Fe-4S]2+ mNFU1 species is
formed in the chemical Fe-S cluster reconstitution pro-
cess (Fig. 7C,D). We also tested the potential interac-
tion between BOLA3 and [4Fe-4S]2+ NFU1 in the
presence of GLRX5 by performing a NMR titration
experiment where unlabeled [4Fe-4S]2+ mNFU1 was
added to a 1 : 1 mixture of 15N-labeled BOLA3 and
unlabeled apo GLRX5. The results showed that the
apo protein complex formed between GLRX5 and
BOLA3 [9,10] does not interact with [4Fe-4S]2+

mNFU1 (Fig. 7E). In conclusion, we can rule out any
possible interaction of BOLA3 with either apo or
[4Fe-4S]2+ mNFU1 in the absence and in the presence
of GLRX5.

The latter results brought us to investigate a differ-
ent pathway through which BOLA3 and mNFU1 can
cooperate in assisting the formation of a [4Fe-4S] clus-
ter on apo target proteins. Since it has been already
shown that BOLA3 and GLRX5 form a hetero-
dimeric complex able to bind a [2Fe-2S]2+ cluster
[9,10], we investigated whether this complex can inter-
act with apo mNFU1, transfer the cluster, and form a
[4Fe-4S] cluster on mNFU1. We followed these possi-
ble processes by NMR, UV-visible, and CD spec-
troscopy. The experiments were performed by adding
either apo mNFU1 to the [2Fe-2S]2+ GLRX5-BOLA3
hetero-complex or vice versa, and, for NMR measure-
ments, 15N-labeling one protein at a time or 15N-label-
ing two out of the three proteins. Comparing the UV-
visible spectrum of the [2Fe-2S]2+ GLRX5-BOLA3
hetero-complex with those of two mixtures containing
different ratios of [2Fe-2S]2+ GLRX5-BOLA3 and apo
mNFU1, significant changes of the absorption bands
were observed (Fig. 9A). In particular, the bands char-
acteristic of the [2Fe-2S]2+ cluster bound to GLRX5-
BOLA3 complex decrease in intensity and the final
spectrum resembles to that of [4Fe-4S]2+ mNFU1
(Fig. 9A). The same mixtures, analyzed by CD spec-
troscopy, showed a loss of intensity of the CD signals
of the [2Fe-2S]2+ GLRX5-BOLA3 hetero-complex,
suggesting the formation of [4Fe-4S]2+ mNFU1, whose
CD signals are indeed very low in intensity (Fig. 9B)
[20,23]. In the NMR titration between the [2Fe-2S]2+

Fig. 6. DTT does not promote the formation of apo mNFU1 by its addition to [4Fe-4S]2+ mNFU1 and GSH-binding equilibrium in [4Fe-4S]2+

mNFU1. (A) Overlay of 1H-15N HSQC spectra of 15N-labeled [4Fe-4S]2+ mNFU1 in the presence (green) and in the absence (red) of 5 mM

DTT with that of 15N-labeled apo mNFU1 (blue) in the presence of 5 mM DTT, acquired at 298 K in 50 mM phosphate buffer pH 7.0, 150 mM

NaCl. (B) 1D 1H NMR spectra tailored for the detection of hyperfine-shifted signals of [4Fe-4S]2+ mNFU1 in the absence of GSH (upper), in

the presence of 5 mM GSH (middle) and after exchanging, through PD-10 desalting column, the latter mixture in the same buffer but not

containing GSH. NMR spectra were acquired at 298 K in 50 mM phosphate buffer pH 7.0 and 150 mM NaCl. NMR experiments were

repeated two times.
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15N-labeled GLRX5-unlabeled BOLA3 complex and
unlabeled apo mNFU1, the resonances of the [2Fe-
2S]2+ GLRX5-BOLA3 hetero-complex disappeared
and concomitantly the resonances of the apo GLRX5-
BOLA3 hetero-complex appeared (Fig. 9D), indicating
the cluster release from the hetero-complex. In the
titration between the unlabeled [2Fe-2S]2+

GLRX5-15N-labeled BOLA3 complex and 15N-labeled
apo mNFU1, the changes observed for the BOLA3
resonances indicate again the occurrence of cluster
release from the hetero-complex (Fig. 9E). Concomi-
tantly, the new resonances appearing in the 1H-15N
HSQC map of the mixture have chemical shifts match-
ing with those of [4Fe-4S]2+ mNFU1, indicating the
formation of [4Fe-4S]2+ mNFU1 (Fig. 9F). In agree-
ment with the latter data, the 1D 1H paramagnetic
NMR spectrum acquired on the final mixture showed

the presence of the typical peaks of [4Fe-4S]2+ mNFU1
(Fig. 9C). Overall, the experimental data indicate the
transfer of two [2Fe-2S]2+ clusters from the [2Fe-2S]2+

GLRX5-BOLA3 hetero-complex to apo mNFU1 and
the concomitant formation of a [4Fe-4S]2+ cluster. A
reducing agent is absolutely required for converting
ferric ions present in the [2Fe-2S]2+ cluster into a mix-
ture of ferric and ferrous ions in the [4Fe-4S]2+ cluster
(reductive coupling reaction) [23–25]. Considering that
5 mM DTT and 5 mM GSH were present in all protein
mixtures, these two small molecules are the best candi-
dates to act as reducing agents. To verify this hypothe-
sis, the same experiment reported above was
performed in the absence of DTT, that is, the [2Fe-
2S]2+ unlabeled GLRX5-15N-labeled BOLA3 complex
mixed with 15N-labeled apo mNFU1. In this case, we
observed that the reaction did not proceed, that is, no

Fig. 7. BOLA3 does not interact with

mNFU1. Overlay of 1H-15N HSQC NMR

spectra of (A) 15N-labeled apo mNFU1

(black) and a 1 : 1 mixture of 15N-labeled

apo mNFU1 and unlabeled BOLA3 (red); (B)
15N-labeled BOLA3 (black) and a 1 : 1

mixture of 15N-labeled BOLA3 and

unlabeled apo mNFU1 (red); (C) 15N-labeled

apo mNFU1 (black), 15N-labeled [4Fe-4S]2+

mNFU1 (green) and a chemically Fe-S

cluster reconstituted 2 : 1 mixture of

unlabeled BOLA3 and 15N-labeled apo

mNFU1 (red); (D) 15N-labeled BOLA3 (black)

and a chemically Fe-S cluster reconstituted

1 : 1 mixture of 15N-labeled BOLA3 and

unlabeled apo mNFU1 (red); (E) apo 15N-

labeled BOLA3-unlabeled GLRX5 hetero-

complex (black) and a 1 : 1 mixture of apo
15N-labeled BOLA3-unlabeled GLRX5

hetero-complex and unlabeled [4Fe-4S]2+

mNFU1 (red), both in the presence of 5 mM

GSH. NMR spectra were acquired at 298 K

in 50 mM phosphate buffer pH 7.0, 5 mM

DTT and 150 mM NaCl. NMR experiments

were repeated three times.
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[2Fe-2S]2+ cluster transfer occurred nor [4Fe-4S]2+ clus-
ter was formed. Indeed, the 1H-15N HSQC spectrum
of the mixture is superimposable with those of the
individual proteins and no peaks of the [4Fe-4S]2+

mNFU1 product are formed (Fig. 10). DTT is there-
fore the reducing agent in vitro required for the reduc-
tive coupling reaction to occur. DTT is, however, not
an efficient reducing system. Indeed, DTT is not able
to quantitatively form the [4Fe-4S]2+ mNFU1 product
in the 1 : 1 [2Fe-2S]2+ GLRX5-BOLA3/apo mNFU1
mixture, being the amount of [4Fe-4S]2+ mNFU1 65%
(estimated from 1H-15N HSQC NMR data, see
Fig. 8F). Even when an excess of two equivalents of
[2Fe-2S]2+ GLRX5-BOLA3 was added to apo
mNFU1, the resonances associated with apo mNFU1
do not disappear completely. Moreover, the formation
of [4Fe-4S]2+ mNFU1 occurs slowly upon time in the
presence of 5 mM DTT, that is, it reaches the equilib-
rium only after 1 day. Overall, from these data we can
gather that a physiological electron donor is required
to efficiently promote [4Fe-4S]2+ cluster formation on
mNFU1. The best candidate physiological electron
donor might be a ferredoxin, a versatile protein family
typically involved in electron transfer in mitochondria
[26]. Human mitochondria possess two mitochondrial
ferredoxins, which are both present in the matrix of
mitochondria and have been shown to be versatile
electron mediators involved in multiple physiological
processes such as Fe-S cluster biogenesis, steroidogene-
sis, vitamin D metabolism, and heme A biosynthesis
[26–28].

We have finally observed by NMR and UV-visible
spectroscopy that, when apo or [2Fe-2S]2+ GLRX5
was mixed with apo mNFU1 using DTT as electron

source, no protein–protein interaction, no cluster
transfer from GLRX5 to mNFU1, and no formation
of a [4Fe-4S]2+ cluster on mNFU1 occurred (Fig. 11).
This indicates that both cluster transfer and reductive
coupling reactions encompassing mNFU1 require
BOLA3 to occur. Thus, BOLA3 acts as a trigger fac-
tor activating cluster transfer and assembly on
mNFU1.

Discussion

The late stages of the mitochondrial ISC assembly
machinery are responsible of [4Fe-4S] cluster assembly,
trafficking, and insertion into mitochondrial target Fe-
S proteins [1,2]. The first studies on the mitochondrial
[4Fe-4S] cluster assembly step showed that three
human proteins ISCA1, ISCA2, and IBA57 are
required for this process [29]. This functional associa-
tion has been revisited in a recent work [30], which
showed that ISCA2 and IBA57 are not required under
standard physiological conditions for the maturation
of mitochondrial [4Fe-4S] proteins. Therefore, the so
far available in vivo data do not provide a clear picture
on how the three proteins operate in the cell for
assembling a [4Fe-4S] cluster. In vitro experiments
helped to shed some light on this issue showing that
(a) ISCA1 and ISCA2 form a hetero-dimer, which, by
accepting two [2Fe-2S]2+ clusters from the protein
partner GLRX5 (component of the mitochondrial ISC
assembly machinery receiving the [2Fe-2S]2+ cluster
from ISCU), is able to assemble a [4Fe-4S]2+ cluster,
without any need of IBA57 [25,31]; (b) ISCA2, but not
ISCA1, after having received a [2Fe-2S]2+ cluster from
GLRX5, forms a [2Fe-2S]2+-bridged hetero-dimeric
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Fig. 8. BOLA3 does not modify cluster binding properties of mNFU1. UV-visible (A) and CD-visible (B) spectra of chemically reconstituted

mixtures of BOLA3 and mNFU1: magenta, chemical reconstitution of BOLA3 : mNFU1 at a 1 : 1 ratio in the presence of 5 mM GSH, 5 mM

DTT, and 150 mM NaCl; black, chemical reconstitution of BOLA3 : mNFU1 at a 1 : 1 ratio in the presence of 5 mM DTT and 150 mM NaCl.

In green are the UV-visible and visible CD spectra of [4Fe-4S]2+ mNFU1. (C) 1D 1H NMR spectra tailored for the detection of hyperfine-

shifted signals of [4Fe-4S]2+ mNFU1 (upper) and of the chemically reconstituted 1 : 1 BOLA3:mNFU1 mixture (lower). NMR spectra were

acquired at 298 K in 50 mM phosphate buffer pH 7.0, 5 mM DTT, and 150 mM NaCl. UV-vis, CD, and NMR experiments were repeated

three times.
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complex with IBA57, which results resistant to highly
oxidative environments and capable of reactivating
apo aconitase [32]. In conclusion, the in vitro studies
suggested a model of [4Fe-4S]2+ cluster assembly on
the ISCA1-ISCA2 complex, while IBA57 might be
involved with GLRX5 and ISCA2 in a specific path-
way maturing Fe-S proteins under oxidative metabo-
lism. The proposed following step of the
mitochondrial ISC assembly machinery consists of the
transfer and insertion of the [4Fe-4S]2+ cluster assem-
bled on the ISCA1-ISCA2 complex into mitochondrial
target Fe-S proteins with the help of specific ISC tar-
geting factors [1,2]. Two proteins, that is, BOLA3 and
NFU1, have been proposed to be involved in this step.
NFU1 was implicated in receiving the cluster from the
ISCA1-ISCA2 complex [4,7], and BOLA3 was pro-
posed to mediate the transfer of the [4Fe-4S]2+ cluster
bound to NFU1 into specific mitochondrial target

proteins [8]. However, the interaction between NFU1
and BOLA3 was not clearly detected in vivo and it was
proposed to be transient [8]. On the contrary, the
interaction between BOLA3 and GLRX5 has been
well documented by in vivo studies [33], and in vitro
studies recently showed that BOLA3 strongly binds
GLRX5, while the binding of BOLA3 to NFU1 is
weak [34]. As mentioned above, GLRX5 acts in the
early-acting steps of the mitochondrial ISC assembly
machinery donating its [2Fe-2S]2+ cluster to the
ISCA1-ISCA2 complex [11,25]. Therefore, the raising
question is whether GLRX5 has a further role as [2Fe-
2S]2+ cluster trafficking protein in the late stages of the
mitochondrial ISC assembly machinery once com-
plexed with BOLA3. Our work sheds light on this
question, showing that two [2Fe-2S]2+ GLRX5-
BOLA3 complexes are able to transfer their clusters to
apo NFU1 to form a [4Fe-4S]2+ cluster on dimeric

Fig. 9. [2Fe-2S]2+ GLRX5-BOLA3 assembles a [4Fe-4S]2+ cluster on mNFU1. UV-visible (A) and CD (B) spectra of 0.5 : 1 (blue) and 1 : 1

(red) mixtures of [2Fe-2S]2+ GLRX5-BOLA3 hetero-complex and apo mNFU1, compared with spectra of [2Fe-2S]2+ GLRX5-BOLA3 (black)

and [4Fe-4S]2+ mNFU1 (magenta). (C) 1D 1H NMR spectra of the hyperfine-shifted signals of the 1 : 1 mixture of [2Fe-2S]2+ GLRX5-BOLA3

hetero-complex and apo mNFU1. Overlay of 1H-15N HSQC NMR spectra of (D) the 1 : 1 mixture of [2Fe-2S]2+ 15N-labeled GLRX5-unlabeled

BOLA3 hetero-complex and unlabeled apo mNFU1 (blue), [2Fe-2S]2+ 15N-labeled GLRX5-unlabeled BOLA3 (red), apo 15N-labeled GLRX5-

unlabeled BOLA3 (black) and apo 15N-labeled GLRX5 (fuchsia); (E) the 1 : 1 mixture of [2Fe-2S]2+ unlabeled GLRX5-15N-labeled BOLA3

hetero-complex and apo 15N-labeled mNFU1 (blue), [2Fe-2S]2+ unlabeled GLRX5-15N-labeled BOLA3 (red), apo unlabeled GLRX5-15N-labeled

BOLA3 (black), apo 15N-labeled BOLA3 (fuchsia), and [4Fe-4S]2+/apo 15N-labeled mNFU1 (green); (F) the 1 : 1 mixture of [2Fe-2S]2+

unlabeled GLRX5-unlabeled BOLA3 hetero-complex and apo 15N-labeled mNFU1 (blue), [4Fe-4S]2+ 15N-labeled mNFU1 (red) and apo 15N-

labeled mNFU1 (fuchsia). All spectra were acquired at 298 K in 50 mM phosphate buffer pH 7.0, 5 mM GSH, 5 mM DTT, 150 mM NaCl. UV-

vis, CD, and NMR experiments were repeated three times.
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NFU1 (Fig. 12). Our data showed that the mechanism
for cluster transfer and assembly from [2Fe-2S]2+

GLRX5-BOLA3 to NFU1 leads directly to the forma-
tion of [4Fe-4S]2+ NFU1 without the accumulation of
[2Fe-2S]-bound intermediates, in support of a strong
preference of NFU1 to bind a [4Fe-4S] cluster with
respect to a [2Fe-2S] cluster. The cluster formation on
NFU1 does not occur with [2Fe-2S]2+ GLRX5 alone,
thus this pathway being activated only upon the for-
mation of the [2Fe-2S]2+ GLRX5-BOLA3 hetero-com-
plex (Fig. 12). Therefore, homo-dimeric [2Fe-2S]2+

GLRX5 only operates in the early-acting steps of the
mitochondrial ISC assembly machinery donating its
[2Fe-2S]2+ cluster to the ISCA1-ISCA2 complex, while
the [2Fe-2S]2+ GLRX5-BOLA3 hetero-complex oper-
ates downstream specifically in the assembly of a [4Fe-
4S] cluster on NFU1. This pathway might be alterna-
tive to the pathway involving the [4Fe-4S] cluster
transfer from the ISCA1-ISCA2 complex to NFU1.
Considering that the S. cerevisiae homologue of
NFU1 plays a crucial role for the function of mito-
chondrial [4Fe-4S] enzymes under oxidative metabo-
lism as opposed to anoxic metabolism [8], the here-
characterized pathway might be activated under oxida-
tive cellular conditions only. In conclusion, we estab-
lish a role of NFU1 as an ‘assembler’ of [4Fe-4S]
clusters alternative to the ISCA1-ISCA2 complex,
possibly being operative for a subset of mitochondrial

Fe-S target proteins, which are highly susceptible to be
damaged in oxidatively growing cells, that is, enzymes
with a labile [4Fe-4S] cluster such as aconitase and
lipoyl synthase [35]. Moreover, the model shown in
Fig. 12 can help to rationalize the complexity observed
in human/S. cerevisiae NFU1 and BOLA3 phenotypes
[4,7–9]. In particular, it was shown that S. cerevisiae
BolA3 requires S. cerevisiae Nfu1 for its function and
that Nfu1 and BolA3 cannot mutually substitute each
other’s biochemical function, even upon overproduc-
tion [9]. Thus, these data suggest that BolA3 and Nfu1
perform individual, nonoverlapping functions during
the late stages of the mitochondrial ISC machinery,
and the here-characterized pathway shows how this
cooperative role can be achieved.

We also reported a structural characterization of
NFU1 showing that (a) apo NFU1 is present in a
monomer-dimer equilibrium, in which the dimer for-
mation is mediated by the N-domain, (b) the two
domains in monomeric apo NFU1, although con-
nected by a flexible linker, are not fully independent,
(c) that [4Fe-4S]2+ cluster binding to NFU1 causes the
quantitative formation of a dimer, (d) that the two
NFU1 subunits of the dimer bridge a [4Fe-4S]2+ clus-
ter that is coordinated by two cysteines of each CXXC
motif of two C-domains, and (e) the presence of an
equilibrium between a [4Fe-4S]2+ NFU1 dimer where
the cluster is coordinated by the Cys residues of two
CXXC motifs and a [4Fe-4S]2+ NFU1 dimer where a
Cys ligand of the CXXC motif is replaced by a S-
donor small molecule ligand, such as GSH or DTT.
These results are consistent with in vivo data reported
on S. cerevisiae Nfu1 [8]. Indeed, it has been shown
that (a) apo Nfu1 in S. cerevisiae cells is present as a
mixture of a predominant monomer and a minor
dimeric species, whose formation is due by the pres-
ence of the N-domain of Nfu1; (b) in mitochondrial
lysates the bulk of S. cerevisiae Nfu1 is a homo-
dimeric species, whose abundance is unaffected with
DTT but affected by cluster binding. In conclusion,
the structural characterization of dimeric [4Fe-4S]2+

NFU1 showed that the cluster has a coordination site
accessible to sulfur-containing ligands. This site might
be optimal for being invaded by the S-donor ligand of
the metal-receiving partner (i.e., the mitochondrial tar-
get protein in the presence or not of other possibly
required accessory proteins) in order to promote a
rapid and controlled cluster-exchange reaction
(Fig. 12), following a mechanism typically observed
for proteins involved in metal transfer, that is, metal-
lochaperones [36–39].

The recent structural characterization of a construct
of human NFU1 42-residue longer at the N terminus

Fig. 10. A reductant is required to assemble a [4Fe-4S]2+ cluster

on mNFU1 upon the interaction with the cluster donor [2Fe-2S]2+

GLRX5-BOLA3. Overlay of 1H-15N HSQC NMR spectra of [2Fe-

2S]2+ unlabeled GLRX5-15N-labeled BOLA3 (red), apo 15N-labeled

mNFU1 (green), and a 1 : 1 mixture of [2Fe-2S]2+ unlabeled

GLRX5-15N-labeled BOLA3 and apo 15N-labeled mNFU1 (blue),

acquired at 298 K in 50 mM phosphate buffer pH 7.0, 5 mM GSH,

and 150 mM NaCl. NMR experiments were repeated three times.
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than mNFU1 sequence showed that the apo protein is
monomeric in solution and adopts a dumbbell-shaped
structure with well-structured N- and C-domains con-
nected by a flexible linker [16]. It has been also
observed that chemically Fe-S cluster reconstituted 42-
NFU1 binds a [4Fe-4S] cluster [16]. Combined NMR
and SAXS data showed that the holo form of
42-NFU1 is constituted by a trimer of dimers, each
containing a [4Fe-4S] cluster [16]. Three N-domains
are involved in the formation of a tripartite interface,
while two conserved cysteines in the C-domain ligate
a [4Fe-4S] cluster to form a dimer by bridging two C-
domains. Our NMR data indicate the presence of a
single species for [4Fe-4S]2+ NFU1 having a reorienta-
tional correlation time of 15.1 ! 1.2 ns, which fully
excludes the presence of the trimer of dimers as previ-
ously observed for [4Fe-4S]2+ 42-NFU1 [16], while it
supports the occurrence of protein dimerization upon
cluster binding. Moreover, in the 1H-15N HSQC spec-
trum of the [4Fe-4S]2+ 42-NFU1, a few residues of the
N-domain exhibited two sets of peaks with equal peak
volume [16]. They were, respectively, assigned to the
free N-domains and to the N-domains that form the
tripartite interface in the trimer of dimers of [4Fe-4S]2+

42-NFU1 [16]. This behavior differs from what we
have observed in the 1H-15N HSQC spectrum of our
construct for [4Fe-4S]2+ NFU1, which shows indeed
only one set of peaks. The different quaternary struc-
ture of [4Fe-4S] mNFU1 with respect to that of [4Fe-
4S]2+ 42-NFU1 can be rationalized considering that
the two NFU1 constructs used in the two studies are
different. Indeed, the mitochondrial isoform of NFU1,
used in our studies, consists of 59–254 residues [5],
while 42-NFU1, previously studied by NMR and
SAXS [16], consists of residues 16–254. It might be
that the longer N-terminal tail of [4Fe-4S]2+ 42-NFU1
drives the formation of the trimer of dimers binding
three [4Fe-4S] clusters. In the structural model of [4Fe-
4S]2+ 42-NFU1, the N-domain is, indeed, involved in
the formation of the tripartite interface of the trimer
[16].

Materials and methods

Protein production

The pETG20A plasmid containing N-terminal tagged

mNFU1 (UniProt: Q9UMS0, residues 59–254 with

Fig. 11. Both apo and [2Fe-2S]2+ GLRX5 do not interact with mNFU1 and [2Fe-2S]2+ GLRX5 does not assemble a [4Fe-4S]2+ cluster on

mNFU1. Overlay of 1H-15N HSQC NMR spectra of: (A) 15N-labeled apo mNFU1 (black) and a 1 : 2 mixture of 15N-labeled apo mNFU1 and

unlabeled apo GLRX5 (red); (B) a 60 : 40 mixture of 15N-labeled [2Fe-2S]2+ and apo GLRX5 (black) before and after the addition of two

equivalents of apo mNFU1 (red); (C) 15N-labeled apo mNFU1 (black) and a 1 : 2 mixture of 15N-labeled apo mNFU1 and unlabeled [2Fe-2S]2+

GLRX5 (red). NMR spectra were acquired at 298 K in 50 mM phosphate buffer pH 7.0, 5 mM GSH, 5 mM DTT and 150 mM NaCl; (D) UV-

visible spectra of [2Fe-2S]2+ GLRX5 (blue), and of a 1 : 2 mixture of mNFU1: [2Fe-2S]2+ GLRX5 (green) and the same mixture after 1 day

(red). The UV-vis spectra were acquired at 298 K in 50 mM phosphate buffer pH 7.0, 5 mM GSH, 5 mM DTT, and 150 mM NaCl. UV-vis and

NMR experiments were repeated three times.
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N-terminal TRX-6His-tag) was used to transform in E. coli

BL21-Gold(DE3) (Agilent, Santa Clara, CA, USA) compe-

tent cells. Cells were cultivated at 37 °C in 1 L of Luria–
Bertani (LB) media adding ampicillin (100 lg!mL"1), until

the OD600 reached 3–5. The cells were spun down (1693 g

for 20 min) and resuspended in 1 L of fresh LB or minimal

media [with 1 g (15NH4)2SO4 and 3 g glucose] containing

ampicillin (100 lg!mL"1). The culture was left at 37 °C,
160 r.p.m. for approximately 1 h, and then, protein expres-

sion was induced by adding 1 mM of isopropyl b-D-1-thio-
galactopyranoside (IPTG), shaking overnight at 30 °C,
160 r.p.m. The cell paste was dissolved in the binding buf-

fer (20 mM phosphate buffer, 500 mM NaCl, 30 mM imida-

zole, pH 7.8), and the cells were lysated using the CelLytic

Express (C1990; Sigma-Aldrich, St. Louis, MO, USA). All

the following purification steps were performed aerobically.

The N-terminal TRX-6His-tag mNFU1 protein was puri-

fied from E. coli using a HisTrap HP column (GE Health-

care, Chicago, IL, USA). The TRX-6His-tag was cleaved

by tobacco etch virus protease overnight at room tempera-

ture in 20 mM phosphate buffer, 500 mM NaCl, 500 mM

imidazole, pH 7.8 (UniProt: Q9UMS0, residues 59–254
with N-terminal GSFT residues). The buffer was exchanged

to binding buffer, and a second His-trap chromatography

column was performed to separate the digested mNFU1

from TRX-6His-tag mNFU1 and TRX-6His-tag. Recov-

ered mNFU1 was pure enough to be used for spectroscopic

and biochemical studies. The final yield of apo mNFU1

was ~ 60 mg per liter of LB culture. 2.5 mM tris (2-car-

boxyethyl) phosphine (TCEP) was added in all the purifica-

tion steps to avoid disulfide bond formation.

The pETG20A plasmid containing N-domain of mNFU1

(UniProt: Q9UMS0, residues 59–155 with N-terminal

TRX-6His-tag; after tag cleavage the N-domain sequence

contains N-terminal GSFT residues similarly to the full-

length protein) was obtained by a site-directed mutagenesis

with a prokaryotic codon stop. The protein expression was

performed likewise mNFU1, in BL21-GOLD(DE3) cells.

Cells were cultivated at 37 °C in 1 L of LB or minimal

media adding ampicillin (100 lg!mL"1), until the OD600

reached 0.6–0.8, and then, protein expression was induced

by adding 1 mM of IPTG, shaking overnight at 20 °C,

160 r.p.m. Protein purification steps were performed fol-

lowing the protocol of mNFU1, except that, during TEV

protease cleavage, a dialysis step in the binding buffer

(20 mM phosphate buffer, 500 mM NaCl, 30 mM imidazole,

pH 7.8) was performed. The C-domain of mNFU1 (Uni-

Prot: Q9UMS0, residues 162–247 with N-terminal

GIDPFTM residues) was cloned by a TOPO cloning reac-

tion (Invitrogen, Carlsbad, CA, USA). The gene was

inserted in the pET151/D-TOPO (Invitrogen) vector that

present a polyhistidine (6x His) region, a TEV recognition

site and a TOPO cloning site. Protein expression and purifi-

cation steps do not differ from the previously described for

the N-domain, and the apo form of C-domain was purified.

The final yields of N- and C-domain of mNFU1 were

~ 60 mg!L"1 of LB culture. 2.5 mM TCEP was added in all

the purification steps to avoid disulfide bond formation.

[4Fe-4S]2+ mNFU1 and [4Fe-4S]2+ C-domain were chem-

ically Fe-S cluster reconstituted in anaerobic conditions in

50 mM Tris(hydroxymethyl)aminomethane hydrochloride,

100 mM NaCl, 5 mM DTT buffer at pH 8.0 with eightfold

FeCl3 and Na2S for 16 h at room temperature. Chemical

Fe-S cluster reconstitution was performed with protein con-

centrations of ~ 40–80 lM. Anaerobic conditions were

obtained by degassing all buffers and performing the chem-

ical reconstitution in glove-box with less than 5 p.p.m. of

oxygen.

The expression and purification of human BOLA3 and

GLRX5 in their apo monomeric forms and in their homo-

dimeric (for GLRX5) and hetero-dimeric (for GLRX5-

BOLA3) [2Fe-2S]2+ cluster-bound forms were obtained as

previously reported [9,10,40].

NMR spectroscopy

1D 1H paramagnetic-tailored NMR experiments were per-

formed at 400 MHz with a 1H optimized 5 mm probe at

temperatures ranging from 280 and 307 K. Water signal

was suppressed via fast repetition experiments and water

selective irradiation. Experiments were typically performed

using an acquisition time of 50 ms and an overall recycle

delay of 90 ms. The protein concentration was 0.5–1 mM,

and the spectra were acquired in different buffer conditions

GLRX5    

2x

Inser!on

Target apo 
protein

BOLA3

2e–

N-dom

C-dom

Assembly

BOLA3

GLRX5
2x

NFU1

N-domN-dom

Fig. 12. Model of BOLA3/NFU1-dependent [4Fe-4S] cluster assembly pathway. Two molecules of [2Fe-2S]2+ GLRX5-BOLA3 transfer the

cluster to apo NFU1 that assembles a [4Fe-4S]2+ cluster by receiving two electrons. The assembled [4Fe-4S]2+ cluster is then inserted to

mitochondrial target apo proteins with or without the requirement of other accessory proteins (dotted arrow).
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as detailed in the Results section. Squared cosine and expo-

nential multiplications were applied prior to Fourier trans-

formation. Manual baseline correction was performed,

using polynomial functions.
15N heteronuclear relaxation experiments on 15N-labeled

samples of apo and [4Fe-4S]2+ mNFU1 were recorded on

Bruker AVANCE 500 MHz spectrometer at 298 K to mea-

sure 15N backbone R1 and R2, as well as the heteronuclear
15N[1H] NOEs. Spectra were processed using TopSpin

(Bruker BioSpin, Billerica, MA, USA) and analyzed with

CARA software (CARA is a free software that can be down-

loaded fromcara.nmr.ch). The rotational correlation time

value was estimated from the R2/R1 ratio using the pro-

gram QUADRATIC_DIFFUSION. The relaxation data

for those NHs having an exchange contribution to the R2

value or exhibiting large-amplitude fast internal motions

were excluded from the analysis [41]. NMR relaxation

experiments were acquired at 298 K in 50 mM phosphate

buffer pH 7.0, 5 mM DTT, and 150 mM NaCl.

SEC-MALS, UV-visible, CD, and NMR
spectroscopy for protein–protein interaction
studies

SEC-MALS data were aerobically acquired on the apo pro-

teins by attaching a SuperdexTM 200 Increase 10/300 GL

column to a DAWN HELEOS system with a continuous

flow rate of 0.6 mL!min"1 using a filtered degassed buffer

(50 mM phosphate buffer, 150 mM NaCl, 5 mM DTT, pH

7.0).

The 1H-15N HSQC NMR spectrum of apo mNFU1 was

compared, using CARA software [42], with those of the N-

and apo C-domains or with that of [4Fe-4S]2+ mNFU1.

The observed chemical shift changes were plotted calculat-

ing the backbone weighted average chemical shift differ-

ences (Davg(HN) (i.e., (((DH)2 + (DN/5)2)/2)1/2, where DH
and DN are chemical shift differences for backbone amide
1H and 15N nuclei, respectively). Backbone chemical shift

assignments of full-length NFU1 and of N- and C-domains

of NFU1 in their apo forms were already available in the

literature [16]. The 1H-15N HSQC NMR spectra were

acquired at 298 K in 50 mM phosphate buffer pH 7.0,

5 mM DTT and 150 mM NaCl.

Protein–protein (or protein–GSH or protein-DTT) inter-

action, cluster transfer, and assembly experiments were fol-

lowed performing UV-visible and CD spectra and 2D

diamagnetic-tailored 1H-15N HSQC and 1D paramagnetic-

tailored 1H NMR experiments in anaerobic conditions.

Anaerobic conditions were obtained by degassing all buf-

fers and performing the experiments in glove-box with less

than 5 p.p.m. of oxygen. The samples were then sealed in a

gas-tight NMR tube or a UV-vis cuvette for the spectro-

scopic analysis. Each experiment was successfully repeated

three times. UV-visible and CD spectra were acquired

anaerobically at 298 K in 50 mM phosphate buffer, 5 mM

DTT, 150 mM NaCl, pH 7.0 on a Cary 50 Eclipse spec-

trophotometer (Varian-Agilent Technologies, Palo Alto,

CA, USA) and JASCO J-810 spectropolarimeter (JASCO,

Easton, MD, USA), respectively. NMR experiments were

performed on Bruker AVANCE 400, 700, 900, and

950 MHz spectrometers at 298 K on 0.3–1 mM protein

samples. Backbone chemical shift assignments of BOLA3,

of BOLA3 in the apo and [2Fe-2S]2+ hetero-complex with

GLRX5, of apo GLRX5, and of [2Fe-2S]2+ GLRX5 were

already available [10,40]. Chemical shift assignment of the

individual N- and C-domains of NFU1 and full-length

NFU1 are available in the Biological Magnetic Resonance

Bank (under accession codes BMRB: 18489 [NFU1 N-do-

main], BMRB: 19068 [NFU1 C-domain], and BMRB:

26801 [full-length NFU1]) [16].

The potential interaction between apo mNFU1 and

BOLA3 was followed, in 50 mM phosphate buffer, 150 mM

NaCl, 5 mM DTT pH 7.0, titrating 15N-labeled (or unla-

beled) apo mNFU1 with unlabeled (or 15N-labeled) BOLA3.

The potential interaction between [4Fe-4S]2+ mNFU1 and

BOLA3 was investigated in anaerobic conditions by (a)

chemically reconstituting, in the presence of iron and sulfide

ions, equimolar or 1 : 2 mixtures of unlabeled (or 15N-la-

beled) apo mNFU1 and 15N-labeled (or unlabeled) BOLA3

in 5 mM GSH, 5 mM DTT, 150 mM NaCl, 50 mM Tris base

pH 8, or in 5 mM DTT, 150 mM NaCl, 50 mM Tris base pH

8, and spectroscopically investigating the final mixture after

having exchanged it in 50 mM phosphate buffer, 150 mM

NaCl, 5 mM DTT pH 7.0; (b) titrating a 1 : 1 mixture of
15N-labeled BOLA3 and unlabeled apo GLRX5 with 1

equivalent of [4Fe-4S]2+ mNFU1 in 50 mM phosphate buffer,

150 mM NaCl, 5 mM DTT pH 7.0.

The cluster transfer and assembly observed upon mixing

[2Fe-2S]2+ GLRX5-BOLA3 and apo mNFU1 in 50 mM phos-

phate buffer, 150 mM NaCl, 5 mM GSH, 5 mM DTT pH 7.0

was followed in anaerobic conditions titrating 15N-labeled (or

unlabeled) mNFU1 with [2Fe-2S]2+ GLRX5-BOLA3 (unla-

beled or 15N-labeled GLRX5 or 15N-labeled BOLA3). The

same experiment was also performed in 50 mM phosphate buf-

fer pH 7.0, 5 mM GSH, and 150 mM NaCl.

The potential interaction, cluster transfer, and assembly

between GLRX5 and mNFU1 were followed in anaerobic

conditions in 50 mM phosphate buffer pH 7.0, 5 mM GSH,

5 mM DTT, and 150 mM NaCl by (a) titrating 15N-labeled

apo mNFU1 with unlabeled apo GLRX5; (b) titrating a

60 : 40 mixture of 15N-labeled (or unlabeled) [2Fe-2S]2+ and

apo GLRX5 with unlabeled (or 15N-labeled) apo mNFU1.

Molecular docking

The structural model of monomeric apo mNFU1 was cal-

culated using the protein–protein docking program HAD-

DOCK2.2 by following the standard HADDOCK

procedure [18,19]. The structures of the individual N- and

C-domains (PDB entries 2LTM and 2M5O, respectively)
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[16], to which the N- and C-flexible termini have been

removed, have been used as input data. The meaningful

NMR chemical shift differences, shown in Fig. 2A,B, were

used to define ambiguous interaction restraints for the resi-

dues at the protein–protein interface. The ‘active’ residues

were defined as those having a chemical shift perturbation

upon complex formation larger than the average of

Davg(HN) plus 1r and with a solvent accessibility higher

than 45%; the ‘passive’ residues were defined as those being

surface neighbors to the active residues and with a solvent

accessibility higher than 45%. Following the standard

HADDOCK algorithm, HADDOCK clustered 152 struc-

tures in eight clusters, which represents 76.0% of the water-

refined models HADDOCK generated. The clusters were

ranked based on the averaged HADDOCK score of their

top four members. The best-scoring HADDOCK cluster

resulted in 41 structures, whose statistics are reported in

Table 1.
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Abstract 

The last steps of the pathway responsible of the maturation of mitochondrial [4Fe-4S] 

proteins are still elusive. Three proteins ISCA1, ISCA2 and NFU1 have been shown to be 

implicated in the assembly of [4Fe-4S] clusters and their transfer into the mitochondrial 

apo client proteins, i.e. aconitase, respiratory complexes I and II and lipoyl synthase. The 

available genetic and proteomic data did not provide a clear and definitive picture on which 

of the three proteins are essential for this process and how they operate. In order to shed 

light on this, we here present a NMR-based study on how ISCA1, ISCA2 and NFU1 

proteins act. Our data defines a detailed molecular model of the succession of events 

performed in a coordinated manner by ISCA1, ISCA2 and NFU1 to make [4Fe-4S] clusters 

available to mitochondrial apo client proteins. We showed that ISCA1 is the key player of 

the [4Fe-4S] protein maturation process, working as a mediator between the two no 

interacting proteins ISCA2 and NFU1 to form a ternary complex. The ternary complex 

allows the cluster to be safely moved from the cluster binding site where it is assembled, 

i.e. in the ISCA1-ISCA2 complex, to a cluster binding site formed by ISCA1 and NFU1 

proteins, making the cluster available for mitochondrial apo client proteins with no risk of 

being lost in solution where it might damage the cellular environment. 
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Introduction 

In eukaryotes, mitochondria are the primary site for the biosynthesis of iron-sulfur (Fe-S) 

clusters.1-2 Within the mitochondrial matrix, the biosynthesis of Fe-S clusters and their 

insertion into apo proteins is assisted by several accessory proteins that are highly 

conserved from bacteria to mammals.3-4 Among these proteins, three of them, i.e. ISCA1, 

ISCA2 and NFU1, have been shown to be implicated in the assembly and transfer of [4Fe-

4S] clusters to be inserted into mitochondrial apo client proteins.5-12 ISCA1 and ISCA2 are 

two highly homologous members of the A-type evolutionarily conserved protein family, 

which is characterized by three highly conserved cysteine residues organized in a C-Xn-C-

G-C sequence motif (n is usually 63-65, but is increased by a 21-residue insert in some 

eukaryotic proteins).13 This motif has been shown to be involved in both [2Fe-2S] and [4Fe-

4S] cluster binding.14-19 In humans, a ISCA1-ISCA2 complex was identified in vivo20 and 

in its heterodimeric state was shown to act in vitro as a platform to assemble a [4Fe-4S] 

cluster from two [2Fe-2S] clusters received by GLRX5, the [2Fe-2S] metallochaperone of 

the mitochondrial matrix.16, 21 This pathway was proposed to act in vivo to assemble [4Fe-

4S] clusters in mitochondria. On the other hand, in vivo data also provided evidence that 

only human ISCA1 is essential for mitochondrial [4Fe-4S] proteins in skeletal muscle or 

primary neuronal cells under defined physiological conditions, while ISCA2 is 

dispensable.20 These data contrast with what was found in HeLa cells in which similar 

phenotypes were observed for ISCA1 and ISCA2 knockdowns, i.e. the two proteins seem 

to function together in the biosynthesis of mitochondrial [4Fe-4S] clusters.6 Collectively, 

the results available in the literature suggest that a still elusive, dynamic network of 

interactions of ISCA proteins probably exists in vivo and that the biogenesis of 

mitochondrial [4Fe-4S] client proteins is a complex and dynamic system that may have 

tissue and temporal specificity. 

The other player of the ISCA1-ISCA2 pathway is NFU1, a universally present protein 

composed by well-structured N- and C-domains connected by a flexible linker.22-24 Human 

NFU1 contains a conserved CXXC-motif located in the C-domain, shown to be involved 

in [4Fe-4S] cluster binding.12, 23, 25 NFU1 was proposed to act downstream the ISCA1-

ISCA2 complex.2 The current prevailing model was largely based on studies in 

Saccharomyces cerevisiae26 which suggested that NFU1 receives the [4Fe-4S] cluster 

assembled on the ISCAs complex and then transfers it to selected apo client proteins. As 

support to this model, it was found that yeast Nfu1 specifically interacts in vivo with the 
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yeast homologues of both human ISCA1 and ISCA2.26 On the other hand, human ISCA1 

and ISCA2 have found to have distinct interacting partners. Indeed, while a specific 

interaction was found in vivo between ISCA1 and NFU1 by immunoprecipitation 

experiments, NFU1 did not co-immunoprecipitate with ISCA2.20 In addition, it has been 

recently proposed that the ISCA1-ISCA2-NFU1-dependent pathway might be not unique, 

being other alternative pathways also operative. In a recent study we showed that [2Fe-2S] 

GLRX5-BOLA3, a candidate physiologically relevant complex operating upstream of the 

ISCAs complex27-28, is able to promote the assembly of a [4Fe-4S] cluster on NFU1 with 

no requirement of the ISCA1-ISCA2 complex.25 This alternative pathway was proposed to 

be required in specific cellular conditions. Indeed, it was demonstrated that yeast NFU1 

has a heightened importance in cells undergoing oxidative metabolism as opposed to anoxic 

metabolism,26 and thus this specific pathway may be activated under oxidative stress. 

Similarly, it has been recently shown by in vitro experiments that a [4Fe-4S]-bound form 

of ISCU1, operating upstream of the ISCA1-ISCA2 complex, transfers its cluster to apo 

NFU1, leading to the formation of [4Fe-4S] NFU1, and thus de facto also this pathway 

bypasses the ISCA1-ISCA2 complex.29 The latter pathway, however, contrasts with studies 

indicating that [4Fe-4S] ISCU1 is not a physiologically relevant species.30-31 Collectively, 

all the data available up to now in the literature cannot depict a molecular view on how the 

three ISCA1, ISCA2 and NFU1 proteins cooperate in the maturation of mitochondrial [4Fe-

4S] proteins. In order to shed light on this matter, we here report a NMR-based study on 

the ISCA1, ISCA2 and NFU1 patterns of interactions and functional processes. Our data 

allowed to define a detailed molecular model of the succession of events performed in a 

coordinated manner by ISCA1, ISCA2 and NFU1 to assemble and make available [4Fe-

4S] clusters for mitochondrial apo client proteins.  
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Experimental section 

Protein expression and purification 

pDONR221 plasmid containing full-length ISCA1 gene (UniProt: Q9BUE6) was 

purchased by Genescript. Gateway cloning technology (Invitrogen) was then applied to 

clone full-length ISCA1 gene into pDEST-HisMBP plasmid to express N-terminal Histag-

MBP tagged ISCA1. The latter plasmid was transformed in Escherichia coli BL21-

Gold(DE3) (Agilent) competent cells. Cells were cultivated at 37°C in Luria-Bertani (LB) 

media adding ampicillin (100 µg/mL), 4 mL of Solution Q and 250 µM of FeCl3 per liter 

of sterile LB until OD600 reached 0.8-1. Protein expression was induced with 0.2 mM 

isopropyl �-D-1-thiogalactopyranoside (IPTG) at 18°C for 16 hours. The cells were 

harvested by centrifugation at 5000 rpm for 20 min (JA-10, Beckman Coulter) and then 

resuspended in binding buffer (50 mM Tris-HCl, 500 mM NaCl, 15 mM Imidazole, pH 

8.0). The cells were lysed by sonication (40 minutes, 2’’ ON and 9.9’’ OFF) at 4 °C. The 

N-terminal 6Histag-MBP-ISCA1 protein was purified from the lysate using a HisTrap HP 

column (GE Healthcare) and then the MBP-6His-tag was cleaved by tobacco etch virus 

protease treatment over-night at room temperature in binding buffer. His-trap column 

followed by amylose resin column were performed to separate the digested ISCA1 from 

MBP-6His-tag and from undigested MBP-6His-tag ISCA1. The final yield of ISCA1 was 

~15 mg/L of LB culture. Apo ISCA1 was obtained performing all the purification steps 

under aerobic conditions, while a mixture of apo and [2Fe-2S]2+ ISCA1 was purified under 

anaerobic conditions (anaerobically purified ISCA1). The anaerobically purified ISCA1 

protein was characterized by UV- and CD-visible absorption and 1D 1H paramagnetic 

NMR spectroscopies, analytical size exclusion chromatography (Figure S1), and iron and 

acid-labile sulfide content. Protein quantification was carried out with the Bradford protein 

assay, using BSA as a standard. Nonheme iron and acid-labile sulfide content was 

determined as described previously.32 In the UV-visible absorption spectrum of 

anaerobically purified ISCA1, the extinction coefficients at 325 and 420 nm (ranging from 

4200 to 5700 and from 2100 to 3900 M-1 cm-1 depending on protein preparation, 

respectively) are far from the lower end of the range of values that are considered typical 

for [2Fe-2S] clusters (11000 and 8000 M-1 cm-1, respectively33), indicating a partial [2Fe-

2S] cluster occupancy in the homodimer. Iron and acid-labile sulfide analyses of 

anaerobically purified ISCA1 samples indicate ∼0.3 [2Fe-2S]2+ cluster per homodimer. 
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Moreover, after chemically reconstituting anaerobically purified ISCA1, we observed in 

the UV-visible absorption spectrum an increase of the molar extinction coefficients of the 

[2Fe-2S] cluster absorption bands (Figure S1). However, no formation of a [4Fe-4S] 

cluster-bound species was observed as shown by the 1D 1H paramagnetic NMR spectrum, 

which has indeed the same signals of anaerobically purified [2Fe-2S]2+ ISCA1 species 

(Figure S1). This behavior differs from what observed for the anaerobically purified 

ISCA2, which, indeed, upon chemical reconstitution, produced a [4Fe-4S] bound dimeric 

species.16 

The production of human ISCA2 and full-length and C-domain NFU1 in their apo and Fe-

S cluster-bound forms were obtained as previously described in literature.15, 25 As previously 

reported,16 the purification under anaerobic conditions of ISCA2 resulted in a dimer, which 

is composed by a mixture of apo and [2Fe-2S]2+ cluster-bound species with a [2Fe-2S]2+ 

cluster occupancy of 0.1-0.2 cluster per homodimer.  

Production of Fe-S cluster-bound species 

A 1:1 mixture of ISCA1 and ISCA2 was produced by stepwise titrating anaerobically 

purified 15N ISCA2 with anaerobically purified ISCA1 and monitoring changes in the 1H-
15N HSQC NMR maps. Chemical shift changes occur in a slow exchange regime on the 

NMR time scale, which were completed once the 1:1 protein ratio was reached, indicating 

that an ISCA1-ISCA2 hetero-complex is fully formed at this stoichiometric ratio. The 

ISCA1-ISCA2 complex was then chemically reconstituted to obtain the [4Fe-4S]2+ cluster-

bound hetero-complex. Chemical reconstitution was anaerobically performed in 50 mM 

Tris-HCl, 100 mM NaCl and 5 mM DTT buffer at pH 8.0 adding eight equivalents of FeCl3 

and Na2S to a protein solution of ~40-80 µM. The reaction was incubated for 16 h at room 

temperature. Anaerobic conditions were obtained performing the chemical reconstitution 

in glove-box (MBraun Labstar 130) with less than 2 ppm of oxygen and by using all buffers 

degassed. Anaerobically purified ISCA1 and a 1:1 mixture of anaerobically purified ISCA1 

and apo NFU1 were chemically reconstituted following the same procedure. This led to 

dimeric [2Fe-2S]2+ and hetero-dimeric [4Fe-4S]2+ cluster-bound species, respectively. 

Dimeric [4Fe-4S]2+ NFU1 was produced following the protocol previously reported.25 

Analytical size exclusion chromatography and SEC-MALS 

For analytical size exclusion chromatography analysis, purified samples were loaded on a 

SuperdexTM 200 Increase 10/300 GL column attached to an AKTA pure chromatography 

unit with a continuous flow rate of 0.65 mL/min. The column was calibrated with gel 

filtration marker calibration kit, 6500–66000 Da (Sigma-Aldrich), to obtain the apparent 
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molecular masses of the detected species. The column was equilibrated with degassed 

phosphate buffer 50 mM, 150 mM NaCl, 5 mM DTT and pH 7.0. SEC-MALS data were 

acquired by attaching a SuperdexTM 200 Increase 10/300 GL column to a DAWN HELEOS 

system with a continuous flow rate of 0.6 mL/min using a filtered buffer (50 mM, 150 mM 

NaCl, 5 mM DTT and pH 7.0).  Each experiment was successfully repeated at least three 

times. 

UV- and CD-visible spectroscopy  

UV- and CD-visible spectra were performed to characterize the cluster bound to 

anaerobically purified and chemically reconstituted ISCA1. The experiments were 

performed under anaerobic conditions, working in glove-box with less than 5 p.p.m. of 

oxygen, by degassing the buffer and using a gas-tight cuvette. UV- and CD-visible spectra 

were purchased at room temperature (25 °C) in 50 mM phosphate buffer, 150 mM NaCl, 5 

mM DTT and pH 7.0 on a Cary 50 Eclipse spectrophotometer and JASCO J-810 

spectropolarimeter, respectively. Each experiment was successfully repeated three times. 

NMR spectroscopy 
1H-15N HSQC spectra were acquired at 298 K in 50 mM phosphate, 150 mM NaCl, 5 mM 

DTT pH 7.0 buffer, 10% (v/v) D2O. All NMR spectra were recorded on Bruker AVANCE 

700, 900 and 950 MHz, processed using the standard Bruker software (Topspin) and 

analyzed with CARA program. To monitor the possible interaction among ISCA1, ISCA2 

and NFU1 in their apo and Fe-S cluster-bound states, 15N labeled protein(s) were stepwise 

titrated in anaerobic conditions with increasing amounts of unlabeled or 15N-labelled 

protein(s). Chemical shifts of the backbone NHs observed in the 1H 15N HSQC spectra 

along the additions of the unlabeled or 15N-labelled protein(s) were compared with chemical 

shifts of 15N-labelled protein(s) in the initial state. The observed chemical shift changes 

were reported as backbone weighted average chemical shift differences Ddavg(HN), i.e. 

(((DH)2 + (DN/5)2)/2)1/2, where DH and DN are chemical shift differences for backbone 

amide 1H and 15N nuclei, respectively. Chemical shift assignment of full-length NFU1 and 

of the C-domain of NFU1 were available in the Biological Magnetic Resonance Bank 

(under accession codes BMRB: 26801 [full-length NFU1] and BMRB: 19068 [NFU1 C-
domain] 23. Chemical shift assignment of apo ISCA2 was already available.16 Each titration 

was successfully repeated three times. 

1D 1H paramagnetic NMR experiments were acquired at 400 MHz with a 1H optimized 5 

mm probe at temperatures ranging from 283 K and 298 K, with protein samples in 50 mM 
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phosphate, 150 mM NaCl, 5 mM DTT pH 7.0 buffer, 99% (v/v) D2O. The protein 

concentration was 0.5-0.8 mM. Water signal was suppressed via fast repetition experiments 

and water selective irradiation. Experiments were typically performed using an overall 

recycle delay of 90 ms. Squared cosine and exponential multiplications were applied prior 

to Fourier transformation. Manual baseline correction was performed, using polynomial 

functions. Each experiment was successfully repeated three times. 
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Results 

Interaction network among ISCA1, ISCA2 and NFU1 in their apo forms 

Protein-protein interaction studies were performed by titrating two or three proteins in their 

apo forms (i.e. ISCA1, ISCA2 and NFU1) with different mixing sequences and then 

analyzed by NMR spectroscopy and analytical size exclusion chromatography. In these 

experiments, the protein constructs used were: i) the mitochondrial isoform of human 

NFU1 having, in the mature state, a molecular mass of ~22 kDa, as obtained upon removal 

of the N-terminal mitochondrial targeting sequence of 58 residues;12 ii) human ISCA2 

lacking the predicted N-terminal mitochondrial targeting sequence of 43 residues and thus 

resulting in a molecular mass of ~12 kDa;15 iii) human ISCA1 in the full-length form 

(molecular mass of ~14 kDa) as its mitochondrial presequence is not removed upon its 

mitochondrial import.34 

First, we investigated protein-protein interactions occurring between couples of proteins. 

When apo 15N ISCA2 was stepwise titrated with apo 15N NFU1 up to a 1:1 protein ratio 

(estimated considering monomeric protein concentrations), no chemical shift changes were 

observed along the 1H-15N HSQC NMR experiments and the 1H-15N HSQC map of the final 

1:1 mixture is the sum of the 1H-15N HSQC maps of the two isolated proteins (Figure 1A). 

The resulting picture coming from these experiments is that the two proteins do not interact 

each other. Analytical size exclusion chromatography data confirm this result showing that 

no peaks with an apparent molar mass higher than those of the two isolated ISCA2 and 

NFU1 proteins (running, respectively, as a homodimer and a monomer with a low 

percentage of homodimer16, 25) were observed in the final 1:1 mixture (Figure 1B).  

When apo 15N ISCA2 was stepwise titrated with apo ISCA1 up to a 1:1 protein ratio 

(estimated considering monomeric protein concentrations), chemical shift changes were 

observed in the 1H-15N HSQC maps of apo 15N ISCA2 in a slow exchange regime on the 

NMR time scale, i.e. signals of apo ISCA2 decreased in intensity and those of a new 

species, assigned to the apo ISCA1-ISCA2 complex, appeared and increased in intensity 

along the titration (Figure 1C). Once the 1:1 ISCA1-ISCA2 ratio was reached, the signals 

of apo ISCA2 completely disappeared and the signals of the apo ISCA1-ISCA2 complex 

reached their maximal intensity, indicating that the complex is fully formed at the 1:1 

stoichiometric ratio. Analytical size exclusion chromatography of the final 1:1 mixture 

showed: i) a single peak with an apparent molar mass of ~24 kDa, which is close to the 
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molecular weight calculated from a dimeric apo ISCA1-ISCA2 complex (26 kDa), ii) that 

monomeric apo ISCA1 is no longer present in the mixture (Figure 1D). Overall, the NMR 

and analytical size exclusion chromatography data indicate the formation of a 

heterodimeric apo ISCA1-ISCA2 complex. The meaningful (1s Ddavg(HN) > 0.05 ppm) 1H 

and 15N chemical shift changes between apo ISCA2 alone and in the 1:1 protein mixture 

(Figure S2) are localized in a well-defined region of the protein. This region matches with 

the subunit-subunit interface stabilizing the dimeric state of apo ISCA2,16 thus supporting 

that apo ISCA1 and apo ISCA2 are interacting each other by forming a dimeric structure 

similar to that formed by homodimeric ISCA2 (Figure S2). The same results were 

previously found using a shorter ISCA1 construct obtained deleting its predicted 

mitochondrial presequence of 1-23 amino acids,16 thus indicating that the latter stretch does 

not affect complex formation and does not take part as active contributor to complex 

formation. 

Apo ISCA1 forms a heterocomplex also with apo NFU1. Indeed, when apo 15N NFU1 was 

stepwise titrated with apo ISCA1 up to a 1:1 protein ratio (estimated considering 

monomeric protein concentrations), chemical shift changes were observed on the 1H-15N 

HSQC maps of apo NFU1 in an intermediate exchange regime on the NMR time scale 

(Figure 2A). Several resonances of the C-domain of NFU1 broaden beyond detection upon 

addition of apo ISCA1 (Figure 2A and Figure S3). Analytical size exclusion 

chromatography equipped with multiangle light scattering (SEC-MALS) of the final 1:1 

apo NFU1-apo ISCA1 mixture showed a single peak with a molar mass of 29.2 ± 0.5 kDa 

(Figure S3). This value is intermediate between those of the isolated proteins (apo ISCA1: 

14 kDa, and apo NFU1: 22 kDa) and that expected from a heterodimeric apo NFU1-ISCA1 

complex (36 kDa), while the peaks of monomeric apo ISCA1 and dimeric apo NFU1 are 

not present in the final mixture (Figure 2B), supporting that the two proteins are complexed 

in a heterodimer. Overall, both NMR and SEC-MALS data showed that a heterodimeric 

ISCA1-NFU1 complex is formed once the 1:1 protein ratio is reached and that it is formed 

via the interaction of the C-domain of NFU1 with ISCA1. However, a few resonances of 

the N-domain of NFU1 are also affected by apo ISCA1 additions (residues 54-58, Figure 

S3). These residues are located at the interacting interface between the N- and C-domains 

of apo NFU1 when takes a closed conformation.25 This closed conformation of the two 

interacting domains is in equilibria with an open conformation where the N- and C-domains 

freely move in solution.23, 25 Considering this structural feature and the effect of ISCA1 

addition on the NH signals of residues 54-58, we can propose a model where ISCA1-NFU1 
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complex formation induces structural rearrangements at the interaction interface between 

the N- and C-domains of NFU1, possibly affecting the open-closed conformational 

equilibrium. This exchange among different conformations might also explain the lower 

than expected molar mass of the ISCA1-NFU1 complex, as derived by SEC-MALS 

analysis. Mapping the meaningful chemical shift changes (both broadening beyond 

detection effects and chemical shift changes with 1s Ddavg(HN) > 0.03 ppm) on the closed 

conformation of apo NFU1, it results that the two helices of the C-domain are largely 

affected by the protein-protein interaction, while the b-sheet of the C-domain is essentially 

unaffected (Figure 2C). The two helices encase the cluster binding CXXC motif of NFU1, 

indicating that ISCA1 in the complex is positioned close to the cluster binding region, 

although the CXXC motif is not largely involved in protein-protein recognition. 

The apo complexes, ISCA1-15N NFU1 and ISCA1-15N ISCA2, were then titrated with apo 

ISCA2 and apo 15N NFU1, respectively, and the resulting mixtures were again analyzed by 

NMR. In the first titration, the comparison of the 1H-15N HSQC map of the final mixture, 

with 1:1 ratio of the apo 15N NFU1-ISCA1 complex and apo ISCA2, with the maps of apo 
15N NFU1 and of the ISCA1-15N NFU1 apo complex, indicated that NFU1 remains 

complexed with ISCA1, thus ISCA2 not being able to extract ISCA1 from the ISCA1-

NFU1 complex to form an isolated ISCA1-ISCA2 complex. Indeed, the chemical shifts of 

NFU1 complexed with ISCA1 were not affected by the addition of apo ISCA2 and the 

chemical shifts of isolated apo NFU1 were not detected, thus indicating that free apo NFU1 

was not released in solution, as it would have expected in the case of the formation of an 

isolated ISCA1-ISCA2 complex (Figure 3A). In the second titration, when the ISCA1-15N 

ISCA2 apo complex is titrated with apo 15N NFU1 up to a 1:1 ratio, ISCA2 remains 

complexed with ISCA1, thus NFU1 not being able to extract ISCA1 from the ISCA1-

ISCA2 complex to form an isolated ISCA1-NFU1 complex. Indeed, the chemical shifts of 

ISCA2 complexed with ISCA1 were not significantly affected by the addition of apo NFU1 

and the chemical shifts of isolated apo ISCA2 were not detected (Figure 3B), thus 

indicating that free apo ISCA2 was not released in solution, as it would have expected in 

the case of the formation of an isolated ISCA1-NFU1 complex. On the contrary, the 

backbone NH chemical shifts of NFU1 changed upon its addition to the ISCA1-ISCA2 

complex. Specifically, the backbone NH signals of NFU1 in the 1H-15N HSQC map of the 

final apo ISCA1- apo 15N ISCA2- apo 15N NFU1 mixture well overlaps with that of the 

ISCA1-15N NFU1 apo complex, while does not with that of apo 15N NFU1 alone (Figure 

3C). Overall, we can conclude that: i) apo NFU1 interacts with the ISCA1-ISCA2 apo 
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complex via the C-domain of NFU1 similarly to what happens in the NFU1-ISCA1 apo 

complex; ii) apo ISCA1 is the protein mediating the interaction with both apo NFU1 and 

apo ISCA2, being the latter two, on the contrary, not interacting each other, in agreement 

with the lack of interactions when just the two of them are mixed (as described above). 

Thus, these data indicated that ISCA1, interacting with both ISCA2 and NFU1, mediates 

the formation of a ternary complex. 

To further corroborate this model, apo ISCA1 was stepwise added to a 1:1 mixture 

containing the two not-interacting apo 15N ISCA2 and apo 15N NFU1 proteins. The 1H-15N 

HSQC maps showed the occurrence of the interaction of apo ISCA1 with both apo ISCA2 

and apo NFU1. In the final mixture, the NH signals of apo NFU1 overlap with those of apo 

NFU1 complexed with apo ISCA1, and not with those of isolated apo NFU1 (Figure S4), 

and the NH signals of apo ISCA2 overlap with those of apo ISCA2 complexed with apo 

ISCA1, and not with those of isolated apo ISCA2 (Figure S4). The observed chemical shift 

changes are concurrent on both proteins along the titration and the chemical shift changes 

on both 15N ISCA2/NFU1 apo proteins are complete once one equivalent of apo ISCA1 

was added to the 1:1 ISCA2/NFU1 apo mixture, i.e. indeed, the addition of two equivalents 

of apo ISCA1 to the mixture did not significantly affect the 1H-15N HSQC map. These 

results conclusively indicated that apo ISCA1 interacts in tandem with both apo ISCA2 and 

apo NFU1, by promoting the formation of a ternary complex. Thus, ISCA1 mediates the 

interaction between the two not interacting proteins apo ISCA2 and apo NFU1. On the 

other hand, analytical size exclusion chromatography of the final mixture did not show the 

presence of a peak with an elution volume smaller than those of the two isolated ISCA1-

ISCA2 and ISCA1-NFU1 apo complexes, as it would be expected for the presence of a 

ternary complex. This indicates that the latter can be readily released at the lower protein 

concentrations used in the analytical size exclusion chromatography with respect to those 

used in the NMR experiments. 

 

Protein-protein interaction studies between [4Fe-4S] ISCA1-ISCA2 and apo NFU1 

Anaerobical purification of ISCA1 and ISCA2 led to a mixture of apo and [2Fe-2S]2+ 

cluster-bound forms (see Materials and Methods for details). While chemical reconstitution 

of anaerobically purified ISCA2 led to the formation of a [4Fe-4S]2+ cluster-bound dimeric 

form,16 chemical reconstitution of anaerobically purified ISCA1 led only to an increase of 

the [2Fe-2S]2+ cluster-bound form. On the other hand, chemical reconstitution of the 1:1 

ISCA1-ISCA2 heterodimer (see Materials and Methods for details) led to the formation of 
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a [4Fe-4S]2+-bound, dimeric species ([4Fe-4S] ISCA1-ISCA2, hereafter). The 1D 1H 

paramagnetic NMR spectrum is similar to that of homodimeric [4Fe-4S] ISCA2 as 

previously shown,16 with down-field shifted signals having an anti-Curie temperature 

dependence, which originate from bCH2 of the Cys ligands, and differs from that of [2Fe-

2S]2+ cluster-bound species of both ISCA1 and ISCA2 (Figure 4A, Figure S1, and 16). 

Analytical size exclusion chromatography showed the presence of a single peak eluting at 

a volume very similar to that of the dimeric ISCA2 with no presence of monomeric ISCA1, 

consistent with the complete formation of a dimeric hetero-complex (Figure 4B). The 1H-
15N HSQC spectra of the 1:1 ISCA1-15N ISCA2 mixture before (i.e. anaerobically purified) 

and after chemical reconstitution showed that chemical shifts of most of the backbone NH 

signals did not vary, consistent with ISCA2 being still complexed with ISCA1. Only 

residues of ISCA2 surrounding the cluster binding cysteines (Cys 79, Cys 144 and Cys 

146), i.e. Gly 76, Gly 77, Gly 78, Gly 81, Gly 143 and Gly 147, (Figure 4C compare red 

with blue), broaden beyond detection in the 1H-15N HSQC spectrum of the chemically 

reconstituted ISCA1-ISCA2 complex, due to the binding of the paramagnetic [4Fe-4S]2+ 

cluster, indicating that the C-X64-C-G-C conserved sequence motif is involved in [4Fe-4S]2+ 

cluster binding in the ISCA1-ISCA2 complex. 

When the [4Fe-4S] ISCA1-15N ISCA2 complex was stepwise titrated with apo 15N NFU1 

up to a 1:1 ratio, the backbone NH signals of ISCA2 did not show any significant chemical 

shift changes, with the exception of the Gly residues close to the Cys cluster ligands, whose 

backbone NH signals, at the end of the titration, became detectable again in the 1H-15N 

HSQC map at the chemical shift values of the apo ISCA1-ISCA2 complex (Figure 4C 

compare green with blue and red). On the contrary, many spectral shift changes (mostly 

line broadening effects) were observed for the backbone NH signals of the C-domain of 

NFU1. The affected residues are located on the same interacting region mapped in the 

ISCA1-NFU1 and ISCA1-ISCA2-NFU1 apo complexes. Overall, these NMR data allowed 

to propose that: i) NFU1 interacts with the [4Fe-4S] ISCA1-ISCA2 complex via its C-

domain similarly to what found in the apo ternary complex, i.e. ISCA1 complexed with 

ISCA2 mediates the interaction with NFU1; iii) the [4Fe-4S] cluster is no longer bound to 

the ISCA2 protein, likely being shared by ISCA1 and NFU1 in the ternary ISCA1-ISCA2-

NFU1 complex. 

To further support this model, [4Fe-4S] ISCA1-15N ISCA2 complex was titrated with a 15N 

labelled construct of apo NFU1 comprising only the C-domain, up to the 1:1 ratio. The 

spectral patterns on the 1H-15N HSQC NMR maps (Figure S5) were the same as those 
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observed in the titration with full-length NFU1, both on ISCA2 (no spectral changes) and 

NFU1 where the changes map on the same region of C-domain identified in the apo ISCA1-

NFU1 interaction (compare inset of Figure S5 with Figure 2C), indicating that the C-

domain of NFU1 interacts with ISCA1 complexed with ISCA2. These data corroborate the 

proposed model that ISCA1 mediates the protein-protein interaction between NFU1 and 

the [4Fe-4S] ISCA1-ISCA2 complex, being ISCA1, and not ISCA2, the protein interacting 

with NFU1. 

The final question is now to define which kind of cluster and cluster coordination is present 

in the ISCA1-ISCA2-NFU1 complex. The paramagnetic 1D 1H NMR spectrum of the 1:1 

mixture of [4Fe-4S]2+ ISCA1-ISCA2 and apo NFU1 showed the presence of two hyperfine-

shifted signals at 19.3 and 12.9 ppm and two close signals at around 10.5 ppm (Figure 5A), 

all having an anti-Curie temperature dependence. The chemical shift values of these 

signals, their anti-Curie temperature dependence, and their linewidths are typical of �CH2 

signals of Cys residues bound to a [4Fe-4S]2+ cluster with an S=0 electronic ground state, 

with the paramagnetism arising from excited states of the electron spin ladder, partially 

populated at room temperature.35-36 The paramagnetic 1D 1H NMR spectrum of the 1:1 

[4Fe-4S]2+ ISCA1-ISCA2/apo NFU1 mixture is completely different with respect to that of 

the [4Fe-4S]2+ ISCA1-ISCA2 complex while it is closer, although not superimposable, to 

that of dimeric [4Fe-4S]2+ NFU1 (compare Figure 5A with Figures 5B and 4A). The same 

hyperfine-shifted signals were also obtained by mixing, at 1:1 ratio, dimeric [4Fe-4S]2+ 

NFU1 and apo ISCA1-ISCA2 complex (Figure 5C). Therefore, the 1D 1H paramagnetic 

NMR data indicated that a [4Fe-4S]2+ cluster is bound to the ternary ISCA1-ISCA2-NFU1 

complex. Since the 1H-15N HSQC NMR data described above showed that ISCA2 is not 

involved in cluster binding, we can envisage that the [4Fe-4S]2+ cluster is bridged between 

NFU1 and ISCA1 in the ternary complex. In order to validate this model, the heterodimeric 

ISCA1-NFU1 complex, obtained by mixing anaerobically purified ISCA1 and apo 15N 

NFU1, was chemically reconstituted. Its paramagnetic 1D 1H NMR spectrum (Figure 5D) 

showed the presence of the same anti-Curie, hyperfine-shifted signals observed when the 

[4Fe-4S]2+ cluster is bound to the ternary ISCA1-ISCA2-NFU1 complex. This data 

provides the conclusive evidence that the [4Fe-4S]2+ cluster is shared by ISCA1 and NFU1 

in the ternary complex. In addition, the latter data showed that the ISCA1-NFU1 complex 

binds a [4Fe-4S]2+ cluster, independently of the presence of ISCA2. To investigate whether 

the [4Fe-4S]2+ cluster-bound ISCA1-NFU1 complex can also be formed upon mixing 

dimeric [4Fe-4S]2+ NFU1 and apo ISCA1, 1H-15N HSQC and 1D 1H paramagnetic NMR 
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data were acquired on dimeric [4Fe-4S]2+ 15N NFU1 titrated with apo ISCA1. Once the 1:1 

[4Fe-4S]2+ NFU1-apo ISCA1 ratio was reached, the 1D 1H paramagnetic NMR spectrum 

indicated the complete formation of a heterodimeric [4Fe-4S]2+ NFU1-ISCA1 complex 

(Figure 5E). 

 

Discussion 

The late steps of the maturation of mitochondrial [4Fe-4S] proteins, comprising the 

assembly and transfer of [4Fe-4S] clusters into mitochondrial apo client proteins, are not 

yet fully understood. The available genetic and proteomic data did not provide indeed a 

clear picture on which are the proteins essential for the assembly and transfer of the [4Fe-

4S] clusters into the final client proteins and how they operate. Depending on the type of 

human cells or of the eukaryotic organisms, the genetic data pointed out at different 

mechanisms where either ISCA1 only 20, or both ISCA1 and ISCA2, 5-6, 37 are essential for 

the mitochondrial [4Fe-4S] biogenesis in vivo. There is also a significant discrepancy about 

the proteomic data, as human ISCA1 was found to interact with NFU1 only,20 while yeast 

NFU1 interacts with both yeast ISCA1 and ISCA2.26 The here presented NMR-based study 

provides a molecular model for the succession of events orchestrated by ISCA1, ISCA2 

and NFU1 to assemble [4Fe-4S] clusters and make them available for mitochondrial apo 

client proteins, reconciling all the genetic and proteomic studies. We have showed that 

ISCA1 is the key player of the [4Fe-4S] protein maturation process being able indeed to 

interact either individually with ISCA2 or NFU1 or with both proteins in a ternary complex. 

In the latter case, ISCA1 works as a mediator between the two no interacting proteins 

ISCA2 and NFU1. The ISCA1-ISCA2 complex-bound [4Fe-4S]2+ cluster is not donated to 

NFU1 and dimeric [4Fe-4S]2+ NFU112, 23, 25 is not formed. On the contrary, the cluster is 

translocated within the ternary ISCA1-ISCA2-NFU1 complex from a bridged ISCA1-

ISCA2 coordination to a bridged ISCA1-NFU1 one, thus being ISCA2 no more involved 

in cluster binding. The pathway of the maturation of mitochondrial [4Fe-4S] proteins 

(ISCAs-dependent maturation pathway, hereafter, Figure 6) can thus be outlined as it 

follows: i) the [4Fe-4S]2+ cluster is assembled on the ISCA1-ISCA2 heterodimer by 

reductively coupling two [2Fe-2S]2+ clusters donated by GLRX5;16, 21 ii) [4Fe-4S]2+ ISCA1-

ISCA2 complex can transfer the cluster to client proteins that do not require NFU1 for their 

maturation, i.e. aconitase;8-9 iii) ISCA1, through its specific recognition with the C-domain 

of NFU1, mediates the [4Fe-4S]2+ cluster translocation from ISCA1-ISCA2 to ISCA1-
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NFU1 within a formed ternary ISCA1-ISCA2-NFU1 complex; iv) the ISCA1-ISCA2-

NFU1 complex to which the [4Fe-4S]2+ cluster is coordinated by ISCA1 and NFU1 

specifically can direct the [4Fe-4S]2+ cluster to mitochondrial client proteins that require 

NFU1 for their maturation, i.e. respiratory complexes I and II and the radical SAM protein 

lipoyl synthase.8-9, 38-40 In this mechanism, the cluster can be safely moved from where it is 

assembled, i.e. the ISCA1-ISCA2 complex, to the final client protein in a specific manner, 

with no risk of being lost in solution where it might damage the cellular environment. This 

pathway is in agreement with the in vivo results showing that ISCA2 cannot compensate 

for the loss of ISCA1 function and that ISCA1 and ISCA2 are not functionally redundant.20 

We also found that the interaction between ISCA1 and NFU1 specifically involves the C-

domain of NFU1, being the N-domain of NFU1 essentially not part of the protein-protein 

recognition. The two helices of NFU1 encasing the cluster binding CXXC motif are 

involved in the interaction with ISCA1. The same two helices of NFU1 were recently 

shown to be involved in a specific interaction with ISCU.29 This interaction was proposed 

to be physiologically relevant to drive the cluster transfer observed when a [4Fe-4S] ISCU 

form was mixed with apo NFU1 leading to the formation of [4Fe-4S] NFU1, which in turn 

was shown to be able to mature mitochondrial aconitase.23, 29 Although the physiological 

relevance of the [4Fe-4S] ISCU form is still debated,30-31, 41 the finding that the same 

interacting region of NFU1 is found with both ISCA1 and ISCU suggests the occurrence 

of a mitochondrial [4Fe-4S] protein maturation pathway dependent on the formation of a 

dimeric [4Fe-4S] NFU1 species ([4Fe-4S] NFU1-dependent maturation pathway, hereafter, 

Figure 6). At support of this pathway, a dimeric Fe-S cluster bridged NFU1 was showed 

to form in yeast mitochondria,26 and double deletion of yeast NFU1 and ISU1 is associated 

with more severe defects in aconitase and in mitochondrial respiratory complexes with 

respect to single NFU1 deletion which is associated only with weak defects in 

mitochondrial [4Fe-4S] proteins.7 This pathway was also already suggested based on the 

functional impairment of the Gly194Cys pathogenic mutant of NFU1, whose cluster 

synthesis in yeast depends on Isu1, Grx5 and Ssq1.9 We recently showed that dimeric [4Fe-

4S] NFU1 can also be formed by the [2Fe-2S]2+ GLRX5-BOLA3 complex.25 Indeed, the 

latter transfers its cluster to monomeric apo NFU1 to form, in the presence of a reductant, 

a [4Fe-4S]2+ cluster-bound to dimeric NFU1. In this case, NFU1 works, not as a [4Fe-4S]2+ 

cluster acceptor, as it occurs upon interaction with [4Fe-4S] ISCU,29 but as an ‘assembler’ 

of [4Fe-4S]2+ clusters converting two [2Fe-2S]2+ clusters into a [4Fe-4S]2+ cluster.25 Overall, 

the [4Fe-4S] NFU1-dependent maturation pathway can thus be a physiological pathway 
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alternative to the ISCAs-dependent maturation pathway. We now observed that dimeric 

[4Fe-4S]2+ NFU1 when mixed with apo ISCA1 or with the apo ISCA1-ISCA2 complex 

forms, respectively, the [4Fe-4S]2+ NFU1-ISCA1 adduct or the ternary [4Fe-4S]2+ ISCA1-

ISCA2-NFU1 complex where the [4Fe-4S]2+ cluster is shared by NFU1 and ISCA1. Thus, 

the ISCAs-dependent and [4Fe-4S] NFU1-dependent mitochondrial [4Fe-4S] protein 

maturation pathways resulted strictly connected (Figure 6, dashed arrow). In conclusion, 

dimeric [4Fe-4S]2+ NFU1, formed by [4Fe-4S]2+ ISCU or [2Fe-2S]2+ GLRX5-BOLA3 

complex, can activate alternative pathways to mature mitochondrial [4Fe-4S] client 

proteins thanks to the two connections, shown as dashed arrows in Figure 6, that we 

identified between the ISCAs-dependent and [4Fe-4S] NFU1-dependent pathways.  

The proposed molecular pathways orchestrated by ISCA1, ISCA2 and NFU1 to assemble 

and make available [4Fe-4S] clusters for mitochondrial apo client proteins fully rationalizes 

the in vivo data previously reported for these components. Indeed, from our molecular 

model it resulted that ISCA1 is the crucial protein activating all [4Fe-4S] protein maturation 

pathways, i.e. ISCAs-dependent and [4Fe-4S] NFU1-dependent ones, in agreement with 

knockdown experiments in mouse skeletal muscle and in primary cultures of neurons that 

suggested that ISCA1, but not ISCA2, is required for mitochondrial [4Fe-4S] proteins 

biogenesis.20 On the other hand, similar phenotypes were observed in HeLa cells for ISCA1 

and ISCA2 knockdowns, resulting both proteins crucial for the mitochondrial [4Fe-4S] 

protein biogenesis.6 Our molecular model showed that ISCA2 plays a crucial role in 

assembling [4Fe-4S] clusters once complexed with ISCA1 in the ISCAs-dependent 

pathway, and the latter seems to be primarily required in HeLa cells, with respect to the 

[4Fe-4S] NFU1-dependent pathway. On the contrary, in mouse skeletal muscle and in 

primary cultures of neurons once ISCA2 was knockdown, the [4Fe-4S] NFU1-dependent 

pathway is efficiently activated for maturing all [4Fe-4S] mitochondrial proteins, so, 

basically, substituting the ISCAs-dependent pathway. Specifically, aconitase might be 

directly matured by dimeric [4Fe-4S]2+ NFU1, as observed by Cai et al.,23 while respiratory 

complexes I and II and the radical SAM protein lipoyl synthase by the [4Fe-4S]2+ NFU1-

ISCA1 adduct (Figure 6, dashed arrow). The existence of the [4Fe-4S] NFU1-dependent 

route is supported by previous findings indicating that the binding of 55Fe to the pathogenic 

Nfu1 Gly194Cys mutant in yeast cells was dependent on both the major scaffold protein 

Isu1 and factors releasing the Fe-S cluster from Isu1 (Ssq1, Grx5), but not on the late-acting 

Isa1-2 proteins.9 In conclusion, our data provide a molecular model for the maturation of 

mitochondrial [4Fe-4S] proteins that is able to fully interpret the available in vivo data.  
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Figure 1. Apo ISCA2 interacts with apo ISCA1 and not with apo NFU1. (A) Overlay 

of the 1H-15N HSQC spectrum of a 1:1 mixture of apo 15N ISCA2 and apo 15N NFU1 (red) 

with those of apo 15N ISCA2 (cyano) and apo 15N NFU1 (black). (B) Analytical size 

exclusion chromatography of apo ISCA2 (blue), apo NFU1 (green) and a 1:1 mixture of 

apo ISCA2 and apo NFU1 (black). (C) Overlay of the 1H-15N HSQC spectrum of a 1:1 

mixture of apo 15N ISCA2 and apo ISCA1 (red) with that of apo 15N ISCA2 (black). In the 

insets, overlay of regions of 1H-15N HSQC spectra of apo 15N ISCA2 (black) and of 1:1 

(red) and 1:0.5 (blue) mixtures of apo 15N ISCA2 and apo ISCA1. (D) Analytical size 

exclusion chromatography of apo ISCA2 (blue), apo ISCA1 (cyano) and a 1:1 mixture of 

apo ISCA2 and apo ISCA1 (black). 

Figure 2. Apo ISCA1 interacts with the C-domain of apo NFU1. (A) Overlay of the 1H-
15N HSQC spectrum of a 1:1 mixture of apo 15N NFU1 and apo ISCA1 (red) with that of 

apo 15N NFU1 (black). In the inset, overlay of a region of the 1H-15N HSQC spectra of 

mixtures of apo 15N NFU1 with apo ISCA1 at increasing concentration. (B) Analytical size 

exclusion chromatography of apo ISCA1 (red), apo NFU1 (black) and a 1:1 mixture of apo 

NFU1 and apo ISCA1 (blue). (C) Meaningful chemical shift changes for the backbone NHs 

of apo 15N NFU1 upon the addition of 1 equivalent of apo ISCA1 are mapped on a structural 

model of monomeric apo NFU1 in a closed conformation 25. In orange are the sidechains 

of the solvent exposed (> 50%) residues showing chemical shift changes (line broadening 

beyond detection effects and/or meaningful chemical shift changes). The protein stretches 

in blue represent residues showing meaningful chemical shift changes but not solvent 

exposed. The sidechains of the proline residues are shown in gray.  

 

Figure 3. Apo ISCA1-ISCA2 heterodimeric complex interacts with the C-domain of 

apo NFU1. Overlay of the 1H-15N HSQC spectrum of (A) a 1:1:1 mixture of apo 15N NFU1- 

apo ISCA1- apo ISCA2 (green) with those of apo 15N NFU1 (black) and of a 1:1 mixture 

of apo 15N NFU1 and apo ISCA1 (red); (B) a 1:1:1 mixture of apo 15N NFU1-apo ISCA1-

apo ISCA2 (black) with that of a 1:1 mixture of apo 15N ISCA2 and apo ISCA1 (red); (C) 

a 1:1:1 mixture of apo 15N NFU1-apo ISCA1-apo ISCA2 (black) with those of apo 15N 

NFU1 (red) and of a 1:1 mixture of apo 15N NFU1 and apo ISCA1 (green). 
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Figure 4. The ISCA1-ISCA2 heterodimer binds a [4Fe-4S]2+ cluster. (A) 1D 1H 

paramagnetic NMR spectrum at 283 K of [4Fe-4S]2+ ISCA1-ISCA2, obtained by 

chemically reconstituting a 1:1 mixture of anaerobically purified ISCA1 and ISCA2. (B) 

Analytical size exclusion chromatography of [4Fe-4S]2+ ISCA1-ISCA2 (red), apo ISCA2 

(green) and apo ISCA1 (black). (C) Overlay of the 1H-15N HSQC spectra of apo 15N ISCA2 

(black), 15N ISCA2-ISCA1 apo complex (red), [4Fe-4S] 15N ISCA2-ISCA1 complex (blue), 

of a 1:1 mixture of [4Fe-4S] 15N ISCA2-ISCA1 complex and apo 15N NFU1 (green). The 

marked signals indicate the backbone NHs of ISCA2 residues, and the N-domain, the linker 

and the C-domain of NFU1, labelled as N-, L- and C-NFU1, respectively. 

 

Figure 5. A [4Fe-4S]2+ cluster is bound to the ternary ISCA1-ISCA2-NFU1 complex. 

1D 1H paramagnetic NMR spectra of (A) a 1:1 mixture of [4Fe-4S]2+ ISCA1-ISCA2 and 

apo NFU1, (B) dimeric [4Fe-4S]2+ NFU1, (C) a 1:1 mixture of apo ISCA1-ISCA2 and 

dimeric [4Fe-4S]2+ NFU1, (D) a chemically reconstituted 1:1 mixture of anaerobically 

purified ISCA1 and apo NFU1, (E) a 1:1 mixture of dimeric [4Fe-4S]2+ NFU1 and apo 

ISCA1. The spectra were acquired at 298 K in 50 mM phosphate buffer pH 7.0, 150 mM 

NaCl, 5 mM DTT.  

 

Figure 6. Iron-sulfur cluster assembly pathways for the maturation of mitochondrial 

[4Fe-4S] proteins. The ISCAs-dependent pathway requires ISCA1 and ISCA2 to mature 

[4Fe-4S]2+ mitochondrial proteins: 1) the ISCA1-ISCA2 complex receives two [2Fe-2S]2+ 

clusters from GLRX516 and two electrons from ferredoxin FDX242 to assemble a [4Fe-4S]2+ 

cluster; 2) the [4Fe-4S]2+ ISCA1-ISCA2 complex can transfer the cluster to aconitase 

maturing it or can specifically interact with the C-domain of apo NFU1 forming a ternary  

[4Fe-4S]2+ NFU1-ISCA1-ISCA2 complex; 3) the [4Fe-4S]2+ cluster is moved within the 

ternary complex from a bridged ISCA1-ISCA2 coordination to a bridged ISCA1-NFU1 

coordination; 4) [4Fe-4S]2+ ISCA1-ISCA2-NFU1 complex transfers the cluster to mature 

respiratory complexes I and II and LIAS, with the help of other accessory proteins when 

required (not shown in Figure). The [4Fe-4S] NFU1-dependent pathway is activated upon 

the formation of dimeric [4Fe-4S]2+ NFU1. The latter might be formed following two 

different pathways described in the literature dependent on [2Fe-2S]2+ GLRX3-BOLA3 

complex25 or [4Fe-4S]2+ ISCU.29 We showed here that dimeric [4Fe-4S]2+ NFU1 by 

interacting with apo ISCA1 or with the apo ISCA1-ISCA2 complex can form the [4Fe-

4S]2+ ISCA1-NFU1 complex and the ternary [4Fe-4S]2+ ISCA1-NFU1-ISCA2 complex, 
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respectively. These connections are indicated with dashed arrow. Thus, the two ISCAs-

dependent and [4Fe-4S] NFU1-dependent pathways are strictly connected. 
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Figure 2 
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Figure S2. Apo ISCA1 and apo ISCA2 form a heterodimeric complex. (a) Weighted-average 
chemical shift differences 'δavg (that is, ([(δHN)2 + (δN/5)2]/2)1/2, where δHN and δN are chemical 
shift differences for 1HN and 15N, respectively) between apo 15N ISCA2 alone and in a 1:1 mixture 
with apo ISCA1. The cyano bars represent proline residues. The blue bars represent residues whose 
NHs are not detected or too broad to be analyzed. The dotted horizontal line indicates the threshold 
to consider chemical shift changes as meaningful (1σ ΔGavg > 0.04 ppm). (b) Meaningful chemical 
shift changes for the backbone NHs of apo 15N ISCA2 upon the addition of 1 equivalent of apo 
ISCA1 are mapped on a structural model of apo ISCA1 (ivory)-ISCA2 (gray) heterodimer, based 
on the available structure of homodimeric ISCA2. In red are the sidechains of the residues showing 
meaningful chemical shift changes. The protein stretches in blue and cyano represent residues 
whose NHs are not detected or too broad to be analyzed and proline residues, respectively. 
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Figure S3. Apo ISCA1 interacts with the C-domain of apo NFU1 forming a heterodimeric 
complex. (a) Weighted-average chemical shift differences 'δavg (that is, ([(δHN)2 + (δN/5)2]/2)1/2, 
where δHN and δN are chemical shift differences for 1HN and 15N, respectively) between apo 15N 
NFU1 alone and in a 1:1 mixture with apo ISCA1. The cyano bars represent proline residues. The 
yellow bars represent residues whose NHs broaden beyond detection or are very broad upon 
additions of apo ISCA1. The dotted horizontal line indicates the threshold to consider chemical 
shift changes as meaningful (1σ ΔGavg > 0.03 ppm). (b) Analytical gel filtration equipped with 
multiangle light scattering (SEC-MALS) of the 1:1 apo NFU1-apo ISCA1 mixture. 
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a 

Figure S4. Apo ISCA1 promotes the formation of a ternary complex between apo ISCA2 
and apo NFU1. (a) Overlay of the 1H-15N HSQC spectrum of a 1:1:1 mixture of 15N apo ISCA2-
apo 15N NFU1-apo ISCA1 (black) with those of apo 15N NFU1 (red) and of a 1:1 mixture of apo 
15N NFU1 and apo ISCA1 (green). (b) Overlay of the 1H-15N HSQC spectrum of a 1:1:1 mixture 
of apo 15N ISCA2- apo 15N NFU1-apo ISCA1 (black) with those of apo 15N ISCA2 (cyano) and 
of a 1:1 mixture of apo 15N ISCA2 and apo ISCA1 (red). In the inset, an overlay of a region of 
the previous 1H-15N HSQC spectra is shown. The arrow indicates a specific backbone NH signal 
of ISCA2 that monitors the formation of ISCA2 fully complexed with ISCA1 at the final 1:1:1 
mixture. In green is the 1H-15N HSQC spectrum of the 1:1 mixture of apo 15N NFU1 and apo 
ISCA1 to identify in the inset the NH signals of NFU1 complexed with ISCA1. 

a 

b 
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Figure S5. [4Fe-4S]2+ ISCA1-ISCA2 interacts with apo NFU1 via its C-domain. (a) Overlay 
of the 1H-15N HSQC spectra of 15N ISCA2-ISCA1 apo complex (red) and of a 1:1 mixture of [4Fe-
4S]2+ 15N ISCA2-ISCA1 complex and C-domain of apo 15N NFU1 (black). (b) Overlay of the 1H-
15N HSQC spectra of C-domain of apo 15N NFU1 (red) and a 1:1 mixture of [4Fe-4S]2+ 15N ISCA2-
ISCA1 complex and C-domain of apo 15N NFU1 (black). The residues of the C-domain of NFU1 
whose backbone NH chemical shifts were affected (i.e. in terms of line broadening beyond 
detection effects and/or meaningful chemical shift changes) in the final mixture when compared 
to those of apo NFU1 are indicated in the 1H-15N HSQC spectrum and are shown in the inset on 
the structure of the C-domain of NFU1 (PDB ID 2M5O) with orange sidechains. The sidechains 
of proline residues are shown in gray.  
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Introduction 
 
 
Iron sulfur clusters (ISC) are essential cofactors found in all kingdoms of life, with highly 

conserved functional roles throughout evolution1. ISC biogenesis is an essential process for 

all living organisms, which developed complex and tightly controlled pathways for the 

cluster synthesis, transfer and insertion into the final targets2–5. The most ancient and 

common process for eukaryotic organisms occurs in mitochondria, which involves the de 

novo synthesis of a [2Fe-2S] cluster6. In human cells this process involves at least 17 

proteins, constituting the mitochondrial ISC assembly machinery2,7,8. Alterations and 

mutations in any step of this ISC machinery determine pathological conditions, such as 

Multiple mitochondrial dysfunction syndromes (MMDS) that comprise a group of severe 

autosomal recessive diseases characterized by impaired respiration and lipoic acid 

metabolism9–14. Four different MMDS have been attributed to point mutations in proteins 

involved in iron-sulfur (Fe/S) biosynthesis; in particular, bi-allelic homozygous mutations 

in BOLA3 are associated with MMDS215–17. This is a sever disorder of mitochondrial 

energy metabolism, characterized by hyperglycinaemia, encephalopathy, lactic acidosis, 

leukodystrophy and death in early childhood18,19. 

 

Recently Stutterd et. al. (2019), have reported a novel phenotype for MMDS2 associated 

with complete clinical recovery, due to the recessive Cys59Tyr BOLA3 mutation (C59Y 

hereafter)20. This mutation is present in heterozygosis and has a much milder phenotype 

patients with respect to other mutations previously reported 15,18,19,21. The essential 

discrepancy is the different life span: while the phenotype at 18 months is comparable with 

that of other MMDs cases, the grown patient (after 8 years old) regained normal 

neurological and cognitive function until the complete health recovery20. 

BOLA3 is a protein participating in the Fe/S cluster biogenesis that we found to interact 

with GLRX5 bridging a [2Fe–2S] cluster22,23. Recently we proposed that this hetero-

complex works as a [4Fe-4S] cluster assembler on NFU1, a late-acting factor of the ISC 

pathway24.  

Spectroscopies studies and a structural model showed that an oxidized, ferredoxin-like 

[2Fe-2S]2+ cluster is present in the BOLA3-GLRX5 complex, and the four residues acting 

as ligands for the bridged [2Fe-2S] cluster are His 96 and Cys 59 on BOLA3, together with 



 2-Results 

 81 

Cys 67 on GLRX5 and a GSH molecule23. Thus, the Cys 59 to Tyr mutation affects a highly 

conserved residue, involved in the [2Fe-2S] cluster binding.  

To clarify whether this atypical phenotype for MMDS2 may be a mutation-specific 

phenotype, detailed studies on this mutant are needed. We have therefore characterized it 

and its interaction with GLRX5, exploiting various spectroscopic techniques, such as 

NMR, CD and UV-vis spectroscopies.  

 

Here we show that the mutation does not affect the overall protein stability and its 

folding, neither drastically influence the protein-protein interaction with apo GLRX5. The 

higher stability of the [2Fe-2S] cluster bridged by C59Y BOLA3 mutant and GLRX5 

might explain a milder MMDS2 phenotype and a functional recovery.  

 

 

Results 
 
 
Structural impact of the single point mutation Cys59Tyr on BOLA3  
 

The pathogenic mutation of Cys 59 to Tyr (C59Y) does not significantly affect the stability 

of BOLA3 protein. The 1H 15N HSQC spectrum of 15N labelled C59Y BOLA3 mutant (15N 

C59Y BOLA3 hereafter) showed a well folded, cluster-free protein, since all the cross-

peaks show wide dispersions and sharp linewidths. The NMR spectrum experiences some 

differences with respect to those of the wild-type protein (wt BOLA3), but the overall 

protein fold is maintained (Fig.1 A, B). The NMR backbone chemical shift differences 

between wt and C59Y BOLA3 proteins indicated that the C59Y mutation in BOLA3 affects 

some residues of the loop containing the mutation and the close, highly conserved, His 96 

(Fig. 1 C). On the contrary when Cys 59 is mutated into Ala the chemical shifts differences 

are limited only to the region around the mutation23.  

A structural model of C59Y BOLA3 was obtained by MODELLER (see Material and 

Methods for details) and the Tyr 59, that introduces a bulkier sidechain in the loop region 

between the b1 and b2 sheets, resulted to be spatially closer to the C-terminal His 96, thus 

determining the observed small chemical shifts differences also in this region (Fig. 1 D).  
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The wt and C59Y BOLA3 did not co-elute in the same fractions, but the analytical gel 

filtration showed different elution profiles, (two peaks at 18.7 and 18.4 ml respectively) 

(Fig S1). C59Y BOLA3 eluted as a molecule of smaller size and shape respect to the wt 

protein, though a cysteine residue (121 Da) was mutated into a bulky tyrosine (181 Da). 

This confirms a conformational change of the flexible loop induced by C59Y mutation that 

shortens the distance between Tyr 59 and His 96, respect to wt (Fig. 1 D). Intermolecular 

aromatic π-π stacking interactions between the Tyr residue and the close His might explain 

the slightly lower hydrodynamic radius of C59Y BOLA3, respect to wt, as shown by size 

exclusion chromatography25–27. 

Collectively, these data showed that this point mutation does not affect the overall protein 

stability and its folding, but the tyrosine results to be closer, with respect to wt, to the C-

terminal His 96, that are both Fe/S cluster ligand candidates. 

 

 
 C59Y BOLA3 variant preserves its interaction with apo GLRX5  
 
To perform its function, BOLA3 interacts with GLRX5, both in the apo- and holo-forms, 

forming a hetero-dimeric complex composed by one GLRX5, one BOLA3 and one GSH 

molecules22,23. 

To test whether the C59Y mutation may affects protein-protein interactions, apo GLRX5 

was stepwise added to 15N C59Y BOLA3, or vice versa, in presence of 5 mM GSH and the 

interaction was followed through 1H 15N HSQC experiments. Spectral changes occurred 

and were completed at the 1:1 protein ratio. The NMR signals of the free and the bound 

proteins are in fast and intermediate exchange regimes relative to the NMR time scale (Fig 

2 A, B).  

Thus, the mutant forms with apo GLRX5 a 1:1 heterocomplex similarly to the wt protein, 

having a GSH molecule bound to it (Fig 2 A, B), as also shown by analytical gel filtration 

data (Suppl 1). 

Chemical shift perturbations and line broadening analyses were performed by overlaying 

the 1H-15N HSQC spectrum of the 15N wt BOLA3 or 15N C59Y BOLA3 with the one in 

presence of equimolar apo GLRX5, forming the 1:1 apo hetero-complex (Fig 3 A,B left 

panels). The spectral changes between the isolated BOLA3 proteins (wt and C59Y mutant) 

and their 1:1 complex with GLRX5 were mapped on the solution structure of wt BOLA3 

(PDB 2NCL) and the structural model of C59Y BOLA3 (Fig 3 A, B right panels). Similar 
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interacting region are identified on BOLA3 proteins (wt and C59Y mutant), with the further 

involvement on C59Y BOLA3 of the loop region containing Tyr 59, which experiences 

line broadening (Fig 3B right panel).  Indeed, in the 1H 15N HSQC spectrum of 15N C59Y 

BOLA3 more NH cross-peaks broadened beyond detection upon partner addition than in 

wt, possibly due to conformational exchange. 

The same kind of analysis was performed on apo GLRX5 side for its interaction with wt 

BOLA3 or C59Y BOLA3, by mapping the chemical shift changes on its solution structure 

(PDB 2WUL) (Fig 4 A, B). Similar interaction regions were also identified on the apo 

GLRX5 structure for the two BOLA3 proteins, but more line broadening beyond signal 

detection was observed in the interaction with the C59Y mutant than for the wt protein (Fig 

4 A, B). 

To discriminate if apo GLRX5 has a greater affinity for one of the two proteins, i.e. wt 

BOLA3 vs C59Y BOLA3, a 1:1 15N wt BOLA3-15N C59Y BOLA3 mixture was titrated 

with unlabeled apo GLRX5. Apo GLRX5 is equally partitioned between the two proteins 

upon its addition, and once a 1:1:2 15N wt BOLA3-15N C59Y BOLA3-GLRX5 ratio was 

reached, both apo 1:1 heterodimeric complexes were completely formed (data not showed).  

Collectively, we can conclude that similar heterocomplexes with same affinity are formed 

by wt or C59Y BOLA3 proteins with GLRX5, in absence of the bridged-[2Fe-2S] cluster. 

 

Structural models of apo wt BOLA3-GLRX5 and apo C59Y BOLA3-GLRX5 
complexes  
     

The structural models of apo wt BOLA3-GLRX5 and apo C59Y BOLA3-GLRX5 

complexes were calculated following the standard protocol of HADDOCK 2.2 docking 

program and using the experimental chemical shift mapping data, which define the 

interacting residues in the complex, and imposing a GSH molecule involved in the 

interaction (Table S1 and S2, and see Material and Methods for details). The calculated 

models have been clustered on the basis of common contacts following standard 

HADDOCK scoring approach28. 

Superimposition of the structures of isolated wt and C59Y BOLA3 with those in the two 

best structural models of the heterocomplex (Suppl 2), indicates that for wt BOLA3 there 

are no meaningful structural variations. On the contrary, structural rearrangement are 

observed in C59Y BOLA3 that involves the loop region between b1 and b2 sheet, where 
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Tyr 59 is present, and the one between a2 helix and b3 strand, where His 96 is located, so 

that the Tyr 59 and His 96 are pushed apart when the protein is complexed with GLRX5 

(distance from 11.19 C59Y BOLA3 alone to 11.81 Å in complex with GLRX5). 

Once the GLRX5 structure in the two heterocomplexes is superimposed it appears that 

C59Y BOLA3 has a different orientation respect to the wt protein and the wt BOLA3-

GLRX5 complex is more compact than the C59Y BOLA3-GLRX5 one (Fig 5 A and B). 

Overall, the interaction with GLRX5 drives Tyr 59 of C59Y BOLA3 closer to the [2Fe-2S] 

cluster ligand Cys 67 on GLRX5,  respect to wt (20.09 Å for Cys 59 in wt BOLA3, to 8.97 

Å for Tyr 59 in C59Y BOLA3), this agrees with the line broadening that affects the C59Y 

loop region observed in the apo interaction.  

The interaction surface in wt BOLA3-GLRX5 complex mainly involves the a2 helix, part 

of the b3 strand and the b1/ b2 loop region on wt BOLA3 and a3, a4 helices, and b4 strand 

on GLRX5, where key electrostatic (i.e. Lys 89, Arg 99,  in wt BOLA3 with Asp 102 and 

Asp 123 in GLRX5 respectively) and hydrophobic (Val 78, Phe 101 in wt BOLA3 with 

Phe 118, and Ile 124 in GLRX5, respectively) contacts are present.  

Looking at C59Y BOLA3-GLRX5 complex, the interaction involves the a2 helix, a2/ b3 

and b1/ b2 loop regions on C59Y BOLA3 and a2, a3, a4 helices on GLRX5, that is 

similarly driven by electrostatic (i.e. Lys 93 in C59Y BOLA3 with Asp 102 in GLRX5 

respectively) and hydrophobic (Met 62 in C59Y BOLA3 with Phe 69 in GLRX5, 

respectively) contacts.  

This different orientation and closer contacts between the Fe/S cluster ligand candidates in 

C59Y BOLA3-GLRX5 complex could favor the holo heterocomplex formation. 

 

C59Y BOLA3 mutant shares a more stable [2Fe-2S]2+ cluster with GLRX5 
 
Wt BOLA3 cannot bind an Fe/S cluster on its own, it binds a [2Fe-2S] one through Cys 59 

and His 96 residues when complexed with GLRX523. To address whether the Cys 59 to Tyr 

mutation affects this cluster coordination and so its function, resulting in a MMDS2 milder 

phenotype, we next investigated the interaction of holo GLRX5 with C59Y BOLA3 by 

chemically reconstituting a [2Fe-2S] cluster on equimolar GLRX5 and C59Y BOLA3 

mixture.  
1H 15N HSQC spectra were acquired for the co-reconstituted C59Y BOLA3-GLRX5 

complex by 15N labelling the two proteins alternatively, and they resulted superimposable 
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to that of the apo heterocomplexes with slightly, no meaningful spectral variation, either as 

chemical shift changes and or line-broadenings beyond signal detection (Fig 6 A, B). 

Moreover, they resulted similar to spectra obtained by mixing C59Y BOLA3 with [2Fe-

2S] GLRX5 homodimer (data not shown).  

UV-vis and CD spectroscopy showed that C59Y BOLA3-GLRX5 heterocomplex was still 

able to bind a [2Fe-2S] cluster (Fig 7 A, B). Indeed, the UV-vis spectrum maintained all 

the absorption bands of biological oxidized [2Fe-2S]2+ centers between 300 and 600 nm, 

all attributable to S�Fe(III) charge-transfer (CT) transitions29, but showed several 

differences from those of the wt one (Fig 7 A). 

The absorption bands at 394, 440 and 510 nm in the [2Fe-2S] wt BOLA3-GLRX5 

heterocomplex were shifted to ~ 413, 460 and 520 nm in the [2Fe-2S] C59Y BOLA3-

GLRX5, and the peak near 593 nm decreased (Fig 7 A). Likely, once cysteine residues in 

[2Fe-2S] ferredoxin like proteins are replaced by serine or aspartate residues, that are all 

O-based ligands, similar absorption bands with slightly shifts are observed respect to wt 

proteins 30,31. Moreover, the UV-vis spectrum of [2Fe-2S] C59Y BOLA3-GLRX5 is very 

similar to that of the Cys 59 to Ala mutant23, that has been already characterized and 

proposed to be similar to human BOLA2-GLRX3 and yeast Fra2-Grx3 complexes, in 

which the coordination pattern is composed by one His from Fra2/BOLA2, one Cys from 

Grx3/GLRX3, one GSH molecule and an undefined N/O ligand32–35.  

The CD spectrum of the [2Fe-2S] C59Y BOLA3-GLRX5 heterocomplex also 

characteristically differed from that of the wt one in a negative versus positive ellipticity 

around 394 nm and 40% increase of the ~460 nm peak (Fig 7 B). These differences in the 

Uv-vis and CD spectra suggest different structures of the [2Fe-2S] chromophores and of 

their environment. 

Paramagnetic 1H NMR spectrum showed the presence of broad signals at 28 and 23 ppm 

and a sharper one at 13 ppm, all of them typical of an oxidized [2Fe-2S] cluster36 (Fig 7 C). 

Like Ser coordination, ligation of a Tyr to an Fe/S cluster is extremely rare and previously 

detected in few systems37–39, in particular in a Tyrosine-coordinated P-Cluster in G. 

diazotrophicus Nitrogenase the importance of O-based ligands has been demonstrated to 

stabilize the oxidative state39.  

Thus, the cluster stability of [2Fe-2S] C59Y BOLA3-GLRX5 vs [2Fe-2S]  wt BOLA3-

GLRX5 upon oxygen exposure was investigated by UV-vis spectroscopy, exposing the 

holo protein samples to air and collecting UV-vis spectra every 30 min for 12 h (Fig 8 A, 

and B upper panels). It resulted that the Fe/S cluster in [2Fe-2S] wt BOLA3-GLRX5 is 
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gradually degraded over a period of ∼3 h, indicating that it is oxidatively labile (Fig 8 A 

lower panel). On the contrary, the one in [2Fe-2S] C59Y BOLA3-GLRX5 degraded slowly 

over a period of ∼12 h, suggesting a role for tyrosinate in stabilizing the Fe/S cluster (Fig 

8 B lower panel). 

These data indicate that C59Y BOLA3 is still able to coordinate a [2Fe-2S]2+ cluster 

together with GLRX5 and that Cys 59 to Tyr mutation stabilizes it upon oxygen exposure. 

 
Material and methods  
 
Protein expression and purification  

Site-directed mutagenesis (QuickChange Site-directed Mutagenesis Kit, Agilent 

Technologies) was used to obtain recombinant BOLA3 mutants. Wild type pETG20A-

BOLA3 expression vectors were modified by using primers containing the required single 

mutations (C59Y).  

Escherichia coli BL21(DE3) -Gold (Agilent) competent cells were transformed with 

pETG20A plasmid containing N-terminal tagged C59Y BOLA3 (N-terminal TRX-6His-

tag). Cells were cultivated at 37°C in 1 L of Luria-Bertani (LB) media adding ampicillin 

(100 µg/mL), until the OD600 reached 0.6-0.8. The protein expression was induced by 

adding 0.5 mM of isopropyl b-D-1-thiogalactopyranoside (IPTG) and shaking for 5 hours 

at 30°C, 200 rpm. The cells were harvested by centrifugation at 5000 rpm for 20 min (JA-

10, Beckman Coulter). The cell pellet was resuspended in the binding buffer (50 mM 

phosphate buffer, 300 mM NaCl, 20 mM imidazole, pH 8.0), and the cells were lysed by 

sonication (30 minutes, 2’’ ON and 9.9’’ OFF). The N-terminal TRX-6His-tag C59Y 

BOLA3 protein was purified from the lysate using a HisTrap HP column (GE Healthcare). 

The TRX-6His-tag was cleaved by tobacco etch virus protease over-night at room 

temperature in 50 mM phosphate buffer, 300 mM NaCl, 20 mM imidazole, pH 8. His-trap 

chromatography column was equilibrated with the binding buffer and performed to separate 

the digested C59Y BOLA3 from TRX-6His-tag and from TRX-6His-tag C59Y BOLA3 

undigested. The final yield of apo C59Y BOLA3 was ~40 mg per liter of LB culture. 

Recovered C59Y BOLA3 was pure enough to be used for spectroscopic and biochemical 

studies. All the expression and purification steps were performed in aerobic conditions. 
15N-labeled C59Y BOLA3 was expressed in Escherichia coli grown in 

M9 minimal medium supplemented with 15NH4Cl and purified as indicated for E. coli in 
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LB medium. The expression and purification of human GLRX5 in its apo monomeric forms 

and in its homo-dimeric [2Fe-2S]2+ cluster-bound forms were obtained as previously 

described40.  

BOLA3 C59Y and GLRX5 hetero-dimer with [2Fe-2S]2+ cluster bound were chemically 

Fe-S cluster reconstituted in anaerobic conditions in 50 mM Tris-HCl, 100 mM NaCl, 5 

mM DTT buffer at pH 8.0 with four-fold of FeCl3 and Na2S for 16 h at room temperature. 

Fe-S cluster chemical reconstitution was performed with complex concentrations of ~40-

80 µM. Anaerobic conditions were obtained performing the chemical reconstitution in 

glovebox with less than 2 ppm of oxygen and by using all buffers degassed. 

 

UV-visible and CD spectroscopy  

 

UV/vis and CD absorption spectra were acquired to follow cluster transfer and assembly 

on the heterocomplex. All the experiments were performed under anaerobic condition by 

degassing the buffers and using gas-tight UV-vis cuvette. UV-visible and CD spectra were 

purchased at room temperature in 50 mM phosphate buffer, 5 mM DTT, 5 mM GSH, 150 

mM NaCl, pH 7.0 on a Cary 50 Eclipse spectrophotometer and JASCO J-810 

spectropolarimeter, respectively. Each experiment was successfully repeated three times. 

 

SEC-MALS for protein-protein interaction studies 

Analytical gel-filtration experiments were conducted using a SuperdexTM 200 Increase 

10/300 GL column attached to a DAWN HELEOS system with a continuous flow rate of 

0.6 mL/min. The column was equilibrated with phosphate buffer 50 mM, 150 mm NaCl, 5 

mM DTT and pH 7.0. Degassed buffers were used for the experiments under anaerobic 

conditions.  

 

NMR spectroscopy 

NMR spectra were acquired at 298 K in 50 mM phosphate buffer pH 7, 150 mM NaCl and 

10% (v/v) D2O. All NMR spectra were recorded on Bruker AVANCE  700 and 950 MHz, 

processed using the standard Bruker software (Topspin) and analyzed with CARA 

program. 

1D 1H paramagnetic NMR experiments of the chemically reconstituted [2Fe-2S] GLRX5- 

C59Y BOLA3 were performed at 400 MHz with a 1H optimized 5 mm probe at 

temperatures ranging from 280 K and 307 K, with protein samples in 50 mM phosphate 
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buffer pH 7.0, 5 mM DTT and 150 mM NaCl, 99% (v/v) D2O . These spectra were acquired 

by means of the super-WEFT sequence with a recycle time of 50 ms. The protein 

concentration was 0.5-1 mM and the spectra were acquired adding different reducing 

compounds, i.e. DTT and GSH. To monitor formation of apo GLRX5- C59Y BOLA3 

hetero-complex, 15N labeled C59Y BOLA3 or apo GLRX5 were titrated with increasing 

amounts of unlabeled partner, until was reached the 1:1 ratio. Chemical shift changes 

followed by 1H 15N HSQC NMR spectra were compared with chemical shift of labelled 

protein in the free state. These NMR data were also compared with the 1H 15N HSQC spectra 

of wild type 15N wt BOLA3-GLRX5 and 15N GLRX5-wt BOLA3. 
 

Molecular docking  

 

Structural models of the apo wt BOLA3-GLRX5 and apo C59Y BOLA3 mutant-GLRX5 

complexes were calculated using the protein-protein docking program HADDOCK 2.2 

(high ambiguity driven protein-protein docking) by following the standard HADDOCK 

procedure41–43. Specifically, the structural models of the apo heterodimers were built from 

the structures of individual proteins (GLRX5 with GSH bound PDB entry 2WUL and 

BOLA3 PDB entry 2NCL). The structure of the C59Y BOLA3 was obtained with Modeller 

9.20 44 (https://salilab.org/modeller/) using as template the existing NMR solution structure 

of BOLA3. The NMR chemical shift mapping data, already available for the wt 

heterocomplex22 and here performed for the C59Y mutant heterocomplex, were used to 

define ambiguous interaction restraints for the residues at the interface. The “active” 

residues were defined as those having a chemical shift perturbation upon complex 

formation larger than the average of Davg(HN) plus 1s (Davg(HN) = (((DH)2 + 

(DN/5)2)/2)1/2, where DH and DN are chemical shift differences for backbone amide 1H 

and 15N nuclei, respectively) and with a solvent accessibility higher than 50%; the “passive” 

residues were defined as those being surface neighbors to the active residues and with a 

solvent accessibility higher than 50%.  

Center of mass restraints between the various molecules to enforce contact between them, 

that are only active during it0 and it1, have been used and automatically defined in 

HADDOCK. The center of mass restraint is defined between each molecule as an 

ambiguous distance restraint with center averaging between all CA of one molecule and all 

CA of the other molecule. 
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The ensemble of 200 solutions was analyzed and clustered based on the pair-wise RMSD 

matrix calculated over the backbone atoms of the interface residues of GLRX5 after fitting 

on the interface residues of wt BOLA3 or C59Y BOLA3. 

This way of calculating RMSD values in HADDOCK results in high values that emphasize 

the differences between docking solutions. For this reason, clustering was performed using 

a 7.5 Å cut-off. The water-refined models were clustered based on the default fraction of 

common contacts, FCC=0.75, with the minimum number of elements in a cluster of 4. The 

clusters were ranked based on the averaged HADDOCK score of their top four members 

and plotted against RMSD from lowest energy structure. NACCESS is the program used 

to calculate the atomic and residue accessibilities from a PDB format file. The models were 

rendered with Chimera program. 
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Figures 
 
 
Figure 1. C59Y mutation effect on BOLA3 and chemical shift differences between the 

wild type and the C59Y BOLA3 mutant A) Overlay of the 
1
H

15
N HSQC spectra of the 

wild type (wt) (blue) and the C59Y BOLA3 mutant  (red), measured at 298K, 950 MHz. 
B) Insets of the above-mentioned overlayed spectra, G60 and C59, M62 NH cross-peaks in 
wt and C59Y BOLA3 spectra, in blue and red respectively. C) Plot of the normalized 
chemical shift differences between the wt and the C59Y BOLA3 mutant. Backbone 
weighted average chemical shift differences was calculated by the equation, #avg(HN)= 

(((#H)
2
 + (#N/5)

2
)/2)

1/2
). The indicated threshold 0.061 values (obtained by averaging 

#avg(HN) values plus 1 s) were used to define meaningful chemical shift differences. D) 
Structural distances between C59 or A59 or Y59 and the invariant H96, 11.60 Å in wt, 
13.12 Å in C59A mutant and 11.19 Å in C59Y mutant, respectively. C59 is depicted in 
yellow stick on the solution structure of BOLA3 (PDB 2NCL), A59 and C59 are depicted 
in red together with the residues affected by the mutation, on the structural models obtained 
with Modeller 9.20. The distances were calculated in Chimera. 
 
Figure 2. Apo GLRX5- C59Y BOLA3 protein-protein interaction. A) Overlay of the 
1
H

15
N HSQC spectra of 

15
N C59Y BOLA3 (red), 1:1 

15
N C59Y BOLA3-apo GLRX5 (blue) 

both in presence of 5 mM GSH. B) Overlay of the 
1
H

15
N HSQC spectra of 

15
N apo GLRX5 

(red), 1:1 
15

N apo GLRX5- C59Y BOLA3 (blue) both in presence of 5 mM GSH. The 
spectra were acquired at 950 MHz at 298K in buffer Pi 50 mM, pH 7, DTT 5 mM, NaCl 
150 mM, GSH 5 mM. 
 
Figure 3. Comparison between wt 15N wt BOLA3-GLRX5 and 15N C59Y BOLA3-
GLRX5 complexes formation. A) Backbone chemical shift changes of 15N wt BOLA3 
upon complex formation with apo GLRX5 in Pi 50 mM, pH 7, 5 mM DTT, 5 mM GSH 
and 150 mM NaCl (left panel). Meaningful chemical shift differences were mapped on the 
solution structure of wt BOLA3 (PDB 2NCL) (right panel). B) Backbone chemical shift 
changes of 15N C59Y BOLA3 upon complex formation with apo GLRX5 (left panel). 
Meaningful chemical shift differences were mapped on the structural model of C59Y 
BOLA3 (right panel). 
In green proline residues or unassigned NHs. Backbone weighted average chemical shift 

differences was calculated by the equation, #avg(HN)= (((#H)
2
 + (#N/5)

2
)/2)

1/2
). The 

indicated threshold 0.046 in wt-BOLA3 and 0.06 in C59Y BOLA3 values (obtained by 
averaging #avg(HN) values plus 1s) were used to define meaningful chemical shift 
differences. In the mapping the NHs broaden beyond detection are depicted as red spheres, 
in yellow NHs having chemical shifts above the thresholds. C59, Y59 and H96 are in green 
sticks. 
  
Figure 4. Comparison between wt 15N apo GLRX5-wt BOLA3 and 15N apo GLRX5-
C59Y BOLA3 complexes formation. A) Backbone chemical shift changes of 15N apo 
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GLRX5 upon complex formation with wt BOLA3 in Pi 50 mM, pH 7, 5 mM DTT, 5 mM 
GSH and 150 mM NaCl (left panel). Meaningful chemical shift differences were mapped 
on the solution structure of apo GLRX5 (PDB 2WUL) (right panel). B) Backbone 
chemical shift changes of 15N apo GLRX5 upon complex formation with C59Y BOLA3 
(left panel). Meaningful chemical shift differences were mapped on the solution structure 
of apo GLRX5 (right panel). In green proline residues or unassigned NHs. Backbone 
weighted average chemical shift differences was calculated by the equation, #avg(HN)= 

(((#H)
2
 + (#N/5)

2
)/2)

1/2
). The indicated threshold 0.068 for the interaction with wt-BOLA3 

and 0.061 for the one with C59Y BOLA3 values (obtained by averaging #avg(HN) values 
plus 1s) were used to define meaningful chemical shift differences. In the mapping the 
NHs broaden beyond detection are depicted as red spheres, in yellow NHs having chemical 
shifts above the thresholds. C67 is represented as green stick and GSH as grey spheres. 
 
Figure 5. Haddock structural models of wt BOLA3-GLRX5 and C59Y BOLA3 
mutant-GLRX5  
Structural models of apo wt BOLA3-GLRX5 (A) and C59Y BOLA3-GLRX5 (B) hetero-
complexes are shown and orientated once GLRX5 structure is superimposed in the two 
heterocomplexes. Zoom in of Cys 69/ Tyr 59 region after the superimposition of the 
proteins alone (orange) with the one in complex with GLRX5 to identify structural 
rearrangement. GLRX5, wt BOLA3 and C59Y BOLA3 mutant structures in the structural 
model are in red, cyano and green, respectively. The invariant C-terminal His 96, Cys 59 
in BOLA3, and Tyr 59 in C59Y BOLA3 mutant, Cys 67 in GLRX5 residues and GSH are 
shown. 
 
Figure 6 [2Fe-2S] C59Y BOLA3-GLRX5 formation monitored by NMR. (A) Overlay 
of the 1H 15N HSQC spectra of apo 15N C59Y BOLA3-GLRX5 (blue) and 15N [2Fe-2S] 
C59Y BOLA3-GLRX5 (red). B) the 1H 15N HSQC spectra of apo 15N GLRX5-C59Y 
BOLA3 (blue) and 15N [2Fe-2S] GLRX5-C59Y BOLA3 (red). 
 
Figure 7 Effect of C59Y mutation on cluster binding monitored by UV/vis, CD and 
paramagnetic NMR spectroscopy. UV-vis (A) and CD (B) spectra of chemically 
reconstituted [2Fe-2S] C59Y BOLA3 C59Y-GLRX5 (black) compared with the [2Fe-2S] 
wt BOLA3-GLRX5 (green), acquired in the same buffer conditions: Pi 50 mM, NaCl 150 
mM, pH 7, DTT 5  mM, GSH 5 mM.  
(C) Paramagnetic 1H NMR spectra of chemically reconstituted [2Fe-2S] C59Y BOLA3-
GLRX5 recorded at 400MHz, 298K in Pi 50mM. NaCl 150 mM. pH 7. DTT 5 mM. GSH 
5 mM. 
 
Figure 8 Cluster stability of [2Fe-2S] C59Y BOLA3-GLRX5 vs [2Fe-2S] wt BOLA3-
GLRX5 upon oxygen exposure. Cluster oxidation of wt BOLA3-GLRX5 (A) and C59Y 
BOLA3-GLRX5 (B) was performed at room temperature under aerobic conditions, 
followed by UV-vis absorption spectroscopy for 12 h of oxygen-exposure. The proteins 
were in sodium phosphate buffer 50 mM and NaCl 150 mM at pH 7.0.  The exponential 
decrease in absorbance was then fit by Origin Software with a mono exponential function 
to obtain the rate constant of decay. 
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3.1 PROTEINS EXPRESSION AND PURIFICATION 

 

After bioinformatics characterization and the choice of the cloning strategy, several 

conditions for the target protein expression have to be tested in order to obtain a high yield 

of soluble protein. The variables, which affect the expression of a recombinant protein, are 

host strain, growth medium and induction parameters (temperature, IPTG concentration 

and duration of induction step). A preliminary expression test is performed in a small-

volume scale using at least:  

• three different E.coli strains (e.g.: Bl21(DE3)pLysS a protease deficient strain, 

Rosetta(DE3) for rare codons containing genes and Origami(DE3) for disulphide 

containing proteins); 

• three different expression vectors (containing different tags and/or fusion partners); 

• three expression temperatures (37-25-17°C);  

• three inducer (IPTG) concentrations and different induction times (4-6-16h). 

Expression results are checked on SDS polyacrylamide gels (SDS-PAGE). This 

approach allows to explore a large set of expression conditions and to evaluate which one 

gives the best yield of soluble protein. A second expression test is performed to better refine 

the expression conditions before the scale-up. On the basis of these preliminary results, the 

expression protocol will be optimize and, in case of negative results, it is possible to change 

the cloning strategy, the construct or the expression system. With such an approach it is 

possible to find good expression conditions for many proteins. Anyway some proteins can 

be difficult to obtain, since E.coli is a prokaryote and lacks intracellular organelles, such as 

the endoplasmic reticulum and the Golgi apparatus, which are responsible for post-

translation modifications of the produced proteins.   

 In case of negative results, variables like bacterial strain, induction time, the kind of 

vectors and expression promoters can be modified. If the main fraction of the protein is 

produced in the insoluble fraction, another approach is to try an in vitro refolding screening 

with different additives in order to get a folded and soluble protein. The last choices are to 

redesign the expressed domains or to switch to other expression system1.  

 Depending on the investigating spectroscopic technique, protein expression is 

performed in differently composed media. In fact, when large amounts of proteins must be 

isolated for techniques that do not require isotopic labelling, the culture is usually 
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performed in a so-called rich or complex medium. Complex media contain water-soluble 

extracts of plant or animal tissue (e.g., enzymatically digested animal proteins such as 

peptone and tryptone), and for this reason are rich in nutrients and minerals, assuring a fast 

bacterial growth and a high expression level. Their exact composition is unknown and this 

can impair the reproducibility of cultures. Chemically defined (or minimal) media are 

composed of pure ingredients in measured concentrations, dissolved in milliQ water; in this 

way the exact chemical composition of the medium is known, allowing high reproducibility 

of protein yields and grade and type of interferents. Typically, this class of media is 

composed of a buffering agent to maintain culture pH around physiological values, a carbon 

and energy source like a simple sugar (glucose) or glycerol, and an inorganic nitrogen 

source, usually an ammonium inorganic salt.  the bacterial strain and of the expressed 

proteins, various mineral salts can be added and, if necessary, growth factors such as 

purified amino acids, vitamins, purines and pyrimidines. Chemically defined media are 

easier to isotopically enrich, simply using 15N and 13C enriched nitrogen and carbon sources 

in its composition, even if isotopically enriched complex media are also commercially 

available. 

Basically, protein purification is a series of processes intended to isolate a single type of 

protein from a complex mixture. Protein purification is vital for the characterization of the 

function, structure and interactions of the protein of interest. Separation of one protein from 

all others is typically the most laborious aspect of protein purification. Separation steps 

exploit differences in protein size, physico-chemical properties and binding affinity. 

The location of expressed protein within the host will affect the selection of methods for its 

isolation and purification. Bacterial host may secrete the protein into the growth media, 

transport it to the periplasmic space, express a cytosolic protein or store it as insoluble 

inclusion bodies within the cytoplasm. For insoluble proteins, the first purification step is 

the extraction from inclusion bodies. Indeed, most of the bacterial proteins are removed by 

different extraction steps with native buffer conditions, while the recombinant protein is 

extracted from inclusion bodies with a denaturing buffer.  

One of the most popular techniques for purification, which can be adopted for 

denatured and native state proteins, is immobilized metal ion affinity chromatography 

(IMAC). It is based on the specific coordination of amino acids, particularly histidine, to 

metals. This common technique involves engineering the sequence in such a way that 6 to 

12 histidines are added to the N- or C-terminus of the protein. The polyhistidine binds 

strongly to divalent metal ions such as nickel. The protein can be loaded on a column 
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containing immobilized nickel ions, which binds the polyhistidine tag. All untagged 

proteins pass through the column. The protein can be eluted with imidazole, which 

competes with the polyhistidine tag for binding to the column, or by a decrease in pH 

(typically to 4.5), which decreases the affinity of the tag for the resin (Fig 1).  

 

 
 

 

 
Figure 1. General purification procedure of a typical His-tagged proteins 

 Reprinted from Qiagen handbook for expression and purification of His-tagged proteins 
 

 
 
 

After the affinity purification, the fusion-tag must be removed from the recombinant 

protein. Indeed, many expression vectors are engineered to express a protease clevage site 

between the fusion-tag and the protein. Tobacco Etch Virus (TEV), Factor Xa, Thrombin, 

Prescission Protease, recombinant Enterokinase are some examples of proteases that are 

normally used for the cleavage of tags. A second IMAC is generally performed in order to 

separate the fusion from the target native protein. However, if the fused protein is expressed 

in inclusion bodies, it must be refolded before performing the tag cleavage. This is not 

always possible, since fusion tags may interfere with protein folding.  
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Analytical size exclusion chromatography (SEC) and SEC-MALS 

Gel filtration (GF) chromatography is the most common used purification step. GF is the 

simplest and mildest of all the chromatographic techniques; the gel in GF chromatography 

is composed of beads, which contain pores of given sizes. Larger molecules, which cannot 

penetrate the pores, move around the beads and migrate through the spaces, which separate 

the beads faster than the smaller molecules, which may penetrate the pores. Size exclusion 

can be performed on a “rough” level, separating the components of a sample in major 

groups to remove for example high or low molecular weight contaminants or to exchange 

buffers, while high resolution fractionation of bio- molecules allows to isolate one or more 

components of a protein mixture, to separate monomers from aggregates and to determine 

molecular weights or to perform a molecular weight distribution analysis, provided that 

suitable standards are available. Liquid chromatography (LC, SEC), may employ standard 

concentration detectors, such as refractive index (RI), UV absorbance, fluorescence 

detectors and/or light scattering detectors, in order to monitor the elution process. SEC 

separates according to the hydrodynamic size of the sample components and used in 

combination with light scattering detectors (e.g., multi-angle light scattering, MALS), 

enhance the analytical information by accurately determining the MW of the protein 

aggregates, either soluble or insoluble2. Static light scattering detection, usually in the 

multi-angle light scattering (MALS) version, is often used in a multitude of application 

fields. MALS detection can provide the absolute MW of proteins and protein aggregates, 

and the size (rms radius) can be obtained without any approximation on particle shape. 

Another interesting possibility is the recently developed online coupling of SEC with 

dynamic light scattering (DLS). Online DLS provides immediate information regarding the 

hydrodynamic size or the diffusion coefficient of the separated proteins and aggregate 

populations. In SEC, the upper size limit of detectable protein aggregate is dictated by the 

column characteristics; larger aggregates can be filtered out by frits in the system or by the 

column itself, therefore large protein aggregates may be disrupted and be overlooked in the 

analysis3. 
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Gateway® cloning technology  

The entry clones were created using two different pENTR/D-TOPO vector cloning 

systems; the pETG20A and the pDEST-His MBP vectors were used for generation of the 

expression clones. Detailed description of Gateway cloning technology is presented on the 

web site of Invitrogen (http://www.invitrogen.com/).  

 

Site-directed mutagenesis 

Site-directed mutagenesis was used to obtain the N-terminal domain of NFU1 and BOLA3 

C59Y genes. These genes were generated using the Stratagene XL QuikChange 

Mutagenesis Kit. The mutations were confirmed by DNA sequencing. Amino acid 

substitutions were confirmed through 1H-15N heteronuclear single-quantum coherence 

(HSQC) NMR spectra.  

 

BOLA3, GLRX5, ISCA2, expression and purification  

The cDNAs coding for human glutaredoxin 5 (GLRX5), human BOLA3 and human ISCA2 

were already available in our laboratory. Proteins expression and purification was 

performed as previously reported4,5.BOLA3 C59Y mutant was expressed and purified 

following the wild type protocol.  

NFU1 expression and purification 

Mitochondrial human NFU1 is a 254 amino acid residues protein, containing a 

mitochondrial targeting signal in the N-terminal part of the sequence. Based on 

bioinformatic anlalysis, we cloned NFU1 full-length construct where the N-terminal 58 

residues constituting the targeting signal were removed. The gene encoding the mature 

version of NFU1 (residues 59-254) (UniProt: Q9UMS0) was inserted into pETG20A 

vector, using the Gateway technology (Invitrogen), and transformed into BL21 (DE3) Gold 

E.coli  strain for the expression of N-terminal His(x6)-tagged protein. Protein purification 

by affinity chromatography was performed in aerobic conditions and led to a soluble and 

pure apo-NFU1. Cells were cultivated at 37°C in 1 L of Luria-Bertani (LB) media adding 

ampicillin (100 µg/mL), until the OD600 reached 3-5. The cells were spun down (3000 rpm 

for 20 min) and re-suspended in 1 L of fresh LB or minimal media (with 1 g (15NH4)2SO4 

and 3 g glucose) containing ampicillin (100 µg/mL). The culture was left at 37°C, 160 rpm 

for approximately 1 h, and then, protein expression was induced by adding 1 mM of 
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isopropyl b-D-1-thiogalactopyranoside (IPTG), shaking over-night at 30°C, 160 rpm. The 

cell paste was dissolved in the binding buffer (20 mM phosphate buffer, 500 mM NaCl, 30 

mM imidazole, pH 7.8), and the cells were lysated using the CelLytic Express (C1990) 

(Sigma-Aldrich). The N-terminal TRX-6His-tag NFU1 protein was purified from E. coli 

using a HisTrap HP column (GE Healthcare). The TRX-6His-tag was cleaved by tobacco 

etch virus protease over-night at room temperature in 20 mM phosphate buffer, 500 mM 

NaCl, 500 mM imidazole, pH 7.8. The buffer was exchanged to binding buffer and a second 

His-trap chromatography column was performed to separate the digested mNFU1 from 

TRX-6His-tag NFU1 and TRX-6His-tag. Recovered NFU1 was pure enough to be used for 

spectroscopic and biochemical studies. The final yield of apo mNFU1 was ~60 mg per liter 

of LB culture. 2.5 mM tris (2-carboxyethyl) phosphine (TCEP) was added in all the 

purification steps to avoid disulfide bond formation.  

 

 

C- and N- terminal NFU1 domain cloning, expression and purification 

The pETG20A plasmid containing N-domain of mNFU1 (UniProt: Q9UMS0, residues 59-

155 with N- terminal TRX-6His-tag; after tag cleavage the N-domain sequence contains N-

terminal GSFT residues similarly to the full-length protein) was obtained by a site directed 

mutagenesis with a prokaryotic codon stop. The protein expression was performed likewise 

full length NFU1, in BL21-GOLD(DE3) cells. Cells were cultivated at 37°C in 1 L of LB 

or minimal media adding ampicillin (100 µg/mL), until the OD600 reached 0.6-0.8 and 

then protein expression was induced by adding 1 mM of IPTG, shaking over-night at 20°C, 

160 rpm. Protein purification steps were performed following the protocol of NFU1, except 

that, during TEV protease cleavage, a dialysis step in the binding buffer (20 mM phosphate 

buffer, 500 mM NaCl, 30 mM imidazole, pH 7.8) was performed. The C-domain of NFU1 

(UniProt: Q9UMS0, residues 162-247 with N-terminal GIDPFTM residues) was cloned by 

a TOPO cloning reaction (Invitrogen). The gene was inserted in the pET151/D-TOPO 

(Invitrogen) vector that present a polyhistidine (6x His) region, a TEV recognition site and 

a TOPO cloning site. Protein expression and purification steps do not differ from the 

previously described for the N-domain, and the apo form of C-domain was purified. The 

final yields of N- and C-domain of mNFU1 were ~60 mg per liter of LB culture. 2.5 mM 

TCEP was added in all the purification steps to avoid disulfide bond formation.  
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ISCA1 expression and purification 

ISCA1 gene (UniProt: Q9BUE6) in a pDONR221 plasmid was purchased by Genescript. 

Gateway cloning technology (Invitrogen) was then applied to clone full-length ISCA1 gene 

into pDEST-HisMBP plasmid to express N-terminal Histag-MBP tagged ISCA1. The 

plasmid was use to transform Escherichia coli BL21-Gold(DE3) (Agilent) competent cells, 

cultivated at 37°C in Luria-Bertani (LB) media adding ampicillin (100 µg/mL), 4 mL of 

Solution Q and 250 µM of FeCl3 per liter of sterile LB until OD600 reached 0.8-1. Protein 

expression was induced with 0.2 mM isopropyl IPTG at 18°C for 16 hours. The cells were 

harvested by centrifugation and resuspended in binding buffer (50 mM Tris-HCl, 500 mM 

NaCl, 15 mM Imidazole, pH 8.0), then lysed by sonication. The N-terminal 6Histag-MBP-

ISCA1 protein was purified from the lysate using a HisTrap HP column (GE Healthcare) 

and then the MBP-6His-tag was cleaved by TEV treatment over-night at room temperature 

in binding buffer. His-trap column followed by amylose resin column were performed to 

separate the digested ISCA1 from MBP-6His-tag and from undigested MBP-6His-tag 

ISCA1. The final yield of ISCA1 was ~15 mg/L of LB culture. Apo ISCA1 was obtained 

performing all the purification steps under aerobic conditions, while a mixture of apo and 

[2Fe-2S]2+ ISCA1 was purified under anaerobic conditions. 

Determination of protein concentrations  

Protein concentrations were either estimated from measuring the absorbance at 280 nm 

(A280) or using Bradford Reagent (Bio-Rad). Theoretical molar extinction coefficients 

were obtained from ProtParam analysis (http://ca.expasy.org/tools/protparam.html). 

Bradford reagent was used as described in the manufacturer’s manual and protein 

concentrations were calculated using a BSA standard curve.  

Chemical reconstitution 

Full length [4Fe-4S] NFU1, [4Fe-4S] NFU1 C-domain and [4Fe-4S] ISCA2-ISCA1 

complex were chemically Fe-S cluster reconstituted in anaerobic conditions in 50 mM Tris-

HCl, 100 mM NaCl, 5 mM DTT buffer at pH 8.0 with eight-fold FeCl3 and Na2S for 16 h 

at room temperature. [2Fe-2S] BOLA3-GLRX5 and [2Fe-2S] BOLA3 C59Y-GLRX5 were 

reconstituted as previously reported for the wild type complex6. Chemical Fe-S cluster 

reconstitution was performed with protein concentrations of ~40-80 µM. Anaerobic 
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conditions were obtained by degassing all buffers and performing the chemical 

reconstitution in anaerobic chamber (Fig. 2) with less than 5 ppm of oxygen.  

 

 

Figure 2. Schematic representation of an anaerobic chamber (glovebox) 
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3.2  PROTEIN CHARACTERIZATION 

 

3.2.1  UV/VIS SPECTROSCOPY 

 

UV/vis spectroscopy is routinely used in analytical chemistry for the quantitative 

determination of various types of molecules, such as transition metal ions, highly 

conjugated organic compounds, and biological macromolecules. The UV/vis 

spectrophotometer measures the intensity of light adsorbed by a sample containing the 

molecule(s) of interest, compared to same buffer or solvent without dissolved molecules. 

Solutions of transition metal ions can be colored (i.e., absorb visible light) because d-d 

electrons within the metal atoms can be excited.  

UV-visible spectra of apo- BOLAs, holo- GLRX5, holo- GLRX5-BOLAs, holo-ISCA2, 

holo-ISCA2-ISCA1, holo- NFU1 in degassed 50 mM phosphate buffer at pH 7.0, 5 mM 

DTT, GSH5 mM or 100 mM Tris-HCl buffer and 100 mM NaCl at pH 8 were performed 

on a Cary 50 Eclipse spectrophotometer in the range 750-250 nm. 

 

3.2.2 CIRCULAR DICHROISM  
 

Circular dichrism (CD) in the middle UV range is an excellent method to analyze 

protein and nucleic acid secondary structure in solution and it can be used to follow the 

changes in folding as a function of temperature or denaturant7,8. CD is a phenomenon 

occurring when chiral molecules interact with circularly polarized light, thus absorbing left 

and right hand circularly polarized light with different absorption coefficients. In proteins 

the major optically active chiral groups are the amide bonds of the peptide backbone.  Their 

electronic transitions adsorb differently the left vs the right polarized light, depending on 

the chirality of the peptide bond.  Consequently, the various secondary structure motives, 

characterized by different backbone dihedral angles give rise to different CD spectra. 

Circular dichroism spectroscopy is particularly good to: 

• Determine whether a protein is folded and, if so, characterize its secondary structure;  

• Compare the structures of a protein obtained from different sources (e.g. species or 

expression systems) or compare structures of different mutants of the same protein;  

• Study the conformational stability of a protein under stress (thermal stability, pH 

stability, and stability to denaturants) and how this stability is altered by buffer 

composition or addition of stabilizers; 
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• Determine whether protein-protein interactions alter the conformation of the protein. 

 

Middle UV CD analyses of the proteins (10-70µM) were performed in 50 mM phosphate 

buffer, NaCl 150 mM, pH 7.0 with the addition of different amounts of DTT.  Spectra were 

acquired at 298K using a 1-mm path-length cell and a Jasco J-810 spectropolarimeter. All 

spectra were recorded with an average of 5 accumulations at a scan speed of 100 nm/min 

and at a response time of 1 s.  

3.3  NMR  

 

Nuclear magnetic resonance (NMR) spectroscopy has become established as an essential 

method for structural characterization in chemistry, biology, and the materials sciences9. 

The power of NMR technique with respect to other spectroscopies is due to its resolution 

at atomic level. Indeed, each NMR active nucleus gives rise to an individual signal in the 

spectrum that, when molecules contain hundreds of atoms such as proteins, can be resolved 

through multi-dimensional NMR experiments. Resolution becomes more difficult for 

larger molecules (more than 50 kDa) and puts a practical limit to the molecular size that 

can be studied in detail by solution NMR. The standard protocol includes the preparation 

of homogeneous and pure samples of the protein solution, the recording and processing of 

the NMR datasets, and their interpretation of the NMR data. In general, protein NMR 

techniques are continually being used and developed. Improvements in NMR hardware 

(magnetic field strength, cryoprobes) and NMR methodology, combined with the 

availability of molecular biology and biochemical methods for preparation and isotope 

labeling of recombinant proteins, have dramatically increased the use of NMR for the 

characterization of structure and dynamics of biological molecules in solution.  

In NMR experiments, nuclear magnetic moments are oriented in accordance with a strong 

static magnetic field (B0 field) in an equilibrium state until a RF (radio frequency) pulse 

perturb this state. The processes leading to the system returning to its equilibrium 

orientation are termed relaxation. As we detect only components of the magnetization 

transverse to the B0 field the signal declines as the system moves back to its equilibrium 

state with spins in longitudinal orientation. The presence of paramagnetic species, i.e. 

unpaired electrons, increases in the sample the relaxation rate of nearby nuclei. This 
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phenomenon creates spectra annoying, i.e. the overall signal reduction, but it can also be 

used to obtain important structural information.  

Heteronuclear Single Quantum Correlation (1H-15N HSQC) 

1D 1H NMR spectra of biological macromolecules contain hundreds or even thousands of 

resonance lines which cannot be resolved with this type of spectra. So, analysis and 

assignment of the NMR spectra require correlations between different nuclei, which are 

implicitly contained in 1D spectra but often difficult to extract. Multidimensional NMR 

spectra provide both, increased resolution and correlations which are easy to analyze. The 

crucial step in increasing the dimensionality of NMR experiments lies in the extension from 

one to two dimensions. A higher dimensional NMR experiment consists of a combination 

of two-dimensional (2D) experiments.  

The 1H-15N HSQC (Heteronuclear Single Quantum Correlation) experiment is probably the 

first and the most frequently recorded experiment in protein NMR9–11. In this experiment 

we have the correlation between the proton and the nitrogen. During the condensation 

reaction between the amino acids, the carboxyl group (-COOH) react with the amino group 

(-NH2) to form the peptide bond (-CO-NH) with the release of a water molecule. Each 

residue of the protein (except proline and the NH2 of the last amino acid at the C-terminal) 

has an amide proton attached to nitrogen in the peptide bond, so with the 1H-15N HSQC 

experiment we can correlate the proton with the nitrogen (15N-labeled) of the amide group. 

If the protein is folded, the peaks are usually well dispersed in the proton/nitrogen 

dimension, and most of the individual peaks can be distinguished. The number of peaks in 

the spectrum should match the number of residues in the protein (though side chains with 

nitrogen-bound protons will add additional peaks). In order to analyze the nuclear magnetic 

resonance data, it is important to get a resonance assignment for the protein. That is to find 

out which chemical shift corresponds to which atom. This is typically achieved by 

sequential walking using information derived from several different types of NMR 

experiment. This barrier can be overcome with 3D NMR techniques and uniformly 13C and 
15N labelled proteins. In the case of labelled proteins, it is possible to record an experiment 

that transfers magnetization over the peptide bond, and thus connects different spin systems 

through bonds.  
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3.3.1 PARAMAGNETIC NMR SPECTROSCOPY 
 
 

Paramagnetic systems are defined as molecules or materials that contain one or more 

‘paramagnetic centers’, which are atoms or ions with at least one unpaired electron. From 

the point of view of NMR spectroscopy the important property of these systems is that there 

is a hyperfine interaction between the unpaired electrons and the observed nucleus, which 

is the origin of the paramagnetic shift and shift anisotropy (SA), the paramagnetic 

relaxation enhancement (PRE), and additional sources of substantial broadening due to 

large magnetic susceptibility effects. These interactions potentially yield important 

information about the system: 

 

• the bonding between the atoms and ions and their spatial arrangement. 

• the delocalization of the unpaired electrons onto the coordinating atoms and 

ligands. 

• the dynamics of the system 

• details about the crystal-field splitting and consequent optical 

properties (particularly relevant in the case of lanthanide ions) 

 

However, the paramagnetism can also cause problems when attempting to both acquire and 

interpret the NMR data. The problem of acquisition arises because the paramagnetic shifts 

and SAs are often very large, with the result that excitation of the nuclei with practicable 

radio-frequency (RF) powers can be both inefficient and not sufficiently broad banded, and 

the large PREs cause the coherences to decay rapidly once they have been excited. The 

interpretation of the NMR data is not always intuitive, and usually requires the availability 

of reliable theoretical models. Unpaired electrons are found in metal ions as well as organic 

radicals, both of which can be used to study proteins. There exists a variety of paramagnetic 

labels, which can be attached to the proteins in specific locations. The most common type 

of paramagnetic label is linked to cysteine residues using disulfide bonds12,13. In the case of 

Fe–S clusters, the magnetic coupling between the iron ions determines various electron spin 

energy levels whose separation depends on the magnetic coupling constants14. As already 

said, the coupling of the nuclear spins with these multiple electron spin levels significantly 

affect both the chemical shifts and the relaxation rates15,16, and NMR signals results sharper 

than those observed for isolated iron ions. Due to these properties, NMR spectra 
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dramatically changes following oxidation state or cluster composition. The hyperfine shifts, 

their temperature dependencies and the relaxation rates of nuclei of cluster-bound residues 

allowed to elucidate the magnetic coupling patterns occurring in [2Fe–2S], [3Fe–4S] and 

[4Fe–4S] clusters17,18.  

 

3.3.2 SAMPLE PREPARATION 
 

A soluble protein sample is required to perform the NMR experiments and to 

successfully solve the 3D structure of biological macromolecules. In fact, an 

inhomogeneous preparation and/or aggregation of the protein may severely compromise 

the structure determination. Therefore, the first step in every protein NMR study involves 

optimization of the experimental conditions such as pH, ionic strength, and temperature 

that can often be adjusted to mimic physiological conditions. The target macromolecule 

should be stable in the optimized conditions as long as possible. Proteins should be isotope 

enriched in 15N and 13C for an efficient structure determination because the most abundant 

carbon isotope (12C) is not active and the most abundant nitrogen isotope (14N) is 

quadrupolar and has undesired NMR properties. Triple labelled samples, 2H, 13C and 15N, 

are necessary for protein with larger size (more than 30 kDa).  

 

 

3.4 MOLECULAR DOCKING FOR THE STUDY OF PROTEIN-PROTEIN 

INTERACTION  

 
Molecular docking have been investigated through the program HADDOCK 2.219,20.  In 

the latter the docking process is driven by ambiguous (AIRs) and unambiguous interaction 

restraints, which are ambiguous and unambiguous distances between all solvent exposed 

residues involved in the interaction. HADDOCK protocol defines active and passive 

residues. The active residues are all residues showing a significant chemical shift 

perturbation after the formation of the complex, with a solvent accessibility higher than 

50%; the passive residues are the residues which are surface neighbors of the active and 

have a solvent accessibility usually higher than 50%. 

The docking protocol consists of three consecutive steps: 
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• rigid body minimization driven by interaction restraints (it0), in which 1000 

structures of the complex have been generated; 

• the best 200 structures in terms of total intermolecular energy were further 

submitted to the semiflexible simulated annealing in which side-chains and 

backbone atoms of the interface residues are allowed to move (it1); 

• final refinement in Cartesian space in an explicit solvent (water). 

 

The 200 structures obtained are clustered using a threshold of 7.5 Å of RMSD among the 

structure of the cluster. Clusters containing at least 4 structures were considered and 

analyzed on the basis of HADDOCK score value (HADDOCK score: 

1.0*Evdw+0.2*Eelc+0.1*Edist+1.0*Esolv, where the four terms are respectively: van der Walls 

energy, electrostatic energy, distance restrains energy and desolvation energy), RMSD and 

Buried Surface Area. 
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4.1.  CONCLUSIONS AND PERSPECTIVES 

 

NFU1 is a late acting factor in iron sulfur cluster biogenesis, highly conserved from bacteria 

to humans. This protein evolved trough the tree of life to have specific physiological role 

and partners, in order to protect cells from oxidation and mitochondrial impairment. 

Previous studies classified human NFU1 as a [4Fe-4S] cluster scaffold protein. During my 

PhD I characterize apo and holo NFU1, highlighting new mechanisms by which NFU1 

carries on its function.  

First of all, data showed that the process of cluster transfer and assembly from [2Fe-2S]2+ 

GLRX5-BOLA3 to NFU1 brings directly to the formation of a [4Fe-4S]2+ cluster on NFU1. 

This mechanism might be alternative to the pathway involving the [4Fe-4S] cluster transfer 

from the ISCA1-ISCA2 complex to NFU12,3. Considering the different yeast phenotypes 

on yeast BOLA3 and NFU1 (i.e. the defect in yeast lacking Bol3 is modest, while the 

defects are more pronounced in nfu1∆ cells), and that the yeast homologue of NFU1 has 

been implicated to work under oxidative metabolism, this second pathway might be mainly 

required under oxidative cellular conditions4. In conclusion, this new possible pathway 

establishes a role of NFU1 as an assembler and not only as a scaffold of the [4Fe-4S] 

clusters and may be alternative to the ISCA1-ISCA2 [4Fe-4S] assembly.  Otherwise, our 

data do not support the previously proposed model defining BOLA3 as the assistant of the 

[4Fe-4S] cluster transfer from NFU1 to mitochondrial target proteins. No interaction 

between the two proteins has been detected in all tested conditions. According to this 

suggestion, E. coli NFU1 homologue, NfuA, efficiently transfers the [4Fe-4S] cluster to its 

target protein lipoyl synthase (LIAS) after each enzymatic turnover with any requirements 

of other proteins5.  

In our second work, we found the interaction between ISCA1 and NFU1. This interaction 

involves specifically the C-domain of NFU1 where the two helices of NFU1 encasing the 

cluster binding CXXC motif are involved in the interaction with ISCA1. The proposed 

molecular pathways orchestrated by ISCA1, ISCA2 and NFU1 to assemble and make 

available [4Fe-4S] clusters for mitochondrial apo client proteins fully rationalizes the in 

vivo data previously reported. Considering this molecular model, it resulted that ISCA1 is 

the crucial protein activating all [4Fe-4S] protein maturation pathways. Further analysis, 

for example, SAXS and ITC experiments may be used to better characterize the structural 

and thermodynamic properties of the observed complexes. 
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For what concerned the BOLA3 C59Y mutant, the protein present similar affinity for 

GLRX5 as the wild type does. Consequently, the mutant is also able to be complexed with 

its physiological partner, forming a stable hetero-complex.  

From UV-vis spectroscopy investigation, it resulted that the [2Fe-2S] cluster on C59Y 

BOLA3-GLRX5 is not fully lost, once exposed to oxygen for 12h. Differently, after the 

same time of exposure of [2Fe-2S] BOLA3-GLRX5 to oxygen, cluster is completely 

undetectable. These data suggest that Cys 59 to Tyr mutation stabilizes the cluster, 

changing the distances between the cluster and the coordinating residues. Fluorescence data 

did not provide results about tyrosinate formation during the cluster binding. Further studies 

are needed to confirm this hypothesis, and to clarify how the substitution of cysteine 59 

with a tyrosine inhibits the BOLA3 function in this specific side of the pathway. On the 

other hand, the milder patient phenotype presenting this protein variants, could be a 

consequence of genetic or environmental factors, that are able to modify the impact of these 

mutation6. 

Understanding the molecular mechanisms underline proteins interactions, cofactor 

assembly and transfer between partners, is essential to support in vivo data about human 

diseases.  
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