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Abstract. Recently, Hamiltonian Boundary Value Methods (HBVMs), have been used as spectral methods in time for
effectively solving multi-frequency, highly-oscillatory and/or stiffly-oscillatory problems. A complete analysis of their use
in such a fashion has been also carried out, providing a theoretical framework explaining their effectiveness. We report here a
few numerical examples showing their potentialities to provide a fully accurate solver for general ODE problems.
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INTRODUCTION

Hamiltonian Boundary Value Metods (HBVMs) is a class of energy-conserving Runge-Kutta methods for efficiently
solving Hamiltonian problems [6, 7] (see also the monograph [3] and the recent review paper [4]). In particular, a
HBVM(k,s) method, k > s, is the k-stage Runge-Kutta method defined by the following Butcher tableau:

c| L2/ 0

‘ bT ’ Iy = ( f()C’Pj*l(x)dx ), Py = ( ijl(ci) ) € kas7 Q= dlag(b)a (D
where {P;} >0 is Legendre polynomial basis orthonormal on the interval [0, 1], P; € IT;, fol P,(x)Pj(x)dx = §;j, Vi, j >
0, having set II; the set of polynomials of degree at most i, §; the Kronecker symbol, and b = (by,...,bx) T,
c¢=(c1,...,cx) " the vectors with the k-th Legendre weights and abscissae (i.e., P(c;) =0, i = 1,...,k), respectively.
A thorough analysis of such methods can be found in [9], showing that they have order 2s, and their efficient
implementation has been considered in [8, 2]. In particular, the so called blended implementation for solving the
discrete problems generated by HBVMs, which is described in [8, 3] (see also [4]), allows the use of huge values of s.
This, in turn, permits the use of HBVMs as spectral methods in time, as it has been proposed in [5, 12], for efficiently
solving highly/stiffly-oscillatory problems. A thorough analysis of spectral HBVMs (SHBVM:s) (i.e., HBVMs used as
spectral methods in time), has been recently devised in [1], which explains their effectiveness also in the case where
the used time-step is not small (as is the case, when speaking about spectral methods). In the sequel, we report the
main results of the analysis carried out in [1], and provide a few examples showing the potentialities of SHBVMs as
general ODE solvers, able to provide a numerical solution with full machine accuracy.

SPECTRAL HAMILTONIAN BOUNDARY VALUE METHODS (SHBVMS)
Let us consider the numerical solution of the following ODE-IVP which, for sake of simplicity, we take in the form

yO) =f((0),  t€[0,h,  y(0)=yo €R", 2)

where h is the used time-step (we are indeed speaking about a one-step method) and f is assumed to be, for sake
of brevity, analytical. Following the approach in [9], we can expand the right-hand side of (2) along the Legendre
polynomial basis {P;} j>¢ as follows:
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A polynomial approximation ¢ € Il can then be obtained from (3) by truncating the series to a finite sum:

s—1 K
=Y Po)y(e), =  olch) =yo+h2/ Ndry(o),  ceo,1], @)
Jj=0 j=0

where y;j(0) is formally defined as in (3) by replacing y with o. Moreover, by approximating the Fourier coefficients
by the Gauss-Legendre formula of order 2k,

/p o(th)) dfwsz ci) f(o(cih) = 9, )

one obtains the HBVM(k, s) method (1). Here, for sake of brevity we continue to use the same symbol ¢ for the
polynomial approximation obtained using the quadrature. The following result holds true [9].

Theorem 1 ¥;(y),7;(0) = O(h/). For allk > s : 9; = O(h/) and, moreover, setting y1 = 6 (h) = yo +hy(0), one has:
yi=y(h) = O(h**").

In other words, the previous result states that we are speaking about an order 2s method. However, there is evidence
[5, 12] that the method can be effectively used with large (and even huge) time-steps, provided that s is large enough.
Before going into details, at first we shall use, in (5), k large enough so that §; = y;(o), where = means “equal within
the round-off error level”. As an example, for the double precision IEEE, the choice

k = max{20,s+2} (6)

is generally sufficient for this purpose. Assuming this holds true in the sequel, the following result summarizes the
theoretical achievements in [1].

Theorem 2 Let f(y(z)) be analytical in a closed ball of radius r* centered at 0. Then, for all 0 < h < h* < r*, there
exist K = k(h*), p := % >p*=r*/h* > 1, and M = M(h*) such that (see (4)), considering any suitable vector norm
NE

K

Vitl

This result is interesting from many points of view. In fact, one has that, when the solution is regular enough, then
one is allowed to use quite large time-steps, still getting an accurate approximation y; = o(h). Moreover, in the
implementation of the methods, the coefficients §; = ¥;(o) are computed. Therefore, by virtue of (7) one can estimate
the parameters k and p, thus getting a corresponding error estimate. As a consequence, again from (7), one can
dynamically vary both s and &, in order to gain a desired accuracy (we refer to [1] for more details). In particular,
one can expect a fully accurate approximation to the solution, within the limit of the used finite precision arithmetic,
by requiring |¥%(0)|/|1(0)| to be of the order of the square root of the machine epsilon u. In the sequel, we report a
few numerical examples, aimed at showing the potentialities of this approach, dealing with different ODE problems
obtained by a Matlab implementation of the method.

7j(0)] < pl, j=0,1,....s—1,  |o(h)—y(h)| <hMp~™>. (7)

A Kepler problem. We consider, at first, the following Kepler problem,

g=p, p= _Q/qul%? re [0727[]7 CI(O) = (0'57 O)T7 p(O) = (07 \/g)Ta ®)

whose solution is periodic of period 27. We fix a time-step & = 27/10 and we show, in the plot on the left of Figure 1,
the norms of ¥;, j =0,1,...,29 (triangles), obtained in the first step of integration using k = 32 in (5)-(6), along with
the estimated upper bound (7) (solid line and circles), with estimated x ~ 35.6 and p ~ 3.5. On the right of the same
figure, is the plot of the solution error at 7 = 27 versus s, having fixed the same time-step & = 27/10: as one may see,
after s = 14, a fully accurate solution is obtained. This well match the fact that |{14]/|f0| = /u.
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FIGURE 1. Kepler problem (8).
s k = 62.7, rho=8.2
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FIGURE 2. Lotka-Volterra problem (9).

A Lotka-Volterra problem. Similarly as done above, we now consider the following Lotka-Volterra problem,

0 —0.5y1y2  0.5y1y3 2 1 1
y=1{ 05y 0 —y2)3 14y, , t€l0,T], y0)=1 19 |, ©)
—0.5y1y3  y2y3 0 2-2y;! 0.5

having a periodic solution of period T /= 2.878130103817. Again, we fix a time-step 7 = T /10 and we show, in the plot
on the left of Figure 2, the norms of §;, j =0,1,...,19 (triangles), obtained in the first step of integration using k = 22
in (5)-(6), along with the estimated upper bound (7) (solid line and circles), with estimated K ~ 62.7 and p ~ 8.2.
On the right of the same figure, is the plot of the solution error at + = T versus s, having fixed the same time-step
h=T/10: as one may see, after s = 9, a fully accurate solution is obtained. This well match the fact that, also in this

case, |fol /|| ~ /u.

A stiff problem. At last, let us now consider the following stiff problem,

—9999 1 1 cos 2t
y=[ 900 —100 1 |p-gm)+ew). 1e010,  y0)=g0), g)=| cosdm |. (10)
98 98 -2 cos 6t

whose solution is y() = g(¢). We now fix a time-step & = 1 and report, in the plot on the left of Figure 3, the norms of
¥i, j=0,1,...,39 (triangles), obtained in the first step of integration using k = 42 in (5)-(6), along with the estimated
upper bound (7) (solid line and circles), with estimated k ~ 3 - 10'> and p ~ 5.8. On the right of the same figure, is
the plot of the solution error at # = 10 versus s, having fixed the same time-step 7 = 1: as one may see, after s = 25, a
fully accurate solution is obtained. This well match the fact that, also in this case, |s|/|fo| ~ v/u.
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FIGURE 3. Stiff problem (10).

Conclusions. In this paper we have provided some numerical tests confirming the potentialities of obtaining an

efficient, general purpose ODE solver, able to get numerical solutions with full machine accuracy. As a motivation
for requiring full accuracy is that possible constants of motion inherent to the dynamical system would be precisely
conserved by the integrator modulo the underlying machine epsilon [5, 1]. The solver relies on the use of Hamiltonian
Boundary Value Methods as spectral methods in time. Last but not least, this use of the methods is made possible by
the availability of the very efficient blended iteration for solving the generated discrete problems. This latter nonlinear
iteration, devised in [8] for HBVMs, dates back to previous work on block implicit methods (see, e.g., [10, 11] and
references therein). It is worth mentioning that, due to the fast convergence properties of the blended iteration, the
overall execution times are, in most interesting cases, definitely more favourable when the spectral implementation of
the methods is considered.
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