
V. CONCLUSION 
 

Out of the EGG parameters studied, CQ seems to 
be the best estimate for firmness of phonation, at least 
in singing. In the model, MDEGG correlated with pre-
phonatory glottal half-width which meant a negative 
correlation between MDEGG and degree of firmness 
of phonation.   
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Abstract: The acoustical analysis of the infant cry 
is a non-invasive approach to assist the clinical 
specialist in the detection of abnormalities in 
infants with possible neurological disorders. 
Along with the perceptual analysis, the automatic 
analysis of the cry is often carried out through 
commercial or free software tools. However, the 
neonatal cry is a signal extremely difficult to 
analyze with standard techniques due to its quasi-
stationarity and the very high range of 
frequencies of interest. To address this issue, we 
present a new fully automatic method that 
exploits the wavelets high time-frequency 
resolution and low computing time properties for 
the estimation of the fundamental frequency F0 
and vocal tract resonance frequencies F1-F3. The 
method is tested on synthetic signals giving results 
comparable to existing tools. It is also applied to a 
set of 1669 newborn cry units (CU) coming from 
10 very preterm babies and to a set of 3514 CUs 
of 20 full-term infants.  
 
Keywords : acoustical analysis, wavelet transform, 
newborn infant cry, fundamental frequency, 
resonance frequencies 

 
I. INTRODUCTION 

 
The acoustical analysis of the infant cry is a non-

invasive approach to assist the clinical specialist in 
the detection of abnormalities in infants with 
possible neurological disorders. A brain dysfunction 
may lead to disorders in the vibration of the vocal 
folds and in the coordination of the larynx, pharynx 
and vocal tract.  

The main parameters of the newborn cry are the 
fundamental frequency (F0), the frequency of 
vibration of the vocal folds, and the first three 
resonance frequencies (RFs) of the vocal tract (F1, F2 
and F3) related to the varying shape of the vocal tract 
during the vocal emission. Indeed, in the newborn it 
is more appropriate to refer to resonance frequencies 
(RFs) rather than formants. In fact, the vocal tract is 

almost flat, the mobility of the oral cavity is reduced 
and the baby is unable to articulate vowel or 
consonant sounds, as the pharynx is too short and not 
wide enough for that purpose. For infants F0 values 
are usually in the range 200 Hz - 800 Hz (in the case 
of hyperphonation they can reach and exceed 1000 
Hz) [1-2]. Typical values for the first three RFs are 
approximately 1000 Hz, 3000 Hz and 5000 Hz [3]. 
Significant deviations from these ranges may be 
related to pathological conditions of the central 
nervous system. 

The study of neonatal cry has its origins several 
decades ago, when the technology was limited and it 
was therefore mainly based on the perceptual 
analysis made by the clinician through listening to 
the cry signal and visually analyzing the recorded 
signal and its FFT-based spectrogram [4]. This 
approach is implemented in the MDVPTM, the first 
and still used commercial tool, though developed for 
adult voices [5]. Currently, many researchers use 
PRAAT [6, 7] freely available on line. As MDVP, it 
was developed for the adult’s voice and requires a 
careful manual setting of some parameters [7]. In the 
last years, a fully automatic adaptive parametric 
approach for the crying analysis was developed, 
named BioVoice [8, 9]. As for F0, the difficulty in 
the estimation of the RFs is mainly linked to the 
quasi-stationarity and the very high range of 
frequencies of interest in the newborn cry, which 
requires sophisticated adaptive numerical techniques 
characterized by high time-frequency resolution. 

To overcome such problems, this paper presents 
a new fully automatic method based on wavelet 
transforms specifically developed for the estimation 
of F0 and the RFs of newborn cry that does not 
require any manual setting to be made by the user. 
The wavelet approach seems particularly suited to 
the study of neonatal cry thanks to its time-frequency 
high resolution characteristics and low computing 
time. In [10] a Continuous Wavelet Transform 
(CWT) with the Mexican hat was used on adult 
voice signals and in [11] the complex Morlet mother 
wavelet were applied. 
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This paper presents the first attempt to apply 
wavelets to the analysis of newborn cry. The 
implemented approach, named InCA (Infant Cry 
Analizer) is currently implemented in MATLAB, but 
it is easily adaptable for any embedded processor. 
InCA is tested and compared on synthetic signals 
with BioVoice and PRAAT. Results are comparable 
as far as F0, F1 and F2 are concerned while F3 is 
slightly overestimated. InCA is also applied to a set 
of newborn cries coming from 10 preterm infants 
and 20 full-term infants for a total of 5183 Cry-Units 
(CU). 
  

II. METHODS 
 
A. Pre-processing 
The analyzed signals, both simulated and real, were 
sampled at 44100 Hz and the time duration of the 
analysis window was chosen equal to 10 ms (441 
samples). As compared to the use of longer 
windows, that might not take into account the 
variability of the signal, this leads to improved 
accuracy of the estimates. 
The next step is the detection of the vocalic parts of 
the signal (the so-called "crying episodes" or Cry 
Units - CU) where F0 and RFs are estimated. For the 
selection of CUs, the proposed approach takes 
advantage of the procedure developed in BioVoice 
whose higher robustness with respect to other 
software tools has been demonstrated [9]. 
An audio recording of crying usually includes 
several CUs. In the literature, different time lengths 
are considered for CUs, ranging from 60 to 500 ms 
[12]. However, CUs of very short duration do not 
allow the assessment of some relevant features such 
as their melodic shape. Moreover, inspiratory sounds 
that have duration less than 200 ms must be 
disregarded [12]. For these reasons, audio analysis is 
performed here on CUs longer than 260 ms.  
 
B. Continuous wavelet transform 
The wavelet transform filters a signal f(t) with a 
shifted and scaled version of a prototype function 

(t), the so-called “mother wavelet”, a continuous 
function in both the time domain and the frequency 
domain [13].  
The scale parameter a of a Continuous Wavelet 
Transform (CWT) is related to the width of the 
analysis window: it either dilates or compresses the 
signal. The shift parameter b locates the wavelet in 
time. Varying a and b allows locating the wavelet at 
the desired frequency and time instant [13]. The 
relationship between a and the frequency is given by 
the so-called pseudo-frequency (Fa) in Hz, defined 
by the following equation: 

                                           (1) 

where Δ is the sampling period, and Fc is the wavelet 
central frequency.  
For F0  estimation, a Mexican Hat CWT is used.  
For each time window and in the frequency band of 
interest for F0 [200-800], the highest coefficient of 
the CWT matrix is found. The autocorrelation (AC) 
is computed on the row of the matrix that contains 
this value, which corresponds to the optimal scale. F0 
is given by: 
F0 = Fs /τ                                           (2) 
Where τ refers to the position (lag) of the maximum 
of the AC.  
The estimation of F1 – F3 is performed in a similar 
way, with different ranges for the band-pass filter as 
reported in Table 1 with a complex Morlet wavelet 
as prototype [13]. For this wavelet is defined: 

           (3)  
where ωc as the center frequency of the wavelet; σt is 
the standard deviation (STD), that is the scale 
parameter which determines the amplitude of the 
wavelet. In fact  sets the link between the 
bandwidth of the wavelet and its frequency Fc. For 
the Morlet wavelet, the latter must assume values 
such that [10, 11]: 

                                          (4) 
Moreover, the following relationship is taken into 
account: 

                                                               (5) 
Where Fb is the bandwidth of the wavelet. 
Comparing the frequency ranges and on analogy to 
[10] the values of Fc and the corresponding values of 
Fb were set as in Table 1. Specifically, for each Fc 
relative to each frequency band, Fb was computed 
with  and according to Eq. (3) and (5). 
 
Table 1. Frequency bands of interest in newborn cry, 

center frequency Fc and bandwidth Fb for the 
complex Morlet  

Frequency band [Hz] Fc [Hz] Fb [Hz] 
F1 [800 - 2100] 0.8 1.98 

F2 [1500 - 3500] 0.75 2.25 
F3 [3400 - 5500] 1.5 0.56 

 
C. Estimation of F0 

For F0 estimation, the proposed method involves 
the following steps: 
1. Band-pass filtering FIR with Kaiser window 
[200-800]Hz;  
2. Mexican Hat CWT of the signal. A pxq matrix M 
of coefficients is obtained, where p = maximum 
value of the scale and q = number of frames of the 
signal; 

3. Location of the scale (line) of M corresponding 
to the coefficients of maximum modulus and 
estimation of F0 according to eq.(4).  

On each time window the CWT scale parameter 
a was allowed to vary in the range 1÷55.  This 
choice is related to a reasonable frequency range for 
F0: 200 Hz-1050 Hz [1]. Therefore the Mexican Hat 
CWT was applied with a = 55, Δ = 1/Fs = 1/44.1 s, 
Fc = 0.25 Hz. Consequently Fa = 200 Hz according 
to Eq. (1). 

 
D. Estimation of RFs  

The estimation of F1–F3 is carried out with a 
procedure similar to that used for F0 but with 
different ranges for the band-pass filter, according to 
Table 1 and Complex Morlet as mother wavelet. 

 
III. RESULTS 

A. Synthetic signals 
The method for the F0 estimation was tested on a 

sine wave at 450Hz: 
y(t) = sin (450 t) +e(t)                            (8) 

The RFs F1-F3 estimation method was tested on a 
sum of three sinusoids on analogy to [11]:  
y(t)=5sin(1000t)+10sin(3000t)+15sin(5000t)+e(t) (9) 

White noise e(t) set at 5% of the signal amplitude 
was superimposed through the Audacity® open 
source tool. Signals were sampled at Fs=44.1 kHz. 
Results were compared with those obtained with 
BioVoice and PRAAT. 

BioVoice implements a robust method for the 
selection of the voiced parts of the signal (CUs) [9] 
and a variable window length for analysis: the higher 
the F0 the shorter the analysis window. RFs F1-F3 are 
obtained by peak picking in a parametric PSD (AR 
models) whose variable order is estimated on the 
varying time windows previously found. Instead, 
PRAAT implements a method for the F0 estimation 
based on the AC applied to a time window of fixed 
size while Linear Predictive Coding is applied for the 
RFs estimation. For proper use, and especially with 
newborn cry RFs, it requires the manual setting of 
some parameters. Therefore, its use must be made 
with caution [7]. Thus in this work the best 
parameters for PRAAT were preliminarily tested and 
set. Specifically, the range for F0 was set at 200-800 
Hz while for F1-F3 the maximum range was set up to 
11025 (Fs/4) with the estimation of 5 formants 
instead of 3. The use of default values (5500 Hz and 
3 formants) leads to wrong results.  

To compare the three approaches for F0 
estimation a preliminary test was carried out on the 
sinusoid in Eq. (8). First results show that the CWT 
Mexican Hat allows to obtain better results than the 
other methods. 

Table 2 shows the results obtained with the three 
approaches. The CWT has the best performance, as 
well as PRAAT (set with optimal parameters) though 
with a slightly higher standard deviation (STD), 
while BioVoice slightly underestimates F0 (0.26%).  
 

Table 2 – F0 estimation. Comparison of BioVoice, 
PRAAT and CWT Mexican Hat on a synthetic signal 

(sinusoid at 450Hz with 5% white noise) 
Method  F0 mean STD 
Mexican Hat 450.00 0.00 
BioVoice 448.81 2.08 
Praat 450.00 0.88 
 
On analogy to F0, for F1-F3 a preliminary test was 
made with the synthetic signal in Eq.(9) with CWT 
Complex Morlet with 5% white noise. Table 3 shows 
that the CWT Complex Morlet provides good results 
especially for F1 and F2. All methods give 
comparable results although with significant 
differences on STD. BioVoice gives the best results, 
with the lowest STD for all RFs. 
 

Table 3 – F1-F3 estimation. Comparison of 
BioVoice, PRAAT and CWT Complex Morlet 

Method 
F1 
mean 
STD 

F2 
mean 
STD 

F3 
mean 
STD 

Morlet CWT 1024.09 
91.00 

2971.27 
170.41 

5163.62 
411.32 

BioVoice 985.47 
5.12 

2956.42 
8.11 

5050.56 
11.20 

Praat 1120.50 
387.37 

3068.69 
346.26 

5019.35 
147.02 

 
B. Real signals 
Results concern spontaneous hunger cry of 20 full-
term newborns (TN, 10 male and 10 female) and 10 
preterm infants (PN, 5 male and 5 female). 
Gestational age (g.a.) of TN at birth was between 37 
weeks and 2 days and 42 weeks; the weight was 
between 2400g and 4250g. Gestational age of PN at 
birth was between 23 weeks and 5 days and 34 
weeks. The weight at birth was between 590g and 
2700g. At the recording time (20-30 days after birth) 
the PN gestational age was between 35 weeks and 1 
day and 43 weeks and 1 day; the weight ranged 
between 1380g and 2430g. 
The TN infants were recorded within the first two 
days of life, while PN newborns could be recorded 
only about 20–30 days after birth, due to their long 
staying in the incubator. Specifically, the PN infants 
were recorded within the first 45 days after the 
normal end of pregnancy (37 weeks).  
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Analizer) is currently implemented in MATLAB, but 
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InCA is tested and compared on synthetic signals 
with BioVoice and PRAAT. Results are comparable 
as far as F0, F1 and F2 are concerned while F3 is 
slightly overestimated. InCA is also applied to a set 
of newborn cries coming from 10 preterm infants 
and 20 full-term infants for a total of 5183 Cry-Units 
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The analyzed signals, both simulated and real, were 
sampled at 44100 Hz and the time duration of the 
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software tools has been demonstrated [9]. 
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several CUs. In the literature, different time lengths 
are considered for CUs, ranging from 60 to 500 ms 
[12]. However, CUs of very short duration do not 
allow the assessment of some relevant features such 
as their melodic shape. Moreover, inspiratory sounds 
that have duration less than 200 ms must be 
disregarded [12]. For these reasons, audio analysis is 
performed here on CUs longer than 260 ms.  
 
B. Continuous wavelet transform 
The wavelet transform filters a signal f(t) with a 
shifted and scaled version of a prototype function 

(t), the so-called “mother wavelet”, a continuous 
function in both the time domain and the frequency 
domain [13].  
The scale parameter a of a Continuous Wavelet 
Transform (CWT) is related to the width of the 
analysis window: it either dilates or compresses the 
signal. The shift parameter b locates the wavelet in 
time. Varying a and b allows locating the wavelet at 
the desired frequency and time instant [13]. The 
relationship between a and the frequency is given by 
the so-called pseudo-frequency (Fa) in Hz, defined 
by the following equation: 

                                           (1) 

where Δ is the sampling period, and Fc is the wavelet 
central frequency.  
For F0  estimation, a Mexican Hat CWT is used.  
For each time window and in the frequency band of 
interest for F0 [200-800], the highest coefficient of 
the CWT matrix is found. The autocorrelation (AC) 
is computed on the row of the matrix that contains 
this value, which corresponds to the optimal scale. F0 
is given by: 
F0 = Fs /τ                                           (2) 
Where τ refers to the position (lag) of the maximum 
of the AC.  
The estimation of F1 – F3 is performed in a similar 
way, with different ranges for the band-pass filter as 
reported in Table 1 with a complex Morlet wavelet 
as prototype [13]. For this wavelet is defined: 

           (3)  
where ωc as the center frequency of the wavelet; σt is 
the standard deviation (STD), that is the scale 
parameter which determines the amplitude of the 
wavelet. In fact  sets the link between the 
bandwidth of the wavelet and its frequency Fc. For 
the Morlet wavelet, the latter must assume values 
such that [10, 11]: 

                                          (4) 
Moreover, the following relationship is taken into 
account: 

                                                               (5) 
Where Fb is the bandwidth of the wavelet. 
Comparing the frequency ranges and on analogy to 
[10] the values of Fc and the corresponding values of 
Fb were set as in Table 1. Specifically, for each Fc 
relative to each frequency band, Fb was computed 
with  and according to Eq. (3) and (5). 
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For F0 estimation, the proposed method involves 
the following steps: 
1. Band-pass filtering FIR with Kaiser window 
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2. Mexican Hat CWT of the signal. A pxq matrix M 
of coefficients is obtained, where p = maximum 
value of the scale and q = number of frames of the 
signal; 

3. Location of the scale (line) of M corresponding 
to the coefficients of maximum modulus and 
estimation of F0 according to eq.(4).  

On each time window the CWT scale parameter 
a was allowed to vary in the range 1÷55.  This 
choice is related to a reasonable frequency range for 
F0: 200 Hz-1050 Hz [1]. Therefore the Mexican Hat 
CWT was applied with a = 55, Δ = 1/Fs = 1/44.1 s, 
Fc = 0.25 Hz. Consequently Fa = 200 Hz according 
to Eq. (1). 
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The estimation of F1–F3 is carried out with a 
procedure similar to that used for F0 but with 
different ranges for the band-pass filter, according to 
Table 1 and Complex Morlet as mother wavelet. 
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sum of three sinusoids on analogy to [11]:  
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was superimposed through the Audacity® open 
source tool. Signals were sampled at Fs=44.1 kHz. 
Results were compared with those obtained with 
BioVoice and PRAAT. 

BioVoice implements a robust method for the 
selection of the voiced parts of the signal (CUs) [9] 
and a variable window length for analysis: the higher 
the F0 the shorter the analysis window. RFs F1-F3 are 
obtained by peak picking in a parametric PSD (AR 
models) whose variable order is estimated on the 
varying time windows previously found. Instead, 
PRAAT implements a method for the F0 estimation 
based on the AC applied to a time window of fixed 
size while Linear Predictive Coding is applied for the 
RFs estimation. For proper use, and especially with 
newborn cry RFs, it requires the manual setting of 
some parameters. Therefore, its use must be made 
with caution [7]. Thus in this work the best 
parameters for PRAAT were preliminarily tested and 
set. Specifically, the range for F0 was set at 200-800 
Hz while for F1-F3 the maximum range was set up to 
11025 (Fs/4) with the estimation of 5 formants 
instead of 3. The use of default values (5500 Hz and 
3 formants) leads to wrong results.  

To compare the three approaches for F0 
estimation a preliminary test was carried out on the 
sinusoid in Eq. (8). First results show that the CWT 
Mexican Hat allows to obtain better results than the 
other methods. 

Table 2 shows the results obtained with the three 
approaches. The CWT has the best performance, as 
well as PRAAT (set with optimal parameters) though 
with a slightly higher standard deviation (STD), 
while BioVoice slightly underestimates F0 (0.26%).  
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Method  F0 mean STD 
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BioVoice 448.81 2.08 
Praat 450.00 0.88 
 
On analogy to F0, for F1-F3 a preliminary test was 
made with the synthetic signal in Eq.(9) with CWT 
Complex Morlet with 5% white noise. Table 3 shows 
that the CWT Complex Morlet provides good results 
especially for F1 and F2. All methods give 
comparable results although with significant 
differences on STD. BioVoice gives the best results, 
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B. Real signals 
Results concern spontaneous hunger cry of 20 full-
term newborns (TN, 10 male and 10 female) and 10 
preterm infants (PN, 5 male and 5 female). 
Gestational age (g.a.) of TN at birth was between 37 
weeks and 2 days and 42 weeks; the weight was 
between 2400g and 4250g. Gestational age of PN at 
birth was between 23 weeks and 5 days and 34 
weeks. The weight at birth was between 590g and 
2700g. At the recording time (20-30 days after birth) 
the PN gestational age was between 35 weeks and 1 
day and 43 weeks and 1 day; the weight ranged 
between 1380g and 2430g. 
The TN infants were recorded within the first two 
days of life, while PN newborns could be recorded 
only about 20–30 days after birth, due to their long 
staying in the incubator. Specifically, the PN infants 
were recorded within the first 45 days after the 
normal end of pregnancy (37 weeks).  
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We collected an audio recording for each infant of at 
least 1 hour of duration consisting of at least 10% of 
crying. From the whole recording we manually 
selected 2 or 3 minutes of crying.  
A total of 5183 CUs were extracted with BioVoice 
and the analysis performed with InCA. Table 4 
summarizes the results.  
 
Table 4 – Mean and STD values for F0, F1, F2 and F3 

obtained with InCA.  

 
F0 [Hz] F1 [Hz] F2 [Hz] F3 [Hz] 

PN mean 
 STD 

481.9 1188.2 2743.6 4395.2 
65.2 204.0 535.5 736.0 

TN mean 
STD 

461.1 1090.0 3037.0 4324.2 
44,2 204.3 711.7 843.5 

 
IV. DISCUSSION 

 
In this work an innovative method named InCA, 

based on the wavelet transform, is presented for the 
study of the acoustical features of the neonatal cry. 
Unlike most commonly used software tools, this 
method has been developed specifically for this kind 
of signals, characterized by high fundamental 
frequency F0 and quasi-stationarity. 
According to a careful selection of the wavelets, 
tested on synthetic signals, InCA implements the 
CWT Mexican Hat for F0 estimation and the CWT 
complex Morlet for the RFs estimation.  
The computing time is comparable to PRAAT: for 1 
s of recording InCA requires 0.9 s for the estimation 
of F0 and 2.8 s for the estimation of RFs, against less 
than 0.5 and approximately 2 s respectively with 
PRAAT. However, the CUs obtained with PRAAT 
are less reliable [9] and a careful manual setting of 
ranges and thresholds is required to avoid 
meaningless results especially for RFs [7]. 
InCA is applied to a quite large real data set coming 
from preterm and full-term newborns. Results are 
promising. The estimated values of F0 and RFs are in 
the ranges reported in the literature.  
The crying of newborns and infants is a functional 
expression of basic biological needs, emotional or 
psychological conditions such as hunger, cold, pain, 
cramps and even joy. It requires a coordinated effort 
of several brain regions, mainly brainstem and limbic 
system and is linked to the breath system. Its 
characteristics reflect the development and the 
integrity of the central nervous system. Thus, infant 
cry analysis is a suitable non-invasive 
complementary tool to assess the physical state of 
infants particularly important in the case of preterm 
neonates. Specifically, the distinction between a 
regular wailing and one with anomalies is of clinical 

interest. Preterm infants and infants with 
neurological conditions may have different cry 
characteristics when compared to healthy full-term 
infant.  

For this reason is important to set up an efficient 
method for automatic cry analysis. 
An automatic method for the estimation of crying 
acoustical characteristics provides a support to the 
perceptive analysis made by the clinician reducing 
the required amount of time often prohibitive in daily 
clinical practice.  
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