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ON INCREASING SOLUTIONS OF HALF-LINEAR DELAY

DIFFERENTIAL EQUATIONS

SERENA MATUCCI and PAVEL ŘEHÁK

Abstract. We establish conditions guaranteeing that all eventually positive increas-
ing solutions of a half-linear delay differential equation are regularly varying and
derive precise asymptotic formulae for them. The results here presented are new also
in the linear case and some of the observations are original also for non-functional
equations. A substantial difference between the delayed and non-delayed case for
eventually positive decreasing solutions is pointed out.

paper submitted to Mathematics for applications

1. Introduction

Let us consider the equation

(r(t)Φ(y′))′ = p(t)Φ(y(τ(t))) (1.1)

where r, p are positive continuous functions on [a,∞) and Φ(u) = |u|α−1 sgnu
with α > 1. Throughout the paper we assume (unless not stated otherwise) that
τ satisfies the following conditions:

τ ∈ C1, τ ′ > 0, τ(t) ≤ t, (1.2)

and

lim sup
t→∞

t

τ(t)
<∞. (1.3)

The above conditions imply limt→∞ τ(t) = ∞, and are fulfilled by standard exam-
ples of delay, e.g., τ(t) = t−σ with σ > 0, or τ(t) = λt with λ ∈ (0, 1). Note that,
in contrast to the linear case where an equation with a general delay can be trans-
formed into an equation with a constant delay (see [15]), in the half-linear case it
makes a good sense to consider a general τ . Solutions of (1.1) are understood in
the classical sense, i.e., a solution y of (1.1) is a C1 function defined in an interval
I ⊆ [a,∞), such that rΦ(y′) ∈ C1(I) and y satisfies (1.1) in I.
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Our aim is to describe asymptotic behavior of all eventually positive increasing
solutions of (1.1) via the theory of regular variation. Regularly varying func-
tions have been shown to be a very useful tool in studying asymptotic properties
of various type of differential equations, see, in particular, the monograph [14].
Linear and half-linear ordinary differential equations have been considered in the
framework of regular variation e.g. in [2, 3, 5, 7, 8, 17, 18, 19]. Linear and
half-linear functional differential equations have been studied in this framework in
[5, 9, 10, 11, 13, 16, 20, 21]. The typical result in the works [9, 10, 11, 13, 20, 21]
is the existence of a regularly varying solution, obtained by means of a topological
approach, as, for example, the Schauder-Tychonoff fixed point theorem. Our ap-
proach is different. We deal with the entire class of eventually positive increasing
solutions (which we assume to be non empty), and we show that it is a subset of
the class of regularly varying solutions. In addition, we derive precise asymptotic
formula for each solution. All our results are new also in the (functional) linear
case, and some of them are new in the non-functional (half-linear as well as linear)
case. The comparison with existing results is discussed in remarks after the main
results.

The paper is organized as follows. In the next section we give some basic in-
formation on equation (1.1) and recall selected facts from the theory of regular
variation, which will include also De Haan class Π. The main results are presented
in Section 3. In addition of showing regular variation of increasing solutions and
deriving asymptotic formulae, we briefly discuss also decreasing solutions; in par-
ticular, we show that under reasonable assumptions they may exhibit a quite
different behavior when compared with the solutions of non-delayed equations.
Directions for a possible future research are discusses as well. The last section
contains all the proofs.

2. Preliminaries

As usual, the relation f(t) ∼ g(t) as t → ∞ means limt→∞ f(t)/g(t) = 1, the
relation f(t) ≍ g(t) as t→ ∞means that ∃c1, c2 ∈ (0,∞) such that c1g(t) ≤ f(t) ≤
c2g(t) for large t, and f(t) = o(g(t)) as t→ ∞ means that limt→∞ f(t)/g(t) = 0.

As for nonoscillatory solutions of (1.1) (i.e., the solutions which are eventually
of one sign), without loss of generality, we work just with positive solutions, i.e.,
with the class

S = {y : y(t) is a positive solution of (1.1) for large t}.

We wish to include our results into the framework of a standard classification of
nonoscillatory solutions, which is given in what follows. Because of the sign con-
ditions on the coefficients, all positive solutions of (1.1) are eventually monotone,
therefore any such a solution belongs to one of the following disjoint classes:

IS = {y ∈ S : y′(t) > 0 for large t} , DS = {y ∈ S : y′(t) < 0 for large t} .

As for the nonemptiness of these classes as well as of the subclasses defined below,
general conditions are not known, as far as we know. Partial results related to the
problem of the existence of nonoscillatory solutions were obtained in [12]. Further,
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as a by-product of the investigation of half-linear delay differential equations in the
framework of regular variation via a fixed point approach, some existence theorems
under a setting which is close to our ones can be found e.g. in [11, 20].

We shall focus on the class IS. This class can be divided into the mutually
disjoint subclasses:

IS∞ =
{
y ∈ IS : lim

t→∞
y(t) = ∞

}
, ISB =

{
y ∈ IS : lim

t→∞
y(t) = b ∈ R

}
,

Define the so-called quasiderivative y[1] of y ∈ S by y[1] = rΦ(y′). We introduce
the following convention

ISu,v =
{
y ∈ IS : lim

t→∞
y(t) = u, lim

t→∞
y[1](t) = v

}
.

where u, v ∈ {B,∞}. If u = B [v = B] we mean that the value of the corresponding
limit is a real nonzero number. Using this convention we further distinguish the
following types of solutions which form subclasses in ISB and IS∞ (we list only
those ones that are not a-priori excluded):

ISB,B, ISB,∞, IS∞,B, IS∞,∞. (2.1)

In some places we need to emphasize that the classes and subclasses of eventually
positive increasing solutions are associated with a particular equation, say equation
(∗); then we write

IS(∗), IS
(∗)
B , etc. (2.2)

In the second part of this section we recall basic information on the Karamata
theory of regularly varying functions and the de Haan class Π; for more information
see the monographs [1, 4, 6].

A measurable function f : [a,∞) → (0,∞) is called regularly varying (at infin-
ity) of index ϑ, ϑ ∈ R, if

lim
t→∞

f(λt)/f(t) = λϑ for every λ > 0; (2.3)

we write f ∈ RV(ϑ). If ϑ = 0, then we speak about slowly varying functions;
we write f ∈ SV , thus SV = RV(0). By RV we mean either abbreviation of
“regularly varying” or RV =

⋃
ϑ∈R

RV(ϑ).
A function f ∈ RV(ϑ) if and only if there exists a function L ∈ SV such that

f(t) = tϑL(t) for every t. The slowly varying component of f ∈ RV(ϑ) will be
denoted by Lf , i.e., Lf (t) := f(t)/tϑ.

The following result (the so-called Uniform Convergence Theorem, see e.g. [1])
is one of the most fundamental theorems in the theory. Many important properties
of RV functions follow from it.

Proposition 2.1. If f ∈ RV(ϑ), then the relation (2.3) holds uniformly on
each compact λ-set in (0,∞).

Another important result in the theory of RV functions is the Representation
Theorem (see e.g. [1]).
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Proposition 2.2. f ∈ RV(ϑ) if and only if

f(t) = ϕ(t)tϑ exp

{∫ t

t0

ψ(s)

s
ds

}
, (2.4)

t ≥ t0, for some t0 > 0, where ϕ, ψ are measurable with limt→∞ ϕ(t) = C ∈ (0,∞)
and limt→∞ ψ(t) = 0. A function f ∈ RV(ϑ) can alternatively be represented as

f(t) = ϕ(t) exp

{∫ t

t0

ω(s)

s
ds

}
,

t ≥ t0, for some t0 > 0, where ϕ, ω are measurable with limt→∞ ϕ(t) = C ∈ (0,∞)
and limt→∞ ω(t) = ϑ.

A regularly varying function f is said to be normalized regularly varying, and
we write f ∈ NRV(ϑ), if ϕ(t) ≡ C in (2.4) or in the alternative representation. If
(2.4) holds with ϑ = 0 and ϕ(t) ≡ C, we say that f is normalized slowly varying,
and we write f ∈ NSV . Clearly, if f is a C1 function and limt→∞ tf ′(t)/f(t) = ϑ,
then f ∈ NRV(ϑ). Conversely, if f ∈ NRV(ϑ)∩C1, then limt→∞ tf ′(t)/f(t) = ϑ.

The classes of regularly varying solutions of (1.1) are defined as follows:

SSV = S ∩ SV , SRV(ϑ) = S ∩ RV(ϑ),

SNSV = S ∩ NSV , SNRV(ϑ) = S ∩NRV(ϑ).

The Karamata Integration Theorem (see e.g. [1, 4]) plays a very important role
in our theory. Its statement can be summarized as follows.

Proposition 2.3. Let L ∈ SV .

(i) If ϑ < −1, then
∫∞

t
sϑL(s) ds ∼ tϑ+1L(t)/(−ϑ− 1) as t→ ∞.

(ii) If ϑ > −1, then
∫ t

a
sϑL(s) ds ∼ tϑ+1L(t)/(ϑ+ 1) as t→ ∞.

(iii) If
∫∞

a
L(s)/s ds converges, then L̃(t) =

∫∞

t
L(s)/s ds is a SV function; if∫∞

a
L(s)/s ds diverges, then L̃(t) =

∫ t

a
L(s)/s ds is a SV function; in both

cases, L(t)/L̃(t) → 0 as t→ ∞.

Here are further useful properties of RV functions. The proofs of (i)–(viii) are
either easy or can be found in [1, 4]. The proof of (ix) can be found in the last
section.

Proposition 2.4.

(i) If f ∈ RV(ϑ), then ln f(t)/ ln t → ϑ as t → ∞. It then clearly implies that
limt→∞ f(t) = 0 provided ϑ < 0, or limt→∞ f(t) = ∞ provided ϑ > 0.

(ii) If f ∈ RV(ϑ), then fα ∈ RV(αϑ) for every α ∈ R.

(iii) If fi ∈ RV(ϑi), i = 1, 2, f2(t) → ∞ as t→ ∞, then f1 ◦ f2 ∈ RV(ϑ1ϑ2).

(iv) If fi ∈ RV(ϑi), i = 1, 2, then f1 + f2 ∈ RV(max{ϑ1, ϑ2}).

(v) If fi ∈ RV(ϑi), i = 1, 2, then f1f2 ∈ RV(ϑ1 + ϑ2).

(vi) If f1, . . . , fn ∈ RV, n ∈ N, and R(x1, . . . , xn) is a rational function with
nonnegative coefficients, then R(f1, . . . , fn) ∈ RV.
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(vii) If L ∈ SV and ϑ > 0, then tϑL(t) → ∞, t−ϑL(t) → 0 as t→ ∞.

(viii) If f ∈ RV(ϑ), ϑ 6= 0, then there exists g ∈ C1 with g(t) ∼ f(t) as t → ∞
and such that tg′(t)/g(t) → ϑ, whence g ∈ NRV(ϑ). Moreover, g can be
taken such that |g′| ∈ NRV(ϑ− 1).

(ix) If |f ′| ∈ RV(ϑ), ϑ ∈ R, with f ′ being eventually of one sign and f(t) → 0
or f(t) → ∞ as t→ ∞, then f ∈ NRV(ϑ+ 1).

Some other properties of RV functions, needed in the proofs of the main results,
are presented in some auxiliary lemmas in the last section.

Finally, we recall the definition of the De Haan class Π, together with some
useful properties.

A measurable function f : [a,∞) → R is said to belong to the class Π if there
exists a function w : (0,∞) → (0,∞) such that for λ > 0

lim
t→∞

(f(λt)− f(t))

w(t)
= lnλ; (2.5)

we write f ∈ Π or f ∈ Π(w). The function w is called an auxiliary function for f .
The class Π, after taking absolute values, forms a proper subclass of SV .

Next we give some properties of the class Π. The proofs of (i)–(ii) can be found
in the monographs [4, 6]. For (iii) see e.g. [17].

Proposition 2.5.

(i) If f ∈ Π(v), then v(t) ∼ f(t)− 1
t

∫ t

a
f(s) ds as t→ ∞.

(ii) If f ∈ Π, then limt→∞ f(t) =: f(∞) ≤ ∞ exists. If the limit is infinite,
then f ∈ SV. If the limit is finite, then f(∞)− f(t) ∈ SV.

(iii) If f ′ ∈ RV(−1), then f ∈ Π(tf ′(t)).

3. Main results

Denote

G(t) = Φ−1

(
tp(t)

r(t)

)
=

(
tp(t)

r(t)

)β−1

,

where β is the conjugate number of α, i.e., 1/α+1/β = 1. We start by establishing
conditions guaranteeing slow variation of increasing solutions, for which we also
derive asymptotic formulae.

Theorem 3.1. (I) Assume that
∫∞

a
p(s) ds = ∞ and

lim
t→∞

tα−1

r(t)

∫ t

a

p(s) ds = 0. (3.1)

Then IS ⊂ NSV . If, in addition, p ∈ RV(δ) with δ > −1, then for any y ∈ IS
the following hold.

(i) If
∫∞

a
G(s) ds = ∞, then y satisfies the formula

y(t) = exp

{∫ t

a

(1 + o(1))
G(s)

Φ−1(δ + 1)
ds

}
(3.2)
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as t→ ∞. Moreover, SNSV = SSV = IS = IS∞,∞.
(ii) If

∫∞

a
G(s) ds <∞, then y satisfies the formula

y(t) = N exp

{
−

∫ ∞

t

(1 + o(1))
G(s)

Φ−1(δ + 1)
ds

}
(3.3)

as t → ∞, where N := limt→∞ y(t) ∈ (0,∞). Moreover, SNSV = SSV = IS =
ISB,∞.

(II) Let conditions at point (I) be satisfied and let r ∈ RV(γ) hold. Then
γ ≥ α+ δ. For any y ∈ IS it holds y(t) ∈ Π(ty′(t)) provided γ = α+ δ. Moreover,
if γ = α+ δ and

∫∞

a
G(s) ds <∞, or γ > α+ δ, then

N − y(t) ∼
N

Φ−1(δ + 1)

∫ ∞

t

G(s) ds ∈ RV((δ + 1− γ)(β − 1) + 1) (3.4)

as t→ ∞. In particular, if γ = α+ δ, then |N − y| ∈ SV and

Lβ−1
p (t)

Lβ−1
r (t)(N − y(t))

= o(1) (3.5)

as t→ ∞.

Condition (3.1) is necessary in a certain sense. More precisely, the following
lemma holds.

Lemma 3.2. Let r ∈ RV(γ) with γ > α− 1, and τ(t) ≍ t as t → ∞. If there
exists y ∈ IS ∩ NSV, then (3.1) holds. If, in addition, p ∈ RV(δ), then

lim
t→∞

tα+δ−γ Lp(t)

Lr(t)
= 0. (3.6)

Note that if
p ∈ RV(δ), r ∈ RV(δ + α) (3.7)

hold, then

G(t) =
1

t

(
Lp(t)

Lr(t)

)β−1

∈ RV(−1). (3.8)

Observe that (3.7) along with δ > −1 yield γ > α − 1 (i.e., the assumption from
Lemma 3.2). Further, condition (3.1) (as well as condition (3.6)) reduces to

lim
t→∞

Lp(t)

Lr(t)
= 0, (3.9)

which is (3.6) with γ = δ + α.

From the non-functional case (see [19]) we know that
∫∞

a
r1−β(s) ds = ∞ and

lim
t→∞

tα−1

r(t)

∫ ∞

t

p(s) ds = 0 (3.10)

imply DS ⊂ NSV . Under the additional condition p ∈ RV(δ) with δ < −1,
asymptotic formulae similar to (3.2) and (3.3) can be established. In particular,
SV solutions must be sought among decreasing solutions. This result can be
understood as a certain complement to Theorem 3.1. However, as we will see,
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here we encounter a quite big difference between the functional and non-functional
case. For instance, let r(t) = 1, α = 2, and τ(t) = t − 1 in (1.1). Then y(t) =

e−t2 is a solution of (1.1) which takes here the form y′′ = p(t)y(t − 1), where
p(t) = (4t2 − 2)e1−2t. Clearly, limt→∞ t2p(t) = 0, and this condition implies also
limt→∞ t

∫∞

t
p(s) ds = 0, i.e., condition (3.10). However, y ∈ DS, but y 6∈ RV .

Thus we see that (in contrast to the situation for IS discussed in Theorem 3.1),
for decreasing solutions in our framework, qualitative behavior may substantially
change when passing from ordinary to functional equations. An open problem is
whether or not

∫∞

a
r1−β ds = ∞ and (3.10) imply DS ⊂ NSV when assuming, in

addition, that p ∈ RV(δ) with δ < −1.
Note that if p ∈ RV(δ) with δ 6= −1, then both (3.1) when δ > −1, and (3.10)

when δ < −1, reduce to the condition

lim
t→∞

tαp(t)

r(t)
= 0,

which can easily be seen from the Karamata theorem.

We proceed with a complementary case with respect to Theorem 3.1 in the
sense that we study increasing solutions when δ < −1 under the conditions (3.7)
and (3.1) (which yield (3.9)). We shall prove regular variation of these solutions
where the index is equal to

̺ :=
−1− δ

α− 1
, (3.11)

and derive asymptotic formulae. Denote

Hτ (t) = (tτ ′(t))α−1 p(t)

r(τ(t))
.

If (3.7) and the first condition in (3.12) hold, then Hτ ∈ RV(−1) and Hτ can be
written as

Hτ (t) =
1

t

(
t

τ(t)

)δ+α

(τ ′(t))α−1 Lp(t)

Lr(τ(t))
.

Since the convergence/divergence of the integrals
∫∞

a
G and

∫∞

a
Hτ plays an im-

portant role, the following example is of interest.

Example 3.3. Assume for simplicity that τ ′(t) ∼ λ with λ ∈ (0, 1] as t → ∞;
note that τ(t) = λt or τ(t) = t− σ both satisfy this condition. Then

Hτ (t) ∼
λ−δ−1tα−1p(t)

r(τ(t))
∼
λ−δ−1tα−1p(t)

r(t)
=
λ−δ−1

t
·
Lp(t)

Lr(t)

as t → ∞ by Lemma 4.1 provided (3.7) holds. Recall that G takes here the form
(3.8). Taking r, p such that Lp(t)/Lr(t) ∼ lnγ t as t → ∞, γ ∈ (−∞, 0), we see

that (3.9) is fulfilled. Moreover, if α < 2 and −1 < γ < 1 − α then
∫∞

a
G < ∞

while
∫∞

a
Hτ = ∞, and if α > 2 and 1 − α < γ < −1 then

∫∞

a
G = ∞ while∫∞

a
Hτ < ∞. Note that in the linear case (i.e., α = 2), λ−δ−1G(t) ∼ Hτ (t) as

t→ ∞, and thus half-linear equations exhibit more complex behavior.
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Theorem 3.4. Assume that (3.7) holds and δ < −1. Let

(r1−β ◦ τ)τ ′ ∈ RV(δ(1− β)− β) and

(
Lp(t)

Lr(t)

)β−1

τ ′(t) → 0 (3.12)

as t → ∞. Then IS ⊂ NRV(̺), where ̺ is defined in (3.11), and y[1](t) ∈
Π(tp(t)Φ(y(τ(t)))) for every y ∈ IS. In addition, for any y ∈ IS the following
hold.

(i) If
∫∞

a
Hτ (s) ds = ∞, then

y(t) = tr1−β(t) exp

{∫ t

a

(1 + o(1))
β − 1

Φ(̺)
Hτ (s) ds

}
(3.13)

as t→ ∞. Moreover, SNRV (̺) = SRV(̺) = IS = IS∞,∞.
(ii) If

∫∞

a
Hτ (s) ds <∞, then

y(t) = A+

∫ t

a

Mβ−1r1−β(s) exp

{
−

∫ ∞

s

(1 + o(1))
β − 1

̺α−1
Hτ (ξ) dξ

}
ds (3.14)

as t → ∞, where M = limt→∞ y[1](t) ∈ (0,∞), for some A ∈ R, and SNRV (̺) =
SRV(̺) = IS = IS∞,B. Moreover, M − y[1] ∈ SV and

tδ+α(τ ′(t))α−1Lp(t)

τδ+α(t)Lr(t)(M − y[1](t))
= o(1) (3.15)

as t→ ∞.

Remark 3.5. (i) In fact – as a closer examination of the proof shows – because
of the first additional condition in (3.12), we could assume only p ∈ RV(δ) instead
of (3.7). Yet, for the proof of regular variation of solutions and asymptotic formu-
lae, we could drop the requirement of p being regularly varying (similarly as r does
not need to be regularly varying in Theorem 3.1). But, for simplicity and since
we want to express some formulae in terms of Lp, Lr, and thus being in a better
correspondence with Theorem 3.1, we prefer to take the stronger assumption.

(ii) In view of Proposition 2.4, the former condition in (3.12) is implied by
τ ′ ∈ SV (provided we assume r ∈ RV(δ + α)). The latter condition in (3.12) is
implied by (3.9), and lim supt→∞ τ ′(t) <∞ (provided we assume (3.7)).

(iii) Similarly as in Lemma 3.2, we can obtain a necessary condition in the
setting of Theorem 3.4. In particular, if δ < −1, τ(t) ≍ t as t → ∞, (3.7) is
satisfied, and SNRV(̺) 6= ∅, then (3.9) holds.

In [13, 21] (see also [20]), half-linear differential equations with both retarded
and advanced arguments are considered. Necessary and sufficient conditions for
the existence of a (generalized) SV solution and a (generalized) RV(1) solution
are established. Note that the conditions on the coefficients are more general than
ours and takes an integral form similar to (3.1) and (3.10). The conditions on the
delayed argument are slightly more special than our ones. The methods in [13, 21]
are based on the results for the associated equation without deviating arguments
and the Schauder-Tychonoff fixed point theorem. We emphasize that while in
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[13, 20, 21] the existence of RV solutions is studied, here we attempt to deal with
all positive increasing solutions.

Our results are essentially new also in the linear case, i.e., when α = 2. The
linear version of the existence results mentioned in the previous item can be found
in [9, 10, 11].

If τ(t) = t, Theorems 3.1 and 3.4 reduce to an improvement of the results
in [17, 19]; note that in those papers, conditions (3.7) and (3.9) are assumed
throughout.

Next we establish a generalization of the previous theorems. As we will see,
as a by-product, we solve the natural problem arising from Theorem 3.1 and 3.4,
namely the missing (“critical”) case δ = −1. Also some equations that do not
have RV coefficients can be treated by generalized theorems.

We distinguish the two cases, namely
∫ ∞

a

r1−β(s) ds = ∞ (3.16)

and ∫ ∞

a

r1−β(s) ds <∞. (3.17)

In the former case we denote RD(t) =
∫ t

a
r1−β(s) ds and in the latter case we denote

RC(t) =
∫∞

t
r1−β(s) ds. Further, R−1

D stands for the inverse of RD and Q−1 is the

inverse of Q, where Q = 1/RC . It is easy to see that (RC ◦Q−1)(s) = 1/s.
We first give a generalization of Theorem 3.4. Denote

τD = RD ◦ τ ◦R−1
D , pD = (prβ−1) ◦R−1

D , (3.18)

and

qD = ((τ ′D ◦RD)RD)α−1p.

The following set of conditions will play a role:

lim sup
t→∞

t

τi(t)
<∞, τ ′i ∈ SV , lim sup

t→∞

τ ′i(t) <∞, (3.19)

where i = D or i = C according to whether δ < −1 or δ > −1, respectively.

Theorem 3.6. Assume that (3.16) holds, pD ∈ RV(−α), and limt→∞ LpD
(t) =

0. Let (1.2) and (3.19) with i = D be fulfilled. Then for any y ∈ IS one has
y ◦R−1

D ∈ NRV(1) and the following hold.

(i) If
∫∞

a
qD(s) ds = ∞, then

y(t) = RD(t) exp

{∫ t

a

(1 + o(1))(β − 1)qD2(s) ds

}
(3.20)

as t→ ∞ and y ∈ IS∞,∞.

(ii) If
∫∞

a
qD(s) ds <∞, then

y(t) = A+

∫ t

a

Mβ−1r1−β(s) exp

{
−

∫ ∞

s

(1 + o(1))(β − 1)qD(u) du

}
ds (3.21)
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as t → ∞, and y ∈ IS∞,B, with limt→∞ y[1](t) = M ∈ (0,∞), for some A ∈ R.

In addition, |y[1] ◦R−1
D −N | ∈ SV and

(τ ′D(RD(t)))α−1Rα
D(t)p(t)rβ−1(t)

M − y[1](t)
= o(1) (3.22)

as t→ ∞.

The next result is a complement of Theorem 3.6, and generalizes Theorem 3.1.
Denote

τC = Q ◦ τ ◦Q−1, pC = (R2
Cpr

β−1) ◦Q−1 (3.23)

and
qC = (RCpr

β−1)β−1.

Theorem 3.7. Assume that (3.17) holds, pC ∈RV(α−2), and limt→∞ LpC
(t) =

0. Let (1.2) and (3.19) with i = C be fulfilled. Then for any y ∈ IS one has
y ◦Q−1 ∈ NSV and the following hold.

(i) If
∫∞

a
qC(s) ds = ∞, then

y(t) = exp

{∫ t

a

(1 + o(1))(β − 1)β−1qC(s) ds

}
(3.24)

as t→ ∞ and y ∈ IS∞,∞.
(ii) If

∫∞

a
qC(s) ds <∞, then

y(t) = N exp

{
−

∫ ∞

t

(1 + o(1))(β − 1)β−1qC(s) ds

}
(3.25)

as t→ ∞ and y ∈ ISB,∞, with limt→∞ y(t) = N ∈ (0,∞). In addition, |y◦Q−1−
N | ∈ SV and

Rα
C(t)p(t)r

β−1(t)

Φ(y(t)−N)
= o(1) (3.26)

as t→ ∞.

Remark 3.8. In view of Lemma 4.2-(ii), if τ satisfies (1.2), (1.3), τ ′ ∈ SV ,
lim supt→∞ τ ′(t) < ∞, and r ∈ RV(δ + α), then (3.19) (which is assumed in
Theorems 3.6 and 3.7) is fulfilled, where i = D or i = C according to whether
δ < −1 or δ > −1, respectively.

Theorems 3.6 and 3.7 are indeed generalizations of the previous theorems. As
easily seen from Lemma 4.2 (see also Remark 3.8), the assumptions of Theo-
rem 3.4 and Theorem 3.1 (supposing here (3.7)) imply the ones of Theorem 3.6
and Theorem 3.7, respectively. Asymptotic formulae in Theorems 3.1 and 3.4 can
be obtained from the general ones by applying the Karamata integration theorem
(Proposition 2.3) to RD and RC .

Theorem 3.6 and Theorem 3.7 allow us to obtain asymptotic formulae also
when the coefficients of the equation are not regularly varying. For example, let
p(t) = eγttω, r(t) = eγt with γ < 0 and ω < 0. Then (3.16) holds and

pD(s) =
1

((s+K)γ(1− β))α
lnω ((s+K)γ(1− β))

1
γ(1−β)
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for some K ∈ (0,∞). Therefore, pD ∈ RV(−α) and LpD
(s) → 0 as s→ ∞.

Theorem 3.6 and Theorem 3.7 enable us to cover the missing cases in Theorems
3.1 and 3.4 in the sense of the critical case δ = −1. Let us illustrate this fact if, for
simplicity, r(t) = tα−1. Assume, in addition, that p ∈ RV(−1). Then (3.7) with
δ = −1 holds. It is easy to see that (3.16) is fulfilled. We have RD(t) = ln t (taking
a = 1) and R−1

D (s) = exp s. Since pD(s) = p(es)(es)(α−1)(β−1) = esp(es) = Lp(e
s),

we get pD ∈ RV(−α) provided

Lp ◦ exp ∈ RV(−α). (3.27)

Under this condition, LpD
(ln t) = sαpD(s) = sαLp(e

s) = Lp(t) ln
α t (with t = es).

Hence, limt→∞ LpD
(t) = 0 is implied by

lim
t→∞

Lp(t) ln
α t = 0. (3.28)

Thus the assumptions of Theorem 3.6 are fulfilled provided (3.27) and (3.28) hold,
and we get y ◦ exp ∈ NRV(1) for y ∈ IS; in fact, all eventually positive increasing
solutions of (1.1) are slowly varying. As for the asymptotic formulae, note that

qD(t) =

(
tτ ′(t)

τ(t)

)α−1

p(t) lnα−1 s.

Take, for example,

p(t) =
1

t
·

1

lnα t
·

1

lnω ln t
,

ω > 0. Then

(Lp ◦ exp)(t) =
1

tα lnω t
∈ RV(−α).

Assume sτ ′(s) ≍ τ(s) as s→ ∞. Then

qD(t) =

(
tτ ′(t)

τ(t)

)α−1
ln−ω ln t

t ln t
≍

ln−ω ln t

t ln t

as t→ ∞. Hence,
∫∞

a
qD diverges [converges] when ω ≤ 1 [ω > 1].

Many formulae in the previous two theorems (and their applications) can be
expressed in terms of generalized regularly varying functions; this concept was
introduced in [7] and has been used in several papers, see, for instance, [21].
Generalized regular variation is defined as follows: a function f is regularly varying
of index ϑ ∈ R with respect to ω ∈ C1, with ω′ > 0 and limt→∞ ω(t) = ∞, if
f ◦ ω−1 ∈ RV(ϑ). Denote the set of all regularly varying function of index ϑ with
respect to ω by RVω(ϑ). Hence, for example, instead of y ◦ R−1

D ∈ NRV(1) we
could write y ∈ NRVRD

(1), instead of pD ∈ RV(−α) we could write pr1−β ∈
RVRD

(−α), and so on.

If τ(t) = t, then Theorem 3.6 (Theorem 3.7) reduces to [18, Theorem 5] ([18,
Theorem 6]).

In the last paragraph of this section we indicate some directions for a possible
future research.
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(i) One of the open problems is to obtain a similar theory for equation (1.1)
with the opposite sign condition on the coefficient p. In this framework, it would
be new even in the ordinary (i.e., non-functional) case.

(ii) A natural problem is to complete our theory also for decreasing solutions.
As we could see in the observation after formula (3.10), the difference between
functional and non-functional case is “bigger” than for increasing solutions. We
conjecture that, for example,

∫∞

a
r1−β(s) ds = ∞, p ∈ RV(δ) with δ < −1, and

(3.10) imply DS ⊂ NSV ; the assumption on regular variation of p (or some other
restriction on p) cannot be omitted. Once we have guaranteed slow variation
of decreasing solutions, asymptotic formulae similar to the above ones can be
obtained.

(iii) Another natural problem is to examine advanced equations, i.e., the case
in which the condition τ(t) ≤ t is replaced by τ(t) ≥ t. Here the situation is
“reversed” in the sense that decreasing solutions are easier to be handled than
increasing ones. For instance, it is not difficult to show that

∫∞

a
r1−β(s) ds = ∞,

p ∈ RV(δ) with δ < −1, and (3.10) (i.e., the example of the setting is the same as
in the previous item) imply DS ⊂ NSV . Such a statement would be a half-linear
extension of [5, Theorem 5.1] which deals with linear advanced equations. To the
best of authors’ knowledge, this paper is the first one where functional differential
equations are analyzed in the framework of regular variation. As for the corre-
sponding result for an advanced equation when (3.1) with δ > −1 holds, nothing
is known about slow variation of all increasing solutions even in the linear case.
On the other hand, practically all arguments which are used to obtain asymptotic
formulae, work with appropriate modifications also for advanced equations.

(iv) Since we assume that Lp(t)/Lr(t) = tαp(t)/r(t) tends to zero as t → ∞,
(i.e., condition (3.9)), it is natural to examine also the condition limt→∞ tαp(t)/r(t)
= C > 0 or its generalization in the sense of (3.1) or (3.10). In the case of equations
without deviating argument, see [18], we can use suitable transformations which
lead to a linear second order equation. Then the results on SV solutions can be
applied to the transformed equation. A similar method however is not known for
the associated functional differential equations (even in the linear case).

4. Proofs of the main results

In order to prove the main theorems, first we derive several auxiliary statements.

Proof of Proposition 2.4-(ix). (ix) If f ′ ∈ RV(−1) and f(t) → ∞ as t → ∞,

then f(t) = f(a) +
∫ t

a
f ′(s) ds ∼

∫ t

a
f ′(s) ds. Hence, since tf ′(t) ∈ SV ,

tf ′(t)/f(t) ∼ tf ′(t)/

∫ t

a

f ′(s) ds→ 0

as t → ∞ by Proposition 2.3-(iii). Similarly we proceed when |f ′| ∈ RV(−1) and
f(t) → 0 as t → ∞. As for the case ϑ 6= −1, we use again similar arguments and
apply Proposition 2.3-(i) when ϑ < −1, or Proposition 2.3-(ii) when ϑ > −1. �

Lemma 4.1. Let f, g be defined on [a,∞).
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(i) If f ∈ SV and g(t) ≍ t as t→ ∞, then f(g(t)) ∼ f(t) and f ◦ g ∈ SV.
(ii) If f ∈ RV(ϑ), ϑ ∈ R, and g(t) ≍ t as t→ ∞, then f(g(t)) ≍ f(t).
(iii) If f ∈ RV(ϑ), ϑ ∈ R, and g(t) ∼ t as t→ ∞, then f(g(t)) ∼ f(t).

Proof. (i) Since c ≤ g(t)/t ≤ d, t ∈ [b,∞), for some 0 < c < d < ∞ and b ≥ a,
in view of the Uniform Convergence Theorem, we have

f(g(t))

f(t)
=
f((g(t)/t)t)

f(t)
→ 1

as t→ ∞, i.e., f(g(t)) ∼ f(t). Therefore, for every λ > 0,

f(g(λt))

f(g(t))
∼
f(λt)

f(t)
∼ 1

as t→ ∞, i.e., f ◦ g ∈ SV .
(ii) Let L(t) = f(t)/tϑ. Then L ∈ SV and

f(g(t))

f(t)
=

(
g(t)

t

)ϑ
L(g(t))

L(t)
, (4.1)

In view of (i), we have

c1 ≤ c2
L(g(t))

L(t)
≤
f(g(t))

f(t)
≤ d2

L(g(t))

L(t)
≤ d1,

t ∈ [b,∞), for some c1, c2, d1, d2 ∈ (0,∞) and b ≥ a.
(iii) As above, let L(t) = f(t)/tϑ. Then L ∈ SV and, in view of (4.1) and (i),

we have
f(g(t))

f(t)
∼
L(g(t))

L(t)
∼ 1

as t→ ∞. �

Lemma 4.2. Let τi, pi, i = C,D, are defined as in (3.18) and (3.23).
(i) If (3.7) and (3.9) hold, then pD ∈ RV(−α) and LpD

(s) → 0 as s → ∞
provided δ < −1, while pC ∈ RV(α − 2) and LpC

(s) → 0 as s → ∞ provided
δ > −1.

(ii) Let τ satisfy (1.2). Then τi fulfills

τi ∈ C1, τ ′i > 0, τi(t) ≤ t, (4.2)

where i = D or i = C according to whether (3.16) or (3.17) holds, respectively.
If, in addition, (1.3) holds, τ ′ ∈ SV, lim supt→∞ τ ′(t) < ∞, and r ∈ RV(δ + α),
then (3.19) holds, where i = D or i = C according to whether δ < −1 or δ > −1,
respectively.

Proof. (i) The statement follows from Proposition 2.4, the Karamata integration
theorem (Proposition 2.3), and the fact that Lp(t)/Lr(t) ∼ ̺α(LpD

◦ RD)(t) as
t → ∞ provided δ < −1 (the case δ > −1 is similar). The details are left to the
reader.

(ii) We will consider only the case i = D, since the case i = C is similar.
Since τ, RD, R

−1
D are C1 functions with positive derivatives, τD ∈ C1 and τ ′D > 0

follow. Further, from τ(t) ≤ t, we have τ(R−1
D (s)) ≤ R−1

D (s), and since RD is
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increasing, we obtain τD(s) ≤ s. From now on assume that r ∈ RV(δ + α). Then
RD ∈ RV(̺) by Proposition 2.4 and the Karamata theorem (Proposition 2.3). If
M > 0 exists, such that t ≤ Mτ(t), then R−1

D (s) ≤ Mτ(R−1
D (s)). Consequently,

s ≤ RD(Mτ(R−1
D (s))) ≤ NτD(s), for some N > 0, where the existence of N is

guaranteed by regular variation of RD. Hence, lim supt→∞ t/τD(t) < ∞ follows.
Since τ ′ ∈ SV and RD ∈ RV(̺), we have τ ∈ RV(1) and R−1

D ∈ RV(1/̺). Thus,
in view of Proposition 2.4,

τ ′D = (R′
D ◦ τ ◦R−1

D )(τ ′ ◦R−1)(R−1)′

∈ RV

(
(̺− 1) · 1 ·

1

̺
+ 0 ·

1

̺
+

(
1

̺
− 1

))
= SV .

Finally, assume that τ ′(t) ≤ M for some M > 0. In view of Lemma 4.1, we have
r1−β(τ(t))/r1−β(t) ≍ 1 as t→ ∞. Hence,

τ ′D(s) = r1−β(τ(R−1
D (s)))τ ′(R−1

D (s))
1

r1−β(R−1
D (s))

≤ N

for some N > 0.
�

Lemma 4.3. Let y be a solution of (1.1) and let τ be differentiable. Then
u = CrΦ(y′), C ∈ R, satisfies the reciprocal equation

(r̃(t)Φ−1(u′))′ = p̃(t)Φ−1(u(τ(t))), (4.3)

where

r̃(t) = p1−β(t), p̃(t) = τ ′(t)r1−β(τ(t)). (4.4)

If p ∈ RV(δ) and (r1−βτ ′ ◦ τ) ∈ RV(δ̃) (where the latter condition is implied

e.g. by r ∈ RV(δ + α) and τ ′ ∈ SV), then p̃ ∈ RV(δ̃), r̃ ∈ RV(δ̃ + β), where

δ̃ = δ(1− β)− β. If, moreover, (3.7) holds, then

Lp̃(t)

Lr̃(t)
≍

(
Lp(t)

Lr(t)

)β−1

τ ′(t) (4.5)

as t→ ∞.

Proof. Since y is a solution of (1.1), from the definition of u we have u′(t) =
p(t)Φ(y(τ)). Hence y(τ(t)) = Φ−1(1/p(t))Φ−1(u(t)). Further, y′(t) = Φ−1(1/t(t))
Φ−1(u(t)) and (y ◦ τ)′ = (y′ ◦ τ)τ ′. Now it is easy to see that u satisfies (4.3). The

fact that p̃ ∈ RV(δ̃) and r̃ ∈ RV(δ̃ + β) follows from Proposition 2.4. In view of
Lemma 4.1, we have

Lp̃(t)

Lr̃(t)
=
tβτ ′(t)r1−β(τ(t))

p1−β(t)
≍

(
tαp(t)

r(t)

)β−1

τ ′(t)

as t→ ∞, which implies (4.5). �
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Lemma 4.4. Put s = ϕ(t) and x(s) = y(ϕ−1(s)), where ϕ is a differentiable
function such that ϕ′(t) 6= 0, equation (1.1) is transformed into the equation

d

ds

(
r̂(s)Φ

(
dx

ds

))
= p̂(s)Φ(x(τ̂ (s))), (4.6)

where

p̂ =
p ◦ ϕ−1

ϕ′ ◦ ϕ−1
, r̂ = (r ◦ ϕ−1)Φ(ϕ′ ◦ ϕ−1), τ̂ = ϕ ◦ τ ◦ ϕ−1.

Further,

x[1](s) := r̂(s)Φ

(
dx

ds
(s)

)
= y[1](t). (4.7)

If (3.7), (3.16), and ϕ = RD hold, then r̂ = 1 and p̂ = (prβ−1) ◦R−1
D ∈ RV(−α).

If (3.7), (3.17), and ϕ = Q hold, then r̂(s) = s2α−2 and p̂ = (R2
Cpr

β−1) ◦Q−1 ∈
RV(α− 2).

Proof. The form of the transformed equation follows from the fact that x(ϕ(t))=
y(t) and d

dt = ϕ′(t) d
ds . The indices of regular variation of p̃ in both cases can easily

be computed via Proposition 2.4 and the Karamata theorem (Proposition 2.3). �

Proof of Theorem 3.1. (I) Take y ∈ IS. Integrating (1.1) from b to t, where b
is so large that y(τ(s)) > 0 for s ≥ b, we get

r(t)Φ(y′(t)) = r(b)Φ(y′(b)) +

∫ t

b

p(s)Φ(y(τ(s))) ds

≥ r(b)Φ(y′(b)) + Φ(y(τ(b)))

∫ t

b

p(s) ds→ ∞

(4.8)

as t→ ∞, since
∫∞

a
p(s) ds = ∞. Thus limt→∞ y[1](t) = ∞. The equality in (4.8)

and the divergence of the integral lead to the existence of B > 0 such that

r(t)Φ(y′(t)) ≤ B

∫ t

b

p(s)Φ(y(τ(s))) ds ≤ BΦ(y(τ(t)))

∫ t

b

p(s) ds

≤ BΦ(y(t))

∫ t

b

p(s) ds

for large t. Hence,

0 <

(
ty′(t)

y(t)

)α−1

≤
Btα−1

r(t)

∫ t

b

p(s) ds,

where the right-hand side tends to zero as t→ ∞ by our assumptions. Therefore,
ty′(t)/y(t) → 0 as t → ∞, and so y ∈ NSV . Note that conditions (1.2), (1.3)
imply τ ≍ t. Hence, in view of Lemma 4.1, we have y(t) ∼ y(τ(t)) as t → ∞.
Moreover, if p ∈ RV(δ) with δ > −1, then pΦ(y) ∈ RV(δ) by Proposition 2.4.
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Thus, recalling the equality in (4.8), Proposition 2.3 yields

r(t)Φ(y′(t)) ∼

∫ t

b

p(s)Φ(y(τ(s))) ds ∼

∫ t

b

p(s)Φ(y(s)) ds

=

∫ t

b

sδLp(s)y
α−1(s) ds

∼
1

δ + 1
tδ+1Lp(t)y

α−1(t) =
1

δ + 1
tp(t)yα−1(t)

as t→ ∞. This implies that y[1] ∈ RV(δ+1), δ+1 > 0, therefore limt→∞ y[1](t) =
∞. Further, from the above asymptotic relation we have

y′(t)

y(t)
= (1 + o(1))Φ−1

(
tp(t)

(δ + 1)r(t)

)
(4.9)

as t→ ∞.
If
∫∞

a
G(s) ds = ∞, then we integrate (4.9) from b to t, to get

ln y(t) = ln y(b) +

∫ t

b

(1 + o(1))
G(s)

Φ−1(δ + 1)
ds =

∫ t

a

(1 + o(1))
G(s)

Φ−1(δ + 1)
ds,

(4.10)
where the latter equality is true thanks to the divergence of

∫∞

a
G(s) ds. Indeed,

it easily follows that for ε(t) → 0 there are ε1(t), ε2(t) → 0 (as t→ ∞) such that

c+

∫ t

b

(1+ ε(s))G(s) ds = (1+ ε1(t))

∫ t

a

(1+ ε(s))G(s) ds =

∫ t

a

(1+ ε2(s))G(s) ds,

where c is constant. Relation (4.10) readily implies formula (3.2). Moreover, we
have limt→∞ y(t) = ∞, and so IS ⊆ IS∞,∞.

If
∫∞

a
G(s) ds <∞, then we integrate (4.9) from t to ∞, to get

lnN − ln y(t) =

∫ ∞

t

(1 + o(1))
G(s)

Φ−1(δ + 1)
ds,

where N = limt→∞ y(t), and formula (3.3) follows. Clearly, N has to be finite
because of convergence of the integral, and so IS ⊆ ISB,∞.

Now we show that SV solutions cannot decrease (when δ > −1), i.e., SSV ⊆ IS.
Take y ∈ DS. Since y[1] is negative increasing, there exists limt→∞ y[1](t) =
K ∈ (−∞, 0]. Suppose now that y ∈ SV . Then, in view of Lemma 4.1 and

Proposition 2.4, pyα−1 ◦ τ ∈ RV(δ). Hence,
∫ t

b
p(s)Φ(y(τ(s))) ds → ∞ as t → ∞

since δ > −1. This is however a contradiction, which can be seen from the equality
in (4.8). Since S = IS ∪DS, we have proved that SSV ⊆ IS. The other relations
between the classes IS,SSV ,SNSV , and ISx,∞ with x = ∞ or x = B are clear.

(II) If p ∈ RV(δ) and r ∈ RV(γ), then, because of Proposition 2.3, condition
(3.1) reads as

lim
t→∞

tα+δ−γLp(t)

Lr(t)
= 0,

from which we necessarily obtain γ ≥ α+ δ by Proposition 2.4-(vii). Let γ = α+ δ
and y ∈ IS. Then, in view of Lemma 4.1 and Proposition 2.4, y ◦ τ ∈ SV ,
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thus (rΦ(y′))′ = pΦ(y ◦ τ) ∈ RV(δ). Since r(t)Φ(y′(t)) ∼
∫∞

t
p(s)yΦ(τ(s)) ds

as t → ∞, we have rΦ(y′) ∈ RV(δ + 1) by Proposition 2.3, and so Φ(y′) ∈
RV(δ + 1 − δ − α) = RV(1 − α). Thus y′ ∈ RV(−1) by Proposition 2.4 and
y ∈ Π(ty′(t)) by Proposition 2.5. Notice that condition γ > α + δ implies the
convergence of

∫∞

a
G(s) ds. Thus, if γ > α+ δ or γ = α+ δ and

∫∞

a
G(s) ds <∞,

as we already know, limt→∞ y(t) = N ∈ (0,∞), and from (4.9),

y′(t) ∼
1

Φ−1(δ + 1)
G(t)y(t) ∼

N

Φ−1(δ + 1)
G(t) ∈ RV((δ + 1− γ)(β − 1))

as t → ∞. Integrating this relation from t to ∞ and using Proposition 2.3, we
obtain (3.4). If, in addition, γ = α+ δ, then, in view of y ∈ Π, we get N − y ∈ SV
by Proposition 2.5; in our case this can easily be seen also from (3.4). Formula

(3.5) follows from Proposition 2.3-(iii) since G(t) = 1
t

(
Lp(t)
Lr(t)

)β−1

. �

Proof of Lemma 3.2. Take y ∈ IS ∩ NSV . Set w = rΦ(y′/y). Then w is
eventually positive and satisfies

w′(t)−
Φ(y(τ(t)))

Φ(y(t))
p(t) + (α− 1)r1−β(t)wβ(t) = 0 (4.11)

for large t. We have

0 <
tα−1

r(t)
w(t) =

(
ty′(y)

y(t)

)α−1

→ 0

as t → ∞ since y ∈ NSV . Further, tα−1/r(t) = tα−1−γ/Lr(t) ∈ RV(α − 1 − γ).
By our assumptions, tα−1/r(t) → 0 as t→ ∞. Denote

Ψ(t) =
tα−1

r(t)

∫ t

b

r1−β(s)wβ(s) ds,

where b ≥ a is such that y(t) > 0 and y′(t) > 0 for t ≥ b. If
∫∞

b
r1−β(s)wβ(s) ds <

∞, then clearly Ψ(t) → 0 as t → ∞. Let
∫∞

b
r1−β(s)wβ(s) ds = ∞. Without loss

of generality we may assume r ∈ NRV(γ) ∩ C1. Indeed, if r is not normalized or
is not in C1, then we can take r̃ ∈ NRV(γ) ∩ C1 with r̃(t) ∼ r(t) as t → ∞, and
we have

Ψ(t) ∼
tα−1

r̃(t)

∫ t

b

r̃1−β(s)(r̃(s)Φ(y′(s)/y(s)))βds.

The L’Hospital rule yields

lim
t→∞

Ψ(t) = lim
t→∞

r1−β(t)wβ(t)

r′(t)t1−α + (1 − α)r(t)t−α

= lim
t→∞

(ty′(t)/y(t))α

tr′(t)/r(t) + (1− α)
=

0

γ − α+ 1
= 0.

Integrating (4.11) from b to t and multiplying by tα−1/r(t), we obtain

tα−1

r(t)
w(t) −

tα−1

r(t)
w(b) =

tα−1

r(t)

∫ t

b

p(s)Φ

(
y(τ(s))

y(s)

)
ds + (α − 1)Ψ(t). (4.12)
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In view of the previous observations, from (4.12) we obtain

tα−1

r(t)

∫ t

b

p(s)Φ

(
y(τ(s))

y(s)

)
ds→ 0 (4.13)

as t → ∞. Since y ∈ SV and τ(t) ≍ t as t → ∞, by Lemma 4.1, there exists
K > 0 such that y(τ(t))/y(t) ≥ K for t ≥ b, which, in view of (4.13), implies
(3.1). Assuming in addition p ∈ RV(δ), then (3.6) follows by Proposition 2.3. �

Proof of Theorem 3.4. For the coefficients p̃, r̃ defined by (4.4) we have that

p̃ ∈ RV(δ̃) and r̃ ∈ RV(δ̃+β), where δ̃ := δ(1−β)−β, and limt→∞ Lp̃(t)/Lr̃(t) = 0
thanks to Lemma 4.3 and (3.12).

Take y ∈ IS and let u = rΦ(y′). Then u ∈ IS(4.3), recalling the nota-

tion (2.2). We have δ̃ > −1, and thus we can apply Theorem 3.1 to equation
(4.3) to obtain u ∈ NSV and u ∈ Π(tu′). Hence, y′ ∈ RV((−δ − α)(β − 1))
by Proposition 2.4. Since δ < −1, we have (−δ − α)(β − 1) > −1, and thus∫∞

b
y′(s) ds = ∞. Consequently, y(t) ∼ y(t) − y(b) =

∫ t

b
y′(s) ds ∈ NRV(̺)

as t → ∞, where ̺ = (−δ − 1)/(α − 1) = (−δ − α)(β − 1) + 1. Moreover,
y[1] ∈ Π(tu′(t)) = Π(tp(t)Φ(y(τ(t)))) and y ∈ IS∞ since the index ̺ of regu-
lar variation is positive. We have shown that IS ⊂ NRV(̺). Next we derive
asymptotic formulae by applying again Theorem 3.1.

If
∫∞

(sp̃(s)r̃(s))α−1ds = ∞, then

u(t) = exp

{∫ t

a

(1 + o(1))Φ

(
sp̃(s)

(δ̃ + 1)r̃(s)

)
ds

}
(4.14)

as t→ ∞ and u ∈ IS(4.3)
∞ .

If
∫∞

(sp̃(s)r̃(s))α−1ds <∞, then

u(t) =M exp

{
−

∫ ∞

t

(1 + o(1))Φ

(
sp̃(s)

(δ̃ + 1)r̃(s)

)
ds

}
(4.15)

as t→ ∞ and u ∈ IS
(4.3)
B , where M = limt→∞ u(t) ∈ (0,∞).

Since (
tp̃(t)

r̃(t)

)α−1

= Hτ (t) and δ̃ + 1 = ̺,

from (4.14) and y′(t) ∼ ̺y(t)/t, under the assumption
∫∞

a
Hτ = ∞, we get

y(t) = (1 + o(1))
1

̺
tr1−β(t) exp

{∫ t

a

(1 + o(1))
β − 1

̺α−1
Hτ (s) ds

}
(4.16)

as t → ∞. Because of divergence of
∫∞

a
Hτ , the expression (1 + o(1))/̺ can

be included into the (1 + o(1)) term inside the integral in (4.16) (similarly as in

(4.10)), and thus we obtain formula (3.13). Since y ∈ IS∞ and u ∈ IS(4.3)
∞ , we

have y ∈ IS∞,∞.
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Now assume that
∫∞

a
Hτ <∞. Then (4.15) implies

y′(t) = r1−β(t)Mβ−1 exp

{
−

∫ ∞

t

(1 + o(1))
β − 1

̺α−1
Hτ (s) ds

}

as t → ∞. Integrating from b to t, replacing the lower limit in the integral by a
and y(b) by a suitable A, we obtain formula (3.14). Moreover y ∈ IS∞,B, in view

of y ∈ IS∞ and u ∈ IS
(4.3)
B . From Theorem 3.1 we know that

|M − u| ∈ SV and
Lα−1
p̃

(t)

Lα−1
r̃

(M − u(t))
= o(1)

as t→ ∞. Noting that, by Lemma 4.1,

Lα−1
p̃ (t)

Lα−1
r̃

∼

(
t

τ(t)

)δ+α

(τ ′(t))α−1Lp(t)

Lr(t)

as t→ ∞, we get |M−y[1]| ∈ SV and (3.15) easily follow. The equalities among the
subclasses follow from the relations IS ⊆ SNRV(̺) ⊆ SRV(̺) ⊆ IS ⊆ IS∞,x ⊆
IS, x = B or x = ∞ according to whether

∫∞

a
Hτ converges or diverges, respec-

tively; note a regularly varying solution of (1.1) with a positive index is necessarily
increasing. �

Proof of Theorem 3.6. First note that, in view of Lemma 4.2-(ii), (1.2) implies
(4.2) with i = D. Take y ∈ IS. Then x(s) = y(t), with s = RD(t), satisfies

equation (4.6), where r̂ = 1, p̂ = pD, τ̂ = τD, and x ∈ IS(4.6), see Lemma 4.4.
Note that the interval [a,∞) is transformed into [b,∞) for some b. Since r̂ ∈ SV
and p̂ ∈ RV(−α), we can apply Theorem 3.4 on equation (4.6); in fact, here
δ = −α < −1. We get x ∈ NRV(1) since δ = −α implies ̺ = 1. Moreover,

x(s) = s exp

{∫ s

b

(1 + o(1))(β − 1)(uτ̂ ′(u))α−1p̂(u) du

}
(4.17)

as s→ ∞, with x ∈ IS(4.6)
∞,∞ provided

∫∞

b
(uτ̂ ′(u))α−1p̂(u) du = ∞, while

x(s) = B +

∫ s

b

Mβ−1 exp

{
−

∫ ∞

ξ

(1 + o(1))(β − 1)(uτ̂ ′(u))α−1p̂(u) du

}
dξ

(4.18)

as s→ ∞, for some B ∈ R, with x ∈ IS
(4.6)
∞,B provided

∫∞

b
(uτ̂ ′(u))α−1p̂(u) du = ∞.

Since p̂ = pD and τ̂ = τD, substitutions v = R−1
D (u) and η = R−1

D (ξ) in the
integrals (4.17) and (4.18) yield formulae (3.20) and (3.21). The fact that y ∈

IS∞,i, i ∈ {B,∞}, follows from x ∈ IS
(4.6)
∞,i and (4.7), recalling that x(R−1

D (s)) =

y(t), p̂ = pD, and τ̂ = τD. From |M − x[1]| ∈ SV we obtain |M − y[1] ◦R−1
D | ∈ SV .

In view of Lemma 4.2 and condition (3.19), we have τD(s) ≍ s as s→ ∞. Hence,
expressing relation (3.15) in terms of our setting, we obtain

(τ̂ ′(s))α−1Lp̂(s)

M − x[1](s)
= o(1)

as s→ ∞. Recalling that Lp̂(s) = sαp̂(s) = Rα
D(t)p(t)rβ−1(t), we get (3.22). �
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Proof of Theorem 3.7. The proof is similar to that of Theorem 3.6. Here, for
y ∈ S, we make the substitution x(s) = y(t) with s = Q(t). In view of Lemma 4.4,
x satisfies equation (4.6), where r̂ = s2α−2 ∈ RV(2α − 2), p̂ = pC ∈ RV(α − 2),
and τ̂ = τC . From Lemma 4.2-(ii), conditions (4.2) with i = C holds. Since,
in fact, δ = α − 2 > −1, we can apply Theorem 3.1 to equation (4.6) where we

consider x ∈ IS(4.6) (i.e., y ∈ IS). The details are left to the reader. �

References

[1] N.H. Bingham, C.M. Goldie, J. L. Teugels, Regular Variation, Encyclopedia of Mathematics
and its Applications, Vol. 27, Cambridge University Press, 1987.
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