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Abstract
Let N be a normal subgroup of a finite group G. In this paper, we consider the elements g 
of N such that �(g) ≠ 0 for all irreducible characters � of G. Such an element is said to be 
non-vanishing in G. Let p be a prime. If all p-elements of N satisfy the previous property, 
then we prove that N has a normal Sylow p-subgroup. As a consequence, we also study 
certain arithmetical properties of the G-conjugacy class sizes of the elements of N which 
are zeros of some irreducible character of G. In particular, if N = G , then new contribu-
tions are obtained.

Keywords  Finite groups · Normal subgroups · Irreducible characters · Conjugacy classes

Mathematics Subject Classification  20C15 · 20E45

1  Introduction

In the sequel, all groups considered are finite. Within character theory, a classical theorem 
of Burnside asserts that a nonlinear irreducible character of a finite group always vanishes 
on some element. It is not difficult to see that the converse is also true, so the rows of the 
character table of a group that contain a zero entry are completely characterised. However, 
the “dual” situation for conjugacy classes fails in general: a column that corresponds to a 
non-central conjugacy class may not contain a zero. This fact somehow violates the stand-
ard duality that in many cases arises between irreducible characters and conjugacy classes 
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of a group. Therefore, for a group G, an element g is said to be non-vanishing in G if 
�(g) ≠ 0 for every irreducible character � of G.

An immediate corollary to the aforementioned Burnside’s result is that a group is abe-
lian if and only if every element is non-vanishing. Isaacs et al. [10] obtained elegant results 
about the location of non-vanishing elements in certain groups. For example, for a nilpo-
tent group G, an element is non-vanishing if and only if it lies in the centre of G. They 
also proved that if G is soluble, then gFFF(G) is a 2-element for a non-vanishing element g 
of G. Consequently, if g is of odd order, then x lies in FFF(G) . These authors conjectured that 
every non-vanishing element of a soluble group G lies in FFF(G) , and it is still an open prob-
lem. In this paper, we prove the following result which provides further evidence for this 
conjecture.

Theorem A  Let N be a normal subgroup of a group G, and let p be a prime. If �(x) ≠ 0 
for every p-element x ∈ N and for all � ∈ Irr(G) , then N has a normal Sylow p-subgroup.

In particular, if �(x) ≠ 0 for every prime power order element x ∈ N and for all 
� ∈ Irr(G) , then N is nilpotent.

Therefore, the arithmetical properties of the non-vanishing elements of G that lie in a 
normal subgroup N control the structure of N. This is interesting since, although we cannot 
construct the character table of N from the one of G, normal subgroups and vanishing ele-
ments of G can be easily read from its character table.

Regarding the first claim of Theorem A when N = G , we provide extra information on 
the structure of a p-complement of G in Corollary 1, which extends [7, Theorem A]. Con-
cerning the second assertion in Theorem A, when N = G , it holds that the group is abelian 
(see Theorem 1). However, this fact might not happen for the case of a normal subgroup as 
Example 1 shows.

Actually, we prove Theorem A as a consequence of the next result. We will denote by 1G 
the trivial character of a group G.

Theorem B  Let N be a normal subgroup of a group G, and let P be a Sylow p-subgroup 
of G for some prime p. Let P0 = P ∩ N and � ∈ Irr(P∕P0) . Then, the following conditions 
are pairwise equivalent:

	 (i)	 P0 is a normal Sylow p-subgroup of N.
	 (ii)	 �(x) ≠ 0 for all irreducible constituents � of (1P0

)G and all x ∈ P0.
	 (iii)	 �(x) ≠ 0 for all irreducible constituents � of �G and all x ∈ P0.

Indeed, Theorem B generalises [11, Theorem B] when N = G (see Theorem 3). Notice 
that, by Theorem  3(i)–(ii), P0 is normal in N if and only if �(x) ≠ 0 for all irreducible 
constituents � of (1P0

)N and all x ∈ P0 ; however, this fact does not directly imply (ii) of 
Theorem B, nor vice versa. Further, the following equivalence, which is related to Theo-
rem 3(i)–(iii), is not true: P0 is normal in N if and only if p does not divide �(1) for all irre-
ducible constituents of (1P0

)G ; it is enough to observe Example 2(2).
As a consequence of Theorem A, some features of a normal subgroup N of a group G 

can be obtained through the analysis of its G-conjugacy class sizes of elements which are 
zeros of some irreducible character of G; such an element is said to be vanishing in G. Let 
� be any set of primes, and let xG be the conjugacy class of x in G. If ||xG|| is a �′-number 
for every prime power order �-element x in N, then by the main result of Beltrán et al. (see 
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[2, Theorem B]), it is known that N has a nilpotent Hall �-subgroup. In the next result, we 
show that we do not need to assume this condition for all prime power order �-elements in 
N, but for those which are vanishing in G. However, we need to assume the �-separability 
of N to get that result.

Theorem C  Let N be a normal subgroup of a group G, and let � be any set of prime 
numbers. 

(1)	 Suppose that ||xG|| is a �′-number for every prime power order �-element x ∈ N which 
is vanishing in G. If N is �-separable, then N∕OOO

�� (N) has a nilpotent normal Hall �
-subgroup. In particular, the Hall �-subgroups of N are nilpotent.

(2)	 Suppose that ||xG|| is a �-number for every prime power order �-element x ∈ N which is 
vanishing in G. If Hall

�
(N) ≠ � , then N has a normal Hall �-subgroup. Additionally, 

if all ||xG|| are also �-numbers for the prime power order �′-elements x ∈ N that are 
vanishing in G, then the Hall �′-subgroups of N are nilpotent.

We do not know whether the �-separability condition on N in (1) can be weakened in 
order to obtain the nilpotency of its Hall �-subgroups. What is certainly true is that this 
condition is necessary for the normality of the Hall �-subgroup of N∕OOO

�� (N) , as Example 4 
shows. Additionally, statement (2) above extends for a set of primes the following result 
proved in [5]: if a prime p does not divide any conjugacy class size of a vanishing p′-ele-
ment x of prime power order of a group G, then G has a normal p-complement. We do not 
know whether the assumption Hall

�
(N) ≠ � in (2) can be avoided.

Finally, we investigate in Theorem  5 the structure of N when the G-conjugacy class 
lengths of the considered vanishing elements in G are prime powers. As a consequence of 
this study, when N = G , we obtain the next result.

Theorem D  Let G be a group. Assume that ||xG|| is a prime power for every vanishing ele-
ment x of G of prime power order. Then, G′ is nilpotent.

Other new interesting consequences arise from our contributions in the trivial case 
N = G (see Sect. 5).

2 � Preliminaries

The notation and terminology here are as follows. In the sequel, p will be always a prime 
and � will denote a set of primes. The set of prime divisors of the order of G is �(G) . As 
usual, the set of all Sylow p-subgroups of G is denoted by Sylp(G) , and Hall

�
(G) is the set 

of all Hall �-subgroups of G. We write Irr(G) for the set of all irreducible complex char-
acters of G. The set of vanishing elements of a group G will be denoted by Van(G) . CFSG 
means classification of finite simple groups. The remaining notation and terminology are 
standard in the framework of finite group theory, and we refer to the book [9] for details 
about character theory.

We gather some significant results for locating vanishing elements in a given group. As 
mentioned in “Introduction”, it is elementary to see that a group is abelian if and only if 
every element is non-vanishing. In fact, this characterisation remains true, via the CFSG, 
when only prime power order elements are involved.

Author's personal copy



	 M. J. Felipe et al.

1 3

Theorem 1  A group G is abelian if and only if every prime power order element is non-
vanishing in G.

Proof  This is a direct application of [12, Theorem B], which asserts that a nonlinear irre-
ducible character vanishes on some prime power order element. 	�  ◻

Example 1  Concerning the above theorem, it is worth noting that, in general, it is not true 
that a normal subgroup N is abelian if and only if every element of N is non-vanishing in 
G, i.e. if N ∩ Van(G) = �:

On the one hand, if G = Q8 is a quaternion group of eight elements and N is a nor-
mal subgroup of G isomorphic to a cyclic group of order 4, then N is abelian and 
N ∩ Van(G) ≠ � . On the other hand, by [10, Theorem 5.1], for any prime p there exists 
a group G having a normal non-abelian Sylow p-subgroup, and every p-element of G is 
non-vanishing.

Proposition 1  [10, Theorem B] G ∖ZZZ(G) = Van(G) for any nilpotent group G.

Observe that if a normal subgroup N is nilpotent, then N ∖ZZZ(G) may not coincide 
with Van(G) ∩ N . For instance, one can consider as G the normaliser in a Suzuki group 
of degree 8 of a Sylow 2-subgroup of it, and N the Sylow 2-subgroup. It holds that 
Van(G) ∩ N = � although clearly N ∖ZZZ(G) ≠ �.

Lemma 1  [8, Corollary 1.3] Let H be a subgroup of a group G. Assume that G = HCCCG(x) 
for some x ∈ H . Then, x ∈ Van(G) if and only if x ∈ Van(H).

The following four lemmas are crucial for proving Theorem 2, and the last two use 
the CFSG.

Lemma 2  [4, Lemma  5] Let N be a minimal normal subgroup of G so that 
N = S1 ×⋯ × St , where Si is isomorphic to S, a non-abelian simple group. If � ∈ Irr(S) 
extends to Aut(S) , then � ×⋯ × � ∈ Irr(N) extends to G.

Lemma 3  [11, Lemma  2.2] Let G be a finite group, p a prime, and P ∈ Sylp(G) . If 
� ∈ Irr(G) has p -defect zero, then � is a constituent of (1P)G and vanishes on the non-
trivial p -elements of G.

Lemma 4  [11, Theorem 2.1] Let S be a finite non-abelian simple group, p a prime, and 
P ∈ Sylp(S) . Then, either S has a p-defect zero character, or there exists a constituent 
� ∈ Irr(S) of the permutation character (1P)S such that � extends to Aut(S) and �(x) = 0 for 
some p-element x of S.

Lemma 5  [7, Lemma 2.8] Let A be an abelian group that acts coprimely and faithfully by 
automorphisms on a group M. If M is characteristically simple, then there exists � ∈ Irr(M) 
such that IA(�) = 1.

We also collect some preliminary results regarding conjugacy class sizes. We start 
with the next elementary properties which are frequently used, sometimes with no 
comment.
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Lemma 6  Let N be a normal subgroup of a group G, and let p be a prime. We have:

(a)	 |
|x

N|
| divides ||xG|| , for any x ∈ N.

(b)	 |
|(xN)

G∕N|
| divides ||xG|| , for any x ∈ G.

(c)	 If xN ∈ G∕N is a p-element, then xN = yN for some p-element y ∈ G.

Lemma 7  Let N be a normal subgroup of a group G, and let H ∈ Hall
�
(N) for a set of 

primes � . If x ∈ H is such that ||xG|| is a �-number, then x lies in OOO
�
(N).

Proof  Since ||xN|| divides ||xG|| , then (||xN||, |N ∶ H|) = 1 . It follows N = HCCCN(x) and so 
⟨xN⟩ ⩽ OOO

�
(N) . 	�  ◻

Next we recall a generalisation of the above lemma when N = G and � = {p}.

Lemma 8  [3, Lemma  3] Let x ∈ G . If ||xG|| is a power of a prime p, then [xG, xG] is a 
p-group.

We end this section with the main result of [6], which will be necessary for proving 
Theorem 5. We present here an adapted version for our context of vanishing G-conjugacy 
classes.

Proposition 2  Let G be a group which contains a non-trivial normal p-subgroup N, for a 
given prime p. Then, ||xG|| is a multiple of p for each x ∈ N ∩ Van(G).

3 � Proof of Theorems A and B

Certainly, Theorem A is a direct application of Theorem B, so we focus on the proof of 
this last result. The next key proposition, which makes use of the CFSG, is inspired by the 
proof of [11, Theorem B].

Proposition 3  Let M be a non-abelian minimal normal subgroup of a group G, and let 
p be a prime divisor of |M| . Let H be a subgroup of G such that H ∩M ∈ Sylp(M) . Let 
� ∈ Irr(H∕H ∩M) Then, there exists � ∈ Irr(G) such that � is a constituent of �G and it 
vanishes on some p-element of M.

In particular, if H = P ∈ Sylp(G) , then there exists � ∈ Irr(G) such that � is a constitu-
ent of (1P)G and it vanishes on some p-element of M.

Proof  We have M = S1 ×⋯ × Sk , where all Si are isomorphic to a non-abelian simple 
group S with p ∈ �(S) . If � ∈ Irr(S) is of p-defect zero, then � = � ×⋯ × � ∈ Irr(M) and 
� is also of p-defect zero. By Lemma 3 applied to M, we have [�, (1H∩M)

M] ≠ 0 and � van-
ishes on the non-trivial p-elements of M.

Since � ∈ Irr(H∕H ∩M) , we have [�H∩M , 1H∩M] ≠ 0 . Then, (�HM)
M
= (�

H∩M)
M =

�(1)(1
H∩M)

M and [�, (�HM)M] = [�HM , �HM] ≠ 0 . Hence, there exists � ∈ Irr(HM) such that 
[�, �HM] ≠ 0 ≠ [�, �HM] . Let � ∈ Irr(G) over � . Then, �M is sum of G-conjugate characters 
of � . Therefore, � vanishes on the non-trivial p-elements of M and [� , �G] = [�H , �] ≠ 0.
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Suppose now that S does not have a character of p-defect zero. By Lemma  4, there 
exists � ∈ Irr(S) such that [�, (1H∩S)

S] ≠ 0 (note H ∩ S ∈ Sylp(S) ) which extends to Aut(S) , 
and there exists a p-element x ∈ S such that �(x) = 0 . Thus, 1 ≠ y = (x,… , x) ∈ M is a 
p-element and � = � ×⋯ × � vanishes on y, and certainly [�H∩M , 1H∩M] ≠ 0 . Since 
[�H∩M , 1H∩M] ≠ 0 , arguing as in the previous paragraph, we may affirm that there exists 
� ∈ Irr(HM) over � and over � . Let � ∈ Irr(G) be over � , so [� , �G] ≠ 0 . By Lemma 2, � 
extends to G. Let 𝜂̂ be an extension of � . By Gallagher, 𝜒 = 𝜂̂𝜌 for some � ∈ Irr(G∕M) . 
Therefore, � lies over � and �(y) = �(y)�(1) = 0 . 	�  ◻

Theorem  2  Let N be a normal subgroup of a group G, and let P0 be a Sylow p-sub-
group of N for some prime p. Let H be a subgroup of G such that H ∩ N = P0 , and let 
� ∈ Irr(H∕P0) . Then, P0 is normal in N (and therefore in G ) if and only if all irreducible 
constituents of �G do not vanish on any p-element of N.

Proof  Suppose P0 ⊴ N . Let � be a constituent of �G with � ∈ Irr(H∕H ∩ N) . We have 
[�P0

, 1P0
] ≠ 0 , so [�P0

, 1P0
] ≠ 0 . Since P0 ⊴ G , then �(x) ≠ 0 for all p-elements x ∈ N . 

Conversely, we consider that all irreducible constituents of �G , where � ∈ Irr(H∕H ∩ N) , 
do not vanish on any p-element of N, and we claim that P0 is normal in N.

Suppose that the claim is false, and let us consider a counterexample which minimises |G| . 
Let M be a minimal normal subgroup of G such that M ⩽ N . We check that the hypotheses are 
inherited by G = G∕M . Certainly, H ∩ N = N∕M ∩ HM∕M = (H ∩ N)M∕M ∈ Sylp(N∕M) . 
Since � ∈ Irr(H∕H ∩ N) , then � ∈ Irr(H∕H ∩M) so � ∈ Irr(HM∕M) . Besides, H ∩ N ⩽ ker� 
so H ∩ N ⩽ ker� . Let � ∈ Irr(G) be an irreducible constituent of �

G
 and x ∈ N a p-element. 

Then, we may assume that x ∈ N ∖M is a p-element, and since [� , �
G
] ≠ 0 , then it is easy to see 

that [�H , �] ≠ 0 and �(x) = �(x) ≠ 0 . By minimality, we get P0 ⊴ G , so P0M ⊴ G.
Let us assume that p divides the order of M. If M is a p-group, then M ⩽ P0 and 

P0 = P0M ⊴ G , a contradiction. Hence, M is non-abelian. Since � ∈ Irr(H∕H ∩M) , in vir-
tue of Lemma 3 there exists � ∈ Irr(G) such that [� , �G] ≠ 0 and �(x) = 0 for some p-ele-
ment x ∈ M ⩽ N , a contradiction again.

Thus, p does not divide the order of M and OOOp(N) = 1 . Let K/M be a chief factor of 
G such that K ≤ P0M ⊴ G , so K/M is an abelian p-group. Note K = M(K ∩ P0) and 
K ∩ P0 ∈ Sylp(K) is abelian. By Frattini’s argument, G = KNNNG(K ∩ P0) = MNNNG(K ∩ P0) , so 
CCCK∩P0

(M) ⊴ G and CCCK∩P0
(M) ⩽ OOOp(N) = 1 . Therefore, K ∩ P0 is an abelian p-group which 

acts coprimely and faithfully on M, and M is characteristically simple. By Lemma 5 and Clif-
ford theory, there exists � ∈ Irr(M) such that � = �

K is irreducible. In particular, � and all its 
conjugates vanish on K⧵M . Therefore, if we prove that there exists � ∈ Irr(G) which lies 
over both � and � , we will reach the final contradiction.

Let T be the inertia subgroup for � in P0M ⊴ G . Since (|T∕M|, |M|) = 1 , we have that 
� extends to 𝜃̂ ∈ Irr(T) by [9, Corollary  6.28]. Further, p does not divide 𝜃̂(1) so 𝜃̂P0∩T

 
has at least one linear constituent � . As T = M(P0 ∩ T) , then P0 ∩ T ≅ T∕M and we can 
see � also as a character of T/M. By Gallagher, 𝜈 = 𝜆̄𝜃̂ is an irreducible character of T, 
where 𝜆̄ is the complex conjugate of � . Moreover, �M = � and by Clifford correspondence  
�
P0M ∈ Irr(P0M) . Hence, 0 ≠ [1

P
0
∩T , 𝜆P

0
∩T 𝜃̂P

0
∩T ] = [1

P
0
∩T , 𝜈P

0
∩T ] = [(𝜈

P
0
∩T )

P
0 , 1

P
0
] =

[(�P0
T )

P
0
, 1

P
0
] = [(�P0

M)
P
0
, 1

P
0
] = [�P0

M
, (1

P
0
)P0

M] . On the other hand, (�HN)
N
= �(1)(1

P
0
)N = 

�(1)((1
P
0
)P0

M)N , so [(�HN)N , (�P0M)N] = [(�HN)N , �
N] = [�HN , �HN] ≠ 0 . Therefore, there 

exists � ∈ Irr(HN) over � and over � . Let � ∈ Irr(G) over � , so [� , �G] ≠ 0 . Moreover, � lies 
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over � , and then � lies over 𝜂 = 𝜃̂ . Thus, �K is a sum of G-conjugate characters of � . Hence, 
�(x) = 0 for all x ∈ K ∩ P0 and this is a final contradiction. 	�  ◻

Theorem B in “Introduction” is now a corollary of the above result when we take H a 
Sylow p-subgroup of G [for Theorem B(iii)] and H = P0 [for Theorem B(ii)]. Moreover, 
when N = G in Theorem B, then we obtain the characterisation (i)–(ii).

Theorem 3  [11, Theorem B] Let G be a group, p a prime number, and P a Sylow p-sub-
group of G. Then the following conditions are equivalent:

	 (i)	 P is normal in G.
	 (ii)	 �(x) ≠ 0 for all irreducible constituents � of (1P)G and all x ∈ P.
	 (iii)	 p does not divide �(1) for all irreducible constituents � of (1P)G.

Example 2 

(1)	 Note that in Theorem B we can have � ∈ Irr(P∕P0) distinct from 1P , in contrast to 
Theorem 3: Let G be a symmetric group of degree 4 and let N be an alternating group 
of degree 4. Take P ∈ Syl2(G) . Then, there exists a non-trivial irreducible character 
� ∈ Irr(P) with P0 = P ∩ N ⩽ ker� . Additionally, the irreducible constituents of �G do 
not vanish on the p-elements of N, so the hypotheses in Theorem B(iii) are fulfilled.

(2)	 The following equivalence, similar to Theorem 3(i)–(iii), is not true: P0 is a normal 
Sylow p-subgroup of N if and only if p does not divide �(1) for all irreducible constitu-
ents of (1P0

)G : Consider G and N as above. Then, (1P0
)G has three distinct irreducible 

constituents, being one of them of degree 2.

Both examples have been checked using the software GAP [13].
Let consider now a set of primes � instead of a single prime p. As a consequence of 

Theorem A, we give in the following proposition extra information on the structure of a �
-complement of G when N contains a Hall �-subgroup of it.

Proposition 4  Let N be a normal subgroup of a group G such that every prime power 
order �-element of N is non-vanishing in G, for a set of primes � . Then, N has a nilpotent 
normal Hall �-subgroup.

Further, if |G ∶ N| is a �′-number, then any �-complement F of G verifies that FZZZ(G) is 
self-normalising.

Proof  Certainly, in virtue of Theorem  A we have that N has a nilpotent normal Hall �
-subgroup, say H. In fact, if |G ∶ N| is not divisible by any prime in � , then H is a nor-
mal Hall �-subgroup of G. Let F be a �-complement of H in G, so G = HF . We aim to 
show that FZZZ(G) = NNNG(FZZZ(G)) . Take a prime power order element x ∈ NNNH(FZZZ(G)) . Then, 
FxZZZ(G) = (FZZZ(G))x = FZZZ(G) , so there exists some y ∈ FZZZ(G) such that Fx = Fy = F . Thus, 
x ∈ NNNH(F) ⩽ CCCH(F) because [NNNH(F),F] ⩽ H ∩ F = 1 . Therefore, G = HF = HCCCG(x) . 
Since x ∉ Van(G) by assumption, then Lemma  1 yields that x ∉ Van(H) . Now Proposi-
tion 1 applies because H is nilpotent, so x ∈ ZZZ(H) ∩CCCG(F) ⩽ ZZZ(G) . As this argument is 
valid for every prime power order element in NNNH(FZZZ(G)) , then NNNH(FZZZ(G)) ⩽ ZZZ(G) . 
Finally, note that NNNG(FZZZ(G)) = NNNG(FZZZ(G)) ∩ HF = F(NNNH(FZZZ(G))) = FZZZ(G) , as wanted. 	
� ◻
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Corollary 1  Let G be a group such that all the p-elements are non-vanishing. Then, G has 
a normal Sylow p-subgroup, and FZZZ(G) is self-normalising for any p-complement F of G.

4 � Lengths of G‑conjugacy classes of vanishing elements

We start by showing an extension of Lemma 8 for a set of primes � and a G-conjugacy 
class. The proof is inspired by [1, Theorem  C] under the weaker hypothesis of the �
-separability of the normal subgroup N.

Proposition 5  Let N be a normal �-separable subgroup of a group G. If x ∈ N is such that 
|
|x

G|
| is a �-number, then [xG, xG] ⩽ OOO

�
(N) . In particular, xOOO

�
(N)∕OOO

�
(N) ∈ ZZZ(FFF(N∕OOO

�
(N))).

Indeed, if � consists of a single prime p, then the same statement is valid even if N is not 
p-soluble.

Proof  In order to prove the first claim, let us consider a counterexample which mini-
mises |G| + |N| . One can clearly assume OOO

�
(N) = 1 , so we aim to get the contradiction 

[xG, xG] = 1 . Let us suppose firstly that ⟨x⟩ is subnormal in G. Then, x ∈ FFF(G) . As FFF(G) 
is a �′-group and ||xG|| is a �-number, then clearly x ∈ ZZZ(FFF(G)) and ⟨xG⟩ ⩽ ZZZ(FFF(G)) , so 
[xG, xG] = 1.

Next we assume that the normal subgroup M ∶= ⟨xG⟩ is proper in N. Then, by minimal-
ity we obtain [xM , xM] = 1 , and it follows that x ∈ ZZZ(⟨xM⟩) . In particular, ⟨x⟩ is subnormal 
in M, and therefore in G, which contradicts the previous paragraph. Hence, M = N.

Let K ∶= OOO
�� (N) . Since N is �-separable, then K is non-trivial. It follows from 

the class size hypothesis that K centralises xG , so K is central in N = ⟨xG⟩ . As 
[xG, xG]K∕K ⩽ OOO

�
(N∕K) by minimality, and OOO

�
(N∕K) = OOO

�
(N)K∕K because K is central 

N, we deduce [xG, xG] = N�
⩽ K ⩽ ZZZ(N) . Therefore, N is a nilpotent �′-group. Since ||xG|| is 

a �-number, we obtain x ∈ ZZZ(N) and [xG, xG] = 1.
Next, we concentrate on the second assertion. Let G ∶= G∕OOO

�
(N) . Then, [xG, xG] = 1 by 

the first claim. It follows that ⟨x⟩ ⊴ZZZ(⟨x
G
⟩) ⊴ G , so ⟨x⟩ ⩽ FFF(G) ∩ N ⩽ FFF(N) . As FFF(N) is a 

normal �′-subgroup of G and |xG| is a �-number, then necessarily x ∈ ZZZ(FFF(N)).
Finally, observe that the last statement follows from Lemma  8, since 

[xG, xG] ⩽ OOOp(G) ∩ N ⩽ OOOp(N) . 	�  ◻

Example 3  Note that the �-separability assumption in the previous result cannot be 
removed, even when N = G : Consider any non-trivial element in the centre of a Sylow 
p-subgroup of a non-abelian simple group and � = p� , for a prime divisor p of its order.

For a normal subgroup N of a group G, note that if xN is a vanishing (prime power 
order) element of G/N, then we can assume that x is also a vanishing (prime power 
order) element of G. This is because there exists a bijection between Irr(G∕N) and the 
set of all characters in Irr(G) containing N in their kernel. This fact will be used in the 
sequel with no reference.

As an application of the above proposition and mainly Theorem A, we prove Theo-
rem C in “Introduction”.
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Proof of Theorem C  (1) Assume that N is �-separable and that ||xG|| is a �′-number for every 
prime power order �-element x ∈ Van(G) ∩ N . Let us prove that N∕OOO

�� (N) has a normal 
Sylow p-subgroup for each prime p ∈ � . Certainly, whenever OOO

�� (N) ≠ 1 , the assertion 
follows by induction, considering the groups G∕OOO

�� (N) and N∕OOO
�� (N) . Therefore, we 

may assume that OOO
�� (N) = 1 . Let Zp ∶= ZZZ(OOOp(N)) . In virtue of Proposition 5, we have that 

all the p-elements of Van(G) ∩ N lie in ZZZ(FFF(N)) , and thus, in Zp . Therefore, if we denote 
G ∶= G∕Zp , then it follows that no prime power order p-element of N is vanishing in G . 
Now Theorem  A yields that N has a normal Sylow p-subgroup P , where P ∈ Sylp(N) . 
Since Zp is a p-group, then P is normal in N clearly and we get the claim. As this is valid 
for each prime p ∈ � , then N∕OOO

�� (N) has a nilpotent normal Hall �-subgroup, as wanted.
(2) Assume that N has Hall �-subgroups and that ||xG|| is a �-number for every prime 

power order �-element x ∈ Van(G) ∩ N . We claim that N has a normal Hall �-subgroup. 
Clearly, we may assume OOO

�
(N) = 1 . Let H ∈ Hall

�
(N) , and let p ∈ � . If x ∈ N ∩ Van(G) is 

a p-element, then x ∈ P ∈ Sylp(N) . Hence, there exists g ∈ N such that xg ∈ Pg ∈ Sylp(H) . 
Now Lemma 7 yields xg ∈ OOO

�
(N) = 1 . Thus, there are no p-elements in N ∩ Van(G) , and 

by Theorem A, we get that N has a normal Sylow p-subgroup. Since this is valid for every 
prime p ∈ � , then N has a (nilpotent) normal Hall �-subgroup, as desired.

Next, we show that N has nilpotent Hall �′-subgroups under the additional assumption 
that the prime power order �′-elements in N ∩ Van(G) have also G-class sizes not divisible 
by any prime in �′ . Note that N is �-separable because it has a normal Hall �-subgroup, 
say H. If we take any prime power order element xH ∈ (N∕H) ∩ Van(G∕H) , then we may 
suppose that x ∈ N ∩ Van(G) is a prime power order element, so by assumptions ||xG|| is a �
-number. Thus, ||(xH)G∕H|| is also a �-number. Therefore, every ||(xH)G∕H|| is a �-number for 
each prime power order �′-element xH ∈ (N∕H) ∩ Van(G∕H) , so by assertion (1) the �′

-group N/H is nilpotent. Since N/H is isomorphic to a Hall �′-subgroup of N, the proof is 
completed. 	�  ◻

Example 4  We remark that the �-separability assumption in Theorem  C(1) is necessary 
for the first claim. Let G be a symmetric group of degree 5, and let N be an alternating 
group of degree 5. Consider � = {3} . Then, all the 3-elements in N ∩ Van(G) have con-
jugacy class size equal to 20. Nevertheless, N∕OOO

�� (N) = N does not have a normal Sylow 
3-subgroup.

Example 5  It is not difficult to find groups satisfying the assumptions of Theorem  C. 
For instance, let G = AΓ(23) be an affine semilinear group of order 168, and let N be the 
Hall 3′-subgroup of G. If we consider � = {7} , then the pair (N, G) satisfies the hypoth-
eses of Theorem  C(1). Concerning Theorem  C(2), if � is any set of prime numbers, 
G = OOO

�
(G) ×OOO

�� (G) and N = OOO
�
(G) , then the pair (N, G) certainly holds the hypotheses.

The next theorem combines the arithmetical conditions of Theorem C on the vanishing 
G-class sizes.

Theorem 4  Let N be a normal �-separable subgroup of a group G. Assume that ||xG|| is 
either a �-number or a �′-number for every prime power order �-elementx ∈ Van(G) ∩ N . 
Then, N∕OOO

�� (N) has a normal Hall �-subgroup. Thus, N has �-length at most 1.

Proof  First, we claim that O ∶= OOO
�,�� (N) contains a Sylow p-subgroup of N, for a prime 

p ∈ � . Let x ∈ Van(G) ∩ N be a p-element. If ||xG|| is a �-number, then x lies in OOO
�
(N) 
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because of Lemma 7, so clearly x ∈ O . If ||xG|| is a �′-number, then by Proposition 5 we get 
xOOO

�� (N) ∈ FFF(N∕OOO
�� (N)) , and again x lies in O. It follows that N ∶= N∕O contains no van-

ishing p-element of G/O, so N has a normal Sylow p-subgroup P in virtue of Theorem A. 
Since p ∈ � and clearly OOO

�
(N) = 1 , thus P = 1.

Therefore, O contains a Sylow p-subgroup of N for every p ∈ � , and thus, O∕OOO
�� (N) is 

a Hall �-subgroup of N∕OOO
�� (N) . 	�  ◻

The main theorem of [1] examines groups such that all their �-elements have prime 
power class sizes. The next result is a “vanishing version” of that theorem for prime 
power order elements and in the context of G-conjugacy classes.

Theorem 5  Let N be a normal subgroup of a group G. Assume that ||xG|| is a prime power 
for each prime power order �-element x ∈ N that is vanishing in G. ThenN∕OOO

�� (FFF(N)) has 
a normal Hall �-subgroup.

In particular, if � is the set of prime divisors of |N| , then N∕FFF(N) is nilpotent.

Proof  We claim that N ∶= N∕FFF(N) has a normal Hall �-subgroup, and therefore, 
N∕OOO

�� (FFF(N)) so does because FFF(N)∕OOO
�� (FFF(N)) is a �-group. Arguing by contradiction, and 

in virtue of Proposition 4, we may assume that N ∩ Van(G) contains a non-trivial q-ele-
ment for some prime q ∈ � , say x . Hence, we may suppose that x ∈ (N ∩ Van(G)) ∖ FFF(N) is 
a q-element. By assumptions, we have that ||xG|| is a power of some prime p. Observe that, 
since x ∉ FFF(N) , then q ≠ p due to Lemma 7. Now the last statement of Proposition 5 yields 
(⟨xG⟩)� ⩽ OOOp(N) ⩽ FFF(N) , so ⟨x⟩ is a subnormal nilpotent subgroup of N . It follows that 
x ∈ FFF(N) , and as x is a q-element, then x ∈ OOOq(N) . Now 

|
|
|
|
x
G||
|
|
 is a multiple of q by Proposi-

tion 2, and then ||xG|| so is, a contradiction.
Finally, if � = �(N) , then with a similar argument we deduce that there is no prime 

power order element in N∕FFF(N) vanishing in G∕FFF(N) . Hence, Theorem  A applies and 
N∕FFF(N) is nilpotent. 	�  ◻

5 � Some consequences on vanishing conjugacy classes

New interesting contributions on the lengths of vanishing classes of a group G emerge 
from Theorems C, 4 and 5 when N = G.

Theorem 6  Let G be a �-separable group. If ||xG|| is a �′-number for every prime power 
order �-element x ∈ Van(G) , then G∕OOO

�� (G) has a nilpotent normal Hall �-subgroup. 
Therefore, G has nilpotent Hall �-subgroups, and its �-length is at most 1.

Theorem 7  Let G be a finite group such that Hall
�
(G) ≠ � . Assume ||xG|| is a �-number for 

every prime power order �-element x ∈ Van(G) . Then G has a normal Hall �-subgroup.
Further, if the prime power order �′-elements in Van(G) have also class size a �-num-

ber, then the Hall �′-subgroups of G are nilpotent.
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Theorem 8  Let G be a group. Suppose that ||xG|| is either a �-number or a �′-number for 
every prime power order �-element x ∈ Van(G) . Then G∕OOO

�� (FFF(G)) has a normal Hall �
-subgroup. In particular, G has �-length at most 1.

Proof of Theorem D  Arguing as in the proof of Theorem 5, we can see that G∕FFF(G) has no 
prime power order vanishing elements. Thus, Theorem 1 applies and G∕FFF(G) is abelian, so 
G′ is nilpotent. 	�  ◻
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