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Abstract

In this paper we study the performance of a bipartite network in which customers
arrive at the nodes of the network, but not all nodes are able to serve their customers at
all times. Each node can be either active or inactive, and two nodes connected by a bond
cannot be active simultaneously. This situation arises in wireless random-access networks
where, due to destructive interference, stations that are close to each other cannot use the
same frequency band.

We consider a model where the network is bipartite, the active nodes switch themselves
off at rate 1, and the inactive nodes switch themselves on at a rate that depends on time
and on which half of the bipartite network they are in. An inactive node cannot become
active when one of the nodes it is connected to by a bond is active. The switching protocol
allows the nodes to share activity among each other. In the limit as the activation rate
becomes large, we compute the crossover time between the two states where one half of
the network is active and the other half is inactive. This allows us to assess the overall
activity of the network depending on the switching protocol. Our results make use of
the metastability analysis for hard-core interacting particle models on bipartite graphs
derived in an earlier paper. They are valid for a large class of bipartite networks, subject
to certain assumptions. Proofs rely on a comparison with switching protocols that are not
time-varying, through coupling techniques.
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1 Introduction

Section 1.1 provides the motivation and background for our paper. Section 1.2 contains the
mathematical formulation of the problem. Section 1.3 identifies the choices of the activation
and deactivation rates in the switching protocol and formulates our main theorem for the
crossover time.

1.1 Motivation and background

Switching rates. In the present paper we investigate metastability effects and hitting times
for hard-core interaction dynamics with time-varying rates. Specifically, we consider a graph
G in which vertices (= nodes) can be either active or inactive, subject to the constraint that
vertices connected by an edge (= bond) cannot be active simultaneously. Thus, the feasible
joint activity states correspond to (the incidence vectors of) the independent sets of G, also
called hard-core configurations. We denote by X(t) ∈ {0, 1}V (G) (with V (G) the vertex set of
G) the joint activity state at time t, with Xi(t) indicating whether vertex i is inactive or active
at time t. When vertex i is inactive at time t, and none of its neighbours is active, it activates
at a time-dependent exponential rate λi(t). Activity durations are exponentially distributed
with unit mean, i.e., when a vertex is active it deactivates at exponential rate 1. Thus,
(X(t))t≥0 evolves as a time-inhomogeneous Markov process with state space X ⊆ {0, 1}V (G),
with X the set of hard-core configurations. We will examine metastability characteristics
and hitting times for (X(t))t≥0 in an asymptotic regime where the activation rates λi(t) grow
large in some suitable sense.

Random-access algorithms. The above-described problem is not only interesting from a
methodological perspective, it is also relevant in analysing the performance of random-access
algorithms in wireless networks, in particular, so-called queue-based Carrier Sense Multiple
Access (CSMA) policies. The activity periods in the hard-core interaction model correspond
to the transmission times of data packets in the wireless network. The graph G corresponds to
the interference graph of the wireless network, specifying which pairs of nodes are prevented
from simultaneous transmission because of interference. In conventional CSMA policies, the
various nodes activate at fixed rates, which gives rise to classical hard-core interactions mod-
els. Metastability characteristics and mixing properties of such models provide fundamental
insight into starvation issues and performance characteristics in wireless networks. In partic-
ular, for high activation rates, the stationary distribution of the activity process concentrates
on states where the maximum number of nodes is simultaneously active, with extremely slow
transitions between them. This ensures high overall efficiency, but from the perspective of
an individual node it induces prolonged periods of starvation, possibly interspersed with long
sequences of transmissions in rapid succession, resulting in severe build-up of queues and long
delays. We refer to [19], [18] for further background and a more comprehensive discussion of
how the spatio-temporal dynamics of the activity process in wireless random-access networks
can be represented in terms of hard-core interaction models.

In queue-based CSMA policies, the activation rates are chosen to be functions of the queue
lengths at the various nodes, with the aim to provide greater transmission opportunities to
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nodes with longer queues. Specifically, the activation rate typically increases as a function
of the queue length at a node, and possibly decreases as a function of the queue lengths
at neighbouring nodes. The activation rate would thus vary over time as queues build up
or drain when packets are generated or transmitted. For suitable activation rate functions,
queue-based CSMA policies have been shown to achieve maximum stability, i.e., provide
stable queues whenever feasible at all (see [15, 7, 9, 17, 16] and reference therein). Hence,
these policies have the capability to match the optimal throughput performance of centralised
scheduling strategies, while requiring less computation and operating in a mostly distributed
fashion. On the downside, the very activation rate functions required for ensuring maximum
stability tend to result in long queues and poor delay performance (see [3, 6] and references
therein). As alluded to above, metastability effects play a pivotal role in that regard, and
analysing hitting times for the activity process (X(t))t≥0 is critical in understanding, and
possibly improving, the delay performance of queue-based CSMA policies.

Bipartite inference graphs. In the present paper we focus on a bipartite graph G, whose
vertex set can be partitioned into two sets U and V such that each edge connects one vertex
in U with one vertex in V (and no two vertices within U or within V ). As a crucial special
case, the class of bipartite graphs include grid graphs that have emerged as a canonical testing
ground for exploring the delay performance of CSMA policies. Denote by u ∈X and v ∈X
the joint activity states where all the vertices in either U or V are active, respectively. We will
assume that the activation rates are of the form λi(t) = λU (t) for all i ∈ U and λi(t) = λV (t)
for all i ∈ V , where both λU and λV depend on a parameter λ controlling the typical length
of the queues (see (1.14) and (1.15) for the choice of dependence to be considered). We are
specifically interested in the asymptotic regime λ→∞ (which corresponds to a scenario with
large queue lengths). We examine the distribution of the time Tv = inf{t ≥ 0: X(t) = v}
until state v is reached for the first time when the system starts from state u at time 0.1

Even though in the above setting the activation rates do not explicitly depend on the queue
lengths, the time-dependent rates λU (t) and λV (t) properly capture the relevant qualitative
behaviour. Indeed, the joint activity states u and v will be asymptotically dominant as λ→∞,
i.e., most of the time either all the nodes in U or all the nodes in V will be active. As a result,
the queues of the nodes in U and the queues of the nodes in V will tend to either all increase
or all decrease simultaneously. While the arrivals and transmissions of packets are governed
by random processes, the trajectories of the queue lengths will be roughly linear when viewed
on the long time scales of interest.2 Hence, under the assumption of identical arrival rates
and initial queue lengths within the sets U and V , queue-dependent activation rates can
approximately be represented in terms of time-dependent activation rates, as specified above.
Since the initial state is X(0) = u, the queues of the nodes in U and the queues of the nodes
in V will initially tend to go down and up, respectively, and we therefore assume that λU (·)
and λV (·) are decreasing and increasing functions, respectively (see Fig. 1).

1.2 Mathematical formulation of the problem

The general model. Let us now formulate the problem in more detail. As before, we
consider a bipartite graph G as the underlying graph of the servers, consisting of two subsets
of vertices U and V . Whether a vertex i ∈ U ∪V is inactive or active at time t is specified by
a Bernoulli random variable Xi(t) ∈ {0, 1}. For each vertex i and each time t, we also have
a random variable Qi(t) ∈ N0 := {0, 1, 2, . . .} that denotes the length of the queue behind

1The metastable behaviour and asymptotic distribution of Tv in the time-homogeneous setting where λi(t) =
λ1+αU+o(1) for all i ∈ U and λi(t) = λ1+αV +o(1) for all i ∈ V were characterised in den Hollander, Nardi and
Taati [8].

2For the time-homogeneous setting this was proved in [2].
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server i at time t. The messages at server i are served only during the periods in which i is
active. An active server turns inactive at rate 1, while an inactive server i attempts to become
active at the ticks of an inhomogeneous Poisson process with rate λi(t). An attempt at time
t is successful if none of the neighbours of i are active at time t−. All activation/inactivation
attempts are independent. A random-access algorithm uses the queue length of server i, and
possibly the queue lengths at its set of neighbours N(i), to decide the activation rate λi(t), so
that λi(t) := A[Qi(t), QN(i)(t)] for some function A. Each such algorithm leads to a Markov
process (X(t), Q(t))t≥0 containing the activity state and the queue length of every server.

First and second approximations. In a first stage of approximation, we ignore the ran-
domness of the queue lengths and assume that Qi(t) ∈ [0,∞) increases with constant rate
when i is inactive and decreases with another constant rate when i is active. In a second stage
of approximation, we assume that Qi(t) is approximately the same for all vertices in the set
U or V that i lies in. An alternative interpretation would be that the algorithm A uses the
aggregate fluid length of the queues in U to determine the activation rates in U , and similarly
for the activation rates in V . If we focus on the evolution of the Markov process starting from
one of the two maximal packing configurations until the hitting time of the other maximal
packing configuration, then we can assume that the functions λi(t) are non-random and are
the same for all servers i that are in U or in V . In other words, our time-dependent activation
rates may be interpreted as a proxy for queue-dependent activation rates.

The time-inhomogeneous Markov process. The approximated system can be thought
of as a time-inhomogeneous Markov process (X(t))t≥0 constructed as follows. (We use a
similar representation as in the time-homogeneous setting.) The state space is the set X of
hard-core configurations on G. The process (X(t))t≥0 is a càdlag̀ process defined as follows.
The transitions are triggered by a Poisson clock ξξξ, i.e., a Poisson point process on [0,∞) with
time-varying rate

γ(t) =
(
1 + λU (t)

)
|U |+

(
1 + λV (t)

)
|V |. (1.1)

This clock is the union of the birth clocks (rate λU (t) or λV (t) at each site in U or V ,
respectively) and the death clocks (rate 1 at each site) for addition and removal of particles. A
transition at time s ∈ ξξξ is governed by a discrete transition kernel K(s)(·, ·), which is essentially
the transition matrix of the discrete hard-core dynamics studied in [8] with parameters λU (s)
and λV (s). Namely, for distinct hard-core configurations x and y, we have

K(s)(x, y) :=



λU (s)
γ(s) if xi = 0, yi = 1, x(U∪V )\{i} = y(U∪V )\{i} for some i ∈ U ,
λV (s)
γ(s) if xi = 0, yi = 1, x(U∪V )\{i} = y(U∪V )\{i} for some i ∈ V ,
1

γ(s) if xi = 1, yi = 0, x(U∪V )\{i} = y(U∪V )\{i} for some i ∈ U ∪ V ,

0 otherwise,

(1.2)

and K(s)(x, x) is defined so as to turn K(s) into a stochastic matrix. At every tick s ∈ ξξξ of
the clock, the process jumps into a new state X(s) distributed according to K(s) (X(s−), ·).

Here is a more formal construction, which we need for coupling arguments. Let ξξξ be a
Poisson process as above, and let Z(x, t), x ∈ X , t ∈ [0,∞), be a collection of independent
random variables in X , and independent of ξξξ, with distribution K(t)(x, ·). Given an initial
configuration x(0) ∈ X , the process (X(t))t≥0 is constructed recursively by setting X(s) :=
Z (X(s−), s) at each s ∈ ξξξ.

As before, we write u and v for the configurations in which U and V are fully active,
respectively. We are interested in the distribution of the hitting time Tv := inf{t ≥ 0: X(t) =
v} conditional on starting at X(0) = u. Our goal will be to analyse the distribution of Tv.
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The regenerative structure of the process. In the time-homogeneous setting, we know
that the hitting time Tv starting from u is approximately exponential in the asymptotic regime
where λU and λV are large. The intuition comes from considering the return times to u of the
discrete-time embedded Markov chain as regeneration times, and imagining a Bernoulli trial
at each regeneration time. The trial is successful if the Markov chain visits v before returning
to u, and is unsuccessful otherwise. In the asymptotic regime, the probability of success in
each trial is small and the expected duration of a single trial (successful or not) is negligible
compared to the expected transition time Eu[Tv]. The first success time of a large number
of trials each having a small probability of success is approximately exponentially distributed
(see e.g., [10, 8]).

In the time-inhomogeneous setting we would like to follow a similar reasoning in order
to show that, under appropriate conditions, the transition time Tv from u is approximately
exponential with a non-constant rate. We can still use the returns to u as regeneration times,
but the success probability and the duration of the trials now depend on the starting times of
the trials. One difficulty is that in [8] we only obtained information on the success probability
and the duration of the trials in a time-homogeneous setting. We need to overcome this
obstacle.

To be more specific, let ξ̄ξξ := {0} ∪ ξξξ. The times s ∈ ξ̄ξξ at which X(s) = u are considered
as inhomogeneous regeneration times. We denote the set of regeneration times by ηηη, so that
ηηη := {s ∈ ξ̄ξξ : X(s) = u}. A Bernoulli trial is made at each regeneration time s ∈ ηηη with
indicator random variable B(s). For t ∈ [0,∞), we write

Tv(t) := inf{s ≥ t : X(s) = v},
T	
u (t) := inf{s > t : X(s) = u and ξξξ ((t, s]) > 0},

(1.3)

to denote the first hitting time of v and the first return time of u after time t. The Bernoulli
random variable B(s) is defined to be 1 if Tv(s) < T	

u (s) and to be 0 otherwise. The success
probability of the trial at s ∈ ηηη is

ε(s) := P(B(s) = 1) = P(Tv(s) < T	
u (s) |X(s) = u). (1.4)

The duration of the trial at s ∈ ηηη is the random variable δT (s) := min{Tv(s), T	
u (s)} − s.

This duration can also be measured in clock ticks by the discrete random variable L(s) :=
ξξξ
(
(s, s+δT (s)]

)
that counts the number of clock ticks from s until the next regeneration time.

Let
S := inf{s ∈ ηηη : B(s) = 1} (1.5)

be the starting point of the first successful trial. The first hitting time of v is the end point
of the first successful trial, i.e., Tv = S + δT (S). Our goal will be to analyse the distribution
of S. Note that we expect δT (S) to be negligible compared to S, as is the case in the
time-homogeneous setting.

Notation. Throughout this paper we use the following notation:

• f(x) ≺ g(x) means f(x) = o(g(x)) as x→∞,

• f(x) � g(x) means f(x) = O(g(x)) as x→∞,

• f(x) � g(x) means f(x) � g(x) and g(x) � f(x) as x→∞.

Review of some results from time-homogeneous setting. The results of this paper
are heavily based on comparison with the time-homogeneous version of the above Markov
process in which the rates λU and λV are constant. The time-homogeneous process was
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studied in [8], where detailed results were obtained on the mean and asymptotic distribution
of the crossover time as well as the trajectory of the process close to its bottleneck (the
formation of the “critical droplet”). The results of the latter paper were obtained for general
bipartite graphs subject to certain hypotheses on the isoperimetric properties of the graph.
These hypotheses were verified for a few interesting classes of bipartite graphs, including the
complete bipartite graph and the two-dimensional torus. For the sake of comparison as well
as future reference, we now briefly recall some relevant results from [8].

As before, let

ε := Pu(Tv < T	
u ) (1.6)

and let γ denote the rate of the Poisson clock triggering the transitions given by the time-
homogeneous version of (1.2). Let

α :=
log λV
log λU

− 1. (1.7)

For a large family of bipartite graphs satisfying a mild isoperimetric property (including the
complete bipartite graph and the even torus), it was shown that, starting from u, the crossover
time Tv is asymptotically exponentially distributed, in the sense that

lim
λ→∞

Pu
(
Tv/Eu[Tv] > t

)
= e−t, λ→∞, (1.8)

provided α > 0 and |U | <
(
1 + α

)
|V |. Under the same assumptions,

εγ Eu[Tv] = 1 + o(1) , λ→∞, (1.9)

(see Equation (A.5), Corollary B.4 and Corollary 3.5 in [8]). Furthermore,

Eu[Tv] �
λ

∆(k∗)+k∗−1
U

λk
∗−1
V

, λ→∞, (1.10)

(see Theorem 1.1 in [8]), where ∆: N→ N denotes the (bipartite) isoperimetric cost function
of the graph (see Section 2.3 in [8]) and k∗ is the critical size, defined as the smallest positive
integer maximizing ∆(k)− α(s)(k − 1).

The case of a complete bipartite graph is relatively simple, and one can do direct calcula-
tions to obtain a sharp estimate

Eu[Tv] =
1

|U |
λ
|U |−1
U [1− o(1)] λ→∞ (1.11)

(see Example 2.1 in [8]). For more general bipartite graphs, under more elaboration assump-
tions on the isoperimetric properties of the graph, one can obtain similar sharp estimates for
the mean crossover time as well as detailed information about the trajectory of the process
near its bottleneck, in particular, the shape of the “critical droplet” (Theorem 1.3 and Propo-
sition 1.4 in [8]). As a prototypical example, in the case of a torus Zm × Zn (with m,n even
and nearest-neighbour edges), when 0 < α < 1, one finds that

Eu[Tv] =
1

4mn`∗
λ
`∗(`∗+1)+1
U

λ
`∗(`∗−1)
V

[1 + o(1)], λ→∞, (1.12)

where `∗ := d1/αe is the size of the critical droplet.
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t
λU (t)

λV (t)

Figure 1: A schematic graph of the activation rates as functions of time.

Stochastic ordering and monotonicity. In [8], we strongly exploited an appropriate
ordering on the configuration space X and couplings respecting this ordering. This ordering
will also be crucial in the arguments of the current paper.

Let us define a partial order on X by declaring x v x′ if xU ⊇ x′U and xV ⊆ x′V . It is easy
to verify that the Markov process (time-homogeneous or time-inhomogeneous) is monotonic
with respect to this partial order in the following sense: given x, x′ ∈ X with x v x′, one
can construct a coupling

((
X(t), X ′(t)

))
t≥0

of two copies of the process with X(0) = x and

X ′(0) = x′ such that with probability 1, X(t) v X ′(t) for every t ≥ 0.
In fact, a more general statement is true. Let (λU , λV ) and (λ′U , λ

′
V ) be two choices of the

parameters, each possibly varying with time, and assume that λU ≥ λ′U and λV ≤ λ′V . Then,
given x, x′ ∈ X with x v x′, one can construct a coupling

((
X(t), X ′(t)

))
t≥0

of the process

with parameters (λU , λV ) and the process with parameters (λ′U , λ
′
V ) such that X(0) = x and

X ′(0) = x′ and almost surely X(t) v X ′(t) for every t ≥ 0. It follows that for every increasing
event E (i.e., an event such that (y(t))t≥0 ∈ E whenever (x(t))t≥0 ∈ E and x(t) v y(t) for all
t ≥ 0), it holds

P
(
(X(t))t≥0 ∈ E

)
≤ P

(
(X ′(t))t≥0 ∈ E

)
. (1.13)

A frequent example of an increasing event in the present paper is the event that the process
hits v before returning to u.

1.3 Choices of the activation rates and main theorems

Given the above description, and in line with the follow-up paper [2], we assume that the
activation rates are of the form

λU (t) := gU ([cUλ− µU t]+), λV (t) := gV (cV λ+ µV t), (1.14)

where cU , cV , µU , µV are positive parameters, and both gU (x) and gV (x) are increasing with
gV (x) � gU (x) � 1 as x→∞ (see Figure 1). The terms cUλ and cV λ represent approximate
queue lengths of the servers in U and V , respectively, at time 0. The term µV represents the
rate of arrival of new messages at servers in V (which are inactive), while µU accounts for
the service rate minus the rate of arrival of new messages at servers in U (which are active).
In [2], the model with these choices of parameters is referred to as the external model, and a
comparison is made between this model and the internal model, which is the general model
described at the beginning of Section 1.2.

Target. For concreteness, as in [2], we focus on the case in which

gU (x) � xβU , gV (x) � xβV , (1.15)
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where βV > βU > 0. Let ν(s) := ε(s)γ(s) (recall (1.1) and (1.4)). In light of the regeneration
structure described above, it is natural to expect that, for every time scale M = M(λ),

lim
λ→∞

Pu
(Tv
M

> τ
)

=


0 if Mν(Mτ) � 1,

e−
∫ τ
0 Mν(Mσ) dσ if Mν(Mτ) � 1,

1 if Mν(Mτ) ≺ 1,

(1.16)

uniformly in τ ∈ [0,∞). (Here and in what follows, we use Pu as shorthand notation for
Pu(· |X(0) = u).) So, if we let Mc = Mc(λ) be the solution of Mν(M) � 1 (which is expected
to be unique up to asymptotic equivalence �), then the transition occurs almost surely on the
time scale Mc, in the sense that Pu(Tv > t) ≈ 1 for t ≺ Mc and Pu(Tv > t) ≈ 0 for t � Mc.
On the time scale Mc, the transition time follows an exponential law with a time-varying rate.
In [2], the equality Mν(M) � 1 is solved under the assumption that G is a complete bipartite
graph and it is shown that the asymptotic behaviour of the system follows distinct patterns
depending on whether βU < 1

|U |−1 , βU = 1
|U |−1 or βU > 1

|U |−1 , which are referred to as the
subcritical, the critical and the supercritical regime, respectively.

The main goal of the present paper is to show that, under suitable conditions, a variant
of the equality in (1.16) indeed holds. Throughout the sequel we make the following key
assumptions.

Assumption 1.1 (Isoperimetric properties). Either of the following two conditions holds:

(a) G is a complete bipartite graph with |U | > 1.

(b) G satisfies hypothesis (H2) in [8] and βU |U | < βV |V |.

Assumption 1.2 (Energy barriers). Γ̌(0) ≺
√

Γ(0).

Hypothesis (H2) in [8] says that for every i ∈ V there exists an isoperimetric numbering
starting with i that is sufficiently long. The condition βU |U | < βV |V | is a restatement of
hypothesis (H0) in [8] and guarantees that u is metastable and v is stable, which is the setting
considered in the present paper. The quantities Γ(s) and Γ̌(s) are introduced in Section 4.2
below. Intuitively, for each s ≥ 0, Γ(s) is the height of the hill that the time-homogeneous
process with parameters λU (s) and λV (s) needs to climb in order to go from u to v, whereas
Γ̌(s) is the depth of the deepest well whose bottom is not u or v (the process may get stuck
in this well on its way from u to v). Under Assumption 1.1, the identification of Γ(s) boils
down to the identification of the (bipartite) isoperimetric cost function (see Section 1.2). The
quantity Γ̌(s) has not been studied before.

In practice, it will be more convenient to replace ε(s) in (1.4) by

ε̌(s) := P(s)
u (Tv < T	

u ), (1.17)

where P(s) is the law of a time-homogeneous Markov chain with parameters λU (s) and λV (s).
The two quantities are expected to be close to each other, but the advantage of ε̌(s) is that
it is more tractable than ε(s), and can be sharply estimated in various cases. Let

ν̌(s) := ε̌(s)γ(s). (1.18)

Main theorem. The main theorem of the present paper is the following result identifying
the asymptotic law of the crossover time.

Theorem 1.3 (Law of crossover time). Suppose that Assumptions 1.1–1.2 are satisfied.
Let M = M(λ) > 0 be a given time scale such that M(λ)→∞ as λ→∞.

8



(i) If M ≺ λ as λ→∞, then

lim
λ→∞

Pu
(Tv
M

> τ
)

=


0 if Mν̌(0) � 1,

e−
∫ τ
0 Mν̌(Mσ) dσ if Mν̌(0) � 1,

1 if Mν̌(0) ≺ 1,

(1.19)

for every τ ∈ (0,∞).

(ii) If M � λ, then the identity (1.19) still holds uniformly for 0 < τ < cU
µU

λ
M , while

limλ→∞ Pu
(
Tv/M > τ

)
= 0 when τ ≥ cU

µU
λ
M .

(iii) If M � λ, then limλ→∞ Pu
(
Tv/M > τ

)
= 0 for every τ > 0.

In fact, Assumption 1.2 is only needed for the middle case of (1.19) in scenarios (i) and (ii).

The distinction between the three scenarios M ≺ λ, M � λ and M � λ is simply due
to the fact that, according to (1.14), λU (s) = 0 for s ≥ cU

µU
λ. Note that the conditions

in (1.19) are in terms of Mν̌(0) rather than Mν̌(Mτ), as suggested by (1.16). As we will see,
the two quantities have the same order of magnitude when Mτ < λ. We will refer to the
top, middle and bottom cases in (1.19) as the supercritical, critical and subcritical regime,
respectively. It turns out that the subcritical and super-critical regime can be handled by
direct comparison with the time-homogeneous setting. We prove the identity for the critical
regime by establishing tight lower and upper bounds for Pu(Tv > t).

The time-inhomogeneity of the system makes it difficult to verify the conditions of The-
orem 1.3 in full generality. Nevertheless, we show that the conditions are indeed satisfied in
two special cases: when G is a complete bipartite graph (i.e., the setting of [2]) and when G
is an even torus Zm × Zn (two examples are studied in [8]).

Example 1.4 (Complete bipartite graph). When G is a complete bipartite graph, As-
sumption 1.1 is trivially satisfied. In Section 4.2 (proof of Lemma 4.4), we will verify that,
for any s ≥ 0,

Γ(s) � γ(s)λ
|U |−1
U (s), Γ̌(s) � γ(s)/λU (s), λ→∞. (1.20)

For the choice of the functions λU (t) and λV (t) in (1.14) and (1.15), we have λU (0) � λβU ,
λV (0) � λβV and γ(0) � λβU∨βV = λβV (recall that βV > βU ), and so Assumption 1.2 is
satisfied if and only if

βV < (|U |+ 1)βU . (1.21)

However, we can remove this restriction by the following argument. When the system starts
from u, Tv is with high probability close to T∅, i.e., the first hitting time of the configuration
∅ in which all the vertices are inactive. Note that in the trajectory from u to ∅ no vertex in V
ever gets an opportunity to become active. As a result, the asymptotic distribution of Tv/M
as λ → ∞ (which is the same as the distribution T∅/M) is independent of βV . Therefore,
without loss of generality, we can lower βV so that it satisfies (1.21).

Let us now examine the quantity ν̌(s) = ε̌(s)γ(s). As we will see in Section 4.2, ε̌(s) �
1/Γ(s). It follows that ν̌(s) = (cUλ − µUs)

−(|U |−1)βU . Therefore, in the scenario in which
M ≺ λ and τ ∈ (0,∞) or M � λ and τ ≤ cU

µU
λ
M ,

lim
λ→∞

Pu
(Tv
M

> τ
)

=


0 if M � λ(|U |−1)βU ,

exp

(
−
∫ τ

0
M(cUλ− µUMσ)−(|U |−1)βU dσ

)
if M � λ(|U |−1)βU ,

1 if M ≺ λ(|U |−1)βU .

(1.22)
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#

Example 1.5 (Even torus). Let us now consider the case in which G is the torus Zm ×Zn
with m,n ∈ N even and nearest-neighbour edges. Assume that βU |U | < βV |V |. In [8,
Section 6.1] it was verified that G satisfies hypothesis (H2), thus Assumption 1.1 is satisfied.
It follows from the results of that paper that

Γ(0) �
λ
`∗(`∗+1)+1
U (0)

λ
`∗(`∗−1)
V (0)

� λβU [`∗(`∗+1)+1]−βV [`∗(`∗−1)]. (1.23)

This can also be seen by combining the fact that ε̌(s) � 1/Γ(s) (see Section 4.2) with (1.9)
and (1.12). We leave it as an open question to identify the order of magnitude of Γ̌(0) in
this case. Once such an estimate is available, one can identify the range of the parameters in
which Assumption 1.2 is satisfied.

From (1.9) and (1.12), we get

ν̌(s) = 4mn`∗
λ
`∗(`∗−1)
V (s)

λ
`∗(`∗+1)+1
U (s)

[1 + o(1)], λ→∞. (1.24)

Thus, in the parameter regime in which Assumption 1.2 is satisfied, Theorem 1.3 provides an
explicit characterization of the asymptotic law of the crossover time for all choices of the time
scale M . #

Outline of remainder. In Section 2 we explain strategies to derive lower and upper bounds
for the success time in a sequence of Bernoulli trials. In Section 3 we use the latter to derive
lower and upper bounds for the transition times in our network model in terms of certain key
quantities. These quantities are further analysed in Section 4, and lead to explicit conditions
on the model parameters under which Theorem 1.3 can be proved.

2 Exploiting the regenerative structure

In Section 2.1 we reformulate the problem in terms of a sequence of Bernoulli trials and look
at a simple case, formulated in Proposition 2.1 below. In Sections 2.2 and 2.3 we derive
lower and upper bound for the probability that the success time exceeds t, formulated in
Propositions 2.2 and 2.3 below. In Section 3 we will use the latter to formulate concrete
bounds.

2.1 Reformulation

We begin by rephrasing the problem in abstract terms without referring to the underlying
Markov process.

General scenario. We generate a sequence of Bernoulli trials, one after the other. Each
trial has a random duration, so that the starting point of the n’th trial is random. The
success probability and the length of each trial depend on its starting time, but are otherwise
independent of the other trials. The outcome of a trial starting at time s is indicated by a
Bernoulli random variable B(s), and its duration is denoted by δT (s). So, if 0 = S0, S1, S2, . . .
are the starting times of the trials, then Sn+1 = Sn + δT (Sn). Let S be the starting time of
the first successful trial. What can we say about the distribution of S?

We are interested in an asymptotic regime where the success probabilities of the Bernoulli
trials are small and the duration of each trial conditioned on its failure is approximately
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exponential with small mean. If ε(s) := P(B(s) = 1) is the success probability of the trial
starting at time s and γ(s) is the approximate exponential rate of δT (s) given B(s) = 0,
then we expect the success time S to approximately have an inhomogeneous exponential
distribution with rate ε(s)γ(s), i.e.,

P(S > t) ≈ e−
∫ t

0 ε(s)γ(s) ds. (2.1)

In the concrete setting explained above, we have a parameter λ, and as λ → ∞ we expect
ε(s) = o(1) to be close to the time-homogeneous setting with parameters λU (s) and λV (s).
Conditional on B(s) = 0, we also expect δT (s) to be bounded from below by an exponential
random variable with rate γ(s), and to have expected value [1 + o(1)]/γ(s).

Scenario with underlying Poisson process. We next concentrate on a more restricted
setting that contains the concrete setting above. Let ξξξ be a Poisson point process on [0,∞)
with time-varying rate function γ(t) and set ξ̄ξξ := {0}∪ξξξ. We assume that t 7→ γ(t) is integrable
over any finite interval. For s ∈ ξ̄ξξ, let B(s) be a Bernoulli random variable with parameter
ε(s) > 0, where ε : [0,∞)→ (0, 1) is a sufficiently smooth and increasing function. For s ∈ ξξξ,
consider also a positive integer-valued random variable L(s) that counts the duration of a
potential trial at time s in clock ticks. The random objects ξξξ and B(s), L(s) for s ∈ ξξξ do not
need to be independent. However, we assume that conditional on ξξξ the pairs (B(s), L(s)) for
different values of s ∈ ξξξ are independent.

The starting times of the trials can be identified recursively as follows. The first trial is
made at time S0 := 0. The (n + 1)-st trial is made at time Sn+1 := σξξξ(Sn, L(Sn)), where
σξξξ(s, k) is the k’th tick of the clock ξξξ after time s. Let ηηη := {S0, S1, S2, . . .} ⊆ ξ̄ξξ be the random
set of trial times. The first success time is S := inf{s ∈ ηηη : B(s) = 1}.

The simplest case. The special case where L(s) = 1 for every s corresponds to having
an exponential distribution with rate γ(s) for the duration of each trial. If B(s) is also
independent of the Poisson process ξξξ, then the distribution of the first hitting time is very
close to an inhomogeneous exponential distribution.

Proposition 2.1 (Exponential duration). Suppose that P(L(s) = 1 |B(s) = 0) = 1 for
each s ∈ ξ̄ξξ, and that the Bernoulli random variables B(s) are independent of the Poisson
process ξξξ. Then

P(S > t) =
(
1− ε(0)

)
e−
∫ t

0 ε(s)γ(s) ds. (2.2)

Proof I (via coloring). This is immediate from the colouring theorem of the Poisson processes.
Namely, let us colour each point s ∈ ξξξ blue if B(s) = 1 and red otherwise. Since different
points are coloured independently, the set of blue points in ξξξ is itself a Poisson process with
rate function ε(s)γ(s).

Proof II (via Campbell’s theorem). Conditioning on ξξξ, we can write

P(S > t |ξξξ) =
∏

s∈ξ̄ξξ∩[0,t]

(
1− ε(s)

)
=
(
1− ε(0)

)
e

∑
s∈ξξξ∩[0,t] log

(
1− ε(s)

)
=
(
1− ε(0)

)
eΣ,

(2.3)

where Σ :=
∑

s∈ξξξ∩[0,t] f(s) with f(s) := log(1− ε(s)). According to Campbell’s theorem (see
Kingman [11, Section 3.2]), we have

E
[
eΣ
]

= exp

{∫ t

0

(
ef(s) − 1

)
γ(s) ds

}
= −

∫ t

0
ε(s)γ(s) ds ∈ (−∞, 0].
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The latter integral is finite because γ(s) is integrable on [0, t] and 0 ≤ ε(s) ≤ 1. In summary,
we obtain

P(S > t) = E
[
P(S > t |ξξξ)

]
=
(
1− ε(0)

)
E[eΣ] =

(
1− ε(0)

)
e−
∫ t

0 ε(s)γ(s) ds,
(2.4)

which proves the claim.

Making B(s) and L(s) independent. Since all the trials whose durations are counted in
S are unsuccessful (B(S) is the first successful trial), we can use the following trick to remove
the dependence between B(s) and L(s). For s ∈ ξ̄ξξ, we construct a new random variable
L̃(s) as follows. For B(s) = 0, set L̃(s) := L(s). Otherwise, choose L̃(s) independently of
L(s) according to the distribution P(L(s) ∈ · |B(s) = 0). The new random variable L̃(s) is
independent of B(s). Nevertheless, when using L̃(s) instead of L(s) we get the same value
for the first success time S.

2.2 A strategy to find lower bounds

Without the simplifying assumptions used above, we can still try to use Campbell’s theorem
to find lower bounds for P(S > t). To start, we can condition on both ξξξ and the collection
L̃(·), and write

P
(
S > t

∣∣ξξξ, L̃(·)
)

=
∏

s∈ηηη∩[0,t]

(
1− P

(
B(s) = 1

∣∣ξξξ))
= e

∑
s∈ηηη∩[0,t] log

(
1− P

(
B(s) = 1

∣∣ξξξ))
≥ e

∑
s∈ξ̄ξξ∩[0,t] log

(
1− P

(
B(s) = 1

∣∣ξξξ))
.

(2.5)

The last expression is independent of L̃(·), and so we get

P(S > t |ξξξ) ≥ e

∑
s∈ξ̄ξξ∩[0,t] log

(
1− P

(
B(s) = 1

∣∣ξξξ))
. (2.6)

The latter expression looks like it can be integrated with the help of Campbell’s theorem,
except that P(B(s) = 1 |ξξξ) depends on ξξξ. However, in our application the dependence is
weak.

One idea is to use an upper bound for P
(
B(s) = 1

∣∣ξξξ) that is independent of ξξξ. This gives
a lower bound for P(S > t |ξξξ) in a form that is integrable by Campbell’s theorem. However,
in our application there does not seem to be any useful upper bound for P

(
B(s) = 1

∣∣ξξξ) that
is valid almost surely. Namely, if ξξξ happens to have an unlikely large gap from s onwards,
then the probability P(B(s) = 1

∣∣ξξξ) can be significant.
A more careful approach is to use an upper bound for P(B(s) = 1

∣∣ξξξ) that holds most of
the time. To be more specific, let ε̂(s) be a sufficiently smooth non-negative function, and
let Nt be the number of points s ∈ ξ̄ξξ ∩ [0, t] for which P(B(s) = 1 |ξξξ) > ε̂(s). Assuming that
δt(n) := P(Nt > n) decays rapidly, we hope to get a lower bound for P(S > t) of the form

P(S > t) ≥
(
1− α

)
e−
∫ t

0 ε̂(s)γ(s) ds (2.7)

for some 0 < α� 1.
Suppose that when P(B(s) = 1 |ξξξ) > ε̂(s) we have a (possibly worse) universal bound

P(B(s) = 1 |ξξξ) < E, where E may depend on t but not on s, at least when ξξξ is in a highly
probable set Ξt. Then∑

s∈ξ̄ξξ∩[0,t]

log
(

1− P
(
B(s) = 1

∣∣ξξξ)) ≥ ∑
s∈ξ̄ξξ∩[0,t]

log
(
1− ε̂(s)

)
+Nt log(1− E) (2.8)

12



when ξξξ ∈ Ξt, which implies that

P(S > t) ≥ E
[
(1− E)Nt e

∑
s∈ξ̄ξξ∩[0,t] log(1−ε̂(s))

]
− P(ξξξ /∈ Ξt). (2.9)

The first term on the right-hand side has the form E
[
Z(1 − E)Nt

]
for a random variable

0 < Z ≤ 1 and a non-negative integer-valued random variable Nt with a rapidly decaying tail
δt(n) = P(Nt > n). Campbell’s theorem can be used to integrate Z alone, but it is not clear
how we can integrate the product of Z and (1− E)Nt .

We split E
[
Z(1−E)Nt

]
based on whether Nt is larger or smaller than a constant m ≥ 0,

which we will need to choose later:

E
[
Z(1− E)Nt

]
≥ E

[
Z(1− E)m 1Nt≤m

]
+ E

[
Z(1− E)Nt 1Nt>m

]
= E

[
Z(1− E)m

]
− E

[
Z
(
(1− E)m − (1− E)Nt

)︸ ︷︷ ︸
≤1

1Nt>m

]
≥ (1− E)m E[Z]− E

[
Z 1Nt>m

]
.

(2.10)

Applying the Cauchy-Schwarz inequality to the second term, we have

E
[
Z 1Nt>m

]
≤ E[Z2]

1/2 E[1Nt>m]
1/2 =

√
δt(m) E[Z2]

1/2. (2.11)

Now, Campbell’s theorem allows us to calculate

E[Z] =
(
1− ε̂(0)

)
e−
∫ t

0 ε̂(s)γ(s) ds (2.12)

and

E[Z2] =
(
1− ε̂(0)

)2
e−
∫ t

0

(
[1− ε̂(s)]2 − 1

)
γ(s) ds

=
(
1− ε̂(0)

)2
e−2

∫ t
0 ε̂(s)

[
1− 1

2 ε̂(s)
]
γ(s) ds.

(2.13)

Combining (2.10)–(2.13), we get

E
[
Z(1− E)Nt

]
≥ (1− E)m

(
1− ε̂(0)

)
e−
∫ t

0 ε̂(s)γ(s) ds

−
√
δt(m)

(
1− ε̂(0)

)
e−
∫ t

0 ε̂(s)
[
1− 1

2 ε̂(s)
]
γ(s) ds

=
(
1− ε̂(0)

)︸ ︷︷ ︸
≈1

[
(1− E)m︸ ︷︷ ︸
≈1

−
√
δt(m)︸ ︷︷ ︸
�1

e
1
2

∫ t
0 ε̂(s)

2γ(s) ds︸ ︷︷ ︸
≈1

]
e−
∫ t

0 ε̂(s)γ(s) ds,

(2.14)
which has the desired form. In summary, we have the following proposition.

Proposition 2.2 (Lower bound). Let ε̂(s) be a positive measurable function, and let Nt be
the number of points s ∈ ξ̄ξξ ∩ [0, t] for which the inequality P

(
B(s) = 1

∣∣ξξξ) ≤ ε̂(s) fails. Let
0 < E < 1 be a constant such that P

(
B(s) = 1

∣∣ξξξ) ≤ E whenever ξξξ is in a measurable set Ξt
and s ∈ ξ̄ξξ ∩ [0, t]. Then, for every m ≥ 0,

P(S > t) ≥ Ǩ(m) e−
∫ t

0 ε̂(s)γ(s) ds − P(ξξξ /∈ Ξt) , (2.15)

where

Ǩ(m) :=
(
1− ε̂(0)

) [
(1− E)m −

√
δt(m) e

1
2

∫ t
0 ε̂(s)

2γ(s) ds
]

(2.16)

and δt(m) := P(Nt > m).

Think of ε̂(s) as a good typical bound and of E as a rough universal bound.
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2.3 A strategy to find upper bounds

We can try a similar approach via Campbell’s theorem to find an upper bound for P(S > t).
Conditioning on ξξξ and L̃(·) as before, we write

P
(
S > t

∣∣ξξξ, L̃(·)
)

=
∏

s∈ηηη∩[0,t]

(
1− P

(
B(s) = 1

∣∣ξξξ))
= e

∑
s∈ηηη∩[0,t] log

(
1− P

(
B(s) = 1

∣∣ξξξ))
.

(2.17)

We have P(B(s) = 1
∣∣ξξξ) ≥ ε̌(s), which holds independently of ξξξ. Namely, ε̌(s), which is a

positive measurable function, is the probability of B(s) = 1 when we freeze the parameters
λU and λV at time s. Using this bound, we have

P
(
S > t

∣∣ξξξ, L̃(·)
)
≤ e

∑
s∈ηηη∩[0,t] log

(
1− ε̌(s)

)
. (2.18)

We can bound the sum on the right-hand side, noting that all the terms are negative, as

Σ
(
ξξξ, L̃(·)

)
:=

∑
s∈ηηη∩[0,t]

log
(
1− ε̌(s)

)
≤

∑
s∈ξ̄ξξ∩[0,t]

log
(
1− ε̌(s)

)
−

∑
s∈ξ̄ξξ∩[0,t]

∑
r∈ξ̄ξξ∩[0,t]

s<r<σξξξ(s,L̃(s))

log
(
1− ε̌(r)

)
, (2.19)

where, as before, σξξξ(s, k) denotes the k’th element of the clock ξξξ after time s. Suppose that
0 < E′ < 1 (possibly dependent on t) is such that ε̌(s) ≤ E′ for each s ∈ [0, t]. In our concrete
setting, ε̌(s) is non-decreasing and we can choose E′ := ε̌(t). Replacing ε̌(r) by E′ in the
above inequality, we get

Σ
(
ξξξ, L̃(·)

)
≤

∑
s∈ξ̄ξξ∩[0,t]

log
(
1− ε̌(s)

)
−

∑
s∈ξ̄ξξ∩[0,t]

(L̃(s)− 1) log
(
1− E′

)
. (2.20)

Integrating with respect to L̃(·), we get

P(S > t |ξξξ) = E
[
P
(
S > t

∣∣ξξξ, L̃(·)
) ∣∣∣ξξξ] ≤ E

[
eΣ
(
ξξξ,L̃(·)

) ∣∣ξξξ]
≤ e

∑
s∈ξ̄ξξ∩[0,t] log

(
1− ε̌(s)

)
E

 ∏
s∈ξ̄ξξ∩[0,t]

(1− E′)−(L̃(s)−1)

∣∣∣∣∣∣ξξξ
 . (2.21)

Recall that, conditional on ξξξ, the random variables L̃(s) for different values of s ∈ ξ̄ξξ are
independent. Therefore we can take the product out of the expectation and write

P(S > t |ξξξ) ≤ e

∑
s∈ξ̄ξξ∩[0,t] log

(
1− ε̌(s)

) ∏
s∈ξ̄ξξ∩[0,t]

E
[
(1− E′)−(L̃(s)−1)

∣∣ξξξ]. (2.22)

Suppose that we can find a good bound E
[
(1 − E′)−(L̃(s)−1)

∣∣ξξξ] ≤ ρ(s) that holds whenever
ξξξ is in a highly probably set Ξt, where ρ(s) is a measurable function not depending on ξξξ. (In
particular, we would like to have ρ(s) − 1 � ε̌(s) or at least ρ(s) − 1 � E′. The existence
of such a bound is plausible, because E′ � 1 and L̃(s) is expected to be close to 1 with high
probability and in expectation.) Then we obtain the bound

P(S > t |ξξξ) ≤ e

∑
s∈ξ̄ξξ∩[0,t]

[
log
(
1− ε̌(s)

)
+ log ρ(s)

]
+ 1Ξc

t
(ξξξ) , (2.23)
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which is integrable via Campbell’s theorem. Namely, we get

P(S > t) ≤ ρ(0)
(
1− ε̌(0)

)
e

∫ t
0

(
ρ(s)

[
1− ε̌(s)

]
− 1
)
γ(s)ds + P(ξξξ /∈ Ξt)

≤
[
ρ(0)

(
1− ε̌(0)

)
e

∫ t
0

(
ρ(s)− 1

)
γ(s)ds

]
e−
∫ t

0 ε̌(s)γ(s)ds + P(ξξξ /∈ Ξt).
(2.24)

Note that if ρ(s)− 1� ε̌(s), then the factor in the bracket is close to 1. In summary, we have
the following proposition.

Proposition 2.3 (Upper bound). Let ε̌(s) be a positive measurable function such that
P
(
B(s) = 1

∣∣ξξξ = ξ
)
≥ ε̌(s) almost surely for all s ∈ ξ̄ξξ ∩ [0, t]. Let 0 < E′ < 1 be a constant

such that ε̌(s) ≤ E′ for each s ∈ [0, t]. Moreover, let ρ(s) ≥ 1 be a measurable function such

that E
[
(1−E′)−(L̃(s)−1)

∣∣ξξξ = ξ
]
≤ ρ(s) for every ξ in a measurable set Ξt and all s ∈ ξ̄∩ [0, t].

Then

P(S > t) ≤ K̂ e−
∫ t

0 ε̌(s)γ(s)ds + P(ξξξ /∈ Ξt), (2.25)

where

K̂ := ρ(0)
(
1− ε̌(0)

)
e

∫ t
0

(
ρ(s)− 1

)
γ(s)ds. (2.26)

3 Back to hard-core dynamics

Throughout this section, we consider a time scaling of the form t = M(λ)τ , where M = M(λ)
is a positive function that tends to∞ as λ→∞ and τ ≥ 0 is the scaled time. In the concrete
setting of the time-inhomogeneous hard-core dynamics, we wish to use Propositions 2.2 and 2.3
to find sharp bounds for the probability P(S > t). Two questions arise:

Question 3.1. How should we choose ε̂(s), E and m? In particular, we want ε̂(s) = ε(s)[1 +
o(1)] as λ→∞, E = o(1) as λ→∞, and 0 < δt(m)� 1, preferably δt(m) = o(1) as λ→∞.

Question 3.2. Can we find a good upper bound for E
[
rL̃(s)−1

∣∣ξξξ] ≤ ρ(s) for r := 1
1−E′ > 1?

In Sections 3.1 and 3.2 we answer these questions, in the form of Propositions 3.4 and
3.3 below. In Section 3.3 this leads to a set of further tasks, summarized in Proposition 3.7
below, which we address in Section 4.

Freezing the parameters at time t = Mτ . Observe that the event Tv > Mτ depends
only on the state of the process up until time Mτ . Therefore, the probability Pu(Tv > Mτ)
is independent of the value of the parameters λU (s) and λV (s) for s > Mτ . In the remainder
of the paper, we consider a modified version of the process in which λU (s) and λV (s) are
truncated at time s = Mτ , thus assuming{

λU (s)= λU (Mτ)

λV (s)= λV (Mτ)
∀ s ≥M. (3.1)

This assumption does not affect the validity of Theorem 1.3 but will simplify the presentation
of its proof.
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3.1 Simplified condition for the lower bound

In order to apply Proposition 2.2, we need a good typical upper bound ε̂(s) for P
(
B(s) =

1
∣∣ξξξ = ξ

)
, where “typical” means for most ξ. We also need a rough upper bound E for

P
(
B(s) = 1

∣∣ξξξ = ξ
)

that holds uniformly in ξ, in a highly probable set Ξt, and uniformly in
s ∈ ξ̄ ∩ [0, t].

To obtain a typical upper bound ε̂(s), we choose a value δs > 0 (depending on λ) that is
small compared to the overal duration t, but large enough such that typically the clock ξξξ has
at least k ticks within the interval (s, s + δs) for some k ∈ Z+. The parameter k is chosen
large enough so that the Markov chain typically takes less than k steps to reach either u or
v, i.e., a trial starting at s would typically end before time s + δs, and so we can bound its
probability by coupling the process with the one having frozen parameters λU (s + δs) and
λV (s+ δs).

To make this idea precise, let δT̂v(s) denote the number of ticks of ξ from time s until the
first time the discrete Markov chain arrives at v, and define δT̂	

u (s) similarly.

Proposition 3.3 (Simplified lower bound). Let t = M(λ)τ , where M = M(λ) → ∞ as
λ → ∞ and τ ≥ 0 is a constant. Let δs > 0 and k ∈ Z+ (each possibly depending on λ).
Suppose that, uniformly in ξ and s ∈ ξ̄ ∩ [0, t],

P
(
δT̂v(s) > k

∣∣ ξξξ = ξ, X(s) = u, δT̂v(s) < δT̂	
u (s)

)
= o(1), λ→∞. (3.2)

Then

P
(
B(s) = 1

∣∣ξξξ = ξ
)

= P(s+δs)
u (Tv < T	

u ) [1 + o(1)], λ→∞. (3.3)

uniformly in ξ and s ∈ ξ̄ ∩ [0, t] satisfying ξ(s, s+ δs) ≥ k.

Proof. Let ξ be fixed and consider a point s ∈ ξ̄ ∩ [0, t]. The success probability of the trial
starting at s can be bounded as follows. Note that

P
(
B(s) = 1

∣∣ξξξ = ξ
)

= P
(
Tv(s) < T	

u (s)
∣∣ξξξ = ξ,X(s) = u

)
(3.4)

= P
(
Tv(s) < T	

u (s), Tv(s) ≤ s+ δs
∣∣ξξξ = ξ,X(s) = u

)
+ P

(
s+ δs < Tv(s) < T	

u (s)
∣∣ξξξ = ξ,X(s) = u

)
.

For the first term, using the coupling argument discussed at the end of Section 1.2, we can
show that

P
(
Tv(s) < T	

u (s), Tv(s) < s+ δs
∣∣ξξξ = ξ,X(s) = u

)
(3.5)

≤ P(s+δs)
u (Tv < T	

u , Tv ≤ δs)
≤ P(s+δs)

u (Tv < T	
u ),

where P(s) denotes the probability law for the time-homogeneous version of the process having

parameters λU (s) and λV (s), and P(s)
u stands for P(s)(· |X(0) = u). For the other term, we

can write

P
(
s+ δs < Tv(s) < T	

u (s)
∣∣ξξξ = ξ,X(s) = u

)
(3.6)

= P
(
Tv(s) < T	

u (s)
∣∣ξξξ = ξ,X(s) = u

)
× P

(
Tv(s) > s+ δs

∣∣ξξξ = ξ, X(s) = u, Tv(s) < T	
u (s)

)
= P

(
B(s) = 1

∣∣ξξξ = ξ
)
P
(
Tv(s) > s+ δs

∣∣ξξξ = ξ, X(s) = u, Tv(s) < T	
u (s)

)
.

We get a suitable bound if

P
(
Tv(s) > s+ δs

∣∣ξξξ = ξ,X(s) = u Tv(s) < T	
u (s)

)
= o(1) (3.7)
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as λ→∞, as long as ξ has at least k ticks in (s, s+δs). But if the condition ξ
(
(s, s+δs)

)
≥ k

is satisfied, then we can estimate

P
(
Tv(s) > s+ δs

∣∣ξξξ = ξ, X(s) = u, Tv(s) < T	
u (s)

)
(3.8)

≤ P
(
δT̂v(s) > k

∣∣ξξξ = ξ, X(s) = u, δT̂v(s) < δT̂	
u (s)

)
,

which is assumed to be o(1) as λ→∞.

3.2 Simplified condition for the upper bound

In order to apply Proposition 2.3 effectively, we need a bound E
[
(1 − E′)−(L̃(s)−1)

∣∣ξξξ] ≤
1 + E′o(1) as λ → ∞, whenever ξξξ is in a highly probable set Ξt. Recall that in our setting,
ε̌(s) can be chosen to be the success probability of the trial at time s if we freeze the parameters
λU and λV at time s, and E′ can be chosen to be ε̌(t). So, we have E′ = o(1) as λ → ∞.
The variable L̃(s) is distributed as the discrete return time to u of the (time-inhomogeneous)
Markov chain conditioned on the event T	

u < Tv. If we would not have the time-inhomogeneity,
then our study of the time-homogeneous setting in [8] would imply that Eu[L̃(s)] = 1 + o(1)
as λ→∞. We expect that time-inhomogeneity does not really affect this estimate and that
L̃(s) remains close to 1 with high probability and in expectation, even if conditioned on ξξξ. In
the following proposition, ε can be chosen to be E′ from Proposition 2.3.

Proposition 3.4 (Simplified upper bound). Let t = M(λ)τ , where M(λ)→∞ as λ→∞
and τ ≥ 0 is a constant. Let ε > 0 (depending on λ) be such that ε = o(1) as λ → ∞, and
set r := 1

1−ε . Suppose that C ≥ 1 is an integer (possibly depending on λ) and Ξt = Ξt(λ) is a
measurable set such that

(a) εC = o(1) as λ→∞,

(b) Eu[L̃(s)1L̃(s)≤C+1 |ξξξ = ξ] = 1 + o(1) as λ→∞,

(c) C Pu(L̃(s) > C + 1 |ξξξ = ξ) = o(1) as λ→∞,

(d) supx/∈{u,v} Px(L̃(s) > C |ξξξ = ξ) = o(1) as λ→∞,

uniformly in ξ ∈ Ξt and s ∈ ξ̄ ∩ [0, t]. Then Eu[rL̃(s)−1 |ξξξ = ξ] ≤ 1 + ε o(1) as λ → ∞,
uniformly in ξ ∈ Ξt and s ∈ ξ̄ ∩ [0, t].

Proof. Throughout the proof we assume that ξξξ ∈ Ξt. Abbreviate ∆(s) := L̃(s)− 1. The idea
is to break down the possibilities according to whether ∆ is small or large:

• For ∆ small, we have r∆ =
(

1
1−ε
)∆ ≈ 1 + ε∆, which on average is 1 + ε o(1).

• For ∆ large, the exponential tail of the distribution of ∆ cancels the exponential r∆.

To make this rigorous, we write

Eu[r∆(s) |ξξξ] = Eu[r∆(s)
1∆(s)≤C |ξξξ] + Eu[r∆(s)

1∆(s)>C |ξξξ] (3.9)

and estimate each term separately.

Lemma 3.5 (∆ small). Eu[r∆(s)
1∆(s)≤C |ξξξ] ≤ Pu

(
∆(s) ≤ C

∣∣ξξξ)+ ε o(1) as λ→∞.

Proof of Lemma 3.5. For x ≥ −1 and k ≥ 1, we have (1 + x)k ≥ 1 + kx. Therefore

(1− ε)−∆(s) ≤ 1

1− ε∆(s)
= 1 + ε∆(s)[1 + o(1)]. (3.10)
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So,

Eu[r∆(s)
1∆(s)≤C |ξξξ] ≤

C∑
`=0

Pu
(
∆(s) = `

∣∣ξξξ)(1 + ε ` [1 + o(1)]
)

≤ Pu
(
∆(s) ≤ C

∣∣ξξξ)+ εEu[∆(s)1∆(s)≤C |ξξξ] [1 + o(1)]

= Pu
(
∆(s) ≤ C

∣∣ξξξ)+ ε o(1), λ→∞.

(3.11)

Lemma 3.6 (∆ large). Eu[r∆(s)
1∆(s)>C |ξξξ] ≤ Pu

(
∆(s) > C

∣∣ξξξ)+ ε o(1) as λ→∞.

Proof of Lemma 3.6. We start with

Eu[r∆(s)
1∆(s)>C |ξξξ] =

∑
`>C

Pu
(
∆(s) = `

∣∣ξξξ) r`. (3.12)

Writing r` telescopically as

r` = rC +
`−1∑
k=C

(rk+1 − rk) = rC + (r − 1)
`−1∑
k=C

rk, (3.13)

we get

Eu[r∆(s)
1∆(s)>C |ξξξ] = Pu

(
∆(s) > C

∣∣ξξξ) rC +
∑
`>C

Pu
(
∆(s) = `

∣∣ξξξ)(r − 1)
`−1∑
k=C

rk

= Pu
(
∆(s) > C

∣∣ξξξ) rC + (r − 1)
∑
k≥C

rk
∑
`>k

Pu
(
∆(s) = `

∣∣ξξξ)
= Pu

(
∆(s) > C

∣∣ξξξ) rC + (r − 1)
∑
k≥C

Pu
(
∆(s) > k

∣∣ξξξ) rk.
(3.14)

For the first term, by the argument for the previous claim, rC = (1 − ε)−C ≤ 1/(1 − εC) =
1 + εC[1 + o(1)]. Therefore

Pu
(
∆(s) > C

∣∣ξξξ) rC ≤ Pu
(
∆(s) > C

∣∣ξξξ)+ εC Pu
(
∆(s) > C

∣∣ξξξ)[1 + o(1)]

= Pu
(
∆(s) > C

∣∣ξξξ)+ ε o(1), λ→∞.
(3.15)

Since r − 1 = ε[1 + o(1)], it remains to show that
∑

k≥C Pu(∆(s) > k
∣∣ξξξ)rk = o(1). To this

end, note that

δ := sup
ξ∈Ξt

sup
s∈ξ̄∩[0,t]

sup
x/∈{u,v}

Px
(
L̃(s) > C

∣∣ξξξ = ξ
)

= o(1), λ→∞. (3.16)

Slicing time into intervals of length C and using the Markov property, we get

Pu
(
∆(s) > C + iC + j

∣∣ξξξ) ≤ Pu
(
∆(s) > C

∣∣ξξξ) δi (3.17)

for every i, j ≥ 0. Therefore

∑
k≥C

Pu
(
∆(s) > k

∣∣ξξξ)rk =
∑
i∈N0

C−1∑
j=0

Pu
(
∆(s) > C + iC + j

∣∣ξξξ) rC+iC+j

≤ Pu
(
∆(s) > C

∣∣ξξξ) rC ∑
i∈N0

δiriC
C−1∑
j=0

rj

≤ C Pu
(
∆(s) > C

∣∣ξξξ) r2C
∑
i∈N0

δiriC .

(3.18)
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Since rC = 1 + εC[1 + o(1)] = 1 + o(1) and δ = o(1), it follows that∑
i∈N0

δiriC =
1

1− δrC
= 1 + o(1), λ→∞. (3.19)

We also have r2C = 1 + o(1). Finally, recall that

C Pu
(
∆(s) > C

∣∣ξξξ) = o(1), λ→∞. (3.20)

Altogether, we find that ∑
k≥C

Pu
(
∆(s) > k

∣∣ξξξ)rk = o(1), λ→∞. (3.21)

Lemmas 3.5–3.6 complete the proof of Proposition 3.4.

3.3 Summary and conditions

In this section we put together the results obtained so far to prove the middle case of iden-
tity (1.19) subject to the validity of certain hypotheses. These hypotheses will be evaluated
in Section 4, and lead to the proof of Theorem 1.3.

Short-time regularity conditions and choice of the parameters. Recall the notation
δT̂v(s) for the number of ticks of ξξξ from time s until the first hitting time of v, i.e., δT̂v(s) :=
ξξξ((s, Tv(s)]), and similarly δT̂	

u (s) := ξξξ((s, T	
u (s)]). With a similar notation, the random

variable L(s) introduced earlier is the same as δT̂	
{u,v}(s), and its modified version satisfies

P
(
L̃(s) ∈ ·

∣∣ξξξ) = Pu
(
δT̂	

u ∈ ·
∣∣ξξξ, δT̂	

u (s) < δT̂v(s)
)
. (3.22)

Let

ε̌(s) := P(s)
u (Tv < T	

u ) (3.23)

be the probability that the time-homogeneous Markov chain with parameters λU (s) and λV (s)
starting from u hits v before returning to u.

As before, we consider the time scaling t = M(λ)τ , where M(λ) → ∞ as λ → ∞ and
τ ≥ 0. Combining Propositions 2.2, 2.3, 3.3 and 3.4, we see that it remains to verify the
following conditions for suitable choices of the parameters C = C(λ) ∈ Z+, k = k(λ) ∈ Z+,
m = m(λ) ∈ Z+ and δs = δs(λ) ∈ R+ and a measurable set ΞMτ satisfying P(ξξξ ∈ ΞMτ )→ 1
as λ→∞:

Short-time regularity conditions:

I E
[
δT̂	

u (s)1δT̂	
u (s)≤C+1

∣∣ξξξ = ξ, X(s) = u, δT̂	
u (s) < δT̂v(s)

]
= 1 + o(1) as λ → ∞,

uniformly in ξ ∈ ΞMτ and s ∈ ξ̄ ∩ [0,Mτ ].

II C P
(
δT̂	

u (s) > C + 1
∣∣ξξξ = ξ, X(s) = u, δT̂	

u (s) < δT̂v(s)
)

= o(1) as λ→∞,
uniformly in ξ ∈ ΞMτ and s ∈ ξ̄ ∩ [0,Mτ ].

III supx/∈{u,v} P
(
δT̂u(s) > C

∣∣ξξξ = ξ, X(s) = x, δT̂u(s) < δT̂v(s)
)

= o(1) as λ→∞,

uniformly in ξ ∈ ΞMτ and s ∈ ξ̄ ∩ [0,Mτ ].

IV P
(
δT̂v(s) > k

∣∣ξξξ = ξ,X(s) = u, δT̂v(s) < δT̂	
u (s)

)
= o(1) as λ→∞,

uniformly in ξ and s ∈ ξ̄ ∩ [0,Mτ ] satisfying ξ
(
(s, s+ δs)

)
≥ k,

19



V For every sequence (λn)n∈N going to infinity, there exists a subsequence (λn(i))i∈N such
that, for all but at most countably many values τ ∈ [0,∞), Pu(S ≤ Mτ < Tv) = o(1)
when λ := λn(i) and i→∞.

Choice of the parameters:

i ε̌(t)C = o(1).

ii γ(s+ δs) = γ(s)[1 + o(1)] uniformly in s ∈ [0,Mτ ].

iii γ(Mτ)ε̌(Mτ + δs)δs = o(1)
∫Mτ

0 ε̌(s)γ(s) ds.

iv δMτ (m) := P(NMτ > m) = o(1), where Nt is the number of points s ∈ ξ̄ξξ∩ [0, t] for which
ξξξ
(
(s, s+ δs)

)
< k.

v
(
1− ε̌(t)

)m
= 1− o(1).

Summary. The following proposition summarizes our results so far.

Proposition 3.7 (Law of crossover time). Let M(λ) be a time-scale with M(λ) → ∞
as λ → ∞. Suppose that C, k,m ∈ Z+, δs ∈ R+ and a measurable set ΞMτ with P(ξξξ ∈
ΞMτ ) = o(1) as λ → ∞ can be chosen (each possibly depending on λ) such that the above
conditions i – v and I – V are satisfied. Then, for every sequence (λn)n∈N going to infinity,
there exists a subsequence (λn(i))i∈N such that, for λ := λn(i) and all but at most countably

many values τ ∈ [0,∞) satisfying ε̌(Mτ)
∫Mτ

0 γ(s)ds = O(1),

Pu(Tv > Mτ) ≤ [1− o(1)] e−
∫Mτ

0 ε̌(s)γ(s)ds + o(1) , i→∞ ,

Pu(Tv > Mτ) ≥ [1− o(1)] e−
∫Mτ

0 ε̌(s)γ(s)ds , i→∞.
(3.24)

Proof. We establish the upper and the lower bounds separately. The restriction to a subse-
quence (λn(i))i∈N and a co-countable set of values τ ∈ [0,∞) is needed only for the upper

bound, which relies on V . The lower bound holds for every τ ∈ [0,∞) as λ→∞.

Upper bound. By V , for every sequence (λn)n∈N going to infinity, there exists a subsequence
(λn(i))i∈N such that as i→∞, for all but countably many values τ ∈ [0,∞),

Pu(Tv > Mτ) = P(S > Mτ) + Pu(S ≤Mτ < Tv) = P(S > Mτ) + o(1) . (3.25)

To bound P(S > Mτ), we apply Propositions 2.3 and 3.4. We choose E′ := ε̌(t). The condition
ε̌(s) ≤ E′ will then be satisfied for each 0 ≤ s ≤ t by monotonicity (see the paragraph at
the end of Section 1.2). By i , I , II and III , the conditions of Proposition 3.4 are satisfied

with ε := ε̌(t), and thus Eu[rL̃(s)−1 |ξξξ = ξ] ≤ ρ(s) := 1 + ε̌(t) o(1) uniformly for ξ ∈ Ξt and
s ∈ ξ̄ ∩ [0, t], where r := 1

1−E′ . Therefore, the conditions of Proposition 2.3 are satisfied.
Observe that

K̂ = ρ(0)
(
1− ε̌(0)

)
e

∫ t
0

(
ρ(s)− 1

)
γ(s)ds (3.26)

= [1 + ε̌(t) o(1)][1− o(1)]e o(1) ε̌(t)
∫ t

0 γ(s)ds

= 1− o(1) , λ→∞ ,

where the last equality uses the hypothesis ε̌(t)
∫ t

0 γ(s)ds = O(1).
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Lower bound. Recall that Tv = S + δT (S), and hence Pu(Tv > t) ≥ P(S > t). We apply
Propositions 2.2 and 3.3. Choose E := ε̌(t). The condition P

(
B(s) = 1

∣∣ξξξ = ξ
)
≤ E for every

ξ and s ∈ ξ̄ ∩ [0, t] follows from monotonicity, thanks to the assumption made in (3.1).
By Proposition 3.3 and IV , there exists a function v(λ) = o(1) such that

P
(
B(s) = 1 |ξξξ = ξ

)
≤ P(s+δs)

u (Tv < T	
u )[1 + v(λ)] = ε̌(s+ δs)[1 + v(λ)] (3.27)

for every ξ and s ∈ ξ̄∩[0, t] satisfying ξ
(
(s, s+δs)

)
≥ k. Thus, the conditions of Proposition 2.2

are satisfied with E = ε̌(t) and ε̂(s) := ε̌(s + δs)[1 + v(λ)], with Ξt being the set of all point
configurations ξ. Hence, we get

Pu(Tv > t) ≥ P(S > t) (3.28)

≥ Ǩ(m) e−
∫ t

0 ε̂(s)γ(s) ds −
0

�����P(ξξξ /∈ Ξt)

= Ǩ(m) e−[1+v(λ)]
∫ t

0 ε̌(s+ δs)γ(s) ds

= Ǩ(m)[1− o(1)] e−
∫ t+δs
δs ε̌(s)γ(s− δs) ds

≥ Ǩ(m)[1− o(1)] e−[1−o(1)]
∫ t

0 ε̌(s)γ(s) ds,

where

Ǩ(m) :=
(
1− ε̂(0)

) [
(1− ε̌(t))m −

√
δt(m) e

1
2

∫ t
0 ε̂(s)

2γ(s) ds
]

(3.29)

= [1− o(1)]
[
[1− o(1)]− o(1)

]
= 1− o(1) .

In (3.28), we have used ii and iii . The equality in (3.29) follows from i , iii , iv and v ,
and the fact that∫ t

0
ε̂(s)2γ(s) ds = [1 + v(λ)]2

∫ t

0
ε̌(s+ δs)2γ(s) ds (3.30)

�
∫ t+δs

δs
ε̌(s)2γ(s− δs) ds

�
∫ t

δs
ε̌(s)2γ(s− δs) ds+ ε̌(t+ δs)2γ(t)δs

� ε̌(t)
∫ t

0
ε̌(s)γ(s) ds+ ε̌(t+ δs)γ(t)δs

� o(1)

∫ t

0
ε̌(s)γ(s) ds+ o(1)

∫ t

0
ε̌(s)γ(s) ds

� o(1) ε̌(t)

∫ t

0
γ(s)ds

= o(1) ,

where we use the monotonicity of ε̌(s).

Let us point out that Proposition 3.7 is valid for any choice of the underlying bipartite
graph G, and any choice of the functions gU (·) and gV (·) satisfying gV (x) � gV (x) � 1 as
x→∞.
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4 Proof of the conditions

In this section we establish I – V for suitable choices of the parameters C, k, m and δs
satisfying i – v . In Section 4.1 we simplify conditions i – v , obtaining more explicit con-
ditions for C, k, m and δs. In Section 4.2 we explain why I – V are expected to be true
for suitable choices of C, k, m and δs by examining similar statements I′ – V′ in the time-
homogeneous setting. In Section 4.3 we use a coupling argument to show that, with regard
to these statements (which all concern short time intervals), the time-inhomogeneous setting
behaves similarly as the time-homogeneous setting. In Section 4.4 we put te pieces together
and prove Theorem 1.3.

4.1 Choice of the parameters

In this section, we specialize to the particular form of the functions gU (·) and gV (·) chosen in
Section 1.3. The choice of the underlying bipartite graph remains completely arbitrary.

Let us start by recalling the choices

λU (s) =

{
(cUλ− µUs)βU if s < cU

µU
λ,

0 otherwise,
λV (s) = (cV λ+ µV s)

βV , (4.1)

for s ≤ Mτ , where βV > βU > 0. Note that when s ≥ cU
µU
λ, we have λU (s) = 0 and

λV (s) → ∞ as λ → ∞. If the crossover has not occurred by time s = cU
µU
λ, then it will

happen in a time of order O(1). Namely, it will take an exponential time with rate 1 for each
vertex in U to become inactive, independently for different vertices, and once U is completely
inactive, the complete activation of V happens in time o(1). Let us therefore focus on the
case s < cU

µU
λ.

Lemma 4.1 (Choice of parameters). Let s ≤Mτ , and let λU (s) and λV (s) be as in (4.1).
Consider the time scaling s = Mσ with M = M(λ) > 0 and σ ∈ [0,∞), and suppose that
either 1 �M ≺ λ, or M � λ and Mσ < cU

µU
λ. Then, conditions i – v are met when

C =
o(1)

ε̌(M)
, m =

o(1)

ε̌(M)
, δs = o(M) , k ≤ 1

2

[
inf
u
γ(u)

]
δs, m δs �M , (4.2)

as λ→∞.

Proof. We consider the two scaling regimes separately.

• Regime 1 �M ≺ λ. We begin with some observations. In this case

λU (Mσ) = cβUU λβU [1 + o(1)], λV (Mσ) = cβVV λβV [1 + o(1)], (4.3)

for every σ ≥ 0. This means that the orders of magnitude of λU (Mσ) and λV (Mσ) (up to
their pre-factors)do not change with the scaled time σ. Clearly, for fixed τ ≥ 0, the o(1) terms
in the above asymptotics are uniform in σ ∈ [0, τ ]. It follows that

γ(Mσ) =
(
1 + λU (Mσ)

)
|U |+

(
1 + λV (Mσ)

)
|V | = |V |cβVV λβV [1 + o(1)], (4.4)

where the o(1) term is again uniform in σ ∈ [0, τ ]. Recall that

ε̌(s) = P(s)
u (Tv < T	

u ) =
1

π(s)(u)R(s)(u↔ v)
, (4.5)

where π(s) is the stationary probability of the Markov chain with parameters λU (s) and
λV (s), and R(s)(u ↔ v) is the effect resistance between u and v in the same Markov chain
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(see [12, Proposition 9.5]). Note that both π(s)(u) and R(s)(u ↔ v) are rational functions
of λU (s) and λV (s). Namely, the stationary distribution π(s) is the solution of a system of
linear equations whose coefficients are rational in λU (s) and λV (s). Likewise, the effective
conductance 1/R(s)(u ↔ v) is the strength of the current flow from u to v when we put
a unit battery between u and v, and hence is a linear combination of the voltage values
with coefficients that are rational in λU (s) and λV (s). The voltage associated with the unit
battery between u and v (i.e., a harmonic function with boundary conditions 0 and 1 at u
and v, respectively) is itself the solution of a linear system of equations whose coefficients are
rational in λU (s) and λV (s). It follows that

ε̌(Mσ) = ε̌(0)[1 + o(1)], (4.6)

where the o(1) term is uniform in σ ∈ [0, τ ].
Next we discuss the choice of parameters C, k, m and δs in order for conditions i – v to

be fulfilled. In order to satisfy i and v , we choose C = o(1)
ε̌(M) and m = o(1)

ε̌(M) as λ → ∞. In

light of the above discussion, condition ii is automatically satisfied because of (4.4). By (4.4)
and (4.6), condition iii is satisfied as long as δs = o(M). To simplify condition iv , we use
the following lemma.

Lemma 4.2. Let Nt denote the number of points s ∈ ξ̄ξξ ∩ [0, t] such that ξ̄ξξ
(
(s, s + δs)

)
< k,

and δt(m) := P(Nt > m). Then

δMτ (m) � M

mδs
, λ→∞, (4.7)

provided k ≤ 1
2 [inf

u
γ(u)]δs.

Proof of Lemma 4.2. We start by writing

E[Nt] = E

[ ∑
s∈ξ̄ξξ∩[0,t]

1ξ̄ξξ((s,s+δs))<k

]
(4.8)

= P
(
ξξξ
(
(0, δs)

)
< k

)
+ E

[ ∑
s∈ξξξ∩[0,t]

1ξ̄ξξ((s,s+δs))<k

]

= P
(
ξξξ
(
(0, δs)

)
< k

)
+

∫ t

0
P
(
ξξξ
(
(r, r + δs)

)
< k

)
γ(r) dr,

where the last equality follows from the Campbell-Mecke formula (see [1, Theorems 1.11
and 1.13]). Note that Wr := ξξξ

(
(r, r + δs)

)
is a Poisson random variable with parameter∫ r+δs

r γ(u)du. Therefore, choosing

k ≤ 1

2

[
inf
u
γ(u)

]
δs ≤ 1

2

∫ r+δs

r
γ(u)du =

1

2
E[Wr], (4.9)

we can use the Chebyshev inequality to get

P(Wr < k) ≤ Var[Wr]

(E[Wr]− k)2
=

∫ r+δs
r γ(u)du( ∫ r+δs

r γ(u)du− k
)2 (4.10)

≤ γ(r + δs)δs(
γ(r)δs− 1

2 [infu γ(u)]δs
)2 [1 + o(1)]

≤ γ(r)δs
1
4

(
γ(r)δs

)2 [1 + o(1)] ≤ 4

γ(r)δs
[1 + o(1)].
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Therefore, by the Markov inequality,

δt(m) ≤ E[Nt]

m
≤ 1

m

[
O(1)

[infu γ(u)]δs
+

∫ t

0

O(1)

γ(r)δs
γ(r)dr

]
(4.11)

≤ O(1)

mδs

[
1

infu γ(u)
+ t

]
,

which proves the claim because infu γ(u) → ∞ as λ → ∞ and t = Mτ with τ ≥ 0 a
constant.

We continue with the proof of Lemma 4.1. It follows from Lemma 4.2 that, in order to
satisfy condition iv , we can choose k ≤ 1

2γ(0)δs and make sure that mδs �M as λ→∞.

• Regime M � λ. Let Mτ < cU
µU
λ. It is still the case that the orders of magnitude of

λU (Mσ), λV (Mσ), γ(Mσ) and ε̌(Mσ) do not change for σ ∈ [0, τ ]. Hence C = o(1)
ε̌(M) and

m = o(1)
ε̌(M) still guarantee conditions i and v . In order to satisfy condition ii , it is enough

that δs = o(M). Indeed, if δs = o(M), then

γ(Mσ + δs) = |V |λV (Mσ + δs)[1 + o(1)] (4.12)

= |V |(cV λ+ µVMσ + µV δs)
βV [1 + o(1)]

= |V |(cV λ+ µVMσ)βV [1 + o(1)]

= γ(Mσ)[1 + o(1)] .

Furthermore, δs = o(M) still ensures iii . Finally, Lemma 4.2 remains valid when in the last
two lines of (4.10) we change [1+o(1)] to O(1). Hence k ≤ 1

2γ(0)δs and mδs �M still ensure
that condition iv is satisfied.

In the proof of Lemma 4.1 we made that important observation that, with the choices of
parameters in (4.1), the orders of magnitude of λU (s), λV (s), γ(s) and ε̌(s) do not change as
long as s < cU

µU
λ. For future reference, we state this as a separate proposition.

Proposition 4.3 (Orders of magnitude). Consider the time scaling s = Mσ with M =
M(λ) > 0 and σ ∈ [0, τ ]. If either 1 �M ≺ λ, or M � λ and Mσ < cU

µU
λ, then

λU (Mσ) � λU (0), λV (Mσ) � λV (0), ε̌(Mσ) � ε̌(0), γ(Mσ) � γ(0), (4.13)

as λ→∞.

4.2 Short-time regularity in the time-homogeneous setting

We have extensively exploited the monotonicity of the hard-core model in the parameters λU
and λV . Unfortunately, this monotonicity does not provide us with any meaningful informa-
tion about the conditional probabilities involved in the short-time regularity conditions I – V .
This lack of monotonicity makes the evaluation of these conditions challenging. It is helpful
to first examine conditions similar to I – V in a time-homogeneous setting. In order to apply
the results of [8], we will need to impose mild conditions on the isoperimetric properties of
the underlying bipartite graph.
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Simpler conditions. In the time-homogeneous setting, conditions I – V reduce to the
following simpler conditions:

I′ E(s)
u

[
T̂	
u 1T̂	

u ≤C+1

∣∣ T̂	
u < T̂v

]
= 1 + o(1) as λ→∞.

II′ C P(s)
u

(
T̂	
u > C + 1

∣∣ T̂	
u < δT̂v

)
= o(1) as λ→∞.

III′ supx/∈{u,v} P
(s)
x

(
T̂u > C

∣∣ T̂u < δT̂v
)

= o(1) as λ→∞.

IV′ P(s)
u

(
T̂v > k

∣∣ T̂v < T̂	
u

)
= o(1) as λ→∞.

V′ P(s)
u (S ≤Mτ < Tv) = o(1) as λ→∞.

We require these conditions to be satisfied uniformly in s ∈ [0,Mτ ]. Before we proceed, let
us mark a slight difference in notation compared to [8]. In the present paper, T	

u and Tv are
the continuous-time return and hitting times, while T̂	

u and T̂v are the discrete-time versions
of the return and hitting times (i.e., obtained by counting the number of ticks of the Poisson
clock). The notation used in [8] was the opposite, because all the analysis in that paper was
based on the discrete time.

Notation. To establish I′ – V′ , we can follow different approaches. Here we use the tools
developed in [8, Section B.4] based on ideas from [13]. Let us briefly recall some relevant
concepts and notation from [8]. For brevity, we drop the superscript (s) from P(s), E(s), K(s),
π(s), etc. whenever there is no chance of confusion. Similarly, we write γ, ε, Γ, etc. instead of
γ(s), ε̌(s), Γ(s), etc.

Energy barriers and stability levels. Given two distinct configurations a, b ∈ X , we
write a ∼ b if K(a, b) > 0 (or equivalently, K(b, a) > 0). We consider a simple undirected
graph on the configuration space X in which two points a, b ∈ X are connected if and only
if a ∼ b. The conductance of an edge (a, b) is denoted by c(a, b) := π(a)K(a, b), and its
resistance by r(a, b) = 1/c(a, b). The critical resistance between two subsets A,B ⊆ X is
defined as

Ψ(A,B) := inf
ω:A;B

sup
e∈ω

r(e), (4.14)

where the infimum runs over all paths ω : A ; B from A to B. The logarithm of Ψ(A,B) is
often referred to as the communication height A and B. It can be thought of as the (absolute)
height of the smallest hill that the process needs to climb in order to go from A to B or
vice versa. Recall that as λ → ∞, Ψ(A,B) has the same order of magnitude as the effective
resistance R(A↔ B) between A and B.

For a state x ∈X , we write

J−(x) := {y ∈X : π(y) � π(x) as λ→∞} (4.15)

for the set of states y that have asymptotically larger stationary probability than x. The
boundary of a set A ⊆X is defined as

∂A := {b ∈X \A : a ∼ b for some a ∈ A}. (4.16)

For A ⊆X , define

Γ(A) := sup
a∈A

π(a)Ψ
(
a, J−1(a)

)
. (4.17)
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The logarithm of Γ({x}) (for x ∈ X ) is often referred to as the stability level of a, and
can be thought of as the “energy barrier” when going from a to states with higher station-
ary probability, or the (relative) height of the shortest hill that the process starting from
a needs to climb in order to reach a state with higher stationary probability. Recall that
Ex[T̂J−(x)] � π(x)Ψ

(
x, J−(x)

)
for every x (see [8, Proposition B.2]) and, in particular, that

supx∈A Ex[T̂Ac ] � Γ(A) as λ→∞.
Let

Γ := π(u)Ψ(u, v), (4.18)

Γ̌ := Γ(X \ {u, v}) = sup
x∈X \{u,v}

π(x)Ψ
(
x, {u, v}

)
. (4.19)

We know that ε := Pu(T̂v < T̂	
u ) � 1/Γ. From the above remarks, we also get that Eu[Ťv] � Γ

provided Γ̌ � Γ. Furthermore, if Γ̌ ≺ Γ (which is the no-deep-well property), then the
transition time from u to v is asymptotically exponentially distributed ([8, Corollary B.7]).

Lemma 4.4 (No deep well property). Subject to Assumption 1.1, Γ � Γ̌ log γ � log γ.

Proof. Let x ∈X \ {u, v}. Note that every path ω : x ; J−(x) contains a transition y
+−→ z

where a particle is added to either U or V , so that π(y) � π(x) ≺ π(z). Then

Ψ(ω) � r(y, z) =
1

π(y)K(y, z)
=

{
γ

π(y)λU
if y

+U−−→ z,
γ

π(y)λV
if y

+V−−→ z,
(4.20)

which is � 1/π(y). Therefore, π(x)Ψ
(
x, J−(x)

)
� 1. It follows that Γ̌ � 1. In the special

case in which G is a complete bipartite graph, every configuration x ∈ X \ {u, v} has itself

a missing particle, and therefore there exists a configuration z such that x
+−→ z. It follows

that, in this case, Γ̌ � γ/λU .
Let us next argue that Γ � Γ̌ under Assumption 1.1. According to [8, Corollary 3.5],

Γ̌ ≺ Γ as long as hypothesis (H0) and (H2) in [8] are satisfied. Hypothesis (H0) says that
|U | < (1 + α)|V |, where

α := lim
λ→∞

log λV
log λU

− 1 = lim
λ→∞

log(cV λ+ µV s)
βV

log(cUλ− µUs)βU
− 1 =

βV
βU
− 1. (4.21)

On the other hand, it can be verified that if G is a complete bipartite graph, then Γ � γλ|U |−1
U

(see [8, Example 2.1]), which is � Γ̌ � γ/λU .
Lastly, note that Γ and Γ̌ are increasing rational functions of λ, while log γ � log λ. Since

Γ̌ ≺ Γ, we in fact have Γ̌ log γ ≺ Γ.

Verificiation of condition I′ – V′ . The validity of conditions I′ and II′ follows from
part (i) of the following proposition (with the help of the Markov inequality).

Proposition 4.5. Subject to Assumption 1.1,

(i) E(s)
u

[
T̂	
u

∣∣ T̂	
u < T̂v

]
= 1 + o(1) as λ→∞.

(ii) E(s)
u

[
T̂v
∣∣ T̂v < T̂	

u

]
= E(s)

u [T̂v] o(1) as λ→∞.

Proof. The estimate on Eu
[
T̂	
u

∣∣ T̂	
u < T̂v

]
in the time-homogeneous setting is implicit in the

proof of [8, Theorem 1.2]. Let

• ε := Pu(T̂v < T̂	
u ) = P(B = 1),
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• µ := Eu[T̂	
u | T̂	

u < T̂v] = E[δT |B = 0],

• η := Eu[T̂v | T̂v < T̂	
u ] = E[δT |B = 1],

• M := Eu[T̂v].

We know that

ε =
1

π(u)R(u↔ v)
� 1

Γ
= o(1), as λ→∞ . (4.22)

The first equality is [8, Eq. (A.5)], which is standard. The second equality follows from the
fact that R(u↔ v) � Ψ(u, v) (Proposition A.2 of [8]), and the last equality is by Lemma 4.4.
Furthermore, we know that

M = π(u)R(u↔ v)[1 + o(1)] , as λ→∞. (4.23)

Under Assumption 1.1(b), (4.23) is the same as [8, Eq. (4.1)]. Note that in our setting,
hypothesis (H0) of [8] follows from βU |U | < βV |V |. Under Assumption 1.1(a), (4.23) is the
same as [8, Eq. (2.5) in Example 2.1].

Now, note that M = (1/ε−1)µ+η. Since µ ≥ 1, it follows that µ = 1+o(1) and η = o(M)
as λ→∞.

For Conditions III′ and IV′ , we use an asymptotic result on conditional tail probabilities
of exit times established in [8].

Proposition 4.6. Conditions III′ and IV′ are satisfied provided C � Γ̌ log γ.

Proof. That III′ is satisfied follows from [8, Proposition B.9] if we set A := X \ {u, v},
B1 := {u} and B2 := {v}. Namely, note that for this case κ � 1/γ. Set ρ := C/Γ̌. Then, by
the above-mentioned proposition, there exists a constant α < 1 such that

sup
x/∈{u,v}

P(s)
x

(
T̂u > C

∣∣ T̂u < δT̂v
)
� αρκ−|X \{u,v}|

= αC/Γ̌γ|X |−2 = e(C/Γ̌) logα+(|X |−2) log γ ,

(4.24)

which tends to 0 as λ→∞.
The argument for IV′ is similar. First, condition on the state of the Markov chain after

one step. The state of the chain after one step is x /∈ {u, v}. Now, apply [8, Proposition B.9]
with A := X \ {u, v}, B1 := {v} and B2 := {u} and note that κ � 1/γ.

Proposition 4.7. Subject to Assumption 1.1, condition V′ is satisfied.

Proof. Let Q = Q(λ) be such that

E(s)
u

[
Tv
∣∣Tv < T	

u

]
≺ Q ≺ E(s)

u [Tv] , λ→∞. (4.25)

By Proposition 4.5(ii), such a function Q can be chosen. Let δT := Tv − S, and note that δT
has distribution Pu

(
Tv ∈ ·

∣∣Tv < T	
u

)
and is independent of S. Hence

Pu(S ≤Mτ < Tv) = Pu(Mτ − δT ≤ S < Mτ)

≤ P(δT ≥ Q)Pu(Mτ − δT ≤ S < Mτ | δT ≥ Q)
+ P(δT < Q)Pu(Mτ −Q ≤ S < Mτ).

(4.26)
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By the Markov inequality, P(δT ≥ Q) = o(1). To bound the second term, recall from [8,
Theorem 2.1] that the distribution of S/E[S] converges weakly as λ → ∞ to an exponential
distribution with rate 1. Hence

Pu(Mτ −Q ≤ S < Mτ) = Pu
(
Mτ

E[S]
− Q

E[S]
≤ S

E[S]
<
Mτ

E[S]

)
. (4.27)

Since Q ≺ E[S] and the exponential distribution has no atom, we find that Pu(Mτ − Q ≤
S < Mτ) = o(1).

In summary, we have the following solution for the parameters ensuring that the time-
homogeneous conditions I′ – V′ of the short-time regularity conditions are satisfied.

Proposition 4.8 (Short-time regularity: time-homogeneous setting). Subject to As-
sumption 1.1 and the constraints

log γ

γ
Γ̌ ≺M ≺ log γ

γ
Γ̌Γ, λ→∞, (4.28)

there is a choice of the parameters C, m, δs, k for which conditions i – v and I′ – V′ are
satisfied. In particular, a proper choice is

C := k := A1Γ̌ log γ, δs := A1A2
log γ

γ
Γ̌, m :=

A3Mγ

A1A2Γ̌ log γ
, (4.29)

for any choices of A1 = A1(λ), A2 = A2(λ) and A3 = A3(λ) that tend to infinity sufficiently
slowly as λ→∞.

Proof. Conditions I′ , II′ and V′ are guaranteed by Proposition 4.5 and Proposition 4.7.

According to Proposition 4.6, conditions III′ and IV′ are satisfied if C � Γ̌ log γ and k �
Γ̌ log γ. So, set C := k := A1Γ̌ log γ for some A1 � 1 to be chosen later.

By Lemma 4.1, conditions i – v are guaranteed if

C = Γo(1), m = Γo(1), δs = o(M) , k ≤ 1
2γδs, m δs �M. (4.30)

The first condition in (4.30) is satisfied if A1Γ̌ log γ ≺ Γ. By Lemma 4.4, the latter condition
is satisfied as long as A1 →∞ sufficiently slowly as λ→∞.

In order to satisfy the third and the fourth condition in (4.30), we must be able to choose
δs such that 2A1

log γ
γ Γ̌ ≤ δs ≺ M . Set δs := A1A2

log γ
γ Γ̌, for some A2 � 1 to be chosen later

such that A1A2
log γ
γ Γ̌ ≺M .

In order to satisfy the second and the fifth condition in (4.30), we must be able to choose
m such that m ≺ Γ and mA1A2

log γ
γ Γ̌ � M . This can be done if M ≺ A1A2

log γ
γ Γ̌Γ, in

which case we can set m := A3M/A1A2
log γ
γ Γ̌ with A3 tending to infinity sufficiently slowly

as λ→∞.
Finally, if log γ

γ Γ̌ ≺ M ≺ log γ
γ Γ̌Γ, then we are able to choose A1, A2 � 1 such that all five

conditions in (4.30) are satisfied.

In conclusion, in the time-homogeneous setting we have proved that conditions i – v

and I′ – V′ can be simultaneously met subject to mild conditions on the time scale M . These
conditions capture the critical regime. Indeed, since ν = εγ � γ/Γ, the critical regime
corresponds to M � Γ/γ. Since Γ̌ log γ � 1 as λ→∞, the upper bound in (4.28) is matched.
Since Γ � Γ̌ log γ and (log γ)/γ → 0 as γ →∞, also the lower bound is matched.

28



4.3 Short-time regularity in the time-inhomogeneous setting

In this section we establish the short-time regularity conditions I – V . We focus on the critical
regime Mν(0) � 1 when M ≺ λ, or M � λ and Mτ < cU

µU
λ. Inspired by Proposition 4.8, we

choose

C := k := A1Γ̌(0) log γ(0), δs := A1A2
log γ(0)

γ(0)
Γ̌(0), m :=

A3Mγ(0)

A1A2Γ̌(0) log γ(0)
, (4.31)

where A1 = A1(λ), A2 = A2(λ) and A3 = A3(λ) tend to infinity as λ→∞ sufficiently slowly.
By Proposition 4.8 and Proposition 4.3, we already know that these choices satisfy i – v

provided that

log γ(0)

γ(0)
Γ̌(0) ≺M ≺ log γ(0)

γ(0)
Γ̌(0)Γ(0), λ→∞. (4.32)

In the critical regime Mγ(0)ε̌(0) � 1, the latter condition is satisfied since Mγ(0) � Γ(0) and
Γ(0) � Γ̌(0) log γ(0).

Comparison. Conditions I and II will be handled by direct comparison with the time-
homogeneous process analysed previously.

Lemma 4.9 (Short-term comparison of probabilities of events). Let (Xi)i∈N and
(X ′i)i∈N be two discrete-time Markov chains with the same finite state space X and (possibly
time-inhomogeneous) transition probabilities Ki(x, y) and K ′i(x, y) for x, y ∈X . Suppose that
β > 0 is such that Ki(x, y) ≤ (1 + β)K ′i(x, y) for all i ∈ N and x, y ∈ X . Then, for every
state u ∈X and every event E ∈X n (with n ∈ N),

P
(
(X1, . . . , Xn) ∈ E

∣∣X0 = u
)
≤ (1 + β)n P

(
(X ′1, . . . , X

′
n) ∈ E

∣∣X ′0 = u
)
. (4.33)

Lemma 4.10 (Comparison of transition probabilities at different times). For the
time-inhomogeneous process under consideration, the transition matrices K(s) and K(s′) at
times 0 ≤ s, s′ < cU

µU
λ satisfy K(s)(x, y) ≤ (1 + βs,s′)K

(s′)(x, y) for every x, y ∈ X , where

βs,s′ � |s − s′|/λ as λ → ∞. The time instants s, s′ are allowed to depend on λ, but must
satisfy |s− s′| = o(λ) and cUλ− µUs, cUλ− µUs′ � λ as λ→∞.

Proof. Recall that K(s)(x, y) is either 0 or is of the form λU (s)/γ(s), λV (s)/γ(s) or 1/γ(s).
We show that, for every 0 ≤ s, s′ ≤ cU

µU
λ,

1

1 + θs,s′
≤ λU (s)

λU (s′)
≤ 1 + θs,s′ ,

1

1 + θs,s′
≤ λV (s)

λV (s′)
≤ 1 + θs,s′ , (4.34)

where θs,s′ � |s− s′|/λ. Indeed,

λU (s)

λU (s′)
=

(cUλ− µUs)βU
(cUλ− µUs′)βU

=

[
1 +

µU (s′ − s)
cUλ− µUs′

]βU
, (4.35)

which is ≤ 1 + θs,s′ when θs,s′ ≥ 2βUµU |s′−s|
cUλ−µUs′ � |s − s

′|/λ. The opposite inequality follows by
symmetry. The inequality for λV follows similarly.

Since γ(s) has the same order of magnitude as λV (s), it follows that

1

1 + θs,s′
≤ γ(s)

γ(s′)
≤ 1 + θs,s′ (4.36)

and hence

1

(1 + θs,s′)2
≤ K(s)(x, y)

K(s)(x, y)
≤ (1 + θs,s′)

2 (4.37)

for every x, y ∈X . Thus, the claim holds with βs,s′ = 2θs,s′ + θ2
s,s′ � θs,s′ � |s− s′|/λ.
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The combination of Lemma 4.9 and Lemma 4.10 leads us to the following proposition.

Proposition 4.11 (Short-term comparison with time-homogeneous process). Let
N = N(λ) be a non-negative integer such that N � 1 as λ → ∞. Consider the time scaling
t = Mτ with M = M(λ) and τ ∈ [0,∞), and suppose that either 1 � M ≺ λ, or M � λ and
τ < cU

µU
λ
M . Set T0 := s, and let T1, T2, . . . be the consecutive points of the Poisson process ξξξ

after time s. Then, for every state x ∈ X and every event E ∈ X N , there exists a constant
DN such that

P
([
X(T0), X(T1), . . . , X(TN )

]
∈ E

∣∣X(s) = x,ξξξ = ξ
)

≤ DN P(s)
([
X̂(0), X̂(1), . . . , X̂(N)

]
∈ E

∣∣ X̂(0) = x
)

(4.38)

as λ→∞, uniformly in s ∈ [0,Mτ ] and ξ satisfying ξ([s, s+ λ/N ]) ≥ N .

Proof. Let ∆ := λ/N and note that ∆ = o(λ). By Lemma 4.10, there exists a constant B
such that K(s′)(x, y) ≤ (1 + B/N)K(s)(x, y) for every s′ satisfying s ≤ s′ ≤ s + ∆ and every
x, y ∈X . Therefore, by Lemma 4.9, on the event

{
ξξξ([s, s+ ∆]) ≥ N

}
,

P
([
X(T0), X(T1), . . . , X(TN )

]
∈ E

∣∣ξξξ,X(s) = x
)

≤ DN P(s)
([
X̂(0), X̂(1), . . . , X̂(N)

]
∈ E

∣∣ X̂(0) = x
)

(4.39)

where DN := (1 +B/N)N ≤ eB.

Lemma 4.12. Consider the time scaling t = Mτ with M = M(λ) and τ ∈ [0,∞), and
suppose that either 1 � M ≺ λ, or M � λ and τ < cU

µU
λ
M . Let N = N(λ) be a non-negative

integer such that N2 ≺ γ(0)λ. Then, with probability 1− o(1) as λ→∞, ξξξ([s, s+λ/N ]) ≥ N
for every s ∈ [0,Mτ ].

Proof. Let ∆ := λ/N . Note that X := ξξξ([s, s+∆/2]) is a Poisson random variable with param-

eter
∫ s+∆/2
s γ(u)du � γ(0)∆/2, where the last asymptotic equality holds by Proposition 4.3.

By the Chebyshev inequality, uniformly in s ∈ [0,Mτ ],

P
(
ξξξ([s, s+ ∆/2]) < N

)
= P

(
E[X]−X ≥ E[X]−N

)
≤ Var[X]

(E[X]−N)2
(4.40)

� γ(0)∆/2

(γ(0)∆/2−N)2
=

2γ(0)∆(
γ(0)∆

)2(
1− 4N2

γ(0)λ

)2 � 1

γ(0)∆
.

Partition the interval [0,Mτ ] into segments of length ∆/2. Note that if ξξξ has at least N
points in each of these segments, then ξξξ([s, s+ ∆]) ≥ N for every s ∈ [0,Mτ ]. Hence

P
(
ξξξ([s, s+ ∆]) < N for some s ∈ [0,Mτ ]

)
�
⌈
Mτ

∆/2

⌉
× 1

γ(0)∆
� λN2

γ(0)λ2
= o(1), (4.41)

as claimed.

Verification of I – V . In what follows we assume the following:

(∗) Suppose that Assumptions 1.1–1.2 are satisfied. Consider the time scaling s = Mσ
with M = M(λ) and σ ∈ [0,∞), and suppose that either 1 � M ≺ λ, or M � λ and
σ < cU

µU
λ
M . Suppose further that Mν̌(0) � 1.

Applying Proposition 4.11 and Lemma 4.12, we can now establish the short-time regularity
conditions I and II by comparison with the time-homogeneous setting.
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Proposition 4.13. Let C be as in (4.31). Subject to (∗), conditions I and II are satisfied.

Proof. First recall, from monotonicity and assumption (3.1), that almost surely

P
(
δT̂	

u > δT̂v
∣∣ξξξ,X(s) = u

)
≤ ε̌(Mτ) � ε̌(0) = o(1). (4.42)

Therefore it is enough to show that

E
[
δT̂	

u (s)1δT̂	
u (s)≤C+1

∣∣ξξξ = ξ, X(s) = u
]

= 1 + o(1) ,

C P
(
δT̂	

u (s) > C + 1
∣∣ξξξ = ξ, X(s) = u

)
= o(1),

(4.43)

uniformly in s ∈ [0,Mτ ] and in ξ belonging to a set ΞMτ satisfying P(ξξξ ∈ ΞMτ ) = 1 − o(1).
Note that both these statements concern events that depend on no more than N := C + 1
ticks of the Poisson clock starting from s. Thus, applying Proposition 4.11, we get

E
[
δT̂	

u (s)1δT̂	
u (s)≤C+1

∣∣ξξξ = ξ, X(s) = u
]
≤ DN × E(s)

u

[
T̂	
u 1T̂	

u ≤C+1

]
,

C P
(
δT̂	

u (s) > C + 1
∣∣ξξξ = ξ, X(s) = u

)
≤ DN × C P(s)

u

(
T̂	
u > C + 1

)
,

(4.44)

uniformly in s ∈ [0,Mτ ] and in ξ satisfying ξ([s, s+ λ/N ]) ≥ N .
Next, note that

N2 = (C + 1)2 � A2
1(Γ̌(0))2(log γ(0))2 . (4.45)

Let us first argue that, if A1 is chosen to grow sufficiently slowly, then the right-hand side
of (4.45) is ≺ Γ(0), which in turn is � γ(0)λ. To see the first inequality, note that Γ(0) and Γ̌(0)

are rational function of λU � λβU and λV � λβV (see the proof of Lemma 4.4). Since (Γ̌(0))2

is assumed to be of smaller order than Γ(0), it follows that (Γ̌(0))2(log γ(0))2 � (Γ̌(0))2(log λ)2

is of smaller order than Γ(0) as well. To see the second inequality, note that Γ(0) � 1/ε̌(0) =
γ(0)/ν(0) � γ(0)M � γ(0)λ. Thus, applying Lemma 4.12, we find that the equalities in (4.44)
hold uniformly in s ∈ [0,Mτ ] and in ξ in a set ΞMτ satisfying P(ξξξ ∈ ΞMτ ) = 1−o(1) as λ→∞.

To prove the claim, it remains to show that

E(s)
u

[
T̂	
u 1T̂	

u ≤C+1

]
= 1 + o(1) , C P(s)

u

(
T̂	
u > C + 1

)
= o(1), (4.46)

uniformly in s ∈ [0,Mτ ]. But these follow from Proposition 4.5(i) and the fact that P(s)
u

(
T̂	 <

T̂v
)

= 1− ε̌(s) = 1− o(1) uniformly in s ∈ [0,Mτ ].

A similar approach establishes III and IV . In this case, we cannot directly apply Propo-
sition 4.6. Instead, we need to redo the proof of Proposition B.9 of [8].

Proposition 4.14. Let C be as in (4.31). Subject to condition (∗), condition III is satisfied.

Proof. Following the proof of [8, Proposition B.9], we can write

☼ := sup
x/∈{u,v}

P
(
δT̂u(s) > C

∣∣ξξξ = ξ, X(s) = x, δT̂u(s) < δT̂v(s)
)

= sup
x/∈{u,v}

P
(
δT̂v(s) > δT̂u(s) > C

∣∣ξξξ = ξ,X(s) = x
)

P
(
δT̂v(s) > δT̂u(s)

∣∣ξξξ = ξ,X(s) = x
) (4.47)

≤ sup
x/∈{u,v}

P
(
δT̂{u,v}(s) > C

∣∣ξξξ = ξ,X(s) = x
)

P
(
δT̂v(s) > T̂u(s)

∣∣ξξξ = ξ,X(s) = x
) .

Applying Proposition 4.11, we see that the numerator in the right-hand side of (4.47) is

bounded from above by DC P(s)
x (T̂{u,v} > C) uniformly in ξ and s ∈ [0,Mτ ] satisfying ξ([s, s+
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λ/C]) ≥ C. Lemma 4.12 together with the assumption Γ̌(0) ≺
√

Γ(0) implies that for ξ in
a set ΞMτ satisfying P(ξξξ ∈ ΞMτ ) = 1 − o(1), the inequality ξ([s, s + λ/C]) ≥ C holds for
every s ∈ [0,Mτ ] (see the proof of Proposition 4.13). The denominator in the right-hand side

of (4.47) is by monotonicity bounded from below by P(s)
x (T̂v > T̂u). Hence

☼ ≤ sup
x/∈{u,v}

DC P(s)
x (T̂{u,v} > C)

P(s)
x (T̂v > T̂u)

(4.48)

uniformly in ξ ∈ ΞMτ and s ∈ [0,Mτ ]. By [8, Proposition B.8], P(s)
x (T̂{u,v} > C) is bounded

from above by αρ where α < 1 is a constant and ρ := C/Γ̌(s) = A1 log γ(s). Let κ(s) :=
min{K(s)(a, b) : a, b ∈ X ,K(a, b) > 0} = 1/γ(s). Let w be a simple path from x to u that

does not pass through v. The length of w is no larger than |X | − 2. Therefore P(s)
x (T̂v >

T̂u) ≥ P(s)
x (X̂ follows w) ≥ κ(s)|X |−2. Hence

☼ ≤ DCα
A1 log γ(s)γ(s)|X |−2 = DC eA1 log γ(s) logα+(|X |−2) log γ(s) (4.49)

uniformly in ξ ∈ ΞMτ and s ∈ [0,Mτ ]. Now recall from Proposition 4.3 that γ(0) � γ(s)
for every 0 ≤ s ≤ Mτ . Since A1 � 1, it follows that ☼ = o(1) uniformly in ξ ∈ ΞMτ and
s ∈ ξ̄ ∩ [0,Mτ ].

Proposition 4.15. Let k and δs be as in (4.31). Subject to (∗), condition IV is satisfied.

Proof. As in the proof of Proposition 4.14 above, we start with observing that

$ := P
(
δT̂v(s) > k

∣∣ξξξ = ξ, X(s) = u, δT̂v(s) < δT̂	
u (s)

)
=

P
(
δT̂	

u (s) > δT̂v(s) > k
∣∣ξξξ = ξ,X(s) = u

)
P
(
δT̂	

u (s) > δT̂v(s)
∣∣ξξξ = ξ,X(s) = u

) (4.50)

≤
P
(
δT̂{u,v}(s) > k

∣∣ξξξ = ξ,X(s) = u
)

P
(
δT̂	

u (s) > δT̂v(s)
∣∣ξξξ = ξ,X(s) = u

) .
By monotonicity and assumption (3.1), the denominator can be bounded from below by

P(Mτ)
u (T̂	

u > T̂v). Applying Lemma 4.9 and Lemma 4.10, we see that, for s satisfying ξ((s, s+
δs)) ≥ k, the numerator of the right-hand side of (4.50) is bounded from above by

(
1 +

δs
λ

)k P(s)
u (T̂	

{u,v} > k). By the choice of k and δs, and the assumption Γ̌(0) ≺
√

Γ(0), we have

δs

λ
k =

A2A
2
1(Γ̌(0))2(log γ(0))2

γ(0)λ
= O(1) (4.51)

as long as A1 and A2 grow sufficiently slowly (see the proof of Proposition 4.13). Therefore,

$ ≤ O(1)
P(s)
u (T̂	

{u,v} > k)

P(s)
u (T̂	

u > T̂v)
(4.52)

uniformly in ξ and s ∈ [0,Mτ ] satisfying ξ((s, s+ δs)) ≥ k, where we have used the fact that

P(Mτ)
u (T̂	

u > T̂v) � P(s)
u (T̂	

u > T̂v) by Proposition 4.3. To bound the right-hand side of (4.52),
we first condition on the first step of the Markov chain in the numerator and then proceed
as in the proof of Proposition 4.14. We find that $ = o(1) uniformly in ξ and s ∈ [0,Mτ ]
satisfying ξ((s, s+ δs)) ≥ k.

Proposition 4.16. Subject to (∗), condition V is satisfied.
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Proof. We loosely follow the argument in the proof of Proposition 4.7. Since a priori we do
not know if S/E[S] (or Tv/Eu[Tv]) converges in distribution to a continuous random variable,
we use a more abstract argument.

Let (λn)n∈N be a sequence going to infinity. By Helly’s selection theorem (see e.g., [5,
Theorem 3.2.6]), there exists a subsequence (λn(i))i∈N and a right-continuous, non-increasing
function H : [0,∞)→ [0, 1] such that

lim
λ:=λn(i)

i→∞

Pu
(
Tv/M > τ

)
= H(τ) (4.53)

for every τ ∈ [0,∞) that is a continuity point of H. As H is non-increasing, it has at most
countably many discontinuity points. It is therefore enough to show that

lim
λ:=λn(i)

i→∞

Pu(S ≤Mτ < Tv) = 0 (4.54)

for every continuity point τ ∈ [0,∞) of H.
Let δT := Tv − S. Fix ε > 0 and choose Q = Q(λ) such that

Pu(δT > Q) ≤ ε+ o(1) and Q ≺M . (4.55)

Namely, let k and δs be as in (4.31). We claim that Q := δs satisfies (4.55). Indeed, by the

discussion after (4.31), δs ≺ M . By monotonicity and (1.9), Eu[S] ≤ Eu[Tv] � E(0)
u [Tv] �

1/ν̌(0) �M . Let τ0 ∈ [0,∞) be large enough such that Pu(S > Mτ0) < ε. Then,

Pu(Tv − S > δs) ≤ P(S > Mτ0) + P
(
ξξξ
(
(S, S + δs)

)
< k

∣∣S ≤Mτ0

)
+ Pu

(
Tv − S > δs

∣∣S ≤Mτ0, ξξξ
(
(S, S + δs)

)
≥ k

)
.

(4.56)

The first term on the right-hand side is bounded by ε. The second term is o(1) because, given

S = s with s ≤ Mτ0, ξξξ
(
(S, S + δs)

)
is a Poisson random variable with mean

∫ s+δs
s γ(x)dx,

which is � γ(0)δs � k uniformly in s ∈ [0,Mτ0]. To estimate the third term on the right-hand
side of (4.56), note that

Pu
(
Tv − S > δs

∣∣S = s, ξξξ
(
(s, s+ δs)

)
≥ k

)
≤ P

(
δT̂v(s) > k

∣∣ξξξ((s, s+ δs)
)
≥ k, ,X(s) = u, δT̂v(s) < δT̂	

u (s)
)
. (4.57)

According to IV , the latter is o(1) uniformly in s ∈ [0,Mτ0].
Now, we have

Pu(S ≤Mτ < Tv) = Pu(Mτ < Tv ≤Mτ + δT )

≤ P(δT > Q)Pu(Mτ < Tv ≤Mτ + δT | δT > Q)
+ P(δT ≤ Q)Pu(Mτ < Tv ≤Mτ +Q | δT ≤ Q)

(4.58)

≤ ε+ o(1) + Pu(Mτ < Tv ≤Mτ +Q) .

To estimate the latter, we write

Pu(Mτ < Tv ≤Mτ +Q) = Pu
(
τ < Tv/M ≤ τ +Q/M

)
, (4.59)

and note that Q/M = o(1). Since H is right-continuous, it follows that for every continuity
point τ ∈ [0,∞) of H,

lim
λ:=λn(i)

i→∞

Pu(Mτ < Tv ≤Mτ +Q) = H(τ)−H(τ+) = 0 . (4.60)

Consequently, when τ ∈ [0,∞) is a continuity point of H,

lim sup
λ:=λn(i)

i→∞

Pu(S ≤Mτ < Tv) ≤ ε . (4.61)

Since ε > 0 is arbitrary, the limit exists and is zero, as it was claimed.
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4.4 Proof of the main theorem

Proof of Theorem 1.3. We consider the different scenarios and regimes separately.

(i) Scenario M ≺ λ:

Supercritical regime: Mε̌(0)γ(0) � 1.

From (1.9), we have E(0)
u [Tv] � 1

ε̌(0)γ(0) ≺ M as λ → ∞. Applying monotonicity
and the Markov inequality, we obtain

Pu(Tv > Mτ) ≤ P(0)
u (Tv > Mτ) ≤ 1

Mτ
E(0)
u [Tv] = o(1) (4.62)

for every τ > 0 as claimed.

Critical regime: Mε̌(0)γ(0) � 1.
Since convergence in distribution comes from a metric, it is enough to show that
for every sequence (λn)n∈N going to infinity, there exists a subsequence (λn(i))i∈N
such that for every τ ∈ [0,∞),

lim
λ:=λn(i)

i→∞

Pu
(Tv
M

> τ
)

= e−
∫ τ
0 Mν̌(Mσ) dσ . (4.63)

Furthermore, in order to show the latter, it is enough to show that (4.63) holds for
a dense set of values τ ∈ [0,∞).

We apply Proposition 3.7. First note that, by Proposition 4.3,

ε̌(Mτ)

∫ Mτ

0
γ(s)ds = ε̌(Mτ)

∫ τ

0
γ(Mσ)Mdσ �Mε̌(0)γ(0) � 1. (4.64)

Therefore, it remains to verify that C, k,m ∈ Z+, δs ∈ R+ and ΞMτ with P(ξξξ ∈
ΞMτ ) = o(1) can be chosen such that conditions i – v and I – V are satisfied. We
choose C, k, m and δs according to (4.31). By the discussion after (4.31), these
choices satisfy i – v at the critical regime. The short-term regularity conditions I –

V in turn are shown to be satisfied in Propositions 4.13–4.16.

Subcritical regime: Mε̌(0)γ(0) ≺ 1.
According to Proposition 4.3, ε̌(Mτ) � ε̌(0) and γ(Mτ) � γ(0) as λ→∞. Recall

that under the measure P(Mτ)
u (·), the scaled hitting time Tv/E

(Mτ)
u [Tv] is asymptoti-

cally exponentially distributed as λ→∞ (see the review of the time-homogeneous

results in Section 1.2). From (1.9), we have E(Mτ)
u [Tv] � 1

ε̌(Mτ)γ(Mτ) � M as
λ→∞. Applying monotonicity, for every x > 0, we get

lim
λ→∞

Pu(Tv > Mτ) ≥ lim
λ→∞

P(Mτ)
u (Tv > Mτ) (4.65)

≥ lim
λ→∞

P(Mτ)
u

(
Tv > xE(Mτ)

u [Tv]
)

= e−x .

Sending x→ 0, we find that limλ→∞ Pu(Tv > Mτ) = 1 as claimed.

(ii) Scenario M � λ:

Case 1: 0 < τ < cU
µU

λ
M .

This case is similar to the scenario in which M ≺ λ (see above).

Case 2: τ ≥ cU
µU

λ
M .

This case is similar to the scenario in which M � λ (see below).
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(iii) Scenario M � λ:
Note that in this scenario, for every σ > 0, λU (Mσ) = 0 for all sufficiently large λ
while λV (Mσ) → ∞ as λ → ∞. Therefore, when λ is sufficiently large, in order
for the process to reach state v, it suffices that every particle on U is removed and a
particle is placed at each site in V . To be specific, let us consider the process starting
from u, and let RU denote the first time that every particle on U is removed. Note
that RU is distributed as the maximum of |U | independent exponentially distributed
random variables with rate 1, and in particular, the distribution of RU is independent
of λ. For each b ∈ V , let S′b and R′b denote respectively the first time after R at which
the birth clock or the death clock at site b tick. Note that S′b − RU and R′b − RU
(for b ∈ V ) are all independent and exponentially distributed, with S′b − RU having
rate λV and R′b −RU having rate 1. Let ε > 0 be arbitrary. Then, the probability that
maxb∈V (S′b − RU ) < min

(
minb∈V (R′b − RU ), ε

)
approaches 1 as λ→∞. On the latter

event, we clearly have Tv < RU + ε. It follow that

Pu(Tv > Mτ) ≤ Pu(RU + ε > Mτ) + o(1) = o(1), (4.66)

proving the claim.
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