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THE COVARIOGRAM AND FOURIER-LAPLACE

TRANSFORM IN Cn

GABRIELE BIANCHI

Abstract. The covariogram gK of a convex body K in Rn is the function
which associates to each x ∈ Rn the volume of the intersection of K with

K+x. Determining K from the knowledge of gK is known as the Covariogram

Problem. It is equivalent to determining the characteristic function 1K of K

from the modulus of its Fourier transform 1̂K in Rn, a particular instance of

the Phase Retrieval Problem.
We connect the Covariogram Problem to two aspects of the Fourier trans-

form 1̂K seen as a function in Cn. The first connection is with the problem

of determining K from the knowledge of the zero set of 1̂K in Cn. To attack

this problem T. Kobayashi studied the asymptotic behavior at infinity of this
zero set. We obtain this asymptotic behavior assuming less regularity on K

and we use this result as an essential ingredient for proving that when K is

sufficiently smooth and in any dimension n, K is determined by gK in the
class of sufficiently smooth bodies.

The second connection is with the irreducibility of the entire function 1̂K .
This connection also shows a link between the Covariogram Problem and the

Pompeiu Problem in integral geometry.

1. Introduction

Let H and K be convex bodies in Rn, n ≥ 2, and let λn stand for the n-
dimensional Lebesgue measure. The cross covariogram gH,K of H and K is the
function defined for x ∈ Rn by

gH,K(x) = λn(H ∩ (K + x)).

This function coincides with the convolution of the characteristic function 1H of H
with the characteristic function 1−K of the reflection of K in the origin, that is,

(1.1) gH,K = 1H ∗ 1−K .

The function gK,K was introduced by G. Matheron in his book [Mat75, Sec-
tion 4.3] on random sets, is denoted by gK and is called covariogram of K. Observe
that gK is clearly unchanged by translations or reflections of K (in this paper
the term reflection always means reflection in a point). The data provided by gK
can be interpreted in several ways within different contexts, using purely geomet-
ric, functional-analytic and probabilistic terminology. As a result, covariograms of
convex bodies and other sets appear naturally in various research areas including
convex geometry, image analysis, geometric shape and pattern matching, phase re-
trieval in Fourier analysis, crystallography and geometric probability. See Baake
and Grimm [BG07], Bianchi, Gardner and Kiderlen [BGK11] and references therein,
Matheron [Mat75] and Schymura [Sch11].

The following problem was posed by G. Matheron in 1986 (see [Mat86]) and has
received much attention in recent years.

2000 Mathematics Subject Classification. Primary 42B10, 52A20; Secondary 32A60, 60D05.
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transform, geometric tomography, Phase Retrieval Problem, Pompeiu Problem.

1



2 GABRIELE BIANCHI

Covariogram Problem. Does the covariogram determine a convex body, among
all convex bodies, up to translations and reflections?

The answer to the Covariogram Problem is positive for every planar convex body
(see Averkov and Bianchi [AB09]), it is positive for convex polytopes in R3 (see
Bianchi [Bia09a]) but the case of a general convex body in R3 is still open, and in ev-
ery dimension n ≥ 4 there are examples of nondetermination (see Bianchi [Bia05]),
as well as positive results in some subclasses of the class of convex polytopes (see
Goodey, Schneider and Weil [GSW97]).

The Phase Retrieval Problem asks for the determination of a function f ∈ L2(Rn)
with compact support from the knowledge of the modulus of its of Fourier transform

f̂(x) for x ∈ Rn, up to the inherent ambiguities. In view of (1.1) the Fourier

transform of gK coincides with |1̂K |2. Therefore the Covariogram Problem coincides
with a particular instance of the Phase Retrieval Problem.

Covariogram Problem (alternative form). Does the modulus |1̂K(x)|, for x ∈
Rn, determine the convex body K, among all convex bodies, up to translations and
reflections?

In this paper we connect the Covariogram Problem to some problems regarding

the Fourier transform 1̂K seen as a function in Cn.
The first connection is with a problem related to the zero set Z(K) = {ζ ∈ Cn :

1̂K(ζ) = 0}. This set has been studied in the literature, for instance for the role that
it plays in attempts to solve the famous Pompeiu Problem, a long-standing open
problem in integral geometry (see, for instance, Berenstein [Ber80] and Garofalo
and Segala [GS91]). More recently Benguria, Levitin and Parnovski [BLP09] has
connected Z(K) to properties of some eigenvalues of the Laplacian. Here we focus
on the studies of T. Kobayashi (see [Kob86, Kob89, Kob91]) regarding the geometric
information about K contained in Z(K). In 1986 Kobayashi [Kob86] has posed the
following problem.

Problem 2. Does the zero set Z(K) = {ζ ∈ Cn : 1̂K(ζ) = 0} determine the
convex body K, among all convex bodies, up to translations?

(Note that a translation of K leaves Z(K) unchanged.) In the class of C∞+
convex bodies (the subscript + means that ∂K is assumed to have Gauss curvature
positive everywhere) Problem 2 has been solved in the planar case [Kob89], but
is still open for n ≥ 3. In connection with Problem 2 Kobayashi [Kob89, Kob91]
studies, in any dimension and only in the case of C∞+ convex bodies, the asymptotic
behavior at infinity of Z(K). It turns out that this asymptotic behaviour contains
information about the width function of K and the ratio of the Gauss curvatures of
∂K at antipodal points (see Theorem 4.1 of this paper for the precise statement).

The Covariogram Problem and Problem 2 have different origins and have not
interacted so far. In this paper we bring an idea used for Problem 2 to obtain new
results for the Covariogram Problem. To this end we first prove Kobayashi’s result
regarding the asymptotics of Z(K) under lower regularity assumptions (we lower

these assumptions from K ∈ C∞+ to K ∈ Cr(n)+ , where r(n) is as in Theorem 1.1).
Then we use this extension as a key to prove a positive answer to the Covariogram

Problem for C
r(n)
+ convex bodies in every dimension.

Theorem 1.1. Let n ≥ 2 and define r(n) = 8 when n = 2, 4, 6, r(n) = 9 when
n = 3, 5, 7 and r(n) = [(n−1)/2] + 5 when n ≥ 8. Let H and K be convex bodies in

Rn of class C
r(n)
+ . Then gH = gK implies that H and K coincide, up to translations

and reflections.

In the class of C2
+ convex bodies in Rn, the Covariogram Problem has been

solved for n = 2 more that ten years ago [BSV02] but it is still open for any n ≥ 3.
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It can be proved that if K is in this class then, for each u ∈ Sn−1, gK provides
the nonordered pair {τK(u), τK(−u)} consisting in the Gauss curvature of ∂K at
the points of ∂K with outer normal u and −u. Thus if H is in the class C2

+ and
gH = gK , the continuity of the curvature implies that given any component V of
{u ∈ Sn−1 : τK(u) 6= τK(−u)}, after possibly a reflection of H, we have

(1.2) τH(v) = τK(v) for each v ∈ V .

If (1.2) were true for each v ∈ Sn−1 then H and K would coincide, up to a
translation, by the uniqueness part in Minkowski’s Theorem [Sch93, Th. 7.2.1].
However, a priori the reflection that makes (1.2) valid may vary from component
to component. An important difference between n = 2 and n ≥ 3, something
which has been used in overcoming this difficulty in R2, is the fact that in the
plane (1.2) implies that a portion of ∂H is a translation of a portion of ∂K, while
this is not true anymore in Rn when n ≥ 3. Our extension of Kobayashi’s result
on the asymptotic behavior of Z(K) is the key to prove that the reflection that
makes (1.2) valid does not vary from component to component. In order to explain
this we observe that (1.1), with H = K, implies

ĝK(ζ) = 1̂K(ζ)1̂K
(
ζ
)

(the bar denotes conjugation) because 1̂−K(ζ) = 1̂K
(
ζ
)
. Thus

{ζ ∈ Cn : ĝK(ζ) = 0} = Z(K) ∪ Z(K).

Determining K from gK can be proved equivalent to resolve the ambiguity in de-
termining Z(K) from Z(K)∪Z(K). In this context the ambiguity in determining
whether a reflection of H is necessary to make (1.2) valid is analogous to the ambi-
guity in determining, given any component of Z(K)∩{ζ ∈ Cn : Im ζ 6= 0}, whether

it is contained in Z(H) or it is contained in Z(H). The key ingredient in resolv-

ing this ambiguity, when the body is C
r(n)
+ regular, is the fact that certain maps

appearing in the description of the asymptotic behavior of Z(K) are analytic.
We briefly remark that similar ideas enable us to prove also a result regarding

the equivalent of the Covariogram Problem for the cross-covariogram, where one
asks for the determination of a pair (H,K) of convex bodies from gH,K , up to the
inherent ambiguities. Bianchi [Bia09b] solves this problem in the class of pairs of
convex polygons by completely classifying the pairs which are not determined and
here we are able to prove that all pairs of C8

+ regular planar convex bodies are
determined. We point the reader to Section 6 for the details.

The second connection between the Covariogram Problem and properties of the
Fourier transform of 1K in Cn comes from some results regarding the uniqueness
aspects of the Phase Retrieval Problem. Let f ∈ L2(Rn) have compact support. It

is known that f̂ is an entire function (i.e. is holomorphic on the entire Cn). Barakat
and Newsam [BN84], Sanz and Huang [SH84], Stefanescu [Ste85] and Hurt [Hur89]

prove that the nonuniqueness in the determination of f from |f̂ | is related to the

possibility of factoring f̂ as the product of two nontrivial entire functions. What
is the significance of these results for the Covariogram Problem? An analogy is
constituted by the fact that all known examples of nondetermination of K from
gK arise from the possibility of “factoring” K as a Cartesian product of lower

dimensional convex bodies contained in complementary subspaces. In this case 1̂K
can be written indeed as the product of nontrivial entire functions.

Problem 3. Is it possible to find explicit geometric conditions on a convex body

K that grant that 1̂K cannot be factored?
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This seems to be a very difficult problem and we do not have results on it. To
explain its difficulty let us observe that the subproblem consisting in understanding

for which K the function 1̂K can be factored as the product of a polynomial P (ζ)
and of an entire function is equivalent to understanding for which K the differential
problem associated to P has a solution with compact support K. When P (ζ) =
ζ21 + · · · + ζ2n − c this problem has been studied in many papers, because proving
that a solution to this problem exists for some c > 0 only if K is a ball is equivalent
to the Pompeiu Problem. In Section 7 we explain all this in detail.

We conclude the introduction by mentioning another contribution to the Covar-
iogram Problem proved using results of the theory of functions of several complex
variables. A natural question is the following one.

Problem 4. Is it possible to read in gE symmetry properties of the set E?

Note that gE is always an even function, independently of any symmetry property
of E. Lawton [Law81, Corollary 1] implies the following result.

Theorem 1.2 (Lawton [Law81]). Let n ≥ 2 and E ⊂ Rn be a compact set which
is the closure of its interior and assume that gE is radially symmetric. Then a
translation of E is radially symmetric and E is determined by gE, up to translation
and reflection, in the class of compact sets which are the closure of their interior.

W. Lawton proves the corresponding result for real-valued L2(Rn) functions with
compact support as a consequence of a representation formula for entire functions
of exponential type such that the modulus of their restriction to Rn is radially
symmetric and in L2(Rn).

2. Definitions, notations and preliminaries

2.1. Basic definitions and notation. As usual, Sn−1 denotes the unit sphere
and o the origin in the Euclidean n-space Rn. If x, y ∈ Rn, then 〈x, y〉 is the
scalar product of x and y, while |x| is the norm of x. If ζ ∈ Cn and ζ = x + i y,
with x, y ∈ Rn, then Re ζ and Im ζ denote respectively x and y. Moreover |ζ| =
(|Re ζ|2 + | Im ζ|2)1/2 denotes the norm of z. If u ∈ Sn−1, then u⊥ is the (n − 1)-
dimensional subspace orthogonal to u. For δ > 0 and x ∈ Rn, B(x, δ) denotes
{y ∈ Rn : |y − x| < δ}. When ζ ∈ Cn, B(ζ, δ) is defined similarly. We write λn for
n-dimensional Lebesgue measure in Rn. We define ωn the surface area of the unit
ball in Rn.

For t ∈ R let t+ = max{t, 0}, t− = max{−t, 0} and let [t] denote the integer
part of t.

We denote by ∂E, intE, clE, and 1E the boundary, interior, closure, and char-
acteristic function of a set E in Rn, respectively. A set is o-symmetric if it is
centrally symmetric, with center at the origin. If E and F are sets in Rn, then
E + F = {x+ y : x ∈ E, y ∈ F} denotes their Minkowski sum.

Given a function f defined on a subset of Rn, suppf , ∇f and D2f denote its
support, its gradient and its Hessian, respectively. We say that f ∈ C∞0 (Rn) if f is
m-times differentiable for each m ∈ N and suppf is compact.

2.2. Convex geometry and covariogram. A convex body in Rn is a compact
convex set with nonempty interior. The treatise of Schneider [Sch93] is an excellent
general reference for convex geometry. The function

hK(u) = max{〈u, y〉 : y ∈ K},

for u ∈ Rn, is the support function of K and

wK(u) = hK(u) + hK(−u),
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its width function. Any convex body K is uniquely determined by its support
function.

We say that a convex body K is in the class Cm, for m ∈ N, if it is a m-
differentiable manifold. We say that K ∈ Cm+ , for m ≥ 2, if K ∈ Cm and the Gauss
curvature of ∂K is positive everywhere. We say that K ∈ C∞+ if K ∈ Cm+ for each
m ∈ N.

When K ∈ C2
+, νK : ∂K → Sn−1 denotes the Gauss map and τK(u) denotes the

Gauss curvature of ∂K at the point ν−1(u) on ∂K with outer normal u ∈ Sn−1.
Let WK(u) denote the Weingarten map, i.e. the differential of the Gauss map νK
of ∂K computed at ν−1K (u). The eigenvalues of WK(u) are the principal curvatures

of ∂K at ν−1K (u) and their product equals the Gauss curvature τK(u).
The covariogram and the cross covariogram have been defined in the introduc-

tion.
Let H, H ′, K and K ′ be convex bodies in Rn. The translation of H and K

by the same vector, and the substitution of H with −K and of K with −H, leave
gH,K unchanged. We call (H,K) and (H ′,K ′) trivial associates when one pair is
obtained by the other one via a combination of the two operations above, that is,
when either (H,K) = (H ′ + x,K ′ + x) or (H,K) = (−K ′ + x,−H ′ + x), for some
x ∈ Rn.

We have gH,K(x) = 0 if and only if x /∈ H + (−K), so the support of gH,K is
H+ (−K). Since the support function is linear with respect to Minkowski addition
we have

(2.1) wsuppgH,K
= wH + wK .

2.3. Fourier-Laplace and Radon transform. An entire function is a complex-
valued function that is holomorphic over the whole Cn. An entire function f is
of exponential type if there exist a, b ∈ R and m ∈ Z such that |f(ζ)| ≤ a(1 +
|ζ|)meb| Im ζ|, for each ζ ∈ Cn.

The Fourier-Laplace transform of a function f ∈ L2(Rn) with compact support
is defined for ζ ∈ Cn as

f̂(ζ) =

∫
Rn

ei〈x,ζ〉f(x) dx.

By the Paley-Wiener Theorem f̂ is an entire function of exponential type whose
restriction to Rn belongs to L2 if and only if f ∈ L2(Rn) and has compact support.

The version of this theorem for distributions asserts that f̂ is an entire function
of exponential type if and only if f is a distribution with compact support. See
[Rud91, Theorem 7.23]. Distributions will enter this paper only very marginally
and we refer to Rudin [Rud91] for their definition.

Taking Fourier transforms in (1.1) and using the identity

(2.2) 1̂−K(ζ) = 1̂K
(
ζ
)
,

valid for every ζ ∈ Cn, we obtain the relation

(2.3) ĝK(ζ) = 1̂K(ζ) 1̂K
(
ζ
)
.

Given a convex body K in Rn, t ∈ R and u ∈ Sn−1, we denote by SK(u, t) the
Radon transform of 1K

SK(u, t) = λn−1
(
K ∩ (u⊥ + t)

)
.

3. Some information that is easy to read in the covariogram of a C2
+

convex body

This section is devoted to the following result.
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Proposition 3.1. Let K be a convex body of class C2
+ in Rn, n ≥ 2, let u ∈ Sn−1

and p = ν−1K (u)− ν−1K (−u).

(I) The knowledge of gK in a neighborhood of p determines

WK(u)−1 +WK(−u)−1 and det (WK(u) +WK(−u)) .

In particular, it determines

(3.1) τK(u)τK(−u).

(II) The knowledge of gK in a neighborhood of o determines

(3.2)
1

τK(u)
+

1

τK(−u)
.

(III) When n = 2 the width function wK determines the expression in (3.2).
(IV) The covariogram gK determines {τK(u), τK(−u)}.

The point p in Assertion (I) is the point of the boundary of suppgK with outer
normal u, by the identity suppgK = K+(−K) and [Sch93, Th. 1.7.5(c)]. Studying
the behavior of gK near p is equivalent to studying the behavior of the volume of
K ∩ (K + x) for x such that K ∩ (K + x) is contained in a small neighborhood
of ν−1K (u). For these x the boundary of K ∩ (K + x) consists of a portion of ∂K

near ν−1K (u) and of (a translation of) a portion of ∂K near ν−1K (−u). Regarding
Assertion (III) we recall (see (2.1)) that knowing wK is equivalent to knowing
suppgK .

The next lemma is needed to prove Assertion (I).

Lemma 3.2. Let A, B be symmetric (n − 1) × (n − 1) positive-definite matrices.

Let t ∈ R, t > 0, and q ∈ Rn−1 be such that 2t −
〈(
A−1 +B−1

)−1
q, q
〉
≥ 0. Let

f1, f2 : Rn−1 → R be the quadratic functions

f1(x) = t− 1

2
〈A(x− q), x− q〉 , f2(x) =

1

2
〈Bx, x〉 .

Then the volume of the region in Rn bounded by the graphs of f1 and f2 is

λn
{

(x, x′) ∈ Rn−1 × R : f2(x) ≤ x′ ≤ f1(x)
}

=
ωn−12(n+1)/2

n2 − 1

(
2t−

〈(
A−1 +B−1

)−1
q, q
〉)(n+1)/2

√
det(A+B)

.

Proof. We have

(3.3) f1(x)− f2(x) = t− 1

2

(
〈(A+B)x, x〉 − 〈Ax, q〉 − 〈Aq, x〉+ 〈Aq, q〉

)
.

Let us consider the expression in parentheses in the right hand side of (3.3). By
adding and subtracting

〈
Aq, (A+B)−1Aq

〉
, by rewriting 〈Ax, q〉 as

〈
(A+B)x, (A+B)−1Aq

〉
(a consequence of the symmetry of A and B) and by regrouping some terms, we
obtain

(3.4) 〈(A+B)x, x〉 − 〈Ax, q〉 − 〈Aq, x〉+ 〈Aq, q〉 =

= 〈(A+B)y, y〉+
〈(
A−A(A+B)−1A

)
q, q
〉
,

where y = x− (A+B)−1Aq. The identity

(3.5) A−A(A+B)−1A =
(
A−1 +B−1

)−1
is a special case of the Woodbury matrix identity [HS81]. Formulas (3.3), (3.4) and
(3.5) imply

f1(x(y))− f2(x(y)) = s− 1

2
〈(A+B)y, y〉 ,
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where s = t− (1/2)
〈(
A−1 +B−1

)−1
q, q
〉

.

Let V (q, t) denote the volume that we wish to compute. It is

V (q, t) =

∫
{x∈Rn−1:f1(x)−f2(x)≥0}

(
f1(x)− f2(x)

)
dx

=

∫
{y∈Rn−1:2s−〈(A+B)y,y〉≥0}

(
s− 1

2
〈(A+B)y, y〉

)
dy.

Since an orthogonal transformation does not change V (q, t), we may assume that
the symmetric matrix A+B is diagonal. Let λi be the i-th element of the diagonal
of (A+B) and let w = (

√
λ1y1, . . . ,

√
λn−1yn−1). We have

V (q, t) =
1√

det(A+B)

∫
{w∈Rn−1:|w|2≤2s}

s− |w|
2

2
dw

=
ωn−1√

det(A+B)

∫ √2s

0

rn−2
(
s− r2

2

)
dr

=
ωn−12(n+1)/2

n2 − 1

s(n+1)/2√
det(A+B)

.

Writing s in terms of q and t concludes the proof. �

Proof of Proposition 3.1. Assertion (I). Let us compute the asymptotic expansion
of gK near p. Changing, if necessary, the coordinate system we may assume u =
(0, . . . , 0,−1) and ν−1K (u) = o. Let ν−1K (−u) = (a, s) ∈ Rn−1 × R. We have
p = −(a, s). Let A and B be the matrices representing respectively WK(−u) and

WK(u) in an orthonormal basis in u⊥ = Rn−1.
We prove that when q ∈ Rn−1 and t > 0 are such that

(3.6) 2t−
〈(
A−1 +B−1

)−1
q, q
〉
> 0,

we have

(3.7) gK
(
q − a, t− s

)
=

=
ωn−12(n+1)/2

n2 − 1

(
2t−

〈(
A−1 +B−1

)−1
q, q
〉)(n+1)/2

√
det(A+B)

(1 + ε(q, t)) ,

where

lim
(q,t)→0

(3.6) holds true

ε(q, t) = 0.

The boundary of K ∩ (K + (q − a, t − s)), the set whose volume is measured by
gK
(
q − a, t − s

)
, consists of a portion of ∂K near (a, s) translated by the vector

(q − a, t − s) and of a portion of ∂K near o. Since K is sufficiently smooth, ∂K
can be approximated in a neighborhood of (a, s) (up to terms of higher order) by
the graph of the paraboloid {(x, x′) ∈ Rn−1 × R : x′ = s − 〈A(x− a), (x− a)〉}.
Similarly, ∂K can be approximated in a neighborhood of o (up to terms of higher
order) by the graph of the paraboloid {(x, x′) ∈ Rn−1 × R : x′ = 〈Bx, x〉}.

For q ∈ Rn−1 and t > 0 sufficiently small and satisfying (3.6), K ∩ (K + (q −
a, t− s)) is contained in

{(x, x′) : 〈B1(q, t)x, x〉 ≤ x′ ≤ t− 〈A1(q, t)(x− q), x− q〉}

and contains

{(x, x′) : 〈B2(q, t)x, x〉 ≤ x′ ≤ t− 〈A2(q, t)(x− q), x− q〉},
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where A1(q, t), A2(q, t), B1(q, t) and B2(q, t) are symmetric positive-definite matri-
ces such that A1(q, t) < A < A2(q, t), B1(q, t) < B < B2(q, t),

lim
q→o ,t→0+

A1(q, t) = lim
q→o ,t→0+

A2(q, t) = A,

and

lim
q→o ,t→0+

B1(q, t) = lim
q→o ,t→0+

B2(q, t) = B.

By Lemma 3.2 the volume of these two sets is

ωn−12(n+1)/2

n2 − 1

(
2t−

〈(
A−1i +B−1i

)−1
q, q
〉)(n+1)/2

√
det(Ai +Bi)

,

i = 1, 2. Since the difference between the previous expression for i = 1 and that
for i = 2 is o(2t + |q|2), as q tends to o and t tends to 0+, we have (3.7). This
asymptotic expansion proves the first claim of the proposition.

To prove the last claim it suffices to observe that τK(u) = detB, τK(−u) = detA
and that the knowledge of

(
A−1 +B−1

)
and of det(A+B) gives detAdetB, since

det
(
A−1 +B−1

)
detA detB = det(A+B).

Assertion (II). Matheron [Mat75, p. 86] proves that for each v ∈ Sn−1 we have

∂+gK
∂v

(o) = −λn−1
(
K|v⊥

)
,

where ∂+/∂v denotes left directional derivative in direction v, and K|v⊥ denotes
the orthogonal projection of K on v⊥. [Gar06, Theorem 3.3.2] proves that the
knowledge of λn−1

(
K|v⊥

)
for each v ∈ Sn−1 determines the expression in (3.2).

Assertion (III). This is an immediate consequence of Theorems 3.3.2 and 3.3.5
in [Gar06].

Assertion (IV). The expressions in (3.2) and (3.1) determine {τK(u), τK(−u)}.
�

4. Proof of Kobayashi result under lower regularity assumption

Let

S = {z ∈ Cn : z = ζu, with ζ ∈ C, u ∈ Sn−1}.
In S we identify ζu and (−ζ)(−u), for each ζ ∈ C and u ∈ Sn−1. Let

Z(K) = {ζ ∈ Cn : 1̂K(ζ) = 0}.

Theorem 4.1 (T. Kobayashi [Kob89]). Let S be defined as above. Let K be a
convex body in Rn of class C∞+ . Then there exists a positive integer m(K) such
that

Z(K) ∩ S =

 ∞⋃
m=m(K)

Zm(K)

⋃C(K),

where the union is disjoint, C(K) is a bounded set and, for each integer m ≥ m(K),
Zm(K) is analytically diffeomorphic to Sn−1. More precisely, for each integer m ≥
m(K), there exists an analytic map Fm,K : Sn−1 → C such that

(4.1) Zm(K) = {Fm,K(u)u : u ∈ Sn−1},
we have

(4.2) Fm,K(u) =
π(4m+ n− 1)

2wK(u)
+ i

ln τK(−u)− ln τK(u)

2wK(u)
+ O

(
1

m

)
,

and the error term O(1/m) in (4.2) tends to 0, as m tends to infinity, uniformly
with respect to u ∈ Sn−1.
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We are interested in lowering the regularity assumption on K needed for the
conclusions of Theorem 4.1 to hold. We are able to prove the following result.

Theorem 4.2. Let r(n) be as in Theorem 1.1. If the convex body K in Rn is of

class C
r(n)
+ then the conclusions of Theorem 4.1 hold.

We remark that the regularity assumption in Theorem 4.2 is analogous to that

required in some studies of the asymptotic behavior at infinity of 1̂K in Rn (see,
for instance, Herz [Her62]).

The proof of Theorem 4.1 is presented both in [Kob89, Theorem 2.3.6] and in

[Kob91]. The Fourier-Laplace transform 1̂K(ζu), for ζ ∈ C and u ∈ Sn−1, is written
as the Fourier-Laplace transform of the Radon transform SK(u, t) with respect to
the single variable t, i.e.

(4.3) 1̂K(ζu) =

∫ ∞
−∞

SK(u, t)ei tζ dt.

Some results proved in [Kob91] and regarding the zero set of the Fourier-Laplace
transform of functions of a single variable are then applied to this expression. We
refer in particular to [Kob91, Corollary 2.20], which gives the asymptotic behavior
at infinity of the zeros of the Fourier-Laplace transform of a function and an esti-
mate on the dimensions of a compact set containing the remaining zeros. It is the
application of this corollary which yields the conclusions of Theorem 4.1, and both
[Kob91, Lemma 3.14] and [Kob89, Lemma 2.2.8] prove that SK(u, ·) satisfies the
assumptions of this corollary when K belongs to C∞+ . The next lemma proves that

SK(u, ·) satisfies the assumptions of [Kob91, Corollary 2.20] also when K ∈ Cr(n)+ .
Let ψ(x) : R→ [0, 1] be a C∞ function such that suppψ ⊂ [−2, 2] and ψ(x) ≡ 1

when x ∈ [−1, 1].

Lemma 4.3. Let r(n) be as in Theorem 1.1 and let K ⊂ Rn be a convex body of

class C
r(n)
+ . Let

V = {(u, t) ∈ Sn−1 × R : −hK(−u) < t < hK(u)}

and, for u ∈ Sn−1, let

a0(u) =
(2π)

n−1
2

Γ(n+1
2 )
√
τK(−u)

, b0(u) =
(2π)

n−1
2

Γ(n+1
2 )
√
τK(u)

,

and

φ(u, t) = ψ

(
5t

wK(u)

)
.

Then the following assertions hold:

(I) The Radon transform SK is continuous in Sn−1×R and its support is cl(V ).
Moreover SK is differentiable r(n) times with respect to t at every (u, t) ∈ V
and each of these derivatives is continuous in t and in u;

(II) For every u ∈ Sn−1 there exist a1(u), a2(u), b1(u), b2(u) ∈ R such that

(4.4) SK(u, t)−
2∑
j=0

aj(u)
(
t+ hK(−u)

)n−1
2 +j

+
φ
(
u, t+ hK(−u)

)
+

−
2∑
j=0

bj(u)
(
t− hK(u)

)n−1
2 +j

−
φ
(
u, t− hK(u)

)
,

as a function of t, belongs to C [(n−1)/2]+2(R), and its derivative of order
[(n− 1)/2] + 3 exists in (−hK(−u), hK(u)).
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(III) The expressions |a1(u)|, |a2(u)|, |b1(u)|, |b2(u)| and

sup
−hK(−u)<t<hK(u)

∣∣∣∣∣∂
n−1
2 +3

(
expression in (4.4)

)
∂t

n−1
2 +3

∣∣∣∣∣
are bounded from above uniformly with respect to u in Sn−1.

Proof. Assertion (I). The claims regarding the continuity and the support of SK
are obvious. The claim regarding the derivatives is essentially proved in [Kol05,
Lemma 2.4]. This lemma proves that when K is o-symmetric then SK is differen-
tiable r(n) times with respect to t at every (u, t) such that |t| is sufficiently small,
and at (u, t) each of these derivatives is continuous in t and in u. However an inspec-
tion of the proof of this lemma easily shows that the o-symmetry of K is not needed,
as the author confirms [Kol13]. Thus, let (u0, t0) ∈ V and let x0 ∈ intK∩ (u⊥0 + t0).
Note that intK∩(u⊥0 +t0) 6= ∅, by definition of V . Let us apply [Kol05, Lemma 2.4]
with x0 playing the role of the origin. It proves that the function

(u, s)→ λn−1 (K ∩ {x : 〈x− x0, u〉 = s})
is differentiable r(n) times with respect to s, and each of these derivatives is con-
tinuous in s and in u whenever |s| is sufficiently small. The previous function
coincides with SK(u, s + 〈x0, u〉). This implies the requested property of SK(u, t)
at each (u, t) such that | 〈x0, u〉 − t| is sufficiently small, that is in a neighborhood
of (u0, t0).

Assertion (II). Since the expression in (4.4), as a function of t, vanishes outside
(−hK(−u), hK(u)), it belongs to Cr(n) in that interval, and r(n) ≥ [(n− 1)/2] + 3,
it suffices to prove the assertion in a neighborhood of each endpoint of that interval.
We will only do it in a neighborhood of hK(u), since the proof for the other endpoint
is similar.

Let u0 ∈ Sn−1, let U ⊂ Sn−1 be a neighborhood of u0 and let u ∈ U . Let
e1(u), . . . , en−1(u) ∈ Rn denote an basis of u⊥ which is a C∞ function of u, and

for y = (y1, . . . , yn−1) ∈ Rn−1 let L(u, y) =
∑n−1
i=1 yiei(u). For each u ∈ U we

parametrize ∂K in a neighborhood W (u) of ν−1K (u) as

(4.5) ∂K ∩W (u) = {ν−1K (u) + L(u, y)− f(u, y)u : y ∈ V },
where V ⊂ Rn−1 is a suitable neighborhood of o and f(u, y) is defined implic-
itly by (4.5). This is equivalent to saying that in a Cartesian coordinate sys-
tem (y1, . . . , yn) whose origin is ν−1K (u) and whose positive yn-semiaxis points in
the direction of −u the surface ∂K ∩ W (u) is the graph of the convex function
yn = f(u, y1, . . . , yn−1). For each (u, y) ∈ U ×V , f(u, y) is nonnegative and convex
with respect to y. We have

f(u, o) = 0, ∇yf(u, o) = 0

and the eigenvalues of D2
yf(u, o) are the principal curvatures of ∂K at ν−1K (u).

Since K is of class C
r(n)
+ the map ν−1K (u) belongs to Cr(n)−1(Sn−1). Therefore f

and ∇yf belong to Cr(n)−1(U × V ).
Now let us express the Radon transform SK(u, t), for t close to hK(u), in terms

of f . When t > hK(u) the set K ∩ (u⊥ + t) is empty, while when t ≤ hK(u) we
have

(4.6) K ∩ (u⊥ + t) =
{
ν−1K (u) + L(u, y)− (hK(u)− t)u :

y ∈ Rn−1 satisfies f(u, y) ≤ hK(u)− t
}
.

We are thus interested in the measures of the level sets {y ∈ Rn−1 : f(u, y) ≤ s}
for small positive values of s. Let us start by expressing f(u, ·) in polar coordinates



THE COVARIOGRAM AND FOURIER-LAPLACE TRANSFORM IN Cn 11

(r, θ). For reasons that will be clear in a few lines, we let the parameter r free to
take also negative values. More precisely, for (u, r, θ) ∈ U × (−ε, ε) × Sn−2, for a
sufficiently small ε > 0, we define f0(u, r, θ) = f(u, rθ). The properties of f imply
that there is a continuous function f1 such that

f0(u, r, θ) = r2f1(u, r, θ).

Note that f1 and∇(r,θ)f1 belong to Cr(n)−3
(
U × (−ε, ε)× Sn−2

)
. Since f1(u, 0, θ) >

0, for each (u, θ) ∈ U × Sn−2, after possibly changing U and ε, we may as-
sume f1(u, r, θ) > 0 in U × (−ε, ε) × Sn−2. By the Implicit Function Theo-
rem there exists U ′ ⊂ U neighborhood of u0, there exist δ > 0 and a function
R : U ′ × (−δ, δ)× Sn−2 → (−ε, ε) such that

R(u, t, θ)
√
f1 (u,R(u, t, θ), θ) = t.

The regularity of f1 and the fact that R = 0 if and only t = 0 imply that R and
∇(t,θ)R belong to Cr(n)−3

(
U ′ × (−δ, δ)× Sn−2

)
. The geometrical meaning of R is

the following: when t ∈ (−δ, δ) we have

{y = R(u, t, θ)θ : θ ∈ Sn−2} = {y ∈ Rn−1 : f(u, y) = t2}.

The sign ofR(u, t, θ) coincides with the sign of t and, since f1(u, r, θ) = f1(u,−r,−θ),
we have −R(u, t, θ)

√
f1 (u,−R(u, t, θ),−θ) = −t. This implies

(4.7) −R(u, t, θ) = R(u,−t,−θ).

We are now ready to explictly express SK(u, t) in terms of R. Let u ∈ U ′ and
t ∈ (hK(u)− δ2, hK(u)). By formula (4.6) we have

SK(u, t) =λn−1
(
{y ∈ Rn−1 : f(u, y) ≤ hK(u)− t}

)
=λn−1

(
{y = rθ : θ ∈ Sn−2, 0 ≤ r ≤ R(u,

√
hK(u)− t, θ)}

)
.

Therefore for u ∈ U ′ we have

SK(u, t) =


0 when t ≥ hK(u);∫
Sn−2

R
(
u,
√
hK(u)− t, θ

)n−1
n− 1

dθ when t ∈ (hK(u)− δ2, hK(u)),

where dθ denotes (n− 2)-dimensional Hausdorff measure.
In order to study the behavior of SK let us write the Taylor expansion of R(u, t, θ)

in t at t = 0. In order to simplify the notations we set m = r(n) − 2 and we omit
to explicitly write the dependence of R, and of some other functions, on u and on
θ. We can write the Taylor expansion of R as

(4.8) R(t) =

m∑
i=1

cit
i + r(t),

for suitable coefficients ci = ci(u, θ) (which depend continuously on u) and with
the remainder r(t) = r(u, t, θ) written as

r(t) =

∫ t

0

(
∂mR(s)

∂sm
− ∂mR(0)

∂sm

)
(t− s)m−1

(m− 1)!
ds.

For k = 0, . . . ,m and t ∈ (0, δ), it is easy to derive from the previous expression of
r the following bounds

(4.9)

∣∣∣∣∂kr(t)∂tk

∣∣∣∣ ≤ sup
s∈[0,t]

∣∣∣∣∂mR(s)

∂sm
− ∂mR(0)

∂sm

∣∣∣∣ tm−k.
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Let us prove that, for j positive integer, k = 0, . . . ,m and t ∈ (hK − δ2, hK), we
have

(4.10)

∣∣∣∣∣∂k
(
r
(√
hK − t

))j
∂tk

∣∣∣∣∣ ≤ dj,k
(

sup
s∈[0,t]

∣∣∣∣∂mR(s)

∂sm
− ∂mR(0)

∂sm

∣∣∣∣
)j

(hK − t)
mj
2 −k.

for a suitable positive constant dj,k which depends only on j and k. Indeed, using
[McK56, Formula 3n] to express the k-th derivative of a composite function, we
have

∂kr
(√
hK − t

)
∂tk

=

k∑
i=1

∂ir(s)

∂si
|s=√hK−t

i∑
j=0

(−1)i−j

j!(i− j)!
(hK − t)

i−j
2
∂k (hK − t)

j
2

∂tk

=

k∑
i=1

∂ir(s)

∂si
|s=√hK−t(hK − t)

i
2−k

i∑
j=0

(−1)i−j+k

j!(i− j)!
×

× j

2

(
j

2
− 1

)
. . .

(
j

2
− k + 1

)
.

This formula and (4.9) prove (4.10) when j = 1. In order to prove (4.10) when j > 1
it suffices to use [McK56, Formula 9n] to express the derivative in the left-hand side
of (4.10) in terms of derivatives of r(

√
hK − t) and to use (4.10) with j = 1. We

omit the details.
Let us now apply all these estimates to our case. For t ∈ (hK − δ2, hK) we write

SK(u, t) =
1

n− 1

∫
Sn−2

(
m∑
i=1

ci(hK − t)i/2 + r
(√

hK − t
))n−1

dθ

=
1

n− 1

∫
Sn−2

(
m∑
i=1

ci(hK − t)i/2
)n−1

dθ+

+
1

n− 1

∫
Sn−2

n−1∑
j=1

(
n− 1

j

)(
r
(√

hK − t
))j ( m∑

i=1

ci(hK − t)i/2
)n−1−j

dθ.

Let I1(t) = I1(u, t) and I2(t) = I2(u, t) denote respectively the first and the second
integral after the last equality sign in the previous formula.

First we study I1(t). This integral can be written as

(4.11) I1(t) =
1

n− 1

m(n−1)∑
l=(n−1)

(hK − t)l/2
∫

Sn−2

∑
i1,...,in−1=1,...,m
i1+···+in−1=l

ci1 . . . cin−1
dθ.

Formula (4.7) implies, for i = 1, . . . ,m,

(4.12) ci(u,−θ) = (−1)i−1ci(u, θ).

Let us prove that when l− (n− 1) is odd the integrand in (4.11) is an odd function
of θ. Indeed let us write ij = 1+pj , for j = 1, . . . , n−1. The integer pj varies from
0 to m − 1 and p1 + · · · + pn−1 = l − (m − 1). If l − (m − 1) is odd then an odd
number of pj is odd, i.e., an odd number of cj is even. This fact, by (4.12), implies
that the integrand in (4.11) is odd.

A consequence of this is that when l− (n−1) is odd the coefficient of (hK− t)l/2
in I1(t) vanishes, and that I1(t) is a finite sum of powers of hK − t with exponent
(n− 1)/2 + j, where j is a nonnegative integer. It is known (see [Kob89]) that
the coefficient of (hK − t)(n−1)/2 in I1(t) is b0(u). Let b1(u) and b2(u) denote
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respectively the coefficients of (hK − t)(n−1)/2+1 and of (hK − t)(n−1)/2+2. When
t ∈ (hK − δ2, hK) then

(4.13) I1(t)− b0(u)(t− hK)
n−1
2
− − b1(u)(t− hK)

n−1
2 +1
− − b2(u)(t− hK)

n−1
2 +2
−

is a linear combination of powers of hK − t with exponents higher than or equal
to (n − 1)/2 + 3. Thus if we extend the definition of I1(t) to (hK − δ2, hK + δ2)
by putting I1(t) = 0 when t ∈ [hK , hK + δ2), the expression in (4.13) belongs to
C [(n−1)/2]+2(hK−δ2, hK+δ2). Moreover, when t ∈ (hK−δ2, hK), the [(n−1)/2]+3
derivative with respect to t of the expression in (4.13) is equal to

m(n−1)∑
l=(n−1)+6

el(hK − t)l/2−[n−1
2 ]−3

∫
Sn−2

∑
i1,...,in−1=1,...,m
i1+···+in−1=l

ci1 . . . cin−1
dθ,

for suitable constants el depending only on n and l. Since all powers of hK − t in
this derivative have nonnegative exponents, its absolute value is uniformly bounded
in (hK − δ2, hK). Since the coefficients c1, . . . , cm depend continuously on u, this
bound is locally uniform with respect to u.

Now we study I2(t). This function is a linear combination of terms of the form

(hK − t)l/2
∫
Sn−2

ci1 . . . cin−1−j

(
r
(√

hK − t
))j

dθ,

with j = 1, . . . , n − 1, l = n − 1 − j, . . . ,m(n − 1 − j), i1, . . . , in−1−j = 1, . . . ,m,
i1 + · · · + in−1−j = l. Let k ∈ {0, . . . , [(n − 1)/2] + 3} and let t ∈ (hK − δ2, hK).
Since r(t) is differentiable m times and m ≥ [(n− 1)/2] + 3, the derivative of order
k of this term with espect to t exists and is a linear combination of terms of the
form

∂k−p(hK − t)l/2

∂tk−p

∫
Sn−2

ci1 . . . cin−1−j

∂p
(
r
(√
hK − t

))j
∂tp

dθ,

with 0 ≤ p ≤ k. All this, (4.10) and the continuity of (∂m/∂tm)R(t) imply that the
derivative of order k of I2(t) is a linear combination of terms which are continuous
and whose asymptotic behavior as t < hK tends to hK is o

(
(hK − t)(mj+l)/2−k

)
.

Note that this asymptotic behavior is locally uniform with respect to u. Since

m ≥

{
6 when n is even,

7 when n is odd

the exponent (mj + l)/2 − k is nonnegative for k, j and l in the ranges described
above (because mj + l ≥ m + n − 2 and k ≤ [(n − 1)/2] + 3). This concludes the
proof of Assertion (II).

Assertion (III). The coefficients b1(u) and b2(u) in (4.13) are integrals over
Sn−2 of polynomials in the coefficients c1, . . . , c5 of (4.8). These coefficients are,
up to constants, the derivatives with respect to t, up to order five, of f1 at t = 0,
or equivalently, the derivatives with respect to t, of order up to seven, of f at
t = 0. The regularity of f implies that b1(u) and b2(u) depends continuously on
u. The same is true for b0(u), due to its explicit representation and the regularity
of τK . The assertion regarding the boundedness of the [(n − 1)/2] + 3 derivative
with respect to t of the expression in (4.4) in a left neighborhood of hK(u) is a
consequence of what we have proved above regarding the [(n− 1)/2] + 3 derivative
of the expression in (4.13) and of I2(t). �

The next lemma is used in proving the analyticity of the maps Fm,K appearing

in Theorem 4.1. This property is a consequence of the fact that 1̂K is holomorphic,
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on the analytic Implicit Function Theorem and on the fact that if ζu is a zero of

1̂K and if Re ζ is sufficiently large, then

∂

∂ζ
1̂K(ζu) 6= 0.

The next lemma is relevant for the asymptotic behavior of this derivative, which
coincides with the Fourier-Laplace transform with respect to t of i tSK(u, t).

Lemma 4.4. Let r(n) be as in Theorem 1.1, let K ⊂ Rn be a convex body of class

C
r(n)
+ with o ∈ intK and let V and φ be as in Lemma 4.3. Then for every u ∈ Sn−1

and j = 0, 1, 2 there exists ãj(u) and b̃j(u) in R such that ã0 6= 0, b̃0 6= 0,

(4.14) i tSK(u, t)−
2∑
j=0

ãj(u)
(
t+ hK(−u)

)n−1
2 +j

+
φ
(
u, t+ hK(−u)

)
+

−
2∑
j=0

b̃j(u)
(
t− hK(u)

)n−1
2 +j

−
φ
(
u, t− hK(u)

)
,

as a function of t, belongs to C [(n−1)/2]+2(R), and its derivative of order [(n− 1)/2]+

3 exists in (−hK(−u), hK(u)). Moreover |ãj(u)| and |̃bj(u)|, for j = 0, 1, 2, and

sup
−hK(−u)<t<hK(u)

∣∣∣∣∣∂
n−1
2 +3

(
expression in (4.14)

)
∂t

n−1
2 +3

∣∣∣∣∣
are bounded from above uniformly with respect to u in Sn−1.

Proof. Let aj(u) and bj(u), j = 0, 1, 2, be the coefficients defined in the statement
of Lemma 4.3 and let H(u, t) denote the expression in (4.4). By multiplying H by
i t we can rewrite it as

i tSK(u, t)−
2∑
j=0

ãj(u)
(
t+ hK(−u)

)n−1
2 +j

+
φ
(
u, t+ hK(−u)

)
+

−
2∑
j=0

b̃j(u)
(
t− hK(u)

)n−1
2 +j

−
φ
(
u, t− hK(u)

)
= H̃(u, t)

where, for j = 1, 2,

ã0(u) = − ihK(−u)a0(u), b̃0(u) = ihK(u)b0(u),

ãj(u) = i (aj−1(u)− aj(u)hK(−u)) , b̃j(u) = i (bj(u)hK(u)− bj−1(u))

and

H̃(u, t) = i tH(u, t) + i a2(u)
(
t+ hK(−u)

)n−1
2 +3

+
φ
(
u, t+ hK(−u)

)
+

− i b2(u)
(
t− hK(u)

)n−1
2 +3

−
φ
(
u, t− hK(u)

)
.

The assumption o ∈ intK imply −hK(−u) < 0 < hK(u), and this imply ã0(u) 6= 0

and b̃0(u) 6= 0. The results about H, aj and bj proved in Lemma 4.3 give the other
conclusions of this lemma. �

Proof of Theorem 4.2. Let us write 1̂K(ζu) as in (4.3) and let us apply [Kob91,
Corollary 2.20] to the Fourier-Laplace transform of SK(u, t) with respect to t

(4.15) ̂SK(u, t)(ζ) :=

∫ ∞
−∞

SK(u, t)ei tζ dt.
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In the terminology of [Kob91] (see in particular [Kob91, p. 20]) our Lemma 4.3
proves that SK(u, t), as a function of t, belongs to C 2((n−1)/2) with α = −hK(−u),
β = hK(u), A(f) = wK(u), aj(f) = aj(u) and bj(f) = bj(u) for j = 0, 1, 2. Let
‖SK(u, t)‖C 2((n−1)/2) denote

2∑
j=0

wK(u)
n−1
2 +j (|aj(u)|+ |bj(u)|) +

+ wK(u)
n−1
2 +3 sup

−hK(−u)<t<hK(u)

∣∣∣∣∣∂
n−1
2 +3

(
expression in (4.4)

)
∂t

n−1
2 +3

∣∣∣∣∣ .
By Lemma 4.3, supu∈Sn−1 ‖SK(u, t)‖C 2((n−1)/2) is finite.

[Kob91, Corollary 2.20] applies and proves that for each u ∈ Sn−1 there exist a
positive integer m(K,u), a positive number d(K,u) and a finite set C(K,u) ⊂ C
such that the zero set of ̂SK(u, t) consists of C(K,u) and, for each m ≥ m(K,u),
of one simple zero in each of the two balls (in C)

(4.16) B

(
γ
π(4m+ n− 1)

2wK(u)
+ i

ln τK(−u)− ln τK(u)

2wK(u)
,
d(K,u)

m

)
, γ = 1,−1.

Moreover m(K,u), d(K,u) and the radius of a ball centered at o and containing
C(K,u) are bounded from above uniformly with respect to u ∈ Sn−1 in terms of
supu∈Sn−1 ‖SK(u, t)‖C 2((n−1)/2), infu∈Sn−1 wK(u), supu∈Sn−1 wK(u), infu∈Sn−1 τK(u)
and supu∈Sn−1 τK(u).

Let m(K) = supu∈Sn−1 m(K,u) and, for each m ≥ m(K), let Fm,K(u) be the

zero of ̂SK(u, t) contained in the ball in (4.16) corresponding to γ = 1. (The one
corresponding to γ = −1 coincides with −Fm,K(−u).) Due to (4.3) the intersection

of the zero set of 1̂K with the ray {z = ζu : ζ ∈ C} consists of a bounded set and
of ∪m≥m(K){Fm.K(u)u,−Fm,K(−u)u}.

To complete the proof it remains to prove that the map Fm,K : Sn−1 → C is

analytic. In view of the analyticity of 1̂K and of the analytic Implicit Function

Theorem it suffices to prove that if ζu is a zero of 1̂K and if Re ζ is sufficiently
large, then

(4.17)
∂

∂ζ
1̂K(ζu) 6= 0.

For a C∞+ convex body K this last formula is proved in [Kob89, Lemma 2.4.25].
The only point of the proof of this lemma where the regularity of K enters is in

the asymptotic expansion of (∂/∂ζ)1̂K(ζu) given by [Kob89, Formula (2.4.27)]. If

we prove this formula in the case of a C
r(n)
+ set then all the rest of the proof goes

unchanged.

To prove this formula for K ∈ Cr(n)+ one argues as follows. We may assume

o ∈ intK, because a translation of K does not change Z(K) (we have 1̂K+y(ζ) =

eyζ 1̂K(ζ) for y ∈ Rn). The function (∂/∂ζ)1̂K(ζu) coincides with the Fourier-
Laplace transform with respect to t of i tSK(u, t). Lemma 4.4 proves that i tSK(u, t),
as a function of t, belongs to C 2((n − 1)/2). [Kob91, Lemma 2.13] (with f =
i tSK(u, t), λ = (n − 1)/2, α(f) = −hK(−u), β(f) = hK(u), a0(f) = ã0(u),

b0(f) = b̃0(u), A(f) = wK(u) and p(λ) = Γ ((n+ 1)/2) eiπ(n+1)/4) applies and

yields [Kob89, Formula (2.4.27)] for any ζ such that ζu is a zero of 1̂K and Re ζ is
sufficiently large. �
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5. Covariogram Problem for C
r(n)
+ regular bodies

Kobayashi result enters the proof of Theorem 1.1 only through the next proposi-
tion. The key point in the proof of this proposition is the fact that the maps Fm,K ,
introduced in the statement of Theorem 4.1, are analytic.

Proposition 5.1. Let H, K be convex bodies of class C
r(n)
+ with gH = gK . Then

either
τH(−u)

τH(u)
=
τK(−u)

τK(u)
for each u ∈ Sn−1

or
τH(u)

τH(−u)
=
τK(−u)

τK(u)
for each u ∈ Sn−1.

Proof. The identity gH = gK , (2.1) and (2.3) imply

(5.1) wH = wK

and, for ζ ∈ Cn,

1̂H(ζ) 1̂H
(
ζ
)

= 1̂K(ζ) 1̂K
(
ζ
)
.

Thus we have

(5.2) Z(H)
⋃
Z(H) = Z(K)

⋃
Z(K).

Let us use the notations introduced in the statement of Theorem 4.1. Let us choose
m0 > m(K),m(H) such that Zm,K ∩ C(H) = ∅ for each m ≥ m0. Theorem 4.2
and (5.2) imply that for each m ≥ m0 and for each u ∈ Sn−1 we have

Fm,K(u)u ∈
∞⋃

l=m(H)

(
Zl(H)

⋃
Zl(H)

)
.

The representation of Zl(H) provided by (4.1) implies that there exists l = l(m,u)

such that either Fm,K(u) = Fl,H(u) or Fm,K(u) = Fl,H(u). In both cases the
representation of the real parts of Fm,K and Fl,H given in (4.2), together with
(5.1), implies that there exists m1 ≥ m0 such that l = m for each m ≥ m1 and
u ∈ Sn−1. Summarizing, for each u ∈ Sn−1 and m ≥ m1 either we have

Fm,K(u) = Fm,H(u)(5.3)

or we have

Fm,K(u) = Fm,H(u).(5.4)

A priori the choice may vary from u to u. We may assume that K is not centrally
symmetric because otherwise K is a reflection or translation of H (it is an easy con-
sequence of the Brunn-Minkowski inequality as explained, for instance, in [Bia05, p.
204]) and the claim follows. We may thus assume that τK is not an even function.
Formula (4.2) implies that there exists m2 ≥ m1 and a relatively open connected
subset U of Sn−1 such that

(5.5) ImFm,K(u) > 0,

for eachm ≥ m2 and u ∈ U . The alternatives (5.3) and (5.4) imply that ImFm,H(u) 6=
0 when u ∈ U . Formula (2.2) implies that passing from H to −H corresponds to
conjugating Fm,H . Thus, possibly after a reflection of H, there is m3 ≥ m2 and a
relatively open set V ⊂ U such that

(5.6) ImFm,H(u) > 0,

for each m ≥ m3 and u ∈ V . Formulas (5.3), (5.4), (5.5) and (5.6) imply

Fm,H(u) = Fm,K(u)
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for each m ≥ m3 and u ∈ V . Since Fm,K and Fm,H are analytic maps from Sn−1

to C, their coincidence in V implies their coincidence on the whole Sn−1, i.e.

Fm,H = Fm,K .

This and (4.2) conclude the proof. �

Proof of Theorem 1.1. Propositions 3.1-(IV) and (5.1) imply that, possibly after a
reflection of H, we have

τH(u) = τK(u)

for each u ∈ Sn−1. The uniqueness part in Minkowski’s Theorem [Sch93, Th. 7.2.1]
implies that H and K coincide, up to translations. �

Remark 5.2. Theorem 1.1 only proves that the covariogram determines a Cr(n)+

body among Cr(n)+ bodies. We are not able to prove that the determination holds
among all convex bodies.

6. Cross covariogram Problem for C
r(n)
+ regular bodies

Let H and K be convex bodies in Rn. The translation of H and K by the
same vector, and the substitution of H with −K and of K with −H, leave gH,K
unchanged. We call (H,K) and (H ′,K ′) trivial associates when one pair is obtained
by the other one via a combination of the two operations above.

Cross covariogram Problem. Does gH,K determine the pair (H,K) of convex
bodies among all pairs of convex bodies, up to trivial associates?

Bianchi [Bia09b] gives a complete answer to this problem when H and K are
convex polygons. In order to explain this result let us introduce some families of
sets.

Example 6.1. Let α, β, γ, δ, α′, β′, γ′ and δ′ be positive real numbers, m ∈ R,
y, y′ ∈ R2, I1 = [(−1, 0), (1, 0)], I2 = 1/

√
2 [(−1,−1), (1, 1)], I3 = [(0,−1), (0, 1)],

I4 = 1/
√

2 [(1,−1), (−1, 1)] and I5 = (1/
√

1 +m2) [(−m,−1), (m, 1)]. Assume
either m = 0, α′ 6= γ′ and β′ 6= δ′ or else m 6= 0 and α′ 6= γ′. We define four pairs
of parallelograms as follows (see Figure 1):

H1 = αI1 + βI2, K1 = γI3 + δI4 + y;

H2 = αI1 + δI4, K2 = βI2 + γI3 + y;

H3 = α′I1 + β′I3, K3 = γ′I1 + δ′I5 + y′;

H4 = γ′I1 + β′I3, K4 = α′I1 + δ′I5 + y′.

[Bia09b] proves that for i = 1, 3, we have gHi,Ki = gHi+1,Ki+1 but (Hi,Ki) is
not a trivial associate of (Hi+1,Ki+1). It also proves that, in the class of convex
polygons and up to an affine transformation, the previous counterexamples are the
only ones.

Theorem 6.2 (Bianchi [Bia09b]). Let H and K be convex polygons and H ′ and
K ′ be planar convex bodies with gH,K = gH′,K′ . Assume that there exist no affine
transformation T and no different indices i, j, with either i, j ∈ {1, 2} or i, j ∈
{3, 4}, such that (T H, TK) and (T H ′, TK ′) are trivial associates of (Hi,Ki) and
of (Hj ,Kj), respectively. Then (H,K) is a trivial associate of (H ′,K ′).

In this paper we are able to prove that no counterexample exists among pairs of
sufficiently regular planar convex bodies.

Theorem 6.3. Let H,K,H ′ and K ′ be planar convex bodies of class C8
+. Then

gH,K = gH′,K′ implies that (H,K) and (H ′,K ′) are trivial associates.
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H1

H2

o
y′

o

y

H4

K1

K2

H3

K4

K3

Figure 1. We have gH1,K1
= gH2,K2

and gH3,K3
= gH4,K4

. More-
over, up to affine transformations, these are the only pairs of planar
convex polygons with equal cross covariogram.

Proof. Formula (1.1) implies

1̂H(ζ) 1̂−K(ζ) = 1̂H′(ζ) 1̂−K′(ζ)

and, as a consequence,

Z(H)
⋃
Z(−K) = Z(H ′)

⋃
Z(−K ′),

where, for a convex body L ⊂ Rn, Z(L) = {ζ ∈ Cn : 1̂L(ζ) = 0}. This identity
implies, by Theorem 4.2, the existence of positive integers mi, i = 1, 2, 3, 4, such
that for each u ∈ S1

(6.1) {Fm,H(u) : m ≥ m1}
⋃
{Fm,−K(u) : m ≥ m2} =

= {Fm,H′(u) : m ≥ m3}
⋃
{Fm,−K′(u) : m ≥ m4} .

We first show that for each u ∈ S1 we have

(6.2) {wH(u), wK(u)} = {wH′(u), wK′(u)}.

Formula (2.1) implies

(6.3) wH + wK = wH′ + wK′ .

Let u ∈ Sn−1. If one of the elements of {wH(u), wK(u)} belongs to {wH′(u), wK′(u)},
then (6.3) implies (6.2). If wH(u) = wK(u) and wH′(u) = wK′(u), then again (6.3)
implies (6.2). Thus we may assume that one of the four numbers wH(u), wK(u),
wH′(u) and wK′(u) is strictly larger than the other ones. Let us assume

(6.4) wH(u) > max {wK(u), wH′(u), wK′(u)} .
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(The other cases can be treated similarly.) By (6.1) for each m ≥ m1 and i = 0, 1, 2
there exists li = li(m,u) such that

Fm+i,H(u) = Fli,H′(u)(6.5)

or Fm+i,H(u) = Fli,−K′(u).(6.6)

If (6.5) (if (6.6)) holds for a particular value of i we say that (6.5)i ((6.6)i, respec-
tively) holds. At least one between (6.5)0 and (6.6)0 holds for infinitely many values
of m, and let us assume that this happen for (6.5)0 (the other case can be treated
similarly). Note that (6.5)0 and (6.5)1 do not hold together when m is sufficiently
large. Indeed if they do we have Fm+1,H(u)−Fm,H(u) = Fl1,H′(u)−Fl0,H′(u). On
the other hand we have

Re (Fm+1,H(u)− Fm,H(u)) =
2π

wH(u)
+ O

(
1

m

)
,

Re (Fl1,H′(u)− Fl0,H′(u)) =
2π(l1 − l0)

wH′(u)
+ O

(
1

m

)
(the term O(1/m) in the first line may differ from that in the second line) and the
right-hand side of the first equation is strictly less than the right-hand side of the
second equation when m is sufficiently large, due to (6.4) and l0 < l1. A similar
argument proves that (6.6)1 and (6.6)2 do not hold together when m is sufficiently
large. Thus (6.5)0 and (6.5)2 hold for all m in an infinite set I. When m ∈ I we
have

Re (Fm+2,H(u)− Fm,H(u)) =
4π

wH(u)
+ O

(
1

m

)
,

Re (Fl2,H′(u)− Fl0,H′(u)) =
2π(l2 − l0)

wH′(u)
+ O

(
1

m

)
.

Arguing as above proves that l2 − l0 = 1 when m ∈ I and m is large enough. This
implies wH(u) = 2wH′(u). Thus Theorem 4.2 implies that when (6.5)0 holds we
have

π(4m+ 1)

2wH(u)
=
π(4l0 + 1)

wH(u)
+ O

(
1

m

)
.

This implies

m− 2l0 = 1/4 + O(1/m),

This equality does not hold when m is large, because m − 2l0 ∈ Z while 1/4 +
O(1/m) /∈ Z. This contradiction concludes the proof of (6.2).

Assume that there exists a relatively open subset U in S1 such that

(6.7) wH(u) 6= wK(u) for each u ∈ U .

Up to restricting U we may assume that

either wH(u) = wH′(u) and wK(u) = wK′(u) for each u ∈ U(6.8)

or wH(u) = wK′(u) and wK(u) = wH′(u) for each u ∈ U.(6.9)

Let us assume that (6.8) holds. (The other case can be treated similarly.) Formu-
las (4.2), (6.1), (6.7) and (6.8) imply that for each integer m ≥ m1 and for each
u ∈ U we have

(6.10) Fm,H(u) = Fm,H′(u) and Fm,−K(u) = Fm,−K′(u)

Since the four maps appearing in (6.10) are analytic maps from S1 to C2, we have
Fm,H(u) = Fm,H′(u) and Fm,−K(u) = Fm,−K′(u) for each u ∈ S1. The equalities
of the real parts imply

(6.11) wH = wH′ and wK = wK′ .
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The equalities of the imaginary parts imply

(6.12)
τH(−u)

τH(u)
=
τH′(−u)

τH′(u)
and

τ−K(−u)

τ−K(u)
=
τ−K′(−u)

τ−K′(u)

for each u ∈ S1. By Proposition 3.1-(III) the identities (6.11) imply

1

τH(u)
+

1

τH(−u)
=

1

τH′(u)
+

1

τH′(−u)
,

1

τ−K(u)
+

1

τ−K(−u)
=

1

τ−K′(u)
+

1

τ−K′(−u)

for each u ∈ S1. All these conditions imply τH = τH′ and τ−K = τ−K′ . The
uniqueness part in Minkowski’s Theorem [Sch93, Th. 7.2.1] implies H = H ′ + x1
and K = K ′ + x2, for suitable x1, x2 ∈ R2. The identity H + (−K) = supp gH,K =
supp gH′,K′ = H ′ + (−K ′) implies x1 = x2. This concludes the proof under As-
sumption (6.7).

If (6.7) does not hold, then (6.3) implies

(6.13) wH = wH′ = wK = wK′ .

We again distinguish two cases according to whether

(6.14)
τH(−u)

τH(u)
=
τ−K(−u)

τ−K(u)

holds for each u ∈ S1 or not. If (6.14) holds for each u ∈ S1 then, arguing as we
have done above we conclude that H = −K. This implies

Fm,H = Fm,−K

for each m. This, (4.2), (6.1) and (6.13) imply Fm,H = Fm,H′ = Fm,−K′ for each m
sufficiently large. This implies τH(−u)/τH(u) = τH′(−u)/τH′(u) = τ−K′(−u)/τ−K′(u)
for each u ∈ S1 and H = H ′ = −K ′. The proof is concluded in this case too.

It remains to consider the possibility that there exists a relatively open subset
U of S1 such that (6.14) is false for each u ∈ U . This and (6.13) imply that when
u ∈ U the real parts of Fm,H(u) and Fm,−K(u) coincide but their imaginary parts
differ. Formula (6.1) and the analyticity of Fm,H , Fm,−K , Fm,H′ and Fm,−K′ imply
that we have

Fm,H = Fm,H′ and Fm,−K = Fm,−K′ for infinitely many m(6.15)

or Fm,H = Fm,−K′ and Fm,−K = Fm,H′ for infinitely many m.(6.16)

If (6.15) holds then we have (6.12) and we conclude as before. When (6.16) holds
the proof is concluded by similar arguments. �

7. The Covariogram Problem and irreducibility of 1̂K

We say that an entire function g is irreducible if g cannot be written as the
product of two entire functions g1, g2 with g1 6= αg, for each α ∈ C, and both
{ζ ∈ Cn : g1(ζ) = 0} and {ζ ∈ Cn : g2(ζ) = 0} nonempty. Let f ∈ L2(Rn)

have compact support. Sanz and Huang [SH84] proves that if f̂ is irreducible

then f is determined, up to trivial associates, by the knowledge of |f̂(x)| for all
x ∈ Rn. Barakat and Newsam [BN84] and Stefanescu [Ste85] prove that if f1
and f2 belong to L2(R2), have compact support, are not trivial associates and

|f̂1(x)| = |f̂2(x)| for all x ∈ R2, then there exist two entire functions g1 and g2 such
that {ζ ∈ C2 : g1(ζ) = 0} and {ζ ∈ C2 : g2(ζ) = 0} are both nonempty and

(7.1) f̂1(ζ) = g1(ζ)g2(ζ) and f̂2(ζ) = ei(c+〈d,ζ〉)g1(ζ)g2
(
ζ
)
,
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for a suitable c ∈ R and d ∈ R2. Stefanescu [Ste13] believes that a similar result

holds true in any dimension n ≥ 2. It is not known whether the property that f̂ is

not irreducible implies that f is not determined by |f̂ |.
What is the significance of these results for the Covariogram Problem? Assume

that n = n1 + n2, with n1, n2 positive integers, and that the convex body K ⊂
Rn = Rn1 × Rn2 can be written as

(7.2) K = K1 +K2

with K1 ⊂ Rn1 and K2 ⊂ Rn2 convex bodies which are not centrally symmetric.
Then K ′ = K1 + (−K2) is not a translation or reflection of K and gK = gK′ (see
Bianchi [Bia09a]). All known examples of nondetermination for the Covariogram
Problem arise, up to a linear transformation, by a decomposition as in (7.2). This

decomposition generates a factorization of 1̂K as in (7.1). Indeed

1K = δK1 ∗ δK2 and 1K′ = δK1 ∗ δ−K2 ,

where δK1 and δK2 are the distributions defined for φ ∈ C∞0 (Rn) by

δK1(φ) =

∫
K1

φ(x, 0) dx, δK2(φ) =

∫
K2

φ(0, y) dy

(here x ∈ Rn1 , y ∈ Rn2 and dx and dy denote, respectively, Lebesgue measure in Rn1

and in Rn2) and δ−K2
is defined similarly. By the Paley-Wiener Theorem δ̂K1

, δ̂K2

and δ̂−K2
are entire functions in Cn of exponential type. Clearly δ̂−K2

(ζ) = δ̂K2

(
ζ
)

and we have

1̂K = δ̂K1 δ̂K2 and 1̂K′(ζ) = δ̂K1(ζ)δ̂K2

(
ζ
)
,

as in (7.1).
In view of these results it would be interesting to find explicit geometric con-

ditions on a convex body K which grants that 1̂K is irreducible. Regarding the
difficulty in answering to this question, consider the following subproblem.

Understand for which convex bodies K the function 1̂K is the product of a non-
trivial polynomial and an entire function.

Let us introduce some notation. Given a polynomial P (ζ) =
∑
|l|≤m clζ

l, where

m is a positive integer, l = (l1, . . . , ln) denotes a multi-index, cl ∈ C, |l| = li+· · ·+ln
and ζl = ζl11 . . . ζlnn , let P (D) denote the differential operator

P (D) =
∑
|l|≤m

(i)−|l|cl

(
∂l1/∂xl11

)
. . .
(
∂ln/∂xlnn

)
,

where ∂0/∂x0i denotes the identity operator. [Rud91, Theorem 8.4] states that

1̂K = Pf,

with f entire and P a polynomial, if and only if the problem

(7.3) P (D)u = 1K ,

has a solution u in the class of distributions with support contained in K. Here
û = f and (7.3) has to be understood in the sense of distributions. The Theorem
of supports for convolutions [Hor83, Theorem 4.3.3] and elementary considerations
imply that if a solution u to (7.3) exists then its support is K.

A particular instance of this problem has received much attention. When P (ζ) =
ζ21 + · · ·+ ζ2n − c, for some c > 0, (7.3) becomes

(7.4)

{
∆u+ cu = −1 in K

u = ∂u
∂ν = 0 on ∂K
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(ν denotes the exterior normal to ∂K). Let E ⊂ Rn be a bounded simply connected
Lipschitz domain. The Pompeiu Problem is a conjecture asserting that there exists
a nonzero continuous function f : Rn → R such that∫

T (E)

f dx = 0 for all rigid motions T in Rn

only when E is a ball. It is known that the Pompeiu Problem is equivalent to
proving that a solution to (7.4) (with K replaced by E) exists for some c > 0 only
if E is a ball (see Berenstein [Ber80]). Up to our knowledge these problems are still
open.

The example of a ball implies that the irreducibility condition is not necessary
for determination by covariogram. Indeed, when K is a ball a solution to (7.4)

exists and 1̂K factors. On the other hand, in any dimension a ball K is uniquely
determined by gK , as Theorem 1.2 implies.
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