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A FOURIER ANALYTIC PROOF OF THE BLASCHKE-SANTALÓ

INEQUALITY

GABRIELE BIANCHI AND MICHAEL KELLY

Abstract. The Blaschke-Santaló Inequality is the assertion that the volume

product of a centrally symmetric convex body in Euclidean space is maximized
by (and only by) ellipsoids. In this paper we give a Fourier analytic proof of

this fact.

1. Introduction

Let K be a convex body in RN , that is a compact convex subset of RN with non-
empty interior, and assume that the origin is an interior point of K. We associate
to K another convex body K∗, called the dual body or polar body of K, defined by

K∗ = {y ∈ RN : x · y ≤ 1 for each x ∈ K},
where x ·y is the usual scalar product. The terminology dual body is fitting, because
the unit ball of any norm in RN is a convex body and its dual body is the unit ball
of the corresponding dual norm.

Assume that K is origin symmetric, i.e. K = −K. The product

P (K) = volN (K)volN (K∗),

where volN denotes N -dimensional Lebesgue measure in RN , is called the volume
product of K. For a general convex body K the volume product P (K) is defined as
the minimum, for x in the interior of K, of volN (K)volN ((K − x)∗). Here K−x is
the translate of K by −x. The functional P (K) is an affine invariant and thus all
ellipsoids in RN have the same volume product, and all parallelotopes in RN have
the same volume product. Furthermore, P (K∗) = P (K), because (K∗)

∗
= K, and

as a consequence, for instance, the volume product of the unit cube in R3 (the `∞
unit ball) is the same as the volume product of the octahedron (the `1 unit ball).
All of these observations were made by Kurt Mahler in the 1930’s, in connection to
transference principles for linear forms (see Cassels [Cas92]).

A sharp upper bound for the volume product is given by the Blaschke-Santaló
Inequality.

Theorem (The Blaschke-Santaló Inequality). Let B denote the Euclidean unit ball
of RN . For every convex body K in RN

(1.1) P (K) ≤ P (B),

and equality holds if and only if K is an ellipsoid.

Inequality (1.1) was first proved by Blaschke [Bla17] for N = 2, 3, by San-
taló [San49] for any N . Petty [Pet85], completed the proof of the equality case.
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2 BIANCHI AND KELLY

These results were obtained in the context of affine differential geometry, as a con-
sequence of results on the affine isoperimetric inequality and of its equality cases.
Later proofs, which are more direct and use classical tools of convexity, are due,
among others, to Saint Raymond [Sai81], for origin symmetric bodies, and to Meyer
and Pajor [MP90]. See Schneider [Sch14] for a detailed account of the literature on
the volume product.

It is our goal in this paper to prove the previous theorem, in the class of origin
symmetric convex bodies, using a Fourier analytic approach. See Theorem 1 in
Section 3 for the statement.

The minimum of the volume product for N ≥ 3 is still unknown. It is conjectured
that, for a convex body K, we have

(1.2) P (K) ≥ (N + 1)N+1

(N !)2
,

with equality precisely for simplices, and that, for an origin symmetric convex body
K, we have

(1.3) P (K) ≥ 4N

N !
,

with equality holding for affine transforms of cubes, of crosspolytopes and, more
generally, for Hanner polytopes. Mahler [Mah39] was able to prove (1.2) and (1.3)
when N = 2.

Inequality (1.3) is known as Mahler conjecture and it has remained open for
over three quarters of a century. It has been proved in certain classes of bod-
ies, for instance when K is a zonotope (see Reisner [Rei85, Rei86]) or when K
is 1-unconditional, i.e. an affine transform of K is symmetric with respect to
each coordinate hyperplane (see Saint Raymond [Sai81]). Recently it has been
proved that the cube (see Petrov et al. [NPRZ10]) and every Hanner polytopes (see
Kim [Kim13]) are local minimizers of the volume product (and strict local mini-
mizers in the proper sense) in the class of origin-symmetric convex bodies. The
interested reader is advised to consult Tao [Tao08] for a very nice discussion about
the conjecture and some of its subtleties.

As far as we know, the Fourier analytic approach to study the volume product
has been first used by F. Nazarov. He [Naz12] used it, together with Hörmander’s
solution to the ∂̄ problem, to prove the Bourgain-Milman Inequality [BM87]

P (K) ≥ cN 4N

N !
,

where c > 0 is a constant not depending on N and K ⊂ RN is an origin symmetric
convex body. Ryabogin and Zvavitch [RZ] describes the ideas behind Nazarov’s
proof as well as those behind the proofs of some of the results on the Mahler
conjecture mentioned above.

The main object in our investigation is the following functional.

Definition 1. Given an origin symmetric convex body K ⊂ RN define

ρ(K) = inf

∫
RN

|F (x)|2dx,

where the infimum is taken over the class of square-integrable continuous functions
F : RN → C that satisfy

(1) |F (0)| ≥ 1, and



A FOURIER ANALYTIC PROOF OF THE BLASCHKE-SANTALÓ INEQUALITY 3

(2) F̂ (ξ) = 0 if ξ ∈ RN \K.

As we will prove in Section 3, ρ(K) = 1/volN (K) and the only minimizers
of ρ are admissible multiple of the inverse Fourier transform of the characteristic
function 1K of K. On the other hand, the Paley-Wiener Theorem (see next section)
states that the analytic extension to CN of every function F admissible for ρ has an
asymptotic behavior at infinity which is related to the norm whose unit ball is K∗.
This connection is at the hearth of this proof of the Blaschke-Santaló Inequality.

To deal with the equality cases, we will show that if K is origin symmetric and
P (K) = P (B), then, for each direction θ ∈ SN−1, there exists an ellipsoid E (which
a priori may depend on θ) such that for each hyperplane L orthogonal to θ the
(N − 1)-volume of the sections K ∩ L and E ∩ L coincide. This property, and a
result proved by M. Meyer and S. Reisner [MR89, Lemma 3], imply that K is an
ellipsoid.

In section 4 we introduce a variational quantity η(K) associated with an origin
symmetric convex body. It is essentially an L1 version of ρ(K). We state a con-
jecture (due to the second author and Jeffrey Vaaler) regarding the exact value of
η(K) and prove it when K is a ball or a cube.

For another problem in convex geometry where the Fourier transform of 1K in
Cn plays an important role see Bianchi [Bia13].

Gabriele Bianchi wishes to acknowledge that all proofs in this paper are due to
Michael Kelly, except for that of the equality case in the Blaschke-Santaló Inequal-
ity, which is due to himself.

2. Background and Notation

Throughout this paper z denotes an element of the complex numbers C, and z
denotes the complex conjugate of z. The symbol U = {z ∈ C : Im(z) > 0} denotes
the upper half plane of C, where Im(z) is the imaginary part of z. We use boldface
letters or symbols to denote vectors, x denotes a vector in RN , z a vector in CN ,
and Im(z) denotes the vector of the imaginary parts of z. We write volk for k-
dimensional Lebesgue measure in RN . By B and SN−1 we denote respectively the
Euclidean unit ball and unit sphere in RN . The symbol ωN−1 indicates the surface
area of SN−1.

The support function of a convex body K in RN is defined, for x ∈ RN , by

hK(x) = sup{x · y : y ∈ K}.

If K is an origin symmetric convex body and ‖ ·‖K∗ denotes the norm in RN whose
unit ball is K∗, i.e. ‖x‖K∗ = inf{λ > 0 : x ∈ λK∗}, we have

(2.1) hK(x) = ‖x‖K∗ .

Given a convex body K in Rn, t ∈ R and θ ∈ SN−1, we denote by SK(t,θ) the
Radon transform of the characteristic function 1K of K

SK(t,θ) = volN−1 ({x ∈ K : x · θ = t}) .

For a function F ∈ L2(RN ) the Fourier transform F̂ is defined for ξ ∈ RN by

F̂ (ξ) = lim
T→∞

∫
[−T,T ]N

e−2πix·ξF (x)dx.
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A function F : CN → C is an entire function if it is holomorphic, in each
coordinate separately, at each z ∈ CN . If F is an entire function, the complex
conjugate F ∗ of F , defined by F ∗(z) = F (z), is also an entire function.

Let K be an origin symmetric convex body in RN . Following Stein and Weiss
[SW71, §3.4] we call an entire function F of exponential type K∗ if for every ε > 0
there exists a constant cε > 0 such that, for every y ∈ RN ,

(2.2) |F (iy)| ≤ cεe2π(1+ε)‖y‖K∗ .

When F ∈ L2(RN ) is such that the support of F̂ is contained in K then it is well
known that F is the restriction to RN of the entire function defined, for z ∈ CN ,
by the formula

(2.3) F (z) =

∫
K

e2πiz·ξF̂ (ξ)dξ.

This representation and the Cauchy-Schwarz Inequality imply

|F (iy)| ≤
∫
K

∣∣∣e−2πy·ξF̂ (ξ)
∣∣∣ dξ ≤ volN (K)1/2

(∫
K

|F̂ (ξ)|2dξ
)1/2

e2πhK(y),

i.e., in view of (2.1), they imply that F is of exponential type K∗. The following
theorem (due to Paley and Wiener in the one dimensional case and Stein in the
general case) proves that these properties are equivalent.

Theorem (Paley-Wiener-Stein [SW71]). Let F ∈ L2(RN ) and let K be an origin
symmetric convex body. Then F is a.e. equal to the restriction to RN of an entire

function of exponential type K∗ if and only if the support of F̂ is contained in K.

3. Proof of the Blaschke-Santaló Inequality

Theorem 1. For every origin symmetric convex body K in RN

(3.1) P (K) ≤ P (B),

and equality holds if and only if K is an ellipsoid.

Proof. Our proof of (3.1) proceeds in two parts. First we show that

(3.2) ρ(K) =
1

volN (K)

and then we show that

(3.3)
ρ(B)

volN (B∗)
≤ ρ(K)

volN (K∗)
.

Plugging (3.2) into (3.3) and rearranging terms yields (3.1).
We say that a continuous F ∈ L2(RN ) is admissible for ρ(K) provided that F

satisfies conditions (1) and (2) in the definition of ρ.
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Let us prove (3.2). Let F (x) be an admissible function for ρ(K). Condition

(1) is equivalent to
∣∣∣∫K F̂ (ξ)dξ

∣∣∣ ≥ 1, due to formula (2.3). We can thus write

(3.4)

1 ≤
∣∣∣∣∫
K

F̂ (ξ)dξ

∣∣∣∣2
≤ volN (K)

∫
K

∣∣∣F̂ (ξ)
∣∣∣2 dξ

= volN (K)

∫
RN

|F (x)|2 dx

≤ volN (K)ρ(K).

The inequality in the second line is a consequence of Cauchy-Schwarz Inequality,
and the equality in the third line is a consequence of Parseval’s Identity. Note that,
by the discussion of the equality cases in Cauchy-Schwarz Inequality, F minimizes
ρ(K) if and only if F is an admissible multiple of the inverse Fourier transform of
1K , i.e.

(3.5) F (x) =
α

volN (K)

∫
K

e2πix·ξdξ

for some α ∈ C, with |α| = 1. This concludes the proof of (3.2).
Now let us prove (3.3). Let F (x) be an admissible function for ρ(K). Without

loss of generality we may assume that F (x) is even. This is because the even part
of F (x) is admissible for ρ(K) and (by the triangle inequality) has a L2-norm less
than or equal to that of F (x). Let us denote by F also the entire extension of F
defined by (2.3).

For each θ ∈ SN−1, we define a function Gθ : C→ C as

Gθ(z) = F (zθ).

This is an even entire function of exponential type [−‖θ‖−1
K∗ , ‖θ‖−1

K∗ ], by (2.2). Note
that, since Gθ(z) is even, there exists an entire function Hθ(z) such that Gθ(z) =
Hθ(z2). Finally we define Rθ : CN → C as the radial extension of Gθ(z), i.e., as

Rθ(z) = Hθ
(
z2

1 + · · ·+ z2
N

)
.

By Fubini’s Theorem,
∫ +∞

0
|F (rθ)|2rN−1dr exists finite almost for every θ ∈ SN−1,

i.e. the restriction of Rθ to RN is square-summable almost for every θ ∈ SN−1. We
clearly have

(3.6)

∫
RN

|F (x)|2dx =

∫
SN−1

∫ ∞
0

|F (rθ)|2rN−1dr dσ(θ)

=
1

ωN−1

∫
SN−1

∫
RN

|Rθ(x)|2dx dσ(θ),

where dσ is the standard surface measure on SN−1.
The function Rθ(z) satisfies |Rθ(0)| ≥ 1, it is entire and the support of the

Fourier transform of the restriction of Rθ to RN is contained in the ball ‖θ‖K∗B.
The last claim is a consequence of the Paley-Wiener Theorem, of the fact that
Rθ(z) is of exponential type ‖θ‖−1

K∗B and of ‖θ‖−1
K∗B = (‖θ‖K∗B)∗. The function
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Rθ(x) is thus admissible for ρ (‖θ‖K∗B). Therefore

(3.7)

∫
RN

|Rθ(x)|2dx ≥ ρ (‖θ‖K∗B)

= ‖θ‖−NK∗ ρ(B),

since ρ is positively homogeneous of degree −N .
The set K∗ can be represented in polar coordinates as

K∗ = {ρθ : θ ∈ SN−1, 0 ≤ ρ ≤ ‖θ‖−1
K∗},

and therefore

(3.8)
volN (K∗)

volN (B∗)
=

1

ωN−1

∫
SN−1

‖θ‖−NK∗ dσ(θ).

Using (3.6), (3.7) and (3.8) we obtain

(3.9)

∫
RN

|F (x)|2dx ≥ ρ(B)
volN (K∗)

volN (B∗)
.

The inequality (3.3) then follows upon taking the infimum over all admissible func-
tions F (x).

Let us now prove that we have equality in (3.1) only when K is an
ellipsoid. Let F (x) be as in (3.5), with α = 1. This function is admissible for
ρ(K), is even and

∫
RN |F (x)|2dx = ρ(K). Therefore equality holds in (3.1) if and

only if equality holds in (3.9). The proof of (3.9) reveals that this happens if
and only if Rθ(x) minimizes ρ(‖θ‖K∗B) almost for every θ ∈ SN−1. In view of
the discussion at the end of the proof of (3.2) and of the definition of Rθ, this is
equivalent to saying that almost for every θ ∈ SN−1 and for every r ≥ 0, F (rθ)
coincides with an admissible multiple of the restriction to the ray {rθ : r ≥ 0} of
the inverse Fourier transform of 1‖θ‖K∗B . This is equivalent to saying that there
exists α(θ) ∈ C with |α(θ)| = 1 such that for each r ∈ R

(3.10)
1

volN (K)

∫
K

e2πirθ·ξdξ =
α(θ)

volN (‖θ‖K∗B)

∫
‖θ‖K∗B

e2πirθ·ξdξ.

Since, by Fubini’s Theorem, the n-dimensional inverse Fourier transform of 1K is
the 1-dimensional inverse Fourier transform of the Radon transform SK of K, (3.10)
can be rewritten as

1

volN (K)

∫
R
e2πirtSK(t,θ) dt =

α(θ)

volN (‖θ‖K∗B)

∫
R
e2πirtS‖θ‖K∗B(t,θ) dt.

This identity implies that for each t ∈ R and almost for every θ ∈ SN−1

(3.11)
1

volN (K)
SK(t,θ) =

α(θ)

volN (‖θ‖K∗B)
S‖θ‖K∗B(t,θ).

By continuity the previous identity holds for each θ ∈ SN−1. Moreover, since
|α(θ)| = 1 and each other term in (3.11) is non-negative, we have α(θ) = 1.

For θ ∈ SN−1 and t ∈ R let

DK(t,θ) = volN ({x ∈ K : x · θ ≥ t ‖θ‖K∗}) .
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Meyer and Reisner [MR89, Lemma 3] proves that if DK(t,θ) does not depend on
θ for each t ∈ [0, 1] then K is an ellipsoid. We prove that this is the case. We write

(3.12) DK(t,θ) =

∫ ‖θ‖K∗

t‖θ‖K∗

SK(r,θ)dr.

Formula (3.11) implies

DK(t,θ) =
volN (K)

hK(θ)NvolN (B)

∫ ‖θ‖K∗

t‖θ‖K∗

S‖θ‖K∗B(r,θ)dr

=
ωN−2volN (K)

hK(θ)NvolN (B)

∫ ‖θ‖K∗

t‖θ‖K∗

(
‖θ‖2K∗ − r2

)N−1
2 dr

=
ωN−2volN (K)

volN (B)

∫ 1

t

(
1− s2

)N−1
2 ds.

This concludes the proof. �

Remark 1. The validity of (3.11), with α(θ) = 1, for a given θ and for each t ∈ R
is equivalent to the existence of an ellipsoid E(θ) such that SK(t,θ) = SE(θ)(t,θ)
for each t ∈ R.

4. A related variational quantity

Another extremal quantity related to ρ(K) is the “L1−version” η(K).

Definition 2. Given a convex body K define

η(K) = inf

∫
RN

F (x)dx

where the infimum is taken over the class of non-zero continuous functions F (x)
that satisfy

(1) F (x) ≥ 0 for every x ∈ RN ,
(2) F (0) ≥ 1, and

(3) F̂ (ξ) = 0 if ξ ∈ RN \K.

When K is a cube, the infimum is achieved by the Fejér kernel. An extremal
function for a generic origin symmetric convex body K can then be thought of as
a “Fejér kernel associated with K.” On another level, the determination of η(K)
is perhaps the simplest form of the so-called Beurling-Selberg extremal problem in
several variables. The difficulty in determining η(K) is the non-negativity, which
is awkward from the Fourier analytic point of view. In the single variable case
the function F (x) can be factored as F (x) = |U(x)|2 where U(x) is admissible for
ρ(K/2). In several variables such a factorization is not generally available, and is
known to be false for trigonometric polynomials of two or more variables. However,
Jeff Vaaler and the second author conjecture that there are extremal functions for
η(K)that do admit such a factorization.

Conjecture. For any origin symmetric convex body K ⊂ RN , we have

η(K) =
2N

volN (K)
.
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Remark 2. From (3.2) it follows that η(K) ≤ ρ(K/2) = 2Nρ(K) = 2NvolN (K)−1.
The above conjecture asserts that there is equality in this inequality for every origin
symmetric convex body K.

Our main goal in this section is to prove that this conjecture holds when K is a
ball and when K is a cube.

Theorem 2. Let B ⊂ RN be the Euclidean unit ball and Q ⊂ RN be the Euclidean
unit cube. Then

(4.1) η(B) =
2N

volN (B)

and

(4.2) η(Q) =
2N

volN (Q)
.

The result (4.1) is implicit in the work of Holt and Vaaler [HV96]. Since the
proof of this result does not require the full force of the Holt-Vaaler machinery we
will provide a self contained proof here.

Proof. Suppose F (z) is an admissible function for η(B). By averaging over SO(N)
we find that ∫

RN

F (x)dx =

∫
RN

∫
SO(N)

F (gx)dµ(g)dx

where µ is the normalized Haar measure on SO(N), and that the function

x 7→
∫
SO(N)

F (gx)dµ(g)

is admissible. In view of this observation we can safely limit our search to extremal
functions that are radial. We will see momentarily that the extremal function we
find can be factored as F (z) = U(z)U∗(z) where U(z) is square integrable and

radial on RN and Û(ξ) is supported in 1/2B. This allows us to recast the extremal
problem as a minimization problem in a Hilbert space of the form

Hδ = C(RN ) ∩
{
U(x) ∈ L2(RN ) : Û(ξ) = 0 whenever ξ 6∈ δB

}
,

specifically when δ = 1/2. The space Hδ is a Hilbert space with respect to the
L2(RN )-inner product 〈·, ·〉 with the property that for every z ∈ CN and f ∈ Hδ

(4.3) f(z) = 〈f,K(z, ·)〉
where

(4.4) K(ω, z) =

∫
δB

e−2πi(z−ω)·ξdξ.

We identify the elements of Hδ with their entire extensions to CN . Let Hδ be the
1-dimensional case of Hδ, that is Hδ = Hδ when N = 1. Functions in Hδ which
are real-valued and non-negative on the real axis enjoy a factorization akin to that
for non-negative trigonometric polynomials given by the Fejér-Riesz theorem. The
following proposition1 is of central importance in the establishment of (4.1), because
it allows us to take an awkward L1-minimization problem and reformulate it as a
minimization problem in Hilbert space.

1This proposition, due to Ahiezer [Ahi48, Boa54, dB68], is essentially the original Fejér-Riesz
theorem [RSN55].
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Proposition 1. Suppose F (z) ∈ Hδ is real valued and non-negative on the real
axis and that F (z) is not identically zero. Then there exists an entire function
U(z) ∈ Hδ/2 such that U(z) is zero-free in U and F (z) = U(z)U∗(z). If F (z) is
also even, then F (z) admits the factorization

F (z) = z2kQ(z)V (z)V ∗(z)

where k is the multiplicity of the possible zero at z = 0, Q(z) has only purely
imaginary zeros, and V (z) is even.

Proof. Let {ωn : n = 1, 2...} be the zeros of F (z), listed with appropriate multiplic-
ity, in the upper half plane and let

BN (z) =

N∏
n=1

1− z/ωn
1− z/ωn

.

We define a sequence of entire functions FN (z) by FN (z) = BN (z)F (z). Each of
the functions FN (z) is in Hδ by the Paley-Wiener theorem. Since ‖F‖ = ‖FN‖ for
each N , it follows that a subsequence of FN converges weakly to some G(z) in the
Hilbert space. By (4.3) it follows that FN (z)→ G(z) pointwise for a subsequence.
Since |BN (z)| ≥ 1 if z ∈ U with equality when z is real, it follows that G(z) is zero
free in U and that |G(t)| = |F (t)| for real t. This shows that F (z)2 = F (z)F ∗(z) =
G(z)G∗(z). In particular the non-real zeros of G(z) occur with even multiplicity.

Since F (z) is real valued and non-negative on R, the zeros of G(z) occur with
even multiplicity and so there is an entire function U(z) for which G(z) = U(z)2.

Then F (z)2 = {U(z)U∗(z)}2 and since F (z) is real valued and non-negative on R
it follows that F (z) = U(z)U∗(z).

If F (z) is even, write U(z) = zkp(z)R(z)R∗(−z) where: R(z) contains the zeros
of U(z) which have strictly positive real part, p(z) contains only purely imaginary
zeros, and k is the multiplicity of the zero at 0. Let V (z) = R(z)R(−z) and
Q(z) = p(z)p∗(z). �

We now introduce a notation for restrictions and extensions for radial functions.
If the restriction of G(z) to RN is radial, we let g(z) denote its restriction to one
of the coordinate axes. Similarly if g(z) is an even entire function, we may extend
g(z) to a radial function G(z) on CN by

G(z) =

∞∑
`=0

g(2`)(0)

(2`)!

{
z2

1 + · · ·+ z2
N

}`
.

Let F (z) be an admissible function for our problem and assume that F (z) is radial.
Then the corresponding restriction f(z) is an even function in H1 that is real-valued
and non-negative on the real axis. Therefore f(z) admits the representation

f(z) = q(z)v(z)v∗(z)

where q(z) and v(z) are even entire functions and q(z) has only purely imaginary
zeros. We choose the functions in such a way that |v(0)|2 = q(0) = 1. Seeing that
q(z) and v(z) are even, we extend them to CN to obtain the following factorization
for F (z)

F (z) = Q(z)V (z)V ∗(z).
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The integral of F (x) now has the form∫
RN

F (x)dx =

∫
RN

Q(x)|V (x)|2dx

But if F (x) is extremal, then q(z) is zero free. Suppose, by way of contradiction,
that q(z) has a zero at say iy for y > 0. Then

q(z) =

(
1 +

z2

y2

)
q̃(z)

for some even entire function q̃(z) such that q̃(0) = 1, and q̃(x) ≥ 0 for real x. In
particular, q̃(x) < q(x) for all non-zero real numbers x. This plainly shows that

the admissible function F̃ (z) = Q̃(z)V (z)V ∗(z) has smaller L1-norm than F (z).
Therefore we may assume

F (z) = V (z)V ∗(z)

where V (x) ∈ H1/2. But by the Cauchy-Schwarz Inequality and (4.3)

1 ≤ F (0) = |V (0)|2 ≤ K(0,0)‖V ‖22 = volN (1/2B)‖V ‖22.
where equality occurs if and only if F (0) = 1 and V (z) is a scalar multiple of
K(0, z). But

‖V ‖22 =

∫
RN

F (x)dx.

Therefore

η(B) =
2N

volN (B)
.

Now we will show (4.2), but for Q = [−1, 1]N .

Suppose that F (x) is an admissible function for η(Q). Then by the Poisson
summation formula (see, for instance, [SW71])

1 ≤
∑

n∈ZN

F (n) =
∑

m∈ZN

F̂ (m) = F̂ (0) =

∫
RN

F (x)dx.

We note that both expressions in the Poisson summation formula converge abso-
lutely by a classical result of Polyá and Plancherel [PP37]. By taking the infimum
over all admissible functions F (x), we find that η(Q) ≥ 1. But the function

F (x) =

N∏
n=1

{
sinπxn
πxn

}2

.

is admissible for η(Q) and integrating F (x) one variable at a time, we find that its
integral is equal to 1. This shows η(Q) = 2NvolN (Q)−1 = 1.
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