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Università degli Studi di Firenze,

Via S. Marta 3, I-50139 Firenze, Italy.
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We develop causality theory for upper semi-continuous distributions of cones over mani-

folds generalizing results from mathematical relativity in two directions: non-round cones
and non-regular differentiability assumptions. We prove the validity of most results of the

regular Lorentzian causality theory including: causal ladder, Fermat’s principle, notable

singularity theorems in their causal formulation, Avez-Seifert theorem, characterizations
of stable causality and global hyperbolicity by means of (smooth) time functions. For

instance, we give the first proof for these structures of the equivalence between stable

causality, K-causality and existence of a time function. The result implies that closed
cone structures that admit continuous increasing functions also admit smooth ones. We

also study proper cone structures, the fiber bundle analog of proper cones. For them we

obtain most results on domains of dependence. Moreover, we prove that horismos and
Cauchy horizons are generated by lightlike geodesics, the latter being defined through

the achronality property. Causal geodesics and steep temporal functions are obtained

with a powerful product trick. The paper also contains a study of Lorentz-Minkowski
spaces under very weak regularity conditions. Finally, we introduce the concepts of stable

distance and stable spacetime solving two well known problems (a) the characterization

of Lorentzian manifolds embeddable in Minkowski spacetime, they turn out to be the
stable spacetimes, (b) the proof that topology, order and distance (with a formula a

la Connes) can be represented by the smooth steep temporal functions. The paper is
self-contained, in fact we do not use any advanced result from mathematical relativity.

1

ar
X

iv
:1

70
9.

06
49

4v
4 

 [
gr

-q
c]

  6
 D

ec
 2

01
8



2 E. Minguzzi

Contents

1 Introduction 2

1.1 Lorentzian embeddings into Minkowski spacetime . . . . . . . . . . . 6

1.2 The distance formula . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Notations and conventions . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Causality for cone structures 10

2.1 Causal and chronological relations . . . . . . . . . . . . . . . . . . . 16

2.2 Notions of increasing functions . . . . . . . . . . . . . . . . . . . . . 26

2.3 Limit curve theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4 Peripheral properties and lightlike geodesics . . . . . . . . . . . . . . 29

2.5 Future sets and achronal boundaries . . . . . . . . . . . . . . . . . . 33

2.6 Imprisoned causal curves . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.7 Stable causality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.8 Reflectivity and distinction . . . . . . . . . . . . . . . . . . . . . . . 41

2.9 Domains of dependence and Cauchy horizons . . . . . . . . . . . . . 43

2.10 Global hyperbolicity and its stability . . . . . . . . . . . . . . . . . . 46

2.11 The causal ladder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.12 Fermat’s principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.13 Lorentz-Finsler space . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.14 Stable distance and stable spacetimes . . . . . . . . . . . . . . . . . 71

2.15 Singularity theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3 Special topics 87

3.1 Proper Lorentz-Minkowski spaces and Legendre transform . . . . . . 87

3.2 Stable recurrent set . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3.3 Hawking’s averaging for closed cone structures . . . . . . . . . . . . 99

3.4 Anti-Lipschitzness and the product trick . . . . . . . . . . . . . . . . 102

3.5 Smoothing anti-Lipschitz functions . . . . . . . . . . . . . . . . . . . 107

3.6 Equivalence between K-causality and stable causality . . . . . . . . 112

3.7 The regular (C1,1) theory . . . . . . . . . . . . . . . . . . . . . . . . 119

4 Applications 120

4.1 Functional representations and the distance formula . . . . . . . . . 120

4.2 Lorentzian embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . 130

1. Introduction

In this work we shall generalize causality theory, a by now well known chapter of

mathematical relativity [1–4], in two directions: non-round cones and weak differen-

tiability assumptions. Ultimately we use the generalized theory to prove results in

Lorentzian geometry: namely we characterize the Lorentzian submanifolds of (flat)

Minkowski spacetime, they turn out to be the stable spacetimes, and prove the
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smooth Lorentzian distance formula.

Concerning the weakening of differentiability conditions, Hawking and Ellis [1,

Sec. 8.4] already discussed the validity of singularity theorems under a C1,1 assump-

tion on the Lorentzian cone distribution. They were concerned that the (geodesic)

singularities predicted by the singularity theorems could just signal a violation of

the assumed differentiability conditions. If so the spacetime continuum would sur-

vive the singularity in a rougher form. Since the optimal differentiability condition

for the existence and uniqueness of geodesics is C1,1 it was particularly important

to weaken the differentiability assumption from C2 to C1,1. Furthermore, since the

Einstein’s equations relate the Ricci tensor to the stress-energy tensor, and since

the energy density is discontinuous at the surface of a gravitational body, say a

planet, mathematically one would naturally consider metrics with second deriva-

tive in L∞loc which suggests again to consider C1,1 metrics. Senovilla [5] stressed this

point emphasizing that the C2 condition enters at several key places of causality

theory. In fact, the existence of convex neighborhoods, which was continuously used

in local arguments, seemed to require that assumption.

The problem was solved in [6–8] where it was shown that under a C1,1 dif-

ferentiability assumption convex neighborhoods do exist and the exponential map

provides a local lipeomorphism. From here most results of causality theory fol-

low [6]; Kunzinger and collaborators explored the validity of the singularity theo-

rems under weak differentiability assumption [9–11], while the author considered

the non-isotropic case [12].

At the time some results had already signaled these possibilities. It was clear that

causality theory had to be quite robust. Most arguments were topological in nature,

and it was understood that several results really belonged to more abstract theories.

For instance, we used Auslander-Levin’s theorem on closed relations to infer the

existence of time functions, or to prove the equivalence between K-causality and

stable causality [13]. Time functions had little to do with Lorentzian cones, rather

they were a byproduct of the Seifert relation JS being closed. Meanwhile, Fathi

and Siconolfi [14,15] showed that some results of causality theory connected to the

existence of smooth time functions in stably causal or globally hyperbolic spacetimes

really could be generalized to C0 cone structures. They used methods from weak

KAM theory. Recently, Bernard and Suhr [16] have used methods from dynamical

system theory, particularly Conley theory, to prove similar results under upper

semi-continuity assumptions on the cone distribution.

Different smoothing techniques which reached the same results in the C2 theory

had been developed by Chruściel, Grant and the author [17]. They were in line with

the traditional strategy associated to the names of Geroch, Seifert and Hawking,

who used volume functions to build time functions [1, 18–20] (Seifert’s paper is

generally regarded as flawed, but our work which is much in his spirit, showed the

usefulness of some of his ideas on the smoothing problem). The main strategy was

to smooth anti-Lipschitz time functions where anti-Lipschitzness was a property

naturally shared by Hawking’s average time function.
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A first question that we wish to ask in this work is the following: are these

volume functions methods still valuable under low differentiability assumptions?

We shall prove that they are. We shall obtain all the standard result of the C2

theory under an upper semi-continuity assumption on the cone distribution using

volume functions. In fact we shall prove some important results that so far have

not appeared in the literature, such as the equivalence between (i) stable causality,

(ii) K-causality, and (iii) the existence of a time function, cf. Th. 2.30. We shall

also obtain some known equivalences for global hyperbolicity clarifying the role of

Cauchy hypersurfaces cf. Th. 2.45.

The proofs will require some modifications since we met the following difficul-

ties. Hawking’s average time function is no more anti-Lipschitz, in fact its anti-

Lipschitzness was proved using the existence of convex neighborhoods which now

are no more at our disposal. The problem is solved constructing an averaged volume

function in M×R, showing that one level set S0 intersects every R fiber, and taking

the graphing function of S0 as time function. This product trick will prove to be

extremely powerful, giving optimal conditions for the existence of steep time func-

tion and leading to the solution of some other problems that we present in the last

section. Another difficulty that might be mentioned is the following: in the glob-

ally hyperbolic case the simpler Geroch’s time function construction does not work

anymore. In order to get the equivalence of global hyperbolicity with the existence

of a Cauchy smooth steep time functions, we improved the proof of the stability

of global hyperbolicity and the smoothing technique for anti-Lipschitz functions,

which now provides a bound on the derivative of the smooth approximation.

Of course, causality theory is not just time functions. We have mentioned that

it is possible to make sense of most of the theory under a C1,1 assumption. Even

before a satisfactory theory for the C1,1 case was available Chruściel and Grant

[17] approached Lorentzian causality theory under a C0 assumption. They met

some important difficulties connected to the failure of some standard results of

causality theory, such as the result I ◦ J ∪ J ◦ I ⊂ I, on the composition of the

chronological and causal relations. Their theory seemed to work well only under

locally Lipschitz regularity and did not include results involving lightlike geodesics.

It was an important limitation since many interesting results of causality theory

are connected with the study of lightlike geodesics, particularly those running on

the Cauchy horizons. Some of the questions were addressed by Sämann [21] who

obtained results on global hyperbolicity and stable causality for C0 Lorentzian

structures and proved a version of the Avez-Seifert theorem. Related applications

also followed, for instance with the C0 inextendibility studies [22, 23]. However,

most questions, particularly those connected to geodesics, remained unanswered.

The present work solves many of these problems by showing that most of causal-

ity theory holds for closed (upper semi-continuous) cone structures. Probably, the

most characteristic result of causality theory concerns the validity of the causal lad-

der of spacetimes [1–3]. This classical result confers the theory an order and beauty

which would justify by itself interest in causality. We prove that the whole causal
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ladder holds true for closed cone structures. Of course, many proofs differ from the

Lorentzian C2 ones.

Next we define the lightlike geodesics using the local achronality property (which

in the C1,1 theory is derived [6, Th. 6]) and show that horismos are indeed generated

by lightlike geodesic.

The study of achronal boundaries suggests to work with proper cone structures.

They are slightly more restrictive than closed cone structures, and represent the

bundle analog of proper cones (sharp convex closed cones with non-empty interior).

We show that most classical result on Cauchy developments pass to the proper cone

structure case, for instance Cauchy horizons are generated by lightlike geodesics.

These results seem remarkable since proper cone structures are again upper semi-

continuous cone distributions and several properties which were believed to be

essential for causality theory, including I ◦ J ∪ J ◦ I ⊂ I, still fail for them.

So far we did not mention how to introduce the metrical properties, and have

been concerned with just the causal (one would say conformal in the Lorentzian

setting) properties. Here we use repeatedly this idea: the metrical theory can be

regarded as a causality theory on a manifold with one additional dimension M× =

M × R. The so called Lorentz-Finsler function F : C → [0,+∞), which provides

the length of causal vectors, is regarded as defining a cone structure C× or C↓

on M×, cf. Eqs. (2.5) and (3.16). A Lorentz-Finsler space (spacetime) is just a

cone structure on M×. So we do not need to develop some new theory, rather we

work out a causality theory on M×. For instance, causal geodesics are defined as

the projections of the lightlike geodesics defined through the local C×-achronality

property on M×.

Using these ideas we are able to give a version of the Avez-Seifert theorem and

of Fermat’s principle, and also to prove causal versions of Penrose’s, Hawking’s,

and Hawking and Penrose’s singularity theorems. The differentiability assumptions

for the validity of these causality results are really much weaker than those to be

found in previous literature and, furthermore, they hold for anisotropic cones, see

Sec. 2.15 for a discussion.

Some important more specific topics require many pages for their proper study.

We have placed them in Chap. 3 where they do not distract from the main line

of development devoted to causality theory. The first section concerns the study

of Lorentz-Minkowski spaces and the proof that the reverse triangle inequality,

reverse Cauchy-Schwarz inequality, and the duality between Finsler Lagrangian and

Hamiltonian hold under very weak regularity conditions. These results motivate

some of our terminology which refers to Lorentz-Finsler spaces. The subsequent

sections are devoted to the smoothing techniques and to the construction of anti-

Lipschitz and steep time functions. Here Sec. 3.2-3.6 must be read in this order.

The last section 3.7 summarizes what is gained by passing to the regular theory,

but can be skipped on first reading.

In the last section we show that causality theory for anisotropic cones has some-

thing important to say on apparently unrelated questions. We shall use it as a tool
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to solve two well known problems in whose formulations anisotropic cones do not

appear. They are the problem of characterizing the Lorentzian submanifolds of

Minkowski spacetime, and the problem of proving the Lorentzian distance formula.

We devote the next two subsections of this Introduction to their presentation, here

we just mention that their solutions use the notions of stable distance and stable

spacetime which we introduce in Sec. 2.14. We shall show that the stable distance

is the most convenient distance for stably causal spacetimes.

As a last observation, this work is self-contained. References are provided mostly

for acknowledgment, so the work could be used as an introduction, though advanced,

to causality theory.

1.1. Lorentzian embeddings into Minkowski spacetime

The Nash embedding theorem for non-compact manifolds states

Theorem 1.1. Any Riemannian n-dimensional manifold with Ck metric, k ≥ 3,

admits a Ck isometric imbedding into some N -dimensional Euclidean space EN .

The optimal value N0(n) will be referred as Nash dimension. It must be men-

tioned that according to Bob Solovay, and as acknowledged by Nash, the proof

of the original bound N0 ≤ 1
2 (3n3 + 7n2 + 11n) for the non-compact case con-

tained a small error. Once amended Solovay obtained the slightly worse bound

N0 ≤ 1
2 (3n3 + 7n2 + 11n) + 2n + 1. Greene [24], Gromov and Rokhlin [25], and

Günther [26] obtained better bounds under stronger differentiability assumptions.

One could have expected the embedding to be Ck+1, however it is really Ck,

see the review by Andrews for a discussion of this subtle point [27].

It was also proved by Clarke [28], Greene [24], Gromov and Rokhlin [25], and

Sokolov [29,30], that pseudo-Riemannian manifolds (M, g) with metrics g of signa-

ture (p, q) can be isometrically emebedded into pseudo-Euclidean space Ep
′,q′ , for

some p′ > p, q′ > q.

The Lorentzian signature (−,+, · · · ,+) has peculiar properties. Any pseudo-

Riemannian metric splits the tangent space TpM\0, into what might be called the

causal g(y, y) ≤ 0, y 6= 0, and the spacelike g(y, y) > 0 vectors, however only

under Lorentzian signature the set of causal vectors is disconnected in the induced

topology. In fact it is the union of two convex sharp cones. The Lorentzian manifold

is said to be time orientable if it admits the existence of a continuous causal vector

field V . In that case one can call the cone containing V , future (denoted C by

us) while calling past the opposite one. In so doing the Lorentzian manifold gets

time oriented. Connected time oriented Lorentzian manifolds are called spacetimes.

Thus the Lorentzian signature brings into the manifold a causal order induced by

a distribution of convex sharp cones. Of course this peculiarity stays at the very

foundation of Einstein’s general relativity where connected time oriented Lorentzian

manifolds are used as model spacetimes.

In this work we shall be concerned with the existence of isometric embeddings of
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Lorentzian manifolds into the Lorentzian space EN,1. The latter space is connected

and can be trivially given a time orientation, in which case it is called Minkowski

spacetime. We shall solve the problem of characterizing those Lorentzian manifolds

that can be regarded as submanifolds of EN,1. Equivalently, we shall solve the

problem of characterizing those spacetimes (M, g) which can be regarded as sub-

manifolds of Minkowski spacetime. Clearly, not all spacetimes can be so embedded,

for instance, those that admit closed causal curves cannot. As a consequence, the

solution will call for metric and causality conditions on (M, g). Given the relevance

of Lorentzian spacetimes for general relativity, it has to be expected that the class

of spacetimes isometrically embeddable in Minkowski could play a significative role

in Physics.

Our final result can be formulated in a very simple way:

A spacetime is isometrically embeddable in Minkowski iff it is stable.

Here a spacetime is stable if (a) its causality and (b) the finiteness of the Lorentzian

distance, are stable under small perturbations of the metric i.e. in the C0 topology

on metrics. This is a rather large class of spacetimes, much larger than that of

globally hyperbolic spacetimes. For instance, we shall prove that the stably causal

spacetimes for which the Lorentzian distance is finite and continuous are of this

type.

The problem of isometrically embedding a spacetime into a Minkowski spacetime

of a certain dimension is an old one. Clarke [28] proved that globally hyperbolic

manifolds can be so embedded. The proof relied on some smoothness issues that

had yet to be fully settled at the time, so a complete proof was really obtained only

recently by Müller and Sánchez [31] through a different strategy.

As a preliminary step they observed that the embedding of (M, g) into

Minkowski spacetime is equivalent to the existence of a steep temporal function

on (M, g). In particular, (M, g) has to be stably causal. We recall that a spacetime

is stably causal if causality is stable in the C0 topology on metrics. Moreover, a

smooth steep temporal function is just a function t such that dt is positive on the

future cone C, and −g−1(dt,dt) ≥ 1. Using the reverse Cauchy-Schwarz inequality

the latter condition can be replaced by dt(y) ≥
√
−g(y, y) for every y ∈ C. In

short, they are functions which increase sufficiently fast over causal curves.

The argument for the mentioned equivalence is simple. Let {x0, x1, · · ·xN} be

the canonical coordinates on EN,1, ds2 = −(dx0)2 +
∑
i≥1(dxi)2. One direction

follows observing that the restriction of x0 to the submanifold provides the steep

temporal function (the steepness condition for a function passes to submanifolds as

can be easily seen from its second characterization given above). For the converse,

let ḡ be the semi-definite metric coincident with g on ker dt, and which annihilates

∇gt. Then g = −βdt2 + ḡ, with β−1 = −g−1(dt, dt) ≥ 1. Consider the Riemannian

metric gR = (4 − β2)dt2 + ḡ. If the Nash embedding of (M, gR) is in : M → EN ,

then the map i : M → EN,1, p 7→ (2t(p), in(p)) is an isometric embedding of (M, g)
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on Minkowski space.

This result moves the problem to that of characterizing those spacetimes which

admit a smooth steep temporal function. In the same article Müller and Sánchez

proved that globally hyperbolic spacetimes do admit such functions, thus estab-

lishing the embedding result foreseen by Clarke (another existence proof can be

found in [32]). However, it is easy to convince oneself that global hyperbolicity is

just a sufficient condition, and certainly not the optimal one. In fact, consider a

submanifold M of Minkowski spacetime, globally hyperbolic in its induced met-

ric g. Then the submanifold (N, g|N ) obtained by removing a point from M will

still be a Lorentzian submanifold of Minkowski but no more globally hyperbolic

in the induced metric (see also the more interesting Examples 4.1 and 4.2). One

might naively hope that globally hyperbolic spacetimes could be characterized as

the closed submanifolds of some Minkowski spacetime. This is not the case, a sim-

ple counterexample has been provided by Müller [33, Example 1]. Thus through

the notion of embedding the natural objects that are singled out are the stable

spacetimes rather than the globally hyperbolic ones.

Summarizing one can contemplate two natural ways of adding a metric structure

to a manifold. In the extrinsic approach the manifold is embedded in a reference

affine space, say EN or EN,1, while in the intrinsic approach the associated reference

vector space is used just as a model for the tangent space of the manifold. In positive

signature both methods lead to the same structure, that of Riemannian manifold,

this is the content of Nash’s theorem, but in the Lorentzian signature the former

leads to the notion of stable spacetime while the latter leads to that of general

spacetime.

Our idea for constructing a steep time function over the larger class of stable

spacetimes is as follows. We introduce a (non-Lorentzian) cone structure C↓ on the

product spacetime M× = M × R, and show that every temporal function F on

M×, whose zero level set F−1(0) intersects every R-fiber, provides a steep time

function f on M whose graph is F−1(0). The problem is moved to the construction

of a temporal function on the product, and there the main difficulty is connected to

the proof that the zero level set intersects every R-fiber exactly once. We solve this

problem by constructing the function through an averaging procedure reminiscent,

though not exactly coincident, to that first employed by Hawking (in fact we do

not open the cones in the direction of the fiber). Here the stability condition on the

finite Lorentzian distance comes into play to guarantee that every fiber is intersected

at least once. Actually, the averaging procedure produces just a continuous anti-

Lipschitz function so we apply to it a smoothing argument to get the desired steep

function.

A peculiar feature of the proof is that it uses a causality result for non-isotropic

cone structures to infer results for Lorentzian spacetimes. This fact confirms that

the most convenient framework for causality theory is indeed that of general cone

structures as it is proved in the first sections of this work.
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1.2. The distance formula

As it is well known Connes developed a program for the unification of fundamental

forces based on non-commutative geometry [34–36]. He focused on the so called

interior geometry and was able to recover much of the Standard Model of particle

physics within that framework. The derivation of the spacetime geometry was not

as successful. The idea was to use an approach a la Gelfand, by regarding the

manifold as the spectra of a certain algebra of functions. The family of functions

to be considered had to encode the topology and more generally the distance. This

was made possible through Connes’ distance formula which, however, was really

proved for Riemannian rather than Lorentzian manifolds.

Parfionov and Zapatrin [37] proposed to consider the more physical Lorentzian

version and for that purpose they introduced the notion of steep time function which

we already met in the embedding problem. Let d denote the Lorentzian distance,

and let S be the family of C1 steep time functions. The Lorentzian version of the

Connes distance formula would be, for every p, q ∈M

d(p, q) = inf
{

[f(q)− f(p)]+ : f ∈ S
}
. (1.1)

where c+ = max{0, c}. There arises the fundamental problem of finding the con-

ditions that a spacetime should satisfy for (1.1) to hold true. They called such

spacetimes, simple, but did not provide any characterization for them.

Moretti [38, Th. 2.2] proved a version of the formula for globally hyperbolic

spacetimes in which the functions on the right-hand side are steep almost every-

where and only inside some compact set, not being defined outside the compact

set.

Rennie and Whale gave a version with no causality assumption [39], however

the family of functions on the right-hand side of their Lorentzian distance formula

includes discontinuous functions. In order to have any chance to represent also the

topology, the representing functions must be continuous. Moreover, due to the con-

tinuity of the representing functions the causality condition in the distance formula

cannot be too weak, as we shall see (cf. Th. 4.9).

For globally hyperbolic spacetimes the most interesting version so far available

is due to Franco [40, Th. 1]. It holds on globally hyperbolic spacetimes and on

the right-hand side one finds globally defined continuous causal functions differ-

entiable and steep almost everywhere. However, since in Connes’ recipe one acts

over the representing functions with the Dirac operator their C1 differentiability is

important.

In this work we shall prove not only that the formula holds for globally hyper-

bolic spacetimes in the smooth version, but that, more generally, the formula holds

precisely for the stably causal spacetimes which admit a continuous and finite Lo-

rentzian distance (hence they are causally continuous). The continuity requirement

on the Lorentzian distance might seem strong. However, in Lorentzian geometry

Equation (1.1) imposes the continuity of d since the left-hand side is lower semi-

continuous while the right-hand side is upper semi-continuous. So the mentioned
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result is really optimal.

Still, stably causal spacetimes are central in causality theory so it could be dis-

appointing that the formula does not hold for them. All this suggests that a further

improvement of the formula could be possible but that it should pass through the

improvement of the very definition of Lorentzian distance. We shall show that there

is a better definition of distance which we call stable distance. This novel distance

D has wider applicability, and then the spacetimes for which the distance formula

holds are precisely the stable ones met in the embedding problem. We shall also

prove that for these spaces the family of steep time functions allows one to recover

not only the distance, but also the causal order and topology of the spacetime

and that such results hold for the general Lorentz-Finsler theory under very weak

differentiability conditions.

These results should be useful for the development of any genuine Lorentzian

version of Connes’ program. Among the mathematical physics works that have

explored such a direction we mention [41–46].

1.3. Notations and conventions

The manifold M has dimension n + 1. A bounded subset S ⊂ M , is one with

compact closure. Greek indices run from 0 to n + 1. Latin indices from 1 to n.

The Lorentzian signature is (−,+, · · · ,+). The Minkoski metric is denoted ηαβ , so

η00 = −1, ηii = 1. The subset symbol ⊂ is reflexive. The boundary of a set S is

denoted ∂S. “Arbitrarily small” referred to a neighborhood U of p ∈ M , means

that for every neighborhood V 3 p we can find U inside V . A coordinate open

neighborhood of M is an element of the atlas, namely one diffeomorphic with some

open set of Rn+1. Sometimes a subsequence of a sequence xn is denoted with a

change of index, e.g. xk instead of xnk . In order to simplify the notation we often

use the same symbol for a curve or its image. Many statements of this work admit,

often without notice, time dual versions obtained by reversing the time orientation

of the spacetime.

2. Causality for cone structures

In this work the manifold M is assumed to be connected, Hausdorff, second count-

able (hence paracompact) and of dimension n+1. Furthermore, it is Cr, 1 ≤ r ≤ ∞.

The differentiability degree of the manifold determines the maximum degree of

differentiability of the objects living on M , and conversely it makes sense to speak

of certain differentiable object only provided the manifold has a sufficient degree of

differentiability. So whenever considering Lipschitz vector fields or Lipschitz Rie-

mannian metrics, the manifold has to be assumed C1,1. It is worth recalling that

every Cr manifold, 1 ≤ r < ∞, is Cr diffeomorphic to a C∞ manifold [47, Th.

2.10], so in proofs one can choose a smooth atlas whenever convenient. Of course

at the end of the argument one has to return to the original atlas. If the adjective
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smooth is used in some statement, then it should be understood as the maximal

degree of differentiability compatible with the original manifold atlas.

Let V be a finite n+1-dimensional vector space, e.g. V = TxM , for x ∈ M . A

cone C is a subset of V \0 which satisfies: if s > 0 and y ∈ C then sy ∈ C. The

topological notions, such as the closure operator, will refer to the topology induced

by V on V \0. In particular, our closed cones do not contain the origin and ∂C does

not contain the origin. All our cones will be closed and convex. Since C does not

include the origin, convexity implies sharpness of C ∪{0}, namely this set does not

contain any line passing through the origin. So all our cones will be sharp. Although

redundant according to our definitions, for clarity we shall add the adjective sharp

in many statements.

Definition 2.1. A proper cone is a closed sharp convex cone with non-empty in-

terior.

Remark 2.1. Notice that for a proper cone C −C = V in the sense of Minkowski

sum, namely C is a generating cone. We mention that in Banach space theory sharp

convex cones are simply called cones. In finite dimension the generating cones are

precisely those with non-empty interior [48, Lemma 3.2,Th. 3.5]. Moreover, the

cones with non-empty interior are closed iff they are Archimedean [48, Lemma 2.4].

We write C1 < C2 if C1 ⊂ IntC2 and C1 ≤ C2 if C1 ⊂ C2. For a proper cone

C = IntC and any compact section of C is homeomorphic to an n-dimensional

closed ball.

We mention a property which introduces the concept of convex combination of

cones relative to a hyperplane. Its straightforward proof is omitted. Let Ci ⊂ V ,

i = 1, · · · ,m be proper cones and suppose that there is an affine hyperplane P

cutting them in compact convex sets with non-empty interior (convex bodies) C̃i
(there is always such hyperplane if

∑
i Ci is sharp). The combination of {Ci} relative

to the weights wi ∈ [0, 1],
∑
i wi = 1, and hyperplane P is the cone C(P,{wi}) whose

intersection with P is given by
∑
i wiC̃i := {

∑
i wici : ∀i, ci ∈ C̃i}.

Proposition 2.1. The convex combination C(P,{wi}) is itself a proper cone which

coincides with C1 for w1 = 1. Moreover, let C be a convex closed cone, let C ′ be

a proper cone and let Ci be proper cones such that for all i, C < Ci < C ′, then

C < C(P,{wi}) < C ′. Finally, a strict convex combination of two proper cones C1,

C2, w1, w2 > 0, with C1 < C2 is such that C1 < C(P,{w1,w2}) < C2.

In this work we shall study the global properties of distributions of cones over

manifolds.

Definition 2.2. A cone structure is a multivalued map x 7→ Cx, where Cx ⊂
TxM\0 is a closed sharp convex non-empty cone.

The cone structures might enjoy various degrees of regularity. Causality theory

for cone structures under C1,1 regularity has been already investigated. The reader
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can find a summary in Sec. 3.7. This work will be devoted to weaker assumptions

for whose formulation we need some local considerations.

Let x 7→ F (x) ⊂ Rl be a set valued map defined on some open set D ⊂ Rk. It

is said to be upper semi-continuous if for every x ∈ D and for every neighborhood

U ⊃ F (x) we can find a neighborhood N 3 x such that F (N) := ∪x∈NF (x) ⊂ U ,

cf. [49].

It is said to be lower semi-continuous if for every x, and open set V ⊂ Rl,
intersecting F (x), V ∩F (x) 6= ∅, the inverse image F−1(V ) := {w ∈ D : F (w)∩V 6=
∅} is a neighborhood of x. Equivalently, [49, Prop. 1.4.4] for any y ∈ F (x) and for

any sequence of elements xn → x, there exists a sequence yn ∈ F (xn) converging

to y. The map is continuous if it is both upper and lower semi-continuous.

We say that F has convex values if F (x) is convex for every x. We shall need

the following result.

Proposition 2.2. Suppose that F has convex values. If F is lower semi-continuous

then for every x and for every compact set K ⊂ IntF (x) we can find a neighborhood

N 3 x, such that for every w ∈ N , K ⊂ IntF (w). The converse holds provided F

is also closed and IntF (x) 6= ∅ for every x.

Proof. Let F be lower semi-continuous and with convex values. By compactness

it is sufficient to prove that for every y ∈ IntF (x) we can find neighborhoods V 3 y
and N 3 x, such that for every w ∈ N , V ⊂ F (w). Indeed, with obvious meaning of

the notation, we can cover K with a finite selection of open sets {V1, · · · , Vj}, hence

N = ∩iNi has the desired property. In fact, for every w ∈ N , K ⊂ ∪iVi ⊂ ∪iF (w) =

F (w). By convexity, given y ∈ IntF (x) we can find l + 1 points yi ∈ IntF (x) such

that y belongs to the interior of a simplex with vertices {yi}. By continuity we can

find a neighborhood V 3 y and neighborhoods Oi 3 yi, Oi ⊂ IntF (x), such that

V is contained in any simplex obtained by replacing the original vertices with the

perturbed vertices y′i ∈ Oi. Let N = ∩iF−1(Oi), then by the lower semi-continuity

of F , for every w ∈ N , F (w) has non-empty intersection with every Oi and so

contains one perturbed simplex and hence V .

For the converse, it is well known that for a closed convex set C = Int(C). If V

is an open set such that V ∩ F (x) 6= ∅, then V includes some point y ∈ IntF (x).

We can find a compact neighborhood K 3 y, such that K ⊂ V ∩ IntF (x) thus there

is a neighborhood N 3 x such that for every w ∈ N , K ⊂ IntF (w), in particular

V ∩F (w) 6= ∅, that is F−1(V ) ⊃ N , which proves that F is lower semi-continuous.

Finally, we shall say that F is locally Lipschitz if for every x, we can find a

neighborhood D 3 x and a constant l > 0, such that

∀ x1, x2 ∈ D, F (x1) ⊂ F (x2) + l‖x1 − x2‖B, (2.1)

where B is the unit ball of Rl. It is easy to check that local Lipschitzness implies

continuity.
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Let us return to the continuity properties of our cone structure. At every p ∈M
we have a local coordinate system {xα} over a neighborhood U 3 p. The local

coordinate system induces a splitting U ×Rn+1 of the tangent bundle TU by which

sets over different tangent spaces can be compared. Let F (x) = [Cx∪{0}]∩B̄ where

B̄ is the closed unit ball of Rn+1, then the notions of upper/lower semi-continuous,

continuous and locally Lipschitz cone structures follow from the previous definitions.

Of course, they do not depend on the coordinate system chosen (they make sense

if the manifold is C1 in the former cases, and C1,1 in the latter Lipschitz case).

An equivalent approach is as follows. We have the coordinate sphere subbundle

U × Sn, so when it comes to compare Cq with Cr, q, r ∈ U , we can just compare

Ĉq := Cq ∩ Sn with Ĉr := Cr ∩ Sn. Since Sn with its canonical distance is a metric

space, we can define a notion of Hausdorff distance d̂H for its closed subsets and a

related topology. The distribution of cones is continuous on U if the map q 7→ Ĉq
is continuous, and it is locally Lipschitz if the map is locally Lipschitz [14,15].

We are now going to define more specific cone structures. The most natural

approach seems that of defining them through properties of the cone bundle as

follows. We recall that we use the topology of the slit tangent bundle and that our

cones do not contain the origin.

Definition 2.3. A closed cone structure (M,C) is a cone structure which is a closed

subbundle of the slit tangent bundle.

The previous definition does not coincide with that given by Bernard and

Suhr [16]. Indeed our condition on the cone structure is more restrictive since our

cones are non-empty and sharp (non-degenerate and regular in their terminology).

One reason is that we shall be mostly interested in causality theory, where it is cus-

tomary to assume that spacetime is locally non-imprisoning, cf. Prop. 2.10. This

assumption brings some simplifications, for instance the parametrization of curves

is less relevant in our treatment than in theirs.

Proposition 2.3. A multivalued map x 7→ Cx, where Cx ⊂ TxM\0 is a closed cone

structure iff for all x ∈ M , Cx is closed, sharp, convex, non-empty cone and the

multivalued map is upper semi-continuous (namely, it is an upper semi-continuous

cone structure).

Proof. It is sufficient to prove that the result holds true in any local coordinate

chart of M . We need to consider the continuity properties of the cone bundle cut by

the unit coordinate balls. That is, we are left with a compact convex distribution for

which the equivalence follows from well known results, in fact one direction follows

from [49, Prop. 1.1.2], while the other follows from [49, Th. 1.1.1] by letting F be

the distribution of unit coordinate closed balls.

Example 2.1. A time oriented Lorentzian manifold (M, g) has an associated

canonical cone structure given by the distribution of causal cones

Cx = {y ∈ TxM\{0} : g(y, y) ≤ 0, y future directed}.
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The next results clarifies that some notable regularity properties of the metric g

pass to the cone structure.

Proposition 2.4. Let (M, g) be a time oriented Lorentzian manifold. If g is con-

tinuous (locally Lipschitz) then x 7→ Cx is continuous (resp. locally Lipschitz).

The proof in the locally Lipschitz case can be adapted to different regularities,

say Hölder, provided the corresponding regularity is defined for cone structures,

e.g. by generalizing Eq. (2.1).

Proof. Let w be a global continuous future directed timelike vector field. Let

x̄ ∈ M , and let U be a coordinate neighborhood of x̄. Let us consider the

trivialization of the bundle TU , as induced by the coordinates. The function

f(x, y) = max[gαβ(x)yαyβ , gαβ(x)wα(x)yβ ] is continuous on U × Rn+1 and is neg-

ative precisely on future timelike vectors.

Let us prove the lower semi-continuity of the cone structure. Since IntCx =

Cx∪{0} it is sufficient to prove the lower semi-continuity of F (x) = IntCx. Let (x̄, y)

be a future directed timelike vector, hence f(x̄, y) < −η < 0 for some η > 0, and let

xn → x̄, then there is an integer N > 0 such that for n > N , |f(xn, y)−f(x̄, y)| < η,

thus f(xn, y) < 0, which implies (xn, y) ∈ IntCxn . Now redefine the sequence

{yk = y} for k ≤ N , so that it is timelike for every n.

For the upper semi-continuity, notice that [C ∪ {0}] ∩ TU = {(x, y) : x ∈
U, f(x, y) ≤ 0} which by the continuity of f is closed in the topology of TU . From

here closure of C ∪ {0} follows easily and hence upper semi-continuity of the cone

structure, cf. Prop. 2.3.

For the locally Lipschitz property, let us choose coordinates such that gαβ(x̄) =

ηαβ , i.e. the Minkowski metric. We are going to focus on the subbundle of TU of

vectors that in coordinates read as follows (xα, yα) where y0 = 1, i.e. we are going

to work on U × Rn. It will be sufficient to prove the locally Lipschitz property for

this distribution of sliced cones, namely for a distribution of ellipsoids determined

by the equation 0 = gαβ(x)yαyβ = g00(x) + 2g0i(x)yi + gij(x)yiyj , where i, j =

1, . . . , n. The ellipsoid is a unit circle for x = x̄. Let ‖ · ‖ be the Euclidean norm

on Rn. Let us consider two ellipsoids relative to the points x1 and x2. Let y1

and y2 be two points that realize the Hausdorff distance D(x1, x2) between the

ellipsoids, i.e. D(x1, x2) = ‖δy‖, δy = y1 − y2, where the vector δy = y1 − y2 can

be identified with a vector of Rn since its 0-th component vanishes. The definition

of Hausdorff distance easily implies that δy is orthogonal to one of the ellipsoids

which we assume, without loss of generality, to be that relative to x2, (otherwise

switch the labels 1 and 2). Then δy is proportional to the gradient of the function

h(wi) = gαβ(x2)wαwβ = g00(x2) + 2g0iw
i + gijw

iwj at y2, namely 2yα2 gαi, hence

|yα2 gαβδyβ | = ‖yα2 gαi‖‖δy‖. Now we observe that

0 = gαβ(x1)yα1 y
β
1 − gαβ(x2)yα2 y

β
2 = [gαβ(x1)− gαβ(x2)]yα1 y

β
1 + gαβ(x2)[yα1 y

β
1 − yα2 y

β
2 ]

= [gαβ(x1)− gαβ(x2)]yα1 y
β
1 + 2gαβ(x2)yα2 δy

β + gαβ(x2)δyαδyβ .
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By the already proved continuity property, as x2, x1 → x̄, we have δy → 0, yi1 and

yi2 have norms that converge to one and (by assumption) gαβ(xi)→ ηαβ , so we have

also ‖yα2 gαi‖ → 1. We conclude that the last term on the right-hand side becomes

negligible with respect to the penultimate term. Moreover, provided x1, x2 belong to

a small neighborhood of x̄ where ‖yi1‖ ≤ c, for some c > 1 (we already have y0
1 = 1)

we have |[gαβ(x2) − gαβ(x1)]yα1 y
β
1 | ≤ c2

∑
α,β |gαβ(x2) − gαβ(x1)| ≤ c2L‖x2 − x1‖,

where L is the Lipschitz constant of the metric. In conclusion, for every C > 1 we

can find a neighborhood of x̄ such that for x1, x2 in the neighborhood

‖δy‖ ≤ CL

2
‖x2 − x1‖,

which proves that the cone distribution is locally Lipschitz.

Definition 2.4. A proper cone structure is a closed cone structure in which, addi-

tionally, the cone bundle is proper, in the sense that (IntC)x 6= ∅ for every x.

The terminology is justified in that the adjectives entering “proper” (that is,

sharp, convex, closed and with non-empty interior) are applied fiberwise, whereas

those mentioning topological properties have to be interpreted using the topology

of the cone bundle, e.g. (C̄)x = Cx for every x which is equivalent to C being closed.

The non-emptyness condition should not be confused with Int (Cx) 6= ∅ for every

x, see also Prop. 2.6 and subsequent examples.

As for cones, given two cone structures we write C1 < C2 if C1 ⊂ IntC2 and

C1 ≤ C2 if C1 ⊂ C2, where the interior is with respect to the topology of the slit

tangent bundle TM\0. Notice that for a proper cone structure C = IntC does not

necessarily hold.

Proposition 2.5. A multivalued map x 7→ Cx ⊂ TxM\0 is a proper cone structure

iff Cx is proper and the multivalued map is upper semi-continuous and such that

the next property holds true

(*): C contains a continuous field of proper cones.

Proof. It is clear that (*) implies (IntC)x 6= ∅ for every x. The converse follows

from the fact that (IntC)x 6= ∅ at x implies, recalling the definition of product

topology, that there is a local continuous cone structure at x contained in C (actu-

ally a product in a splitting induced by local coordinates). By sharpness and upper

semi-continuity one can find a local smooth 1-form field ω positive on C. Such field

can be globalized using a partition of unity, thus providing a distribution of hyper-

planes P = ω−1(1). Still using the partition of unity the local C0 cone structures

can be used to form a global continuous field of proper cones by means of Prop. 2.1

(see also the proof of Prop. 2.11 or Th. 2.23 for a similar argument).

Fathi and Siconolfi [14,15] investigated the problem of the existence of increasing

functions for proper cone fields under a C0 assumption. It is clear that a C0 proper

cone structure is just a C0 distribution of proper cones.
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For a distribution of proper cones

locally Lipschitz ⇒ continuous ⇒ (*) and upper semi-continuous

(proper cone structure) ⇒ upper semi-continuous (closed).

The condition (*) is a kind of selection property. Observe that a Lorentzian

manifold is time orientable if there exists a continuous selection on the bundle of

timelike vectors. Since reference frames (observers) are modeled with such selec-

tions, their existence is fundamental for the physical interpretation of the theory.

The condition (*) might be regarded in a similar fashion as it implies that there are

continuous selections which can be perturbed remaining selections. Another view

on condition (*) is obtained by passing to the dual cone bundle. Then (*) can be

read as a continuous sharpness condition.

Example 2.2. On the manifold R2 endowed with coordinates (x, t), let us consider

the cone distribution R+(ẋ, 1) where ẋ ∈ [−2,−k] for x < 0, ẋ ∈ [−2, 2] for x = 0

and ẋ ∈ [k, 2] for x > 0. It is upper semi-continuous for −2 ≤ k ≤ 2, but it does

not admit a continuous selection for 0 < k ≤ 2. For k = 0 it admits the continuous

selection ∂t but it still does not satisfy (*). For −2 ≤ k < 0 it satisfies (*).

Remark 2.2. Most results of causality theory require two tools for their derivation.

The limit curve theorem and the (*) condition. The limit curve theorem holds

under upper semi-continuity and its usefulness will be pretty clear. As for the (*)

condition, many arguments use the fact that for p ∈M an arbitrarily close point q

can be found in the causal future of p such that the causal past of q contains p in

its interior. This property holds under (*). In other arguments one needs to show

that some achronal boundaries are Lipschitz hypersurfaces. This result holds again

under (*).

Insistence upon upper semi-continuity is justified not only on mathematical

grounds; discontinuities have to be taken into account, for instance, in the study of

light propagation in presence of a discontinuous refractive index, e.g. at the interface

of two different media, cf. Sec. 2.12.

Moreover, upper semi-continuity turns out to be the natural assumption for the

validity of most results. Assuming better differentiability properties might obscure

part of the theory. For instance, at this level of differentiability the chronological

relation loses some of its good properties but most results can be proved anyway

by using the causal relation, a fact which clarifies that the latter relation is indeed

more fundamental. Hopefully the exploration of the mathematical limits of causality

theory might eventually tell us something on the very nature of gravity.

2.1. Causal and chronological relations

Causality theory concerns the study of the global qualitative properties of solutions

to the differential inclusion

ẋ(t) ∈ Cx(t) , (2.2)
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where x : I → M , I interval of the real line. If x ∈ C1(I) and (2.2) is satisfied

everywhere we speak of classical solution.

Of course, a key point is the identification of a more general and convenient

notion of solution. It has to be sufficiently weak to behave well under a suitable

notion of limit, however not too weak since it should retain much of the qualitative

behavior of C1 solutions. The correct choice turns out to be the following: a solution

is a map x which is locally absolutely continuous, namely for every connected

compact interval [a, b] =: K ⊂ I, x|K ∈ AC(K). The inclusion (2.2) must be

satisfied almost everywhere, that is in a subset of the differentiability points of x.

The notion of absolute continuity can be understood in two equivalent ways,

given t ∈ I either we introduce a coordinate neighborhood U 3 x(t), and demand

that the component maps t 7→ xα(t) be absolutely continuous real functions, or we

introduce a Riemannian metric h on Ū , and regard the notion of absolute continuity

as that of maps to the metric space (U, dh). (It can be useful to recall that every

manifold admits a complete Riemannian metric [50]. The Riemannian metric can be

found Lipschitz provided the manifold is C1,1.) Since on compact subsets any two

Riemannian metrics are Lipschitz equivalent, the latter notion of absolute continuity

is independent of the chosen Riemannian metric. Similarly, the former notion is

independent of the coordinate system, as the changes of coordinates are C1 and

the composition f ◦ g with f Lipschitz and g absolutely continuous is absolutely

continuous.

A solution to (2.2) will also be called a parametrized continuous causal curve.

The image of a solution to (2.2) will also be called a continuous causal curve.

Remark 2.3. Convenient reparametrizations. Over every compact set A ⊂ U we

can find a constant a > 0 such that for every x ∈ A, y ∈ TxM , ‖y‖h =
√
hαβyαyβ ≤

a
∑
µ |yµ|. As each component xµ(t) is absolutely continuous, each derivative ẋα is

integrable and so ‖ẋ‖h is integrable. The integral

s(t) =

∫ t

0

‖ẋ‖h(t′)dt′ ,

is the Riemannian h-arc length. Observe that our condition (2.2) together with

the fact that C does not contain the origin imply that the argument is positive

almost everywhere so the map t 7→ s(t) is increasing and absolutely continuous.

Its inverse s 7→ t(s) is differentiable wherever t 7→ s(t) is with ṡ 6= 0, in fact

t′ = ṡ−1 = ‖ẋ‖−1
h at those points, where a prime denotes differentiation with respect

to s. By Sard’s theorem for absolutely continuous functions [51] and by the Luzin N

property of absolutely continuous functions, a.e. in the s-domain the map s 7→ t(s)

is differentiable and ẋ(t(s)) ∈ Cx(t(s)). At those points x′ = ẋ/‖ẋ‖h ∈ Cx(t(s))

so ‖x′‖h = 1 and the map s 7→ x(t(s)) is really Lipschitz. Thus, by a change of

parameter we can pass from absolutely continuous solutions to Lipschitz solutions

parametrized with respect to h-arc length (see also the discussion in [52, Sec. 5.3]).

In causality theory the parametrization is not that important; most often one
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uses the h-arc length where h is a complete Riemannian metric, for that way the

inextendibility of the solution is reflected in the unboundedness of the domain,

cf. Cor. 2.1. However, general absolutely continuous parametrizations are better

behaved under limits, as we shall see. Finally, since the parametrization is not that

important, we can replace the original cone x 7→ Cx structure with the compact

convex replacements

Čx = {y ∈ Cx ∪ 0: ‖y‖h ≤ 1}.

As we shall see, we shall be able to import several results from the theory of

differential inclusion, by considering the distribution Čx in place of Cx. In fact, we

shall need some important results on differential inclusions under low regularity due

to Severi, Zaremba, Marchaud, Filippov, Wažewski, and other mathematicians. As

far as I know this is the first work which applies systematically differential inclusion

theory to causality theory. Good accounts of the general theory of differential in-

clusions can be found in the books by Clarke [53, Chap. 3], Aubin and Cellina [49],

Filippov [54], Tolstonogov [55] and Smirnov [56]. For a review see also [57,58].

For every subset U of M we define the causal relation

J(U) = {(p, q) ∈ U × U : p = q or there is a continuous causal

curve contained in U from p to q}.

For p ∈ U we write

J+(p, U) = {q ∈ U : (p, q) ∈ J(U)}, and J−(p, U) = {q ∈ U : (q, p) ∈ J(U)}.

For S ⊂ U , we write J+(S,U) = ∪p∈SJ+(p, U), and similarly in the past case. For

every set S we introduce the horismos

E±(S,U) = J±(S,U)\IntU (J±(S,U)),

where the interior uses the topology induced on U .

An element of TxM is a timelike vector if it belongs to (IntC)x. It is easy to

prove that the cone of timelike vectors (IntC)x is an open convex cone. A timelike

curve is the image of a piecewise C1 solution to the differential inclusion

ẋ(t) ∈ (IntC)x(t) . (2.3)

The chronological relation of U ⊂M is defined as follows

I(U) = {(p, q) ∈ U × U : there is a timelike curve contained in U from p to q}.

The bundle of lightlike vectors is ∂C, thus a lightlike vector at x is an element of

∂C ∩ π−1(x) = (∂C)x = Cx\(IntC)x, where π : TM →M .

Thus a vector is timelike if sufficiently small perturbations of the vector preserve

its causal character, i.e. timelike vectors are elements of IntC. In general, a vector

v ∈ IntCx for some x ∈ M might not have this property, for the perturbation

changes the base point. For instance, consider the Minkowski spacetime with its

canonical cone distribution, but replace the cone at the origin with a wider cone,
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then for the modified cone structure (IntC)o ( IntCo where o is the origin, IntCo
is the wider timelike cone and (IntC)o is the original timelike cone.

Proposition 2.6. For a C0 proper cone structure (IntC)x = IntCx for every x.

So the naive definition of timelike cone as IntCx works in the continuous case.

Also for a C0 proper cone structure the lightlike vectors at x are the elements of

∂Cx.

Proof. Let v ∈ IntC, π(v) = x, then IntC ∩ TxM ⊂ Cx is a neighborhood of v for

the topology of TxM , thus v ∈ Int(Cx). Conversely, let us introduce a coordinate

neighborhood U 3 p, so that TU can be identified with U × Rn+1 and hence

different fibers can be compared. Let v ∈ IntCx and let K ⊂ IntCx be a compact

neighborhood of v, then by Prop. 2.2 there is a neighborhood N 3 x such that

K ⊂ Cw for every w ∈ N , namely N ×K is a neighborhood of v contained in C,

hence v ∈ IntC.

For a proper cone structure we have

I(U) = ∪C̃≤C Ĩ(U), (2.4)

where C̃ runs over the C0 proper cone structures C̃ ≤ C. This family is non-empty

thanks to the (*) condition. Equation (2.4) can be obtained by noticing that any

C-timelike curve is a C̃-timelike curve for some C0 proper cone structure, C̃ ≤ C.

In general a proper cone structure C will not contain a maximal C0 cone structure.

For p ∈ U we write

I+(p, U) = {q ∈ U : (p, q) ∈ I(U)}, and I−(p, U) = {q ∈ U : (q, p) ∈ I(U)}.

For S ⊂ U , we write I+(S,U) = ∪p∈SI+(p, U), and similarly in the past case. If

U = M , the argument U is dropped in the previous notations, so the causal relation

is J and the chronological relation is I. They will also be denoted ≤J or just ≤ and

�. Also, we write p < q if there is a continuous causal curve joining p to q.

Proposition 2.7. Let (M,C) be a proper cone structure, then the corners in a

timelike curve can be rounded off so as to make it a C1 solution to (2.3) connecting

the same endpoints. As a consequence, I can be built from C1 solutions.

Proof. Let σ be a C1 timelike curve ending at p and γ a C1 timelike curve starting

from p, then they can be modified in an arbitrarily small neighborhood of p to join

into a C1 timelike curve. In fact, let σ̇, γ̇ ∈ (IntC)p be the tangent vectors to the

curves at p in some parametrizations. We can find an open round cone R̄p ⊂ (IntC)p
containing σ̇, γ̇ in its interior and a coordinate neighborhood U 3 p such that

U ×Rp ⊂ IntC, where the product comes from the splitting of the tangent bundle

induced by the coordinates. Thus we can find a Minkowski metric in a neighborhood

of p with cones narrower than (IntC)q, q ∈ U . But as it is well known the corner
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can be rounded off in Minkowski spacetime, [1, 59, 60] and the modified curve has

tangent contained in the Minkowski cone and hence in IntC in a neighborhood of

p, as we wished to prove.

Proposition 2.8. Let (M,C) be a proper cone structure, then I is open, transitive

and contained in J .

Proof. Transitivity is clear. By Eq. (2.4) it is sufficient to prove openness under

the C0 assumption. I is open because any C-timelike curve is also a timelike curve

for a round cone structure R with smaller cones, R < C, where the openness of the

chronological relation is well known in Lorentzian geometry [1].

Example 2.3. In a closed cone structure the causal future of a point might have

empty interior though IntCx 6= 0 for every x. Consider a manifold R2 of coordinates

(x, t), endowed with the stationary (i.e. independent of t) cone structure R+(ẋ, 1)

given by |ẋ| ≤ 1 at x = 0 and |ẋ| ≤ |x|, for |x| > 0. On the region |x| > 0 the

fastest continuous causal curves satisfy log[x(t1)/x(t0)] = ±(t1− t0), thus since the

left-hand side diverges for x(t0)→ 0, no solution starting from (0, t0) can reach the

region x > 0 and similarly the region x < 0. Thus J+((0, t0)) = {(0, t) : t ≥ t0},
which has empty interior. Notice that in this example it is not true that (IntC)x 6= 0

for every x, thus this is not a proper cone structure.

Example 2.4. In a proper cone structure a C1 curve can be non-timelike even

if ẋ(t) ∈ IntCx(t). Consider a manifold R2 of coordinates (x, t), endowed with the

stationary round cone structure R+(ẋ, 1): x ≤ ẋ ≤ −x + 1 for x < 0, |ẋ| ≤ 1

for x = 0; −x ≤ ẋ ≤ x + 1 for x > 0. Notice that the C0 proper cone structure

C̃ defined by ẋ ∈ [0, 1] is contained in the given one. The curve t 7→ (0, t) is not

timelike.

Example 2.5. As another example, consider the manifold R2 of coordinates (x, t),

endowed with the stationary round cone structure R+(ẋ, 1): ẋ ∈ [1, 3] for x < 0,

ẋ ∈ [−4, 4] for x = 0 and ẋ ∈ [2, 4] for x > 0. Then the C0 proper cone structure

C̃ defined by ẋ ∈ [2, 3] is contained in the given one. The curve t 7→ (0, t) is not

timelike.

It is interesting to explore the properties of the relation J̊ := IntJ which will be

used to define the notion of geodesic.

Proposition 2.9. The relation J̊ is open, transitive and contained in J . Moreover,

in a proper cone structure I ⊂ J̊ , J̊ = J̄ and ∂J̊ = ∂J .

One should be careful because in general J̊+(p) ( Int(J+(p)).

Proof. It is open by definition, so let us prove its transitivity. Let (p, q) ∈ J̊

and (q, r) ∈ J̊ , then there are is a product neighborhood which satisfies (p, q) ∈
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U ×V1 ⊂ J , and a product neighborhood which satisfies (q, r) ∈ V2×W ⊂ J . Since

U × {q} ∪ {q} ×W ⊂ J we have by composition U ×W ⊂ J , thus (p, r) ∈ J̊ . For

the last statement of the proposition we need only to prove J ⊂ J̊ . Let (p, q) ∈ J
and let p′ � p, q′ � q, then since I is open and contained in J̊ , (p′, q′) ∈ J̊ . Since

p′ can be taken arbitrarily close to p, and analogously, q′ can be taken arbitrarily

close to q, we have (p, q) ∈ J̊ .

The local causality of closed cone structures is no different from that of

Minkowski spacetime due to the next observation.

Proposition 2.10. Let (M,C) be a closed cone structure. For every x ∈M we can

find a relatively compact coordinate open neighborhood U 3 x, and a flat Minkowski

metric g on U such that at every y ∈ U , Cy ⊂ (IntCg)y (that is C|U < Cg|U ).

Furthermore, for every Riemannian metric h there is a constant δh(U) > 0 such

that all continuous causal curves in Ū have h-arc length smaller than δh.

We shall see later that the constructed neighborhood is really globally hy-

perbolic, (Remark 2.9). Particularly important will be the local non-imprisoning

property of this neighborhood which will follow by joining the last statement with

Corollary 2.1.

Proof. Since Cx is sharp we can find a round cone Rx in TxM containing Cx in

its interior. Thus we can find coordinates {xα} in a neighborhood Ũ 3 x such that

the cone Rx is that of the Minkowski metric g = −(dx0)2 +
∑
i(dx

i)2, where dx0

is positive on Cx. By upper semi-continuity all these properties are preserved in a

sufficiently small neighborhood of the form I+
g (p, Ũ) ∩ I−g (q, Ũ) := U 3 x, Ū ⊂ Ũ ,

in particular the timelike cones of g contain the causal cones of C. The continuous

causal curves for C in Ū are continuous causal curves for Cg, thus the last statement

follows from the Lorentzian version [2, p. 75].

Since every continuous C-causal curve is continuous g-causal, there cannot be

closed continuous C-causal curves in U .

Remark 2.4. Using standard arguments [3] one can show that the closed cone

structure admits at every point a basis for the topology {Uk}, Uk+1 ⊂ Uk, with the

properties mentioned by the previous proposition. In fact, the neighborhoods can

be set to be nested chronological diamonds for Cg > C, so that Uk is C-causally

convex in U1 for each k (furthermore, they are globally hyperbolic for both g and

C).

Proposition 2.11. Let (M,C) be a closed cone structure. Then there is a locally

Lipschitz 1-form ω such that C is contained in ω > 0. Moreover, there is a locally

Lipschitz proper cone structure C ′ > C contained in ω > 0.

Proof. In Prop. 2.10 we have shown that every x ∈M admits an open coordinate

neighborhood U such that ωU := dx0 is positive on C|U , and the round cone RU
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of the Minkowski metric contains C and is also in the positive domain of ωU . The

use of a Lipschitz partition of unity and Prop. 2.1 gives the desired global result.

A consequence of the Hopf-Rinow theorem and Prop. 2.10 is

Corollary 2.1. Let (M,C) be a closed cone structure and let h be a complete

Riemannian metric. A continuous causal curve x : [0, a)→M is future inextendible

iff its h-arc length is infinite.

Concerning the existence of solutions we have the next results. Under upper

semi-continuity we have [56, Cor. 4.4] [49, Th. 2.1.3,4]

Theorem 2.1. (Zaremba, Marchaud) Let (M,C) be a closed cone structure. Every

point p ∈M is the starting point of an inextendible continuous causal curve. Every

continuous causal curve can be made inextendible through extension.

For a proper cone structure we have also

Theorem 2.2. Let (M,C) be a proper cone structure. For every x0 ∈ M and

timelike vector y0 ∈ (IntC)x0
, there is a timelike curve passing through x0 with

velocity y0.

Proof. Since (IntC)x0
is open there is a closed round cone Rx0

3 y0 contained

in (IntC)x0
. Thus we can find coordinates {xα} in a neighborhood U 3 x0 such

that the cone Rx0 is that of the Minkowski metric g = −(dx0)2 +
∑
i(dx

i)2, where

∂0 ∈ (IntC)x0
. By continuity all these properties are preserved in a sufficiently small

neighborhood U 3 x0, in particular the timelike cones of g are contained in IntC.

Then the integral line of ∂0 passing through x0 is a timelike curve.

Under stronger regularity conditions it can be improved as follows [61, Th. 4]

(the non-convex valued version in [49, p. 118] has to assume Lipschitzness).

Theorem 2.3. Let (M,C) be a C0 closed cone structure. For every x0 ∈ M and

y0 ∈ Cx0
, there is a C1 causal curve passing through x0 with velocity y0. If the cone

structure is proper and y0 is timelike the curve can be found timelike.

Continuous causal curves can be characterized using the local causal relation,

in fact we have the following manifold translation of [62] [49, p. 99, Lemma 1].

Theorem 2.4. Let (M,C) be a closed cone structure. A continuous curve σ is

a continuous causal curve if and only if for every p ∈ σ there is a coordinate

neighborhood U 3 p, such that for every t ≤ t′ with σ([t, t′]) ⊂ U we have σ(t′) ∈
J+(σ(t), U).

It turns out that upper semi-continuity and Lipschitz continuity are the most

interesting weak differentiability conditions that can be placed on the cone struc-

ture.



Causality theory for closed cone structures with applications 23

We recall a key, somehow little known result by Filippov [61, Th. 6] [63, Th. 3.1].

Here ‖γ − σ‖ = supt ‖γ(t) − σ(t)‖ and the meaning of solution has been clarified

after Eq. (2.2).

Theorem 2.5. Let U be an open subset of Rn, and let x 7→ Čx ⊂ Rn be a Lip-

schitz multivalued map defined on U with non-empty compact convex values. Let

σ : [0, a] → U , be a solution of ẋ ∈ Čx(t) with initial condition σ(0) = p ∈ U . For

any ε > 0 there exists a C1 solution γ : [0, a]→ U to ẋ ∈ Čx(t) with initial condition

γ(0) = p, such that ‖γ − σ‖ ≤ ε.

It has the following important consequence.

Theorem 2.6. Let (M,C) be a locally Lipschitz proper cone structure and let h

be a Riemannian metric. Every point admits an open neighborhood U with the

following property. Every h-arc length parametrized continuous causal curve in U

with starting point p ∈ U can be uniformly approximated by a C1 timelike solution

with the same starting point, and time dually. In particular, I+(p, U) ⊃ J+(p, U)

and I−(p, U) ⊃ J−(p, U).

With Th. 2.15 we shall learn that the last inclusions are actually equalities. It

is worth to mention that the neighborhood U is constructed as in Prop. 2.10.

Proof. Let U be a coordinate neighborhood endowed with coordinates {xα} con-

structed as in the proof of Prop. 2.10, where additionally ∂0 ∈ IntC and the 1-form

ω = dx0 is Lipschitz and positive over C|U . Theorem 2.5 applies with

Čx = {y ∈ Cx : ‖y‖h ≤ 1, and ω(y) ≥ δ},

where δ > 0 can be chosen so small on Ū that Čx ⊃ {y ∈ Cx : ‖y‖h = 1} 6= ∅.
Every h-arc length parametrized solution σ : [0, a] → U to (2.2) is a solution to

ẋ(t) ∈ Čx(t) since its velocity is almost everywhere h-normalized. Moreover, for

every q ∈ U , Čq is non-empty, compact and convex. By Theorem 2.5 for every

ε > 0 there is classical solution γ : [0, a] → U to ẋ ∈ Čx(t) with initial condition

γ(0) = p, such that ‖γ−σ‖ ≤ ε/2, where the norm is the Euclidean norm induced by

the coordinates. But this solution is also a C1 solution to ẋ(t) ∈ Cx(t) (since δ > 0,

we have γ̇(t) 6= 0 for every t), namely γ is a C1 causal curve. Let us consider the

curve η whose components are ηi(t) = γi(t), η0(t) = γ0(t)+ε t2a , then ‖η−γ‖ ≤ ε/2,

thus ‖η−σ‖ ≤ ε, but η̇i = γ̇i, η̇0 = γ̇0 + ε
2a , that is η̇ = γ̇+ ε

2a∂0 which is timelike.

The previous result establishes that under Lipschitz regularity, at least locally

the solutions to the differential inclusion ẋ(t) ∈ F (x(t)), with F (x) = IntCx in our

case, are dense in the solutions to the relaxed differential inclusion ẋ(t) ∈ coF (x(t)),

where coF (x) is the smallest closed convex set containing F (x). Results of this

type are called relaxation theorems the first versions being proved by Filippov and

Wažewski [53] [49, Th. 2, Sec. 2.4]. In the Lorentzian framework the importance of

the Lipschitz condition for the validity of the inclusion I+(p, U) ⊃ J+(p, U) was
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recognized by Chruściel and Grant [4]. They termed causal bubbles the sets of the

form J+(p, U)\I+(p, U).

We arrive at a classical result of causality theory.

Theorem 2.7. Let (M,C) be a locally Lipschitz proper cone structure. Let γ be

a continuous causal curve obtained by joining a continuous causal curve η and a

timelike curve σ (or with order exchanged). Then γ can be deformed in an arbitrarily

small neighborhood O ⊃ γ to give a timelike curve γ̄ connecting the same endpoints

of γ. In particular, J ◦ I ∪ I ◦ J ⊂ I, J̄ = Ī, ∂J = ∂I, I = J̊ . For every subset S,

J+(S) = I+(S), ∂J+(S) = ∂I+(S), I+(S) = Int(J+(S)), and time dually.

A word of caution. One might wish to consider causal and chronological relations

J(B), I(B), where B is not necessarily open. However, in this case J(B) ◦ I(B) ∪
I(B) ◦ J(B) ⊂ I(B) would not hold since the deformed curve mentioned in the

theorem might not stay in B.

Proof. Let O be an open subset containing γ. Let p = η(0) and q = η(1) be the

endpoints of η : [0, 1]→ O and let q and r be the endpoints of σ. Let A ⊂ [0, 1] be

given by those t such that η(t) can be connected to r with a timelike curve contained

in O. Clearly 1 ∈ A and since I(O) is open there is a maximal open connected subset

of A containing 1. It cannot have infimum a ≥ 0, a /∈ A, indeed by contradiction,

x = η(a) admits a neighborhood U 3 x, U ⊂ O with the properties of Theorem 2.6.

So we can find y ∈ U , y = η(b) ∈ η, b > a, and a timelike curve in U starting from

x with endpoint arbitrarily close to y. But I(O) is open and y �O r so there is a

timelike curve from x to r, a contradiction. Thus A = [0, 1] and there is a timelike

curve from p to r contained in O.

For the penultimate statement we have only to show that J̄ ⊂ Ī, but this follows

immediately if for every continuous causal curve γ and every neighborhood O ⊃ γ
we can find a timelike curve γ̄ ⊂ O with endpoints arbitrarily close to the endpoints

of γ. Let U be an arbitrarily small neighborhood, of the type mentioned in Theorem

2.6, of the future endpoint r of γ. Then we can find q ∈ γ∩U , q < r, and a timelike

curve σ in U with future endpoint r′ close to r as much as desired. Then by the

first part of this theorem we can find a timelike curve γ̄ ⊂ O, with endpoints p and

r′, which concludes the proof.

The inclusion I ⊂ J̊ was proved in Prop. 2.9. For the other direction let (p, q) ∈ J̊
and let q′ � q be a point sufficiently close to q that (p, q′) ∈ J . By Th. 2.6 we can

find r � p sufficiently close to q′ that r � q, thus p� q.

The last statement has a proof very similar to that of the penultimate statement,

just observe that γ̄ has the same starting point as γ.

In the next theorem we say that a property holds locally if there is a covering

{Vα} of M , consisting of relatively compact open sets such that the property holds

for every cone structure (Vα, C|Vα).

Theorem 2.8. Let (M,C) be a proper cone structure. The conditions
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(a) I ◦ J ∪ J ◦ I ⊂ I, (causal space condition)

(b) for both sign choices and for all p, J±(p)\I±(p) = ∅ (no causal bubbling),

are equivalent. Moreover, the local versions imply the global versions, while the

other direction holds provided (M,C) is strongly causal. Finally, they imply Ī = J̄ ,

I = J̊ , ∂I = ∂J , and that for every subset S, J+(S) = I+(S), ∂J+(S) = ∂I+(S),

I+(S) = Int(J+(S)), and time dually.

Condition (a) is the main characterizing property of Kronheimer and Penrose’s

causal spaces [64], which can be defined as triples (M, I, J) where M is a set, I ⊂
J ⊂M ×M are transitive relations which satisfy property (a), where additionally

I is irreflexive and J is reflexive and antisymmetric. Hence our terminology.

It can be noticed that the proof (a) ⇒ (b) uses only the transitivity of I and

J , and the openness of I, while (b) ⇒ (a) uses also the fact that I±(p) ∩ V is

non-empty for every point p ∈M and open set V 3 p.
In some of the next results we shall assume that the proper cone structure is

locally Lipschitz when in fact, as the comparison of this theorem and the previous

one suggests, we could have just imposed properties (a) and (b).

Proof. (a) ⇒ (b). Indeed, if q ∈ J+(p) it is sufficient to take r ∈ I+(q) and notice

that r can be chosen arbitrarily close to q. Then r ∈ I+(p) implies q ∈ I+(p).

(b) ⇒ (a). Let (p, q) ∈ J and r ∈ I+(q), from the assumption J+(p) ⊂ I+(p),

but we know that I+(p) ⊂ J+(p), thus I+(p) = IntJ+(p). Now I+(q) is an open

neighborhood of r contained in J+(p), thus r ∈ IntJ+(p) = I+(p). The similar case

with p ∈ I−(q) and (q, r) ∈ J is treated similarly, so I ◦ J ∪ J ◦ I ⊂ I.

Suppose that every point admits a neighborhood V with the properties of the

theorem and such that (a) holds, I(V ) ◦ J(V ) ∪ J(V ) ◦ I(V ) ⊂ I(V ). Let us prove

that (a) holds globally. Indeed, if not there are a timelike curve γ : [0, 1]→M , and

a continuous causal curve σ : [0, 1]→M where γ(1) = σ(0), such that, (recall that

I+(γ(0)) is open) there is a first point p := σ(t), t > 0, of exit from I+(γ(0)) (the

case in which the first curve is timelike and the second is causal is treated in the

time-dual way). Let V 3 p be a neighborhood with the mentioned properties, then

for sufficiently small 0 < ε < t, q := σ(t − ε) ∈ I+(γ(0)) ∩ V and the σ-segment

between q and p is contained in V . Let r ∈ V be a point in a timelike curve η

connecting γ(0) to q, sufficiently close to q that the segment of η between r and

q stays in V , then (r, q) ∈ I(V ) and (q, p) ∈ J(V ) which by the local assumption

imply (r, p) ∈ I(V ) ⊂ I, and so p ∈ I+(γ(0)), a contradiction.

Conversely, suppose that (a) holds and that (M,C) is strongly causal, and let

us consider a covering of open causally convex relatively compact sets. If γ and σ,

γ(1) = σ(0), are timelike and continuous causal curves contained in one such set

V , then their concatenation joins points in V which, by assumption, can be joined

by a timelike curve. By causal convexity the timelike curve has to be contained in

V , hence I(V ) ◦ J(V ) ⊂ J(V ).

Let us prove Ī = J̄ , for the other two identities follow from that. Since I ⊂ J ,
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Ī ⊂ J̄ , so we have to prove the condition J̄ ⊂ Ī, or equivalently J ⊂ Ī. Assume that

the are no causal bubbles, let (p, q) ∈ J , then q ∈ J+(p) ⊂ I+(p) which implies

(p, q) ∈ Ī. The proof of the identity I = J̊ is as in Th. 2.7. The results on the subset

S, follow from J+(S) ⊂ I+(S), so let q ∈ J+(p), p ∈ S, moreover let r ∈ I+(q) so

that r ∈ I+(p), then the limit r → q gives q ∈ I+(p) ⊂ I+(S) as desired.

The next result on the arc-connectedness of the space of solutions is a manifold

reformulation of a Kneser’s type theorem for differential inclusions [56, Cor. 4.2,

4.6] [58]

Theorem 2.9. Let (M,C) be a locally Lipschitz proper cone structure. Any point

of M admits an open neighborhood U such that for any p ∈ U , any two parametrized

continuous causal curves starting (or ending) at p contained in U are joined by a

continuous homotopy of continuous causal curves starting (resp. ending) at p.

2.2. Notions of increasing functions

We shall make use of various notions of increasing function for a closed cone

structure (M,C). For future reference we list them here. A continuous function

τ : M → R is

(a) causal or isotone, if (p, q) ∈ J ⇒ τ(p) ≤ τ(q),

(b) a time function, if it increases over every continuous causal curve,

(c) Cauchy if restricted to any inextendible continuous causal curve it has

image R,

(d) a temporal function, if it is C1 and such that for every p ∈M , dτ is positive

on the (future) causal cone Cp, (it would be called a (minus) Lyapounov

function in the study of dynamical systems)

(e) locally anti-Lipschitz, if there is a Riemannian metric h such that for every

compact set K, there is a constant CK > 0 such that τ(γ(1))− τ(γ(0)) ≥
CK`

h(γ) for every continuous causal curve γ : [0, 1] → K (this property

does not depend on h). By σ-compactness if τ is locally anti-Lipschitz

there is a Riemannian metric ĥ such that τ(γ(1)) − τ(γ(0)) ≥ `ĥ(γ) for

every γ : [0, 1]→M . We also say that τ is ĥ-anti-Lipschitz. We say that τ

is stably locally anti-Lipschitz if it is locally anti-Lipschitz with respect to

some wider C0 proper cone structure C ′ > C (it exists by Prop. 2.11).

(f) f -steep, if there is a continuous function f : C → [0,+∞) positive homo-

geneous of degree one, τ is C1 and dτ(y) ≥ f(y) for every y ∈ C (strictly

steep if the inequality is strict). Thus strictly f -steep functions are tempo-

ral. With some abuse of notation we say that τ is h-steep, if with respect

to the Riemannian metric h, for every y ∈ C, we have dτ(y) ≥ ‖y‖h (hence

h-anti-Lipschitz and temporal). If h is complete then it is Cauchy.

The last claim in (f) is due to the fact that over every inextendible continuous

causal curve x : I →M , the h-arc length
∫ b
a
‖ẋ‖hdt diverges in both directions [16].



Causality theory for closed cone structures with applications 27

The next results, which are the cone structure version of [17, Prop. 4.3], suggest

that in order to construct temporal functions one has to focus on anti-Lipschitz

functions.

Theorem 2.10. Let (M,C) be a C0 proper cone structure. The C1 locally anti-

Lipschitz functions are precisely the temporal functions.

Proof. Let τ be temporal, then at every p, (dτ |p)−1(1) ∩ Cp is compact, so we

can find a Riemannian metric h whose unit balls contain it. Then for every v ∈ C,

dτ(v) ≥ ‖v‖h which implies h-anti-Lipschitzness.

Let τ be a C1 locally anti-Lipschitz function, then by σ-compactness there is a

Riemannian metric h such that τ is h-anti-Lipschitz. Let us consider a (C1) timelike

curve x : [0, 1) → M and let us set v = ẋ(0). We know that τ(x(t)) − τ(x(0)) ≥
`h(x([0, t))) =

∫ t
0
‖ẋ(s)‖hds, thus dividing by t and taking the limit t → 0, we get

dτ(v) ≥ ‖v‖h. By Th. 2.2 the inequality is true for every v ∈ IntCx(0) and hence,

by continuity, for every v ∈ C.

Theorem 2.11. Let (M,C) be a closed cone structure. The C1 stably locally anti-

Lipschitz functions are precisely the temporal functions.

Proof. Let τ be temporal. Since dτ is positive on C we can find the locally Lipschitz

proper cone structure C ′ > C of Prop. 2.11 so close to C that dτ is positive on C ′.

By Th. 2.10 τ is locally anti-Lipschitz with respect to C ′ hence a C1 stably locally

anti-Lipschitz function.

Let τ be a C1 stably locally anti-Lipschitz function, then there is a C0 proper

cone structure C ′ > C such that τ is C1 locally anti-Lipschitz with respect to C ′,

and by Th. 2.10 a temporal function for C ′ and hence for C.

As we shall see (Remark 3.6), we shall obtain temporal functions for closed

cone structures by passing through the preliminary construction of stably locally

anti-Lipschitz functions.

2.3. Limit curve theorems

One of the most effective tools used in causality theory is the limit curve theorem

[1, 2, 65]. The theory of differential inclusions clarifies that it is very robust, as it

holds under upper semi-continuity of the cone structure.

The next result follows easily from [56, Th. 4.6] [54, Cor. 2.7.1].

Theorem 2.12. Let (M,C) and (M,Ck), k ≥ 1, be closed cone structures, Ck+1 ≤
Ck, C = ∩kCk, and let h be a Riemannian metric on M . If the continuous Ck-causal

curves xk : Ik →M , parametrized with respect to h-arc length, converge h-uniformly

on compact subsets to x : I →M , then x is a continuous C-causal curve.
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Proof. The theorem is true for any constant sequence Ck = C by [54, Cor. 2.7.1].

So for every s, the sequence xn consists of continuous Cs-causal curves for n ≥ s,

thus x is a continuous Cs-causal curve. So for every s, ẋ ∈ Cs a.e., which implies

ẋ ∈ C a.e., namely x is a continuous C-causal curve.

The next result is the manifold version of [56, Cor. 4.5].

Theorem 2.13. Let (M,C) be a closed cone structure, and let h be a Riemannian

metric. Let K ⊂ M be compact and let xk : [0, L] → K be a sequence of h-arc

length parametrized continuous causal curves, then there is a subsequence converging

uniformly on [0, L] to a continuous causal curve x (whose parametrization is not

necessarily the h-arc length parametrization).

The bound on the h-arc length of xk is necessary, without it counterexamples

can easily be found on the Lorentzian 2-dimensional spacetime R×S1 whose metric

is g = −dtdθ.

Proof. Consider a finite covering {Ui} of K by coordinate neighborhoods and

let δ > 0 be a Lebesgue number relative to the metric dh. A subsequence x1
k of

xk is such that the points x1
k(0) converge to some point x(0) ∈ Ui for some i.

Apply to the sequence x1
k|[0,δ] the mentioned result [56, Cor. 4.5], thus obtaining

a convergent sequence x2
k, then focus on the convergence of x2

k(δ) and repeat the

argument proceeding in [0, δ] steps. Since L/δ is bounded by some natural number

N , in N -steps one constructs the desired converging sequence.

As a corollary we obtain the limit curve lemma familiar from (Lorentzian) math-

ematical relativity [66] [2, Lemma 14.2] under much weaker assumptions.

Lemma 2.1. (Limit curve lemma)

Let (M,C) and (M,Cn) be closed cone structures, where C = ∩nCn and for every

n, Cn+1 ≤ Cn, and let h be a complete Riemannian metric.

Let xn : (−∞,+∞) → M , be a sequence of inextendible continuous causal curves

parametrized with respect to h-arc length, and suppose that p ∈M is an accumula-

tion point of the sequence xn(0). There is an inextendible continuous causal curve

x : (−∞,+∞) → M , such that x(0) = p and a subsequence xk which converges

h-uniformly on compact subsets to x.

Using the previous results we obtain a version which is especially useful when

we have causal segments for which both endpoints are converging, see [65] for the

Lorentzian version.

Theorem 2.14. (Limit curve theorem)

Let (M,C) and (M,Ck) be closed cone structures, where C = ∩nCn and for every

n, Cn+1 ≤ Cn, and let h be a complete Riemannian metric. Let xn : [0, an]→M be

a sequence of h-arc length parametrized continuous Cn-causal curves with endpoints
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pn → p, and qn → q. Provided the curves xn do not contract to a point (which is

the case if p 6= q) we can find either (i) a continuous C-causal curve x : [0, a]→M

to which a subsequence xk, ak → a, converges uniformly on compact subsets, or (ii)

a future inextendible parametrized continuous C-causal curve xp : [0,+∞) → M

starting from p, and a past inextendible parametrized continuous C-causal curve

xq : (−∞, 0]→M ending at q, to which some subsequence xk(t) (resp. xk(t+ ak))

converges uniformly on compact subsets. Moreover, for every p′ ∈ xp and q′ ∈ xq,
(p′, q′) ∈ ∩nJ̄n.

Proof. The proof for the constant sequence case, ∀n Cn = C, coincides with that

given in [65] for a Lorentzian structure as the tools used there, such as the limit

curve lemma, have been already generalized. The general case follows from the

next argument. We apply the theorem of the constant sequence case to (M,C1)

obtaining a subsequence x1
k which converges h-uniformly to some parametrized

continuous C1-casual curve x1, then we apply it to (M,C2) obtaining a converging

subsequence of x1
k, denoted x2

k, which converges h-uniformly to some continuous

C2-causal curve x2, necessarily coincident with x := x1 by h-uniform convergence,

and so on. Finally, we take the diagonal subsequence xkk converging h-uniformly to

x. Since x = xk is a continuous Ck-causal curve for every k, it is also a continuous

C-causal curve.

The previous result together with Th. 2.7 implies (see [4] for the analogous

Lorentzian statement)

Remark 2.5. The results of Lorentzian causality theory [1–3,67] which do not ex-

plicitly address normal neighborhoods or geodesics remain valid for locally Lipschitz

cone structures.

Actually, several results still make sense in the locally Lipschitz theory which

do involve lightlike geodesics, as we shall see in the next section. In what follows

we shall explore them and we shall investigate more closely causality theory with

the aim of understanding whether the locally Lipschitz condition can be weakened

to an upper semi-continuity or a continuity condition.

2.4. Peripheral properties and lightlike geodesics

We need a generalization of the notion of achronality.

Definition 2.5. Given a relation R and a set S we say that S is R–arelated if no

two points p, q ∈ S are such that (p, q) ∈ R. A set S is achronal (resp. acausal) if no

two points of S are connected by a timelike curve (resp. continuous causal curve).

Thus achronal stands for I–arelated and acausal for J\∆–arelated. Since I ⊂ J̊ ,

J̊–arelation is in general stronger than achronality when the latter can be defined.

They coincide in locally Lipschitz proper cone structures.
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On a cone structure we can make sense of lightlike geodesics as follows. Notice

that we do not include the property of inextendibility in the definition. Also most

instances of future and past in the next definition refer to the relation direction not

to the inextendibility of the domain.

Definition 2.6. A lightlike geodesic is a continuous causal curve which is locally

J̊-arelated. A lightlike line is an inextendible continuous causal curve which is J̊-

arelated. A future lightlike geodesic is a continuous causal curve σ such that every

r ∈ σ admits an open neighborhood U for which locally we cannot find two points

in σ such that q ∈ IntJ+(p, U).

We have also analogous past notions and global J̊–arelation notions in which

geodesic is replaced by line. A future lightlike ray is a future inextendible lightlike

geodesic which is J̊–arelated. If in the second sentence of the previous paragraph

inextendibility is replaced by future inextendibility, then line is replaced by future

ray, and time dually. A future and past lightlike geodesic is a lightlike bigeodesic.

A future or past lightlike geodesic is a lightlike geodesic (because q ∈ E+(p, U)

implies (p, q) /∈ J̊(U)), and the converse holds for locally Lipschitz proper cone

structures. We defined lightlike geodesics using J̊–arelation in place of achronality

because the natural generators of Cauchy horizons or horismos will be of this type in

the future or past version. These lightlike geodesic concepts all coincide for locally

Lipschitz proper cone structures.

Remark 2.6. In the Lorentzian case and under Lipschitz regularity one could

write down the geodesic (spray) equation and, following Filippov, regularize the

discontinuous (L∞loc) right-hand side into a multivalued map. Then one could show

that the resulting differential inclusion admits C1 solutions. This approach has been

followed by Steinbauer in [68] but it has some limitations, for it seems difficult to

prove the local achronality property of lightlike geodesics with such an approach.

For this reason we use the local achronality (or better said the J̊–arelation) property

to introduce the very notion of lightlike geodesic. This definition is the best suited

in order to obtain non local results. Causal geodesics will be introduced with a

similar idea.

The neighborhood of the next result coincides with that constructed in the proof

of Prop. 2.10. We recall that E+(p, U) = J+(p, U)\IntJ+(p, U) and that a set S is

causally convex if J+(S) ∩ J−(S) ⊂ S.

Theorem 2.15. Let (M,C) be a closed cone structure. Every point in M has an

arbitrarily small coordinate neighborhood U with the following property. The relation

J(U) is closed and for every p ∈ U and q ∈ E+(p, U)\{p} there is a future lightlike

geodesic joining p and q entirely contained in E+(p, U) (and time dually). Moreover,

if (M,C) is locally Lipschitz every continuous causal curves connecting p to q is a

lightlike geodesic contained in E+(p, U). Finally, if the closed cone structure (M,C)

admits arbitrarily small causally convex neighborhoods (strong causality) then U can

be chosen causally convex.
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Proof. Let us prove the last statement. Let r ∈ M and let V 3 r be an open

set. Take U ⊂ V constructed as in the proof of Prop. 2.10 or proceed as follows

if (M,C) is strongly causal. Let Ũ 3 r be a coordinate neighborhood contained in

V such that on Ũ we have a (flat) Minkowski metric g wider than C. Let U ′ 3 r
be a g-chronological diamond contained in Ũ , let W 3 r be a C-causally convex

neighborhood contained in U ′, and let U 3 r be a smaller chronological g-diamond

contained in W . Then U is C-causally convex and of the same type as constructed

in the proof of Prop. 2.10.

Let us prove that J(U) is closed. Let h be a Riemannian metric and let σk be a

sequence of continuous causal curves contained in U connecting pk → p to qk → q.

By the limit curve theorem either there is a continuous causal curve σ connecting p

to q, necessarily contained in U by the diamond shape of U , cf. the proof of Prop.

2.10, or there is a past inextendible curve contained in Ū and ending at q. However,

in the latter case the curve would have infinite h-arc length which is impossible by

Prop. 2.10. Thus J(U) is closed.

Let q ∈ ∂J+(p, U)\{p} and suppose that (M,C) is locally Lipschitz. Since J(U)

is closed, there is a continuous causal curve from p to q. If σ is any such curve,

no point of σ\q can belong to I+(p, U), otherwise q ∈ I+(p, U) by Th. 2.7, a

contradiction, thus σ ⊂ E+(p, U).

Let us prove the peripheral property under upper semi-continuity. Let q ∈
E+(p, U)\{p}. Consider the cone structure F (x) = {y ∈ Cx ∪ {0} : ‖y‖h ≤ 1}.
Every continuous causal curve can be regarded as a solution of ẋ(t) ∈ F (x(t))

when parametrized with respect to h-arc length, and F is compact and convex.

By [56, Th. 2.5] (see also our Th. 2.26) it is possible to find a sequence of locally

Lipschitz proper cone structures (M,Ck) such that Ck+1 ≤ Ck ≤ Cg, C = ∩kCk,

hence IntJ+(p, U) ⊂ IntJ+
k (p, U) = I+

k (p, U). Suppose that we can find, passing

to a subsequence if necessary, qk ∈ E+
k (p, U) with qk → q, then there are con-

tinuous Ck-causal curves σk ⊂ E+
k (p, U) connecting p to qk (since Ck ⊂ Cg by

the previous argument Jk(U) is closed). By the limit curve theorem, arguing as

above, there is a continuous C-causal curve connecting p to q, which does not have

any point in IntJ+(p, U) as none of σk intersects it, so σ ⊂ ∂J+(p, U) as desired.

Suppose that we cannot find the sequence qk as above, then there is δ > 0 such

that B(q, δ) ⊂ J+
k (p, U) for any sufficiently large k. For every y ∈ B(q, δ) by using

again the limit curve theorem we get that y ∈ J+(p, U), thus q ∈ IntJ+(p, U), a

contradiction. Finally, no two points of p′, q′ ∈ σ can be such that q′ ∈ IntJ+(p′),

otherwise as (p, p′) ∈ J , we would have q′ ∈ IntJ+(p), a contradiction which proves

that σ is a future lightlike geodesic. (this proof has some similarities with [56, Th.

4.7] but it is not quite the same, see the next Remark).

Remark 2.7. This peripheral type result should not be confused with the differen-

tial inclusion version of Hukuhara’s theorem which states that the boundary points

of the reachable set are peripherally attainable [58, Th. 7.3] [49, p. 110] [56, Cor.

4.7] [69] [57, Th. 8].
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Let At(p) be the set reachable in time t by solutions to the differential inclusion

ẋ(t) ∈ F (x(t)) where F is a convex and compact multi-valued map. That theorem

states that it is possible to find x : [0, T ]→ U , such that x(t) ∈ ∂At(p) for every t,

if the endpoint x(T ) belongs to ∂AT (p). However, in our framework (see the proof)

this version would be of little use since ∂At(p) ∩ IntJ+(p, U) 6= ∅ so the trajectory

could enter IntJ+(p, U). Ultimately the usual differential inclusion version takes

into account the parametrization which, instead, does not appear in our version.

The next result is a simple consequence of Th. 2.7.

Theorem 2.16. Let (M,C) be a locally Lipschitz proper cone structure. A contin-

uous causal curve connecting p to q is an achronal lightlike geodesic contained in

E+(p) or there is a timelike curve connecting the same endpoints.

Proposition 2.12. Let (M,C) be a cone structure and let S be any set. Any

continuous causal curve σ contained in E+(S) is a future lightlike geodesic.

Proof. If not there would be p, q ∈ E+(S) ∩ σ such that q ∈ IntJ+(p). But there

exists r ∈ S, (r, p) ∈ J , and hence q ∈ Int(J+(r)) ⊂ Int(J+(S)), a contradiction.

The differentiability conditions in the next result will be improved in Th. 2.48.

Corollary 2.2. Let (M,C) be a locally Lipschitz proper cone structure. If q ∈
E+(S)\S there is p ∈ S and an achronal lightlike geodesic with endpoints p and q

contained in E+(S).

Proof. By definition there is a continuous causal curve γ from S to q. Let p be

starting point. From the definition there cannot be a timelike curve joining p and

q, thus from Th. 2.16 γ is an achronal lightlike geodesic. It cannot have any point

contained in I+(S) otherwise q ∈ I+(S) by Th. 2.7, thus γ ⊂ E+(S).

The next theorem is somewhat similar to a result on differential inclusions by

Kikuchi, [58, 69] [57, Th. 12] but it is not quite the same due to the same reasons

pointed out in Remark 2.7.

Theorem 2.17. Let (M,C) be a closed cone structure. Locally achronal continu-

ous causal curves (e.g. lightlike geodesics) have lightlike tangents wherever they are

differentiable (hence almost everywhere).

We stress that without a C0 condition on the cone structure, a C1 lightlike

geodesic need not have tangents in ∂Cx(t) (although, by the theorem, they belong

to (∂C)x(t)), cf. Example 2.5, where the lightlike geodesic is t 7→ (0, t).

Proof. If not we can find a differentiability point ẋ(t0) ∈ (IntC)x(t0) for some t0,

so there is a coordinate neighborhood U 3 x(t0) and a round cone R ⊂ (IntC)x(t0),

ẋ(t0) ∈ R, such that using the identification of tangent spaces provided by the
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coordinates, U ×R ⊂ IntC. As a consequence, we can choose the coordinates {xα}
so that ẋ(t0) = ∂0 at x(t0) and in such a way that its canonical Minkowski metric

(hence flat) has cone R at every point of the neighborhood. Since x is differentiable

at t0, there is a > 0 such that x|(t0,t0+a) ⊂ x(t0) + Rx0
where the plus sign is

understood using once again the affine structure of the coordinate neighborhood

induced by the coordinate system. But every point in x(t0) +Rx0 is reachable from

x0 with an R-causal C1 curve (a segment), which is C-timelike. Hence x cannot be

locally achronal.

Remark 2.8. We did not prove, not even under a Lipschitz condition on C, that

for sufficiently small U 3 p, there is just one lightlike geodesic connecting p to

q ∈ E+(p, U)\{p}. If the cones are not strictly convex it is easy to provide coun-

terexamples to such a property, thus some stronger form of convexity on the cone

is required. Moreover, we did not prove that lightlike geodesics can be made inex-

tendible while remaining lightlike geodesics, nor that they cannot branch, namely

that there cannot be two distinct lightlike geodesics sharing a segment. These prop-

erties hold in the regular theory, cf. Sec. 3.7.

2.5. Future sets and achronal boundaries

We provide a generalization of the notion of contingent cone due to Severi and

Bouligand to manifolds.

Definition 2.7. Let M be a C1 manifold and let K ⊂ M be a subset. For every

p ∈ K̄ let us consider the affine structure induced by a local coordinate system in

a neighborhood of p. The contingent cone TK(p) of K at p ∈ K̄, is the set of all

vectors y ∈ TpM\0 for which we can can find pn ∈ K, pn → p, and a sequence

εn → 0 such that yn = pn−p
εn

converges to y. The definition is independent of the

affine structure used.

Proof. (Independence of the coordinate affine structure) Let us consider two coor-

dinate systems {xα} and {x′α} in a neighborhood of p. Without loss of generality

we can assume xα(p) = x′α(p) = 0. Let xαn = xα(pn), x′αn = x′α(pn), the assump-

tion is yαn = xαn/εn → yα, so |xn| ≤Mεn for some M > 0. The coordinate change is

C1, thus x′n
α = Bαβx

β
n + o(|xn|) for some matrix B. We see that x′n

α/εn → Bαβ y
β ,

namely y would also have been counted in the contingent cone using the coordinate

system {x′α} in place of {xα}. By using the inverse coordinate transformation we

obtain the independence of the definition.

The result clarifies that in a local coordinate system this notion of contingent

cone coincides with that used in the theory of differential inclusions in Rn+1 and so

we can import many results from this theory [49, 70]. For instance, the contingent

cone is a closed cone and [70, Lemma 11.2.2]
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Theorem 2.18. Let K ⊂ M and let x : [0, 1] → K be differentiable at 0, then

ẋ(0) ∈ TK(x(0)).

Proof. In a local coordinate neighborhood of x(0) we have for sufficiently small t,

xα(t) = xα(0) + ẋα(0)t + o(t) ∈ K, thus ẋα(0) = limt→0[xα(t) − xα(0)]/t, which

implies ẋ(0) ∈ TK((x(0)).

In particular, from Theorems 2.2 and 2.3

Corollary 2.3. Let (M,C) be a C0 closed cone structure. Let K ⊂ M be any

subset and let p ∈ K. If every C1 causal curve starting from p remains in K at

least for a small domain interval, then Cp ⊂ TK(p).

Let (M,C) be a proper cone structure. Let K ⊂M be any subset and let p ∈ K.

If every timelike curve starting from p remains in K at least for a small domain

interval, then (IntC)p ⊂ TK(p).

Since on a proper cone structure the chronological relation is open, for every

subset S we have I+(S) = I+(S̄).

Proposition 2.13. Let (M,C) be a proper cone structure. For any subset F ⊂M ,

if I+(F ) ⊂ F then ∂F is achronal.

Let (M,C) be a locally Lipschitz proper cone structure. For any subset F ⊂M ,

I+(F ) ⊂ F implies J+(F ) ⊂ F̄ . If F is open F ⊂ I+(F ), moreover I+(F ) ⊂ F

implies J+(F ) ⊂ F . Thus if F is open or closed, I+(F ) ⊂ F implies J+(F ) ⊂ F .

Of course, there is a past version of this result.

Proof. The first statement is an immediate consequence of the openness of I. Let

us consider the second claim. Suppose that there is a continuous causal curve which

starts from F and escapes F̄ , then there is a last point p ∈ F̄ , and we can find a

continuous causal curve x : [0, a) → M , such that p = x(0), x((0, a)) ∩ F̄ = ∅.
But from Th. 2.6 we can find an open neighborhood U 3 p such that J+(p, U) ⊂
I+(p, U) ⊂ F̄ , a contradiction. If F is open F ⊂ I+(F ) because by Th. 2.3 every

point of F is the ending point of a timelike curve contained in F . Thus J+(F ) ⊂
J+(I+(F )) ⊂ I+(F ) by Th. 2.7.

Definition 2.8. Let (M,C) be a proper cone structure. A set F such that I+(F ) =

F is called a future set. The boundary of a future set is an achronal boundary. A

subset S ⊂ M is a local achronal boundary if for every p ∈ S we can find U 3 p
open such that S ∩ U is an achronal boundary in (U,C|U ).

Of course, every (local) achronal boundary is (resp. locally) achronal. For every

S ⊂ M , ∂I+(S) is an achronal boundary and every achronal boundary has this

form for some S.
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Proposition 2.14. Let (M,C) be a proper cone structure and let S be any set,

then IntJ+(S) = J+(S) and ∂IntJ+(S) = ∂J+(S), and the latter set is an achronal

boundary.

Proof. For every p ∈ ∂J+(S), and q ∈ I+(p) we have p ∈ I−(q). Since I−(q) is

open and contains some point in J+(S), we have q ∈ J+(S), and hence, by the

arbitrariness of q, I+(p) ⊂ J+(S). Thus for every q ∈ I+(p), q ∈ IntJ+(S), and

letting q → p, p ∈ ∂IntJ+(S). We just proved ∂J+(S) ⊂ ∂IntJ+(S). Observe that

IntJ+(S) ⊂ J+(S) implies IntJ+(S) ⊂ J+(S) and hence the converse inclusion

∂IntJ+(S) ⊂ ∂J+(S). Thus we have proved the identities and that F = IntJ+(S)

is such that ∂F = ∂J+(S). Every point q ∈ F is also the ending point of a timelike

curve contained in F , thus F ⊂ I+(F ). Moreover, I+(F ) ⊂ J+(S), and as the

former set is open, I+(F ) ⊂ IntJ+(S) = F , thus I+(F ) = F .

Theorem 2.19. Let (M,C) be a proper cone structure. A locally achronal boundary

is a topological hypersurface and, more precisely, a locally Lipschitz graph.

Proof. It is sufficient to give the proof for achronal boundaries. Let p ∈ A where

A = ∂I+(F ), F = I+(F ), is an achronal boundary. Let C̃ ≤ C be a C0 proper cone

structure contained in C. Since IntC̃p is open there is a round cone Rp ⊂ IntC̃p.

Thus we can find coordinates {xα}, xα(p) = 0, in a neighborhood U 3 p such that

the cone Rp is that of the Minkowski metric g = −(dx0)2 +
∑
i(dx

i)2, where ∂0 ∈
IntC̃p and dx0 is positive on Cp. By continuity all these properties are preserved

in a sufficiently small neighborhood U 3 x, in particular the timelike cones of the

flat metric g are contained in IntC̃. Then the integral curve of ∂0 passing through

p is a C̃-timelike curve which belongs to F just for x0 > 0. The other integral

curves of ∂0 intersect F in a lower bounded open set since by achronality these

intersections cannot enter I−g (p, U). In other words, ∂F is locally the graph of a

function x0(xi). The graph is locally Lipschitz because by achronality for q ∈ ∂F ,

∂F cannot intersect I+
g (q, U).

A trivial consequence of Cor. 2.3 is

Theorem 2.20. Let (M,C) be a C0 proper cone structure. If F is a future set,

then for every p ∈ ∂F , Cp ⊂ TF (p).

We remark that the continuous causal curves in the next definition are not

necessarily inextendible.

Definition 2.9. A continuous causal curve is viable in K if it is contained in

K. A subset K is viable if for every x0 ∈ K there is a continuous causal curve

x : [0, a)→ K, with x(0) = x0.

Of course by a maximality argument from x0 there emanates a future inex-

tendible continuous causal curve entirely contained in K. The next result is the

manifold translation of Nagumo-Haddad’s theorem [49, p. 180].
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Theorem 2.21. (Viability theorem)

Let (M,C) be a closed cone structure and let K ⊂ M be open or closed (more

generally locally compact in the induced topology). Then K is viable if and only if

for every x ∈ K, TK(x) ∩ Cx 6= ∅.

2.6. Imprisoned causal curves

A cone structure is causal if it has no closed continuous causal curves. A future

inextendible continuous causal curve γ which enters and remains in a compact set

K is said to be imprisoned in the compact set.

Definition 2.10. A cone structure (M,C) is non-imprisoning if there is no future

inextendible continuous causal curve contained in a compact set.

We know that closed cone structures are locally non imprisoning, cf. Prop. 2.10.

We want to investigate the non-local aspects related to imprisoned curves.

Definition 2.11. We say that a non-empty set C is biviable if for each point p ∈ C
we can find an inextendible continuous causal curve passing through p which is

contained in C.

We recall that the future ω-limit set of a future inextendible continuous causal

curve γ is Ωf (γ) = ∩t∈Rγ([t,+∞)). The set Ωp(γ) is defined similarly.

Lemma 2.2. Let (M,C) be a closed cone structure. For a future inextendible con-

tinuous causal curve γ the set Ωf (γ), if non-empty, is biviable, and analogously in

the past case.

Proof. Let p ∈ Ωf (γ) and let us parametrize γ by h-arc length where h is a

complete Riemannian metric. Let us set pk = γ(2tk), where the sequence tk → +∞
is chosen so that pk → p. Applying the limit curve theorem to γ([tk, 3tk]) we obtain

an inextendible continuous causal curve σ contained in Ωf (γ) and passing through

p.

Lemma 2.3. Let (M,C) be a closed cone structure. If the future inextendible con-

tinuous causal curve γ is future imprisoned in a compact set then Ωf (γ) 6= ∅. The

condition with past replacing future in the definition of non-imprisoning gives the

same property.

Proof. If γ is imprisoned in K then Ωf (γ) ∩K = ∩t∈R[γ([t,+∞)) ∩K] which is

non-empty by the finite intersection property.

Let σ be a future inextendible continuous causal curve contained in a compact

set K, then Ωf (σ) ⊂ K, and since Ωf (σ) is biviable we can find inside it, and hence

inside K, an inextendible continuous causal curve.

We are able to generalize a result in [71]. This new proof does not use the notion

of lightlike geodesic.
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Theorem 2.22. Let (M,C) be a closed cone structure. Let γ be a future in-

extendible continuous causal curve imprisoned in a compact set K, then inside

Ωf (γ) ⊂ K there is a minimal biviable closed subset B. For every inextendible

continuous causal curve α ⊂ B we have B = α = Ωf (α) = Ωp(α).

So the existence of an imprisoned continuous causal curve implies the existence

of a continuous causal curve which accumulates on itself at every point.

Proof. The proof of Lemma 2.3 shows that there is an inextendible continuous

causal curve σ contained in K. By the limit curve theorem σ̄ is biviable. Let us

consider the family A of all closed biviable subsets of σ̄. This family is non-empty

since it contains σ̄. Let us order it through inclusion. By Hausdorff’s maximum

principle (equivalent to Zorn’s lemma and the axiom of choice) there is a maximal

chain of closed biviable sets C ⊂ A. Since M is second countable it is hereditary

Lindelöf, [72, 16E] thus ∩C = ∩kAk where {Ak} ⊂ C is a countable subfamily.

Notice that ∩C is non-empty being the intersection of a nested family of non-empty

compact sets (they have the finite intersection property). Every p ∈ ∩C belongs to

Ak so through it there passes an inextendible continuous causal curve ηk contained

in Ak. Since the Ak are closed, by the limit curve theorem the limit curve η passing

through p belongs to Ak for every k, and hence belongs to ∩C. Thus B := ∩C
is a non-empty closed biviable set which must be minimal otherwise the chain C
would not be maximal. If p ∈ B through it there passes an inextendible continuous

causal curve α contained in B, but since both Ωf (α) and Ωp(α) are biviable and

contained in B, Ωf (α) = Ωp(α) = B ⊃ α, which due to ᾱ = α ∪ Ωf (α) ∪ Ωp(α)

implies ᾱ = Ωf (α) = Ωp(α).

2.7. Stable causality

In this section we investigate stable causality. The longest proofs connected to the

main Theorem 2.30 are postponed to Sec. 3.2-3.6.

Theorem 2.23. Let C be a closed cone structure and let C ′ be a C0 proper cone

structure such that C < C ′. Then there is a locally Lipschitz proper cone structure

C ′′ such that C < C ′′ < C ′.

For this type of result see also [56, Th. 2.5], [49, Th. 1.13.1].

Proof. At every p ∈M , we can find in a coordinate neighborhood of p a locally Lip-

schitz proper cone structure C ′′ such that C < C ′′ < C ′. Indeed, take C ′′p a proper

cone such that Cp < C ′′p < C ′p and extend C ′′ by translation using the affine struc-

ture induced by the coordinate neighborhood, so that C ′′ is locally Lipschitz. Then

shrinking the neighborhood if necessary, we find using the upper semi-continuity of

C and the continuity of C ′′ and C ′, C < C ′′ < C ′ in such neighborhood.

Let ω be a Lipschitz 1-form positive on C ′ (Prop. 2.11). The result is globalized

using a partition of unity {ϕi} and Prop. 2.1 where Ci is C ′′ for the coordinate
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neighborhood Ui ⊃ suppϕi and the plane Px ⊂ TxM at x ∈ M is ω−1(1). Then

C(P,{ϕi}) is a locally Lipschitz proper cone structure such that C < C(P,{ϕi}) < C ′.

Theorem 2.24. Let C be a closed cone structure and let C ′ be a C0 proper cone

structure, with C < C ′, then JC ⊂ IC′ ∪∆.

Proof. It is sufficient to prove JC ⊂ IC′∪∆, in fact the general case follows from the

limit curve theorem 2.14 case (ii) with Jn = JC using the openness of IC′ . Moreover,

it is sufficient to prove the local version: every point has a coordinate neighborhood

U such that JC(U) ⊂ IC′(U)∪∆(U), since a continuous C-causal curve segment can

be finitely covered by such neighborhoods. If C ′ is a locally Lipschitz proper cone

structure (with respect to a C1-compatible smooth atlas) the proof is as follows:

let (p, q) ∈ JC(U)\∆(U), the h-arc length parametrized continuous C-causal curve

connecting p to q has almost everywhere derivative in C, thus in IntC ′, thus it is a

continuous C ′-causal curve. But it cannot be C ′-achronal otherwise the derivative

would stay almost everywhere in ∂IntC ′ (Th. 2.17), a contradiction, hence by Th.

2.7 (p, q) ∈ IC′(U). If C ′ is just continuous we can find C ′′ locally Lipschitz such

that C < C ′′ < C ′ then arguing as above (p, q) ∈ IC′′(U) ⊂ IC′(U).

Definition 2.12. Let (M,C) be a closed cone structure. The Seifert relation is the

intersection of the causal relations of all C0 proper cone structures having wider

cones: JS = ∩C′>CJC′ .

Theorem 2.23 shows that in the definition of the Seifert relation the C0 condition

can be replaced by “locally Lipschitz”. Proposition 2.11 shows that due to the

sharpness of C the family on the right-hand side is non-empty.

The Seifert relation can be equivalently defined using the chronological rela-

tion of the enlarged cones or the closure of the causal relation. The proof is as in

Lorentzian geometry and reported here for completeness [73].

Proposition 2.15. Let (M,C) be a closed cone structure. Then

JS = ∆ ∪
[
∩C′>C IC′

]
= ∩C′>C J̄C′ ,

where C ′ is a C0 proper cone structure having wider cones, C ′ > C.

Proof. For the first equality we have only to show that ∩C′>CJC′ ⊂ ∆ ∪
[
∩C′>C

IC′
]

the other inclusion being obvious. For every C0 proper cone structure Č > C,

taking a C0 proper cone structure C̃, such that C < C̃ < Č, it follows that JC̃ ⊂
∆ ∪ IČ hence ∩C′>CJC′ ⊂ ∆ ∪ IČ . Since Č is arbitrary, the claim follows.

In order to prove the identity JS = ∩C′>C J̄C′ we need just to prove the inclusion

∩C′>C J̄C′ ⊂ ∩Č>CJČ which follows from ∩C′>C J̄C′ ⊂ JČ for Č > C, which is

immediate from Th. 2.23 and Th. 2.24.

Theorem 2.25. Let (M,C) be a closed cone structure. Then JS is closed, reflexive,

transitive (a closed preorder) and contains J .
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Proof. The property of being closed follows immediately from Prop. 2.15, the other

properties are clear.

The next result is particularly useful in conjunction with the last statement of

the limit curve theorem 2.14.

Theorem 2.26. Let (M,C) be a closed cone structure. Then the family of locally

Lipschitz proper cone structures C ′ such that C < C ′ is non-empty. Moreover, for

every locally Lipschitz proper structure C̃ > C we can find a countable subfamily

of locally Lipschitz proper cone structures {Ck} such that C < Ck+1 < Ck < C̃,

C = ∩kCk and JS = ∩kJ̄k = ∆ ∪ ∩kIk = ∩kJk = ∩kJkS.

Proof. The first statement is Prop. 2.11. For every v /∈ Cp we can find a proper

cone C ′p > Cp such that v /∈ C ′p. Using again the local affine structure induced by a

coordinate neighborhood of p, and the upper semi-continuity of C, we can extend

locally the inclusion, and then globalize with the same arguments introduced in the

previous proofs so as to find a locally Lipschitz proper cone structure C ′ > C such

that v /∈ C ′. This means that C = ∩C′>CC ′ where C ′ runs over all locally Lipschitz

proper cone structures. Since TM\0 is second countable it is hereditary Lindelöf [72,

16E], thus [TM\0]\C is Lindelöf. The intersection ∩C′>CC ′ can be replaced by

the intersection of a countable family {C ′i}. At this point we define inductively the

locally Lipschitz proper cone structure C ′′i is such a way that C < C ′′i+1 < C ′i+1∩C ′′i
starting from C ′′0 = TM\0, so that C < C ′′k+1 < C ′′k , C = ∩kC ′′k .

Next we use the fact that M×M is second countable hence hereditary Lindelöf.

So (M ×M)\JS is Lindelöf, which implies that JS = ∩sJ̄C′′′s for some countable

family of locally Lipschitz proper cone structures {C ′′′s } with C ′′′s > C. Now take

inductively the locally Lipschitz proper cone structures Ck such that C < Ck+1 <

C ′′′k+1 ∩ C ′′k+1 ∩ Ck starting from C0 = TM\0.

Finally, the J̄k in the intersection can be replaced by ∆ ∪ Ik or Jk since by Th.

2.24 for every k, J̄k+1 ⊂ ∆ ∪ Ik ⊂ Jk. Moreover, Jk can be replaced by JkS since

Jk+1S ⊂ Jk as Ck+1 < Ck.

The relation JS was introduced by Seifert in 1971. It is stable as the next result

proves, so the letter “S” can also be nicely read as “Stable” and JS can be called the

stable (causal) relation compatibly with the terminology recently adopted in [16].

Theorem 2.27. (stability of the Seifert relation)

Let (M,C) be a closed cone structure. For every compact set K ⊂ M , and open

neighborhood V ⊃ JS ∩ K × K in the topology of K × K, we can find a locally

Lipschitz proper cone structure C ′ > C such that J ′S ∩K ×K ⊂ V (thus the same

holds for all cone structure narrower than C ′).

Proof. Let Ck be the sequence constructed in Th. 2.26. Since JS = ∩kJkS the open

sets {K × K\JkS} (in the topology of K × K) cover the compact set K × K\V ,
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thus passing to a finite covering and taking the largest index value i of the covering

we get JiS ∩K ×K ⊂ V .

The next result is a simple consequence of the limit curve theorem 2.14, of the

non-imprisoning property of the neighborhood constructed in Prop. 2.10, and of

Prop. 2.26.

Theorem 2.28. Let (M,C) be a closed cone structure. Every point has a neigh-

borhood U such that JS(U) = J(U).

The neighborhood mentioned coincides with that constructed in Prop. 2.10.

Proof. Let U be a neighborhood of the point in question constructed as in Prop.

2.10 and let Cg be the cone structure of the flat metric mentioned in that result. Let

(p, q) ∈ JS(U) then (p, q) ∈ Jk(U) for every k, where Ck is the sequence found in Th.

2.26, chosen so that Ck < Cg. Let σk be a continuous Ck-causal curve connecting

p and q contained in U . By the limit curve theorem 2.14 and the non-imprisoning

property of the neighborhood constructed in Prop. 2.10, there is a connecting curve

σ which is a continuous C-causal curve.

Definition 2.13. Let (M,C) be a closed cone structure. It is stably causal if there

is a C0 proper cone structure C ′ with C < C ′ which is causal. The stable recurrent

set is the set of all those p ∈M such that for every C0 proper cone structure C ′ > C

there is a closed continuous C ′-causal curve passing through p.

By Th. 2.23 under stable causality C ′ can be chosen locally Lipschitz.

We recall that (M,C) is strongly causal if every point admits arbitrarily small

causally convex neighborhoods.

Theorem 2.29. Any stably causal closed cone structure (M,C) is strongly causal.

Proof. If (M,C) is not strongly causal at x then there is a non-imprisoning neigh-

borhood U 3 x as in Prop. 2.10 and a sequence of continuous C-causal curves σn of

endpoints xn, zn, with xn → x, zn → x, not entirely contained in U . Let B, B̄ ⊂ U
be a coordinate ball of x. Let cn ∈ ∂B be the first point at which σn escapes B̄.

Since ∂B is compact there is c ∈ ∂B, and a subsequence σk such that ck → c, thus

(x, c) ∈ J̄ and (c, x) ∈ J̄ . By Th. 2.24 for every C0 proper cone structure C ′ with

C < C ′, we have JC ⊂ IC′ ∪∆, thus (x, c) ∈ JC′ and (c, x) ∈ JC′ , that is, (M,C)

is not stably causal.

Definition 2.14. The relation K is the smallest closed preorder containing J . We

say that K-causality holds if K is antisymmetric.

The next result is of central importance for causality theory. In the regular case

it has been the focus of several investigations [13,17,19,74–77]. Some of the proofs
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remain unaltered while others require substantial modifications. Under weak dif-

ferentiability assumption the equivalence between (i) and (vi) has been previously

obtained by Fathi and Siconolfi [14,15] in the C0 case, and by Bernard and Suhr [16]

in the upper semi-continuous case (their result contains also interesting information

for the non stably causal case). Our proof of this equivalence is different and based

on volume functions.

Theorem 2.30. Let (M,C) be a closed cone structure. The following properties

are equivalent:

(i) Stable causality,

(ii) Antisymmetry of JS,

(iii) Antisymmetry of K (K-causality),

(iv) Emptyness of the stable recurrent set,

(v) Existence of a time function,

(vi) Existence of a smooth temporal function,

Moreover, in this case JS = K = T1 = T2 where

T1 = {(p, q) : t(p) ≤ t(q) for every time function t},
T2 = {(p, q) : t(p) ≤ t(q) for every smooth temporal function t}.

The proof is given in Sec. 3.2-3.6.

Without the assumption of stable causality we might have K 6= JS , a causal

example is given in [73, Ex. 5.2].

2.8. Reflectivity and distinction

This section is devoted to the study of reflectivity and distinction, which taken

jointly will provide the notion of causal continuity [78]. The next relational approach

to reflectivity was introduced in [76].

Definition 2.15. A closed cone structure (M,C) is reflective if the relations Df =

{(p, q) : q ∈ J+(p)} and Dp = {(p, q) : p ∈ J−(q)} coincide with J̄ .

Proposition 2.16. For a proper cone structure reflectivity is equivalent to Df =

Dp, namely q ∈ J+(p)⇔ p ∈ J−(q).

Proof. We prove the inclusion J̄ ⊂ Df assuming q ∈ J+(p) ⇐ p ∈ J−(q) the

other steps in the proof being similar or trivial. Let (pk, qk) → (p, q) and pick a

point q′ ∈ I+(q). Then for sufficiently large k, qk ∈ I−(q′) so that pk ∈ J−(q′)

and p ∈ J−(q′) which by the assumption gives q′ ∈ J+(p) and passing to the limit

q′ → q, q ∈ J+(p), that is J̄ ⊂ Df .

In Lorentzian geometry reflectivity guarantees the continuity of volume func-

tions of the form p 7→ ∓µ(I±(p)), where µ is a measure absolutely continuous with
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respect to the local coordinate Lebesgue measures. This result does not seem to

hold, not even under global hyperbolicity, unless one assumes local Lipschitzness

of the cone structure, cf. the proof of Th. 2.42. Nevertheless, the given notion of

reflectivity and the related notion of causal continuity will be important and well

behaved, as we shall see (Th. 2.47). One reason for paying attention to this concept

lies in the possibility of generalizing Clarke and Joshi’s theorem [53].

Theorem 2.31. Let (M,C) be a proper cone structure. Let φt : M → M be a

complete C1 flow, t ∈ R, which preserves the cone structure, i.e. (φt)∗C = C, and

whose orbits are timelike curves, t 7→ φt(x). Then (M,C) is reflective.

Proof. We prove q ∈ J+(p) ⇒ p ∈ J−(q), the other direction being similar. We

can find sequence qk = φεk(q) with εk → 0, so that q ∈ I−(qk), and by the openness

of I, qk ∈ J+(p). As a consequence, defining pk = φ−εk(q) we have by traslational

invariance pk ∈ J−(q), and since pk → p, p ∈ J−(q).

Case (b) in the next result appear to be new. It will be crucial for the inclusion

of causal continuity into the causal ladder of spacetimes under weak differentiability

conditions.

Proposition 2.17. If the closed cone structure (M,C) is (a) proper and locally

Lipschitz or (b) reflective, then the relations Df and Dp are transitive.

Proof. Let us prove the transitivity of Df under (a). The proof is identical to the

Lorentzian one, cf. [79] [76, Th. 3.3]. Let q ∈ J+(p) and r ∈ J+(q). Let r′ ∈ I+(r)

then r ∈ I−(r′) and by the openness of I and Prop. 2.7, q ∈ I−(r′) and again by the

openness of I, p ∈ I−(r′), that is r′ ∈ I+(p) and taking the limit r′ → r, r ∈ J+(p).

Let us prove the transitivity of Df under (b). Let q ∈ J+(p) and r ∈ J+(q).

By reflectivity p ∈ J−(q), thus there is a sequence of continuous causal curves σk
with endpoints pk → p and rk → r passing through q, hence (p, r) ∈ J̄ , which using

again reflectivity gives r ∈ J+(p).

Definition 2.16. Let (M,C) be a closed cone structure. We say that distinction

holds, or (M,C) is distinguishing if the next property holds true. Every point admits

arbitrarily small distinguishing open neighborhoods. Namely for every p ∈ M and

open set U 3 p, there is an open set V , p ∈ V ⊂ U , which distinguishes p, i.e. every

continuous causal curve x : I → M passing through p intersects V in a connected

subset of I.

The next result under case (a) was observed in [76] while case (b) is new and

will prove important for the validity of the causal ladder.

Proposition 2.18. Let (M,C) be a closed cone structure. The property ‘Df and

Dp are antisymmetric’ implies distinction. The converse is true under any of the

following assumptions: (a) C is proper and locally Lipschitz; (b) reflectivity.
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Proof. Suppose that distinction is violated, then by Remark 2.4 we can find p ∈M ,

U 3 p and a sequence of continuous causal curves σk escaping and reentering U

starting from p and ending at qk → p (or similarly in the past case, namely σk
start from pk → p and end at p). By the limit curve theorem 2.14 there is a

continuous causal curve σp (possibly closed) ending at p. Let r ∈ σp\{p}, then r

is an accumulation point of σk, thus p ∈ J+(r) ⊂ J+(r) and r ∈ J+(p), namely

(r, p) ∈ Df and (p, r) ∈ Df .

The converse under assumption (a). Suppose that (p, q) ∈ Df and (q, p) ∈ Df

with p 6= q. Let qk ∈ I+(q) with qk → q. Since I is open and J ◦ I ⊂ I we can find

a timelike curve σk starting from q passing arbitrarily close to p and ending at qk.

Thus distinction is violated at q.

The converse under assumption (b). Suppose that (p, q) ∈ Df and (q, p) ∈ Df

with p 6= q. By the limit curve theorem 2.14 there is a continuous causal curve σq

ending at q (and possibly starting from p). Every r ∈ σq\{q}, being an accumulation

point of continuous causal curves starting from p, belongs to J+(p), thus (q, p) ∈ Df

and (p, r) ∈ Df . By Prop. 2.17 Df is transitive, thus (q, r) ∈ Df . Since r can be

chosen arbitrarily close to q, distinction is violated. In fact, there are continuous

causal curves γk with starting point q and ending point rk → r. If there is a

subsequence contained in the non-imprisoning neighborhood U 3 q constructed in

Prop. 2.10, by the limit curve theorem there is a continuous causal curve connecting

q to r and hence a closed continuous causal curve passing through q, violating

distinction (as it implies causality). On the other hand, if there is a subsequence

whose curves escape U distinction is again violated.

2.9. Domains of dependence and Cauchy horizons

Definition 2.17. Let (M,C) be a closed cone structure. The future domain of

dependence or future Cauchy development D+(S) of a closed and achronal subset

S ⊂M , consists of those p ∈M such that every past inextendible continuous causal

curve passing through p intersect S. The future Cauchy horizon is

H+(S) = D+(S)\I−(D+(S)).

The domain of dependence or Cauchy development D(S) of a closed and achronal

subset S ⊂ M , consists of those p ∈ M such that every inextendible continuous

causal curve passing through p intersect S. (Clearly, D(S) = D+(S)∪D−(S).) The

Cauchy horizon is H(S) := H+(S) ∪H−(S).

Chruściel and Grant asked to clarify the phenomena of causal bubbling in con-

nection with the Cauchy problem [4]. The next result goes in this direction by

showing that the behavior they observed in a specific example is general.

Theorem 2.32. (Cauchy horizons are generated by lightlike geodesics)

Let (M,C) be a proper cone structure and let S be a closed and achronal subset.

The set H+(S)\S is an achronal locally Lipschitz topological hypersurface and every
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p ∈ H+(S) is the future endpoint of a lightlike geodesic contained in H+(S), either

past inextendible or starting from some point in S. If S is acausal no two points

p, q ∈ H+(S)\S can be such that (p, q) ∈ J̊ , thus every continuous causal curve

contained in H+(S)\S is a lightlike geodesic.

Moreover, if (M,C) is locally Lipschitz then every past inextendible continuous

causal curve with future endpoint in H+(S) is such that the maximal connected

segment which does not intersect S is contained in H+(S) (hence the segment is a

lightlike geodesic).

Notice that we do not prove that the generators cannot intersect other generators

in their interior.

Proof. Let p ∈ H+(S), and let (pk, p) ∈ I, pk → p, then pk ∈ I−(D+(S)), thus

p ∈ ∂I−(D+(S)), and H+(S) being a subset of an achronal boundary ∂I−(D+(S))

it is itself achronal. If p ∈ H+(S)\S then any past inextendible C-timelike curve

reaching p intersects S, thus p ∈ I+(S). We have proved the inclusion H+(S)\S ⊂
I+(S) ∩ ∂I−(D+(S))

We want to prove the equality H+(S)\S = I+(S) ∩ ∂I−(D+(S)), so that

H+(S)\S is an open subset of an achronal boundary and hence a locally Lips-

chitz topological hypersurface itself. Let p ∈ I+(S) ∩ ∂I−(D+(S)), then there is

a sequence of C-timelike curves σk of starting points pk → p and ending points

qk ∈ D+(S) (recall that I is open). For sufficiently large k the C-timelike curve σk
cannot intersect S, otherwise, since pk ∈ I+(S), we would have a violation of the

achronality of S. Thus, we cannot have pk ∈ M\D+(S) otherwise it would follow

that qk ∈ M\D+(S), a contradiction. Thus pk ∈ D+(S) and p ∈ D+(S). But by

assumption p /∈ I−(D+(S)), thus p ∈ H+(S) as we wished to prove.

If q ∈ H+(S) and q′ � q, then we cannot have q′ ∈ H+(S), as we would have

q ∈ I−(D+(S)), a contradiction. Similarly, if q ∈ H+(S)\S and r ∈ I−(q, U) where

U is a sufficiently small neighborhood of q, U ∩ S = ∅, then r ∈ I−(q′, U) for some

q′ ∈ D+(S) and we cannot have r ∈ M\D+(S), otherwise q′ /∈ D+(S). Thus, for

every q ∈ H+(S)\S we have I−(q, U) ⊂ D+(S).

Let q ∈ H+(S)\S and let qk → q, with qk � q. Since qk /∈ D+(S) it is the

future endpoint of a past inextendible continuous causal curve σk, cf. Th. 2.1,

not intersecting S. Necessarily it does not intersect D+(S) otherwise it would be

forced to intersect S. By the limit curve theorem q is the future endpoint of a

past inextendible continuous causal curve σ which does not intersect the open set

I+(S) ∩ I−(D+(S)) ⊂ D+(S) as none of the σk does.

It remains to show that σ ∩ I+(S) ⊂ H+(S). First we notice the equality

I+(S) ∩ H+(S) = H+(S)\S which is due to the achronality of S. If the cone

structure is locally Lipschitz by Th. 2.6 J−(q, U) = I−(q, U) ⊂ D+(S), which

proves the inclusion σ∩I+(S) ⊂ H+(S) in a neighborhood of q. At this point, since

H+(S) is closed, we can extend the inclusion all over σ∩ I+(S) through a standard

maximization argument. However, this result proves much more, namely that every
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continuous causal curve ending at q and not intersecting I+(S) ∩ I−(D+(S)) is

contained in H+(S)\S as long as it does not intersect S. This is the last statement

of the theorem.

In the upper semi-continuous case we wish to prove that there is at least one

continuous causal curve with this property. We proceed as follows. We introduce a

complete Riemannian metric h, and a timelike Lipschitz vector fieldW (with respect

to a C1 compatible smooth atlas) so transverse to H0 = H+(S)\S, and its flow ϕτ .

The vector field is normalized so that Hτ := ϕτ (H0) is well defined for |τ | ≤ 1 and

does not intersect S. A locally finite covering of H0 with the neighborhoods used

in the proof of Theorem 2.19 might be used to show that a vector field with these

properties exists.

Having chosen q ∈ H0 we are going to build a sequence of continuous causal

zig-zag curves ending at q. The “zig” is a segment of past inextendible continuous

causal curve not intersecting I+(S)∩ I−(D+(S)) while the zag is an integral curve

of W so that ∆τ < 1/N where the total number of zig-zags is unbounded unless

one zig remains in the region τ < 1/N as long as it stays in ϕ[0,1/N ](H0). The

starting point of the zag is in H+(S)\S. If the last piece is a zig the curve is

past inextendible. For each N we have a continuous causal curve ending at q not

intersecting I+(S) ∩ I−(D+(S)), and the sequence does not contract to a point

so there must be a limit continuous causal curve σ which does not intersect the

same set. By construction its intersection with I+(S) is contained in H+(S)\S
and can only be past inextendible or converge to a point in S. Notice, that no

two points p, q ∈ H+(S)\S can be such that (p, q) ∈ J̊ since there would be

p′ ∈ M\D+(M) ∩ J−(q′) with q′ ∈ D+(S), so it would be possible to find a past

inextendible causal curve ending at q′ not intersecting S (if p′ is chosen sufficiently

close to p, p′ ∈ I+(S), so the causal curve connecting p′ to q′ cannot intersect S by

acausality of S), a contradiction. Thus σ is a lightlike geodesic.

Theorem 2.33. Let (M,C) be a proper cone structure. Let S be an acausal topo-

logical hypersurface. Then S is locally Lipschitz and every point p ∈ S admits an

open neighborhood U 3 p which is the disjoint union of S ∩ U and the open sets

J+(S ∩ U,U)\S, J−(S ∩ U,U)\S. Moreover, J+(S ∩ U,U) ⊂ D+(S). Finally, the

generators of H+(S) do not reach S.

Proof. By a proof analogous to that of Th. 2.19, S is a local Lipschitz graph

(just work with the continuous cone structure C̃ contained in C) and for every

p ∈ S and sufficiently small neighborhood U 3 p, U is the disjoint union of S ∩ U ,

Ĩ+(S∩U,U), Ĩ−(S∩U,U). By acausality they coinicide with S∩U , J+(S∩U,U)\S,

J−(S ∩ U,U)\S.

Suppose that there is no open neighborhood U such that J+(S∩U,U) ⊂ D+(S),

then we can find a sequence pk → p, pk ∈ J+(S ∩ U,U), consisting of endpoints

of past inextendible continuous causal curves σk not intersecting S (hence pk 6= p).

By the limit curve theorem there is a past inextendible continuous causal curve σ
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ending at p. But p ∈ S and by acausality σ\{p} ⊂ J−(S ∩ U,U)\S. So σ has to

cross the local Lipschitz graph of S, and so must do σk for sufficiently large k, a

contradiction.

Theorem 2.34. Let (M,C) be a proper cone structure. Let S be an acausal topo-

logical hypersurface. Then D+(S)\S is open and S ∩H+(S) = ∅.

Proof. Suppose D+(S)\S is not open then there is q ∈ D+(S)\S, and a sequence

of past inextendible continuous causal curves σk not intersecting S of endpoints

qk → q. Thus the limit past inextendible continuous causal curve σ ending at q

intersects S at a point p crossing the locally Lipschitz graph of S, and so must σk
for sufficiently large k, a contradiction. The last equality follows from Th. 2.33.

Theorem 2.35. Let (M,C) be a proper cone structure. Let S be closed and

achronal, then we have the identity D+(S) = IntD+(S) ∪H+(S) ∪ S.

Proof. Clearly, S belongs to D+(S) and by the achronality of S no point of I−(S)

belongs to D+(S), thus S ⊂ ∂D+(S). For every q ∈ H+(S)\S, I+(q) ∩D+(S) = ∅
otherwise q /∈ H+(S), a contradiction, thus H+(S)\S ⊂ ∂D+(S). Letting q ∈
∂D+(S)\S, every timelike curve σ ending at q must enter D+(S) immediately,

moving from q in the past direction. Indeed, if not we can find r ∈ σ∩M\D+(S) and

hence q ∈ I+(r) ⊂M\D+(S), a contradiction with q ∈ ∂D+(S). As a consequence,

∂D+(S)\S = ∂D+(S) ∩ I+(S). Let q ∈ ∂D+(S)\S then it cannot hold that q ∈
I−(D+(S)) otherwise there would be q′ ∈ [M\D+(S)] ∩ I−(D+(S)) ∩ I+(S), a

contradiction. Thus q /∈ I−(D+(S)) = I−(D+(S)) and hence q ∈ H+(S)\S.

Theorem 2.36. Let (M,C) be a proper cone structure. Let S be a closed and

achronal set and let D̃+(S) be the closed set of all points p for which all timelike

curves ending at p intersect S. Then D̃+(S) is closed, D+(S) ⊂ D̃+(S), and if

(M,C) is also locally Lipschitz, then D+(S) = D̃+(S).

Proof. By the openness of I the set D̃+(S) is closed. Clearly, D+(S) ⊂ D̃+(S),

thus D+(S) ⊂ D̃+(S).

For the other direction, suppose there were a point p ∈ D̃+(S) which had a

neighborhood V which did not intersect D+(S). Choose a point x ∈ I−(p, V ). Since

x /∈ D+(S) we have p /∈ D̃+(S), in fact using I ◦ J ⊂ I it is possible to construct a

past inextendible timelike curve ending at p (avoidance Lemma [80, p.416, lemma

30] [1, Prop. 6.5.1]), a contradiction. Thus D̃+(S) = D+(S).

2.10. Global hyperbolicity and its stability

In this section we introduce the important notion of global hyperbolicity, which is

the strongest among the causality conditions. We start with the following weaker

notion [3, 81].
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Definition 2.18. A closed cone structure (M,C) is causally simple if J is closed

and antisymmetric.

Lemma 2.4. Let (M,C) be a closed cone structure. If it is causally simple then it

is strongly causal.

Proof. If (M,C) is not strongly causal at x then there is a non-imprisoning neigh-

borhood U 3 x as in Prop. 2.10 and a sequence of continuous C-causal curves σn of

endpoints xn, zn, with xn → x, zn → x, not entirely contained in U . Let B, B̄ ⊂ U
be a coordinate ball of x. Let cn ∈ ∂B be the first point at which σn escapes B̄.

Since ∂B is compact there is c ∈ ∂B, and a subsequence σk such that ck → c. By

the limit curve theorem and the non-imprisoning property of U , we have (x, c) ∈ J ,

while (c, x) ∈ J̄ = J . Thus there is a closed continuous causal curve passing through

x, a contradiction.

For a proper cone structure we have the next equivalence.

Proposition 2.19. Let (M,C) be a proper cone structure. The property J = J̄ is

equivalent to: for every p ∈M , J+(p) and J−(p) are closed.

In the language of topological preordered spaces [82] the proposition says

that under the said assumption the topological preordered space (M,T , J) is T2-

preordered if and only if it is T1-preordered. The next proof coincides with the usual

one given in Lorentzian geometry.

Proof. The direction which assumes J closed is obvious. Let (p, q) ∈ J̄ , so that

there are (pk, qk) → (p, q), (pk, qk) ∈ J . Let p′ ∈ I−(p, U) where U 3 p is an open

neighborhood. For sufficiently large k, pk ∈ I+(p′) ⊂ J+(p′), and qk ∈ J+(p′). Thus

q ∈ J+(p′) = J+(p′), that is p′ ∈ J−(q) and letting p′ → p, we get p ∈ J−(q) =

J−(q) as we wished to prove.

The next result which will mostly interest us for R = J is [82, Prop. 1.4]. The

short proof is included for completeness.

Theorem 2.37. Let R ⊂ M ×M be a closed relation, then for every compact set

K, R+(K) and R−(K) are closed.

Proof. Since R is closed if (p, q) /∈ R, there are open sets U 3 p, V 3 q, such that

(U × V ) ∩ R = ∅. Let q /∈ R+(K), then for every p ∈ K we can find Up 3 p and

Vp 3 q, such that (Up × Vp) ∩ R = ∅. Let {Upi} be a finite covering for K and

V = ∩iVpi , then not point in V intersects R+(K), thus R+(K) is closed.

In [83, Sec. 3] we argued that the notions of causal simplicity and global hyper-

bolicity might be regarded as pertaining to the more abstract framework of topo-

logical preordered spaces. In this theory a causally simple cone structure would be
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a causally simple topological ordered space, namely a topological preordered space

(M,T , J) in which the preorder J is closed and antisymmetric (T2-ordered space).

A globally hyperbolic topological preordered space would be just a T2-ordered space

for which additionally the causally convex hull of compact sets is compact. Accord-

ing to the results of [83, Sec. 3] this structure has several interesting properties

among them that of quasi-uniformizability.

This definition of global hyperbolicity, point (γ) below, will be indeed that used

in this work for closed cone structures but, in general, demanding directly causal

simplicity does not seem to be the most useful way of introducing the concept. So

we shall consider different characterizations.

Definition 2.19. A causal diamond is a set of the form J+(p)∩J−(q) for p, q ∈M .

A causal emerald is a set of the form J+(K1) ∩ J−(K2), where K1 and K2 are

compact subsets. A Seifert diamond is a set of the form J+
S (p)∩J−S (q) for p, q ∈M .

The first definition is imported from mathematical relativity, while the second

and third are new. We found the terminology appropriate given the typical cuts of

emeralds.

Definition 2.20. A closed cone structure (M,C) is globally hyperbolic if the fol-

lowing equivalent conditions hold

(α) Non-imprisonment and for every bounded set B its causally convex hull

J−(B) ∩ J+(B) is bounded.

(β) Causality and causal emeralds are compact.

(γ) Causal simplicity and for every compact set K its causally convex hull

J−(K) ∩ J+(K) is compact.

(δ) Stable causality and the Seifert diamonds are compact.

The definition (β) is that given recently in [16]. In what follows we shall prove

the equivalences. We start with the next result which improves [16, Lemma 38].

Theorem 2.38. Let (M,C) be a closed cone structure. If causal emeralds are com-

pact then J is closed. Moreover, (β) and (γ) in Def. 2.20 coincide.

Proof. Preliminarly, let us prove that J+(x) is closed for every x [16, Lemma 38].

Let y ∈ J+(x), so there is a sequence yn ≥ x such that yn → y. The sets K1 = {x}
and K2 = {y, y1, y2, · · · } are compact, thus B = J+(x) ∩ J−(K2) is compact and

hence closed. Since yn ∈ B we conclude y ∈ B, hence y ∈ J+(x). Similarly, J−(x)

is closed for every x.

Let (p, q) ∈ J̄ , we have to show that (p, q) ∈ J . If p = q there is nothing to prove,

so let p 6= q. There are sequences pk → p, qk → q, such that (pk, qk) ∈ J . Let Kp and

Kq be compact neighborhoods of p and q respectively. The set J+(Kp)∩J−(Kq) is

compact and non-empty as it contains pk and qk for sufficiently large k, moreover

A = ∩Kp,KqJ+(Kp) ∩ J−(Kq) is compact and non-empty, since the intersected

family of compact sets satisfies the finite intersection property. Let r ∈ A, then
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for every Kp, J
−(r) ∩ Kp 6= ∅, thus p ∈ J−(r) since J−(r) is closed. Similarly,

q ∈ J+(r), and hence (p, q) ∈ J . As for the last statement, the direction (β) ⇒ (γ)

follows from the just proved result. For the converse, it is well known and pretty

easy to prove that for a closed relation, given a compact set K, J+(K) and J−(K)

are closed (Th. 2.37), thus J+(K1) ∩ J−(K2) is a closed subset of the compact set

J+(K1 ∪K2) ∩ J−(K1 ∪K2), thus compact.

Let us prove the stability of global hyperbolicity [4, 14, 16, 21, 84]. With it we

shall also end the proof of the equivalence of (α), (β), (γ) and (δ). The next result

is quite general and its proof is short and particularly simple. In fact we get also the

identity JS = J in globally hyperbolic cone structures, a result which in previous

approaches required separate treatment. The next theorem is important in order

to construct smooth time functions, indeed by opening slightly the cones one gets

the ‘room’ needed by the smoothing procedures based on convolution.

For shortness in this theorem and in its proof we write ‘globally hyperbolic’ in

place of ‘globally hyperbolic in the sense of (α) in Def. 2.20’.

Theorem 2.39. (Stability of global hyperbolicity)

Let (M,C) be a globally hyperbolic closed cone structure. Then JS = J and there is

a globally hyperbolic locally Lipschitz proper cone structure (M,C ′), with C ′ > C.

Moreover, (α), (β), (γ) and (δ) in Def. 2.20 coincide.

Notice that a globally hyperbolic closed cone structure is causally simple due

to characterization (γ) and strongly causal due to Lemma 2.4. Its stability implies

that it is also stably causal.

Proof. Let o ∈ M and let h be a complete Riemannian metric. We can find

compact sets {Kn} such that J+(Kn) ∩ J−(Kn) ⊂ IntKn+1, ∪nKn = M , and

Kn contains the h-ball of radius n centered at o ∈ M . For every n it is possi-

ble to find a closed cone structure Cn ≥ C, which on Kn+2 satisfies Cn > C, on

M\IntKn+3 satisfies Cn = C, is a locally Lipschitz proper cone structure on Kn+2,

and is such that J+
Cn

(Kn) ∩ J−Cn(Kn) ⊂ IntKn+1. Indeed suppose not, taking a

sequence of closed cone structures {C̃k}, C ≤ C̃k+1 ≤ C̃k, ∩kC̃k = C, which on

Kn+2 satisfy C̃k > C, on M\IntKn+3 satisfy C̃k = C and are locally Lipschitz

proper cone structures on Kn+2, we would have for every k a continuous C̃k-causal

curve which starts from Kn intersects ∂Kn+1 and returns to Kn. The curve cannot

enter M\Kn+4 since it would be C-causal on M\IntKn+3, thus contradicting the

inclusion J+(Kn+3) ∩ J−(Kn+3) ⊂ IntKn+4. By applying the limit curve theo-

rem 2.14 we would get a continuous C-causal curve joining two points in Kn and

passing through some point of ∂Kn+1 (case (ii) of theorem 2.14 does not apply

since the inextendible limit curves would be imprisoned in Kn+4 contradicting the

non-imprisonment property contained in the definition of global hyperbolicity), a

contradiction with J+(Kn) ∩ J−(Kn) ⊂ IntKn+1.
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Now let C ′ > C be a locally Lipschitz proper cone structure such that for every

n, C ′ < Cn, Cn−1 on Kn+1\IntKn. Notice that Cn > C on Kn+2 and Cn−1 > C on

Kn+1, so C ′ does exist. Let us consider a continuous C ′-causal curve σ which starts

and ends in Kn but is not entirely contained in Kn. Let m be the maximum number

such that σ intersects Km+2\IntKm+1, thus σ ⊂ Km+2. Evidently m ≥ n−1 since it

intersects ∂Kn. Since C ′ < Cm on Km+2\IntKm+1 and C ′ < Cm on Km+1\IntKm

we have that a segment of σ is a continuous Cm-causal curve which, unlessm = n−1,

starts and returns to Km intersecting ∂Km+1, a contradiction. Thus J−C′(Kn) ∩
J+
C′(Kn) ⊂ Kn+1. From this boundedness result, Th. 2.14 and 2.26 it is immediate

that JS = J , so JS is antisymmetric (non-imprisonment implies causality) which

implies stable causality. As a consequence, C ′ in the previous step can be chosen

stably causal, hence non-imprisoning (it follows from Th. 2.24 and 2.22, or Th. 2.29).

Since every bounded set is contained in Kn for some n, the C ′-causally convex hull

of every bounded set is bounded which proves that (M,C ′) is globally hyperbolic.

As for the last statement, JS = J implies that J is closed. We already know that

(β) and (γ) coincide. Since under (α) the causal relation J is closed and since non-

imprisonment implies causality, we have causal simplicity. Moreover, J+(K) and

J−(K) are closed due to Th. 2.37, thus the convex hull J+(K) ∩ J−(K) is closed

and bounded, hence compact. We conclude that (α)⇒ (γ). As for (γ)⇒ (α), causal

simplicity implies strong causality (Lemma 2.29) which implies non-imprisonment.

Moreover, if B is bounded B̄ is compact, thus as J+(B)∩J−(B) ⊂ J+(B̄)∩J−(B̄)

and the latter is compact, we have that J+(B) ∩ J−(B) is bounded. Let us prove

(α)⇒ (δ). The first part of this proof proves that (α) implies stable causality and

J = J̄ implies J = K = JS (Th. 2.30), thus the Seifert diamonds coincide with

causal diamonds which have been already shown to be compact by the equivalence

between (α) and (β). Finally, for (δ)⇒ (α), stable causality implies strong causality

which implies non-imprisonment. Suppose by contradiction that there is a bounded

set B such that J+(B)∩ J−(B) is not compact, then we can find (pn, qn) ∈ B ×B
such that (pn, qn)→ (p, q) ∈ B̄ × B̄ and continuous causal curves σn such that σn
intersects ∂B(o, n) where B(o, n) is the ball of radius n centered at some chosen

point o ∈ M . Let p′ < p and q < q′, then by Th. 2.24 for C ′ > C, (p′, p) ∈ IC′ ,
(q, q′) ∈ IC′ . For any given k we have for sufficiently large n that (p′, pn) ∈ IC′ ,
(qn, q

′) ∈ IC′ and k ≤ n, thus for every k and C ′ > C there is a continuous C ′-causal

curve connecting p′ to q′ and intersecting ∂B(o, k). But the family of non-empty

compact sets {J+
C′(p

′)∩J−C′(q′)∩∂B(o, k)}C′ satisfies the finite intersection property,

thus ∅ 6= ∩C′>C{J+
C′(p

′) ∩ J−C′(q′) ∩ ∂B(o, k)} ⊂ J+
S (p′) ∩ J−S (q′) ∩ ∂B(o, k), where

we used Prop. 2.15, so the arbitrariness of k implies that a Seifert diamond is not

compact, a contradiction.

In [77] we introduced the transverse ladder; a useful structure which might be

used to clarify the central position of stable causality. Remarkably, it holds true

under much weaker differentiability assumptions.
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Theorem 2.40. (Transverse ladder)

Let (M,C) be a closed cone structure. Compactness of causal emeralds ⇒ The

causal relation is closed ⇒ Reflectivity ⇒ Transitivity of J̄ .

Proof. The first implication is Th. 2.38. The causal relation is closed ⇒ Reflec-

tivity. It is clear that Dp = Df = J = J̄ . Reflectivity ⇒ Transitivity of J̄ . Under

reflectivity Dp = Df = J̄ , but under reflectivity Df and Dp are transitive by Prop.

2.17, thus J̄ is transitive.

For a proper cone structure the first implication can be improved as follows. We

recall that a causal diamond is a set of the form J+(p) ∩ J−(q).

Lemma 2.5. Let (M,C) be a proper cone structure. Compactness of the causal

diamonds ⇒ the causal relation is closed.

Proof. By Prop. 2.19 we have to prove that J−(q) is closed for every q, the proof

that J+(q) is closed being similar. Let pk ∈ J−(q) be such that pk → p, and pick

p′ ∈ I−(p, U) where U 3 p is an open neighborhood. Since I is open we have

pk ∈ J+(p′) for sufficiently large k, moreover J+(p′) ∩ J−(q) being compact is

closed, thus p ∈ J+(p′) ∩ J−(q) ⊂ J−(q).

Proposition 2.20. A proper cone structure (M,C) is (a) non-imprisoning with

bounded causal diamonds if and only if it is (b) causal with compact causal dia-

monds.

Proof. (a) ⇒ (b). Let (p, q) ∈ J and let rk ∈ J+(p) ∩ J−(q), rk → r ∈ M . The

sequence of continuous causal curves connecting p to rk and rk to q must converge

to a continuous causal curve connecting p to q passing through r, otherwise by the

limit curve theorem 2.14 there would be a future inextendible continuous causal

curve starting from p future imprisoned in J+(p) ∩ J−(q), a contradiction.

(b) ⇒ (a). We know from Th. 2.5 that the causal relation is closed. Suppose

that there is a future imprisoned continuous causal curve, then by Th. 2.22 there

exists a future imprisoned continuous causal curve α such that α ⊂ Ωf (α). Pick a

point p ∈ α, and a point q ∈ α\{p}∩J+(p) then p ∈ J+(q)∩J−(q) = J+(q)∩J−(q)

so causality is violated, a contradiction.

The next result is [16, Prop. 1] and shows that in the proper case the definition

of global hyperbolicity can be expressed with the compactness of causal diamonds.

We include the proof for completeness.

Proposition 2.21. Let (M,C) be a proper cone structure such that causal dia-

monds are compact. Then causal emeralds are compact.

This result does not hold for closed cone structures, consider M = R2\(0, 0)

where the cone C is generated by the vector field ∂y.
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Proof. By theorem 2.5 J is closed, and it is well known and pretty easy to prove

that for a closed relation, given a compact set K, J+(K) and J−(K) are closed

(Th. 2.37). So it will be sufficient to prove that J+(K) ∩ J−(K) is bounded for

every compact set K, since the fact that J+(K1) and J−(K2) are closed and the

boundedness of J+(K1 ∪K2)∩ J−(K1 ∪K2) are enough to prove the claim. Let K̃

be a compact set such that K ⊂ IntK̃. Using the (*) property for each p ∈ K we

can find q, r ∈ K̃ such that p ∈ I+(q) ∩ I−(r), so we can find a finite covering of

K, given by sets of the form I+(qi)∩ I−(ri), i = 1, · · · , s. Then J+(K)∩ J−(K) ⊂
∪i,jJ+(qi) ∩ J−(rj), which being the union of compact sets is compact.

Corollary 2.4. In a proper cone structure we can just define global hyperbolicity

with the equivalent conditions mentioned in Prop. 2.20.

In the regular case the characterization of global hyperbolicity through the prop-

erty 2.20(b) was introduced in [3, 81] as an improvement over the classical defini-

tion [1] which assumed strong causality in place of causality. We introduced the

characterization 2.20(a) in [85] and proved that it is particularly useful, for in-

stance in the study of the stability of global hyperbolicity [84]. The more general

definitions for closed cone structures Def. 2.20 (α) and (β) are clearly inspired by

those. Definition (α) is quite robust, in fact it is that used to prove the stability of

global hyperbolicity. Furthermore, it makes it clear that by narrowing the cones one

does not spoil global hyperbolicity as both properties entering (α) are preserved.

Charaterization (β) is also quite convenient as the property there mentioned enters

nicely the transverse ladder. As for (δ), stable causality is equivalent to the anti-

symmetry of the Seifert relation, thus global hyperbolicity can be expressed in a

simple way using just the Seifert relation, a result which is pretty satisfying given

the importance of this relation for causality.

Remark 2.9. It is clear that the neighborhood constructed in Prop. 2.10 or Th.

2.15 is globally hyperbolic as it is so for a Minkowski metric with wider cones.

Example 2.6. A closed cone structure which satisfies the properties of Prop. 2.20

need not be causally simple. Consider again the manifold R2\{(0, 0)} of coordinates

(x, t), endowed with the stationary round cone structure C determined by the vector

field ∂t.

Definition 2.21. Let (M,C) be a closed cone structure. A Cauchy hypersurface is

an acausal topological hypersurface S such that D(S) = M . A stable Cauchy hy-

persurface is a Cauchy hypersurface for (M,C ′) where C ′ > C is a locally Lipschitz

proper cone structure.

Proposition 2.22. Let (M,C) be a closed cone structure. Any two stable Ck,

0 ≤ k ≤ ∞, Cauchy hypersurfaces are Ck diffeomorphic. For a proper cone structure

any two Ck, 0 ≤ k ≤ ∞, Cauchy hypersurfaces are Ck diffeomorphic.

Here “C0 diffeomorphic” must be read as “homeomorphic”.
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Proof. Let S1 and S2 be Cauchy hypersurfaces for the locally Lipschitz proper cone

structures C1 > C, and C2 > C, respectively. Then we can find locally Lipschitz

proper cone structure C3 > C such that, C3 < C1, C2, thus both S1 and S2 are

Cauchy hypersurfaces for (M,C3). Let V be a smooth C3-timelike vector field.

Its integral curves intersect S1 and S2 precisely once, so its flow can be used to

establish a Ck diffeomorphism between S1 and S2 in the usual way. The argument

for a proper cone structure is simpler, just let V be a smooth timelike vector field

for (M,C) and argue as above.

Definition 2.22. Let (M,C) be a closed cone structure. A topological hypersurface

S is stably acausal if it is acausal with respect to (M,C ′) where C ′ > C is a locally

Lipschitz proper cone structure.

The notion of stable acausality is a kind of replacement for the ‘spacelikeness’

notion in the smooth setting.

Theorem 2.41. Let (M,C) be a closed cone structure. Stable Cauchy hypersurfaces

and stably acausal Cauchy hypersurfaces coincide.

Proof. It is clear that every stable Cauchy hypersurface is stably acausal. For the

converse, let S be a stably acausal Cauchy hypersurface. There is a locally Lipschitz

proper cone structure C ′ > C, such that S is C ′-acausal. Let o ∈ M , let h be a

complete Riemannian metric and let Kn = B̄(o, n) be a sequence of compact sets

so that Kn ⊂ IntKn+1, ∪nKn = M . We can define inductively locally Lipschitz

proper cone structures Cn, C < Cn < C ′, Cn < Cn−1, in such a way that every

inextendible continuous Cn-causal curve intersecting Kn intersects S. In fact, if the

inductive step were not allowed considering the limit Cn → C as in Th. 2.26, by the

limit curve theorem 2.14 there would be an inextendible continuous C-causal curve

intersecting Kn but not S, a contradiction. Let C̃ be a locally Lipschitz proper cone

structure chosen so that C < C̃ < Cn on Kn\IntKn−1. Let σ be an inextendible

continuous C̃-causal curve, and let k be the minimum number such that σ∩Kk 6= ∅.
Then σ is Ck-causal and intersects Kk, thus it intersects S. There can only be one

intersection since S is C ′-acausal and hence C̃-acausal. The arbitrariness of σ proves

that it is a Cauchy hypersurface of C̃ > C.

The next result is classical and in the present upper semi-continuous general-

ization can be found in [16]. Here we add the relationship with the notion of stable

Cauchy hypersurface. Our proof is closer in spirit to that of Lorentzian geome-

try [1,18] but the construction of Geroch’s volume function is really worked out on

a wider cone structure.

Theorem 2.42. Every globally hyperbolic closed cone structure (M,C) admits a

Cauchy time function (which is Geroch’s time function t for a wider locally Lipschitz

proper cone structure). So every globally hyperbolic closed cone structure is a domain

of dependence, i.e. there is a stable Cauchy hypersurface S, M = D(S). Moreover,
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M is topologically a product R× S where the first projection is t and S is smoothly

diffeomorphic to the stable Cauchy hypersurface. For a proper cone structure the

fibers of the second projection can be chosen to be the integral timelike curves of a

smooth timelike vector field.

Proof. By the stability of global hyperbolicity we can find a globally hyperbolic

locally Lipschitz proper cone structure with wider cones, so it is sufficient to prove

the theorem assuming (M,C) to be a locally Lipschitz proper cone structure, as

any Cauchy time function for a cone structure is still a Cauchy time function for a

narrower cone structure.

Let µ be a probability measure absolutely continuous with respect the Lebesgue

measure of any local chart. Since J+(p) is a future set its boundary is a locally

Lipschitz topological hypersurface so µ(∂J+(p)) = 0 and similarly in the past case

(Th. 2.19). Let t±(p) = ∓µ(J±(p)) = ∓µ(I±(p)) so that by strong causality both

functions are strictly increasing over continuous causal curves. Let us prove that t−

is continuous, the proof for t+ being analogous.

Let ε > 0, and let K ⊂ I−(p) be a compact set such that µ(I−(p)\K) < ε (it

exists by inner regularity of the measure). For every q ∈ K we can find r ∈ I−(p)

such that q ∈ I−(r), thus K admits a finite covering of sets of the form I−(ri), with

ri ∈ I−(p), then O = ∩iI+(ri), is such that for every p′ ∈ O, for every i, ri ∈ I−(p′)

and hence K ⊂ I−(p′), thus t−(p′) = µ(I−(p′)) ≥ µ(K) ≥ µ(I−(p))−ε = t−(p)−ε,
which proves lower semi-continuity.

Let ε > 0, and let K ⊂ M\J−(p) be a compact set such that µ(M\(K ∪
J−(p))) ≤ ε. Let D be a compact neighborhood of p, then J−(D) ∩ J+(K) is

compact. Thus there must be a neighborhood O 3 p, such that J−(O) ∩ K = ∅,
otherwise by the limit curve theorem 2.14 we would get a continuous C-causal limit

curve connecting p to K, a contradiction. So for p′ ∈ O we have

t−(p′) = µ(J−(p′)) ≤ µ(M\K) = µ(J−(p)) + µ(M\(K ∪ J−(p))) ≤ t−(p) + ε

which proves upper semi-continuity. Moreover, given an inextendible causal curve

t 7→ σ(t) we have t−(σ(t)) → 0 for t → −∞. In fact, let r = σ(0), ε > 0 and

let K be a compact set such that µ(M\K) < ε. Then J−(r) ∩ J+(K) is compact

and for sufficiently large −t, we must have J−(σ(t)) ∩ K = ∅ otherwise, by the

limit curve theorem, we would get a future inextendible causal curve starting from

K and contained in the compact set J−(r) ∩ J+(K), a contradiction. Similarly,

t+(σ(t)) → 0 for t → +∞, thus the Geroch’s time τ = log |t−/t+| is continuous

and increasing with image R over every continuous causal curve.

Notice that S0 = t−1(0) is a Cauchy hypersurface for the wider cone structure

and so a stable Cauchy hypersurface for the original cone structure.

The last statement is a trivial consequence of the existence of a smooth timelike

vector field in proper cone structures and of the quotient manifold theorem, cf. Th.

21.10 of [86].

Theorem 2.43. Let (M,C) be a proper cone structure and let S be an acausal
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topological hypersurface. Then D(S) is open, causally convex and globally hyperbolic.

Let (M,C) be a closed cone structure which admits a Cauchy hypersurface, then

(M,C) is globally hyperbolic.

Proof. The openness of D(S) follows from Th. 2.33 and 2.34. Notice that given

p, q ∈ D(S) there cannot be r ∈ [J+(p) ∩ J−(q)]\D(S), in fact redefining p and

q we can assume p ∈ J−(S)\S and q ∈ J+(S)\S. Then by acausality of S one

of the curves connecting p to r or r to q does not intersect S. Thus there is a

future inextendible continuous causal curve issued from p not intersecting S, or

a past inextendible continuous causal curve ending at q not intersecting S. The

contradiction proves that D(S) is causally convex.

Concerning causality, there cannot be continuous closed causal curves in D(S)

because they cannot intersect S by its acausality, though they are inextendible and

so must intersect it.

Let K1,K2 ⊂ D(S) be compact subsets and assume J+(K1) ∩ J−(K2) is not

compact, then there are points rn ∈ J+(K1)∩J−(K2) with rn → +∞ (i.e. escaping

every compact set contained in D(S)). Let σn be a causal curve starting from

pn ∈ K1 passing through rn and ending at qn ∈ K2. By the limit curve theorem

2.14 there are a past inextendible causal curve σq ending at q ∈ K2, and a future

inextendible causal curve σp starting from p ∈ K1, which are limits of σn. By Th.

2.33 there are p̃ ∈ σp∩J+(S)\S (thus p̃ ∈ IntJ+(S) because every past inextendible

continuous causal curve future ending in a sufficiently small neighborhood of p̃

intersects S) and q̃ ∈ σq ∩ J−(S)\S (thus q̃ ∈ IntJ−(S)). However, the limit curve

theorem also states that (p̃, q̃) ∈ J̄ , thus S is not acausal, a contradiction. Let us

prove that J+(K1) ∩ J−(K2) is closed, indeed, if it were not then there would be

points rn ∈ J+(K1)∩J−(K2) with rn → r ∈ J+(K1) ∩ J−(K2)\[J+(K1)∩J−(K2)].

The argument goes as above with the additional observation that at most one curve

between σq and σp can pass through r. Thus the causal emeralds J+(K1)∩J−(K2)

are contained in D(S) and compact.

The last statement follows from the last two paragraphs by replacing D(S) with

M .

Theorem 2.44. Let (M,C) be a proper cone structure and let S be an acausal

topological hypersurface. Then for every compact subset K ⊂ D+(S), J−(K) ∩
J+(S) is compact.

Proof. Otherwise a limit curve argument would produce a past inextendible con-

tinuous causal curve σ ending at K. Thus by acausality of S it would cross S

entering, by Th. 2.33, J−(S)\S ∩D−(S) ⊂ I−(S). But then the sequence σk → σ

starting from S, would have to enter I−(S), contradicting the acausality of S.

We end the section summarizing some other equivalent charaterizations of

global hyperbolicity which are familiar from Lorentzian geometry [17, 87]. Fathi
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and Siconolfi have first obtained a version for continuous cone structures using

methods imported from weak KAM theory [14]. These results have been general-

ized to upper semi-continuous cone structures by Bernard and Suhr who employed

instead dynamical system methods based on Conley’s theory [16]. They obtained

the equivalence between points (i) and (iii) in Theorem 2.45 below, and the relative

splitting. We clarify the connection with the existence of non-smooth Cauchy time

functions and Cauchy hypersurfaces. Our derivation is based on volume functions,

and uses methods entirely developed in the field of mathematical relativity. Most

of the proof is given in Sec. 3.2-3.6.

Theorem 2.45. Let (M,C) be a closed cone structure and let h be a complete

Riemannian metric. Then the next conditions are equivalent:

(i) global hyperbolicity,

(ii) existence of a Cauchy time function,

(iii) existence of a smooth h-steep Cauchy temporal function,

(iv) existence of a (stable) Cauchy hypersurface.

Finally, under global hyperbolicity M is smoothly diffeomorphic to a product R× S
where the projection to R is a smooth h-steep Cauchy temporal function (the fibers

of the smooth projection to S are not necessarily causal), and every stable Cauchy

hypersurface is smoothly diffeomorphic to S.

Additionally, for a proper cone structure all Cauchy hypersurfaces are diffeomor-

phic to S and the fibers of the smooth projection to S are smooth timelike curves.

The ‘stable’ adjective in (iv) must be kept or dropped so as to get the strongest

meaning of the implication considered.

Proof. (i) ⇒ ‘(ii) and (iii) and (iv)’ is proved in Th. 3.12. (ii) or (iii) or (iv) ⇒ (i)

is proved in Th. 2.43. The other statements are proved in Th. 2.39 and Cor. 3.3.

Finally, we mention the next stability result.

Theorem 2.46. Let (M,C) be a closed cone structure. Every Cauchy temporal

function t is stable in the sense that we can find a locally Lipschitz proper cone

structure C ′ > C such that t is Cauchy temporal for C ′.

Proof. Since t is a temporal function (M,C) is stably causal, so all the cone

structures that follow which are wider than C will be taken stably causal (they

will also be proper and locally Lipschitz). Let h be a complete Riemannian metric,

and let o ∈ M . Let B(o, r) be the ball of radius r centered at o. Let K1 be a

compact set containing B(o, 1). Let us redefine t with an affine transformation so

that K1 ⊂ t−1([−t1, t1]), where t1 = 1. There is C1 > C such that dt is positive

on C1 and all the inextendible continuous C1-causal curves passing through K1

intersect the level sets t−1(−(t1 + 1)) and t−1(t1 + 1). In fact, this claim is proved
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using a sequence C̃k → C, C̃k > C, as in Th. 2.26, by noticing that if it were not true

then there would be a sequence σ̃k of continuous C̃k-causal curves intersecting K1

but not t−1(−(t1 +1)) or t−1(t1 +1). The function t would be bounded by −(t1 +1)

or t1 +1 on the limit inextendible continuous C-causal curve σ in contradiction with

the Cauchy property of t. By the temporality of t, t over the inextendible continuous

C1-causal curves passing through K1 has image strictly containing [−(t1 +1), t1 +1]

By a similar limit curve argument we obtain that C1 can be chosen so that there

is a compact set K2, IntK2 ⊃ K1∪B(o, 2), such that the image of every continuous

C1-causal curve intersecting K1 which stays in t−1([−(t1 + 1), t1 + 1]) is contained

in IntK2. Notice that there will be t2 > t1 + 1 such that K2 ⊂ t−1([−t2, t2]).

By proceeding in this way we obtain a sequence of compact sets Kk, IntKk+1 ⊃
Kk ∪B(o, k+ 1), a sequence of times tk > 0, tk+1 ≥ tk + 1, and a sequence Ck > C,

Ck+1 < Ck, of locally Lipschitz proper cone structures, such that every continuous

Ck-causal curve intersecting Kk ⊂ t−1([−tk, tk]) is bound to reach t−1(−(tk + 1))

and t−1(tk+1), and between such intersections to be contained in Kk+1. Let C ′ > C

be a locally Lipschitz proper cone structure such that C ′ < Ck on Kk+1\IntKk for

every k. Since C ′ < C1, it is stably causal hence non-imprisoning. Let us consider

an inextendible continuous C ′-causal curve σ, then there is a minimum value of

k such that σ ∩ Kk 6= ∅. Taking a point qk ∈ σ in this set (thus t(qk) ≤ tk) and

following σ in the future direction t increases over σ because dt is positive on C1

and hence on C ′. Moreover, by the non-imprisoning property σ escapes Kk, and so

becomes Ck-causal on Kk+1, thus it reaches qk+1 ∈ t−1(tk+1) where we can repeat

the argument since qk+1 ∈ Kk+1. So the argument shows that t goes to infinity in

both directions of σ, that is t is Cauchy temporal for (M,C ′).

Corollary 2.5. Let (M,C) be a closed cone structure. The level sets of a Cauchy

temporal function are stable Cauchy hypersurfaces.

2.11. The causal ladder

Many standard results of Lorentzian causality theory under a C2 assumption on

the metric are obtained with an application of a limit curve argument. However,

many other arguments use the composition rule I ◦ J ∪ J ◦ I ⊂ I so it should come

as a surprise that the locally Lipschitz condition will not appear in this section. In

fact, even more strikingly neither a continuity assumption on C will appear and

furthermore, the chronological relation will not need to be defined.

We have already met some of the next concepts.

Definition 2.23. A closed cone structure (M,C) is

• Causal. If there is no closed continuous causal curve,

• Non-total imprisoning. If there is no future inextendible continuous causal

curve contained in a compact set.
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• Distinguishing. Every point admits arbitrarily small distinguishing open

neighborhoods. Namely for every p ∈ M and open set U 3 p, there is an

open set V , p ∈ V ⊂ U , which distinguishes p, namely every continuous

causal curve x : I → M passing through p intersects V in a connected

subset of I. (One can give less restrictive future and past versions.)

• Strongly causal. Every point admits arbitrarily small causally convex open

neighborhoods. Namely for every p ∈ M and open set U 3 p, there is an

open set V , p ∈ V ⊂ U , which is causally convex, namely every continuous

causal curve x : I →M , with endpoints in V is entirely contained in V .

• Stably causal. There is C ′ > C such that (M,C ′) is a causal C0 cone

structure.

• Causally easy. Strongly causal and J̄ is transitive.

• Causally continuous. Distinguishing and reflective.

• Causally simple. Causal and J = J̄ .

• Globally hyperbolic. Causally simple and the causally convex hull of compact

sets is compact.

Moreover, for a proper cone structure we say that (M,C) is chronological if there

is no closed timelike curve.

Fig. 1. The causal ladder and the transverse ladder for closed cone structures. The arrows crossing

a property use it in the implication.

The proof of the next theorem uses the equivalence between stable causality

and K-causality which is proved in Sec. 3.2-3.6.
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Theorem 2.47. (Causal ladder, see Fig. 1)

If (M,C) is a closed cone structure:

Globally hyperbolic ⇒ Causally simple ⇒ Causally continuous ⇒
Causally easy⇒ Stably causal⇒ Strongly causal⇒ Distinguishing

⇒ Non-total imprisoning ⇒ Causal.

Moreover, causality implies chronology.

We have separated the last implication from the rest since the chronological

relation is not particularly interesting unless we are in a proper cone structure.

Proof. Stably causal⇒ Strongly causal: this is Th. 2.29. Strongly causal⇒ Distin-

guishing: trivial. Distinguishing⇒ Non-total imprisoning: if there is an imprisoned

curve then by Theorem 2.22 the starting point of α cannot be distinguished by

arbitrarily small neighborhoods since α escapes and reenters them. Non-total im-

prisoning ⇒ causal: trivial.

Globally hyperbolic ⇒ causally simple: This is Th. 2.38. Causally simple ⇒
Causally continuous: Since J̄ = J = Dp = Df reflectivity holds true and by

Lemma 2.4 strong causality holds which implies distinction. Causally continuous

⇒ Causally easy: By reflectivity Dp = Df = J̄ and by Prop. 2.17 Dp is transitive,

thus J̄ is transitive and hence K = J̄ . Moreover, We have distinction which by

Prop. 2.18 implies the antisymmetry of Df and hence that of K. Thus by Th. 2.30

stable causality holds which as mentioned implies strong causality. Causally easy

⇒ Stably causal: observe that J̄ is antisymmetric, indeed, suppose (p, q) ∈ J̄ and

(q, p) ∈ J̄ , with p 6= q, then by the limit curve theorem for every neighborhood

U 3 p we can find p′ ∈ J+(p)\{p} ∩ U such that (p′, q) ∈ J̄ , thus by the tran-

sitivity of J̄ , (p′, p) ∈ J̄ , in contradiction with the strong causality at p. But we

have K = J̄ , thus K-casuality holds which implies stable causality (Th. 2.30). Since

every timelike curve is a continuous causal curve the last implication is clear.

2.12. Fermat’s principle

The next result improves the differentiability conditions in Prop. 2.2 by strength-

ening the other assumptions, including the causality condition, see Th. 2.50 for

another version.

Theorem 2.48. Let (M,C) be a globally hyperbolic closed cone structure and let

S be a compact set. If q ∈ E+(S)\S there is p ∈ S and a future lightlike geodesic

with endpoints p and q contained in E+(S).

Notice that since J is closed and S is compact, E+(S) is closed (again by Th.

2.37).

Proof. Let Ck, Ck+1 ≤ Ck, C = ∩kCk, be a sequence of locally Lipschitz proper

cone structures as in Th. 2.26 where C1, and hence every Ck, is globally hyperbolic.
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In particular, Jk is closed for every k. Suppose that we can find, passing to a

subsequence if necessary, qk ∈ E+
k (S)\S, with qk → q. Then by Th. 2.2 there is a

continuous Ck-causal curve σk of starting point pk ∈ S and ending point qk entirely

contained in E+
k (S), so not intersecting IntJ+

k (S) ⊃ IntJ+(S). Let V be a compact

neighborhood of q, then J+
1 (S) ∩ J−1 (V ) is a compact set which contains all σk for

sufficiently large k. By the limit curve theorem there is a subsequence denoted in

the same way such that σk converges uniformly to a continuous C-causal curve σ

connecting p to q. It does not intersect the open set IntJ+(S) since none of the σk
does. It remains to prove that the sequence qk exists. Suppose that we cannot find

qk as above, then there is ε > 0 such that B(q, ε) ⊂ J+
k (S) for sufficiently large k.

For every y ∈ B(q, ε) using again the limit curve theorem we get that y ∈ J+(S),

thus q ∈ IntJ+(S), a contradiction. The fact that σ is a future lightlike geodesic is

immediate, since if p′, q′ ∈ σ, with q′ ∈ IntJ+(p′) then q′ ∈ IntJ+(p) ⊂ IntJ+(S),

a contradiction.

The next corollary to be used in this section is the global version of Th. 2.15.

Corollary 2.6. Let (M,C) be a globally hyperbolic closed cone structure. If q ∈
E+(p)\{p} then there is a future lightlike geodesic σ connecting p to q entirely

contained in E+(p).

On the general relativistic spacetime the metric induces a distribution of cones

C ′ referred as light cones. It turns out, however, that they should be more properly

called gravity cones since light in presence of matter propagates at a smaller speed.

The distribution of cones C ′ represents more properly the speed of gravitational

waves rather than light. Still in presence of media with different refractive indices we

have a distribution of (true) light cones which can be modeled with a cone structure

C. If the gravity cone C ′ ≥ C defines a globally hyperbolic cone structure, as it

is often assumed, then the same will hold for the light cone structure. Now, in

presence of media with different refractive indices the cone distribution C will be

discontinuous at the interface of the media. Thus discontinuous cone structures

are pretty natural in the context of light propagation though for mathematical

convenience they have been mostly disregarded.

One difficulty is that even by knowing the refractive indices in each medium,

one would still be faced with the problem of assigning a refractive index value at

their interface. Here the mathematical theory comes into help since it shows that

the theory is particularly satisfying if we take the lower value, in fact the speed

of light is c/n so this choice guarantees that the cone distribution will be upper

semi-continuous, thus enjoying all the properties that we obtained in the previous

sections. Similar considerations for what concerns Fermat’s principle on Euclidean

space can be found in Cellina [88].

Given this preliminary discussion the next result expresses the Fermat princi-

ple in curved spacetime continua admitting discontinuous refractive indices. The

principle states that among the many virtual paths that connect the source to the
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observer, there is one which minimizes the time of sight by the observer. The whole

principle relies on the existence of a minimum time of sight and of some special

trajectory connecting the events of emission and reception.

Theorem 2.49. (Fermat’s principle)

Let (M,C) be a globally hyperbolic closed cone structure (representing light propa-

gation), let t 7→ σ(t) be an inextendibile causal curve (the observer) and let p be a

point source. If J+(p)∩σ 6= ∅ (at least some virtual light path reaches the observer)

and p /∈ σ (source and observer do not coincide), then there is a minimum value t0
such that σ(t0) ∈ J+(p) and a future lightlike geodesic connecting p to σ(t0) entirely

contained in ∂J+(p).

Proof. Since the spacetime is globally hyperbolic it admits a Cauchy time function

τ . Thus τ is lower bounded by τ(p) on J+(p) and hence on J+(p) ∩ σ. So we can

find a smallest value t0 such that σ(t0) ∈ ∂J+(p). The desired conclusion is now a

consequence of J being closed and of Cor. 2.6.

The next version will be useful in the proof of Penrose’s theorem.

Theorem 2.50. Let (M,C) be a non-imprisoning closed cone structure and let S

be a compact set such that E+(S) is bounded. If q ∈ E+(p)\{p} then there is a

future lightlike geodesic σ connecting p to q entirely contained in E+(p).

Proof. Let Ck, Ck+1 ≤ Ck, C = ∩kCk, be a sequence of locally Lipschitz proper

cone structures as in Th. 2.26. Suppose that we can find, passing to a subsequence

if necessary, qk ∈ E+
k (S)\S, with qk → q. Then by Th. 2.2 there is a continuous

Ck-causal curve σk of starting point pk ∈ S and ending point qk entirely contained

in E+
k (S), so not intersecting IntJ+

k (S) ⊃ IntJ+(S). By the limit curve theorem

there is a subsequence denoted in the same way such that σk converges uniformly

to a continuous C-causal curve σ which is either future inextendible and starting

from some p ∈ S or connecting some p ∈ S to q. It does not intersects the open

set IntJ+(S) since none of the σk does, so σ is contained in E+(S). But the former

case cannot apply due to the non-imprisonment condition, thus σ connects p to q.

It remains to prove that the sequence qk exists. Suppose that we cannot find

qk as above, then there is ε > 0 such that B(q, ε) ⊂ J+
k (S) for sufficiently large k.

For every y ∈ B(q, ε) using again the limit curve theorem and reasoning as above

we get either a future inextendible continuous causal curve imprisoned in E+(S)

starting from some p ∈ S, which is impossible, or that y ∈ J+(S), thus as the

conclusion holds for every y, q ∈ IntJ+(S), a contradiction. The fact that σ is a

future lightlike geodesic is immediate, since if p′, q′ ∈ σ, with q′ ∈ IntJ+(p′) then

q′ ∈ IntJ+(p) ⊂ IntJ+(S), a contradiction.
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2.13. Lorentz-Finsler space

Let (M,C) be a closed cone structure, and let F : C → [0,+∞) be a concave

positive homogeneous function (that is, these properties are to hold when restricting

to each individual tangent space). Notice that we do not demand F (∂C) = 0. Let

us introduce the cone structure on M× = M × R defined at P = (p, r) by

C×P = {(y, z) : y ∈ Cp, |z| ≤ F (y)}. (2.5)

It is indeed easy to check that this is a non-empty convex sharp cone in the tangent

space TPM
×. We shall also say that the cone structure (M×, C×) is a Lorentz-

Finsler space (M,F ). A Lorentz-Finsler space might also be called a spacetime.

Similarly we define the concept of Lorentz-Minkowski space which is simply the

model geometry to the tangent space of a Lorentz-Finsler space: in other words it

is given by a vector space V , a cone C ⊂ V which is non-empty convex and sharp,

and a concave positive homogeneous function on C.

The connection with the usual more regular notion of Lorentz-Finsler space is

explored in Sec. 3.1 and 3.7. The fact that a Lorentz-Finsler space can be seen as

a cone structure in a space with one additional dimension will be a central idea of

this work.

Definition 2.24. (M,F ) is a closed (proper) Lorentz-Finsler space iff (M×, C×)

is a closed (resp. proper) cone structure. We say that (M,F ) is locally Lipschitz

(or C0) if C× is locally Lipschitz (resp. C0).

The next result follows easily from the definitions.

Proposition 2.23. (M,F ) is a closed Lorentz-Finsler space iff C and F are upper

semi-continuous. (M,F ) is a C0 proper Lorentz-Finsler space iff (M,C) is a C0

proper cone structure and F is continuous and not identically zero on any fiber.

(M,F ) is a proper Lorentz-Finsler space if there are C̃ ≤ C and F̃ : C̃ → [0,+∞),

with F̃ ≤ F such that (M, F̃ ) is a C0 proper cone structure.

Here the upper semi-continuity of F is understood as follows: for yn ∈ C,

yn → y ∈ C, lim supyn→y F (yn) ≤ F (y). Continuity is understood similarly, where

the latter equation is replaced by limyn→y F (yn) = F (y).

Remark 2.10. If (M,F ) is a locally Lipschitz proper Lorentz-Finsler space then

(M,C) is a locally Lipschitz proper cone structure but the base dependence of F

need not be locally Lipschitz. Let us consider the metric g = −(dx0) + (x1)2(dx1)2

on R × R+, then F =
√

(y0)2 − (x1)2(y1)2. For x1 ≤ 1 the vector y = (y0, y1) =

(1, 1) is causal and F (y) =
√

1− (x1)2 which clearly is not locally Lipschitz in a

neighborhood of (x0, x1) = (0, 1) although C× is locally Lipschitz.

The next result proves that our approach to the regularity of Lorentz-Finsler

spaces is compatible with the natural definitions coming from Lorentzian geometry.
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Theorem 2.51. For a time oriented Lorentzian manifold (M, g) the metric g is

continuous (locally Lipschitz) iff C× is continuous (resp. locally Lipschitz).

Due to the metric signature, the equivalence does not hold for upper/lower

semi-continuity, for the cone can get narrower or wider depending on the discontin-

uous metric coefficient. In this case the most useful concept of upper/lower semi-

continuity is the new one derived from C×.

Proof. Only if direction: the cone distribution C× is the bundle of causal vectors

for the Lorentzian metric g× = g + d(yn+1)2, where z = yn+1 is the extra tangent

space coordinate of T (M × R). The metric coefficients of g× are continuous (resp.

locally Lipschitz) because those of g are, so by Prop. 2.4 C× is continuous (resp.

locally Lipschitz).

If direction: The continuity of C× implies the continuity of the function√
max{−g(x)(y, y), 0} and hence that of g (by the arbitrariness of y and polar-

ization formulas). Suppose that C× is locally Lipschitz. Let U be a coordinate

neighborhood of x̄ ∈M , so that TU trivializes as U ×Rn+1 with (xα, yα) local co-

ordinates. Suppose also that the coordinates have been chosen so that gαβ(x̄) = ηαβ ,

i.e. the Minkowski metric, with ∂/∂x0 future directed. Since g does not depend on

the extra coordinate xn+2 it is sufficient to consider the dependence of C× on the

coordinates {xα} of M by fixing xn+2 = 0. Thus C×(x,0) is a cone of Rn+2 which

for x close to x̄, intersects the locus {y0 = 1, yn+2 ≥ 0} on a half ellipsoid of Rn+1

of equation yn+2 =
√
−gαβ(x)yαyβ which intersects orthogonally {yn+2 = 0}. By

continuity for every round cone A ⊂ IntCx, we have for x ∈ V̄ , V sufficiently small

neighborhood of x̄, V̄ ⊂ U , A ⊂ IntCx ⊂ Rn+1. The idea is to show that gαβ(x)yαyβ

is locally Lipschitz in x for any chosen ȳα ∈ A and hence, by the arbitrariness of

ȳ an polarization formulas, that all the coefficients of the metric are locally Lips-

chitz. By positive homogeneity we can restrict ȳα ∈ Ã = A ∩ {y0 = 1}, then for

(xα, yα) ∈ V̄ ×Ã we have that the function
√
−gαβ(x)yαyβ is well defined, bounded

from below by a positive constant and with differential bounded from above. We

suppose to have chosen U so small that there is a constant K > 0 such that for

x1, x2 ∈ U ,

D12 := D
(
C×(x1,0) ∩ {y

0 =1, yn+2≥ 0}, C×(x2,0) ∩ {y
0 =1, yn+2≥ 0}

)
≤ K‖x1 − x2‖,

where D is the Hausdorff distance on Rn+1, and ‖‖ is the Euclidean norm on

Rn+1. That is, the distance among the half ellipsoids has Lipschitz regularity. Let

us consider two points x1, x2 ∈ V where the label 2 is chosen so that f(x2, ȳ) ≤
f(x1, ȳ), with f(x, y) =

√
−gαβ(x)yαyβ and y ∈ Ã. The distance on Rn+1 of

the point p = (ȳ1, . . . , ȳn+1, f(x2)) on the ellipsoid 2 to the ellipsoid 1 of graph

yn+2 =
√
−gαβ(x1)yαyβ is smaller that the Hausdorff distance D12 between the

ellipsoids. This minimum distance is realized by a segment between the point p and

a point q on the ellipsoid 1 (q has projection ỹ in general different from ȳ). Notice

that the tangent plane to the ellipsoid 1 at q is orthogonal to pq and intersects the
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fiber of ȳ at a point r of extra coordinate larger than f(x1, ȳ) due to the convexity

of the ellipsoid 1. Moreover, pr ≤ pq/ cos θ where tan θ = ‖∇yf(x1, ỹ)‖ is the slope

of the mentioned tangent plane, thus since this derivative is bounded on V̄ × Ã,

1/ cos θ is bounded and we can find a constant L > 0 independent of ȳ such that

for x1, x2 ∈ V̄ , f(x1, ȳ)− f(x2, ȳ) ≤ pr ≤ LD12. Since f is bounded from above by

a constant R > 0 on V̄ ×Ã, we have 0 < f(x1, ȳ)+f(x2, ȳ) ≤ R, and so multiplying

the two inequalities 0 ≤ [gαβ(x2)− gαβ(x1)]ȳαȳβ ≤ RLD12 ≤ KRL‖x1 − x2‖.

An interesting large class of closed Lorentz-Finsler spaces is selected by the next

theorem (see also Remark 3.4).

Theorem 2.52. Let C ⊂ TM\0 be a proper cone structure and let F : C →
[0,+∞) be a positive homogeneous C0 function, such that F−1(0) = ∂C. Let

f : R+ → R (for instance f(x) = xa/a, a > 1, the typical case being a = 2) be

C1([0,+∞)) ∩ C2(R+) and such that f ′(x) > 0, f ′′(x) > 0 for x > 0. Suppose that

L = −f(F ) is C1(C) ∩ C2(IntC), that it has Lorentzian vertical Hessian d2
yL ,

and that dyL 6= 0 on ∂C. Then F is concave, and (M,F ) is a locally Lipschitz

proper Lorentz-Finsler space (hence both C and C× are locally Lipschitz).

Proof. The proof that F is concave and that (M,F ) is a C0 proper Lorentz-

Finsler space follows from the continuity of F and from the results on Lorentz-

Minkowski spaces of Sec. 3.1, particularly Remark 3.4, so we need only to prove that

C and C× are locally Lipschitz. Let us prove that C is locally Lipschitz. Let x̄ ∈M ,

and let U be a coordinate neighborhood of x̄. Let us consider the trivialization of the

bundle TU , as induced by the coordinates. We are going to focus on the subbundle

of TU of vectors that in coordinates read as follows (xα, yα) where y0 = 1, i.e.

we are going to work on U × Rn (the function L will be thought as restricted to

this set though we shall keep the original notation). It will be sufficient to prove

the locally Lipschitz property for this distribution of sliced cones. Let ‖ · ‖ be the

Euclidean norm on Rn. Since the cone distribution over the sliced subbundle has

compact fibers, we can find U sufficiently small that there is a constant K > 0, such

that ‖∇xL ‖/‖∇yL ‖ < K for all lightlike vectors on the sliced subbundle (here

the labels x, y refer to base or vertical gradients).

Let us consider two sliced cones relative to the points x1 and x2. Let y1 and y2

be two points that realize the Hausdorff distance D(x1, x2) between the sliced cone

boundaries, i.e. D(x1, x2) = ‖δy‖, δy = y1 − y2, where the vector δy = y1 − y2 can

be identified with a vector of Rn since its 0-th component vanishes. The definition

of Hausdorff distance easily implies that δy is orthogonal to one of the sliced cone

boundaries. Let it be that of x2, otherwise switch the labels 1 and 2. So we have

δy ∝ ∇yL (x2, y2), and hence ‖∇yL · δy‖ = ‖∇yL ‖‖δy‖. Let δx = x1 − x2,

δL = L (x1, y1)−L (x2, y2) = 0. By continuity as δx→ 0, we have δy → 0, up to

higher order terms the Taylor expansion at (x2, y2) gives 0 = ∇yL · δy+∇xL · δx,

and hence for sufficiently small δx, D(x1, x2) = ‖δy‖ ≤ K‖δx‖, which proves the
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locally Lipschitz property. It can be observed that this argument used only one

property of L , namely that of being C1 on ∂C with non-vanishing vertical gradient.

This property has been used for deducing the existence of K. Now, for the local

Lipschitzness of C× we need only to show that there is a C1 function up to ∂C×

with non-vanishing gradient on ∂C× ∩ {z ≥ 0}, where z is the extra tangent space

coordinate. Evidently, the function L (x, y) + f(z), has the desired property.

Let (M,F ) be a closed Lorentz-Finsler space. Over every relatively compact

coordinate neighborhood U we can find a constant a > 0 such that for every x ∈ U ,

y ∈ TxM , F (y) ≤ a
∑
µ |yµ|. In fact, this is a consequence of the upper semi-

continuity and positive homogeneity of F . On a parametrized continuous causal

curve t 7→ x(t), as each component xµ(t) is absolutely continuous, each derivative

ẋα is integrable and so F (ẋ) is integrable.

Definition 2.25. Let (M,F ) be a closed Lorentz-Finsler space. The (Lorentz-

Finsler) length of a continuous causal curve x : [0, 1]→M , is `(x) =
∫ 1

0
F (ẋ)dt (it

is independent of the parametrization). The (Lorentz-Finsler) distance is defined

by: for (p, q) /∈ J , we set d(p, q) = 0, while for (p, q) ∈ J

d(p, q) = supx`(x), (2.6)

where x runs over the continuous causal curves which connect p to q.

Clearly, the reverse triangle inequality holds true: if (p, q) ∈ J and (q, r) ∈ J
then

d(p, r) ≥ d(p, q) + d(q, r). (2.7)

Theorem 2.53. Let (M,F ) be a locally Lipschitz proper Lorentz-Finsler space

such that F (∂C) = 0. Then d is lower semi-continuous.

Proof. Let p, q ∈M . If d(p, q) = 0, d is lower semi-continuous at (p, q). Thus let us

assume d(p, q) > 0. Let ε > 0, ε < d(p, q), and let x : [0, 1]→M , x(0) = p, x(1) = q,

be a continuous causal curve such that `(x) ≥ d(p, q)−ε/3 > 0. and let a, b ∈ (0, 1),

a < b, be such that 0 <
∫ a

0
F (ẋ)dt < ε/3, 0 <

∫ 1

b
F (ẋ)dt < ε/3. The subset of

[0, a] at which x is differentiable with differential not lightlike is non-empty since∫ a
0

F (ẋ)dt > 0. If a′ < a is one such differentiability time then ẋ(a′) is timelike and

an argument similar to that employed in Th. 2.17 shows that x is chronal in any

neighborhood of x(a′). As a consequence, p ∈ I−(x(a)), q ∈ I+(x(b)), so for every

p′ ∈ I−(x(a)) and q′ ∈ I+(x(b)), d(p′, q′) ≥ `(x[a,b]) ≥ `(x)− 2ε/3 ≥ d(p, q)− ε.

The next result is an improvement over [2, Th. 4.24].

Proposition 2.24. Let (M,F ) be a proper Lorentz-Finsler space. If d is upper

semi-continuous then (M,C) is reflective.

The proper condition is really necessary, for the condition on d would be empty

with F = 0.
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Proof. Otherwise we can find p, q such that q ∈ J+(p) but p /∈ J−(q) (or dually),

cf. Prop. 2.16. Let γn be causal curves starting from p with endpoint qn → q. Taking

r � p so that r /∈ J−(q), we have d(r, q) = 0 but if σ is a timelike curve connecting

r to p we have d(r, qn) ≥ l(σ) > 0 (the second inequality is due to the proper

condition on the Lorentz-Finsler space which implies that F is positive on IntC),

so d is not upper semi-continuous as can be seen taking the limit (r, qn)→ (r, q).

The study of (M,F ) passes through the study of the causality of (M×, C×).

Proposition 2.25. Let (M,F ) be a closed Lorentz-Finsler space. If x : I → M ,

t 7→ x(t), is a continuous causal curve then for every r ∈ R

t 7→ (x(t), r ± `(x|[0,t]))

is a lightlike continuous causal curve on (M×, C×) with starting point (x(0), r).

Moreover, every parametrized continuous causal curve on (M×, C×) reads X(t) =

(x(t), r(t)) where x is a parametrized continuous causal curve on (M,C) and |r(t)−
r(0)| ≤ `(x|[0,t]) for every t. The causal future of (M×, C×) satisfies

J× ⊂ {((p, r), (p′, r′)) : (p, p′) ∈ J and |r′ − r| ≤ d(p, p′)}. (2.8)

If for every (p, p′) ∈ J there is a continuous causal curve x which maximizes `, i.e.

`(x) = d(p, p′), the inclusion (2.8) is actually an equality.

Proof. The derivative of the curve X in display is (ẋ,F (ẋ)) a.e., which is C×-

lightlike, thus X is a continuous causal curve.

Let X(t) = (x(t), r(t)) be a parametrized continuous causal curve on (M×, C×)

then its projection x to M is also a parametrized continuous causal curve. In fact

the projection to M is locally Lipschitz and the composition g ◦ f , with f AC

and g locally Lipschitz, is AC. As a consequence, x(t) is absolutely continuous and

by the definition of C×, ẋ ∈ C and |ṙ| ≤ F (ẋ). Thus x is a continuous causal

curve and |r(t) − r(0)| ≤ `(x|[0,t]). The inclusion ⊂ in the last statement follows

easily from the previous results. Let us prove the equality statement. Let (p′, r′)

be such that (p, p′) ∈ J and |r′ − r| ≤ d(p, p′). Suppose that for every (p, p′) ∈ J
there is a continuous causal curve which maximizes `, and let x : [0, 1] → M be a

parametrized continuous causal curve connecting p to p′ such that `(x) = d(p, p′).

Suppose without loss of generality that r′ ≥ r the other case being analogous.

Then X(t) =
(
x(t), r(t)

)
, with r(t) = r + r′−r

d(p,p′)`(x|[0,t]), is a continuous causal

curve (because 0 ≤ ṙ = r′−r
d(p,p′)F (ẋ) ≤ F (ẋ) a.e. ) on (M×, C×) which connects

(p, r) to (p′, r′). The fraction must be replaced by 0 if r′ = r or d(p, p′) = 0.

The uniform convergence in the next proposition might be defined with respect

to an auxiliary Riemannian metric h on M , but it is really independent of it (this

is the same convergence appearing in the limit curve theorem 2.14). Usually the

next result is applied with Fn = F , Cn = C.
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Theorem 2.54. (Upper semi-continuity of the length functional)

Let (M,F ) and (M,Fn) be closed Lorentz-Finsler spaces. Let xn : [an, bn] → M ,

be continuous Cn-causal curves, parametrized with respect to h-arc length, which

converge uniformly on compact subsets to x : [a, b] → M , an → a, bn → b, where

for every n, Cn+1 ≤ Cn, Fn+1 ≤ Fn|Cn+1
, and C = ∩nCn, limn→∞Fn = F .

Then x is a continuous C-causal curve and

lim sup
n

`n(xn) ≤ `(x).

Proof. Let us pass to a subsequence, denoted in the same way, such that

lim sup
n

`n(xn) = lim
n
`n(xn).

The curves Xn(t) = (xn(t),
∫ t
an

Fn(ẋn(s))ds) are continuous C×n -causal curves on

(M×, C×n ) (notice that Fn enters in the definition of C×n ). The assumptions imply

that C×n+1 ⊂ C×n and C× = ∩nC×n , thus by applying the limit curve theorem 2.14

in M× we get that there is a limit continuous C×-causal curve X(t) = (x̃(t), r(t)),

r(0) = 0, to which a subsequence of Xn, denoted in the same way, converges uni-

formly. Consequently, x̃ = x and limn `n(xn) = r(b). But the C×-causality condition

for X reads |ṙ| ≤ F (ẋ) a.e., thus integrating r(b) ≤ `(x), which gives the desired

result.

Proposition 2.26. Let (M,F ) be a globally hyperbolic closed Lorentz-Finsler

space, then (M×, C×) is a globally hyperbolic closed cone structure and d is finite

and bounded on compact subsets of M ×M .

Proof. In the proof of Prop. 2.25 we have shown that the projection to M of a

continuous causal curve on M× is itself a continuous causal curve. Thus (M×, C×)

must be non-imprisoning since the projection of a continuous causal curve impris-

oned in a compact set would give a continuous causal curve imprisoned in the

projection of the compact set.

Let us prove that d is bounded on compact subsets of M ×M , from which it

follows that it is finite. Let K1,K2 ⊂ M be compact sets, and let us consider the

causally convex compact set K = J+(K1)∩J−(K2). Let h be a Riemannian metric

and let S be the unit h-sphere bundle over K. Since F is upper semi-continuous it

reaches a maximum over S. By rescaling h if necessary we can let this maximum

be less than 1. Thus for every v ∈ TK, F (v) ≤ ‖v‖h. The h-arc length of the

continuous causal curves connecting K1 to K2 is bounded. This fact follows from

strong causality and from the fact that K can be finitely covered by the local non-

imprisoning causally convex neighborhoods constructed in Prop. 2.10 and Th. 2.15.

Since the length of the causal curves connecting K1 to K2 is bounded, we have that

d(K1,K2) is finite.
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Now due to Eq. (2.8),

(J×)+((p, a)) ∩ J−((q, b)) ⊂
{

(p′, r′) : p′ ∈ J+(p) ∩ J−(q) and |r′ − a| ≤ d(p, p′)

and |r′ − b| ≤ d(p′, q)
}
.

Clearly we have max{d(p, p′), d(p′, q)} ≤ d(p, q), thus given a compact set K, and a

compact subset of the real line I there is a compact subset of M×M which contains

the set in display for every p, q ∈ K and a, b ∈ I. We conclude that (M×, C×) is

globally hyperbolic.

The next result generalizes previous improvements [21,23] of the classical Avez-

Seifert theorem [1] in that it does require neither the roundness of the cones nor

the continuity of the cone distribution. In fact, even F need not be continuous.

As in Tonelli’s theorem [89, Th. 3.7] −F is convex in the fiber variables and lower

semi-continuous, however it is not superlinear and its domain is a cone distribution.

Theorem 2.55. (Generalization of the Avez-Seifert theorem)

Let (M,F ) be a globally hyperbolic closed Lorentz-Finsler space, then ` is maxi-

mized, namely for every (p, q) ∈ J we can find a continuous causal curve x : [0, 1]→
M , p = x(0), q = x(1), such that `(x) = d(p, q).

So under these assumptions equality holds in (2.8).

Proof. We know that d(p, q) is finite. Let xn be a sequence of continuous causal

curves connecting p to q such that `(xn) ≥ d(p, q)− εn, with εn → 0+. By the limit

curve theorem a subsequence, which we denote in the same way, converges uniformly

to a continuous causal curve x, and by Th. 2.54 d(p, q) = lim supn `(xn) ≤ `(x),

thus `(x) = d(p, q).

Theorem 2.56. Let (M,F ) be a locally Lipschitz proper Lorentz-Finsler space

such that F (∂C) = 0. Let (p, q) ∈ J be such that d(p, q) > 0, then for every R such

that 0 < R < d(p, q) there is a timelike curve x with the same endpoints such that

`(x) > R.

Proof. By definition of Lorentz-Finsler distance we can find a continuous causal

curve x̌ connecting p to q, such that 0 < R < `(x̌) ≤ d(p, q). The continuous

C×-causal curve given by X̌(t) = (x̌(t), ř(t)) with ř(t) = R
`(x̌)`(x̌|[0,t]), connects

P = (p, 0) with Q = (q,R) and has tangent V = ( ˙̌x, R
`(x̌)F ( ˙̌x)) almost everywhere.

Notice that F ( ˙̌x) > 0 for some t because `(x̌) > 0, thus by the proper condition
˙̌x ∈ IntC at that t which implies that the tangent V is timelike and hence (Th.

2.17) that X̌ is chronal so the endpoints P and Q are connected by a C×-timelike

curve X = (x, r) (Th. 2.7). The C×-timelike condition implies ṙ < F (ẋ), thus

integrating R < `(x). Hence the projection x is the searched timelike curve.

Theorem 2.57. (Local causal geodesic connectedness)

Let (M,F ) be a closed Lorentz-Finsler space. Every point admits an arbitrarily
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small globally hyperbolic neighborhood U such that if (p, q) ∈ J(U) then there is a

continuous causal curve x contained in U connecting p to q such that `(x) = dU (p, q)

where dU is the Lorentz-Finsler distance of (U,F |U ).

The neighborhood U coincides with that constructed in Prop. 2.10. If (M,C)

is strongly causal then the neighborhood can be chosen causally convex, in which

case dU = d|U×U .

Proof. Let U be the neighborhood constructed in Prop. 2.10 (see also Th. 2.15).

It is clearly globally hyperbolic, thus the theorem follows from Th. 2.55.

Definition 2.26. A continuous causal curve x : I → M for which d(x(a), x(b)) =

`(x|[a,b]), for every a < b, is said to be maximizing.

Due to the reverse triangle inequality if I = [c, d] then it is sufficient to check

d(x(c), x(d)) = `(x|[c,d]).

For locally Lipschitz Lorentzian metrics Graf and Ling [90] have recently proved

that maximizing continuous causal curves are either almost everywhere timelike or

almost everywhere lightlike (in the latter case the tangent cannot be timelike at

any point due to Th. 2.17). In a different work we shall show that this result can

be suitably generalized to the Lorentz-Finsler case.

The next result can be useful in order to frame closed Lorentz-Finsler spaces

into the general theory of (Lorentzian) length spaces.

Theorem 2.58. Let (M,F ) be a strongly causal closed Lorentz-Finsler space and

let x : [a, b]→M be a continuous causal curve. Then

l(x) = inf
∑
i

d(x(ti), x(ti+1)), (2.9)

where the infimum is over all the partitions a = t0 < t1 < · · · < tn = b.

For the C2 theory this result can be found in [60, 91] where convex normal

neighborhoods are used. In the C0 Lorentzian metric theory Kunzinger and Sämann

[91, Lemma 5.10] prove that the “sup inf” operation on the Lorentzian distance is

involutive as required for length spaces, yet they do not prove that the length defined

through the right-hand side of Eq. (2.9) corresponds to the usual integral definition.

This is a piece of additional information given by this theorem and follows from the

fact that we were able to prove the upper semi-continuity of the length functional

without using convex neighborhoods. Notice that without additional conditions

(M,F ) would not be a Lorentzian length space according to their definition since

d might not be lower semi-continuous.

Proof. The inequality ≤ is clear, so we have only to prove the other direction. The

image of the curve can be covered by a finite number of causally convex globally

hyperbolic neighborhoods {Ci} with the properties of Prop. 2.10. For some parti-

tion the consecutive points {x(ti), x(ti+1)} belong to Cj(i) and so can be joined by
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a continuous causal curve σi included in Cj such that l(σi) = dCj (x(ti), x(ti+1) =

d(x(ti), x(ti+1), where the last equality is due to causal convexity. The infimum in

Eq. (2.9) can be restricted to piecewise maximizing continuous causal curves for

which the consecutive corners belong to some Ck, for by increasing the number of

corners to a piecewise continuous causal curves one can only decrease the Loren-

tzian length (due to the reverse triangle inequality). By the same observation we

can restrict the right-hand side to partitions that share a particular subpartition

such that the consecutive points of the subpartition belong to some Ck. Thus we

can really work out the proof in just one causally convex globally hyperbolic neigh-

borhood V chosen as in Prop. 2.10 where by strong causality d = dV , and where x0

provides a Lipschitz parametrization for all continuous causal curves with image in

V . Let h be a complete Riemannian metric and let dh be its distance. Let x̃ denote

x reparametrized with x0. For every neighborhood of the image of x of dh-radius

ε we can find a piecewise maximizing continuous causal curve in the neighborhood

(because the image of x can be covered by arbitrarily small globally hyperbolic

causally convex neighborhoods as in Prop. 2.10). That means that we can find a

sequence of x0-parametrized piecewise maximizing continuous causal curve xn that

converges uniformly on compact subsets to x̃. By the upper semi-continuity of the

length functional (Th. 2.54) inf
∑
i d(x(ti), x(ti+1)) ≤ lim supn `(xn) ≤ `(x).

Definition 2.27. A (future) causal geodesic on (M,C), is a continuous causal curve

which is the projection of a (resp. future) lightlike geodesic on (M×, C×). Similarly,

a causal bigeodesic is the projection of a lightlike bigeodesic.

Again a future or past causal geodesic is a causal geodesic. The converse holds

for locally Lipschitz proper Lorentz-Finsler spaces. Notice that every future lightlike

geodesic x(t) is a future causal geodesic (and similarly for the notion of lightlike

bigeodesic), just consider (x(t), 0). However, its length can be different from zero

(unless the cone structure is C0 and F = 0 on ∂C, cf. Th. 2.17) and even in that

case it might not maximize the Lorentz-Finsler distance between any pair of its

points.

Proposition 2.27. Let x : [0, 1] → M be a continuous causal curve such that

d(x(0), x(1)) = `(x), then x is a causal bigeodesic.

Actually the assumption can be weakened to its local version.

Proof. Let us consider the continuous C×-causal curve X(t) =
(
x(t), `(x|[0,t])

)
.

By Prop. 2.25 the point
(
x(1), d(x(0), x(1)) + ε

)
, ε > 0, cannot be reached by

a continuous C×-causal curve starting from X(0). Thus X is a future lightlike

geodesic. Similarly,
(
x(0),−ε

)
cannot be the starting point of a continuous C×-

causal curve which reaches X(1) =
(
x(1), d(x(0), x(1))

)
, thus X is a past lightlike

geodesic.

Theorem 2.59. Let (M,F ) be a proper Lorentz-Finsler space and let S be an
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acausal topological hypersurface. Then for every q ∈ D+(S), there is a causal bi-

geodesic x connecting some point p ∈ S to q such that d(p, q) = d(S, q) = `(x).

Proof. By Th. 2.43 D(S) is open, causally convex and globally hyperbolic. By Th.

2.44 J−(q)∩ J+(S) is a compact subset of D(S), thus d restricted to D(S)×D(S)

is finite. Let xn be a sequence of continuous causal curves connecting pn ∈ S to

q, such that `(xn) → d(S, q), then up to extracting a subsequence, it converges

uniformly to some continuous causal curve x of starting point p ∈ S and d(S, q) =

lim supn `(xn) ≤ `(x), by Th. 2.54, thus `(x) = d(S, q).

2.14. Stable distance and stable spacetimes

In Sec. 2.13 we have defined the notion of Lorentz-Finsler space (M,F ). We shall

write F ′ > F , with no mention of the cone domains, if (M,F ) is a closed Lorentz-

Finsler space, (M,F ′) is a proper Lorentz-Finsler space, and C ′× > C×, which

implies C ′ > C and F ′ > F on C.

The next result follows from a construction similar to that used in Prop. 2.11

but framed in M×.

Proposition 2.28. Given a closed Lorentz-Finsler space (M,F ) there is a locally

Lipschitz proper Lorentz-Finsler space (M,F ′), F ′ > F . Given a closed Lorentz-

Finsler space (M,F ) and a locally Lipschitz proper cone structure C ′ > C, there is

a locally Lipschitz proper Lorentz-Finsler space (M,F ′), F ′ > F . Given a closed

Lorentz-Finsler space (M,F ), and a C0 proper Lorentz-Finsler space F̌ > F , there

is a locally Lipschitz proper Lorentz-Finsler space F ′, F < F ′ < F̌ .

In the next proofs given the closed Lorentz-Finsler space (M,F ) all the other in-

troduced proper Lorentz-Finsler spaces (M,F ′), F ′ > F , will be locally Lipschitz.

Next we define a novel distance.

Definition 2.28. Let (M,F ) be a closed Lorentz-Finsler space. We define the

stable distance D : M ×M → [0,+∞] as follows. For p, q ∈M

D(p, q) = infF ′>Fd
′(p, q), (2.10)

where d′ is the Lorentz-Finsler distance for the locally Lipschitz proper Lorentz-

Finsler space (M,F ′).

Observe that for F1 > F2 we have d1 ≥ d2, and the set {F ′ : F ′ > F} is

directed in the sense that if F1 > F and F2 > F there is F3 > F such that

F3 < F1,F2.

Theorem 2.60. Let (M,F ) be a closed Lorentz-Finsler space. The following prop-

erties hold true:

(a) If (p, q) /∈ JS, then D(p, q) = 0,
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(b) Suppose that (M,F ) is a proper Lorentz-Finsler space. If (p, q) ∈ IntJS or

q ∈ IntJ+
S (p) or p ∈ IntJ−S (q), then D(p, q) > 0,

(c) If (p, q) ∈ JS and (q, r) ∈ JS, then (p, r) ∈ JS and (see also Fig. 2)

D(p, q) +D(q, r) ≤ D(p, r),

(d) D is upper semi-continuous,

(e) Suppose that (M,F ) is a proper Lorentz-Finsler space. If D = d then the

spacetime is reflective (so causally continuous if distinguishing),

(f) d ≤ D,

(g) If (M,C) is globally hyperbolic then D = d,

(h) If (M,C) is stably causal then for every p ∈M there is a globally hyperbolic

JS-causally convex neighborhood U , such that D|U×U = d|U×U = dU = DU ,

where dU is the Lorentz-Finsler distance of the spacetime U and similarly

for DU . In particular D(p, p) = 0.

Proof. (a). By definition of Seifert relation, if (p, q) /∈ JS then there is F̂ > F

such that Ĉ > C and (p, q) /∈ Ĵ . Then for every F ′ such that F < F ′ < F̂ ,

d′(p, q) = 0, hence the claim.

(b). If (p, q) ∈ IntJS pick (p′, q′) sufficiently close to (p, q) and such that p� p′,

q′ � p, then (p′, q′) ∈ JS . For every F ′ > F , d′(p, q) is larger than the sum of

the F -Lorentz-Finsler lengths of the C-timelike curves connecting p to p′ and q′

to q, which are positive and independent of F ′, thus the claim. The proofs with

the assumptions q ∈ IntJ+
S (p) or p ∈ IntJ−S (q) are analogous, but there is only one

timelike curve.

(c). Let F ′ > F , then (p, q) ∈ J ′, (q, r) ∈ J ′ and

D(p, q) +D(q, r) ≤ d′(p, q) + d′(q, r) ≤ d′(p, r),

where we used the Lorentz-Finsler reverse triangle inequality, cf. Eq. (2.7). Since

the equation in display holds for every F ′ > F , taking the infimum we obtain the

desired result.

(d). We can assume that D(p, q) is finite. Suppose D is not upper semi-

continuous at (p, q), then there is ε > 0 and a sequence (pn, qn)→ (p, q) such that

D(pn, qn) ≥ D(p, q)+4ε. By definition of D(p, q) we can find F ′ > F such that for

every continuous C ′-causal curve γ connecting p to q, `′(γ) ≤ d′(p, q) ≤ D(p, q) + ε.

Let Fn → F , be a sequence such that F < Fn+1 < Fn < F ′. Since

dn(pn, qn) ≥ D(pn, qn), for every n we can find γn continuous Cn-causal curve con-

necting pn to qn such that `n(γn) ≥ D(pn, qn)−ε. Applying the limit curve theorem

2.14 to {γn} we obtain the existence of two continuous C-causal limit curves σq end-

ing at q and σp starting at p (possibly inextendible in the other direction) to which

a subsequence (denoted in the same way) γn converges uniformly over compact

subsets. Let p′ ∈ σp be chosen so close to p that, with the obvious meaning of the

notation, σpp→p′ belongs to a neighborhood Up such that the F ′-length (and hence

the Fn-length) of any C ′-causal curve contained in Up is less than ε/2 (recall the
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local non-imprisoning result Prop. 2.10 and the fact that a Riemannian metric can

be found such that F ′(y) ≤ ‖y‖h for every y ∈ TUp). Similarly choose q′ ∈ Uq with

the analogous criteria. Let p′n ∈ γn be such that p′n → p′ and similarly for q′n → q.

Since the limit curves are C-causal (p, p′) and (q′, q) belong to IC′(Up), moreover,

as the chronology relation is open, (p, p′n) ∈ IC′(Up) and (q′n, q) ∈ IC′(Uq), thus we

can go from p to p′n follow γn to q′n and then go from q′n to q, all along a continuous

C ′-causal curve ηn. Notice that `′(ηn) ≥ `′(ηn|p′n→q′n) ≥ `n(γn|p′n→q′n) ≥ `n(γn)− ε.
Putting everything together

`′(ηn) ≥ `n(γn)− ε ≥ D(pn, qn)− 2ε ≥ D(p, q) + 2ε,

which gives a contradiction, since we know that for every continuous C ′-causal

curve γ connecting p to q, `′(γ) ≤ D(p, q) + ε.

(e). Since D is upper semi-continuous, d is upper semi-continuous which implies

reflectivity (Th. 2.24).

(f). We can assume d(p, q) > 0, the other case being trivial. Whenever F ′ > F ,

we have `′(γ) ≥ `(γ) for every C-causal curve, so the statement follows.

(g). We know that JS = J (Th. 2.39), so we have only to show that for (p, q) ∈ J ,

D(p, q) = d(p, q). Let {Ck} be a sequence as in Prop. 2.26, C < Ck+1 < Ck,

C = ∩kCk, where by the stability of global hyperbolicity we can assume that C1

and hence every Ck is globally hyperbolic. For every n > 0 we can find kn such that

D(p, q) ≤ dkn(p, q) ≤ D(p, q) + 1/n. Indeed, if not then dk(p, q) > D(p, q) + 1/n

for every k, thus we can find a sequence of continuous Ck-causal curves σk such

that `k(p, q) > D(p, q) + 1/n. By the global hyperbolicity of C1 it converges to

a continuous C-causal curve σ, and by the upper semi-continuity of the length

functional, `(x) ≥ D(p, q) + 1/n ≥ d(p, q) + 1/n, a contradiction. Thus we can

find a continuous Ckn -causal curve xn connecting p to q such that dkn(p, q) −
1/n ≤ `kn(xn) ≤ dkn(p, q), thus |`kn(xn) − D(p, q)| ≤ 1/n. By the limit curve

theorem 2.14 and the non-imprisoning property of global hyperbolicity there is a

limit continuous C-causal curve x connecting p to q. By the upper semi-continuity of

the length functional, Th. 2.54, D(p, q) = limn `kn(xn) ≤ `(x) ≤ d(p, q) ≤ D(p, q),

thus D(p, q) = d(p, q).

(h). Let (V,C|V ) be a globally hyperbolic neighborhood of p. Since (M,C) is

stably causal there is C ′ > C such that (M,C ′) is stably causal and hence strongly

causal. Let U ⊂ V , p ∈ U , be a relatively compact J ′-causally convex set, then

since J ⊂ JS ⊂ J ′, it is also JS-causally convex and J-causally convex. Thus

(U,C|U ) is globally hyperbolic and dU = d|U×U . But since U is J ′-causally convex

DU = D|U×U . Finally, the equality DU = dU follows from (g).

Definition 2.29. A stable closed Lorentz-Finsler space (M,F ) is a stably causal

closed Lorentz-Finsler space such that D <∞.

This terminology is well posed due to the following result.
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p

q

r

Fig. 2. Minkowski’s 1+1-dimensional spacetime with a spacelike segment removed. The usual re-
verse triangle inequality does not hold d(p, q) = d(p, r) = 0, d(q, r) > 0, hence d(p, q) + d(q, r) �
d(p, r), because (p, q) /∈ J . However, the reverse triangle inequality applies for D because

(p, q), (q, r) ∈ JS . So the good properties of D find wider applicability than those of d.

Theorem 2.61. (Stable spacetimes are stable)

Let (M,F ) be a stable closed Lorentz-Finsler space, then there is F̄ > F such

that (M, F̄ ) is a stable locally Lipschitz proper Lorentz-Finsler space. In particular,

d ≤ D ≤ d̄ ≤ D̄ < +∞. Finally, let ε > 0 and let K be a compact set, then F̄ can

be chosen so that D̄|K×K −D|K×K ≤ ε.

Thus the first sentence implies that the finiteness of D is stable, while the second

sentence states that D itself is stable.

Proof. By stable causality we can find F̂ > F such that (M, F̂ ) is a stably causal

locally Lipschitz proper Lorentz-Finsler space. We need some preliminary results.

Result 1: Under the theorem’s assumptions, given a compact set K we can find

F̌ , F < F̌ < F̂ , such that ď|K×K < R for some R(K) > 0.

Proof of result 1. Let K̂ be a compact set which contains K in its interior. Since

D is finite and upper semi-continuous there is R > 0 such that D|K̂×K̂ < R. Let

p, q ∈ K̂. Since D(p, q) < R < +∞, by definition of D we know that there is Fpq,

F < Fpq < F̂ , such that dpq(p, q) < R. Consider the open sets I+
pq(p) × I−pq(q)

for p, q ∈ K̂. They cover K ×K in fact given (p, q) ∈ K ×K, we can always find

p′ ∈ J−(p)\{p}∩K̂ and q′ ∈ J+(q)\{q}∩K̂ (by Th. 2.1) so by Th. 2.24 p ∈ I+
p′q′(p

′),

q ∈ I−p′q′(q′). By compactness of K×K we can find (pi, qi) ∈ K̂×K̂, 1 ≤ i ≤ s, such

that writing Ii in place of Ipiqi (and di, Fi in place of dpiqi , Fpiqi), I
+
i (pi)× I−i (qi)

cover K × K. Let F̌ be such that F < F̌ < Fi for every 1 ≤ i ≤ s. Every

(p, q) ∈ K × K belongs to some element of the covering (p, q) ∈ I+
i (pi) × I−i (qi).

But now ď(p, q) < R otherwise

di(pi, qi) ≥ di(p, q) ≥ ď(p, q) ≥ R,

a contradiction. Result 1 is proved.

Result 2: Under the theorem’s assumptions, given a compact set K we can find

F̌ , F < F̌ < F̂ , such that every F ′, F < F ′ < F̂ , such that F < F ′ < F̌ on

M\IntK, has bounded distance d′|K×K .
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Observe that the definition of the restricted distance d′|K×K involves continuous

C ′-causal curves that might escape K. Also observe that F ′ is bounded by F̂ on

K, however F̂ is independent of K.

Proof of result 2. By Result 1 there is F̌ , F < F̌ < F̂ , such that ď|K̃×K̃ < R,

where K̃ is a compact set which contains K in its interior. But we can enlarge

the cones in IntK, and alter F̌ to F̌ ′ < F̂ , preserving the boundedness of ď′

in K × K. In order to prove this point, observe that by the stable causality of

Ĉ, K can be covered by a finite number N of Ĉ-causally convex neighborhoods

contained in IntK̃. Every continuous Č-causal curve starting and ending in K can

escape K̃ but at most N times since each time it reenters a different causally

convex neighborhood. The F̌ ′-length of continuous Č ′-causal curves contained in

K̃ is bounded by a constant B > 0 (use the existence of a Riemannian metric h

on M such that F̂ (y) ≤ ‖y‖h on TK̃, and cover K̃ with a finite number of Ĉ-

causally convex non-imprisoning neighborhoods), thus such an alteration of F̌ in

IntK would nevertheless keep ď′|K×K bounded by (B +R)N . Result 2 is proved.

Let h be an auxiliary complete Riemannian metric on M and let o ∈ M . Let

Kn = B̄(o, n) and let Fn, F < Fn < F̂ , be the function F̌ appearing in result

2 for the choice K = Kn. The sequence can be chosen so that Fn+1 < Fn. Let

F ′ > F be such that for every n, F ′|Kn\IntKn−1
< Fn|Kn\IntKn−1

. Let p, q ∈ M ,

then there is some m such that p, q ∈ IntKm. By F ′ < Fm+1 < Fm on M\IntKm

and the Result 2 we have d′(p, q) < +∞. By the arbitrariness of p and q, d′ is finite.

Taking F̄ such that F < F̄ < F ′ gives a finite D̄.

For the last statement, for every F ′ > F , D′|K×K is an upper semi-continuous

finite function over a compact set. Its subgraph S′ is closed and hence compact and

contains the compact set S, the subgraph of D|K×K . Notice that ∩F ′>FS
′ = S

because D = infF ′>F D′. Consider a compact neighborhood E of the graph of

(D+ε)|K×K which does not intersect S. Then ∩F ′>F (S′∩E) = ∅, thus {(S′∩E)C}
form an open covering of E, thus there is a finite covering {(Si ∩E)C} and taking

F ′ so that F < F ′ < Fi for every i, S′ ∩ E = ∅ which implies D′|K×K <

(D + ε)|K×K .

Theorem 2.62. (stable representatives in the stably causal conformal class)

Let (M,F ) be a stably causal closed Lorentz-Finsler space, then there is a smooth

function α : M → R+ such that (M,αF ) is stable.

Notice that given a stably causal closed cone structure, one can take F = 0 to

get a stably causal closed Lorentz-Finsler space which will also be a stable closed

Lorentz-Finsler space.

Proof. By assumption there is Ĉ > C stably causal and hence strongly causal

(Th. 2.29), moreover by Prop. 2.28 we can actually find (M, F̂ ), F̂ > F , such

that (M, Ĉ) is a stably causal locally Lipschitz proper cone structure. Regard M

as the union of a countable number of compact shells Kn\IntKm−1, with Km a
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closed ball of radius m and center o ∈ M with respect to a complete Rieman-

nian metric. The m-th shell is covered by a finite number Nm of Ĉ-causally convex

non-imprisoning neighborhoods (Th. 2.15), and any continuous Ĉ-causal curve con-

necting the boundary of the m-th shell to itself and entirely contained in the m-th

shell has bounded F̂ -length Lm since it is bound to escape every neighborhood of

the covering (notice that there is a Riemannian metric h such that F̂ (y) ≤ ‖y‖h for

every y ∈ Ĉ, and that the h-arc length is bounded on every neighborhood cf. Prop.

2.10). We can find α so that it is smaller than 1
NmLm2m on the m-th shell. Every

continuous Ĉ-causal curve intersects the m-th shell in at most Nm segments since

each of them intersect at least one Ĉ-causally convex neighborhood of the cover-

ing. From here it follows that the αF̂ -length of any continuous Ĉ-causal curve is

bounded by 2, thus since αF̂ > αF , (M,αF ) is stable.

Theorem 2.63. (globally hyperbolic spacetimes are stable)

Let (M,F ) be a globally hyperbolic closed Lorentz-Finsler space, then it is stable

regardless the choice of F .

Proof. By Th. 2.39 there is a globally hyperbolic locally Lipschitz proper cone

structure (M,C ′), C ′ > C. So we can find a closed Lorentz-Finsler space (M,F ′),

F ′ > F , such that (M,C ′) is a globally hyperbolic locally Lipschitz proper cone

structure, C ′ > C. By the improved Avez-Seifert theorem (Th. 2.55) the distance

d′(p, q) is attained by the F ′-length of some continuous C ′-causal curve connecting

p to q. In particular, it is finite, which proves that D < +∞.

2.15. Singularity theorems

In this section we show that the causal content of some singularity theorems is

preserved in the upper semi-continuous regularity framework. In the classical C2

theory a singularity is just an incomplete geodesic. In the present context we do

not have a notion of affine parameter at our disposal, however, the non-causal in-

gredients in the classical singularity theorems, such as affine parameter, energy and

genericity conditions or divergence conditions, might be seen as means to produce

sets on the manifold with specific causality properties. Each singularity theorem

has a core which relates such causality concepts, and it is this type of result which

is preserved. Our generalization is therefore of a different nature with respect to

that found in [9–11] where the authors assume the stronger C1,1 regularity but

make sense of some other analytical objects entering the classical theorems. Also,

we shall not recall the classical versions of the singularity theorems, nor shall we

explain in detail why our theorems provide the causality content of such statements.

The reader might easily verify the correspondence by checking some classical refer-

ences [1].

We recall that a lightlike line is an inextendible causal curve for which no two

points are J̊-related. For locally Lipschitz proper cone structures the condition is

equivalent to achronality.
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Lemma 2.6. Let (M,C) be a causal closed cone structure. If there are no lightlike

lines then (M,C) is strongly causal.

Proof. If (M,C) is not strongly causal at x then there is a non-imprisoning neigh-

borhood U 3 x as in Prop. 2.10 and a sequence of continuous causal curves σn
with endpoints xn, zn, with xn → x, zn → x, not entirely contained in U . Let B,

B̄ ⊂ U be a coordinate ball of x. By the limit curve theorem there are a future

inextendible continuous causal curve σx starting from x and a past inextendible

continuous causal curve σz ending at x such that for every x̃ ∈ σx and z̃ ∈ σz,

(z̃, x̃) ∈ J̄ . But σx ◦ σz is not a lightlike line so x̃ and z̃ can be chosen so that

(x̃, z̃) ∈ J̊ , thus there is a closed causal curve, a contradiction.

Let us give a version of the theorem we proved in [92].

Theorem 2.64. Let (M,C) be a locally Lipschitz proper cone structure. If there

are no lightlike lines then (M,C) is causally easy, thus there is a time function.

Proof. Let (p, q) ∈ J̄ and (q, r) ∈ J̄ . The are continuous causal curves σk with

endpoints pk → p, qk → q, and continuous causal curves γs with endpoints q′s → q,

rs → r. By the limit curve theorem either there is a limit continuous causal curve σ

connecting p to q or a past inextendible continuous causal curve σq ending at q, such

that for every q̃ ∈ σq, (p, q̃) ∈ J̄ . Similarly, there is a limit continuous causal curve γ

connecting q to r or a future inextendible continuous causal curve γq starting from

q, such that for every q̌ ∈ γq, (q̌, r) ∈ J̄ . If (p, q) ∈ J , taking p′ � p, we have p′ � q

due to I ◦ J ∪ J ◦ I ⊂ I and hence p′ � rn, which implies (p, r) ∈ J̄ . Similarly, the

assumption (q, r) ∈ J gives (p, r) ∈ J̄ . It remains to consider the case (p, q) /∈ J
and (q, r) /∈ J . Let η be the inextendible causal curve obtained joining σq and γq,

as there are two points in η such that (q̃, q̌) ∈ I, we have that (p, r) ∈ J̄ . Thus J̄ is

transitive. By the lemma (M,C) is strongly causal, thus (M,C) is causally easy.

The next stability result is interesting though it will not be used.

Theorem 2.65. Let (M,C) be a closed cone structure which does not have lightlike

lines. There is a locally Lipschitz proper cone structure C̃ > C, such that for every

locally Lipschitz proper cone structure C ′, C < C ′ < C̃, (M,C ′) does not have

lightlike lines.

Proof. Suppose not; there are two cases: either (i) there is a compact set K and

a sequence Ck with the properties of Th. 2.26 such that there is a Ck-lightlike line

σk intersecting K, or (ii) let Ck have the properties of Th. 2.26, for every compact

set K we can find n(K) such that for all C ′, C < C ′ ≤ Cn(K), all C ′-lightlike lines

do not intersect K.

In case (i) by the limit curve theorem there is a subsequence, denoted in the

same way, which converges to an inextendible continuous causal curve σ, thus by
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the absence of lightlike lines there are p, q ∈ σ such that (p, q) ∈ J̊ ⊂ J̊k. Let

pk, qk ∈ σk, pk → p and qk → q. For sufficiently large k we have (pk, qk) ∈ J̊k. This

is a contradiction because σk is a lightlike line.

In case (ii), let h be a complete Riemannian metric on M , and o ∈ M , and let

n(m) ≥ n(B̄(o,m)) be an increasing function. Let C̃ > C be such that for every m,

Cn(m+1) ≤ C̃ ≤ Cn(m) on B̄(o,m)\B(o,m − 1) in such a way that C̃ = Cn(m) on

∂B(o,m− 1) (here C̃ is built using convex combinations as in Prop. 2.1). Assume

there is C ′, C < C ′ < C̃, such that (M,C ′) has a lightlike line γ. There is a

minimum value of m such that γ ∩ B̄(o,m) 6= ∅. Let Ĉ, C < Ĉ ≤ C ′, be coincident

with C ′ outside B̄(o,m− 1) and such that Ĉ ≤ Cn(m) on B̄(o,m− 1). The curve γ

is a Ĉ-lightlike line since it is Ĉ-causal and Ĵ ⊂ J ′. But Ĉ ≤ Cn(m) on M , thus γ

cannot be a Ĉ-lightlike line for it intersects B̄(o,m), a contradiction.

Let us come to Penrose’s 1965 singularity theorem [93]. It was generalized to

the round cone (Lorentzian) C1,1 case [9], and to the non-round (Lorentz-Finsler)

C2 case [12]. We need a definition.

Definition 2.30. A future trapped set is a non-empty set S such that E+(S) is

compact.

The next result, which does not seem to have been previously noticed, not even

in the C2 Lorentzian theory, will be very important as it will allow us to improve

the differentiability assumption on the cone structure from ‘locally Lipschitz and

proper’ to ‘upper semi-continuous’.

Theorem 2.66. (Stability of compact trapped sets)

Let (M,C) be a non-imprisoning closed cone structure. Let S be a compact set such

that E+(S) is compact. Then E+(S) is closed and there is a locally Lipschitz proper

cone structure C̃ > C such that for every locally Lipschitz proper cone structure

C < Ĉ < C̃, Ê+(S) is compact.

If (M,C) is stably causal we can take C̃ stably causal and also for every C <

Ĉ < C̃, we have that Ê+(S) is compact.

Proof. Let q ∈ E+(S) so there are qn ∈ E+(S), qn → q. We cannot have q ∈ I+(S)

otherwise for sufficiently large n, qn ∈ I+(S), which is impossible. Thus we have

only to prove that q ∈ J+(S). If q ∈ S there is nothing to prove, so let us suppose

q /∈ S. Let σn be a causal curve connecting S to qn, necessarily contained E+(S).

Since q /∈ S the curves σn do not contract to a point and by the limit curve theorem

either there is a continuous causal curve connecting S to q, and we are finished,

or there is a future inextendible continuous causal curve σq ⊂ E+(S). By the

compactness of the last we have a contradiction with the non-imprisoning property.

As for the next statement, suppose that it does not hold then for every C̃ > C we

can find some C < Ĉ < C̃ such that Ê+(S) is non-compact. For every sequence of

locally Lipschitz proper cone structures as in Prop. 2.26 {Ck}, C < Ck+1 < Ck < C̃,
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∩kCk = C we can pass to another sequence {Ĉk}, C < Ĉk+1 < Ĉk < Ck, such that

Ê+
k (S) is non-compact for every k. We rename Ĉk → Ck. Let h be a complete

Riemannian metric, let o ∈ M and let Bn = B(o, n). Let qk ∈ E+
k (S)\S be a

sequence of points such that qk /∈ Bk. By Cor. 2.2 there is a continuous causal

curve σk connecting some pk ∈ S to qk, entirely contained in E+
k (S). Notice that

IntJ+(S) ⊂ IntJ+
k (S), thus these curves do not intersect IntJ+(S). Applying the

limit curve theorem to σk we obtain that there is a future inextendible continuous

C-causal curve σ starting from S and not intersecting IntJ+(S). Thus this curve

belongs to E+(S) which contradicts the non-imprisonment property.

As for the last statement, it is clear that we can take C̃ stably causal. We have to

show that for C < Ĉ < C̃, Ê+(S) is closed. By contradiction, let q ∈ Ê+(S)\Ê+(S)

then there is a sequence qk → q, qk ∈ Ê+(S). There are continuous Ĉ-causal curves

σk connecting S to qk entirely contained in Ê+(S) hence not intersecting IntĴ+(S).

Since Ĉ is stably causal it is non-imprisoning. Using again the limit curve theorem

we get a future inextendible continuous Ĉ-causal curve starting from S and not

intersecting IntĴ+(S), hence contained in Ê+(S) again a contradiction with the

non-imprisonment property. Applying the same argument to E+(S) shows that

this set is closed (remember Th. 2.50).

We recall that every globally hyperbolic closed cone structure admits a stable

(equiv. stably acausal, cf. Th. 2.41) Cauchy hypersurface, and that any two stable

Cauchy hypersurfaces are smoothly diffeomorphic (Th. 2.42).

Theorem 2.67. (Improved Penrose’s singularity theorem)

Let (M,C) be a globally hyperbolic closed cone structure admitting a non-compact

stable Cauchy hypersurface. Then there are no compact future trapped sets and if

S is non-empty and compact there is a future inextendible future lightlike geodesic

entirely contained in E+(S).

The argument of Penrose’s theorem in the C2 Lorentzian case really might be

continued as follows: one assumes the existence of a trapped surface S, which is

a codimension two closed spacelike manifold whose local orthogonal null fields are

converging. Then under the null energy condition the lightlike geodesics starting

with those tangents would be refocusing if complete, which implies that S is a

trapped set, a contradiction.

Proof. Suppose there is a non-empty compact set S such that E+(S) is compact.

Then by Th. 2.66 there is globally hyperbolic locally Lipschitz proper cone structure

C̃ > C, such that Ẽ+(S) is compact. Since J̃ is closed, by Th. 2.37 J̃+(S) is closed

so Ẽ+(S) = ∂J̃+(S), where Ẽ+(S) is a C̃-achronal boundary (Prop. 2.14) hence a

compact locally Lipschitz hypersurface. If V is a smooth C̃-timelike vector field its

flow can be used to project Ẽ+(S) to the Cauchy hypersurface Q (which is a stable

Cauchy hypersurface for (M,C)). As the projection is compact its boundary as a

subset of Q is non-empty. But the integral lines passing through the boundary of
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the image cannot be transverse to Ẽ+(S) though they are, a contradiction. Thus

for every non-empty compact set S, E+(S) is non-bounded, so we can find qn ∈
E+(S)\S escaping every compact set, so by Th. 2.48 there are continuous causal

curves σn connecting pn ∈ S to qn entirely contained in E+(S). An application

of the limit curve theorem gives a future inextendible continuous causal curve σ

starting from some p ∈ S, entirely contained in E+(S). By shortening it if necessary,

we can assume that it intersects S just in p. Since σ does not intersect IntJ+(p) ⊂
IntJ+(S) it is a future lightlike geodesic.

The next result is a low differentiability version of Hawking’s 1966 singularity

theorem [94]. In its first version Hawking’s theorem included a global hyperbolicity

assumption which was removed in [1]. A C1,1 Lorentzian version can be found in [10]

and a non-round (Lorentz-Finsler) C2 version can be found in [12].

Theorem 2.68. (Improved Hawking’s singularity theorem)

Let (M,F ) be a non-imprisoning proper Lorentz-Finsler space and let S be a com-

pact acausal topological hypersurface. There is a future inextendible future causal

geodesic x : [0,+∞)→ M issued from x(0) ∈ S and contained in D+(S) such that

for every t > 0,

lim inf
q→x(t)

d(S, q) ≤ `(x|[0,t]). (2.11)

Suppose that (M,C) is globally hyperbolic or that it is C0 and such that F (∂C) = 0.

Then, either `(x) is bounded (geodesic singularity), or for every constant R > 0 we

can find a future causal geodesic x̃ : [0, 1]→M issued from x̃(0) ∈ S and contained

in D+(S) such that

`(x̃) = d(S, x̃(1)) > R. (2.12)

If additionally (M,F ) is locally Lipschitz then d is lower semi-continuous (Th.

2.53) and inequality (2.11) can be replaced by d(S, x(t)) = `(x|[0,t]).

The argument of Hawking’s theorem in the C2 Lorentzian case looks for a

contradiction in the timelike completeness assumption. It really uses only Eq. (2.12)

and goes as follows: since the boundedness of `(x) is excluded, an assumption on

the convergence of the vector field orthogonal to S jointly with the strong energy

condition leads to the refocusing of the geodesics starting orthogonally to S within

a length τ . By taking R > τ , and noticing that x̃ being maximizing is orthogonal

to S one gets a contradiction since x̃ cannot have focusing points in its interior.

Proof. The set S× = S × {0} is a compact subset of M×. The cone structure

(M×, C×) is non-imprisoning, for if there were a future inextendible continuous C×-

causal curve imprisoned in a compact set the same would be true for the projection

of the curve in the projection of the compact set, a contradiction with the non-

imprisoning property of (M,C).
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By definition of proper Lorentz-Finsler space there is a smooth C-timelike

vector field on M such that V × = V ⊕ 0 is a C×-timelike vector field on

M×. Notice that the flow of V × preserves the second coordinate. Let us con-

sider the set (E×)+(S×) = (J×)+(S×)\Int(J×)+(S×) on (M×, C×). No points

of [D+(S)\S] × {0} can be contained in this set, since they are connected to

S× by an integral curve of V ×, and so belong to Int(J×)+(S×) by the open-

ness of the chronological relation. By Th. 2.59 for every q ∈ D+(S) there is a

maximizing bigeodesic xq connecting S to q, `(xq) = d(S, q), so by Eq. (2.8),

Xq(t) = (x(t), `(x|[0,t])) is a continuous C×-causal curve contained in (E×)+(S×).

As a consequence, D+(S) ⊂ π1((E×)+(S×)). By Th. 2.34 S∩H+(S) = ∅ so D+(S)

cannot be bounded otherwise H+(S) would be compact and its generators would be

imprisoned in a compact set, a contradiction. Thus both D+(S) and (E×)+(S×) are

unbounded (under a global hyperbolicity assumption one could obtain the latter re-

sult with Penrose’s theorem framed in M×. Notice that under non-imprisonment we

cannot claim that every point of (E×)+(S×)\S× is connected to S× by a C×-causal

curve contained in (E×)+(S×), but this fact will not be used). Let qn ∈ D+(S) be

an unbounded sequence, then Qn = (qn, d(S, qn)) is an unbounded sequence in

(E×)+(S×). By Th. 2.59 for every qn there is a maximizing bigeodesic xn ⊂ D+(S)

connecting S to qn, `(xn) = d(S, qn), so by Eq. (2.8), Xn(t) = (xn(t), `(xn|[0,t]))
is a continuous C×-causal curve contained in (E×)+(S×) and connecting S× to

Qn. By the limit curve theorem we find a future inextendible future C×-lightlike

geodesic X̌(t) = (x(t), ř(t)), entirely contained in (E×)+(S×), with x entirely con-

tained in D+(S). No points of [D+(S)\S] × {0} can be contained in (E×)+(S×),

since its points are connected to S× by an integral curve of V ×, and so belong to

Int(J×)+(S×) by the openness of the chronological relation. This means that X̌

does not intersect [D+(S)\S] × {0} and so, reflecting it with respect to the r = 0

section if necessary, we might assume that X̌ belongs to the region r ≥ 0.

The curve X(t) = (x(t), r(t)), with r(t) = `(x|[0,t]) is also a future inex-

tendible continuous causal curve entirely contained in (E×)+(S×), hence a fu-

ture C×-lightlike geodesic. In order to prove this fact, notice that by causality

of X̌, | ˙̌r| ≤ F (ẋ), thus for t > 0, 0 ≤ ř(t) ≤ r(t). If there were t̄ such that

X(t̄) ∈ Int(J×)+(S×) then the same would be true for X̌(t̄), which gives a contra-

diction. In fact, there would be a product neighborhood of U×(a, b) 3 X(t̄) reached

at time t̄ by continuous C×-causal curves issued from S×, e.g. Y (t) = (y(t), s(t)),

but then Ỹ = (y(t), ř(t̄)r(t̄)s(t)) would also be a continuous C×-causal curve, that is

there would be a product neighborhood U × ř(t̄)
r(t̄) (a, b) 3 X̌(t̄) in (J×)+(S×) as we

claimed.

For every t, and for every product neighborhood U×(r(t)−ε, r(t)+ε) 3 X(t) =

(x(t), r(t)) we can find some point in the product neighborhood which is not reached

by C×-continuous causal curves starting from S×. Since Eq. (2.8) holds with the

equality sign, this means that for every ε and for every U 3 x(t) we can find q ∈ U
such that d(S, q) ≤ r(t) + ε, that is lim infq→x(t) d(S, q) ≤ r(t).



82 E. Minguzzi

Finally, observe that for R > 0, either (E×)+(S×)∩π−1
1 (D+(S)) is all contained

in the regions r ≤ R, which implies that x has length no larger than R on D+(S)

(in the globally hyperbolic case x cannot continue on H+(S) since this set is empty;

in the other case x can continue on H+(S) but its length there is zero because of

the C0 assumption cf. Th. 2.17), or not, which implies that we can find q ∈ D+(S)

such that d(S, q) > R. By Th. 2.59 we can find a causal bigeodesic x̃ : [0, 1] → M ,

x̃(0) ∈ S, x̃(1) = q such that Eq. (2.12) holds true.

Below we give a causal version of Hawking and Penrose’s 1970 singularity the-

orem [93]. It has been recently generalized to C1,1 regularity [11] and to the non-

round (Lorentz-Finsler) C2 case [12]. As for Penrose’s theorem the key for the

generalization to the closed cone structure case stays in the stability of compact

trapped sets.

Definition 2.31. The cone structure (M,C) is causally disconnected by a compact

set K if there are sequences pn and qn, pn < qn, going to infinity (i.e. escaping every

compact set) such that for each n every continuous causal curve connecting pn to

qn intersects K. It is causally connected if there is no compact set which causally

disconnects it.

Lemma 2.7. Let (M,C) be a locally Lipschitz proper cone structure. If S is a

closed and achronal set and H+(E+(S)) is compact non-empty then strong causality

is violated on every neighborhood of it.

Proof. Assume H+(E+(S)) is compact, non-empty and strong causality holds in a

neighborhood of it. Let U be a relatively compact neighborhood of H+(E+(S)). We

want to show that U cannot be covered by causally convex sets. Cover H+(E+(S))

with a finite number of globally hyperbolic open neighborhoods Ui, i = 1 . . . n

whose closures are respectively contained in globally hyperbolic open neighbor-

hoods Vi, i = 1 . . . n, i.e. Ūi ⊂ Vi, which in turn are contained in U . Take a point

p1 ∈ H+(E+(S)), then p1 ∈ Ui1 for some 0 ≤ i1 ≤ n. Let q1 ∈ I+(p1) ∩ Ui1 .

As H+(E+(S)) ⊂ E+(S) ∪ I+(E+(S)) ⊂ I+(S) we have q1 ∈ I+(S). Clearly

q1 /∈ D̃+(E+(S)) otherwise p1 ∈ I−(D̃+(E+(S))), a contradiction (recall Th. 2.36).

As a consequence, q1 /∈ D̃+(∂I+(S)). In fact, suppose not, q1 ∈ D̃+(∂I+(S)),

then not all timelike curves ending at q1 can intersect E+(S) otherwise q1 ∈
D̃+(E+(S)). Thus there is one timelike curve σ which intersects ∂I+(S)\E+(S)

at a point r. But there is a past inextendible causal curve entirely contained in

∂I+(S) with future endpoint r, thus if r 6= q1 using Th. 2.7 we can modify σ get-

ting a past inextendible timelike curve ending at q1 and not intersecting ∂I+(S), a

contradiction. The possibility r = q is excluded since q1 ∈ I+(S).

Since q1 /∈ D̃+(∂I+(S)) there is a past inextendible timelike curve γ1 that does

not intersect ∂I+(S) (and hence D̃+(∂I+(S))), and thus it is entirely contained in

I+(S). This curve cannot be totally imprisoned in Ui1 otherwise strong causality

is violated in U i1 a contradiction with the global hyperbolicity of Vi1 . Thus there
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is a point q′1 ∈ γ1 ∩ I+(S) ∩ UCi1 ∩ D̃
+(∂I+(S))C . The timelike curve µ1 joining

S to q′1 leaves the closed set D̃+(E+(S)) ⊂ D̃+(∂I+(S)) at a last point p2 ∈
∂D̃+(E+(S)) = H+(E+(S)) ∪ E+(S).

If we had p2 ∈ E+(S)\H+(E+(S)) then p2 ∈ I−(D̃+(E+(S))), thus moving

forward along µ starting from p2 we would still be in I−(D̃+(E+(S))) ∩ I+(S) ⊂
D̃+(E+(S)) at least for a small segment, a contradiction since p2 was the last point

in this set. Thus p2 ∈ H+(E+(S)), and there is some i2 such that p2 ∈ Ui2 (here

we do not claim that i2 6= i1, the important fact is that q′1 /∈ Ui1). Following µ1

after p2 we can find a point q2 ∈ I+(p2) ∩ Ui2 before q′1. Repeating the arguments

given above and continuing in this way we get a timelike curve η which joins (past

direction) q1 to q′1 (along γ1), q′1 to q2 (along µ1), q2 to q′2 (along γ2), and so on

with qn ∈ Uin . As η is past inextendible U cannot be covered by causally convex

sets.

Corollary 2.7. Let (M,C) be a locally Lipschitz proper cone structure. Let S be a

closed and achronal set. Suppose that E+(S) 6= ∅, E+(S) is compact and the strong

causality condition holds on J+(S), then there is a future inextendible timelike curve

issued from S and contained in D+(E+(S)).

Proof. Let V be a C1 complete timelike vector field. If H+(E+(S)) is empty

the desired result is trivial, just follow an integral line starting from S. If not

the integral lines of the field ending at H+(E+(S)) must intersect E+(S) as

H+(E+(S)) ⊂ D̃+(E+(S)). This continuous map sends H+(E+(S)) to E+(S)

and has a continuous inverse defined on its image. Thus if it is surjective there is

a homeomorphism between H+(E+(S)) and E+(S) with the induced topologies.

However, this is impossible because the former is non-compact while the latter is

compact. Thus there is a future inextendible integral line issued from E+(S) which

does not intersect H+(E+(S)). By achronality it cannot intersect E+(S) thus it is

contained in D+(E+(S)).

Lemma 2.8. Let (M,C) be a locally Lipschitz proper cone structure. For every set

S, E+(S) ⊂ E+(S̄). If S is achronal and E+(S) is closed then E+(S̄) = E+(S).

Proof. Since I is open, I+(S̄) = I+(S), and since J+(S) ⊂ J+(S̄), we get E+(S) ⊂
E+(S̄). Suppose S is achronal and E+(S) is closed. Since S ⊂ E+(S), and the latter

set is closed, S̄ ⊂ E+(S). If q ∈ E+(S̄) then there is p ∈ S̄ such that q ∈ E+(p).

But p ∈ S̄ ⊂ E+(S), thus there is r ∈ S such that p ∈ E+(r). Thus q ∈ J+(r) that

is, q ∈ J+(S), and using I+(S) = I+(S̄) it follows that q ∈ E+(S).

Proposition 2.29. Let (M,C) be a locally Lipschitz proper cone structure. Let S

be a non-empty compact set, then E+(S) ∩ S 6= ∅ or S intersects the chronology

violating set of (M,C). In the former case, defining A = E+(S)∩S, A is non-empty,

closed achronal and we have I+(A) ⊂ I+(S), J+(A) ⊂ J+(S) and E+(S) ⊂ E+(A).

Moreover, if strong causality holds on S the converse inclusions hold.
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Proof. Clearly S ⊂ J+(S), thus the only way in which it could be E+(S)∩ S = ∅
is that S ⊂ I+(S). Consider the set of open sets A = {I+(p), p ∈ S}, it provides a

covering of the compact S, thus there are a finite number of points p1, . . . pn ∈ S
and a finite subcovering {I+(p1), . . . , I+(pn)}. Each pi belongs to the future of some

pj , and going backwards, since there are only finitely many elements, one finally

finds twice the same pk, thus pk � pk.

Let us consider the case E+(S)∩S 6= ∅ and let us define A = E+(S)∩S. Since

A ⊂ S, we have I+(A) ⊂ I+(S), J+(A) ⊂ J+(S). Let q ∈ E+(S), then there is a

point p ∈ S, such that p ≤ q. It cannot be p ∈ I+(S) otherwise q ∈ I+(S), thus

p ∈ S\I+(S) = A. As a consequence q ∈ J+(A). Moreover, q /∈ I+(A) otherwise

q ∈ I+(S). We conclude q ∈ E+(A), and hence E+(S) ⊂ E+(A).

For the reverse inclusions assume strong causality holds at S. Suppose by con-

tradiction that q ∈ I+(S)\I+(A) (or q ∈ J+(S)\J+(A)) then there is some p1 ∈ S,

p1 � q (resp. p1 ≤ q). We cannot have p1 ∈ A, thus p1 ∈ I+(S) and there is p2 ∈ S
such that p2 � p. Again necessarily p2 /∈ A otherwise q ∈ I+(S), so p2 ∈ I+(S).

We want to formalize what it means to “continue in this way”. Let h be a complete

Riemannian metric, and let l1 be the h-arc length of a timelike curve γ1 connecting

p2 to p1. The point p2 and the timelike curve γ1 might be chosen in many ways.

It is chosen so that l1 ≥ min(d1/2, 1) where d1 is the supremum of l1 for all the

possible choices (possibly d1 = ∞). By imposing the same criterion for each step

we obtain a sequence of timelike curves which can be joined to form a curve γ.

Let us show that it cannot hold that 0 < a =
∑
i li < +∞. The convergence

of the series implies that pk is a Cauchy sequence, thus converging to some point

r ∈ S. Then the h-arc length parametrized continuous causal curve γ : (−a, 0]→M ,

γ(0) = p1, becomes a continuous causal curve γ : [−a, 0]→M by setting γ(−a) = r

(i.e. continuous and almost everywhere differentiable with causal tangent). More-

over, for some δ > 0, γ(−a) ≤ γ(−a + δ) � p1 ≤ q, thus γ(−a) ∈ I−(q) so

γ(−a) /∈ A and hence γ(−a) ∈ I+(S). Thus γ could be extended to an h-arc length

parametrized continuous causal curve γ̃ : [−a− ε, 0]→M with γ(−a− ε) ∈ S. For

sufficiently large i, li < ε/2 which contradicts the definition of li.

The possibility a = +∞ would imply that γ is past inextendible and partially

imprisoned in S which is impossible because by strong causality on S, S is covered

by a finite number of causally convex neighborhoods, each of them being intersected

only once by γ.

We conclude that I+(S) = I+(A) and J+(S) = J+(A) and thus also E+(S) =

E+(A).

The next version of Hawking and Penrose’s theorem is completely causal. Un-

fortunately, the causality condition has to be strengthened since we have proved

Th. 2.64 only under a locally Lipschitz and proper condition. Under such condition

(i) can be replaced by causality.

Theorem 2.69. (Improved Hawking and Penrose’s singularity theorem)
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Let (M,C) be a closed cone structure. The following conditions cannot all hold:

(i) (M,C) is stably causal,

(ii) (M,C) has no lightlike line and it is causally connected,

(iii) there is a compact future (or past) trapped set S.

Moreover, (iii) can be weakened to

(iii’) there is a non-empty compact set S such that E+(S) or E−(S) are bounded.

Proof. Assume (i), (ii), (iii’) hold true. By Th. 2.66 we can find a locally Lipschitz

proper cone structure C̃ > C which is stably causal and such that Ẽ+(S) is compact

(or analogously in the past case). By Prop. 2.29 the set A = S\Ĩ+(S) is non-empty,

compact and C̃-achronal, and moreover, Ẽ+(A) = Ẽ+(S) is compact, thus A is

a compact C̃-achronal trapped set for (M, C̃). By C̃-achronality A ⊂ Ẽ+(A), and

hence Ẽ+(A) 6= ∅. By corollary 2.7 there is a future inextendible C̃-timelike curve

issued from A and contained in D̃+(Ẽ+(A)). Extend it to the past to obtain an

inextendible C̃-timelike curve γ : R → M . This curve intersects Ẽ+(A) only once

because of the C̃-achronality of this set. Let pn = γ(tn) with tn → −∞, and let

qn = γ(t′n) with t′n → +∞. We have for all n, qn ∈ D̃+(Ẽ+(A)) ∩ Ĩ+(A) and

pn ∈ Ĩ−(Ẽ+(A)). Let us prove that the compact set Ẽ+(A) disconnects (M, C̃).

We have only to show that every continuous C̃-causal curve σn connecting pn to

qn intersects Ẽ+(A). Continue σn below pn along γ to obtain a past inextendible

continuous C̃-causal curve. Since qn ∈ D̃+(Ẽ+(A)), this curve intersects Ẽ+(A) and

the intersection point cannot be in the past of pn ∈ Ĩ−(Ẽ+(A)), since this would

violate the achronality of Ẽ+(A). Thus the intersection point is in σn as required.

But if Ẽ+(A) disconnects (M, C̃) then it disconnects (M,C), a contradiction with

(ii).

Theorem 2.70. Let (M,C) be a locally Lipschitz non-imprisoning proper Lorentz-

Finsler space such that F (∂C) = 0. If (M,C) is causally disconnected by a compact

set K then there is a maximizing inextendible causal geodesic which intersects K.

Proof. By assumption there are sequences pk and qk, pk < qk, going to infinity

(i.e. escaping every compact set) such that for each k every continuous causal curve

connecting pk to qk intersects K. Let h be a complete Riemannian metric, o ∈M ,

and let Ck be a sequence of compact sets such that B(o, k)∪K ⊂ Ck and there is at

least one continuous causal curve connecting pk to qk which intersects K contained

in Ck.

Denote by dk(x, z) = supη⊂Ck l(η) the Lorentz-Finsler distance on Ck obtained

considering just the continuous causal curves contained in Ck and intersecting K.

We have dk(x, z) < +∞ otherwise there would be a sequence of continuous causal

curves contained in Ck whose Lorentz-Finsler length goes to infinity and by the

compactness of Ck, there would be a future inextendible continuous causal curve

totally imprisoned in Ck which is impossible (see also Prop. 2.10).
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For each k let γ
(k)
m be a sequence of continuous causal curves such that

l(γ
(k)
m )→ dk(pk, qk). By the limit curve theorem there is a continuous causal limit

curve, γk : [ak, bk]→M (which we parametrize with respect to h-length), γk ⊂ Ck
which connects pk = γk(ak) to qk = γk(bk) and intersects K (the other possi-

bility involves a past inextendible causal curve ending at qk totally imprisoned

in Ck, which is impossible). Since the length functional is upper semi-continuous

dk(pk, qk) = lim supm→+∞ l(γ
(k)
m ) ≤ l(γk) ≤ dk(pk, qk), thus dk(pk, qk) = l(γk), i.e.

the curve γk maximizes the Lorentzian length on the chosen curve set.

Again by the limit curve theorem a subsequence of γk : [ak, bk]→M converges h-

uniformly on compact subsets to an inextendible limit curve γ : R→M intersecting

K (we can assume that the subsequence coincides with γk, and that γk(0) ∈ K).

In particular −ak, bk → +∞. Let us prove that γ is a line. Let a, b ∈ R, a < b,

for sufficiently large k, ak < a, bk > b and γk(a) → γ(a) and γk(b) → γ(b). For

sufficiently large s, γ([a, b]) ⊂ IntCs. By h-uniform convergence there is n(s) such

that for k > n(s), γk([a, b]) ⊂ IntCs ⊂ Ck. But γk|[a,b] is a restriction of γk and thus

it is also distance maximizing on IntCs, that is dIntCs(γk(a), γk(b)) = l(γk|[a,b]).
Using the lower semi-continuity of the distance dIntCs on (IntCs,F |T IntCs) (Th.

2.53) and the upper semi-continuity of the length functional

dIntCs(γ(a), γ(b)) ≤ lim inf dIntCs(γk(a), γk(b)) ≤ lim sup l(γk|[a,b])
≤ l(γ|[a,b]) ≤ dIntCs(γ(a), γ(b))

hence dIntCs(γ(a), γ(b)) = l(γ|[a,b]). Since every causal curve connecting γ(a) to γ(b)

belongs to some IntCs, we have d(γ(a), γ(b)) = l(γ|[a,b]) that is γ is a maximizing

causal geodesic.

The next version can be easily compared with the original one, cf. [1] Remark

on p. 267, however it uses a locally Lipschitz and proper assumption.

Theorem 2.71. (Improved Hawking and Penrose’s singularity theorem II)

Let (M,F ) be a locally Lipschitz proper Lorentz-Finsler space such that F (∂C) = 0.

The following conditions cannot all hold:

(i) (M,C) is chronological,

(ii) there are no maximizing inextendible causal geodesics,

(iii) there is an achronal or compact future (or past) trapped set S.

Proof. Assume they all hold true. If there were a closed causal curve then it would

be achronal by (i) hence a lightlike line (recall that C is locally Lipschitz), a case

which is excluded by (ii). Thus (M,C) is causal. By Th. 2.64 (M,C) is stably

causal hence non-imprisoning. Assume S is achronal and let us prove that is can be

assumed closed and achronal. Indeed, if it is not closed then S̄ is closed and achronal,

moreover by Lemma 2.8, E+(S̄) = E+(S) is compact. If there is no maximizing

inextendible causal geodesics then by Th. 2.70 (M,C) is causally connected. Thus
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we are back to the conditions (i)-(iii) of the first version, Th. 2.69, and so we get a

contradiction.

3. Special topics

This section is devoted to the development of some special topics which could be

skipped on first reading. Sections 3.2-3.6 should be read in this order and provide

the proofs to some results already presented in the previous sections.

3.1. Proper Lorentz-Minkowski spaces and Legendre transform

We have already introduced the notion of Lorentz-Minkowski space in Sec. 2.13.

Here we develop the theory of proper Lorentz-Minkowski spaces, so in this section

all cones will be proper (sharp, convex, closed and with non-empty interior). This

study will motivate some of our terminology connected to Lorentz-Finsler spaces as

it shows that some inequalities which are met in the C2 Lorentz-Finsler theory [95]

really hold under much weaker assumptions. We shall also prove that the Legendre

duality between Lorentz-Finsler Lagrangian and Hamiltonian does not require a C2

assumption.

The polar cone of a proper cone is

Co = {p ∈ V ∗\0: 〈p, y〉 ≤ 0, for every y ∈ C},

and it has the same properties as C, namely, it is a proper cone. The polar of the

polar is the original cone (Co)o = C. If D ⊂ C is a another proper cone then

Do ⊃ Co.

Remark 3.1. The polar of a round cone (ellipsoidal section) is round. This fact

can be easily understood with the concept of ice-cream cone which is a cone of

angular aperture of π/2 with respect to some chosen scalar product. Notice that

given a round cone C we can always find a scalar product and associated Cartesian

coordinates such that C is an ice-cream cone 0 < (
∑n
i (yi)2)1/2 ≤ y0. Then Co

becomes the ice-cream cone 0 < (
∑n
i (pi)

2)1/2 ≤ −p0 with respect to the dual

coordinates, hence in arbitrary coordinates on the vector space they are round.

We have

Int(Co) = {p ∈ V ∗\0: 〈p, y〉 < 0, for every y ∈ C}, (3.1)

IntC = {y ∈ V \0: 〈p, y〉 < 0, for every p ∈ Co}. (3.2)

Remark 3.2. As a consequence, for every p ∈ ∂Co there is some y ∈ ∂C such that

〈p, y〉 = 0 and for every y ∈ ∂C there is some p ∈ ∂Co such that 〈p, y〉 = 0. Any pair

y ∈ C, p ∈ Co, such that 〈p, y〉 = 0 is said to be a polarly related pair. The polar

relation is denoted R and is positive homogeneous: s > 0, (p, y) ∈ R⇒ (sp, y) ∈ R
and (p, sy) ∈ R. Up to constants a polarly related pair represents, geometrically, a

vector on the boundary of ∂C and a hyperplane tangent (supporting) C at y.
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Suppose that D ⊂ C is a proper cone such that ∂D∩∂C 6= ∅, then ∂Do∩∂Co 6=
∅. In fact, by Eq. (3.2) for y ∈ ∂D ∩ ∂C there is p ∈ Co ⊂ Do such that 〈p, y〉 = 0,

then, by Eq. (3.1) applied to the cone D, p ∈ ∂Do. This observation is particularly

useful when D is a round cone.

Remark 3.3. Throughout this section we might equivalently use the notion of dual

cone C∗ := −Co provided the convention (+,−, · · · ,−) is chosen for the Lorentzian

signature. We shall need to work with the polar because we use the Lorentzian sig-

nature (−,+, · · · ,+) which at present is the most used in mathematical relativity.

Admittedly several formulas would look simpler using the other convention.

The convexity of C implies the twice differentiability almost everywhere of the

boundary ∂C. In what follows we might need to consider cones with better regular-

ity properties. Given the nice polar relationship, it will be convenient to focus on

those properties which have a nice polar formulation or which are polar invariant.

These properties are familiar from the study of the Legendre transform, in fact

the polarly related cones can be described, near a polarly related pair, by suitable

graphing functions which are Legendre dual to each other.

Let us introduce coordinates {yα} on V , and dual coordinates {pβ} on V ∗.

Let eα = ∂/∂yα and eα = ∂/∂pα. The coordinates are chosen in such a way that

e0 ∈ IntC, and {y0 = 0} ∩ C = ∅, so that y0 is positive over C. As consequence,

−e0 ∈ IntCo, {p0 = 0} ∩ Co = ∅, and p0 is negative over Co. We are interested in

the description of the cones near a polarly related pair 〈p̄, ȳ〉 = 0. Let us orient en
in such a way that ȳ ∈ Span(e0, en), and e1, . . . , en−1 in such a way that they are

annihilated by p̄. Then we have dually that p̄ ∈ Span(e0, en) and e1, . . . , en−1 are

annihilated by ȳ. We can also redefine en → −en if necessary, in such a way that

ȳn < 0, so that the portion of boundary ∂C on which we are interested is on the

region yn < 0. If y is a point in this region then y′ = y+ εen ∈ IntC for sufficiently

small ε > 0. Any polarly related value p, 〈p, y〉 = 0 is such that pn < 0 (e.g. p̄n < 0).

Indeed, for sufficiently small ε > 0, y′ ∈ IntC, where y′ has the same coordinates

of y saved for y′n. Since 0 > 〈p, y′〉 = 〈p, y′ − y〉 = pnε, we get pn < 0. Dually, if

〈p, y〉 = 0 is a polarly related pair with p close to p̄, then y is such that yn < 0.

Now, the section ∂C ∩ {y0 = 1, yn < 0} near the suitably rescaled ȳ is locally

described by a convex negative function yn = u(yA), while the section ∂Co∩{pn =

−1} is locally the graph of p0 = −u∗(pA). This fact is easily inferred from the

polarity condition 〈p, y〉 ≤ 0, which reads for p ∈ ∂Co, y ∈ ∂C, in the image of the

local graphs, p0−u(yA)+pAy
A ≤ 0, equality holding at a polarly related pair. Thus

supyA [pAy
A − u(yA)] = −p0(pA), which proves the claim. This result clarifies that

the regularity properties that are invariant under Legendre duality, once applied to

cones, are invariant under polarity.

For instance, C is C1 iff Co is strictly convexa (and analogously with C and Co

aWhen speaking of convexity properties of a proper cone we really refer to such properties for its
compact sections obtained through the intersection with a hyperplane.
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exchanged) [96, Th. 26.3] [97, Chap. 4]. As another example: C is strongly convex

iff Co is strongly smooth (and analogously with C and Co exchanged) [98, 99].

Geometrically, the condition of strong convexity means the following: we can find

a scalar product on V and a corresponding dual scalar product on V ∗, such that

every point y ∈ ∂C admits an ice-cream cone (π/2-aperture) R ⊃ C such that

∂R∩∂C = y. The property of strong smoothness for Co is similar, but this time the

ice-cream cone is contained in Co. The property of strong smoothness is equivalent

to the C1,1 regularity of the boundary of the cone C once expressed as a local graph.

This result is obtained in the mentioned references. Alternatively, it can be derived

from the mentioned geometrical interpretation and from the fact that a function

h which is semiconvex with its negative is really C1,1 [100, Cor. 3.3.8] (it is also

useful to recall that the C1,1 functions are semiconvex [101]). As a final example:

C is C2 and strongly convex iff Co is C2 and strongly convex.

Lorentz-Minkowski spaces are the models to the tangent spaces of Lorentz-

Finsler spaces cf. Sec. 2.13. We are looking for a notion of proper Lorentz-Minkowski

space (V,F ), where F : C → [0,+∞) has as domain a proper cone C. The main

idea here is that of regarding F as defining a cone on the vector space V ⊕ R,

through

C× = {(y, z) : |z| ≤ F (y), y ∈ C}. (3.3)

The cone has to have the same properties as C, so C× has to be a proper cone (so

closed in the topology of V ⊕ R\0; again 0 /∈ ∂C×). The cone property demands

that F be positive homogeneous, the convexity property that F be concave, the

sharpness property that F be finite, as it is by definition, and the non-empty interior

condition, that F be not identically zero. These conditions are also sufficient to get

a cone C× with the desired properties. Thus

Definition 3.1. A proper Lorentz-Minkowski space is a pair (V,F ), where

F : C → [0,+∞), C is a proper cone, F is positive homogeneous, concave (hence

locally Lipschitz on IntC), and not identically zero. Equivalently, it is a pair (V,F )

such that C× is a proper cone in V ⊕ R.

The conditions imply that F is positive on IntC, and so IntC×{0} ⊂ Int(C×),

however, we do not impose that F vanishes on ∂C, namely the indicatrix I :=

F−1(1) might intersect ∂C. The conditions on F in the previous definition are

equivalent to: the indicatrix intersects every half-line in IntC issued from 0 and it

is convex.

This definition is well behaved under duality (polarity). Observe that the polar

(C×)o will be a proper cone in V ∗ ⊕ R. The polar cone is symmetric with respect

to the V ∗ × {0} plane because C× is symmetric with respect to V × {0}, so there

is a function F o such that

(C×)o = {(p, zo) : |zo| ≤ F o(p), p ∈ Co}. (3.4)
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The function F o is finite because (C×)o is sharp, thus F o shares all the properties

of F . Furthermore, since the polar of the polar is the original cone, (F o)o = F .

By concavity and positive homogeneity of F , the reverse triangle inequality

holds true.

Proposition 3.1 (Reverse triangle inequality). For every y, w ∈ C we have

F (y + w) ≥ F (y) + F (w). (3.5)

Proof. For every y, w ∈ C, we can find constants a, b > 0 such that y′ = y/a and

w′ = w/b belong to a section to which y + w belongs, so a+ b = 1 and

F (y + w) = F (ay′ + bw′) ≥ aF (y′) + bF (w′) = F (y) + F (w).

Of course, in the equality case the proportionality of y and w can be inferred

only under the the strict convexity of C×. We shall have an analogous reverse

triangle inequality on V ∗.

Proposition 3.2 (Reverse Cauchy-Schwarz inequality). For every y ∈ C,

p ∈ Co we have

−〈p, y〉 ≥ F o(p)F (y). (3.6)

Proof. For every y ∈ C, p ∈ Co we have (y,F (y)) ∈ C×, (p,F o(p)) ∈ (C×)o and

the definition of polarity reads

0 ≥ 〈(p,F o(p)), (y,F (y))〉 = 〈p, y〉+ F o(p)F (y), (3.7)

which is the desired inequality.

In the next equation it is understood that the ratio on the right-hand side equals

+∞ for 〈p, y〉 < 0 and F (y) = 0.

Corollary 3.1. The polar Finsler function satisfies: for p ∈ IntCo

F o(p) = inf
y∈C

(
−〈p, y〉
F (y)

)
.

The infimum is attained on at least an half-line.

The previous equation could have been used as a definition of F o on IntCo.

Nevertheless, such an approach would hide the geometrical interpretation in terms

of the polarity relation of the proper cones C× and (C×)o.

Proof. For every y ∈ C, p ∈ Co, by polarity of C× and (C×)o inequality (3.7) holds

true. Since p ∈ IntCo, we have by the proper condition F o(p) > 0, and for every

y ∈ C, 〈p, y〉 < 0. For every y ∈ IntC we have by the proper condition, F (y) > 0,

thus F o(p) ≤ −〈p, y〉/F (y). Let us prove that the equality is attained. Indeed,

(p,F o(p)) ∈ ∂(C×)o thus, by Remark 3.2 (applied to C× instead of C), there is
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an element (y, b) ∈ ∂C× such that 0 = 〈(p,F o(p)), (y, b)〉 = 〈p, y〉 + F o(p)b. If

y ∈ IntC we have concluded since necessarily b = F (y) where the plus sign follows

from 〈p, y〉 < 0. If y ∈ ∂C we still have 〈p, y〉 < 0 so 0 < b ≤ F (y), but b cannot be

strictly less than F (y) otherwise 〈(p,F o(p)), (y,F (y))〉 = F o(p)[F (y)− b] > 0 a

contradiction with polarity since (y,F (y) ∈ C×.

Pairs (p, y) ∈ Co × C for which the equality holds in (3.6), or equivalently in

Eq. (3.7), form a relation which might be called ×-polar relation R×. It is invariant

under positive homogeneity: (p, y) ∈ R× ⇒ (sp, y) ∈ R× and (p, sy) ∈ R×, for any

s > 0. This ×-polar relation is a function from C/R+ to Co/R+ (resp. opposite

direction) iff C× is C1 (resp. strictly convex). It is a bijection iff C× is C1 and

strictly convex.

In the latter case the bijection from C/R+ to Co/R+ might be used to get a

bijection ` : IntC → Int(Co), provided we stipulate that the indicatrix I is sent

to the polar indicatrix I o, i.e. F o(`(y)) = 1 whenever F (y) = 1. The extension

is accomplished as follows. Let f, fo : R+ → R be Legendre dual C1 functions

such that f ′, fo′ : R+ → R+ are positive strictly monotone bijections (thus f, fo

are either both strictly convex or strictly concave). We recall that f ′ and fo′ are

functional inverses of each other: f ′(fo′(x)) = x, fo′(f ′(x)) = x. Thus we can

redefine f by rescaling it by a positive constant in such a way that f ′(1) = 1 and

hence fo′(1) = 1. The extension will be dependent on the chosen pair (f, fo) with

the mentioned normalization, in fact we impose F o(`(y)) = f ′(F (y)). Since the

direction of `(y) is determined by the ×-polar relation, this equation by fixing its

length determines `(y) completely. It can be rewritten in the equivalent dual form

fo′(F o(p)) = F (`−1(p)) where `−1 is the functional inverse of `.

Example 3.1. Particularly interesting will be the next choice of functions which

up to an additive constant are the only ones for which, ` and `−1 are positive

homogeneous (of degree a−1 and b−1, respectively). Let a, b ∈ R\{1}, be conjugate

exponents 1
a + 1

b = 1, where the pair (a, b) = (0, 0) is allowed and understood for

shortness as a limiting case (hence a/b = b/a = −1). The Legendre dual functions

are

f(x) = 1
2 + 1

a [xa − 1], fo(x) = 1
2 + 1

b [xb − 1], (3.8)

which for a = b = 0 stand respectively for f = fo = 1
2 + log x. The symmetric

subcases a = b = 0, just mentioned, and a = b = 2 seem the most interesting.

The former case corresponds to some choices for the function ` (homogeneity of

degree -1) familiar from the theory of homogeneous cones [102]. The latter case

gives f = fo = x2/2, with ` positive homogeneous of degree 1, and corresponds

to the standard formalism of Lorentz-Finsler theory. If one is not interested in

recovering the case a = b = 0 as a limit (notice that limε→0
1
ε [xε − 1] = log x, for

x > 0) the additive constants in the definitions of f and fo can be dropped, i.e.

f = 1
ax

a, fo = 1
bx

b, preserving Legendre duality and gaining positive homogeneity.
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Theorem 3.1. On a proper Lorentz-Minkowski space the next conditions are equiv-

alent and invariant under polarity

(i) C× is C1 and strictly convex.

(ii) C is C1 and strictly convex, F−1(0) = ∂C, F ∈ C1(IntC) ∩ C0(C), F

is strictly concave on one (and hence every) relatively compact section of

IntC, and dF →∞ for y → ∂C.

(iii) C is C1 and strictly convex, the indicatrix does not intersect ∂C but inter-

sects every non-compact section of C ∪ {0} containing the origin, and the

indicatrix is C1 and strictly convex,

If they hold the equality case in the reverse triangle inequality (Prop. 3.1) holds iff y

and w are proportional. Similarly, the equality case in the reverse Cauchy-Schwarz

inequality (Prop. 3.2) holds iff (p, y) ∈ R×.

The section in (iii) is obtained by means of a hyperplane not necessarily passing

through the origin. Actually, the proof shows that on (iii) one can replace such

general sections with those determined by hyperplanes parallel to ker p for p ∈ ∂Co.
The proof is really more specific, and provides some equivalences not apparent

from the statement. For instance, ‘F−1(0) = ∂C, and dF → ∞ for y → ∂C’

implies that the indicatrix does not intersect ∂C but intersects every non-compact

section of C containing the origin.

Proof. The statement concerning the invariance under polarity is obvious from (i)

and standard results of convexity theory on the duality between differentiability

and strict convexity [96, Th. 26.3]. So we need only to prove the equivalences.

(i)⇔ (ii). The strict convexity of C× can be expressed with the property that for

Z ∈ ∂C× and for every supporting hyperplane P 3 Z of C×, the intersection P∩C×
is one-dimensional. For Z ∈ ∂C ×{0} this property is equivalent to F−1(0) = ∂C.

For Z ∈ [∂C×]\[∂C ×{0}] it is equivalent to the strict concavity of F on one (and

hence every) relatively compact section of IntC. The C1 differentiability of C× is

equivalent, at Z ∈ [∂C×]\[∂C×{0}] to F ∈ C1(IntC), and at Z ∈ [∂C×{0}] ⊂ ∂C×
to dF →∞ for y → ∂C.

(i) and (ii) ⇒ (iii). We know that F is positive on IntC so by positive homo-

geneity F−1(0) = ∂C is equivalent to the condition that the indicatrix does not

intersect ∂C. The strict concavity of F on a relatively compact section of IntC im-

plies that F satisfies the reverse triangle inequality on IntC with the usual equality

case, so from positive homogeneity the indicatrix is strictly convex. Conversely, the

strict convexity of the indicatrix is, by positive homogeneity, equivalent to the strict

concavity of F on one (and hence every) relatively compact section of IntC. The

C1 differentiability of F on IntC is equivalent to the C1 differentiability of the

indicatrix.

Let us prove that dF → ∞ for y → ∂C, implies that the indicatrix intersects

every non-compact section of C ∪{0} containing the origin. Suppose, by contradic-

tion, that there is a hyperplane on V cutting C ∪ {0} on two sectors, one of which,



Causality theory for closed cone structures with applications 93

call it D, is non-compact, contains the origin and does not intersect I . On V ⊕R,

consider the hyperplane passing through [∂D∩IntC]×{1} and the origin. One half-

space determined by it contains C×, and its intersection with V ×{0} is parallel to

[∂D ∩ IntC], and one of its half-spaces contains C. Thus [∂D ∩ IntC] can only be

parallel to the kernel of an element on ∂Co, call it p. So the indicatrix is contained

in {y : 〈p, y〉 < d < 0}, for some d, while C× is contained in {(y, z) : 〈p, y〉 ≤ dz},
which contains some point w ∈ ∂C (polarly related with p), thus C× is not C1 at

w, which in view of the already proved equivalence is the desired contradiction.

Conversely, suppose that the indicatrix intersects every non-compact section

of C ∪ {0} containing the origin, and let p ∈ ∂Co\0. Let (p, z) ∈ V ∗ ⊕ R, then

for z > 0, 〈(p, z), (y, 1)〉 = 〈p, y〉 + z for every y ∈ I is neither non-negative nor

non-positive, which implies that 〈(p, z), (y,F (y))〉 is not everywhere non-positive

for y ∈ IntC, and hence that (p, z) /∈ (C×)o, which implies that (C×)o is strictly

convex on ∂Co × {0}, and hence C× is differentiable on ∂C × {0}.

Definition 3.2. A proper Lorentz-Minkowski space is said to be a C1 strictly

convex Lorentz-Minkowski space if the previous equivalent conditions hold true.

More generally, it is said to be a [property] Lorentz-Minkowski space if C× satisfies

[property].

The theory developed so far clarifies our philosophy in dealing with regularity

conditions for the Lorentz-Minkowski structure: the additional properties on (V,F )

should be imposed taking into account their geometrical content in terms of the cone

C×. Once again, particularly interesting are those conditions which are invariant

under polarity or which have a clear polar counterpart. For instance, the strong

convexity of C× is equivalent to the strong smoothness of (C×)o (and conversely).

Any of the cones is strongly convex and C2 iff the other is.

3.1.1. Legendre transform

Let (V,F ) be a C1 strictly convex Lorentz-Minkowski space. Let (p, y) be a ×-polar

pair with y ∈ IntC and p = `(y) and y(s) = y + sw, where w ∈ V \0, so that for

sufficiently small |s|, y(s) ∈ IntC. Since by polarity

〈(p,F o(p)), (y(s),F (y(s)))〉 ≤ 0,

the function on the left-hand side is C1 and reaches a maximum (zero) at s = 0,

thus differentiating with respect to s and setting s = 0 we obtain

0 = 〈p, w〉+ F o(p)∂wF = 〈p, w〉+ f ′(F (y))∂wF , (3.9)

thus p = `(y) = dL |y, where L : IntC → R,

L (z) = −f(F (z)) (3.10)
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Let us calculate the Legendre transform H : IntCo → R of L .

H (`(y)) = yµ
∂L

∂yµ
(y)−L (y) = −f ′(F )yµ

∂F

∂yµ
+ f(F ) = −f ′(F )F + f(F )

= −(xf ′(x)− f(x))|x=F = −fo(f ′(F )) = −fo(F o(`(y))),

where we used the positive homogeneity of degree one of F . We conclude that the

Legendre transform of L is

H (p) = −fo(F o(p)). (3.11)

In most cases it will be possible to extend by continuity L to ∂C, e.g. when

∂C = F−1(0) and f extends continuously to the origin by setting f(0) = 0. An

analogous observation holds for H .

Suppose now that the Lorentz-Finsler space is C2 and strongly convex. and that

f, fo are C2 and either both strongly convex or strongly concave.

Let us denote with d2 the Hessian operator. We have shown in [103] (see also

[104,105]) that h : IntC → V ∗ ⊗ V ∗

h = − 1

F
d2F (3.12)

is a metric of signature (0,+, . . . ,+) which pulled back to I provides the affine

metric of the indicatrix. The definition of L gives

d2L = f ′(F )Fh− f ′′(F )dF ⊗ dF (3.13)

We know that sgnf ′ = 1, so let s = sgnf ′′. The metric d2L is Riemannian for

s < 0 and Lorentzian for s > 0. Since H is the Legendre dual of L , the metric

d2H is the inverse of d2L . For instance, for f as in Eq. (3.8), d2L is Riemannian

for a < 1 (hence also in the logarithmic case a = 0) and Lorentzian for a > 1 (hence

also in the standard Lorentz-Finsler case a = 2).

Remark 3.4 (Equivalence of some Finslerian relativistic theories).

Let f : R+ → R be C2 and such that f ′(1) = 1, f ′ > 0, s := sgn(f ′′) 6= 0 (e.g.

f = xa/a with a > 1, s=+1, or f = 1
2 + log x, s = −1). Let F be positive

homogeneous and defined over a proper cone, and let L = −f(F ). Suppose that

d2L has signature (−s,+, . . . ,+). By Eq. (3.13) the metric h in (3.12) is positive

definite and so I is strongly convex which implies that we are in the framework

of the Lorentz-Minkowski spaces of this work. Again by (3.13) the Hessian d2L̃

where L̃ = −f̃(F ), has signature (−s̃,+, . . . ,+) for any other choice of f̃ with

the same properties. In particular, it is Lorentzian for f = x2/2 which is the usual

Lorentz-Finsler choice (e.g. Beem [104]).

This result clarifies that the kinematics of physical theories based on the func-

tion L , even when defined with different choices of f , is essentially the same. The

next result shows that the dynamics is also largely independent of f . In general,

the choice of f is related to the regularity of the theory at ∂C, namely to the

extendibility of the map ` to ∂C, which, physically, it is connected to the corre-

spondence velocity-momenta for lightlike particles, see Remark 3.5.
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We summarize the previous results as follows

Theorem 3.2. Let f, fo : R+ → R be Legendre dual C1 functions such that

f ′, fo′ : R+ → R+ are strictly monotone bijections (thus f, fo are either both strictly

convex or strictly concave), normalized so that f ′(1) = 1 = fo′(1). On a C1 strictly

convex Lorentz-Minkowski space the continuous maps

` : IntC → Int(Co), `(y) = dL |y, L := −f(F ),

`o : Int(Co)→ IntC, `o(p) = dH |p, H := −fo(F o),

are bijections and inverse of each other; they send the indicatrix I to I o, and

conversely. The function H is the Legendre transform of L , and conversely.

For a C2 strongly convex Lorentz-Minkowski space, with C2 strongly convex or

concave functions f, fo, we have that d2H (`(y)) is the inverse of d2L (y) and they

are either both Riemannian or Lorentzian depending only on the sign s = sgnf ′′

either negative or positive, respectively. Finally, working on TM , namely including

an x-dependance of L , the spray

Gα(x, y) =
1

2
gαβ
( ∂2L

∂xγ∂yβ
yγ − ∂L

∂xβ

)
(3.14)

does not depend on f .

For the choice given by Eq. (3.8) we have the identity

b[H (`(y)) + 1
2 ] = a[L (y) + 1

2 ], (3.15)

for every y ∈ IntC. Finally, for a, b 6= 0, dropping the additive constants in Eq.

(3.8), L is positive homogeneous of degree a, H is positive homogeneous of degree

b and the identity (3.15) is replaced by bH (`(y)) = aL (y).

Particularly interesting is the fact that the spray, and hence the non-linear

connection, does not depend on the pair (f, fo). It shows that the dynamics of

Lorentz-Finsler gravitational theories is largely independent of such choice. In fact

it must be recalled that the non-linear connection of (Lorentz-)Finsler geometry

follows from the spray, and the non-linear curvature follows from the non-linear

connection. Many dynamical equations proposed in the literature are formulated in

terms of the non-linear curvature.

Proof. Let us prove the identities in the last paragraph. We have already cal-

culated H (`(y)) = −f ′(F )F + f(F ), thus if f = xa/a we have H (`(y)) =

(1 − a)f(F (y)) = (a − 1)L (y) = a
bL (y). For f given by Eq. (3.8) it is sufficient

to redefine L and H in the previous expression by adding to them a suitable

constant.

Let us prove the spray identity. Let x(t) be a geodesic for the spray G induced

by L = −F 2/2, with initial conditions (x(0), ẋ(0)) = (x0, y0), hence a solution

of ẍµ + Gµ(x, ẋ) = 0 with such initial conditions. Let us check whether it is a
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stationary point for the action functional
∫

L̃ , where L̃ = h(L ). The Euler-

Lagrange equations are

d

dt

∂L̃

∂ẋµ
− ∂L̃

∂xµ
=

dh′

dt

∂L

∂ẋµ
+ h[

d

dt

∂L

∂ẋµ
− ∂L

∂xµ
] =

dh′

dt

∂L

∂ẋµ

but L is constant over x(t), and so is h′(L ). We conclude that x(t) is a solution

of

d

dt

∂L̃

∂ẋµ
− ∂L̃

∂xµ
= 0

so provided g̃ = d2L̃ is non-degenerate, it solves the spray equation ẍ+2G̃(x, ẋ) =

0. Now, at t = 0 we have

G(x0, y0) = −ẍ(0)/2 = G̃(x0, y0)

and since the initial conditions are arbitrary we conclude that the sprays coincide.

Now, let h(x) = −f̃(
√
−2x), where s̃ 6= 0, so that h(L ) = −f̃(F ). We have already

shown that d2f̃(F ) is non-degenerate, thus the desired result follows.

Notice that we have recovered a Legendre duality without using a convexity

assumption on L (the Legendre-Fenchel generalization of the Legendre transform

is not viable since L is not convex) or a C2 assumption.

Remark 3.5 (Differentiability at the boundary and exponents choice).

Observe that on a C1 strictly convex Lorentz-Minkowski space, L need not be

differentiable in ∂C. Let us consider the homogeneous case f = xa/a, fo = xb/b.

If a, b > 1 and L is C1 on C, and dL 6= 0 everywhere on ∂C, then the condition

dF → ∞ for y → ∂C easily follows from F−1(0) = L −1(0) = ∂C. Moreover, `

can be extended by continuity to C.

The most convenient choice of exponents a, b > 1 can sometimes be inferred

from the differentiability of L at ∂C. Suppose there is one choice such that the

differential of dL is continuous on C and −adL = dF a 6= 0 at every point of

∂C. This means that the map ` does not send any point of ∂C to zero. No larger

or smaller exponent a′ could be used to the same effect, for if a′ > a, setting

α = a′

a > 1 we have dF a′ = d(F a)α = α(F a)α−1dF a which implies dF a′ = 0

at ∂C. Similarly, for 1 < a′ < a we have α < 1 and dF a′ → ∞ at ∂C. In other

words, the existence of conjugate exponents with the mentioned property implies

their uniqueness. Once the most convenient a-positive homogeneous function L

has been identified one can introduce the dependence on the base manifold through

a variable x and impose suitable dynamical equations.

In any case one can also argue [103] that, physically speaking, not having an

extended bijection ` among the closed cones could really be an interesting feature,

since such bijection does not seem to be observable. All boils down to the fact

that in relativity physics massive particles have a natural affine parameter, the

proper time, in fact structured ones can decay with characteristic half-times, while
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lightlike particles do not carry a clock and so do not need to be associated to an

affine parameter, just to a lightlike direction.

3.2. Stable recurrent set

In this section we establish the equivalence between stable causality and the anti-

symmetry of Seifert’s relation JS . The proofs coincide with those given in [73] save

for some modifications required by the generalization from Lorentzian cones to gen-

eral cones. Only minimal changes are required: notice that convex neighborhoods

in [73] are not really used, the local non-imprisoning property pointed out in Prop.

2.10 is sufficient. We provide the proofs for completeness.

Definition 3.3. The Seifert violating set vJS ⊂ M is given by those p ∈ M for

which there is q 6= p such that (p, q) ∈ JS and (q, p) ∈ JS .

Clearly, vJS = ∅ if and only if JS is antisymmetric. We recall that p belongs

to the stable recurrent set if for every C0 (equiv. locally Lipschitz) proper cone

structure C ′ > C there is a closed continuous C ′-causal curve passing through p.

Theorem 3.3. Let (M,C) be a closed cone structure. The set vJS is closed and

coincides with the stable recurrent set.

Proof. Suppose that p ∈ vJS and let q 6= p be such that (p, q) ∈ JS and (q, p) ∈ JS ,

then by Prop. 2.15 (p, q) ∈ IC′ and (q, p) ∈ IC′ , thus there is a closed continuous

C ′-causal curve passing through p.

For the converse, Let U 3 p be the non-imprisoning neighborhood constructed

in Prop. 2.10 and let B 3 p be an open coordinate ball whose closure is contained

in U . Let Ck > C be the sequence of proper cone structures of Prop. 2.26 and

let σk be a closed continuous Ck-causal curve passing through p. Starting from p

let qk ∈ σk ∩ ∂B be the first escaping point from B. By the limit curve theorem

2.14 there is q ∈ B and a continuous C-causal curve contained in U joining p to q,

i.e. (p, q) ∈ J ⊂ JS . Moreover, still by the limit curve theorem and Theorem 2.26

(q, p) ∈ JS .

Let pk → p where pk ∈ vJS . Let Ck > C be the sequence of proper cone

structure of Prop. 2.26 and let σk be closed Ck-timelike curves passing through

pk. Let U 3 p be the non-imprisoning neighborhood constructed in Prop. 2.10 and

let B 3 p be an open coordinate ball whose closure is contained in U . Starting

from pk let qk ∈ σsk ∩ ∂B be the first escaping point from B. Up to subsequences

qk → q ∈ ∂B. By the same argument used above (p, q) ∈ JS and (q, p) ∈ JS , thus

p ∈ vJS .

In the next proofs all the cone structures wider than C are locally Lipschitz

proper cone structures. A cone structure is strongly causal at p if p admits arbitrarily

small causally convex open neighborhoods. It is strongly causal if it is strongly

causal everywhere.
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Lemma 3.1. Let (M,C) be a closed cone structure. The set at which the cone

structure is strongly causal is open.

Proof. Let (M,C) be strongly causal at p and let U 3 p be the non-imprisoning

neighborhood constructed in Prop. 2.10 (recall that U is obtained from the chrono-

logical diamond of a local (flat) Minkowski metric g). We know that there is a

causally convex open neighborhood V 3 p, V̄ ⊂ U , so if q ∈ V , and U ′ is an open

neighborhood of q we can find a g-chronological diamond Q, such that Q̄ ⊂ U ′ ∩V .

Then Q is a causally convex neighborhood for q, in fact every continuous C-causal

curve γ starting and ending in Q and leaving Q cannot be entirely contained in U ,

for otherwise it would be a continuous g-causal curve, thus violating the g-causal

convexity of Q in U . But then γ would escape and reenter U and hence V in contra-

diction to the C-causal convexity of V . Since q ∈ V is arbitrary (M,C) is strongly

causal at every point of V which finishes the proof.

Lemma 3.2. Let (M,C) be a closed cone structure. If the locally Lipschitz proper

cone structure (M, Č), Č > C, is causal at x then for every locally Lipschitz proper

cone structure C ′, C < C ′ < Č, (M,C ′) is strongly causal at x.

Proof. If (M,C ′) is not strongly causal at x then there is a non-imprisoning neigh-

borhood U 3 x as in Prop. 2.10 and a sequence of continuous C ′-causal curves σn
of endpoints xn, zn, with xn → x, zn → x, not entirely contained in U . Let B,

B̄ ⊂ U be a coordinate ball of x. Let cn ∈ ∂B be the first point at which σn es-

capes B̄, and let dn be the last point at which σn reenters B̄. Since ∂B is compact

there are c, d ∈ ∂B, and a subsequence σk such that ck → c, dk → d. By the limit

curve theorem (x, c), (d, x) ∈ JC′ , while (c, d) ∈ J̄C′ . By Th. 2.24 there is a closed

Č-timelike curve passing through x, a contradiction.

We obtain another proof of the strong causality of stably causal closed cone

structures (f. Th. 2.29).

Corollary 3.2. Any stably causal closed cone structure (M,C) is strongly causal.

Proof. By the assumption there is Č > C causal, and we can find C < C ′ < Č,

which is strongly causal by Lemma 3.2, thus (M,C) is itself strongly causal.

Theorem 3.4. Let (M,C) be a closed cone structure. (M,C) is stably causal if

and only if JS is antisymmetric (i.e. vJS = ∅).

Proof. Suppose that (M,C) is stably causal then there is C ′ > C such that (M,C ′)

is causal, thus JC′ is antisymmetric and since JS ⊂ JC′ , JS is antisymmetric.

For the converse suppose that JS is antisymmetric. In the course of the proof we

shall have to take convex combinations of cones. By Prop. 2.11 there is a Lipschitz

1-form ω such that the distribution of hyperplanes P = ω−1(1) cuts C as well
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as some C ′ > C in compacts sets. The convex combinations of cones should be

understood relative to P , as explained in the paragraph before Prop. 2.1.

By Th. 3.3 for every x ∈M there is a (x dependent) Čx > C such that (M, Čx)

is causal at x. By Lemma 3.2, taking Cx such that C < Cx < Čx, (M,Cx) is

strongly causal at x and hence it is strongly causal in an open neighborhood Ux of

x (Lemma 3.1).

Let K be a compact set. From the open covering {Uy, y ∈ K}, a finite covering

can be extracted {Uy1
, Uy2

, . . . , Uyk}. A cone structure CK > C, on M can be found

such that for i = 1, . . . k, CK < Cyi on M . Thus (M,CK) is strongly causal, and

hence causal, on a open set A = ∪iUyi ⊃ K. Let (Cn,Kn, An) be a sequence of

cone fields Cn > C, Cn+1 < Cn, and strictly increasing compact sets and open sets

Kn ⊂ An ⊂ Kn+1, such that (M,Cn) is causal on An, and ∪nKn = M (for instance

introduce a complete Riemannian metric and let Kn contain the balls B̄(o, n) of

radius n centered at o ∈ M). Let χn : M → [0, 1] be locally Lipschitz functions

such that χn = 1 on Kn, and χn = 0 outside an open set Bn such that

· · · ⊂ Kn ⊂ Bn ⊂ B̄n ⊂ An ⊂ Kn+1 ⊂ Bn+1 ⊂ B̄n+1 ⊂ An+1 ⊂ · · · .

We construct a cone field C ′ > C on M as follows. The cone structure C ′ on

Kn+1\Bn coincides with Cn+1, and on Bn\Kn its intersection with P is given by

χnC̃n + (1− χn)C̃n+1.

The spacetime (M,C ′) is causal otherwise there would be a closed continuous

C ′-causal curve γ. Let i be the minimum integer such that B̄i ∩ γ 6= ∅, and let

p ∈ B̄i ∩ γ. Then γ is also a closed continuous Ci-causal curve in (M,Ci), thus

Ci-causality is violated at p ∈ B̄i ⊂ Ai a contradiction. Thus (M,C ′) is causal so

(M,C) is stably causal.

3.3. Hawking’s averaging for closed cone structures

In 1968 Stephen Hawking showed how to construct a time function by taking a

suitable average of volume functions relative to wider (round) cone structures [1,19].

In this section we wish to show that the method still works for general closed cone

structures. This result might not be immediately obvious since the original proofs

used the existence of convex neighborhoods. Once again we show that the result

depends only on the local non-imprisoning properties of spacetime.

Actually, in the mentioned works Hawking did not provide the details of the

proof of the lower semi-continuity of his function; a proof which is not so trivial

after all. So this section is likely to be useful to any researcher looking for an

introduction to this technique.

Unfortunately, whereas in the regular C2 theory we have convex neighborhoods

at our disposal and Hawking’s time function can be shown to be locally anti-

Lipschitz and hence smoothable [17], here we lack convex neighborhoods and so

we are unable to prove such a property. Still by using a product trick we shall be

able to construct locally anti-Lipschitz functions by using an averaging argument
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similar to Hawking’s, cf. Sec. 3.4. Therefore, this section will be useful since the

average idea will return in some key arguments of this work.

Let (M,C) be a stably causal closed cone structure. By stable causality and

Prop. 2.26 there is a locally Lipschitz proper cone structure C3 > C which is itself

stably causal. By Prop. 2.26 we can find a locally Lipschitz proper cone structure

C < C0 < C3. The convex combination Ca = (1 − a
3 )C0 + a

3C3 (with respect to

some smooth hyperplane section P ) will also be a locally Lipschitz proper cone

structure for a ∈ [0, 3]. Let µ be a unit measure on M , on every chart absolutely

continuous with respect the Lebesgue measure induced by the chart. The Hawking’s

time function is defined with the next expression. For p ∈M let

t(p) =

∫ 2

1

θ(p, a)da, where θ(p, a) = µ(I−Ca(p)).

Theorem 3.5. Let (M,C) be a stably causal closed cone structure, then t is a time

function for (M,C ′) where C ′ is a locally Lipschitz proper cone structure such that

C ′ > C .

Actually, the proof of continuity does not use the assumption of stable causality.

Proof. We start with a claim.

Claim 1. Let ε > 0 and N ≥ 2/ε. Let B be a coordinate ball centered at p, of vol-

ume µ(B) ≤ ε/2, whose closure is contained in the non-imprisoning neighborhood

U for the cone structure C3 constructed in Prop. 2.10. There is a neighborhood

G 3 p, G ⊂ U , such that for q ∈ G

I−(U,Ca)(p) ∩ ∂B ⊂ I
−
(U,Ca+1/N )(q) ∩ ∂B, for every a ∈ [1, 2].

Proof of Claim 1. Let a1, a2 ∈ [0, 3], a1 < a2, clearly by Th. 2.24

J−(U,Ca1 )(p) ∩ ∂B ⊂ I
−
(U,Ca2 )(p) ∩ ∂B.

The set on the left-hand side is compact by Th. 2.28 and due to JS being closed.

Let us denote it K. It is covered by sets of the form I−(U,Ca2
)(r) with r ∈ I−(U,Ca2

)(p),

thus there is a finite covering {I−(U,Ca2 )(ri)}. The set G(a1, a2) := ∩iI+
(U,Ca2 )(ri) is

such that for every q ∈ G(a1, a2)

I−(U,Ca1
)(p) ∩ ∂B ⊂ K ⊂ I

−
(U,Ca2

)(q) ∩ ∂B.

Let us regard [1, 2 + 1
N ] as the union of intervals of length 1/(2N), Ik = [1 +

k
2N , 1 + k+1

2N ], k = 0, · · · , 2N + 1, in such a way that inside every interval [a, a+ 1
N ]

for a ∈ [1, 2] we can find an Ik̄ interval for some k̄. Let

G = ∩kG(1 + k
2N , 1 + k+1

2N ),

For a ∈ [1, 2] and q ∈ G

I−(U,Ca)(p) ∩ ∂B ⊂ I
−
(U,C1+k̄/(2N))

(p) ∩ ∂B

⊂ I−(U,C1+(k̄+1)/(2N))
(q) ∩ ∂B ⊂ I−(U,Ca+1/N )(q) ∩ ∂B.
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Lower semi-continuity. Let ε > 0, N > 2/ε, B and G as in Claim 1. For a ∈ [1, 2]

and q ∈ G,

I−(U,Ca)(p) ∩ ∂B ⊂ I
−
(U,Ca+1/N )(q) ∩ ∂B,

thus I−Ca(p)\B̄ ⊂ I−Ca+1/N
(q)\B̄ which implies I−Ca(p) ⊂ I−Ca+1/N

(q)∪B̄, which taking

the volume gives

θ(p, a) ≤ θ(q, a+ 1/N) + µ(B) ≤ θ(q, a+ ε
2 ) + ε

2

Integrating

t(p) =

∫ 2

1

θ(p, a)da ≤
∫ 2

1

θ(q, a)da+

∫ 2+
ε
2

2

θ(q, a)da+ ε
2 ≤ t(q) + ε.

Claim 2. Let ε > 0 and N ≥ 2/ε. Let B be a coordinate ball centered at p, of vol-

ume µ(B) ≤ ε/2, whose closure is contained in the non-imprisoning neighborhood

U for the cone structure C3 constructed in Prop. 2.10. There is a neighborhood

G 3 p, G ⊂ U , such that

I−(U,Ca)(G) ∩ ∂B ⊂ I−(U,Ca+1/N )(p) ∩ ∂B, for every a ∈ [1, 2].

Proof of Claim 2. Let a1, a2 ∈ [1, 3], a1 < a2, clearly by Th. 2.24

J−(U,Ca1
)(p) ∩ ∂B ⊂ I

−
(U,Ca2

)(p) ∩ ∂B.

By the limit curve theorem and the non-imprisoning property of U there must be

a neighborhood G(a1, a2) such that

J−(U,Ca1
)(G(a1, a2)) ∩ ∂B ⊂ I−(U,Ca2

)(p) ∩ ∂B.

Let us regard [1, 2 + 1
N ] as the union of intervals of length 1/(2N), Ik = [1 +

k
2N , 1 + k+1

2N ], k = 0, · · · , 2N + 1, in such a way that inside every interval [a, a+ 1
N ]

for a ∈ [1, 2] there is an interval Ik̄ for some k̄. Let

G = ∩kG(1 + k
2N , 1 + k+1

2N ),

then

I−(U,Ca)(G) ∩ ∂B ⊂ I−(U,Ca)(G(1 + k̄
2N , 1 + k̄+1

2N )) ∩ ∂B

⊂ I−(U,C1+k̄/(2N))
(G(1 + k̄

2N , 1 + k̄+1
2N )) ∩ ∂B ⊂ I−(U,C1+(k̄+1)/(2N))

(p) ∩ ∂B

⊂ I−(U,Ca+1/N )(p) ∩ ∂B

Upper semi-continuity. Let ε > 0, N > 2/ε, B and G as in Claim 2. For a ∈ [1, 2]

and q ∈ G,

I−(U,Ca)(q) ∩ ∂B ⊂ I
−
(U,Ca+1/N )(p) ∩ ∂B,

thus I−Ca(q)\B̄ ⊂ I−Ca+1/N
(p)\B̄ which implies I−Ca(q) ⊂ I−Ca+1/N

(p)∪B̄, which taking

the volume gives

θ(q, a) ≤ θ(p, a+ 1/N) + µ(B) ≤ θ(p, a+ ε
2 ) + ε

2
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Integrating

t(q) =

∫ 2

1

θ(q, a)da ≤
∫ 2

1

θ(p, a)da+

∫ 2+
ε
2

2

θ(p, a)da+ ε
2 ≤ t(p) + ε.

Time function. Since C3 is causal, C2 is strongly causal (Lemma 3.2), so if p ∈M
and U is a C2-causally convex neighborhood of p, given any continuous C1/2-causal

curve contained in U and starting from p, the endpoint q must have a larger value

of t, t(q) > t(p), as for every a ∈ [1, 2], µ(I−Ca(q)) > µ(I−Ca(p)).

3.4. Anti-Lipschitzness and the product trick

In Sec. 2.13 we have defined the notion of Lorentz-Finsler space (M,F ), and in

Sec. 2.14 the notions of stable distance and stable Lorentz-Finsler space. In this

section we write F ′ > F , with no mention to the cone domains, if (M,F ) is a

closed Lorentz-Finsler space, (M,F ′) is a locally Lipschitz proper Lorentz-Finsler

space, and C ′× > C×, which is equivalent to C ′ > C and F ′ > F on C.

Let us introduce a different cone structure in M× = M×R defined at P = (p, r)

by

C↓P = {(y, z) : y ∈ Cp ∪ {0}, z ≤ F (y)}\{(0, 0)}. (3.16)

Theorem 3.6. Let (M,F ) be a stably causal closed Lorentz-Finsler space, then

(M×, C↓) is strongly causal.

Proof. It is sufficient to prove strong causality at P = (p, 0) ∈ M×, p ∈ M . We

already know that stable causality implies strong causality, cf. Th. 2.29. Let V

be a C-causally convex open set which is also globally hyperbolic. One can easily

construct a time function τ on V ×R, for sufficiently small V , e.g. one whose level

sets are obtained by vertically translating a local C↓-spacelike C1 hypersurface

passing through P which intersects V ×R on a relatively compact set (notice that

C↓ is sharp). Let τ be such that τ(P ) = 0.

Let U = τ−1(−δ, δ) ⊂ V ×R be an open neighborhood of P , and let us consider

a parametrized C↓-causal curve Γ which starts from some point of U . We have

to show that it cannot reenter U once it escapes U . First we show that it cannot

escape V ×R. The curve Γ is a absolutely continuous with derivative in C↓ a.e. so

its projection γ (the projection to M is Lipschitz, and the composition g ◦ f , with

f AC and g Lipschitz, is AC) is absolutely continuous with derivative in C ′ ∪ {0}
a.e., and so γ is a continuous causal curve. As a consequence, if Γ escapes V × R,

then γ escapes V and so it cannot reenter it.

But if Γ remains in V ×R, τ is increasing over it, so once it escapes U it cannot

reenter it.

Theorem 3.7. Let (M,F ) be a closed Lorentz-Finsler space, then (M,C) is stably

causal if and only if (M×, C↓) is stably causal.
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The proof is really the first step in the proof of the next theorem so it introduces

a few more structures than strictly required.

Proof. It is clear that the stable causality of (M×, C↓) implies the stable causality

of (M,C) so we shall be concerned with the other direction.

Let µ be a strictly positive unit measure on M×, absolutely continuous with re-

spect to the Lebesgue measure of any chart. Let (M,F ) be a stable closed Lorentz-

Finsler space and let F ′ > F be such that (M,F ′) is a stably causal locally

Lipschitz proper Lorentz-Finsler space. Let F3 > F0 > F ′ be other stably causal

locally Lipschitz proper Lorentz-Finsler spaces.

By Prop. 2.11 we can find a Lipschitz 1-form ω such that P = ω−1(1) is a

distribution of planes cutting C3 over compact subsets. In particular P× = P × R
cuts C×3 over compact subsets. The next convex combinations of cones are defined

with respect to P×. Let Ca, and Fa : Ca → [0,+∞) be defined through the convex

combination C×a = (1− a
3 )C×0 + a

3C
×
3 , a ∈ [0, 3]. We have Fa < Fa′ for a < a′.

Let Ca
↓
P = {(y, z) : y ∈ (Ca)p ∪ {0}, z ≤ Fa(y)}\{(0, 0)} where P = (p, r).

Observe that it is not true that C↓a < C↓a′ , for a < a′, since both share the downward

vertical vectors (0, z), z < 0. Still, we are going to construct a time function on

(M×, C↓a) by using an averaging procedure analogous to that employed by Hawking

[1, 19] in which, however, cones do not open in the fiber direction.

By strong causality (distinction suffices) of (M×, C↓a) the function t↓a(P ) =

−µ(I+

C↓a
(P )), is increasing over every C↓a-causal curve and t↓a < t↓a′ for a < a′.

However, it is not necessarily continuous, so the idea is to take the average

t↓(P ) =

∫ 2

1

t↓a(P )da = −
∫ 2

1

µ(I+

C↓a
(P ))da.

It suffices to prove continuity at P = (p, 0), p ∈M . Let ε > 0, let V be a C3-causally

convex (hence Ca-causally convex) open neighborhood of p, constructed as in Prop.

2.10 to get a bounded h-arc length of C3-causal curves contained in V where h is a

Riemannian metric such that F3(·) ≤ ‖·‖h on TM . From the proof of Theorem 3.6

we know that if V is sufficiently small, every continuous C↓3 -causal curve escaping

W := V × R cannot reenter it so it intersects ∂W only once. We take V so small

that µ(W ) < ε/2. Now, observe that Q ∈ (J↓a )+(P ), if Q = (q, r), where there is a

continuous Ca-causal curve γ connecting p to q and r ≤ `a(γ). So for Pr = (p, r)

we also have Q ∈ (J×a )+(Pr), in other words (J↓a )+(P ) = ∪r≤0(J×a )+(Pr).

For a, a′ ∈ [0, 3], a < a′, we have by Th. 2.24

(J×a )+(P ) ∩ ∂W ⊂ (I×a′)
+(P ) ∩ ∂W.

For sufficiently large δ both sides of this inclusion are contained in the compact

boundary of the C↓3 -causally convex set D = τ−1(−δ, δ) ⊂ V ×R constructed in the

proof of the previous theorem (because there is a Riemannian metric h such that

F3(y) ≤ ‖y‖h on TV , and the h-arc length of C3-causal curves is bounded on V ).

(Notice that both sides in the previous inclusion could be written with respect to
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the relations J×a (O) or I×a′(O), where O is a relatively compact neighborhood of D

since D is C×3 -causally convex convex.)

By the same limit curve argument presented in the proofs of the claims in Th.

3.5, there is an open neighborhood A (a, a′) 3 P such that

(J×a )+(Q) ∩ ∂W ⊂ (I×a′)
+(P ) ∩ ∂W, ∀Q ∈ A(a, a′).

and an open neighborhood B(a, a′) 3 P such that

(J×a )+(P ) ∩ ∂W ⊂ (I×a′)
+(Q) ∩ ∂W, ∀Q ∈ B(a, a′).

By translational invariance similar inclusions hold for Pr in place of P , where the

novel sets Ar, Br, are the translates of A and B. Thus

(J↓a )+(Q) ∩ ∂W ⊂ (I↓a′)
+(P ) ∩ ∂W, ∀Q ∈ A(a, a′),

(J↓a )+(P ) ∩ ∂W ⊂ (I↓a′)
+(Q) ∩ ∂W ∀Q ∈ B(a, a′).

Let N be an integer such that N > 2/ε, and let us regard [1, 2 + 1
N ] as the union

of intervals Ik = [1 + k
2N , 1 + k+1

2N ], k = 0, · · · , 2N + 1, in such a way that inside

every interval [a, a+ 1
N ] for a ∈ [1, 2] there is an interval Ik̄ for some k̄. Let

A = ∩kA(1 + k
2N , 1 + k+1

2N ), B = ∩kB(1 + k
2N , 1 + k+1

2N ).

Lower semi-continuity. Let Q ∈ A and a ∈ [1, 2]; choosing Ik ⊂ [a, a + 1
N ], we

have Q ∈ A(1 + k
2N , 1 + k+1

2N ) and

(J↓a )+(Q) ∩ ∂W ⊂ (J↓1+k/(2N))
+(Q) ∩ ∂W ⊂ (I↓1+(k+1)/(2N))

+(P ) ∩ ∂W

⊂ (I↓a+1/N )+(P ) ∩ ∂W.

Thus (I↓a)+(Q)\W ⊂ (I↓a+1/N )+(P )\W hence

µ((I↓a)+(Q)) ≤ µ((I↓a+1/N )+(P )) + µ(W ) ≤ µ((I↓a+ ε
2
)+(P )) + ε

2 .

That is, for every Q ∈ A and a ∈ [1, 2]

−t↓a(Q) ≤ −t↓a+ ε
2
(P ) + ε

2 ,

and averaging (notice that −1 ≤ t↓s ≤ 0)

−t↓(Q) = −
∫ 2

1

t↓a(Q)da ≤ −t↓(P )−
∫ 2+ ε

2

2

t↓s(P )ds+
ε

2
≤ −t↓(P ) + ε,

which proves the lower semi-continuity.

Upper semi-continuity. Let Q ∈ B and let a ∈ [1, 2]; choosing Ik ⊂ [a, a + 1
N ],

we have Q ∈ B(1 + k
2N , 1 + k+1

2N ) and

(I↓a)+(P ) ∩ ∂W ⊂ (I↓1+k/(2N))
+(P ) ∩ ∂W ⊂ (I↓1+(k+1)(2N))

+(Q) ∩ ∂W

⊂ (I↓a+1/N )+(Q) ∩ ∂W.
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Thus (I↓a)+(P )\W ⊂ (I↓a+1/N )+(Q)\W hence

µ((I↓a)+(P )) ≤ µ((I↓a+1/N )+(Q)) + µ(W ) ≤ µ((I↓a+ ε
2
)+(Q)) + ε

2

That is, for every Q ∈ B and a ∈ [1, 2]

−t↓a(P ) ≤ −t↓a+ ε
2
(Q) + ε

2

and averaging (notice that −1 ≤ t↓s ≤ 0)

−t↓(P ) ≤ −t↓(Q)−
∫ 2+ ε

2

2

t↓s(Q)ds+
ε

2
≤ −t↓(Q) + ε,

which proves the upper semi-continuity. Thus t↓ is a time function for (M×, C↓1 )

which, therefore, is stably causal.

Theorem 3.8. (existence of anti-Lipschitz functions in stable spacetimes)

Let (M,F ) be a stable closed Lorentz-Finsler space, and let (M,F ′) be a stable

locally Lipschitz proper Lorentz-Finsler space such that F ′ > F (it exists as shown

in Prop. 2.61). Then there is a continuous function t : M → R which is strictly F ′-

anti-Lipschitz, namely such that for every continuous C ′-causal curve σ : [0, 1]→M

t(σ(1))− t(σ(0)) >

∫
σ

F ′(σ̇)dt.

Moreover, (a) given two points such that (p, q) /∈ JS we can find t so that t(p) > t(q),

and (b) given p ∈M and an open neighborhood O 3 p we can find ť and t̂ continuous

strictly F ′-anti-Lipschitz functions such that p ∈ [{q : ť(q) < 0} ∩ {q : t̂(q) > 0}] ⊂
O.

The idea is to show that there is a time function on (M×, C ′↓), such that its

zero level set S0 intersects exactly once every R-fiber of M×. This set S0 regarded

as a graph over M provides the anti-Lipschitz time function.

Remark 3.6. The function t constructed in this theorem is really stably locally

anti-Lipschitz (Sec. 2.2). Indeed let Č be a locally Lipschitz proper cone structure

such that C < Č < C ′, then the indicatrix F ′−1(1) intersects Č in a compact

set. Let h be a Riemannian metric whose unit balls contain such intersection then

for every Č-causal vector y, F ′(y) ≥ ‖y‖h, thus if σ : [0, 1] → M is a continuous

Č-causal curve, t(σ(1))− t(σ(0)) > `′(σ) ≥ `h(σ).

Proof. This proof is the continuation of the previous one. The only difference is

that in the first step we let F ′,F3,F0, be stable locally Lipschitz proper Lorentz-

Finsler spaces, which exist by Th. 2.61 (hence D′, D3, D0 are finite). In the previous

proof we constructed t↓, a time function for (M×, C↓1 ). Observe that the particular

shape of the cone C↓1 , that is the fact that it contains a vertical half-line, implies

that the level sets of t↓ can intersect the fiber at most once, in fact the fibers are

C↓1 -causal and so t↓ strictly increases over every fiber. Unfortunately, the level sets
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of t↓ might ‘go to infinity’ before crossing some fibers. This circumstance is cured

as follows.

Let t↑ be the time function that one would obtain taking the opposite cones

on M×. Both are time function on (M×, C↓1 ), where t↓ uses the measure of the

chronological futures to build the time function, while t↑ uses the measure of the

chronological pasts. The important point is that over a given fiber (p, r), r ∈ R,

t↓ → 0 for r → −∞, and t↑ → 0 for r → +∞. Let us prove this claim for t↓, the

other claim being proved dually. Let ε > 0, and let K × [−G,G] be a compact set

such that p ∈ K and µ(M×\K × [−G,G]) < ε. Since D3 is upper semi-continuous,

D3(p, ·) has an upper bound R on K. Hence for every a ∈ [1, 2], da(p, ·) < R on K.

As a consequence (I↓a)+((p,−R−G))∩{K×[−G,G]} = ∅, for every a ∈ [1, 2], which

implies |t↓((p,−R−G))| < ε. The C↓1 -time function τ = log |t↑/t↓| is continuous and

strictly monotone over every R-fiber with image (−∞,+∞) as it goes to ±∞ for

r → ∓∞ (the future direction for C↓a over the fiber corresponds to decreasing r). The

level set S0 = τ−1(0) being C↓1 -acausal provides the graph of the searched function

t. In fact, let σ be a continuous C1-causal curve σ : [0, 1]→M , then (σ(t), `1(σ|[0,t)))
is a continuous C1-causal curve. By definition of t, (σ(0), t(σ(0))) ∈ S0. Function τ

increases over σ, thus t(σ(1)) > t(σ(0))+ `1(σ)). Since F1 > F ′ the first statement

is proved.

Let us prove (a). Suppose to have been given (p, q) /∈ JS then we can choose C3

in the above construction in such a way that (p, q) /∈ J̄3. Moreover, in the definition

of t↓ and t↑ we are free to use different measures µ↓ and µ↑. We are going to alter

µ↓ by dispacing it over M × R while keeping the extra coordinate invariant. Since

O := I+
3 (q)\J+

3 (p) 6= ∅ we can move most of the measure (not all since its density

with respect to Lebesgue has to be positive) µ↓(J+
3 (p)×R) to the fiber of the open

set O so non-decreasing |t↓| over the fiber of q while decreasing as much as desired

|t↓| over the fiber of p. Defining τ = log |t↑/t↓| the operation is used to alter the

graphing function t of the level set S0 = τ−1(0) over p and q, in such a way that

t(p) > t(q).

Let us prove (b). In the proof of the first statement we have found F ′′ := F1 >

F ′, and a function t such that for every continuous C ′′-causal curve σ : [0, 1]→M ,

t(σ(1)) − t(σ(0)) > `′′(σ), in particular, for every C ′-causal curve σ : [0, 1] → M ,

t(σ(1))− t(σ(0)) > `′(σ). We introduce locally Lipschitz proper cone structures C0

and C3, not to be confused with those appearing in the previous steps of this proof

(which we do not use anymore), such that C ′ < C0 < C3 < C ′′. Let p ∈ M , and

O 3 p. Without loss of generality we can assume t(p) = 0. From C0 and C3 we

define Ca, a ∈ [0, 3], introduce a measure µ and build a C ′-time function τ a la

Hawking as done in Sec. 3.3, then t+ τ is also C ′-anti-Lipschitz.

Since C2 is stably causal it is strongly causal and so there is a C2-causally convex

open neighborhood U ⊂ O, p ∈ O, such that U is C2-non-imprisoning and J2(U) is

closed, cf. Prop. 2.10 and 2.15. Let B 3 p be a compact neighborhood, B ⊂ U , then

since J2(U) is closed, J+
2 (p, U)∩∂B is a compact set. As t increases over every C2-
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causal curve (because C2 < C ′′), it is positive at every point of J+
2 (p, U) ∩ ∂B and

hence there is ε > 0 such that J+
2 (p, U)∩ ∂B stays in the region t > ε. By the limit

curve theorem there is a neighborhood U ′ ⊂ B, p ∈ U ′, such that J+
2 (U ′, U) ∩ ∂B

stays in the region t > ε. An analogous argument in the past case leads to the

definition of the set U ′′. Thus let V ⊂ U ′ ∩ U ′′, p ∈ V , be a C2-causally convex

compact neighborhood, J+
2 (V,U)∩∂B stays in the region t > ε (and J−2 (V,U)∩∂B

stays in the region t < −ε), thus J+
2 (V ) ⊂ O ∪ t−1((ε,+∞)) since t is a C2-time

function, and similarly in the past case.

Let µ be supported in I−1 (p) ∩ V , then recalling that τ(r) =
∫ 2

1
µ(I−a (r))da

we have τ = 0 outside J+
2 (V ). By construction τ ≥ 0, thus {q : τ(q) > 0} ⊂

O ∪ {q : t(q) > 0}. Defining t̂ = t+ τ , we have {q : t̂(q) > 0} ⊂ O ∪ {q : t(q) > 0}.
A similar construction with µ supported in I+

1 (p)∩V but constructing Hawking’s

function with the opposite cones τ(r) = −
∫ 2

1
µ(I+

a (r))da, gives a function ť = t+τ ,

τ(p) < 0, such that {q : ť(q) < 0} ⊂ O ∪ {q : t(q) < 0}. Thus p ∈ [{q : ť(q) <

0} ∩ {q : t̂(q) > 0}] ⊂ O.

3.5. Smoothing anti-Lipschitz functions

For the next theorem and corollary J. Grant, P. Chrusciel and the author should

be credited, since it is really a polished and improved version of our theorem [17,

Th. 4.8]. I didn’t change the original wording where it wasn’t necessary. The new

proof makes manifest an important feature hidden in the original proof, namely the

possibility of bounding the derivative of the smoothing function. Furthermore, it

holds for general cone structures. Other techniques useful for smoothing increasing

functions can be found in [16,106].

Theorem 3.9. Let (M,C) be a closed cone structure and let τ : M → R be a

continuous function. Suppose that there is a C0 proper cone structure Ĉ > C and

continuous functions homogeneous of degree one on the fiber F , F : Ĉ → R such

that for every Ĉ-timelike curve x : [0, 1]→M∫
x

F (ẋ)dt ≤ τ(x(1))− τ(x(0)) ≤
∫
x

F (ẋ)dt. (3.17)

Let h be an arbitrary Riemannian metric, then for every function α : M → (0,+∞)

there exists a smooth function τ̂ such that |τ̂ − τ | < α and for every v ∈ C

F (v)− ‖v‖h ≤ dτ̂(v) ≤ F (v) + ‖v‖h. (3.18)

Similar versions, in which some of the functions F , F do not exist hold true. One

has just to drop the corresponding inequalities in (3.18).

Since h is arbitrary the last inequality can be made as stringent as desired, e.g.

redefining the metric through multiplication by a small conformal factor.

Proof. Let p ∈ M and let {xµ} be local coordinates in a neighborhood of p. We

rescale the coordinates in such a way that in a relatively compact neighborhood V

of p, the coordinate ball of TqV , for every q ∈ V , contains the h-unit balls.
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Let Bp(3ε(p)) ⊂ V be a coordinate ball. The coordinates split TM over

Bp(3ε(p)) as Bp(3ε(p)) × Rn+1 (which admits the coordinate sphere subbundle

Bp(3ε(p))×Sn). The second projection, as induced by the local coordinate system,

provides an identification of the fibers. Notice that if (q, v) ∈ Bp(3ε(p)) × Sn then

‖v‖h(q) ≥ 1.

At p we can find Čp such that Cp < Čp < Ĉp. By upper semi-continuity of

C and continuity of Ĉ the constant ε can be chosen so small that if we define

Č = Bp(3ε(p))× Čp, then we still have C < Č < Ĉ over the neighborhood. Since Č

is translationally invariant if v is C-causal at q ∈ Bp(3ε(p)) then the tangent vector

to the curve q′(s) = q′0 + vs, q′0 ∈ Bp(3ε(p)) is Č-causal and hence Ĉ-timelike as

long as q′(s) stays in the neighborhood.

Finally, F is a continuous function, positive homogeneous of degree one, deter-

mined by its value on the compact set {Bp(3ε(p)) × Sn} ∩ Ĉ, where it is uni-

formly continuous, so we can find ε so small and δ > 0 such that for every

(q, v), (q′, v′) ∈ {Bp(3ε(p))× Sn} ∩ Ĉ with dSn(v, v′) < δ, we have

|F (q′, v′)− F (q, v)| < 1/2 ≤ ‖v‖h(q)/2,

and similarly for F . In particular, if v′ = v

−‖v‖h(q)/2 < F (q′, v)− F (q, v) < ‖v‖h(q)/2,

which must also hold for v not necessarily coordinate normalized since all functions

appearing in this expression are positive homogeneous of degree one.

By σ-compactness there is a locally finite covering of M consisting of coordinate

balls {Oi := Bpi(εi)}, where εi is as above. Let ϕi be a smooth partition of unity

subordinate to the cover {Oi}. Choose some 0 < ηj < εj . In local coordinates on

Oj let τj be defined by convolution with an even non-negative smooth function χ,

supported in the coordinate ball of radius one, with integral one:

τj(x) =

{
1

ηn+1
j

∫
Bpj (3εj)

χ
(
y−x
ηj

)
τ(y) dn+1y, x ∈ Bpj (2εj);

0, otherwise.

We define the smooth function

τ̂ :=
∑
j

ϕjτj .

The non-vanishing terms at each point are finite in number, and τ̂ converges point-

wisely to τ as we let the constants ηj converge to zero. The idea is to control the

constants ηj to get the desired properties for τ̂ .

Let x ∈M and v ∈ Cx, where ‖v‖h = 1. There is j such that x ∈ Oj = Bpj (εj).

In local coordinates v reads v = vµ∂µ, so that the C1 curve xµ(s) = xµ + vµs is

Ĉ-timelike as long as it stays within Bpj (3εj). We observe that s is not the h-arc

length parametrization of the curve, however it will be sufficient to observe that

‖ d
ds‖h = ‖v‖h = 1 at x.
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We write:

τ̂(x(s))− τ̂(x) =
∑
j

(
ϕj(x(s))− ϕj(x)

)
τj(x(s))︸ ︷︷ ︸

=:I(s)

+
∑
j

ϕj(x)
(
τj(x(s))− τj(x)

)
︸ ︷︷ ︸

=:II(s)

.

We have at x ∈ Oj , (here we use Eq. (3.17))

lim
s→0

II(s)

s
= lim
s→0

1

s

∑
k

ϕk(x)
(
τk(x+ vs)− τk(x))

= lim
s→0

1

s

∑
k

ϕk(x)

ηn+1
k

∫
B0(εk)

χ

(
z

ηk

)(
τ(x+ vs+ z)− τ(x+ z)︸ ︷︷ ︸

≥
∫ s
0
F (x+z+tv,v)dt

)
dn+1z

≥
∑
k

ϕk(x)

ηn+1
k

∫
B0(εk)

χ

(
z

ηk

)
F (x+ z, v) dn+1z.

Thus

lim
s→0

II(s)

s
− F (x, v) ≥

∑
k

ϕk(x)

ηn+1
k

∫
B0(εk)

χ

(
z

ηk

)
[F (x+ z, v)− F (x, v)] dn+1z

≥
∑
k

ϕk(x)

ηn+1
k

∫
B0(εk)

χ

(
z

ηk

)
(−‖v‖h(x)/2) dn+1z ≥ −‖v‖h(x)/2

So we arrive at

F (x, v)− ‖v‖h(x)/2 ≤ lim
s→0

II(s)

s
≤ F (x, v) + ‖v‖h(x)/2

where the second inequality is obtained following analogous calculations and using

the second inequality in (3.17).

For every j let

Rj := sup
k : Ok∩Oj 6=∅

sup
x∈Oj

‖∇hϕk(x)‖h ,

let Nj be the number of distinct sets Ok which have non-empty intersection with

Oj , and let us choose ηj so small that

sup
x∈Oj

|τ(x)− τj(x)| < min
`:O`∩Oj 6=∅

{ 1

N`
inf
O`

α,
1

2N`R`
} .

Let χk be the characteristic function of Ok, so that ϕk ≤ χk. The sets Oj and Oj
intersect the same sets of the covering {Oi}, which are Nj in number, thus

sup
x∈Oj

∑
k:Ok∩Oj 6=∅

[χk(x)|τ(x)− τk(x)|] ≤
∑

k:Ok∩Oj 6=∅

sup
x∈Ok

|τ(x)− τk(x)|

≤
∑

k : Ok∩Oj 6=∅

1

2RjNj
=

1

2Rj
.
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Then at x ∈ Oj , (recall that ‖v‖h = 1 at x)∣∣∣∣ lim
s→0

I(s)

s

∣∣∣∣ =

∣∣∣∣ lim
s→0

∑
k

ϕk(x(s))− ϕk(x)

s
τk(x(s))

∣∣∣∣
=

∣∣∣∣∑
k

v
(
ϕk(x)

)
τk(x)

∣∣∣∣ =

∣∣∣∣∑
k

v
(
ϕk(x)

)[
τ(x)−

(
τ(x)− τk(x)

)]∣∣∣∣
=

∣∣∣∣ v(∑
k

ϕk(x)

)
︸ ︷︷ ︸

=v(1)=0

τ(x)−
∑
k

v
(
ϕk(x)

)
(τ(x)− τk(x))

∣∣∣∣
≤
∑
k

|v
(
ϕk(x)

)
| |τ(x)− τk(x)| =

∑
k : Ok∩Oj 6=∅

|v
(
ϕk(x)

)
| |τ(x)− τk(x)|

≤ Rj
∑

k:Ok∩Oj 6=∅

χk(x)|τ(x)− τk(x)| ≤ 1

2
=
‖v‖h(x)

2
.

Hence, for every x ∈ M and every C-causal vector v ∈ TxM of h-length one, we

have

F (x, v)− ‖v‖h(x) ≤ v(τ̂) ≤ F (x, v) + ‖v‖h(x). (3.19)

By positive homogeneity we can drop the condition ‖v‖h(x) = 1 and so this equation

holds for every C-causal vector v.

Finally, for every x ∈M , there is some j such that x ∈ Oj , hence

|τ(x)− τ̂(x)| = |
∑
k

ϕk(x)[τ(x)− τk(x)]| ≤
∑

k:Ok∩Oj 6=∅

sup
x∈Ok

|τ(x)− τk(x)|

≤
∑

k:Ok∩Oj 6=∅

1

Nj
inf
Oj

α ≤ α(x)
∑

k:Ok∩Oj 6=∅

1

Nj
= α(x) .

Note that the differentiability degree of τ̂ depends only upon the differentiability

degree of M , regardless of the regularity of C.

Theorem 3.10. Every stable closed Lorentz-Finsler space (M,F ) admits a smooth

strictly F -steep function t. Moreover, if (p, q) /∈ JS we can find t such that t(p) >

t(q). Finally, for every p ∈ M and every open neighborhood O 3 p we can find

smooth strictly F -steep functions ť, t̂ such that p ∈ [{q : ť(q) < 0}∩{q : t̂(q) > 0}] ⊂
O.

We recall that the strictly F -steep functions are temporal.

Proof. By Th. 3.8 there is (M,F ′) a stable locally Lipschitz proper Lorentz-

Finsler space such that F ′ > F and a continuous function t̃ : M → R which is

strictly F ′-anti-Lipschitz, namely such that for every continuous C ′-causal curve

σ : [0, 1]→M

t̃(σ(1))− t̃(σ(0)) >

∫
σ

F ′(σ̇)dt.
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Let γ be a Riemannian metric whose balls contain I ′ ∩ C where I ′ = F ′−1(1) is

the indicatrix of (M,F ′). Moreover, let us choose the unit balls of γ so large, or

equivalently γ so small, that F ′(v) − 1
2‖v‖γ > F (v) for v ∈ C (on TpM it holds

in a compact transverse section of Cp and hence everywhere on Cp by positive

homogeneity). Let h = γ/4, by Th. 3.9 we can find a smooth function t such that

F ′(v) − ‖v‖h ≤ dt(v) for every v ∈ C, thus F (v) < dt(v), which means that t is

strictly F -steep.

The penultimate statement follows from the penultimate statement of Th. 3.8,

which guarantees that t̃ above can be chosen so that t̃(p)− t̃(q) > 3ε > 0. Then by

Th. 3.9 and the previous point we can find a smooth strictly F -steep function t

such that |t− t̃| < ε, so that t(p)− t(q) > ε > 0.

The final statement follows from the final statement of Th. 3.8, which guarantees

that we can find continuous strictly F ′-anti-Lipschitz functions ˇ̃t, ˆ̃t such that p ∈
[{q : ˇ̃t(q) < 0} ∩ {q : ˆ̃t(q) > 0}] ⊂ O. Then by Th. 3.9 and the first paragraph of

this proof we can find smooth strictly F -steep functions ť and t̂ which approximate
ˇ̃t+ |ˇ̃t(p)|/2 and ˆ̃t− ˆ̃t(p)/2 respectively, with an error at most |ˇ̃t(p)|/2 (resp. ˆ̃t(p)/2)

so that ˇ̃t ≤ ť and t̂ ≤ ˆ̃t. Thus p ∈ [{q : ť(q) < 0} ∩ {q : t̂(q) > 0}] ⊂ [{q : ˇ̃t(q) <

0} ∩ {q : ˆ̃t(q) > 0}] ⊂ O

Theorem 3.11. Every stably causal closed cone structure (M,C) admits a smooth

temporal function t. Moreover, if (p, q) /∈ JS we can find t such that t(p) > t(q).

Finally, for every p ∈ M and every open neighborhood O 3 p we can find smooth

temporal functions ť, t̂ such that [{q : ť(q) < 0} ∩ {q : t̂(q) > 0}] ⊂ O.

Proof. Set F = 0, then by Th. 2.62 (M,F ) is stable and the result follows from

Th. 3.10 by replacing “strictly F -steep” with “temporal” as they are equivalent for

F = 0.

We have a similar result for globally hyperbolic spacetimes.

Theorem 3.12. Let (M,F ) be a globally hyperbolic closed Lorentz-Finsler space

and let h be a complete Riemannian metric on M . Then there is a smooth Cauchy

h-steep strictly F -steep (hence temporal) function t. Moreover, if (p, q) /∈ J we can

find t such that t(p) > t(q). Finally, for every p ∈M and every open neighborhood

O 3 p we can find smooth Cauchy h-steep strictly F -steep functions ť, t̂ such that

[{q : ť(q) < 0} ∩ {q : t̂(q) > 0}] ⊂ O.

The proof clarifies that in general one can control the lower bound on the steep-

ness of the temporal function.

Proof. Let (M,F ′) be any locally Lipschitz proper Lorentz-Finsler space such

that C ′ > C which is globally hyperbolic. Here F ′ is chosen sufficiently large so

that F ′ > 2F on C, and I ′ ∩ C, with I ′ = F ′−1(1), is contained in the unit

ball of 4h. As a consequence, for every v ∈ C, 2‖v‖h ≤ F ′(v). By Theorem 2.63
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(M,F ′) is stable, and by Theorem 3.8 there is a continuous function t̃ : M → R
which is strictly F ′-anti-Lipschitz, namely such that for every continuous C ′-causal

curve σ : [0, 1]→M

t̃(σ(1))− t̃(σ(0)) >

∫
σ

F ′(σ̇)dt.

By Theorem 3.9 we can find a smooth function t such that for every v ∈ C

F ′(v)− ‖v‖h ≤ dt(v) (3.20)

but F ′(v) − ‖v‖h ≥ F ′(v)/2 > F (v) and F ′(v) − ‖v‖h ≥ F ′(v)/2 ≥ ‖v‖h. The

Cauchy property follows from the last inequality.

By Th. 2.39 in a globally hyperbolic closed cone structure JS = J . The penulti-

mate statement follows from the penultimate statement of Th. 3.8, which guarantees

that t̃ above can be chosen so that t̃(p) − t̃(q) > 3ε > 0. Then by Th. 3.9 and the

previous point we can find a smooth Cauchy h-steep strictly F -steep function t

such that |t− t̃| < ε, so that t(p)− t(q) > ε > 0.

The final statement follows from the final statement of Th. 3.8, which guarantees

that we can find continuous strictly F ′-anti-Lipschitz functions ˇ̃t, ˆ̃t such that p ∈
[{q : ˇ̃t(q) < 0}∩{q : ˆ̃t(q) > 0}] ⊂ O. Then by Th. 3.9 and the first paragraph of this

proof we can find smooth Cauchy h-steep strictly F -steep functions ť and t̂ which

approximate ˇ̃t+ |ˇ̃t(p)|/2 and ˆ̃t− ˆ̃t(p)/2 respectively, with an error at most |ˇ̃t(p)|/2
(resp. ˆ̃t(p)/2) so that ˇ̃t ≤ ť and t̂ ≤ ˆ̃t. Thus p ∈ [{q : ť(q) < 0} ∩ {q : t̂(q) > 0}] ⊂
[{q : ˇ̃t(q) < 0} ∩ {q : ˆ̃t(q) > 0}] ⊂ O.

Corollary 3.3. Let (M,C) be a globally hyperbolic proper cone structure. Then

M is smoothly diffeomorphic to S × R, where S is smoothly diffeomorphic to any

Cauchy hypersurface, the projection to the first factor has smooth timelike curves

as fibers, and the projection to the second factor is function t of Th. 3.12.

Proof. Let t be the function constructed in the previous theorem and let S0 =

t−1(0). Since t is smooth and temporal, S0 can be endowed with a smooth struc-

ture which makes the immersion smooth. Let V be a smooth timelike vector field.

The integral curves of V intersect S0 only once and provide a smooth projection

π : M → S0. Let ϕa : M → M be the 1-parameter family of smooth diffeomor-

phisms generated by V , then the map S0 × R → M , given by (s, t) 7→ ϕt(s) is a

smooth diffeomorphism.

3.6. Equivalence between K-causality and stable causality

Sorkin and Woolgar [107] introduced the K relation as the smallest closed and

transitive relation containing the causal relation J . Similar concepts had been in-

troduced in dynamical system theory where one spoke of Auslander’s prolonga-

tions [108]. The antisymmetry of K is called K-causality in analogy with stable
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causality which corresponds to the antisymmetry of the Seifert relation JS , see Sec.

3.2. The relations K and JS are both closed and transitive so it is natural to ask if

they coincide [107]. The conjecture due to R. Low was indeed proved in Lorentzian

geometry where we gave two proofs, an entirely topological one [77], and a much

simpler one [13] which made use of smoothability results for time functions and

Auslander-Levin’s theorem [108, 109]. In this section we give a new proof which

does not use smoothability results for time functions but contains some elements of

the proof in [13]. As a result the novel proof applies also to closed cone structures.

To start with, we recall that a utility function f is an isotone function such that

x ≤ y and y � x implies f(x) < f(y), then the Auslander-Levin’s theorem is

Theorem 3.13. (Auslander-Levin) Let X be a second countable locally compact

Hausdorff space, and R a closed preorder on X, then there exists a continuous

utility function. Moreover, denoting with U the set of continuous utilities we have

that the preorder R can be recovered from the continuous utility functions, namely

there is a multi-utility representation

(x, y) ∈ R⇔ ∀u ∈ U , u(x) ≤ u(y). (3.21)

As a first step we prove that the continuous JS-utilities are precisely the time

functions.

Lemma 3.3. Let (M,C) be a closed cone structure. If there is a time function then

(M,C) is strongly causal.

Proof. If (M,C) is not strongly causal at x then there is a non-imprisoning neigh-

borhood U 3 x as in Prop. 2.10 and a sequence of continuous C ′-causal curves σn
of endpoints xn, zn, with xn → x, zn → x, not entirely contained in U . Let B,

B̄ ⊂ U be a coordinate ball of x. Let cn ∈ ∂B be the first point at which σn escapes

B̄, and let dn be the last point at which σn reenters B̄. Since ∂B is compact there

are c, d ∈ ∂B, and a subsequence σk such that ck → c, dk → d. By the limit curve

theorem (x, c), (d, x) ∈ J , while (c, d) ∈ J̄ , which is impossible since t(d) < t(c) but

the sequence σk has starting points close to c and reaches points close to d.

Lemma 3.4. Let (M,C) be a closed cone structure which admits a time function t.

Let h be a complete Riemannian metric and let ε > 0. Let Rε = {(p, q) : dh(p, q) <

ε}, let U be an open relatively compact set, then there is a locally Lipschitz proper

cone structure C ′ > C such that JC′(U)\Rε ⊂ {(p, q) ∈ Ū × Ū : t(p) < t(q)}.

Proof. We know that (M,C) is strongly causal so it is non-imprisoning. Suppose

the inclusion does not hold, then for every locally Lipschitz proper cone structure

C ′ > C, {(p, q) ∈ Ū × Ū : t(p) ≥ t(q)} ∩ [JC′(U)\Rε] 6= ∅. But this set is compact

being a closed subset of Ū × Ū , and the family obtained for C ′ > C has the finite
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intersection property, thus

∅ 6= ∩C′>C{(p, q) ∈ Ū × Ū : t(p) ≥ t(q)} ∩ [JC′(U)\Rε]

= {(p, q) ∈ Ū × Ū : t(p) ≥ t(q)} ∩ [∩C′>CJC′(U)\Rε]
⊂ {(p, q) ∈ Ū × Ū : t(p) ≥ t(q)} ∩ [J(Ū)\Rε]

since by Prop. 2.15 JS(U) = ∩C′>CJC′(U) and JS(U) ⊂ J(Ū) ∩ (U × U), by Th.

2.26, the limit curve theorem 2.14 and the non-imprisoning property of Ū . Thus

there are p, q ∈ Ū such that dh(p, q) ≥ ε connected by a continuous causal curve

entirely contained in Ū with starting point p and ending point q, and moreover

t(p) ≥ t(q). But t is a time function and p 6= q, thus t(p) < t(q), a contradiction.

The next important lemma states that provided we do not consider points that

are too close, a time function t preserves its increasing property for a wider cone

structure.

Lemma 3.5. Let (M,C) be a closed cone structure which admits a time function t.

Let h be a complete Riemannian metric and let ε > 0. Let Rε = {(p, q) : dh(p, q) <

ε}, then there is a locally Lipschitz proper cone structure C ′ > C such that JC′\Rε ⊂
{(p, q) : t(p) < t(q)}.

Proof. Let o ∈ M and Let Ui = B(o, (i + 7)ε)\B̄(o, iε) be a sequence of open

relatively compact sets constructed with h-balls centered at o. Notice that ∪iUi =

M . By Lemma 3.4 we can find a locally Lipschitz proper cone structure Ci > C

such that JCi(Ui)\Rε ⊂ {(p, q) ∈ Ūi × Ūi : t(p) < t(q)}. Let C ′ > C be chosen so

that C ′ < Ci on Ūi. On every compact set this is a finite number of conditions so

C ′ exists. Let us consider a C ′-causal curve σ connecting p to q. Let p1 = p, then

p1 ∈ Ui1 where i1 is chosen so that p1 is at distance at least 3ε from ∂Ui1 . Let p2

be the first escaping point from B̄(o, (i1 + 6)ε)\B(o, (i1 + 1)ε) and choose i2 so that

p2 ∈ Ui2 is at distance at least 3ε from ∂Ui2 , following σ from p2, let p3 be the

first escaping point from B̄(o, (i2 + 6)ε)\B(o, (i2 + 1)ε), and so on. The succession

of points {pk} over σ are such that dh(pk, pk+1) ≥ ε, so since the h-length of σ is

bounded, the segments are finite in number. If pm ∈ Uim is the last point of the

sequence then q ∈ B̄(o, (im + 6)ε)\B(o, (im + 1)ε) ⊂ Uim . If d(pm, q) ≥ ε we set

pm+1 = q, otherwise we redefine pm = q, so that pm−1, q ∈ Uim−1 . Then for every

k, dh(pk, pk+1) ≥ ε, with (pk, pk+1) ∈ J(Uik). By Lemma 3.4 t(pk) < t(pk+1) which

implies t(p) < t(q).

Theorem 3.14. Let (M,C) be a closed cone structure which admits a time function

t. Then JS\∆ ⊂ {(p, q) : t(p) < t(q)}, so (M,C) is stably causal and the continuous

JS-utilities are precisely the time functions.

Proof. Let (p, q) ∈ JS\∆ and let ε > 0 be chosen so that ε ≤ dh(p, q). By Lemma

3.5 there is C ′ > C such that JC′\Rε ⊂ {(p, q) ∈ : t(p) < t(q)}. But (p, q) /∈ Rε and
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(p, q) ∈ JC′ , thus t(p) < t(q). The proved inclusion JS\∆ ⊂ {(p, q) : t(p) < t(q)}
implies the antisymmetry of JS , hence stable causality. It also means that every

time function is a JS-utility. For the converse, under stable causality a continuous

JS-utility t is a JS-isotone function (hence J-isotone) such that if (p, q) ∈ JS\∆
then t(p) < t(q), but J ⊂ JS , thus this property implies (p, q) ∈ J\∆⇒ t(p) < t(q),

that is t is a time function.

As a second step we prove that the continuous K-utilities are precisely the time

functions. The next lemmas appeared in [13].

Lemma 3.6. Let (M,C) be a non-imprisoning closed cone structure. Let (p, q) ∈ K
then either (p, q) ∈ J or for every relatively compact open set B 3 p there is r ∈ ∂B
such that p < r and (r, q) ∈ K.

Proof. Consider the relation

R = {(p, q) ∈ K : (p, q) ∈ J or for every relatively compact open set B 3 p
there is r ∈ ∂B such that p < r and (r, q) ∈ K}.

It is easy to check that J ⊂ R ⊂ K. We are going to prove that R is closed and

transitive. From that and from the minimality of K it follows R = K and hence

the desired result.

Transitivity: assume (p, q) ∈ R and (q, s) ∈ R. If (p, s) ∈ J there is nothing to

prove. Otherwise we have (p, q) /∈ J or (q, s) /∈ J .

If (p, q) /∈ J for every B 3 p open relatively compact set there is r ∈ ∂B such

that p < r and (r, q) ∈ K, thus (r, s) ∈ K and hence (p, s) ∈ R.

It remains to consider the case (p, q) ∈ J and (q, s) /∈ J+. If p = q then

(p, s) = (q, s) ∈ R. Otherwise, p < q and for every B 3 p open relatively compact

set we have two possibilities, whether q /∈ B or q ∈ B. If q /∈ B the causal curve

γ joining p to q intersects ∂B at a point r ∈ ∂B (possibly coincident with q but

different from p). Thus p < r, (r, q) ∈ J , hence p < r and (r, s) ∈ K. If instead

q ∈ B, since (q, s) ∈ R\J , there is r ∈ ∂B such that q < r and (r, s) ∈ K, moreover,

since p ≤ q, we have p < r. Since the searched conclusion “p < r, r ∈ ∂B and

(r, s) ∈ K” holds in both cases, we conclude (p, s) ∈ R.

Relation R is closed: let (pn, qn) → (p, q), (pn, qn) ∈ R. Assume, by contradic-

tion, that (p, q) /∈ R, then p 6= q as J ⊂ R. Without loss of generality we can assume

two cases: (a) (pn, qn) ∈ J for all n; (b) (pn, qn) /∈ J for all n.

(a) Let B 3 p be an open relatively compact set. For sufficiently large n, pn 6=
qn and pn ∈ B. By the limit curve theorem either there is a limit continuous

causal curve joining p to q, and thus p < q (a contradiction), or there is a future

inextendible continuous causal curve σp starting from p such that for every p′ ∈ σp,
(p′, q) ∈ J . Since (M,C) is non-imprisoning, σp intersects ∂B at some point r. Thus

p < r and since (r, q) ∈ J ⊂ K we have (p, q) ∈ R, a contradiction.

(b) Let B 3 p be an open relatively compact set. For sufficiently large n, pn 6= qn
and pn ∈ B. Since (pn, qn) ∈ R\J there is rn ∈ ∂B, pn < rn, and (rn, qn) ∈ K.
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Without loss of generality we can assume rn → r ∈ ∂B, so that (r, q) ∈ K. Arguing

as in (a) either p < r (and (r, q) ∈ K) or there is r′ ∈ ∂B such that p < r′ and

(r′, r) ∈ J ⊂ K, from which it follows that (r′, q) ∈ K. Because of the arbitrariness

of B, (p, q) ∈ R, a contradiction.

Lemma 3.7. Let (M,C) be a closed cone structure.

(a) Let t̃ be a continuous function such that x ≤ y ⇒ t̃(x) ≤ t̃(y). If (p, q) ∈ K
then t̃(p) ≤ t̃(q).

(b) Let t be a time function on (M,C). If (p, q) ∈ K then p = q or t(p) < t(q).

Proof.

Proof of (a). Consider the relation

R̃ = {(p, q) ∈ K : t̃(p) ≤ t̃(q)}.

Clearly J ⊂ R̃ ⊂ K and R̃ is transitive.

Let us prove that R̃ is closed. If (xn, zn) ∈ R̃ is a sequence such that (xn, zn)→
(x, z), then passing to the limit t̃(xn) ≤ t̃(zn) and using the continuity of t̃ we get

t̃(x) ≤ t̃(z), moreover since K is closed, (x, z) ∈ K, which implies (x, z) ∈ R̃, that

is R̃ is closed.

Since J ⊂ R̃ ⊂ K, and R̃ is closed and transitive, by using the minimality of K

it follows that R̃ = K. As a consequence, if (p, q) ∈ K then t̃(p) ≤ t̃(q).
Proof of (b). By lemma 3.3, since t is a time function (M,C) is strongly causal

and thus non-imprisoning. Consider the relation

R = {(p, q) ∈ K : p = q or t(p) < t(q)}.

Clearly J ⊂ R ⊂ K and R is transitive. Let us prove that R is closed by keeping

in mind the result given by (a) that we just obtained. Let (pn, qn) ∈ R ⊂ K be a

sequence such that (pn, qn)→ (p, q). As K is closed, (p, q) ∈ K. If, by contradiction,

(p, q) /∈ R then (p, q) /∈ J , thus by lemma 3.6, chosen an open relatively compact

set B 3 p there is r ∈ ∂B, with p < r, (r, q) ∈ K, thus t(p) < t(r) ≤ t(q) and hence

(p, q) ∈ R, a contradiction.

Since J ⊂ R ⊂ K, and R is closed and transitive, by using the minimality of

K it follows that R = K. As a consequence, if (p, q) ∈ K then either p = q or

t(p) < t(q).

Theorem 3.15. Let (M,C) be a closed cone structure which is K-causal, then

the continuous K-utilities are precisely the continuous J-utilities (namely, the time

functions). Similarly, the continuous K-isotone function are precisely the continu-

ous J-isotone functions.

Proof. A K-utility is a function u which satisfies (i) (x, y) ∈ K ⇒ u(x) ≤ u(y) and

(ii) (x, y) ∈ K and (y, x) /∈ K ⇒ u(x) < u(y). Since the spacetime is K-causal this

condition is equivalent to (x, y) ∈ K ⇒ x = y or u(x) < u(y). Thus by Lemma 3.7
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point (b), every time function is a continuous K-utility. Conversely, in a K-causal

spacetime a continuous K-utility satisfies x < y ⇒ (x, y) ∈ K\∆ ⇒ u(x) < u(y)

and hence it is a time function. The last statement is just Lemma 3.7 (a).

Finally we are able to prove the next important result.

Theorem 3.16. Let (M,C) be a closed cone structure. The following properties

are equivalent:

(i) Stable causality,

(ii) Antisymmetry of JS,

(iii) Antisymmetry of K (K-causality),

(iv) Emptyness of the stable recurrent set,

(v) Existence of a time function,

(vi) Existence of a smooth temporal function,

Moreover, in this case JS = K = T1 = T2 where

T1 = {(p, q) : t(p) ≤ t(q) with t time function},
T2 = {(p, q) : t(p) ≤ t(q) with t smooth temporal function}.

Proof. (i) ⇔ (ii) is Th. 3.4. (ii) ⇔ (iv) is Th. 3.3. By Th. 3.11 (i) ⇒ (vi),

and clearly (vi) ⇒ (v). By Lemma 3.7 (b), (v) ⇒ (iii). Finally, by Auslander-

Levin’s theorem (iii) implies the existence of a continuous K-utility, namely a

time function (Th. 3.15) so by Th. 3.14 (M,C) is stably causal, hence (i). The

last statement follows from the multi-utility representation in Auslander-Levin’s

theorem. Applying it to the closed order JS jointly with Th. 3.14 gives JS = T1.

Applying it to the closed order K jointly with Th. 3.15 gives K = T1. It remains to

prove JS = T2. Clearly, T1 ⊂ T2, thus JS ⊂ T2. Let (p, q) /∈ JS , by the last statement

of Th. 3.11 we can find a smooth temporal function such that t(p) > t(q), that is

(p, q) /∈ T2, which concludes the proof.

We recall that causal simplicity means: J closed and antisymmetric.

Theorem 3.17. Let (M,C) be a causally simple closed cone structure, then (M,C)

is stably causal and J = JS = K = T1 = T2.

Proof. Under the assumption J is closed, thus it is the smallest closed transitive

relation containing J , hence K = J . But under the assumption J is antisymmetric

hence K is antisymmetric (stable causality). The equality of relations follows from

the previous theorem.

3.6.1. From time to temporal functions

This section can be completely skipped. Its main purpose is to present a different

method for constructing a temporal function in cone structures admitting a time
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function, provided one has proved with a different method that globally hyperbolic

proper cone structures admit Cauchy temporal functions. The method only works

for proper cone structures so the result is really weaker than that obtained in Th.

3.16. Nevertheless, the proof is instructive and passes through the notion of domain

of dependence.

Theorem 3.18. Suppose that every globally hyperbolic proper cone structure ad-

mits a Cauchy temporal function. Let (M,C) be a proper cone structure which

admits a time function t, then it is stably causal hence it admits a temporal func-

tion (Th. 3.11). Moreover, T = {(p, q) : t(p) ≤ t(q) for every t ∈ T } is independent

of whether T represents the set of time or temporal functions.

Proof. Let Sa = t−1(a), with a ∈ t(M), then Sa is acausal and D(Sa) is an open

set (Prop. 2.25, Th. 2.19 and 2.43). Hence D(Sa) endowed with the induced cone

distribution is a globally hyperbolic proper cone structure. By assumption there is a

smooth Cauchy time function ta on it. Let τa : D(Sa)→ R, be given by τa = ϕ ◦ ta,

where ϕ(x) is a smooth function such that ϕ = 1 for x ≥ 1, ϕ = −1 for x ≤ −1,

and ϕ′ > 0 on (−1, 1). It is smooth and strictly increasing over causal curves in a

neighborhood of t−1
a (0).

The function τa can be extended to a smooth function all over M by setting

τa = 1 on {p : ta(p) ≥ 1}\D(Sa) and τa = −1 on {p : ta(p) ≤ −1}\D(Sa). In fact,

given q ∈ H+(S) we have just to show that τa = 1 in a neighborhood of q (and

similarly for q ∈ H−(S)). We know that H+(S) is a locally Lipschitz hypersurface,

thus we can find a coordinate neighborhood of q, diffeomorphic to a cylinder C =

A × [0, 1] ⊂ M whose [0, 1] fiber are timelike as generated by a timelike Lipschitz

vector field V . On the portion of integral line of V passing through q which is

contained in D(Sa), ta goes to infinity as the evaluation point approaches q. Thus

taking the base A sufficiently small, by continuity of ta we can choose the cylinder

so that ta > 1 on A× {0}, and hence everywhere on C. This fact proves that τa is

indeed extended to a smooth function.

Let Ta = τ−1
a ((−1, 1)), then M is covered by such open strips, and since it is

Lindelöf it admits a countable subcovering {Tai}. Let o ∈M and let h be a complete

Riemannian metric. Let us set Ci = 1 + supB̄(o,i) ‖Dτai‖h and define

τ =
∑
i

1

2iCi
τai .

Since |τai | ≤ 1 the right-hand side converges uniformly so τ is continuous. Let K

be a compact set then there is some n such that K ⊂ B(o, n) and we have

sup
B̄(o,n)

∞∑
i=1

1

2iCi
‖Dτai‖h ≤ sup

B̄(o,n)

n∑
i=1

1

2iCi
‖Dτai‖h︸ ︷︷ ︸

<∞

+

∞∑
i=n+1

1

2iCi
sup
B̄(o,n)

‖Dτai‖h︸ ︷︷ ︸
≤Ci

<∞.
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This inequality shows that the series defining τ converges in C1 norm on every

compact set, resulting in a C1 function. Since every point belongs to some Tai and

on every Tai , dτai = φ′(ta)dta which is positive on C, τ is temporal.

Next, since every temporal function is a time function we need only to prove one

inclusion, which follows from the next result: suppose that there are p, q ∈M such

that there exist a time function t such that t(p) > t(q) then we can find a temporal

function τ such that τ(p) > τ(q). In fact let us use t as initial time function in the

above construction. Choosing a in such a way that t(q) < a < t(p) and including

Ta1 in the covering, with a1 = a we have that τa1 is a smooth isotone function such

that τa1
(q) < 0 < τa1

(p), with non-negative dτa1
on C. Now given any temporal

function g, and a constant b > 0, τ = g + bτa1
is temporal and for sufficient large

b, τ(q) < τ(p).

3.7. The regular (C1,1) theory

This is section is meant to summarize what is known under stronger regularity

conditions on the cone distribution.

Let us consider a C0 distribution of proper cones and assume that the differ-

entiability degree of the local immersion defining the hypersurface ∂Cx ⊂ TxM\0,

is C3,1 at every x, while the immersion defining the hypersurface ∂C ⊂ TM is

C1,1. The pair (M,C) is also called cone structure, and for brevity we say that it

is regular or C1,1.

A regular Lorentz-Finsler space (space) is a pair (M,F ) where F : C → [0,+∞)

is positive homogeneous of degree one, ∂C = F−1(0), (M,C) is a regular cone

structure and L := − 1
2F 2 has C1,1 Lorentzian vertical Hessian on C. Here F is

the Finsler function, while L is the Finsler Lagrangian.

Under these differentiability conditions on the boundary of the cone, L can be

extended all over TM\0 preserving the differentiability degree of the Hessian and

its Lorentzian nature. In this way the manifold is converted into a Lorentz-Finsler

space in Beem’s sense [110]. Physically, what really matters is the function F on

the cone, nevertheless, some results such as the existence of convex neighborhoods

are better expressed using a Lorentz-Finsler space in Beem’s sense [6], so it is useful

to know that one can pass to the latter type of space.

Every regular cone structure comes from a regular Lorentz-Finsler space. The

argument has been used a few times, the details on how to construct the Finsler

function can be found in [103, Prop. 13]. Of course, the Finsler function compatible

with the cone structure is not unique.

Geodesics are the stationary points for the Lagrangian L . Reference [103] points

out that the notion of unparametrized lightlike geodesic does not depend on the

Finsler Lagrangian, just on (M,C) and that such geodesics are locally achronal.

Thus the notions of causal curve, timelike curve, lightlike curve, unparametrized

lightlike geodesics, really refer to the cone structure (M,C).

The results for Lorentz-Finsler theory developed in [6] [12, Sec. 6] show that
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most of causality theory, particulary those portions that do not use the notion of

curvature but just maximization and limit curve arguments [110, Remark 2], pass

through to the Lorentz-Finsler case (in fact, many results which involve curvature

also do [12] but they require more care, see also [9–11] for singularity theorems in

the Lorentzian case). This result is due to the existence of convex neighborhoods in

this theory and to the fact that the exponential map is well defined and provides a

local lipeomorphism [6–8]. Since every cone structure comes from a Lorentz-Finsler

space we have

Remark 3.7. All the results on causality theory for regular Lorentz-Finsler spaces

developed in [6] [12, Sec. 6] which do not involve in their statement the Finsler

function F but just the future causal cone pass through to the cone structure case.

For instance, the geodesic equation has a unique solution for every initial con-

dition, lightlike geodesics do not branch, convex neighborhoods do exist, Cauchy

horizons are generated by lightlike geodesics, lightlike geodesics are locally achronal,

the chronological relation is open, and so on.

Some of the properties hold under fairly weaker assumptions as we have shown

in this work.

4. Applications

In this section we apply the previous results to two important problems.

4.1. Functional representations and the distance formula

On a topological ordered space (M,T , R) we say that a family of continuous R-

isotone functions F represents the order R (a reflexive, transitive and antisymmetric

relation) on M if

(i) (p, q) ∈ R if and only if f(p) ≤ f(q) for all f ∈ F ,

and that it represents the topology if

(ii) for every p ∈ M and open neighborhood O 3 p we can find f̌ , f̂ ∈ F such

that [{q : f̌(q) < 0} ∩ {q : f̂(q) > 0}] ⊂ O.

Notice that if the representation holds for a family, it also holds for a larger family.

If both topology and order are represented by the continuous isotone functions the

topological ordered space is called a completely regularly ordered space [82]. These

topological ordered spaces are important since they are equivalent to the quasi-

uniformizable spaces, namely to those spaces which can be Nachbin compactified.

A rewording of Theorem 3.11 is

Theorem 4.1. In a stably causal closed cone structure (M,C) the Seifert order JS
and the manifold topology are represented by the smooth temporal functions. As a

consequence, (M,T , JS) is a completely regularly ordered space.
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The quasi-uniformizability of stably causal spacetimes was proved as a corollary

of a more general result in [83] (where the proof did not depend on the roundness

of the cone). Here we have restricted the family of representing functions, thereby

getting a stronger result. For what concerns the representation of just the order

other related works are [13,16].

A rewording of Theorem 3.12 is

Theorem 4.2. Let (M,F ) be a globally hyperbolic closed Lorentz-Finsler space

and let h be a complete Riemannian metric on M . Then the causal order J and the

manifold topology are represented by the smooth Cauchy h-steep strictly F -steep

temporal functions.

Let r+ = max{r, 0}. On a closed Lorentz-Finsler space (M,F ) we say that the

stable distance is represented by F if for every p, q ∈M

D(p, q) = inf
{

[f(q)− f(p)]+ : f ∈ F
}
. (4.1)

If D is represented and F consists of continuous and isotone functions we have for

f ∈ F , and (p, q) ∈ J , f(q)− f(p) ≥ d(p, q) ≥
∫
x

F (ẋ)dt, where x is any C-causal

connecting curve. This fact suggests to try to represent the stable distance using

F -steep temporal functions.

Notice that in Eq. (4.1) the right-hand side is upper semi-continuous so the

distance that has chances to be representable is D rather than d.

Proposition 4.1. Let (M,F ) be a proper Lorentz-Finsler space. If τ : M → R is

F -steep and temporal, then F o(−dτ) ≥ 1.

Proof. Since τ is temporal −dτ ∈ Int(Co). By definition of F o we have

(−dτ,F o(−dτ)) ∈ ∂(C×)o.

By applying Remark 3.2 to the pair of proper cones C× and (C×)o, we get that

there is Y ∈ ∂C× such that 〈(−dτ,F o(−dτ)), Y 〉 = 0, and Y can be chosen of the

form Y = (y,F (y)) with y ∈ C, thus 0 < dτ(y) = F o(−dτ)F (y), where the first

inequality follows from −dτ ∈ Int(Co), hence F (y) 6= 0. But τ is also F -steep,

thus F (y) ≤ F o(−dτ)F (y) which implies 1 ≤ F o(−dτ).

Theorem 4.3. Let (M,F ) be a closed Lorentz-Finsler space. If there is a F -steep

temporal function f , then (M,F ) is stable and for every p, q ∈M

D(p, q) ≤ [f(q)− f(p)]+.

By Th. 3.14 the right-hand side is positive if (p, q) ∈ JS\∆.

Proof. The existence of f implies that (M,C) is stably causal. If (p, q) /∈ JS or

p = q by Th. 2.60 we have D(p, q) = 0 so the inequality is satisfied. Let (p, q) ∈
JS\∆, by Th. 3.14 f(q) − f(p) > 0. We prove the result for f strictly F -steep

temporal function. If f is not so then f̃ = (1 + ε)f , ε > 0, is, then once D(p, q) ≤
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(1 + ε)[f(q)− f(p)]+ is proved it is sufficient to take the limit ε→ 0. We are going

to prove that there is a locally Lipschitz proper Lorentz-Finsler space F ′, F < F ′,

such that d′(p, q) ≤ f(q) − f(p). Since f is a strictly F -steep temporal function

on every tangent space TxM , the indicatrix Ix = F−1
x (1) does not intersect the

compact section df−1
x (1) ∩ Cx. Thus taking the indicatrix of I ′ sufficiently close

to I , the same property is shared by F ′ which means that f is a strictly F ′-steep

temporal function. By Prop. 4.1 F ′o(−df) ≥ 1 and for every C ′-causal curve γ

connecting p to q

f(q)− f(p) =

∫
df(γ̇)dt ≥

∫
F ′o(−df)F ′(γ̇)dt

≥
∫

F ′(γ̇)dt ≥ `′(γ)

where we used the reverse Cauchy-Schwarz inequality for (M,F ′), cf. Prop. 3.2.

Thus taking the supremum over γ we find that for every p, q ∈M , d′(p, q) ≤ [f(q)−
f(p)]+ which implies D < +∞, namely (M,F ) is stable. Since D(p, q) ≤ d′(p, q)

we have proved the desired result.

On Sec. 3.4 we have defined on M× = M × R a cone structure C↓ which at

P = (p, r) is given by

C↓P = {(y, z) : y ∈ Cp ∪ {0}, z ≤ F (y)}\{(0, 0)}. (4.2)

There we have shown that (M,C↓) is stably causal if and only if (M,C) is stably

causal, cf. Th. 3.7.

Theorem 4.4. Let (M,F ) be a closed Lorentz-Finsler space. Then (M,C↓) is

globally hyperbolic if and only if (M,C) is globally hyperbolic.

Proof. Let f be a Cauchy temporal function for (M,C) then F ((p, r)) = f(p)− r
is a Cauchy temporal function for (M,C↓), thus if (M,C) is globally hyperbolic

then (M,C↓) is globally hyperbolic. For the other direction, the intersection of a

Cauchy hypersurface for (M,C↓) with r = 0 provides a Cauchy hypersurface for

(M,C).

Lemma 4.1. Let (M,F ) be a closed Lorentz-Finsler space. The relation

R = {((p, r), (p′, r′)) : (p, p′) ∈ JS and r′ − r ≤ D(p, p′)}

satisfies R ⊂ J↓S where J↓S is the Seifert relation for (M,C↓).

Proof. Let ((p, r), (p′, r′)) ∈ R then for every locally Lipschitz proper Lorentz-

Finsler space F ′ > F , as (p, p′) ∈ JS we have (p, p′) ∈ J ′ and since r′−r ≤ D(p, p′)

we have also r′ − r ≤ d(p, p′). For every ε > 0 we can find a continuous C ′-causal

curve x such that (r′− ε)− r ≤ `(x) < d(p, p′), thus ((p, r), (p′, r′− ε)) ∈ J ′↓, which

implies ((p, r), (p′, r′)) ∈ J ′↓, and hence R ⊂ ∩F ′>FJ ′↓. For every locally Lipschitz
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proper cone structure D > C↓ we can find F ′ > F such that D > C ′↓ ≥ C↓,

thus ∩F ′>FJ ′↓ ⊂ JD and given the arbitrariness of D, we have by Prop. 2.15,

R ⊂ ∩F ′>FJ ′↓ ⊂ JS .

The Seifert relation on (M×, C↓) is nicely related with the stable distance.

Theorem 4.5. Let (M,F ) be a stably causal closed Lorentz-Finsler space. The

Seifert relation of (M×, C↓) is given by

J↓S = {((p, r), (p′, r′)) : (p, p′) ∈ JS and r′ − r ≤ D(p, p′)}. (4.3)

Proof. By Th. 3.7 (M×, C↓) is stably causal, thus by Th. 3.16, K↓ = J↓S Let R

be the right-hand side of Eq. (4.3). By Prop. 4.1 R ⊂ JS . Moreover, R is closed

(by the upper semi-continuity of D) and transitive (by Th. 2.60 (c)) and contains

{((p, r), (p′, r′)) : (p, p′) ∈ J and r′− r ≤ d(p, p′)} which contains J↓, thus K↓ ⊂ R.

We conclude R = K↓ = J↓S .

The next result clarifies why strictly F -steep temporal functions are of relevance.

Lemma 4.2. Let (M,F ) be a closed Lorentz-Finsler space. The smooth temporal

functions F on (M,C↓) whose level sets intersect every R-fiber exactly once and

such that F ((q, r2))−F ((q, r1)) = r1−r2, ∀q ∈M , r1, r2 ∈ R, are put in one-to-one

correspondence with the smooth strictly F -steep temporal functions f on (M,F ),

through the condition F−1(0) = ∪q(q, f(q)) or equivalently F ((q, r)) = f(q) − r.
The statement remains valid if we add Cauchy in front of F and f above.

Proof. It is clear that the condition F ((q, r2))−F ((q, r1)) = r1− r2 determines F

provided the hypersurface F−1(0) is given, in fact F ((q, r)) = f(q)− r. If F is tem-

poral, dF is positive on C↓, thus F−1(0) is transverse to every R-fiber, and so f is

differentiable and smooth. Moreover, since dF is positive on C↓, 0 < dF ((y,F (y)))

for y ∈ C\0, which reads df(y) > F (y), so f is strictly steep. The converse is

analogous, since the steep inequality is strict, dF is positive on C↓, and so it is

temporal. If F is Cauchy then f is Cauchy, just set r = 0 so that F ((q, 0)) = f(q)

and consider the continuous C↓-causal curves which lie in r = 0. Conversely, if f

is Cauchy F is bound to increase to infinity over every continuous causal curve

because the projection of a continuous causal curve is a continuous causal curve

unless function r goes to infinity over the curve.

The main idea for proving the distance formula is this: the formula is really the

statement on the representability of J↓S through smooth temporal functions on M×

in disguise.

Theorem 4.6. Let (M,F ) be a closed Lorentz-Finsler space and let S be the

family of smooth strictly F -steep temporal functions. The Lorentz-Finsler space

(M,F ) is stable if and only if S is non-empty. In this case S represents
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(a) the order JS, namely (p, q) ∈ JS ⇔ f(p) ≤ f(q), ∀f ∈ S ;

(b) the manifold topology, namely for every open set O 3 p we can find f, h ∈ S

in such a way that p ∈ {q : f(q) > 0} ∩ {q : h(q) < 0} ⊂ O;

(c) the stable distance, in the sense that the distance formula holds true: for

every p, q ∈M

D(p, q) = inf
{

[f(q)− f(p)]+ : f ∈ S
}
. (4.4)

Moreover, strictly can be dropped.

Proof. The first statement follows from Th. 4.3 and Th. 3.10 in the strict and non-

strict case. For the other results we prove them in the strict case which is stronger.

(a). One direction is Th. 3.14. For the other direction, suppose that (p, q) /∈ JS ,

by Th. 3.10 there is a smooth strictly F -steep temporal function f such that

f(p) > f(q).

(b). This is the last statement of Th. 3.10.

(c). From (a) and Th. 2.60(a) we know that the equality holds if (p, q) /∈ JS or

p = q. Suppose (p, q) ∈ JS\∆, due to Th. 4.3 we have just to prove that for every ε >

0 there is g ∈ S such that g(q)−g(p) ≤ D(p, q)+ε. Let P = (p, 0), Q = (q,D(p, q)+

ε) so that by Th. 4.5 (P,Q) /∈ J↓S . We know that on a stably causal closed cone

structure the Seifert relation is represented by the smooth temporal functions, cf.

Th. 4.1. Thus there is H : M× → [0, 1] smooth temporal function on (M×, C↓) such

that H(P ) > H(Q). We know from Theorem 3.10 that there is a smooth strictly

F -steep temporal function f on M and by Lemma 4.2 a smooth temporal function

F on M× which intersects every R-fiber and such that F ((q, r2)) − F ((q, r1)) =

r1 − r2, ∀q ∈ M , r1, r2 ∈ R. We can choose it to be positive on P , F (P ) > 0.

Let G = H + kF , k > 0, then since H is bounded, the level sets of G intersect

every R-fiber and this can happen only once since G is C↓-temporal. Let 0 < k <
1
2 [H(P )−H(Q)]/[1 + |F (Q)|], then

G(Q) ≤ H(Q) + 1
2 [H(P )−H(Q)] < H(P ) < G(P ).

We can redefineG by adding a constant to it and so assumeG(P ) = 0. LetG−1(0) =

∪r(r, g(r)), then g(p) = 0. Notice that G̃, the function which shares with G the

zero level set but which satisfies G̃((q, r2)) − G̃((q, r1)) = r1 − r2 is also a smooth

temporal function, thus by Lemma 4.2 g is a smooth strictly F -steep temporal

function. Since G(Q) < 0 we have D(p, q) + ε > g(q) = g(q)− g(p), which is what

we wished to prove.

Remark 4.1. A related result is the following. If (M,F ) is a stably causal closed

Lorentz-Finsler space, then (M×, C↓) is stably causal, thus, by Th. 4.1, the topology

and order on M× are represented by the smooth temporal functions on (M×, C↓),

which for that matter can be replaced by the smooth temporal functions F on

(M,C↓), which satisfy F ((q, r2))− F ((q, r1)) = r1 − r2, ∀q ∈M , r1, r2 ∈ R. Under
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the stable condition they can also be chosen so that their level sets intersect exactly

once every R-fiber.

If the Lorentz-Finsler space is globally hyperbolic the representing functions can

be chosen Cauchy.

Theorem 4.7. Let (M,F ) be a globally hyperbolic closed Lorentz-Finsler space

and let S be the family of smooth Cauchy strictly F -steep temporal functions f

which are hf -steep for some complete Riemannian metric dependent on the func-

tion. The Lorentz-Finsler space (M,F ) is stable and S is non-empty. Moreover,

S represents

(a) the causal order J , namely (p, q) ∈ J ⇔ f(p) ≤ f(q), ∀f ∈ S ;

(b) the manifold topology, namely for every open set O 3 p we can find f, h ∈ S

in such a way that p ∈ {q : f(q) > 0} ∩ {q : h(q) < 0} ⊂ O;

(c) the distance, in the sense that the distance formula holds true: for every

p, q ∈M

d(p, q) = inf
{

[f(q)− f(p)]+ : f ∈ S
}
. (4.5)

Moreover, strictly can be dropped.

By Th. 4.4 (M,C↓) is globally hyperbolic. Furthermore, by Th. 2.63 and Th.

3.12 if h is a complete Riemannian metric then the first statement and (a) and (b)

hold with the family S restricted to the smooth Cauchy h-steep strictly F -steep

temporal functions.

Proof. We prove all results in the strict case which is stronger. Let h be a complete

Riemannian metric. The first statement and (a) and (b) are going to be proved for

the smaller family for which hf = h. The first statement follows from Th. 2.63 and

Th. 3.12. (a). One direction is Th. 3.14. The other direction is the second statement

of Th. 3.12.

(b). This is the last statement of Th. 3.12.

(c). In a globally hyperbolic closed cone structure d = D (Th. 2.60) and JS = J

(Th. 3.17). Let f be a smooth Cauchy h-steep strictly F -steep temporal functions

which has been already shown to exist, then F ((p, r)) = f(p) − r is Cauchy on

(M,C↓) which proves that (M,C↓) is globally hyperbolic and hence J↓ = J↓S . From

(a) and Th. 2.60(a) we know that the equality holds if (p, q) /∈ J or p = q. Suppose

(p, q) ∈ J\∆, due to Th. 4.3 we have just to prove that for every ε > 0 there is

g ∈ S such that g(q) − g(p) ≤ d(p, q) + ε. Let P = (p, 0), Q = (q, d(p, q) + ε) so

that by Th. 4.5 (P,Q) /∈ J↓S . We know that on a stably causal closed cone structure

the Seifert relation is represented by the smooth temporal functions, cf. Th. 4.1.

Thus there is H : M× → [0, 1] smooth temporal function on (M×, C↓) such that

H(P ) > H(Q).

Function F on M× is smooth temporal and Cauchy. We add to it a constant

so that, F (P ) > 0. Let G = H + kF , k > 0, then since H is bounded G is
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Cauchy. In particular the level sets of G intersect every R-fiber exactly once. Let

0 < k < 1
2 [H(P )−H(Q)]/[1 + |F (Q)|], then

G(Q) ≤ H(Q) + 1
2 [H(P )−H(Q)] < H(P ) < G(P ).

We can redefineG by adding a constant to it and so assumeG(P ) = 0. LetG−1(0) =

∪r(r, g̃(r)), then g̃(p) = 0. Notice that G̃, the function which shares with G the

zero level set but which satisfies G̃((q, r2)) − G̃((q, r1)) = r1 − r2 is also a smooth

Cauchy temporal function, thus, by Lemma 4.2, g̃ is a smooth Cauchy strictly F -

steep temporal function. Since G(Q) < 0 we have d(p, q) + ε > g̃(q) = g̃(q)− g̃(p).

Though g̃ is not necessarily hg̃-steep for some complete Riemannian metric hg̃, the

function g = g̃ + δf , δ > 0, is hg-steep where hg = δh is a complete Riemannian

metric. For sufficiently small δ the inequality d(p, q) + ε > g(q)− g(p) is satisfied.

Let us investigate the validity of the distance formula for d replacing D.

Lemma 4.3. Let (M,F ) be a locally Lipschitz proper Lorentz-Finsler space such

that F (∂C) = 0, then on (M×, C↓) the chronological relation is given by

I↓ = {((p, r), (p′, r′)) : (p, p′) ∈ I and r′ − r < d(p, p′)},

while its closure satisfies

I↓ = J↓ ⊃ {((p, r), (p′, r′)) : (p, p′) ∈ Ī and r′ − r ≤ d(p, p′)}.

Proof. Since IntC↓(p,r) = {(y, z) : y ∈ IntCp, z < F (y)}, integration over a C↓-

timelike curve on M×, easily gives the inclusion ⊂.

For the other direction, by the proof of Th. 2.56 for every 0 < R < d(p, p′)

we can find a C×-timelike (and hence C↓-timelike) curve connecting P = (p, r) to

(p′, r + R), thus, since the R-fibers are continuous causal curves and J ◦ I ⊂ I, all

the points of the form (p′, r′) with r′ − r < d(p, p′) belong to (I↓)+((p, r)).

Let G = {((p, r), (p′, r′)) : (p, p′) ∈ I and r′ − r < d(p, p′)}. By the previous

formula Ḡ = I↓ ⊃ I↓. The closure Ḡ is given by the pairs ((p, r), (p′, r′)), for

which there are sequences ((pi, ri), (p
′
i, r
′
i)) → ((p, r), (p′, r′)) with (pi, p

′
i) ∈ I and

r′i − ri < d(pi, p
′
i). Notice that if (p, p′) ∈ ∂I then d(p, p′) = 0 because if there is

a connecting causal curve it is a lightlike geodesic and so it cannot have timelike

tangent anywhere (Th. 2.17), thus given a sequence (pi, p
′
i) ∈ I, (pi, p

′
i)→ (p, p′) we

have that ((pi, r), (p
′
i, r
′)) with r′ ≤ r belongs to G and converges to ((p, r), (p′, r′)),

thus Ḡ includes {((p, r), (p′, r′)) : (p, p′) ∈ Ī and r′ − r ≤ d(p, p′)}.

Theorem 4.8. Let (M,F ) be a distinguishing locally Lipschitz proper Lorentz-

Finsler space such that F (∂C) = 0. The following conditions are equivalent

(1) D = d,

(2) d is upper semi-continuous,
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and they imply the causal continuity of (M,C).

Under the assumption d is lower semi-continuous but this fact will not be used.

Proof. 1⇒ 2. This direction is immediate from Th. 2.60. 2⇒ 1. We know that

J↓ ⊂ {((p, r), (p′, r′)) : (p, p′) ∈ J and r′ − r ≤ d(p, p′)}
⊂ {((p, r), (p′, r′)) : (p, p′) ∈ J̄ and r′ − r ≤ d(p, p′)}.

But the latter relation is closed because d is upper semi-continuous (notice d is

defined on M×M , thus also on ∂J), thus J↓ ⊂ {((p, r), (p′, r′)) : (p, p′) ∈ J̄ and r′−
r ≤ d(p, p′)}. The reverse inclusion follows from Lemma 4.3, so

J↓ = I↓ = {((p, r), (p′, r′)) : (p, p′) ∈ Ī and r′ − r ≤ d(p, p′)} (4.6)

Due to Th. 2.24 (M,C) is reflective (hence causally continuous and stably

causal), thus J̄ = Ī is transitive (Th. 2.40). Since the relation in display is closed

and transitive and contains J↓, we have J↓S = K↓ = J↓, where the first equality is

due to stable causality. From causal continuity JS = J̄ , and by the equality J↓ = J↓S
and Th. 4.5 we get D = d.

Corollary 4.1. Let (M,F ) be a distinguishing locally Lipschitz proper Lorentz-

Finsler space such that F (∂C) = 0 and such that d is finite and continuous, then

(M,F ) is stable.

Proof. If (M,F ) has a finite and continuous Lorentz-Finsler distance d, then

(M,C) is causally continuous and D = d by Theorem 4.8, and so D is finite. Thus

(M,F ) is stable.

The next result clarifies what are the simple spacetimes in the sense of Parfionov

and Zapatrin [37].

Theorem 4.9. Let (M,F ) be a distinguishing locally Lipschitz proper Lorentz-

Finsler space such that F (∂C) = 0, and let S be the family of F -steep temporal

functions. The distance formula

d(p, q) = inf{[f(q)− f(p)]+ : f ∈ S }. (4.7)

holds if and only if (M,F ) has a finite and continuous Lorentz-Finsler distance d

(hence it is causally continuous), in which case d = D.

It should be observed that under global hyperbolicity the distance formula does

not require the locally Lipschitz proper condition, cf. Th. 4.7.

Proof. If (M,F ) has a finite and continuous Lorentz-Finsler distance d, then

(M,C) is causally continuous and D = d by Theorem 4.8, and so D is finite.

Thus (M,F ) is stable and by Theorem 4.6 the distance formula holds true. For

the converse, distinction implies that d(p, q) < +∞ for some p, q ∈ M (by Prop.
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2.10), thus since the distance formula holds, the family of steep temporal functions

is non-empty and hence the spacetime (M,F ) is stably causal and d is finite. The

right-hand side of Eq. (4.7) being the infimum of a family of continuous function

is upper semi-continuous, thus d is upper semi-continuous. By Th. 2.53 d is lower

semi-continuous and by Prop. 4.8 d = D and (M,C) is causally continuous.

4.1.1. Distance formula for stably causal spacetimes

In this section we give the distance formula for stably causal closed Lorentz-Finsler

spaces. Contrary to the formula for stable spacetimes it requires unbounded repre-

senting functions.

Given a preorder R on M we have defined the notion of R-isotone and R-

utility function f : M → R. The definition can be easily generalized to functions

f : M → [−∞,∞] since the order ≤ of the real line can be trivially extended.

Such functions will be called extended R-isotone functions or extended R-utility

functions.

Lemma 4.4. Let (M,C) be a stably causal closed cone structure, and let t be an

extended continuous J-isotone function. For every a, b ∈ R and ε > 0 we can

find a locally Lipschitz proper cone structure C ′ > C such that J+
C′(t

−1([a,∞])) ⊂
t−1([a− ε,∞]) and J−C′(t

−1([−∞, b])) ⊂ t−1([−∞, b+ ε]).

Proof. Let h be a complete Riemannian metric such that the dh distance between

t−1(a) and t−1(a − ε), and between t−1(b) and t−1(b + ε) is larger than ε. Let

τ : M → [−1, 1] be a time function, then τ̃ = tanh t+ cτ , c > 0, being the sum of a

continuous isotone function and a time function is a time function, where we have set

by convention tanh±∞ = ±1. We choose c so small that tanh a−2c > tanh(a− ε),
and tanh b + 2c < tanh(b + ε). By Lemma 3.5 there is a locally Lipschitz proper

cone structure C ′ > C such that, having defined Rε = {(p, q) : dh(p, q) < ε},
we have JC′\Rε ⊂ {(p, q) : τ̃(p) < τ̃(q)}. Let p ∈ t−1([a,∞]) and r ∈ J+

C′(p). If

dh(p, r) < ε then r ∈ t−1([a − ε,∞]) and we have finished. Otherwise (p, r) ∈
JC′\Rε, thus τ̃(p) < τ̃(r). From this inequality we have tanh t(r) > tanh t(p) +

c[τ(p) − τ(r)] ≥ tanh a − 2c > tanh(a − ε), that is t(r) > a − ε. Similarly, let

q ∈ t−1([−∞, b]) and r ∈ J−C′(q). If dh(r, q) < ε then r ∈ t−1([−∞, b + ε]) and we

have finished. Otherwise, (r, q) ∈ JC′\Rε, thus τ̃(r) < τ̃(q). From this inequality

we have tanh t(r) < tanh t(q) + c[τ(q) − τ(r)] ≤ tanh b + 2c < tanh(b + ε), that is

t(r) < b+ ε, which concludes the proof.

Lemma 4.5. Let (M,F ) be a stably causal closed Lorentz-Finsler space, and let

t be an extended continuous J-isotone function. Let B = t−1(R) be its finiteness

domain, then D|B×B = DB where DB is the Lorentz-Finsler stable distance for

(B,F |B).

Proof. Let p, q ∈ B, a = t(p), b = t(q), then by Lemma 4.4 there is C̃ > C such
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that every continuous C̃-causal curve connecting p to q is entirely contained in B. As

a consequence, for every F ′ > F such that, C < C ′ < C̃, d′(p, q) = d′B(p, q) which

taking the infimum over F ′ gives D(p, q) = DB(p, q), and given the arbitrariness

of p, q ∈ B, D|B×B = DB .

Theorem 4.10. Let (M,F ) be a stably causal closed Lorentz-Finsler space, and

let t be an extended continuous J-isotone function which is F -steep and temporal

wherever it is finite. With the convention ∞−∞ =∞ we have for every p, q ∈M

D(p, q) ≤ [t(q)− t(p)]+. (4.8)

Proof. Let us consider the case (p, q) ∈ JS . The JS-isotone continuous functions

coincide with the J-isotone continuous functions by Th. 3.15, thus t(p) ≤ t(q)

which implies the validity of the inequality whenever t(p) or t(q) is not finite, since

then [t(q)− t(p)]+ =∞. If they are both finite then defining B = t−1(R), we have

p, q ∈ B, which implies D(p, q) = DB(p, q). But t|B is a F -steep temporal function,

thus by Th. 4.3, DB(p, q) ≤ t(q)−t(p) = [t(q)−t(p)]+. Finally, if (p, q) /∈ JS , D = 0

in which case Eq. (4.8) is satisfied.

We recall that by Th. 4.5 if (M,F ) is a stably causal closed Lorentz-Finsler

space the Seifert relation of (M×, C↓) is given by

J↓S = {((p, r), (p′, r′)) : (p, p′) ∈ JS and r′ − r ≤ D(p, p′)}. (4.9)

Lemma 4.6. Let F be a smooth temporal function on (M×, C↓). Let a ∈ R, let O

be the projection to M of F−1(a), and let O+ ⊂M (resp. O− ⊂M) consist of those

points p over whose fiber F > a (resp. F < a). The function f : M → [−∞,+∞]

defined by F−1(a) = (p, f(p)) on O, and ±∞ on O±, is a continuous J-isotone

function which is smooth strictly F -steep temporal on O.

Proof. Let (p, q) ∈ JS , then for every c, P = (p, c) and Q = (q, c) are such that

(P,Q) ∈ J↓S , which implies F (P ) ≤ F (Q). Thus, if p ∈ O+, then it cannot hold

that q ∈ O−, since in the fiber of the former point F > a while in that of the latter

F < a. Similarly, if p ∈ O it cannot hold that q ∈ O−, since with c = f(p), we would

have that F (P ) = a and F (Q) < a. Analogously, we obtain that if q ∈ O− ∪O we

cannot have that p ∈ O+. Thus if any among p or q does not belong to O, we have

f(p) ≤ f(q). If they both belong to O, with c = f(p) we have a = F (P ) ≤ F (Q)

which implies c ≤ f(q), that is f(p) ≤ f(q). We conclude that f is indeed JS-

isotone. Its continuity follows because the level sets of F are closed, while it is

strictly F -steep temporal on O due to the temporality of F , see also Lemma 4.2.

Theorem 4.11. Let (M,F ) be a stably causal closed Lorentz-Finsler space. Let S

be the family of extended continuous J-isotone functions f : M → [−∞,+∞] which

are smooth strictly F -steep temporal functions wherever they are finite. The family

S represents
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(a) the order JS, namely (p, q) ∈ JS ⇔ f(p) ≤ f(q), ∀f ∈ S ;

(b) the manifold topology, in fact for every open set O 3 p and ε > 0 we can find

f, h ∈ S such that

p ∈ {q : f(q) > 0} ∩ {q : h(q) < 0} ⊂ {q : f(q) ≥ h(q)} ⊂ O

with |f | and |h| bounded by ε in neighborhood of {q : f(q) ≥ h(q)};
(c) the stable distance, in the sense that the distance formula holds true: for every

p, q ∈M (with the convention ∞−∞ =∞)

D(p, q) = inf
{

[f(q)− f(p)]+ : f ∈ S
}
. (4.10)

Proof. (a). One direction is clear since if f ∈ S then tanh f is a J-isotone function

and hence a JS-isotone function by Th. 3.15, which implies that f is an extended

JS-isotone function. For the other direction let (p, q) /∈ JS , by Th. 4.5 P = (p, 0)

and Q = (q, 0) are such that (P,Q) /∈ J↓S . Thus by Th. 3.11 there is a smooth

temporal function F on (M×, C↓) such that F (P ) > F (Q). Let a = F (P ) and

let f be the function of Lemma 4.6, then f(p) = 0 and f ∈ S . Since F (Q) < a

we have f(q) = −∞ or f(q) is finite where, due to F (P ) > F (Q), we must have

f(p) = 0 > f(q). In any case f(p) > f(q).

(b). Let P = (p, 0), ε > 0 and let O× = O × (−ε, ε). By Th. 3.11 we can

find smooth temporal functions Ť , T̂ on (M×, C↓) such that P ∈ [{Q : Ť (Q) <

0}∩{Q : T̂ (Q) > 0}] and such that [{Q : Ť (Q) ≤ 0}∩{Q : T̂ (Q) ≥ 0}] is compact and

contained inO×. Let us denote by Ǒ and Ô the projections of the level sets of Ť−1(0)

and T̂−1(0). There is an open set Õ ⊂ O which satisfies all the above properties for

O and additionally Õ ⊂ Ǒ∩Ô. We redefine Õ → O. The mentioned level sets over O

read {q ∈ O : (q, f̌(q))} and {q ∈ O : (q, f̂(q))}, where f̌ , f̂ : M → [−∞,∞] are as in

Lemma 4.6, and finite over O. The condition P ∈ [{Q : Ť (Q) < 0}∩{Q : T̂ (Q) > 0}]
implies f̌(p) < 0 < f̂(p) while the condition [{Q : Ť (Q) ≤ 0} ∩ {Q : T̂ (Q) ≥ 0}] ⊂
O× implies {q : f̂(q) ≥ f̌(q)} ⊂ O with |f̂ | and |f̌ | bounded by ε in neighborhood of

{q : f̂(q) ≥ f̌(q)}. Thus p ∈ {q : f̂(q) > 0} ∩ {q : f̌(q) < 0} ⊂ {q : f̂(q) ≥ f̌(q)} ⊂ O.

(c). The direction ≤ is just Th. 4.10. For the other direction, suppose that

(p, q) /∈ JS , then by the proof of (a) there is f ∈ S such that f(p) = 0 and

f(q) < f(p), thus [f(q)− f(p)]+ = 0, which proves that equality is attained. Let us

consider the case (p, q) ∈ JS . It is sufficient to prove that if D(p, q) <∞ for every

ε > 0 we can find f ∈ S , finite on p and q such that f(q)− f(p) < D(p, q) + ε. Let

P = (p, 0), Q = (q,D(p, q) + ε), then (P,Q) /∈ J↓S , thus there is F smooth temporal

function on (M×, C↓) such that F (P ) > F (Q). Notice that Q′ = (p,D(p, q)) is such

that (P,Q′) ∈ J↓S , thus F (P ) ≤ F (Q′) by Th. 3.15. Let a = F (P ) and let us consider

the level set F−1(a) and the associated function f ∈ S as in Lemma 4.6. Then

f(p) = 0, D(p, q) ≤ f(q) < D(p, q)+ε, which implies [f(q)−f(p)]+ < D(p, q)+ε.

4.2. Lorentzian embeddings

In this section we solve the problem of characterizing the Lorentzian spacetimes

isometrically embeddable in Minkowski. In this section the cone C is round and



Causality theory for closed cone structures with applications 131

F (v) =
√
−g(v, v), for v ∈ C, where g is a Lorentzian metric. The F -steep tem-

poral functions will just be called “steep temporal functions”. We also recall that

N0(n) is the Nash dimension.

We recall the result by Müller and Sánchez [31] whose proof has been sketched

in the Introduction.

Theorem 4.12. Let (M, g) be an n + 1-dimensional Lorentzian spacetime en-

dowed with a Ck, 3 ≤ k ≤ ∞, metric. (M, g) admits a Ck isometric embedding

in Minkowski spacetime EN,1 for some N if and only if (M, g) admits a Ck steep

temporal function. In that case N = N0(n+ 1) would do.

The necessary conditions for the embedding are outlined by the following result.

Lemma 4.7. Let (M, g) be a C1 Lorentzian submanifold of EN,1, then (M, g) is

stable.

Proof. Let ḡ = −(dx0)2 +
∑
i≥1(dxi)2 be the metric on EN,1 in its canonical

coordinates, g = i∗ḡ. For ε > 0, let ḡ′ = −(1+ ε)(dx0)2 +
∑
i≥1(dxi)2 and g′ = i∗ḡ′,

then g′ > g but (M, g′) is still causal since (RN+1, ḡ′) is. Moreover, for every

p, q ∈ M , d′(p, q) < +∞ since i(p) and i(q) are at finite Lorentzian distance on

(RN+1, ḡ′) and the i-image of a causal connecting curve on M is a causal connecting

curve on (RN+1, ḡ′). As a consequence, D < +∞.

Th. 3.10 on the existence of steep time functions on stable spacetimes leads us

to our main embedding result which establishes that the stable spacetimes are the

Lorentzian submanifolds of Minkowski spacetime.

Theorem 4.13. Let (M, g) be an n + 1-dimensional Lorentzian spacetime en-

dowed with a Ck, 3 ≤ k ≤ ∞, metric. (M, g) admits a Ck isometric embedding

in Minkowski spacetime EN,1, for some N > 0, if and only if (M, g) is stable. In

that case N = N0(n+ 1) would do.

Proof. One direction is proved in Lemma 4.7. If (M, g) is stable then by Th. 3.10

there is a smooth steep temporal function, and by Theorem 4.12 there exists the

embedding.

Corollary 4.2. Every n + 1-dimensional distinguishing Lorentzian spacetime

(M, g) endowed with a Ck, 3 ≤ k ≤ ∞, metric and for which d is finite and

continuous (for instance, a globally hyperbolic spacetime) admits a Ck isometric

embedding into EN,1 for some N > 0. Here N = N0(n+ 1) would do.

Proof. By Cor. 4.1 (M, g) is stable. It is well known [2] that the Lorentzian distance

function is continuous and finite in globally hyperbolic spacetimes.
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The next result due to Müller and Sánchez can also be regarded as a consequence

of Lemma 4.7 and of Th. 2.62 on the existence of stable representatives in the

conformal class of a stably causal spacetime.

Corollary 4.3. A Ck+1, 3 ≤ k ≤ ∞, Lorentzian spacetime (M, g) is stably causal

if and only if it admits a conformal embedding into EN,1 for some N > 0.

p

q

x

t

Fig. 3. An example of stably causal spacetime for which d is finite but unstably so which, therefore,

is not isometrically embeddable in Minkowski spacetime. The example is conformal to the displayed

subset of 1+1 Minkowski spacetime, where the thick black lines and the region x ≤ 0 have been
removed.

Example 4.1. It is natural to ask whether in stably causal Lorentzian spacetimes

the finiteness of D is implied by the finiteness of d, and so whether the finiteness

of d can be sufficient for the embeddability in Minkowski spacetime. The next

example answers this in the negative. Let M be the open set of Minkowski 1+1

spacetime depicted in Figure 3. The metric on M is conformal to Minkowski g =

ϕ(x)(−dt2 + dx2), φ > 0. The open set M is contained in the region x > 0 from

which we remove segments and half-lines. We are really removing the same vertical

element, repeated and rescaled a countable number of times. This vertical element

presents two ‘gates’ which the causal curves of (M, g) cannot traverse, thus M gets

separated into a sequence of causally unrelated strips. However, g′-causal curves for

g′ > g can indeed traverse the gates. Let ϕ be bounded on x > ε for every ε > 0.
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If ϕ → +∞ sufficiently fast for x → 0, e.g. ϕ = 1/x4, then d is finite but D is

infinite for some pairs, e.g. D(p, q) = +∞. The reason is that by opening the cones

there are curves connecting p to q which pass as many gates as desired, acquiring

arbitrarily large Lorentzian length thanks to their vertical development near x = 0.

Since d′(p, q) = +∞ for every g′ > g, we have D(p, q) = +∞.

Example 4.2. In [111, Sec. 6.1] it has been proved that for any constants a, b > 0,

the 3+1-dimensional spacetime R2 × R2\{(0, 0)}, g = a(dw2 + dz2) − 2dydx +

2 ab√
w2+z2

dx2 is causally simple but not globally hyperbolic, and that it has a fi-

nite and continuous Lorentzian distance. By the previous corollary it provides

a non-trivial example of stable non-globally hyperbolic spacetime embeddable in

Minkowski.
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theorem for C1,1-metrics. Class. Quantum Grav., 32 (2015) 075012, 19 pp.

[11] M. Graf, J. D. Grant, M. Kunzinger, R. Steinbauer. The Hawking-Penrose sin-
gularity theorem for C1,1-lorentzian metrics. Commun. Math. Phys., 360 (2018)
1009–1042.

[12] E. Minguzzi. Raychaudhuri equation and singularity theorems in Finsler spacetimes.
Class. Quantum Grav., 32 (2015) 185008, 26 pp. arXiv:1502.02313.



134 E. Minguzzi

[13] E. Minguzzi. Time functions as utilities. Commun. Math. Phys., 298 (2010) 855–
868. arXiv:0909.0890.

[14] A. Fathi, A. Siconolfi. On smooth time functions. Math. Proc. Camb. Phil. Soc.,
152 (2012) 303–339.

[15] A. Fathi. Time functions revisited. Int. J. Geom. Meth. Mod. Phys., 12 (2015)
1560027, 12 pp.

[16] P. Bernard, S. Suhr. Lyapounov functions of closed cone fields: from Conley theory
to time functions. Commun. Math. Phys., 359 (2018) 467–498. arXiv:1512.08410v2.
Replaces a previous work by Suhr “On the existence of steep temporal functions”.
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