
Periodic solutions of some autonomous Liénard

equations with relativistic acceleration

Jean Mawhin
Institut de Recherche en Mathématique et Physique
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Abstract

After giving a new proof of the existence of a stable limit cycle for the
relativistic Van der Pol equation

d

dt

ẋ
√

1 − ẋ2
+ k(x2

− 1)ẋ + x = 0,

we find sufficient conditions upon f and g in order that the relativistic
Liénard equation

d

dt

ẋ
√

1 − ẋ2
+ f(x)ẋ + g(x) = 0

has a stable limit cycle. The approach and the existence conditions are
distinct from those recently obtained by Pérez-González, Torregrosa and
Torres [8].
2010 Mathematics Subject Classification. Primary 34C25, Secondary 34C07.
Key words and phrases. periodic orbits, limit cycles, Van der Pol relativis-
tic equation, Liénard relativistic equation.

1 Introduction

In the last ten years, the study of the existence and multiplicity of periodic
solutions of non-autonomous second order equations where ẍ, with ẋ denoting
the derivative of x with respect to t, is replaced by a relativistic type acceleration
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d
dt

ẋ√
1−ẋ2

has been considered by many authors. They either use the Leray-

Schauder-type methods initiated in [1], or variational methods initiated in [2],
or symplectic methods initiated in [5]. Subsequent references can be found in
the surveys [6, 7].

Much less attention has been paid to the existence of limit cycles of au-
tonomous second order equations involving a relativistic-type acceleration. A
notable exception is the recent interesting paper [8] of Pérez-González, Torre-
grosa and Torres, where the existence and uniqueness of limit cycles of differ-
ential equations of the Liénard type

d

dt
ϕ(ẋ) + +f(x)ψ(ẋ) + g(x) = 0,

is considered for some class of homeomorphisms ϕ from an open bounded in-
terval onto R. In particular, it is shown there that the relativistic van der Pol
equation

d

dt

ẋ√
1 − ẋ2

+ k(x2 − 1)ẋ+ x = 0 (1)

has a unique periodic orbit for all k 6= 0.
The aim is this paper is to take advantage of some techniques introduced in

[3, 9, 10, 11] to obtain new results for relativistic Liénard equations of the form

d

dt

(
ẋ√

1 − ẋ2

)
+ f(x)ẋ + g(x) = 0, (2)

where the continuous functions f and g satisfy some conditions.
In Section 2, various reductions of equation (2) are considered for possible

use in the sequel, and it is shown that the Cauchy problem for (2) is uniquely
solvable when g is locally Lipschitz continuous. In Section 3, we give another
proof of the existence of a limit cycle for the relativistic Van der Pol equation
(1), a result already obtained in [8]. In Section 4, we obtain the existence of a
stable limit cycle for the relativistic Liénard equation (2) in situations which are
not covered by the results of [8], as shown by the example developed in Section
5.

2 Relativistic Duffing and Liénard equations

Let us consider the relativistic Liénard equation (2), with g(0) = 0, so that
(0, 0) is an equilibrium. Solutions of equation (2) must of course be such that
|ẋ(t)| < 1 for all t ∈ R, so that, instead of considering the usual phase plane R

2,
one is a priori restricted to the strip R × (−1, 1).

A way to avoid this difficulty is to make the change of variable

y =
ẋ√

1 − ẋ2
, |ẋ| < 1,
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which is equivalent to

ẋ =
y√

1 + y2
, y ∈ R,

so that equation (2) can be written as the equivalent system

ẋ =
y√

1 + y2
, ẏ = −f(x)

y√
1 + y2

− g(x). (3)

Another approach, inspired by the use of the Liénard plane in the classical
case, is to write equation (2) in the form

d

dt

[
ẋ√

1 − ẋ2
+ F (x)

]
+ g(x) = 0

where F (x) :=
∫ x

0
f(s) ds (x ∈ R), and make the change of variable

y =
ẋ√

1 − ẋ2
+ F (x), |ẋ| < 1,

which is equivalent to

ẋ =
y − F (x)√

1 + [y − F (x)]2
, y ∈ R.

Hence, equation (2) can be written as the equivalent system

ẋ =
y − F (x)√

1 + [y − F (x)]2
, ẏ = −g(x). (4)

From this follows immediately the following regularity result.

Lemma 1 If f : R → R is continuous and g : R → R locally Lipschitzian, the
the Cauchy problem for equation (2) or (3) or (4) is locally uniquely solvable.

Proof. It suffices to notice that F is of class C1, and apply standard results [4]
to system (4).

The second step in establishing the existence of a closed orbit for (3) is to
find conditions under which the unique equilibrium (0, 0) is a source. This is
the case if f(0) < 0.

The third and last step consists in proving the existence of a winding orbit
around the origin, in order to apply Poincaré-Bendixson’s theorem [4]. To this
aim, it is of interet to study the corresponding Duffing equation, for which f ≡ 0,

d

dt

ẋ√
1 − ẋ2

+ g(x) = 0,

and the system (3) reduces to

ẋ =
y√

1 + y2
, ẏ = −g(x). (5)
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System (5) has the Hamiltonian structure

ẋ =
∂H

∂y
(x, y), ẏ = −∂H

∂x
(x, y),

with

H(x, y) =
√

1 + y2 − 1 +G(x),

and G(x) =
∫ x

0
g(s) ds. Consequently, we have the energy first integral

√
1 + y2 − 1 +G(x) = C.

We have substracted the constant 1 from
√

1 + y2 in order that, for |y| small,

the result is close to the classical expression y2

2 .
It is easy to see, like in the classical case, that the origin (0, 0) of our (x, y)-

phase plane is a global center for the system (5) if and only if G(x) → +∞ as
|x| → ∞. Now, taking H as a Liapunov function for system (3), we obtain, for
its time-derivative along the trajectories of (3)

Ḣ(x, y) =
∂H

∂x
(x, y)ẋ +

∂H

∂y
(x, y)ẏ

= g(x)
y√

1 + y2
− y√

1 + y2

[
f(x)

y√
1 + y2

+ g(x)

]

= −f(x)
y2

1 + y2
.

Therefore, at points where f(x) is positive, the trajectories of system (3) enter
trajectories of system (5), while, at points where f(x) is negative, the trajecto-
ries of system (3) exit trajectories of system (5).

Moreover, the slope of the trajectories of system (3) is given by the following
expression, where y′ denotes the derivative of y with respect to x,

y′(x) =
ẏ

ẋ
= −f(x) − g(x)

√
1 + y2

y
, (6)

and the 0-isocline, namely the curve in which ẏ = 0, is given by

y√
1 + y2

= − g(x)

f(x)
.

3 The relativistic Van der Pol equation revisited

At first we discuss the Van der Pol equation (1) where k 6= 0, although inter-
esting results, and in particular the existence of limit cycles, can be proved in
a similar way for equation (2). Notice that the case where k < 0 is reduced to
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the case where k > 0 by changing t into −t, so that we can assume without loss
of generality that k > 0.

For this particular equation, system (3) becomes

ẋ =
y√

1 + y2
, ẏ = −k(x2 − 1)

y√
1 + y2

− x, (7)

and the 0-isocline is given by

y√
1 + y2

= − x

k(x2 − 1)
. (8)

Observe first that, for f(x) = k(x2 − 1), f(0) = −1 < 0 and hence the origin
of the phase plane is a source.

The 0-isocline in the classical Van der Pol equation is given by

y = − x

k(x2 − 1)
. (9)

Of course, points of (8) only correspond to those x for which − x
k(x2−1) ∈ (−1, 1),

i.e., as easily shown, to the x belonging to the set

(−∞,−x2) ∪ (−x1, x1) ∪ (x2,+∞),

where

x1 = − 1

2k
+

√
1

4k2
+ 1 ∈ (0, 1), x2 =

1

2k
+

√
1

4k2
+ 1 ∈ (1,+∞).

Hence (8) can be seen as ‘stretching’ the restriction of (9) to R × (−1, 1) to R
2

(see Fig. 1 and Fig. 2).

Fig. 1. Classical Van der Pol equation
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Fig. 2. Relativistic Van der Pol equation

At this point, arguing in the same way as in the classical case considered in
[9], we are able to produce a winding trajectory. As the origin is a source, we
can apply the Poincaré-Bendixson theorem [4] and get the existence of at least
one limit cycle for (7).

Let ∆1 be the component of the curve defined by (8) for x ∈ (−∞,−x2),
i.e. the graph of the increasing positive function

u1(x) = − x√
k2(x2 − 1)2 − x2

, (10)

and let ∆2 be the component of the same curve for x ∈ (x2,+∞), i.e. the
graph of the increasing negative function given by (10) for x ∈ (x2,+∞), that
we denote by u2(x). We have

lim
x→−x2−

u1(x) = +∞, limx→x2+ u2(x) = −∞,

lim
x→−∞

u1(x) = 0, limx→+∞ u2(x) = 0.

Let α ∈ ∆1 with abscissa xα < −x2. Now let

G(x, y) = −k(x2 − 1)
y√

1 + y2
− x.

Since the function y√
1+y2

is an increasing function of y and k(x2−1) > 0 for x 6∈
[−1, 1], we see that, for each fixed x 6∈ [−1, 1], G(x, y) is a decreasing function
of y. The trajectory which passes through the point α comes from ‘infinity’
without intersecting the x-axis before reaching the point (xα, u1(xα)) ∈ ∆1.
From

y′(x) =
ẏ

ẋ
= −k(x2 − 1) − x

√
1 + y2

y
, (11)
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it follows that the trajectory does not have vertical asymptotes and, being
bounded away from the x-axis, it must cross the y-axis. By an analogous ar-
gument, we can claim that the trajectory, after entering the x > 0 half-plane,
either will cross the x-axis on the 0 < x ≤ x2 segment, or will cross the line
x = x2. In the latter case, y(x) will decrease after x = x2. As

|x| + k(x2 − 1)√
1 + y2

> |x| > x2 > 0 if |x| > x2, (12)

there cannot be an horizontal asymptote for the trajectory, which must even-
tually cross the x-axis at some x > x2. The trajectory is now in the y < 0
half-plane. As a consequence of (11) again, the trajectory must meet the y-axis
at some level y < 0.

Afterwards, as a consequence of (12) again, the trajectory cuts the x-axis
either on the interval (−x2, 0), or at some x ≤ −x2. In this case, the trajectory
must remain below the graph ∆1, and hence is bounded in the future. The ω-
limit set is compact and non-empty. Since the only critical point, at the origin,
is repulsive, we can conclude that the limit set must be a cycle. Hence we have
proved the following result.

Theorem 1 For each k 6= 0, equation (1) has a least one nontrivial periodic
solution.

This theorem was already proved in [8] but our argument is quite different
from the one given there.

4 The relativistic Liénard equation

We return to system (3) and first compare the slope of the relativistic Liénard
system (6) with the slope of the classical Liénard system, namely

y′(x) = −f(x) − g(x)

y
.

A direct comparison of the slopes at the same point (x, y) shows that if xy >
0, the trajectories of system (3) enter the trajectories of the classical Liénard
system

ẋ = y, ẏ = −f(x)y − g(x), (13)

while if xy < 0, the trajectories of system (3) exit the trajectories of system
(13). So, when xy > 0, the trajectories of (3) are guided by those of (13).
The question is then the intersection of a positive semitrajectory with the x-
axis, because in this way one can prove that trajectories are clockwise and then
apply the Poincaré-Bendixson theorem.

When F (x) is bounded from below for x positive large enough and bounded
from above for x negative large enough, Villari [10] has proved that the condition

lim sup
x→+∞

[G(x) + F (x)] = +∞ (14)
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is necessary and sufficient in order that a positive semitrajectory starting with
a nonnegative y intersects the x-axis, and that the condition

lim sup
x→−∞

[G(x) − F (x)] = +∞

is necessary and sufficient in order that a positive semitrajectory starting with a
nonpositive y intersects the x-axis. The results are proved in the Liénard plane
but hold as well in the phase plane.

More general situations have been considered by Villari and Zanolin in [11],
that we shall adapt to the present situation. Like in [11], given f : R → R

continuous, F (x) :=
∫ x

0 f(s) ds, g : R → R continuous, we define Γ+ : R → R

by

Γ+(x) :=

∫ x

0

(1 + F+(s))−1g(s) ds,

where F+(x) := max{0, F (x)}. We also define G(x) :=
∫ x

0
g(s) ds.

Theorem 2 Assume that the following conditions hold.

1. f : R → R is continuous, g : R → R is locally Lipschitzian, xg(x) > 0 for
x 6= 0, and f(0) < 0.

2. there exists a > 0 such that f(x) > 0 when x > a, limx→+∞G(x) = K <

+∞, limx→+∞ F (x) = +∞.

3. There exists 0 < α < 4 such that

lim
x→−∞

[αΓ+(x) − F (x)] = +∞.

Then equation (2) has at least a stable limit cycle.

Proof. Notice that Assumtion 2 rules the behavior of f and g for x > 0 and
Assumption 3 for x < 0.

We first consider the behavior of a trajectory when x > 0. Let K > 0 be such
that G(x) < K for all x ∈ R, according to the second condition in Assumption
2. We define H : R

2 → R by

H(x, y) :=
√

1 + y2 − 1 +G(x)

and consider the corresponding curve of equation

K =
√

1 + y2 − 1 +G(x). (15)

It intersects the y-axis at the point (0,−
√
K2 + 2K). On the other hand, as

G(x) < K for all x ∈ R the curve with equation (15) does not intersect the x-
axis. For a > 0 given in Assumption 2, the curve with equation (15) intersects
the line x = a at the point of ordinate

y = −β := −
√
K2 + 2K − 2G(a)(K + 1) +G2(a).
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When G(x) → K, this expression tends to 0, as expected. Following an argu-
ment that appeared in [10] and [3] and a slope comparison, we observe that the
negative semi-trajectory γ−(P ) with P = (a,−β) does not intersect the x-axis.
On the other hand, as its slope is bounded, the semi-trajectory γ+(P ) intersects
the y-axis, say at point Q = (0, y) with y < 0.

We now consider the behavior of a trajectory when x < 0. For the classical
Liénard system

ẋ = y − F (x), ẏ = −g(x),

we know from [11] that if Assumption 3 holds, then the positive semi-trajectory
γ̂+(Q) starting from some point Q = (α,−β) with α ∈ (0, 4) given in Assump-
tion 3 and β > 0 intersects the vertical isocline, and therefore the x-axis at
some point R = (x̂, 0). The interesting case is the one where f(x) is eventually
negative, which corresponds to the last condition in Assumption 2. Hence, by
definition of Γ+, G(x) must dominate F (x). Using a comparison argument, the
positive semi-trajectory γ+(Q) of (3) must intersect the x-axis at some point
S = (x, 0), with x̂ < x < 0. Now, as its slope is bounded, the semi-trajectory
γ∗(S) must intersect the y-axis at some point (0, y) with y > 0 and, in virtue of
(14), eventually intersects the x-axis at some point (x, 0) with x > 0.

Therefore γ(P ) is winding. The origin being a source because of the last
condition in Assumption 1, we apply the Poincaré-Bendixson theorem [4] and
obtain the existence of a stable limit cycle.

Like in [11], a ‘dual’ result holds if the conditions for x > 0 and x < 0 are
interverted, whose statement is left to the reader.

5 An example

Consider system (3), i.e. equation (2), with f(0) < 0 and f(x) = 1
x log x

for x
positive large enough, and

g(x) =

{
x for 0 ≤ x < 1,
1
x2 for x > 1.

Clearly, G(x) is bounded for x positive, and hence system (5) has not a global
center, and in the half phase plane with x positive, there are trajectories which
back in time do not intersect the x-axis. Because f(x) > 0 and coming back to
Ḣ(x, y), we know that the trajectories of system (3) enter trajectories of system
(5). But this means that back in time, such trajectories also do not intersect the
x-axis. Now, system (3) has no vertical asymptotes, and hence its trajectories
intersect the y-axis in y < 0. Now, defining f(x) and g(x) for x negative in such
a way that condition

lim sup
x→−∞

[G(x) − F (x)] = +∞

holds, we can see that such trajectories intersect the x-axis for x negative. As
the slope is bounded, such trajectories intersect the y-axis for y positive. Using
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the same argument, we can see that such trajectories intersect the x-axis for x
positive because

∫ x

2
1

s log s
ds→ +∞ when x→ +∞, and therefore condition

lim sup
x→+∞

[G(x) + F (x)] = +∞

holds. Hence, we have produced a winding trajectory. Adding the standard
assumption that f(0) < 0, we can conclude the existence of at least one stable
limit cycle for system (3).

Notice that the Assumption (E2) of [8] does not hold because

lim
x→∞

x[g(x) + f(x)] = 0.

In the case where G(x) → +∞, the previous argument does not work, but
one can still get results using the stretching trick applied to the Van der Pol
case. For instance, f(x) = 2

x log x
and g(x) = 1

x log x
give the desired result.

Again, Assumption (E2) of [8] does not hold.
Interesting cases can also obtained using the results of [11]
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