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Abstract
This article contains a summary of the White Paper submitted in 2019 to the ESA
Voyage 2050 process, which was subsequently published in EPJ Quantum Technol-
ogy (AEDGE Collaboration et al. EPJ Quant. Technol. 7,6 2020). We propose in this
White Paper a concept for a space experiment using cold atoms to search for ultra-
light dark matter, and to detect gravitational waves in the frequency range between
the most sensitive ranges of LISA and the terrestrial LIGO/Virgo/KAGRA/INDIGO
experiments. This interdisciplinary experiment, called Atomic Experiment for Dark
Matter and Gravity Exploration (AEDGE), will also complement other planned
searches for dark matter, and exploit synergies with other gravitational wave detec-
tors. We give examples of the extended range of sensitivity to ultra-light dark
matter offered by AEDGE, and how its gravitational-wave measurements could
explore the assembly of super-massive black holes, first-order phase transitions in
the early universe and cosmic strings. AEDGE will be based upon technologies
now being developed for terrestrial experiments using cold atoms, and will benefit
from the space experience obtained with, e.g., LISA and cold atom experiments in
microgravity.
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1 Preface

This article contains a summary of the White Paper submitted in 2019 by the same
authors to the ESA Voyage 2050 process, and also mentions a few subsequent
scientific and technical developments. The paper was published in EPJ Quantum
Technology [1], where we have welcomed as supporting authors participants in the
Workshop on Atomic Experiments for Dark Matter and Gravity Exploration held at
CERN [2], as well as other interested scientists.

2 Science case

Two of the most important issues in fundamental physics, astrophysics and cosmol-
ogy are the nature of dark matter (DM) and the exploration of the gravitational wave
(GW) spectrum.

Multiple observations from the dynamics of galaxies and clusters to the spectrum
of the cosmological microwave background (CMB) radiation measured by ESA’s
Planck satellite and other [3] experiments indicate that there is far more DM than
conventional matter in the Universe, but its physical composition remains a complete
mystery. The two most popular classes of DM scenario invoke either coherent waves
of ultra-light bosonic fields, or weakly-interacting massive particles (WIMPs). In the
absence so far of any positive indications for WIMPs from accelerator and other
laboratory experiments, there is increasing interest in ultra-light bosonic candidates,
many of which appear in theories that address other problems in fundamental physics.
Such bosons are among the priority targets for AEDGE.

The discovery of GWs by the LIGO [4] and Virgo [5] laser interferometer experi-
ments has opened a new window on the Universe, through which waves over a wide
range of frequencies can provide new information about high-energy astrophysics
and cosmology. Just as astronomical observations at different wavelengths provide
complementary information about electromagnetic sources, measurements of GWs
in different frequency bands are complementary and synergistic. In addition to the
ongoing LIGO and Virgo experiments at relatively high frequencies � 10 Hz, which
will soon be joined by the KAGRA [6] detector in Japan and the INDIGO project [7]
to build a LIGO detector in India, with the Einstein Telescope (ET) [8, 9] and Cosmic
Explorer (CE) [10] experiments being planned for similar frequency ranges, ESA
has approved for launch before the period being considered for Voyage 2050 mis-
sions the LISA mission, which will be most sensitive at frequencies � 10−1 Hz,
and the Taiji [11] and TianQin [12] missions proposed in China will have simi-
lar sensitivity to LISA. AEDGE is optimized for the mid-frequency range between
LISA/Taiji/TianQin and LIGO/Virgo/KAGRA/INDIGO/ET/CE 1. This range is ideal
for probing the formation of the super-massive black holes known to be present in

1The ALIA proposal in Europe [13] and the DECIGO proposal in Japan [14] have been aimed at a similar
frequency range, and the scientific interest of this frequency range has recently been stressed in [15, 16]
and [17].
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many galaxies. Also, AEDGE’s observations of astrophysical sources will comple-
ment those by other GW experiments at lower and higher frequencies, completing
sets of measurements from inspiral to merger and ringdown, yielding important
synergies as we illustrate below. GWs are the other priority targets for AEDGE.

In addition to these primary scientific objectives, several other potential objectives
for cold atom experiments in space are under study. These may include constraining
possible variations in fundamental constants, probing dark energy, and probing basic
physical principles such as Lorentz invariance and quantum mechanics. Cold quan-
tum gases provide powerful technologies that are already mature for the AEDGE
goals, while also developing rapidly [18]. The developments of these technologies
can be expected to offer AEDGE more possibilities on the Voyage 2050 time scale.
AEDGE is a uniquely interdiscplinary and versatile mission.

3 Experimental considerations

The design of AEDGE requires two satellites operating along a single line-of-sight
and separated by a long distance. The payload of each satellite will consist of cold
atom technology as developed for state-of-the-art atom interferometry and atomic
clocks. As two satellites are needed to accomplish its science goals, the AEDGE mis-
sion planning costs are estimated to be in the range of an L-class mission. However,
in view of the international interest in the AEDGE science goals, the possibility of
international cooperation and co-funding of the mission may be investigated.

There are several cold atom projects based on various technologies that are cur-
rently under construction, planned or proposed, which address the principal technical
challenges and could be considered in a detailed design for a mission proposal and
corresponding satellite payload. However, all of these options require the same basic
detector and mission configuration outlined above. For the option presented in the
White Paper we chose to base our discussion on the concept outlined in in [19–22],
which is currently the most advanced design for a space mission (Fig. 1).

This concept links clouds of cold atomic strontium in a pair of satellites in medium
earth orbit (MEO) via pulsed continuous-wave lasers that induce the 698 nm atomic
clock transition, and detect momentum transfers from the electromagnetic field to the
strontium atoms, which act as test masses in a double atom interferometer scheme.

4 Technological readiness

AEDGE will benefit from the experience gained with LISA Pathfinder in free-fall
control and LISA itself in operating laser interferometers over large distances. We
have identified the following three additional high-level technical requirements that
are critical for AEDGE:

• Demonstrate reliable functioning of atom interferometry on a large terrestrial
scale � 100m;
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Fig. 1 Space-time diagram of the operation of a pair of cold-atom interferometers based on single-photon
transitions between the ground state (blue) and the excited state (red dashed). The laser pulses (wavy lines)
travelling across the baseline from opposite sides are used to divide, redirect, and recombine the atomic
de Broglie waves, yielding interference patterns that are sensitive to the modulation of the light travel time
caused by DM or GWs (from [19]). For clarity, the sizes of the atom interferometers are shown on an
exaggerated scale

• Demonstrate that the design parameters assumed here, such as the LMT enhance-
ment, phase noise control, interrogation time, etc., can be achieved;

• Demonstrate the robustness of cold atom technology in the space environment.

Several terrestrial atom interferometer projects that would serve as demonstrators for
different technologies are under construction, planned or proposed.

These include three large-scale prototype projects at the 100-m scale that are
funded and currently under construction, namely MAGIS-100 in the US [21], MIGA
in France [23], ZAIGA in China [24] and now the first stage of AION in the
UK [25], and there are projects to build one or several more km-scale detectors in
the US (at the Sanford Underground Research facility, SURF), in Europe (MAGIA-
advanced [26, 27], ELGAR [28]) and in China (advanced ZAIGA) that would serve
as the ultimate technology readiness demonstrators for AEDGE. In parallel to these
large-scale prototype projects, several other cold atom projects are in progress or
planned, demonstrating the general readiness of the technology including the scaling
of the basic parameters that are required for AEDGE.

Moreover, several cold atom experiments (CACES [29], MAIUS [30],
CAL [31]) and underlying optical key technologies (FOKUS [32], KALEXUS [33],
JOKARUS [34]) have already demonstrated reliable operation in space, and much
more experience will be gained in the coming years.
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In addition there are ongoing NASA, Chinese, ESA, German and French projects
to conduct cold atom experiments in space, some of which have already provided
operational experience with cold atoms in space or microgravity environments. These
include the Cold Atom Laboratory (CAL) experiment on the ISS [31], the Chinese
Atomic Clock Ensemble in Space (CACES) that has demonstrated in-orbit operation
of an atomic clock based on laser-cooled rubidium atoms [29], the Atomic Clock
Ensemble in Space (ACES/PHARAO) project led by ESA plans to install ultra-stable
atomic cesium clocks on the ISS [35, 36], the Bose-Einstein Condensate and Cold
Atom Laboratory (BECCAL) project [37], the ICE experiment that recently reported
the all-optical formation of a BEC in the microgravity environment obtained on an
Einstein elevator [38], and the ISS Space Optical Clock (I-SOC) project of ESA [39,
40] to use cold strontium atoms in space to compare and synchronize atomic clocks
worldwide.

Other proposals for atomic experiments in space to probe fundamental physics
include STE-QUEST [41], the Space Atomic Gravity Explorer (SAGE) mission [22],
the SagnAc interferometer for Gravitational wavE proposal (also called SAGE) [42]
and the Atomic Interferometric Gravitational-Wave Space Observatory (AIGSO)
proposed in China [43].

5 Summary

The nature of DM is one of the most important and pressing in particle physics
and cosmology, and one of the favoured possibilities is that it is provided by coher-
ent waves of some ultra-light boson. AEDGE will be able to explore large ranges
of the parameter spaces of such models, complementing the capabilities of other
experiments.

Experience with electromagnetic waves shows the advantages of making astro-
nomical observations in a range of different frequencies, and the same is expected
to hold in the era of gravitational astronomy. There are advanced projects to explore
the GW spectrum with maximum sensitivities at frequencies � 10 Hz and below
� 10−2 Hz, but no approved project has peak sensitivity in the mid-frequency band
between them. AEDGE would be ideal for exploiting the scientific opportunities in
the mid-frequency band, complementing other experiments and offering synergies
with them.

Other possible opportunities for AEDGE in fundamental physics, astrophysics and
cosmology have been identified, but not yet explored in detail.

The roadmap towards the AEDGE mission includes the following elements:

• Today to 2025: Prototype 10-m facilities in the US, Europe and China, being
extended to O(100)m;

• 2025 to 2035: scaling of 100-m facilities to km-scale infrastructures;
• These experiments will demonstrate the reliability of cold-atom interferometers

capable of achieving or surpassing the technical requirements for AEDGE;
• Operation of LISA will demonstrate the operation of large-scale laser interfer-

ometry in space;
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• In parallel, a vigorous technology development programme should be set up, pur-
sued and coordinated on a European-wide level in order to maximize efficiency
and avoid duplication.

AEDGE is a uniquely interdisciplinary mission that will harness cold atom tech-
nologies to address key issues in fundamental physics, astrophysics and cosmology
that can be realized within the Voyage 2050 Science Programme of ESA. The world-
wide spread of the authors of this article indicate that there could be global interest
in participating in this mission.

6 Recent developments

Following submission of this White Paper, an expanded version with over 100 addi-
tional authors was published [1]. This contains a number of refinements of the
science arguments, notably a discussion of the synergies to be obtained by including
AEDGE in a network of complementary detectors including LISA, LIGO, Virgo et
al. The expanded version also stresses the abilities of AEDGE to measure and local-
ize prospective mergers during their early infall phases and predict accurately the
times before the mergers themselves, which are of great interest for multi-messenger
astronomy. These AEDGE measurements would also provide precise tests of general
relativity, e.g., by constraining the gravitino mass [44].

An interesting and exciting new technical development is the possibility of doing
data analysis and alert generation on-board using neural networks. On-board data
processing can become quite important for overcoming the massive limitations on
the speed of data transfer, in order to generate alerts for space or Earth observatories
in the context of multi-messenger observations. The proposed solution, making on-
board data analysis and processing on space-qualified FPGAs using neural networks,
has been already presented to ESA, and its implementation for future missions has
been encouraged.

As mentioned in the White Paper, there is an urgent need to raise the Technol-
ogy Readiness Level (TRL) of cold atom devices for space applications, including
but not limited to interferometers. We note in this connection the recent successful
observation of Bose-Einstein condensation on the ISS by the BEC Collabora-
tion [45], as well as recent progress in the development of technologies for quantum
communication [46].

Finally, we also note that the proposal for the AION ground-based atom interfer-
ometer project [25] has recently been approved in the UK, joining the MAGIS project
in the US, the MIGA project in France, and the ZAIGA project in China, which had
been approved previously.

Abbreviations ACES/PHARAO, Atomic Clock Ensemble in Space/Projet d’Horloge à Refroidissement
d’Atomes en Orbite; AIGSO, Atomic Interferometric Gravitational-Wave Space Observatory; ALIA,
Advanced Laser Interferometer Antenna; ALP, Axion-like particle; BEC, Bose-Einsten Condensate; BEC-
CAL, Bose–Einstein Condensate and Cold Atom Laboratory; BS, Beam splitter; CACES, Cold Atom
Clock Experiment in Space; CAL, Cold Atom Laboratory; CERN, Conseil Européen pour le Recherche
Nucléaire; CMB, Cosmic Microwave Background; DECIGO, Deci-Hertz Interferometer Gravitational
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Wave Observatory; DLR, Deutsches Zentrum für Luft- und Raumfahrt; DM, Dark Matter; ESA, European
Space Agency; FOKUS, Faserlaserbasierter Optischer Kammgenerator unter Schwerelosigkeit; INFN,
Istituto Nazionale per la Fisica Nucleare; ICE, atomique à sources Cohérentes pour l’Espace; ISO, Interna-
tional Organization for Standardization; I-SOC, ISS space optical clock; ISS, International Space Station;
JOKARUS, Jod Kamm Resonator unter Schwerelosigkeit; KALEXUS, Kalium-Laserexperimente unter
Schwerelosigkeit; LMT, Large momentum transfer; MAGIA, Misura Accurata di G mediante Interferome-
tria Atomica; MAIUS, Materiewellen Interferometer Unter Schwerelosigkeit; MEO, Medium earth orbit;
MICROSCOPE, Micro-Satellite à traı̂née Compensée pour l’Observation du Principe d’Equivalence;
NASA, National Aeronautics and Space Agency; QUANTUS, Quantengase Unter Schwerelosigkeit;
SAGAS, Search for Anomalous Gravitation using Atomic Sensors; SAGE, Space Atomic Gravity
Explorer, Sagnac interferometer for gravitational wave; SAI, Space Atom Interferometer; STE-QUEST,
Space-Time Explorer and QUantum Equivalence Principle Space Test; SURF, Sanford underground
research facility; TRL, Technology readiness level; TTM, Tip-tilt mirror; WIMP, Weakly-Interacting
Massive Particle ——.
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