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1 Introduction

Succession rules (sometimes called ECO-systems) have been proved to be an
efficient tool in order to solve several combinatorial problems. The concept of
a succession rule was introduced in [6] to study reduced Baxter permutations,
and only later this has been recognized as an extremely useful tool for the ECO
method, a methodology applied for the enumeration of various combinatorial
structures [2].

An (ordinary) succession rule Ω is a system constituted by an axiom and a
set of productions. A production constructs the successors of any given label (k).
The rule Ω can be represented by means of a generating tree having the axiom
as the label of the root and each node labelled (k) at level n has k sons at level
n+ 1.

A succession rule Ω defines a sequence of positive integers {fn}n≥0 where fn
is the number of the nodes at level n in the generating tree defined by Ω. By
convention the root is at level 0, so f0 = 1. The function fΩ(x) =

∑
n≥0 fnx

n is
the generating function determined by Ω.

More recently, there have been some efforts in developing methods to pass
from a recurrence relation defining an integer sequence to a succession rule defin-
ing the same sequence; in this case we say that the succession rule and the
recurrence relation are equivalent.

Our work fits into this research line, and tries to deepen the relations between
succession rules and recurrence relations.
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It is worth mentioning that almost all studies realized until now on this
topic have regarded linear recurrence relations with a finite number of integer
coefficients [4, 7]. We will address to these ones as C-finite recurrence relations,
and to the defined sequences as C-finite sequences [18].

Accordingly, our work will start considering C-finite recurrences. Compared
with the methods presented in [4, 7], our approach is completely different.

To achieve this goal, we first translate the given C-finite recurrence relation
into an extended succession rule, which differs from the ordinary succession rules
since it admits both jumps and marked labels. Then we recursively eliminate
jumps and marked labels from such an extended succession rule, thus obtaining
an ordinary succession rule equivalent to the previous one. We need to point out
that this translation is possible only if a certain condition – called positivity con-
dition – is satisfied. Such a condition ensures that all the labels of the generating
tree are non marked, hence the sequence defined by the succession rule has all
positive terms.

If the recurrence relation has degree k with coefficients a1, . . . , ak, such a
condition can be expressed in terms of a set of k inequalities which can be
obtained from a set of quotients and remainders given by the coefficients. To the
authors’ knowledge, such a condition is completely new in literature. It directly
follows that our positive condition provides a sufficient condition for testing the
positivity of a C-finite sequence, then it is related to the so called positivity
problem.

Positivity Problem: given a C-finite sequence {fn}n≥0, establish if all its terms
are positive.

This problem was originally proposed as an open problem in [3], and then
re-presented in [16] (Theorems 12.1-12.2, pages 73-74), but no general solution
has been found yet.

It is worth mentioning that the positivity problem can be solved for a large
class of C-finite sequences, precisely those whose generating function is a N-
rational series. We also recall that the class of N-rational series is precisely the
class of the generating functions of regular languages, and that a Soittola’s Corol-
lary in [17] states that the problem of establishing whether a rational generating
function is N-rational is decidable.

N-rational series have been recently revisited using modern combinatorial
techniques in [4, 15], using different approaches and some algorithms to pass
from an N-rational series to a regular expression enumerated by such a series
have been proposed [1,13]. However, none of these techniques provides a method
to face C-finite recurrence relations which are not N-rational.

Following the attempt of enlightening some questions on positive sequences,
some researches have recently focused on determining sufficient conditions to
establish the possible positivity of a given C-finite recurrence relation, as in-
terestingly described in [11]. As a matter of fact, up to now, we only know
that the positivity problem is decidable for C-finite recurrences of two [12] or
three terms [14]. Another approach to tackle the positivity problem is to develop
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algorithms to test possible positivity of recursively defined sequences (and, in
particular, C-finite sequences) by means of computer algebra, as in [10].

Our work fits into this research line, since the positive condition we propose
is a sufficient condition for testing the positivity of a C-finite sequence.

2 Basic Definitions and Notations

In this section we present some basic definitions and notations related to the
concept of succession rule. For further definitions and examples we address the
reader to [6].

Two succession rules are equivalent if they have the same generating function.
A succession rule is finite if it has a finite number of labels and productions.

For example, the two succession rules:{
(2)
(2) (2)(2)

{
(2)
(k) (1)k−1(k + 1)

are equivalent rules, and define the sequence fn = 2n. The one on the left is a
finite rule, since it uses only the label (2), while the one on the right is an infinite
rule.

According to the technique of colored label [8], in a succession rule there can
be labels (k)1 and (k)2 having the same number k of sons but having different
productions, in this case we refer to colored succession rules.

A slight generalization of the concept of ordinary succession rule is provided
by the so called jumping succession rule [9]. Roughly speaking, the idea is to
consider a set of succession rules acting on the objects of a class and producing
sons at different levels.

The usual notation to indicate a jumping succession rule Ω is the following:

(a)

(k)
j1 (e11(k))(e12(k)) . . . (e1k(k))

(k)
j2 (e21(k))(e22(k)) . . . (e2k(k))

...

(k)
jm (em1(k))(em2(k)) . . . (emk(k))

The generating tree associated with Ω has the property that each node la-
belled (k) lying at level n produces m sets of sons at level n + j1, n + j2, . . .,
n+jm, respectively and each of such set has labels (ei1(k)), (ei2(k)), . . . , (eik(k))
respectively, 1 ≤ i ≤ m.

We need to point out that a node labelled (k) has precisely k sons, according
to the above definitions. A rule having this property is said to be consistent.
However, in many cases we can relax this constraint and consider rules, where
the number of sons is a function of the label k.

Another generalization is used in [5], where the authors deal with jumping
and marked succession rules. In this case the labels appearing in a jumping
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succession rule can be marked, and the marked labels are considered together
with the unmarked ones.

A jumping and marked generating tree is a rooted labelled tree where there
appear marked and unmarked labels according to the corresponding succession
rule. The main property is that in the generating tree a marked label (k) kills
or annihilates the unmarked label (k) lying on the same level n. In particular,
the enumeration of the combinatorial objects in a class is the difference between
the number of unmarked and marked labels lying on a given level.

For any label (k), we introduce the following notation for generating tree
specifications:

(k) = (k); (k)n = (k) . . . (k)︸ ︷︷ ︸
n

n > 0; (k)−n = (k) . . . (k)︸ ︷︷ ︸
n

n > 0.

3 A Method to Translate C-sequences into Succession
Rules

The main purpose of our research is to develop a general formal method to
translate a given recurrence relation into a succession rule defining the same
number sequence. In this case we will say that the recurrence relation and the
succession rules are equivalent by abuse of language.

This section is organized as follows.

i) We deal with C-finite recurrences of the form

fn = a1fn−1 + a2fn−2 + . . .+ akfn−k ai ∈ Z, 1 ≤ i ≤ k (1)

with default initial conditions, i.e. f0 = 1 and fh = 0 for all h < 0. First, we
translate the given C-finite recurrence relation into an extended succession
rule, possibly using both jumps and marked labels (Section 3.1).

ii) Then, we recursively eliminate jumps and marked labels from such an ex-
tended succession rule, thus obtaining a finite succession rule equivalent to
the previous one (Section 3.2). We remark that steps i) and ii) can be applied
independently of the positivity of {fn}n≥0, but at this step we cannot be
sure that all the labels of the obtained rule are nonnegative integers.

iii) We state a condition to ensure that the labels of the obtained succession
rule are all nonnegative. If such a condition holds, then the sequence {fn}n≥0

has all positive terms, thus we refer to this as positivity condition (Section
3.3).

3.1 C-sequences with Default Initial Conditions

Let us consider a C-finite recurrence relation expressed as in (1), with default ini-
tial conditions and the related C-finite sequence {fn}n≥0. We recall that the gen-
erating function of {fn}n≥0 is rational, and precisely it is f(x) =

∑
n≥0 fnx

n =
1

1−a1x−a2x2−...−akxk .
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The first step of our method consists into translating the C-finite recurrence
relation (1) into an extended succession rule. The translation is rather straight-
forward, since in practice it is just an equivalent way to represent the recurrence
relation.

Proposition 1. The recurrence relation (1) with default initial conditions is
equivalent to the following extended succession rule:

(a1)

(a1)
1
 (a1)a1

(a1)
2
 (a1)a2

...

(a1)
k
 (a1)ak

(2)

For example, the recurrence relation fn = 3fn−1 +2fn−2−fn−3 with default
initial conditions, defines the sequence 1, 3, 11, 38, 133, 464, 1620, 5655, . . . , and
it is equivalent to the following extended succession rule:

(3)

(3)
1
 (3)3

(3)
2
 (3)2

(3)
3
 (3)

(3)

Figure 1 shows the first few levels of the associated generating tree.

38(3) (3)(3)(3)(3) (3)(3) (3) (3)(3)(3) (3)(3) (3) (3)(3)(3) (3)(3) (3)(3)(3)(3)(3)(3) (3)(3)(3)(3)(3)(3) (3)

(3)

(3)(3)

(3)(3)(3)

(3)(3)

(3)(3)(3) (3)(3)

(3)(3)(3)(3)

(3)(3)(3)

(3)(3)(3)

1

3

11

(3)

Fig. 1. Four levels of the generating tree associated with the succession rule (3)

3.2 Elimination of Jumps and Marked Labels

The successive step of our method consists into recursively eliminating jumps
from the extended succession rule (2) in order to obtain a finite succession rule
which is equivalent to the previous one. Once jumps have been eliminated we
will deal with marked labels.
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Proposition 2. The succession rule:

(a1)
(a1)  (a1 + a2)(a1)a1−1

(a1 + a2)  (a1 + a2 + a3)(a1)a1+a2−1

...

(
∑k−1
l=1 al) (

∑k
l=1 al)(a1)(

∑k−1
l=1 al)−1

(
∑k
l=1 al)  (

∑k
l=1 al)(a1)(

∑k
l=1 al)−1

(4)

is equivalent to the recurrence relation fn = a1fn−1 + a2fn−2 + . . . + akfn−k,
ai ∈ Z, 1 ≤ i ≤ k, with default initial conditions.

Please notice that the numbers inside a label are the coefficients of the re-
currence relation and their algebraic sum gives the number of successors of that
label. Obviously, the labels (a1), (a1 +a2), · · · , (

∑k
l=1 al) are different labels even

if the algebraic sums of the numbers inside labels gives the same value. For ex-
ample, given the recurrence relation fn = 3fn−1 + 4fn−3 with default initial
conditions, in this case a1 = 3, a2 = 0, a3 = 4, we have the following colored
succession rule: 

(3)1
(3)1  (3)2(3)21
(3)2  (7)(3)21
(7)  (7)(3)61

Proof. Let Ak(x) be the generating function of the label (
∑k
l=1 al) related to

the succession rule (4). We have:

A1(x) = 1 + (a1 − 1)xA1(x) + (a1 + a2 − 1)xA2(x) + . . .

. . .+ (a1 + a2 + . . .+ ak − 1)xAk(x);

A2(x) = xA1(x);

A3(x) = xA2(x) = x2A1(x);
...

Ak−1(x) = xAk−2(x) = xk−2A1(x);

Ak(x) = xAk−1(x) + xAk(x) = xk−1

1−x A1(x).

Therefore,

A1(x) = 1 + x(a1 − 1)A1(x) + x2(a1 + a2 − 1)A1(x) + . . .

. . .+ xk

1−x (a1 + a2 + . . .+ ak − 1)A1(x),

and we obtain the generating function A1(x) = 1−x
1−a1x−a2x2−...−akxk .
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At this point we can consider the generating function determined by the
succession rule (4) as following:∑k

i=1Ai(x) = A1(x) +A2(x) + . . .+Ak−1(x) +Ak(x) =

= A1(x) + xA1(x) + . . .+ xk−2A1(x) + xk−1

1−x A1(x) =

= (1−x)+x(1−x)+...+xk−2(1−x)+xk−1

1−a1x−a2x2−...−akxk =

= 1
1−a1x−a2x2−...−akxk .

Following the previous statement, the extended succession rule (3) – deter-
mined in the previous section – can be translated into the following succession
rule: 

(3)
(3) (5)(3)2

(5) (4)(3)4

(4) (4)(3)3

We observe that the previously obtained succession rule is an ordinary fi-
nite succession rule, but it may happen that the value of the label (

∑i
l=1 al) is

negative, for some i with i ≤ k, then the succession rule (4) contains marked
labels.

For example, the recurrence relation fn = 5fn−1 − 6fn−2 + 2fn−3, with
default initial conditions, which defines the sequence 1,5,19,67,231,791,2703, . . . ,
(sequence A035344 in the The On-Line Encyclopedia of Integer Sequences) is
equivalent to the following succession rule:

(5)
(5)  (−1)(5)4

(−1) (1)(5)2

(1)  (1)

Therefore our next goal is to remove all possible marked labels from the
succession rule. We observe that in order to obtain this goal, the recurrence
relation fn = a1fn−1 + a2fn−2 + . . . + akfn−k with default initial conditions
needs a1 > 0. We assume that this condition holds throughout the rest of the
present section.

In order to furnish a clearer description of our method, we start considering
the case k = 2.

Proposition 3. The C-finite recurrence fn = a1fn−1 + a2fn−2, with default
initial conditions, and having a1 > 0, is equivalent to

(a1)
(a1) (0)q2(r2)(a1)a1−(q2+1)

(r2)  
(

(0)q2(r2)
)q2

(0)q2(r2)(a1)r2−(q2+1)2
(5)
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where, by convention, the label (0) does not produce any son, and q2, r2 are
defined as follows:
- if a1 + a2 ≤ 0 then q2, r2 > 0 such that |a1 + a2| = q2a1 − r2;
- otherwise q2 = 0, r2 = a1 + a2.

Proof. We have to distinguish two cases: in the first one a1 + a2 ≤ 0 and in the
second one a1 + a2 > 0.

If a1 + a2 ≤ 0, we have to prove that the generating tree associated to the
succession rule (5) is obtained by performing some actions on the generating
tree associated to the extended succession rule (6) which is obviously equivalent
to the recurrence fn = a1fn−1 + a2fn−2 having a1 > 0 and a2 < 0, with f0 = 1
and fh = 0 for each h < 0. 

(a1)

(a1)
1
 (a1)a1

(a1)
2
 (a1)a2

(6)

The proof consists in eliminating jumps and marked labels at each level of
the generating tree associated with succession rule (6), sketched in Figure 2, by
modifying the structure of the generating tree, still maintaining fn nodes at level
n, for each n.

Let (a1) be a label at a given level n. We denote by B1 the set of a1 labels
(a1) at level n+ 1 and by B2 the set of a2 labels (a1) at level n+ 2, see Figure 2.
We remark that (a1)a2 = (a1) . . . (a1)︸ ︷︷ ︸

−a2

.

B(   )a . . . a(   )1
B

2 1(   )a. ..a(   )12
B

1(   )a . . . a(   )1
B

21(   )a a(   )1. . .B
1

1(   )a. ..a(   )12
B. ..

1(   )aa(   )1
B

1

a(   )1

B
1 1(   )a . ..

1(   )a 1(   )a . . . a(   )1

1(   )a a(   )1. . .B
1

. ..
1(   )aa(   )1

B
11(   )a a(   )1. . .B

1
. ..

. ..
1(   )aa(   )1

B
1

. . . a(   )11(   )a

. . .. ..

. . .
11

Fig. 2. Step 1

In order to eliminate both jumps and marked labels in B2 at level 2 produced
by the root (a1) at level 0, we have to consider the set of a1 labels (a1) in B1 at
level 2 obtained by (a1) which lie at level 1. At level 2, each label (a1) in a given
set B1 kills one and only one marked label (a1) in B2. At this point |a1 + a2|
labels (a1) in B2 always exist at level 2.

In order to eliminate such marked labels we have to consider more than a
single set B1 of label (a1) at level 2. Let q2 be a sufficient number of sets B1 at
level 2 able to kill all the labels (a1) in B2 at level 2. Therefore |a1+a2| = q2a1−r2
with q2, r2 > 0.
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We have the desired number of labels (a1) at level 2 by setting q2 labels (a1)
at level 1 equal to (0) and one more label (a1) to (r2). Note that the marked
labels at level 2 are not generated and the labels (a1) at level 1 are revised in
order to have the right number of labels at level 2, see Figure 3.

(   )2

1(   )a . ..
1(   )a

a(   )1 . . . a(   )1 a(   )1

B
1

2

1(   )a . ..

1(   )a . . . a(   )1
B

2 1(   )a. ..a(   )12
B

1(   )a . . . a(   )1
B

2

a(   )1

. . .

. ..

. ..

. . .

1
B

q

(   ) 00 (   )r

Fig. 3. Step 2

Note that, when a label (a1) kills a marked label (a1) at a given level n, then
the subtree, having such label (a1) as its root, kills the subtree having (a1) as
its root. So, when a label (a1) of B1 kills a label (a1) of B2 at level 2, then the
two subtrees having such labels as their roots are eliminated too, see Figure 3.

On the other hand, the q2 + 1 sets B2 at level 3 obtained by the q2 + 1 labels
at level 1, once labelled with (a1) and now having value r2, 0, . . . , 0, respectively,
are always present in the tree, see Figure 3. In order to eliminate such undesired
marked labels we can only set the production of (r2). As a set B2 at a given
level is eliminated by using q2 + 1 labels at previous level then (r2) must give
(r2) (0) . . . (0)︸ ︷︷ ︸

q2

exactly q2 + 1 times. This explains the first part of the production

rule of the label (r2) in succession rule (5). Since (r2) has r2 sons then the
remaining r2− (q2 +1)2 labels are set to be equal to (a1) as in the previous case,
see Figure 4.

(   )

00(   )r2(   ) ... . .2r(   ) (   )0 0(   ). .a(   )1. . .a(   )11(   )a . ..
1(   )a (   )00(   )r2(   ) .. . .. 2r(   ) (   )0 0(   ). .

a(   )1 . . . a(   )1

2
q

. . . 0(   )(   )02r(   ) . . .
2

q

. . . 0(   )(   )02r(   )

. ..

2
q

0(   )r2(   )1(   )a . ..

a(   )1

. . .

. ..

. . .

1
B 0

(   )

Fig. 4. Step 3
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By the way, the modified q2+1 labels having value r2, 0, . . . , 0, respectively, at

a given level n, produce the labels
(

(0)q2(r2)
)q2+1

(a1)r2−(q2+1)2 at level n + 1.

Just as obtained for levels 1 and 2, the labels
(

(0)q2(r2)
)q2+1

automatically

annihilate the remaining q2 + 1 sets B2 of marked labels at level n + 2, once
obtained by the modified q2 + 1 labels at level n, see Figure 4.

Till now we have modified a portion P of the total generating tree in a way
that it does not contain any marked label. Note that, the remaining labels (a1)
will be the roots of subtrees which are all isomorphic to P .

The value fn defined by the tree associated to the extended succession rule
(6), is given by the difference between the number of non-marked and marked
labels. The just described algorithm modifies the number of generated non-
marked labels and sets to 0 the number of marked ones in a way that fn is
unchanged, for each n, so the succession rule (5) is equivalent to the recurrence
fn = a1fn−1 + a2fn−2.

In the case a1 + a2 > 0 we have marked labels only if a2 < 0. In this case
a single set B1 is sufficient to kill all the marked labels in B2 at level 2. By the
way, both in the case a2 < 0 and a2 > 0 we have that q2 = 0 and r2 = a1 + a2,
and the succession rule (5) has the same form of the rule (4) which is equivalent
to the recurrence fn = a1fn−1 + a2fn−2 having a1 > 0 and a2 ∈ Z, with f0 = 1
and fh = 0 for each h < 0.

The statement of Proposition 3 can be naturally extended to the general case
k > 2.

Proposition 4. The C-finite sequence {fn}n satisfying fn = a1fn−1+a2fn−2+
. . .+ akfn−k, with default initial conditions and a1 > 0 is equivalent to

(a1)
(a1) (0)q2(r2)(a1)a1−(q2+1)

(r2)  
(

(0)q2(r2)
)q2

(0)q3(r3)(a1)r2−(q2(q2+1)+q3+1)

...

(ri)  
(

(0)q2(r2)
)qi

(0)qi+1(ri+1)(a1)ri−(qi(q2+1)+qi+1+1)

...

(rk) 
(

(0)q2(r2)
)qk

(0)qk(rk)(a1)rk−(qk(q2+1)+qk+1)

(7)

where the parameters qi and ri, with 2 ≤ i ≤ k, can be determined in the following
way:

- if
∑i
l=1 al ≤ 0 then qi, ri > 0 such that |

∑i
l=1 al| = qia1 − ri,

- otherwise qi = 0 and ri =
∑i
l=1 al.

Proof. It is omitted for brevity sake.
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We can translate the previously considered recurrence relation fn = 5fn−1−
6fn−2 + 2fn−3, with default initial conditions, into the following ordinary suc-
cession rule by using Proposition 4:

(5)
(5) (0)(4)(5)3

(4) (0)(4)(1)(5)
(1) (1)

being q2 = 1, r2 = 4, q3 = 0 and r3 = 1.

3.3 Positivity Condition

The statement of Proposition 4 is indeed a tool to translate C-finite recurrences
into finite succession rules. However this property turns out to be effectively
applicable only when the labels of the succession rule are all positive, and the
reader can easily observe that Proposition 4 does not give us an instrument to
test whether this happens or not.

In particular, if the labels of the succession rule are all positive then the
terms of the C-finite sequence are all positive. It is then interesting to relate our
problem with the so called positivity problem, which we have already mentioned
in the Introduction.

Corollary 5. Let us consider the recurrence relation fn = a1fn−1 + a2fn−2 +
. . . + akfn−k having a1 > 0 and ai ∈ Z, 2 ≤ i ≤ k, with f0 = 1 and fh = 0 for
each h < 0. If

a1 − (q2 + 1) ≥ 0
r2 − (q2(q2 + 1) + q3 + 1) ≥ 0
...
ri − (qi(q2 + 1) + qi+1 + 1) ≥ 0 , 3 ≤ i ≤ k − 1
...
rk − (qk(q2 + 1) + qk + 1) ≥ 0

(8)

then fn > 0 for all n.

As previously mentioned, condition (8) ensures that all the labels of the
succession rules equivalent to the given C-finite recurrence are positive, hence
all the terms fn are positive. Thus it can be viewed as a sufficient condition to
test the positivity of a given C-finite sequence.

Note that our criterion deals with a subclass of C-finite recurrence relations
as it requires that a1 > 0.

4 Conclusions and Further Developments

In this paper we have presented a general method to translate a given C-finite
recurrence into an ordinary succession rule and we have proposed a sufficient
condition for testing the positivity of a given C-finite sequence.
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A further development could take into consideration the average complexity
necessary to prove the positivity of a given C-finite sequence.

Afterwards, it should be interesting to develop the study concerning the C-
finite recurrences with generic initial conditions in order to examine in depth
the potentiality of our method.
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